Developmental programming: the role of growth hormone.
Oberbauer, Anita M
2015-01-01
Developmental programming of the fetus has consequences for physiologic responses in the offspring as an adult and, more recently, is implicated in the expression of altered phenotypes of future generations. Some phenotypes, such as fertility, bone strength, and adiposity are highly relevant to food animal production and in utero factors that impinge on those traits are vital to understand. A key systemic regulatory hormone is growth hormone (GH), which has a developmental role in virtually all tissues and organs. This review catalogs the impact of GH on tissue programming and how perturbations early in development influence GH function.
De Loof, Arnold; Schoofs, Liliane; Huybrechts, Roger
2016-01-15
Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology. Copyright © 2015 Elsevier Inc. All rights reserved.
Fujita, Toshitsugu; Piuz, Isabelle; Schlegel, Werner
2010-05-05
Transcription elongation of many eukaryotic genes is regulated. Two negative transcription elongation factors, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) are known to stall collaboratively RNA polymerase II promoter proximally. We discovered that DSIF and NELF are linked to hormone expression in rat pituitary GH4C1 cells. When NELF-E, a subunit of NELF or Spt5, a subunit of DSIF was stably knocked-down, prolactin (PRL) expression was increased both at the mRNA and protein levels. In contrast, stable knock-down of only Spt5 abolished growth hormone (GH) expression. Transient NELF-E knock-down increased coincidentally PRL expression and enhanced transcription of a PRL-promoter reporter gene. However, no direct interaction of NELF with the PRL gene could be demonstrated by chromatin immuno-precipitation. Thus, NELF suppressed PRL promoter activity indirectly. In conclusion, transcription regulation by NELF and DSIF is continuously involved in the control of hormone production and may contribute to neuroendocrine cell differentiation. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
GCC signaling in colorectal cancer: Is colorectal cancer a paracrine deficiency syndrome?
Li, P.; Lin, J.E.; Marszlowicz, G.P.; Valentino, M.A.; Chang, C.; Schulz, S.; Pitari, G.M.; Waldman, S.A.
2011-01-01
Summary Guanylyl cyclase C (GCC) is the receptor expressed by intestinal cells for the paracrine hormones guanylin and uroguanylin that coordinate mucosal homeostasis and its silencing contributes to intestinal transformation. It orchestrates proliferative and metabolic circuits by limiting the cell cycle and programming metabolic transitions central to regeneration along the crypt-villus axis. Mice deficient in GCC are more susceptible to colon cancer induced by germline mutations or carcinogens. Moreover, guanylin and uroguanylin are the most commonly lost gene products in colon cancer. The role of GCC as a tumor suppressor and the universal loss of its hormones in transformation suggest a paradigm in which colorectal cancer is a disease of paracrine hormone insufficiency. Indeed, GCC signaling reverses the tumorigenic phenotype of human colon cancer cells by regulating proliferation and metabolism. These data suggest a pathophysiological hypothesis in which GCC is a tumor suppressor coordinating proliferative homeostasis whose silencing through hormone loss initiates transformation. The correlative therapeutic hypothesis suggests that colorectal cancer is a disease of hormone insufficiency that can be prevented or treated by oral hormone replacement therapy employing GCC ligands. PMID:19771320
Menopausal Hormone Therapy and Cancer
... FDA-approved hormone products, sometimes referred to as “bio-identical hormones,” are widely promoted and sold without ... about these products in Menopausal Hormone Therapy and “Bio-identical” Hormones . Where does evidence about risks and ...
Aging changes in hormone production
... this page: //medlineplus.gov/ency/article/004000.htm Aging changes in hormone production To use the sharing ... that produce hormones are controlled by other hormones. Aging also changes this process. For example, an endocrine ...
Microbial production of plant hormones: Opportunities and challenges.
Shi, Tian-Qiong; Peng, Hui; Zeng, Si-Yu; Ji, Rong-Yu; Shi, Kun; Huang, He; Ji, Xiao-Jun
2017-03-04
Plant hormones are a class of organic substances which are synthesized during the plant metabolism. They have obvious physiological effect on plant growth at very low concentrations. Generally, plant hormones are mainly divided into 5 categories: auxins, cytokinins, ethylene, gibberellins (GAs) and abscisic acid (ABA). With the deepening of research, some novel plant hormones such as brassinosteroid and salicylates have been found and identified. The plant hormone products are mainly obtained through plant extraction, chemical synthesis as well as microbial fermentation. However, the extremely low yield in plants and relatively complex chemical structure limit the development of the former 2 approaches. Therefore, more attention has been paid into the microbial fermentative production. In this commentary, the developments and technological achievements of the 2 important plant hormones (GAs and ABA) have been discussed. The discovery, producing strains, fermentation technologies, and their accumulation mechanisms are first introduced. Furthermore, progresses in the industrial mass scale production are discussed. Finally, guidelines for future studies for GAs and ABA production are proposed in light of the current progress, challenges and trends in the field. With the widespread use of plant hormones in agriculture, we believe that the microbial production of plant hormones will have a bright future.
Lakshmi, Chembolli
2013-01-01
Underlying hormone imbalances may render acne unresponsive to conventional therapy. Relevant investigations followed by initiation of hormonal therapy in combination with regular anti-acne therapy may be necessary if signs of hyperandrogenism are present. In addition to other factors, androgen-stimulated sebum production plays an important role in the pathophysiology of acne in women. Sebum production is also regulated by other hormones, including estrogens, growth hormone, insulin, insulin-like growth factor-1, glucocorticoids, adrenocorticotropic hormone, and melanocortins. Hormonal therapy may also be beneficial in female acne patients with normal serum androgen levels. An understanding of the sebaceous gland and the hormonal influences in the pathogenesis of acne would be essential for optimizing hormonal therapy. Sebocytes form the sebaceous gland. Human sebocytes express a multitude of receptors, including receptors for peptide hormones, neurotransmitters and the receptors for steroid and thyroid hormones. Various hormones and mediators acting through the sebocyte receptors play a role in the orchestration of pathogenetic lesions of acne. Thus, the goal of hormonal treatment is a reduction in sebum production. This review shall focus on hormonal influences in the elicitation of acne via the sebocyte receptors, pathways of cutaneous androgen metabolism, various clinical scenarios and syndromes associated with acne, and the available therapeutic armamentarium of hormones and drugs having hormone-like actions in the treatment of acne.
VERNUNFT, Andreas; SCHWERHOFF, Mona; VIERGUTZ, Torsten; DIEDERICH, Mike; KUWER, Andreas
2014-01-01
The aim of this study was to investigate whether plasma anti-Muellerian hormone (AMH) levels of Holstein-Friesian heifers could be used to predict ovum pick-up (OPU) and embryo production outcomes. Plasma samples and data were collected from 64 heifers, which underwent repeated OPU with subsequent in vitro embryo production followed by embryo flushing after superovulation. AMH levels were significantly positively correlated with the number of follicles aspirated per OPU session (r = 0.45), recovered oocytes per OPU (r =0.43) and in vitro produced embryos per OPU (r = 0.28). No significant correlations between AMH and in vivo produced embryos were ascertained. Our results suggest that correlations between AMH and outcomes of an OPU-IVF program are too low to use AMH as a precise predictive parameter for the success of a particular OPU procedure in Holstein-Friesian heifers. However, AMH can help to identify groups of very good or very poor oocyte donors. PMID:25482112
Hertoghe, T
2005-12-01
In the human body, the productions, levels and cell receptors of most hormones progressively decline with age, gradually putting the body into various states of endocrine deficiency. The circadian cycles of these hormones also change, sometimes profoundly, with time. In aging individuals, the well-balanced endocrine system can fall into a chaotic condition with losses, phase-advancements, phase delays, unpredictable irregularities of nycthemeral hormone cycles, in particular in very old or sick individuals. The desynchronization makes hormone activities peak at the wrong times and become inefficient, and in certain cases health threatening. The occurrence of multiple hormone deficits and spilling through desynchronization may constitute the major causes of human senescence, and they are treatable causes. Several arguments can be put forward to support the view that senescence is mainly a multiple hormone deficiency syndrome: First, many if not most of the signs, symptoms and diseases (including cardiovascular diseases, cancer, obesity, diabetes, osteoporosis, dementia) of senescence are similar to physical consequences of hormone deficiencies and may be caused by hormone deficiencies. Second, most of the presumed causes of senescence such as excessive free radical formation, glycation, cross-linking of proteins, imbalanced apoptosis system, accumulation of waste products, failure of repair systems, deficient immune system, may be caused or favored by hormone deficiencies. Even genetic causes such as limits to cell proliferation (such as the Hayflick limit of cell division), poor gene polymorphisms, premature telomere shortening and activation of possible genetic "dead programs" may have links with hormone deficiencies, being either the consequence, the cause, or the major favoring factor of hormone deficiencies. Third, well-dosed and -balanced hormone supplements may slow down or stop the progression of signs, symptoms, or diseases of senescence and may often reverse or even cure them. If hormone deficiencies and imbalances are the major causes of senescence, what then is the treatment? Crucial for the treatment of senescent persons is to make a correct diagnosis by making up an anamnesis of all symptoms related to hormone disturbances, conducting a thorough physical examination, and getting laboratory tests done such as serum and 24-hour urine analyses. The physician should look not only for hormone deficiencies, including the mildest ones, but also for any alterations in hormone circadian cycles, and for the presence of any factors--nutritional, dietary, behavioral, lifestyle, environmental (including illumination and indoor, outdoor, or dietary pollutants)--that cause or aggravate hormone deficiencies. After completion of the detailed diagnostic phase and obtaining and analyzing the results of the tests, treatment can start. In general, before supplying hormones, all other factors that contribute to senescence should be eliminated. After that, supplements of the missing hormones can then be administered, carefully respecting an appropriate timing of their intake, and eventually recommending measures such as lifestyle changes to restore circadian rhythmicity.
NASA Astrophysics Data System (ADS)
Rohmawati, Irma; Ulfah, Maria
2018-05-01
Global market demand towards edamame is quite high, but production of edamame is still very low. Edamame have to increased its production. Many researchers stated that sitokinin effect on the activities of enzymes in metabolic processes of plants. This research aims to analyze response of plant physiological Edamame applied with hormones sitokinin especially in aspects of growth and productivity. The research was carried out in March-May 2017. This study used a Randomized Complete Design method with three treatment factors that is A (unannounced sitokinin hormone), B (hormone siokinin 0.5 mL) C (hormone sitokinin 1 mL) with 5 repetitions. The parameters observed were higher plants, number of leaves, and the weight of the fruit. Research shows that treatment with hormone sitokinin effect on the growth and the production of edamame. The addition of the sitokinin hormones can increase the growth of leaves, stems, and fruit productivity. Results of the study showed treatment C (sitokinin 1 mL) gives signifcant effect. At the age of 48 HST by administering hormones 1 mL, has an average height of 28.8 cm, average number of leaves 15, and heavy weight fruit 17.43 grams.
Development and implementation of a quality assurance program for a hormonal contraceptive implant.
Owen, Derek H; Jenkins, David; Cancel, Aida; Carter, Eli; Dorflinger, Laneta; Spieler, Jeff; Steiner, Markus J
2013-04-01
The importance of the distribution of safe, effective and cost-effective pharmaceutical products in resource-constrained countries is the subject of increasing attention. FHI 360 has developed a program aimed at evaluating the quality of a contraceptive implant manufactured in China, while the product is being registered in an increasing number of countries and distributed by international procurement agencies. The program consists of (1) independent product testing; (2) ongoing evaluation of the manufacturing facility through audits and inspections; and (3) post-marketing surveillance. This article focuses on the laboratory testing of the product. The various test methods were chosen from the following test method compendia, the United States Pharmacopeia (USP), British Pharmacopeia (BP), International Organization for Standardization (ISO), the American Society for Testing and Materials (ASTM), or lot release tests mandated by Chinese regulatory requirements. Each manufactured lot is independently tested prior to its distribution to countries supported by this program. In addition, a more detailed annual testing program includes evaluation of the active ingredient (levonorgestrel), the final product and the packaging material. Over the first 4 years of this 5-year project, all tested lots met the established quality criteria. The quality assurance program developed for this contraceptive implant has helped ensure that a safe product was being introduced into developing country family planning programs. This program provides a template for establishing quality assurance programs for other cost-effective pharmaceutical products that have not yet received stringent regulatory approval and are being distributed in resource-poor settings. Copyright © 2013 Elsevier Inc. All rights reserved.
Hormones and immune function: implications of aging.
Arlt, Wiebke; Hewison, Martin
2004-08-01
Aging is associated with a decline in immunity described as immunosenescence. This is paralleled by a decline in the production of several hormones, as typically illustrated by the menopausal loss of ovarian oestrogen production. However, other hormonal changes that occur with aging and that potentially impact on immune function include the release of the pineal gland hormone melatonin and pituitary growth hormone, adrenal production of dehydroepiandrosterone and tissue-specific availability of active vitamin D. It remains to be established whether hormonal changes with aging actually contribute to immunosenescence and this area is at the interface of fact and fiction, clearly inviting systematic research efforts. As a step in this direction, the present review summarizes established facts on the physiology of secretion and function of hormones that, in most cases, decline with aging and that are likely to affect the immune system.
1980-08-28
AD-AU90 848 ARMY MEDICAL RESEARCH INST OF INFECTIOUS DISEASES FR--ETC F/6 6/5 HORMONES IN INFECTION . CHAPTER A. ALTERATIONS IN HORMONE PROOUC-ETC(U...PERIOD COVERED Alterations in Hormone Production and Publication Utilization during Infection S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(e) 0. CONTRACT...the severity and duration of infections , differences related to the kind of infection , and endocrine- usociated complications of infection . I ,R
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalioto, R.M.; Ailhaud, G.; Negrel, R.
1990-12-31
Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with ({sup 3}H)glycerol or ({sup 3}H)choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in ({sup 3}H)ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 ({sup 3}H))phosphatidylcholine also induced the production ofmore » labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein.« less
Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.
2016-01-01
Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.
Anderzén, Ingrid; Arnetz, Bengt B
2005-07-01
To study whether knowledge about psychosocial work indicators and a structured method to implement changes based on such knowledge comprise an effective management tool for enhancing organizational as well as employee health and well-being. White- collar employees representing 22 different work units were assessed before and after a 1-year intervention program. Subjective ratings on health and work environment, biologic markers, absenteeism, and productivity were measured. Significant improvements in performance feedback, participatory management, employeeship, skills development, efficiency, leadership, employee well-being, and work-related exhaustion were identified. The restorative hormone testosterone increased during the intervention and changes correlated with increased overall organizational well-being. Absenteeism decreased and productivity improved. Fact-based psychosocial workplace interventions are suggested to be an important process for enhancing employee well-being as well as organizational performance.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Topically applied hormone-containing drug products... for Specific New Drugs or Devices § 310.530 Topically applied hormone-containing drug products for over-the-counter (OTC) human use. (a) The term “hormone” is used broadly to describe a chemical...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Topically applied hormone-containing drug products... for Specific New Drugs or Devices § 310.530 Topically applied hormone-containing drug products for over-the-counter (OTC) human use. (a) The term “hormone” is used broadly to describe a chemical...
1991-08-01
Site 18.0 8.4 9.2 8.6 21.2 I------- P Value------------------ Cal Mg2 K3 N 4 P5 With Covariates Site .193 .180 .472 .478 .113 Year .000 .000 .000...microbial population composition through production and excretion of compounds such as antibiotics, vitamins , amino acids, and hormones (Marx 1982, Keast and
Kouba, Andrew J; delBarco-Trillo, Javier; Vance, Carrie K; Milam, Callie; Carr, Meghan
2012-08-20
Captive breeding programs for endangered amphibian species often utilize exogenous hormones for species that are difficult to breed. The purpose of our study was to compare the efficacy of two different hormones at various concentrations on sperm production, quantity and quality over time in order to optimize assisted breeding. Male American toads (Anaxyrus americanus) were divided into three separate treatment groups, with animals in each group rotated through different concentrations of luteinizing hormone releasing hormone analog (LHRH; 0.1, 1.0, 4.0 and 32 micrograms/toad), human chorionic gonadotropin (hCG; 50, 100, 200, and 300 IU), or the control over 24 hours. We evaluated the number of males that respond by producing spermic urine, the sperm concentration, percent motility, and quality of forward progression. We also evaluated the effects of hCG and LHRH on reproductive behavior as assessed by amplexus. Data were analyzed using the Generalized Estimating Equations incorporating repeated measures over time and including the main effects of treatment and time, and the treatment by time interaction. The hormone hCG was significantly more effective at stimulating spermiation in male Anaxyrus americanus than LHRH and showed a dose-dependent response in the number of animals producing sperm. At the most effective hCG dose (300 IU), 100% of the male toads produced sperm, compared to only 35% for the best LHRH dose tested (4.0 micrograms). In addition to having a greater number of responders (P < 0.05), the 300 IU hCG treatment group had a much higher average sperm concentration (P < 0.05) than the treatment group receiving 4.0 micrograms LHRH. In contrast, these two treatments did not result in significant differences in sperm motility or quality of forward progressive motility. However, more males went into amplexus when treated with LHRH vs. hCG (90% vs. 75%) by nine hours post-administration. There is a clear dichotomy between the two hormones' physiological responses on gamete production and stimulation of amplexus. Understanding how these two hormones influence physiology and reproductive behaviors in amphibians will have direct bearing on establishing similar breeding protocols for endangered species.
Review: Using artificial insemination v. natural service in beef herds.
Baruselli, P S; Ferreira, R M; Sá Filho, M F; Bó, G A
2018-03-20
The aim of this review is to compare the performance of different reproductive programs using natural service, estrus synchronization treatment before natural service (timed natural breeding (TNB)), artificial insemination (AI) following estrus detection and timed artificial insemination (TAI) in beef herds. It is well known that after parturition the beef cow undergoes a period of anestrous, when they do not exhibit estrus, eliminating the opportunity to become pregnant in the early postpartum by natural mating or by AI after detection of estrus. Hormonal stimulation is already a consistent and well-proven strategy used to overcome postpartum anestrus in beef herds. Basically, hormones that normally are produced during the estrous cycle of the cow can be administered in physiological doses to induce cyclicity and to precisely synchronize follicular growth, estrus and ovulation. Furthermore, two options of mating may be used after hormonal stimulation: natural service (i.e. utilization of bull service after synchronization, referred to as TNB) and TAI. These strategies improve the reproductive efficiency of the herds compared with natural service without estrus induction or synchronization. After the first synchronized service, the most common strategy adopted to get non-pregnant cows pregnant soon is the introduction of clean-up bulls until the end of the breeding season. However, methods to resynchronize non-pregnant cows after the first service are already well established and offer a potential tool to reduce the time for subsequent inseminations. Thus, the use of these technologies enable to eliminate the use of bulls by using resynchronization programs (i.e. two, three or four sequential TAI procedures). The dissemination of efficient reproductive procedures, such as TNB, TAI and Resynch programs, either isolated or in combination, enables the production of a greater quantity (obtaining increased pregnancy rates early in the breeding season) and quality (maximization of the use of AI with superior genetic sires) of beef calves. These technologies can contribute to improve the production efficiency, and consequently, improve livestock profitability.
Hormones in international meat production: biological, sociological and consumer issues.
Galbraith, Hugh
2002-12-01
Beef and its products are an important source of nutrition in many human societies. Methods of production vary and include the use of hormonal compounds ('hormones') to increase growth and lean tissue with reduced fat deposition in cattle. The hormonal compounds are naturally occurring in animals or are synthetically produced xenobiotics and have oestrogenic (oestradiol-17beta and its esters; zeranol), androgenic (testosterone and esters; trenbolone acetate) or progestogenic (progesterone; melengestrol acetate) activity. The use of hormones as production aids is permitted in North American countries but is no longer allowed in the European Union (EU), which also prohibits the importation of beef and its products derived from hormone-treated cattle. These actions have resulted in a trade dispute between the two trading blocs. The major concern for EU authorities is the possibility of adverse effects on human consumers of residues of hormones and metabolites. Methods used to assess possible adverse effects are typical of those used by international agencies to assess acceptability of chemicals in human food. These include analysis of quantities present in the context of known biological activity and digestive, absorptive, post-absorptive and excretory processes. Particular considerations include the low quantities of hormonal compounds consumed in meat products and their relationships to endogenous production particularly in prepubertal children, enterohepatic inactivation, cellular receptor- and non-receptor-mediated effects and potential for interference with growth, development and physiological function in consumers. There is particular concern about the role of oestradiol-17beta as a carcinogen in certain tissues. Now subject to a 'permanent' EU ban, current evidence suggests that certain catechol metabolites may induce free-radical damage of DNA in cell and laboratory animal test systems. Classical oestrogen-receptor mediation is considered to stimulate proliferation in cells maintaining receptivity. Mathematical models describing quantitative relationships between consumption of small amounts of oestrogens in meat in addition to greater concentrations from endogenous production, chemical stoichiometry at cellular level and human pathology have not been developed. Such an approach will be necessary to establish 'molecular materiality' of the additional hormone intake as a component of relative risk assessment. The other hormones, although generally less well researched, are similarly subject to a range of tests to determine potentially adverse effects. The resulting limited international consensus relates to the application of the 'precautionary principle' and non-acceptance by the European Commission of the recommendations of the Codex Alimentarius Commission, which determined that meat from cattle, hormone-treated according to good practice, was safe for human consumers. The present review considers the hormone issue in the context of current international social methodology and regulation, recent advances in knowledge of biological activity of hormones and current status of science-based evaluation of food safety and risk for human consumers.
Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.
Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M
2014-01-01
Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight loss in hyperthyroidism.
Thyroid Hormone Upregulates Zinc-α2-glycoprotein Production in the Liver but Not in Adipose Tissue
Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M.
2014-01-01
Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight loss in hyperthyroidism. PMID:24465683
Sewer, Marion B.; Li, Donghui
2012-01-01
The production of glucocorticoids and aldosterone in the adrenal cortex is regulated at multiple levels. Biosynthesis of these hormones is initiated when cholesterol, the substrate, enters the inner mitochondrial membrane for conversion to pregnenolone. Unlike most metabolic pathways, the biosynthesis of adrenocortical steroid hormones is unique because some of the enzymes are localized in mitochondria and others in the endoplasmic reticulum (ER). Although much is known about the factors that control the transcription and activities of the proteins that are required for steroid hormone production, the parameters that govern the exchange of substrates between the ER and mitochondria are less well understood. This short review summarizes studies that have begun to provide insight into the role of the cytoskeleton, mitochondrial transport, and the physical interaction of the ER and mitochondria in the production of adrenocortical steroid hormones. PMID:23186810
Hormone replacement therapy in the developing countries.
Oei, P L; Ratnam, S S
1998-05-01
The sales data of oestrogen replacement products for 8 developing countries from 1993 to 1995 were analyzed. The data from Malaysia, Pakistan, Taiwan, Thailand, Indonesia, Philippines and South Korea showed the increasing use of oestrogen replacement products. The total usage however varied widely, from only US$11,153 (Philippines in 1993) to as much as US$6,306,717 (Taiwan in 1995). In Singapore, where oestrogen replacement is an accepted and established form of therapy for the postmenopausal woman, there has been an increase in the usage of the nonoestrogen replacement products. There are multiple reasons for the increasing sales of hormone replacement products in the developing countries and these are explored in this article. In some of the developing countries, for example China and India, hormone replacement therapy has just been introduced. However, in those developing countries in which hormone replacement therapy is already available, sales figures show increasing usage. The future augurs well for hormone replacement therapy.
... or milk production), sex hormones (control the menstrual cycle and other sexual functions), thyroid gland hormones (control the thyroid gland), adrenal gland hormones, and vasopressin (a hormone involved in water and electrolyte balance). Symptoms of pituitary adenoma and ...
Pasqualini, Jorge R; Chetrite, Gérard S
2016-07-01
The fetal endocrine system constitutes the earliest system developing in fetal life and operates during all the steps of gestation. Its regulation is in part dependent on the secretion of placental and/or maternal precursors emanating across the feto-maternal interface. Human fetal and placental compartments possess all the enzymatic systems necessary to produce steroid hormones. However, their activities are different and complementary: the fetus is very active in converting acetate into cholesterol, in transforming pregnanes to androstanes, various hydroxylases, sulfotransferases, while all these transformations are absent or very limited in the placenta. This compartment can transform cholesterol to C21-steroids, convert 5-ene to 4-ene steroids, and has a high capacity to aromatize C19 precursors and to hydrolyze sulfates. Steroid hormone receptors are present at an early stage of gestation and are functional for important physiological activities. The production rate of some steroids greatly increases with fetal evolution (e.g. estriol increases 500-1000 times in relation to non-pregnant women). Other hormones, such as glucocorticoids, in particular the stress hormone cortisol, adipokines (e.g. leptin, adiponectin), insulin-like growth factors, are also a key factor for regulating reproduction, metabolism, appetite and may be significant in programming the fetus and its growth. We can hypothesize that the fetal and placental factors controlling hormonal levels in the fetal compartment can be of capital importance in the normal development of extra-uterine life.
Nguyen, Quynh Anh; Lee, Dae-Seok; Jung, Jakyun; Bae, Hyeun-Jong
2015-01-01
The hyperthermostable β-glucosidase BglB of Thermotoga maritima was modified by adding a short C-terminal tetrapeptide (AFVY, which transports phaseolin to the vacuole, to its C-terminal sequence). The modified β-glucosidase BglB was transformed into tobacco (Nicotiana tabacum L.) plants. We observed a range of significant phenotypic changes in the transgenic plants compared to the wild-type (WT) plants. The transgenic plants had faster stem growth, earlier flowering, enhanced root systems development, an increased biomass biosynthesis rate, and higher salt stress tolerance in young plants compared to WT. In addition, programed cell death was enhanced in mature plants. Furthermore, the C-terminal AFVY tetrapeptide efficiently sorted T. maritima BglB into the vacuole, which was maintained in an active form and could perform its glycoside hydrolysis function on hormone conjugates, leading to elevated hormone [abscisic acid (ABA), indole 3-acetic acid (IAA), and cytokinin] levels that likely contributed to the phenotypic changes in the transgenic plants. The elevation of cytokinin led to upregulation of the transcription factor WUSCHELL, a homeodomain factor that regulates the development, division, and reproduction of stem cells in the shoot apical meristems. Elevation of IAA led to enhanced root development, and the elevation of ABA contributed to enhanced tolerance to salt stress and programed cell death. These results suggest that overexpressing vacuole-targeted T. maritima BglB may have several advantages for molecular farming technology to improve multiple targets, including enhanced production of the β-glucosidase BglB, increased biomass, and shortened developmental stages, that could play pivotal roles in bioenergy and biofuel production.
2010-01-01
Background Plant Receptor-like/Pelle kinases (RLK) are a group of conserved signalling components that regulate developmental programs and responses to biotic and abiotic stresses. One of the largest RLK groups is formed by the Domain of Unknown Function 26 (DUF26) RLKs, also called Cysteine-rich Receptor-like Kinases (CRKs), which have been suggested to play important roles in the regulation of pathogen defence and programmed cell death. Despite the vast number of RLKs present in plants, however, only a few of them have been functionally characterized. Results We examined the transcriptional regulation of all Arabidopsis CRKs by ozone (O3), high light and pathogen/elicitor treatment - conditions known to induce the production of reactive oxygen species (ROS) in various subcellular compartments. Several CRKs were transcriptionally induced by exposure to O3 but not by light stress. O3 induces an extracellular oxidative burst, whilst light stress leads to ROS production in chloroplasts. Analysis of publicly available microarray data revealed that the transcriptional responses of the CRKs to O3 were very similar to responses to microbes or pathogen-associated molecular patterns (PAMPs). Several mutants altered in hormone biosynthesis or signalling showed changes in basal and O3-induced transcriptional responses. Conclusions Combining expression analysis from multiple treatments with mutants altered in hormone biosynthesis or signalling suggest a model in which O3 and salicylic acid (SA) activate separate signaling pathways that exhibit negative crosstalk. Although O3 is classified as an abiotic stress to plants, transcriptional profiling of CRKs showed strong similarities between the O3 and biotic stress responses. PMID:20500828
Nguyen, Quynh Anh; Lee, Dae-Seok; Jung, Jakyun; Bae, Hyeun-Jong
2015-01-01
The hyperthermostable β-glucosidase BglB of Thermotoga maritima was modified by adding a short C-terminal tetrapeptide (AFVY, which transports phaseolin to the vacuole, to its C-terminal sequence). The modified β-glucosidase BglB was transformed into tobacco (Nicotiana tabacum L.) plants. We observed a range of significant phenotypic changes in the transgenic plants compared to the wild-type (WT) plants. The transgenic plants had faster stem growth, earlier flowering, enhanced root systems development, an increased biomass biosynthesis rate, and higher salt stress tolerance in young plants compared to WT. In addition, programed cell death was enhanced in mature plants. Furthermore, the C-terminal AFVY tetrapeptide efficiently sorted T. maritima BglB into the vacuole, which was maintained in an active form and could perform its glycoside hydrolysis function on hormone conjugates, leading to elevated hormone [abscisic acid (ABA), indole 3-acetic acid (IAA), and cytokinin] levels that likely contributed to the phenotypic changes in the transgenic plants. The elevation of cytokinin led to upregulation of the transcription factor WUSCHELL, a homeodomain factor that regulates the development, division, and reproduction of stem cells in the shoot apical meristems. Elevation of IAA led to enhanced root development, and the elevation of ABA contributed to enhanced tolerance to salt stress and programed cell death. These results suggest that overexpressing vacuole-targeted T. maritima BglB may have several advantages for molecular farming technology to improve multiple targets, including enhanced production of the β-glucosidase BglB, increased biomass, and shortened developmental stages, that could play pivotal roles in bioenergy and biofuel production. PMID:26618153
Pituitary giant; Overproduction of growth hormone; Growth hormone - excess production ... benign tumors of the skin, heart, and endocrine (hormone) system (Carney complex) Genetic disease that affects the ...
Glucocorticoid programming of neuroimmune function.
Walker, David J; Spencer, Karen A
2018-01-15
Throughout life physiological systems strive to maintain homeostasis and these systems are susceptible to exposure to maternal or environmental perturbations, particularly during embryonic development. In some cases, these perturbations may influence genetic and physiological processes that permanently alter the functioning of these physiological systems; a process known as developmental programming. In recent years, the neuroimmune system has garnered attention for its fundamental interactions with key hormonal systems, such as the hypothalamic pituitary adrenal (HPA) axis. The ultimate product of this axis, the glucocorticoid hormones, play a key role in modulating immune responses within the periphery and the CNS as part of the physiological stress response. It is well-established that elevated glucocorticoids induced by developmental stress exert profound short and long-term physiological effects, yet there is relatively little information of how these effects are manifested within the neuroimmune system. Pre and post-natal periods are prime candidates for manipulation in order to uncover the physiological mechanisms that underlie glucocorticoid programming of neuroimmune responses. Understanding the potential programming role of glucocorticoids may be key in uncovering vulnerable windows of CNS susceptibility to stressful experiences during embryonic development and improve our use of glucocorticoids as therapeutics in the treatment of neurodegenerative diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Developmental and Functional Effects of Steroid Hormones on the Neuroendocrine Axis and Spinal Cord
Zubeldia-Brenner, L; Roselli, CE; Recabarren, SE; Gonzalez Deniselle, MC; Lara, HE
2016-01-01
This review highlights the principal effects of steroid hormones at central and peripheral levels in the neuroendocrine axis. The data discussed here points out the principal role of estrogens and testosterone in hormonal programming in relation to sexual orientation, reproductive and metabolic programming, and in the neuroendocrine mechanism involved in development of polycystic ovary syndrome phenotype. Moreover, consistent with the wide range of processes in which steroid hormones take part, we discuss the protective effects of progesterone on neurodegenerative disease and the signaling mechanism involved in the genesis of estrogen-induced pituitary prolactinomas. PMID:27262161
ERIC Educational Resources Information Center
Kinard, James D.; Bazzarre, Terry L.
The growth hormone is a lipolytic hormone and somatomedin C mediates the metabolic effects of the growth hormone in many tissues. Growth hormone plasma levels are often depressed in obese individuals, and this low plasma level has been postulated as a reason for perpetuation of excess weight. Substantial weight loss in obese subjects improves…
Reproductive hormones and menstrual changes with exercise in female athletes.
Arena, B; Maffulli, N; Maffulli, F; Morleo, M A
1995-04-01
The endocrine equilibrium which regulates reproductive function in women can be affected by physical and psychological factors. Blood levels of hormones depend on a balance between production, metabolism and clearance rates. Intensive physical exercise may affect this balance via different mechanisms, such as stress associated with competition, dieting, reduction of body fat and body weight, production of heat or hypoxia. Women who engage in regular high intensity exercise may be at risk, as a consequence of these hormonal changes, of developing menstrual disturbances such as oligomenorrhoea, delayed menarche and amenorrhoea. Impaired production of gonadotrophins, which leads to luteal phase deficiency and anovulation, is a common hormonal finding with exercise-induced menstrual disturbances, but several other hormones may show significant alterations. In this article we have reviewed the recent literature on the effects of intensive physical exercise on the menstrual cycle, on some important physical parameters such as bone mineral density and bodyweight, and on those hormones (gonadotrophins, prolactin, melatonin, opioid peptides and steroids) which regulate, directly or indirectly, the reproductive function in women.
Mutations in PROP1 cause familial combined pituitary hormone deficiency.
Wu, W; Cogan, J D; Pfäffle, R W; Dasen, J S; Frisch, H; O'Connell, S M; Flynn, S E; Brown, M R; Mullis, P E; Parks, J S; Phillips, J A; Rosenfeld, M G
1998-02-01
Combined pituitary hormone deficiency (CPHD) in man denotes impaired production of growth hormone (GH) and one or more of the other five anterior pituitary hormones. Mutations of the pituitary transcription factor gene POU1F1 (the human homologue of mouse Pit1) are responsible for deficiencies of GH, prolactin and thyroid stimulating hormone (TSH) in Snell and Jackson dwarf mice and in man, while the production of adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH) and follicle stimulating hormone (FSH) is preserved. The Ames dwarf (df) mouse displays a similar phenotype, and appears to be epistatic to Snell and Jackson dwarfism. We have recently positionally cloned the putative Ames dwarf gene Prop1, which encodes a paired-like homeodomain protein that is expressed specifically in embryonic pituitary and is necessary for Pit1 expression. In this report, we have identified four CPHD families with homozygosity or compound heterozygosity for inactivating mutations of PROP1. These mutations in the human PROP1 gene result in a gene product with reduced DNA-binding and transcriptional activation ability in comparison to the product of the murine df mutation. In contrast to individuals with POU1F1 mutations, those with PROP1 mutations cannot produce LH and FSH at a sufficient level and do not enter puberty spontaneously. Our results identify a major cause of CPHD in humans and suggest a direct or indirect role for PROP1 in the ontogenesis of pituitary gonadotropes, as well as somatotropes, lactotropes and caudomedial thyrotropes.
Taylor, Kyla W; Baird, Donna D; Herring, Amy H; Engel, Lawrence S; Nichols, Hazel B; Sandler, Dale P; Troester, Melissa A
2017-09-01
It is hypothesized that certain chemicals in personal care products may alter the risk of adverse health outcomes. The primary aim of this study was to use a data-centered approach to classify complex patterns of exposure to personal care products and to understand how these patterns vary according to use of exogenous hormone exposures, oral contraceptives (OCs) and post-menopausal hormone therapy (HT). The NIEHS Sister Study is a prospective cohort study of 50,884 US women. Limiting the sample to non-Hispanic blacks and whites (N=47,019), latent class analysis (LCA) was used to identify groups of individuals with similar patterns of personal care product use based on responses to 48 survey questions. Personal care products were categorized into three product types (beauty, hair, and skincare products) and separate latent classes were constructed for each type. Adjusted prevalence differences (PD) were calculated to estimate the association between exogenous hormone use, as measured by ever/never OC or HT use, and patterns of personal care product use. LCA reduced data dimensionality by grouping of individuals with similar patterns of personal care product use into mutually exclusive latent classes (three latent classes for beauty product use, three for hair, and four for skin care. There were strong differences in personal care usage by race, particularly for haircare products. For both blacks and whites, exogenous hormone exposures were associated with higher levels of product use, especially beauty and skincare products. Relative to individual product use questions, latent class variables capture complex patterns of personal care product usage. These patterns differed by race and were associated with ever OC and HT use. Future studies should consider personal care product exposures with other exogenous exposures when modeling health risks.
Taylor, Kyla W.; Baird, Donna D.; Herring, Amy H.; Engel, Lawrence S.; Nichols, Hazel B.; Sandler, Dale P.; Troester, Melissa A.
2017-01-01
It is hypothesized that certain chemicals in personal care products may alter the risk of adverse health outcomes. The primary aim of this study was to use a data-centered approach to classify complex patterns of exposure to personal care products and to understand how these patterns vary according to use of exogenous hormone exposures, oral contraceptives (OCs) and post-menopausal hormone therapy (HT). The NIEHS Sister Study is a prospective cohort study of 50,884 US women. Limiting the sample to non-Hispanic blacks and whites (N = 47,019), latent class analysis (LCA) was used to identify groups of individuals with similar patterns of personal care product use based on responses to 48 survey questions. Personal care products were categorized into three product types (beauty, hair, and skincare products) and separate latent classes were constructed for each type. Adjusted prevalence differences (PD) were calculated to estimate the association between exogenous hormone use, as measured by ever/never OC or HT use, and patterns of personal care product use. LCA reduced data dimensionality by grouping of individuals with similar patterns of personal care product use into mutually exclusive latent classes (three latent classes for beauty product use, three for hair, and four for skin care. There were strong differences in personal care usage by race, particularly for haircare products. For both blacks and whites, exogenous hormone exposures were associated with higher levels of product use, especially beauty and skincare products. Relative to individual product use questions, latent class variables capture complex patterns of personal care product usage. These patterns differed by race and were associated with ever OC and HT use. Future studies should consider personal care product exposures with other exogenous exposures when modeling health risks. PMID:28120835
Biobusiness in the pharmaceutical industry.
Werner, R G
1987-09-01
Although conventional biotechnology used for the synthesis of antibiotics, vitamins, amino acids, nucleotides, enzyme inhibitors and immunomodulating compounds has still a major impact in the production of pharmaceutical compounds, the importance of the new biotechnology is increasing. Whereas in conventional biotechnology naturally occurring strains are screened for production of pharmacologically active compounds, in new biotechnology known organisms are programmed by genetic engineering to produce a distinct protein or glycoprotein of human origin for substitution therapy. Such complex compounds from new biotechnology can be divided into products which might replace compounds which are already on the market by safer recombinant products such as human insulin, human growth hormone, urokinase, factor VIII and products which are new on the market such as interferons, lymphokines, tissue plasminogen activator, oligonucleotide probes, monoclonal antibodies and subunit vaccines. However, only a few of these recombinant products have reached the market such as human insulin, interferon alpha, interferon beta, human growth hormone and recombivax HB. In most cases, depending on the difficulties in demonstrating clinical efficacy, the investigated drugs have reached the marketing phase much faster than conventional chemical drugs. Return on investment of biotechnical produced pharmaceutics mainly depends on the issues of whether the product has to compete with chemically synthesized drugs, whether it is totally new but competes with other bioproducts, whether it is exceptional but the proof of clinical efficacy is difficult, or whether it is totally new and clinical studies are promising.(ABSTRACT TRUNCATED AT 250 WORDS)
[Growth hormone treatment update].
2014-02-01
Short stature in children is a common cause for referral to pediatric endocrinologists, corresponding most times to normal variants of growth. Initially growth hormone therapy was circumscribed to children presenting growth hormone deficiency. Since the production of recombinant human hormone its use had spread to other pathologies.
Salamone, Daniel; Barañao, Lino; Santos, Claudio; Bussmann, Leonardo; Artuso, Jorge; Werning, Carlos; Prync, Aida; Carbonetto, Cesar; Dabsys, Susana; Munar, Carlos; Salaberry, Roberto; Berra, Guillermo; Berra, Ignacio; Fernández, Nahuel; Papouchado, Mariana; Foti, Marcelo; Judewicz, Norberto; Mujica, Ignacio; Muñoz, Luciana; Alvarez, Silvina Fenández; González, Eliseo; Zimmermann, Juan; Criscuolo, Marcelo; Melo, Carlos
2006-07-13
Transgenic farm animals have been proposed as an alternative to current bioreactors for large scale production of biopharmaceuticals. However, the efficiency of both methods in the production of the same protein has not yet been established. Here we report the production of recombinant human growth hormone (hGH) in the milk of a cloned transgenic cow at levels of up to 5 g l(-1). The hormone is identical to that currently produced by expression in E. coli. In addition, the hematological and somatometric parameters of the cloned transgenic cow are within the normal range for the breed and it is fertile and capable of producing normal offspring. These results demonstrate that transgenic cattle can be used as a cost-effective alternative for the production of this hormone.
Zidar, B L; Shadduck, R K; Winkelstein, A; Zeigler, Z; Hawker, C D
1976-09-23
We studied a patient with acute myeloblastic leukemia, hypercalcemia, hypophosphatemia and inappropriately elevated serum parathyroid hormone levels to define the mechanism of the hypercalcemia. On six occasions during two years, hypercalcemia occurred in conjunction with relapses of leukmia. Each time, serum calcium decreased to normal levels in parallel with reduction of the leukemic mass. During two periods of hypercalcemia, immunoreactive parathyroid hormone values were abnormally high. In addition, hormone was detected in vitro after short-term incubation of the leukemic cells (after 24 hours, the patient's cells produced 129 pg of PTH per milliliter, whereas myeloblasts from a normocalcemic patient with leukemia produced only 33 pg). In freeze-thawing experiments, 39 pg of parathyroid hormone was released form 1 x 108 of the patient's myeloblasts; no hormone was released from the normocalcemia cells. These findings suggest that the hypercalcemia resulted from ectopic parathyroid hormone production by leukemic cells.
Thyrotropin (TSH) regulates triiodothyronine (T3) production in the unicellular Tetrahymena.
Csaba, G; Pállinger, Eva
2011-09-01
The aim of the experiments was to study the regulation of triiodothyronine (T3) production in the unicellular Tetrahymena. Untreated and troph-hormone treated specimen were prepared and in different timepoints T3 content was measured and compared by immunocytochemical flow cytometry. 0.1 or 0.001 IU TSH in tryptone-yeast medium stimulated T3 synthesis at 10, 20, 30 min, but does not stimulate after 1 h. The overlapping gonadotropic hormone (GTH) also did it, however only at 10 min. In Losina salt solution (physiological for Tetrahymena) the effect was weaker, however outer amino acid source was not absolutely needed for the production of the hormone. The results show that the TSH regulation of thyroid hormone synthesis (storage, secretion) and troph-hormone overlap can be deduced to a unicellular level. This may allow the hypothesis that the endocrine mechanisms proved at a low level of phylogeny are preserved for the higher ranked organisms.
Novel neural pathways for metabolic effects of thyroid hormone.
Fliers, Eric; Klieverik, Lars P; Kalsbeek, Andries
2010-04-01
The relation between thyrotoxicosis, the clinical syndrome resulting from exposure to excessive thyroid hormone concentrations, and the sympathetic nervous system remains enigmatic. Nevertheless, beta-adrenergic blockers are widely used to manage severe thyrotoxicosis. Recent experiments show that the effects of thyrotoxicosis on hepatic glucose production and insulin sensitivity can be modulated by selective hepatic sympathetic and parasympathetic denervation. Indeed, thyroid hormone stimulates hepatic glucose production via a sympathetic pathway, a novel central pathway for thyroid hormone action. Rodent studies suggest that similar neural routes exist for thyroid hormone analogues (e.g. thyronamines). Further elucidation of central effects of thyroid hormone on autonomic outflow to metabolic organs, including the thyroid and brown adipose tissue, will add to our understanding of hyperthyroidism. Copyright 2009 Elsevier Ltd. All rights reserved.
Thao, Nguyen B; Kitani, Shigeru; Nitta, Hiroko; Tomioka, Toshiya; Nihira, Takuya
2017-10-01
Autoregulators are low-molecular-weight signaling compounds that control the production of many secondary metabolites in actinomycetes and have been referred to as 'Streptomyces hormones'. Here, potential producers of Streptomyces hormones were investigated in 40 Streptomyces and 11 endophytic actinomycetes. Production of γ-butyrolactone-type (IM-2, VB) and butenolide-type (avenolide) Streptomyces hormones was screened using Streptomyces lavendulae FRI-5 (ΔfarX), Streptomyces virginiae (ΔbarX) and Streptomyces avermitilis (Δaco), respectively. In these strains, essential biosynthetic genes for Streptomyces hormones were disrupted, enabling them to respond solely to the externally added hormones. The results showed that 20% of each of the investigated strains produced IM-2 and VB, confirming that γ-butyrolactone-type Streptomyces hormones are the most common in actinomycetes. Unlike the γ-butyrolactone type, butenolide-type Streptomyces hormones have been discovered in recent years, but their distribution has been unclear. Our finding that 24% of actinomycetes (12 of 51 strains) showed avenolide activity revealed for the first time that the butenolide-type Streptomyces hormone is also common in actinomycetes.
Pipeline for contraceptive development.
Blithe, Diana L
2016-11-01
The high rates of unplanned pregnancy reflect an unmet need for effective contraceptive methods for women, especially for individuals with health risks such as obesity, diabetes, hypertension, and other conditions that may contraindicate use of an estrogen-containing product. Improvements in safety, user convenience, acceptability, and availability of products remain important goals of the contraceptive development program. Another important goal is to minimize the impact of the products on the environment. Development of new methods for male contraception has the potential to address many of these issues of safety for women who have contraindications to effective contraceptive methods but want to protect against pregnancy. It would also address a huge unmet need for men who want to control their fertility. Products under development for men would not introduce ecotoxic hormones into the water system. Published by Elsevier Inc.
Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.
Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram
2015-07-22
The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.
During the menstrual cycle, pituitary hormones stimulate the growth and development of ovarian follicles and the release of an ovum to be fertilized. The ovarian follicles secrete hormones during the cycle that regulate the production of the pituitary hormones creating positi...
Meissner, H. O.; Mscisz, A.; Reich-Bilinska, H.; Mrozikiewicz, P.; Bobkiewicz-Kozlowska, T.; Kedzia, B.; Lowicka, A.; Barchia, I.
2006-01-01
This is the second, conclusive part of the clinical study on clinical responses of early-postmenopausal women to standardized doses of pre-Gelatinized Organic Maca (Maca-GO). Total of 34 Caucasian women volunteers participated in a double-blind, randomized, four months outpatient crossover configuration Trial. After fulfilling the criteria of being early-postmenopausal: blood Estrogen (E2<40 pg/ml) and Follicle Stimulating Hormone (FSH>30 IU/ml) at admission, they were randomly allocated to Placebo (P) and Maca-GO (M) treatments (2 groups of 11 participants each). Two 500 mg vegetable hard gel capsules with Maca-GO or Placebo powder were self-administered twice daily with meals (total 2 g/day). At admission and follow-up monthly intervals, body mass index (BMI), blood pressure, levels of gonadal, pituitary, thyroid and adrenal hormones, lipids and key minerals were measured. Bone markers were determined after four months M and P use in 12 participants. Menopausal symptoms were assessed according to Greene’s Score (GMS) and Kupperman’s Index (KMI). Data were analyzed using multivariate technique on blocs of monthly. Results and canonical variate technique was applied to GMS and KMI matrices. Two months application of Maca-GO stimulated (P<0.05) production of E2, suppressed (P<0.05) blood FSH, Thyroid (T3) and Adrenocorticotropic hormones, Cortisol, and BMI, increased (P<0.05) low density lipoproteins, blood Iron and alleviated (P<0.001) menopausal symptoms. Maca-GO noticeably increased bone density markers. In conclusion, Maca-GO applied to early-postmenopausal women (i) acted as a toner of hormonal processes along the Hypothalamus-Pituitary-Ovarian axis, (ii) balanced hormone levels and (iii) relieved symptoms of menopausal discomfort, (hot flushes and night sweating in particular), thus, (iv) exhibited a distinctive function peculiar to adaptogens, providing an alternative non-hormonal plant option to reduce dependence on hormone therapy programs (HRT). PMID:23675006
Meissner, H O; Mscisz, A; Reich-Bilinska, H; Mrozikiewicz, P; Bobkiewicz-Kozlowska, T; Kedzia, B; Lowicka, A; Barchia, I
2006-12-01
This is the second, conclusive part of the clinical study on clinical responses of early-postmenopausal women to standardized doses of pre-Gelatinized Organic Maca (Maca-GO). Total of 34 Caucasian women volunteers participated in a double-blind, randomized, four months outpatient crossover configuration Trial. After fulfilling the criteria of being early-postmenopausal: blood Estrogen (E2<40 pg/ml) and Follicle Stimulating Hormone (FSH>30 IU/ml) at admission, they were randomly allocated to Placebo (P) and Maca-GO (M) treatments (2 groups of 11 participants each). Two 500 mg vegetable hard gel capsules with Maca-GO or Placebo powder were self-administered twice daily with meals (total 2 g/day). At admission and follow-up monthly intervals, body mass index (BMI), blood pressure, levels of gonadal, pituitary, thyroid and adrenal hormones, lipids and key minerals were measured. Bone markers were determined after four months M and P use in 12 participants. Menopausal symptoms were assessed according to Greene's Score (GMS) and Kupperman's Index (KMI). Data were analyzed using multivariate technique on blocs of monthly. Results and canonical variate technique was applied to GMS and KMI matrices. Two months application of Maca-GO stimulated (P<0.05) production of E2, suppressed (P<0.05) blood FSH, Thyroid (T3) and Adrenocorticotropic hormones, Cortisol, and BMI, increased (P<0.05) low density lipoproteins, blood Iron and alleviated (P<0.001) menopausal symptoms. Maca-GO noticeably increased bone density markers. In conclusion, Maca-GO applied to early-postmenopausal women (i) acted as a toner of hormonal processes along the Hypothalamus-Pituitary-Ovarian axis, (ii) balanced hormone levels and (iii) relieved symptoms of menopausal discomfort, (hot flushes and night sweating in particular), thus, (iv) exhibited a distinctive function peculiar to adaptogens, providing an alternative non-hormonal plant option to reduce dependence on hormone therapy programs (HRT).
Efficacy of a Home-Based Exercise Program After Thyroidectomy for Thyroid Cancer Patients.
Kim, Kyunghee; Gu, Mee Ock; Jung, Jung Hwa; Hahm, Jong Ryeal; Kim, Soo Kyoung; Kim, Jin Hyun; Woo, Seung Hoon
2018-02-01
The objective of this study was to determine the effect of a home-based exercise program on fatigue, anxiety, quality of life (QoL), and immune function of thyroid cancer patients taking thyroid hormone replacement after thyroidectomy. This quasi-experimental study with a non-equivalent control group included 43 outpatients taking thyroid hormone replacement after thyroidectomy (22 in the experimental group and 21 in the control group). After education about the home-based exercise program, subjects in the experimental group underwent 12 weeks of aerobic, resistance, and flexibility exercise. A comparative analysis was conducted between the two groups. Patients in the experimental group were significantly less fatigued or anxious (p < 0.01). They reported significantly improved QoL (p < 0.05) compared to those in the control group. Natural killer cell activity was significantly higher in the exercise group compared to that in the control group (p < 0.05). A home-based exercise program is effective in reducing fatigue and anxiety, improving QoL, and increasing immune function in patients taking thyroid hormone replacement after thyroidectomy. Therefore, such a home-based exercise program can be used as an intervention for patients who are taking thyroid hormone replacement after thyroidectomy.
Genetics Home Reference: autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy
... production of the hormone insulin; a shortage of growth hormone leading to short stature; problems affecting the internal ... promotes the production of certain antimicrobial protein segments (peptides) that control growth of Candida on the surface of mucous membranes. ...
Anderson, D C
1974-01-01
A review was made to understand how plasma binding protein might influence sex-hormone action in target tissues. Steroids are predominately bound to plasma proteins and only unbound steroids enter the cells. Sex-hormone-binding globulin (SHBG) binds to both the main circulating steroid T and E2 but changes in SHBG concentrations exert significant results. Increased SHBG levels increase estrogen production and decreases T activity; whereas, increased androgens increase T action and inhibit SHBG production. These disturbances in hormone maintenance may lead to abnormal adult sex differentiation such as hirsutism and forms of hynaecomastia. By developing SHBG concentration measurement methods-responses of hirsutism to glucocorticoid or estrogem may be assessed. In addition, the effect of thyroid hormones on SHBG may also have therapeutic implications in endocrine disease.
USDA-ARS?s Scientific Manuscript database
Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...
Warren, W B; Gurewitsch, E D; Goland, R S
1995-02-01
We hypothesized that maternal plasma corticotropin-releasing hormone levels are elevated in chronic hypertension and that elevations modulate maternal and fetal pituitary-adrenal function. Venous blood samples and 24-hour urine specimens were obtained in normal and hypertensive pregnancies at 21 to 40 weeks of gestation. Corticotropin-releasing hormone, corticotropin, cortisol, dehydroepiandrosterone sulfate, and total estriol levels were measured by radioimmunoassay. Mean hormone levels were compared by unpaired t test or two-way analysis of variance. Plasma corticotropin-releasing hormone levels were elevated early in hypertensive pregnancies but did not increase after 36 weeks. Levels of pituitary and adrenal hormones were not different in normal and hypertensive women. However, maternal plasma estriol levels were lower in hypertensive pregnancies compared with normal pregnancies. Fetal 16-hydroxy dehydroepiandrosterone sulfate, the major precursor to placental estriol production, has been reported to be lower than normal in hypertensive pregnancies, possibly explaining the decreased plasma estriol levels reported here. Early stimulation of placental corticotropin-releasing hormone production or secretion may be related to accelerated maturation of placental endocrine function in pregnancies complicated by chronic hypertension.
Spicer, Darcy V; Pike, Malcolm C
2000-01-01
The cyclic production of estrogen and progesterone by the premenopausal ovary accounts for the steep rise in breast cancer risk in premenopausal women. These hormones are breast cell mitogens. By reducing exposure to these ovarian hormones, agonists of luteinizing hormone-releasing hormone (LHRH) given to suppress ovarian function may prove useful in cancer prevention. To prevent deleterious effects of hypoestrogenemia, the addition of low-dose hormone replacement to the LHRH agonist appears necessary. Pilot data with such an approach indicates it is feasible and reduces mammographic densities. PMID:11250719
Hormonal control of angiotensinogen production.
Dzau, V J; Herrmann, H C
The renin-angiotensin-aldosterone system appears to be under neural and hormonal control. Plasma angiotensinogen concentration is elevated in Cushing's disease, during pregnancy and in women taking oral contraceptives. An in vitro liver slice system was used to study the hormonal control of angiotensinogen synthesis and release in the rat. Dexamethasone administration in vivo resulted in increase in the in vitro rate of release of angiotensinogen by liver slices into the incubation media. This increase was inhibited by actinomycin D, an inhibitor of protein synthesis and vincristine which blocks secretion. Similarly, ethinyl estradiol treatment resulted in a 50% increase in angiotensinogen production. Hyperthyroid state was achieved by injecting rats with L-thyroxine daily for seven days. Hepatic production rate of angiotensinogen rose 21/2-fold above control and was accompanied by increases in plasma angiotensinogen concentration and plasma renin activity. In contrast, plasma angiotensinogen concentration and plasma renin activity were reduced in thyroidectomized rats. The rate of angiotensinogen production by liver slices of these rats decreased by five-fold below that of intact animals. These changes were largely corrected when thyroidectomized rats were treated with replacement doses of L-thyroxine. We conclude that hepatic angiotensinogen biosynthesis is under hormonal control. Glucocorticoid, estrogen and thyroid hormones all stimulate angiotensinogen production. These results may in part explain the pathogenesis of hypertension associated with certain disease states.
Thyroid hormone effects on mitochondrial energetics.
Harper, Mary-Ellen; Seifert, Erin L
2008-02-01
Thyroid hormones are the major endocrine regulators of metabolic rate, and their hypermetabolic effects are widely recognized. The cellular mechanisms underlying these metabolic effects have been the subject of much research. Thyroid hormone status has a profound impact on mitochondria, the organelles responsible for the majority of cellular adenosine triphosphate (ATP) production. However, mechanisms are not well understood. We review the effects of thyroid hormones on mitochondrial energetics and principally oxidative phosphorylation. Genomic and nongenomic mechanisms have been studied. Through the former, thyroid hormones stimulate mitochondriogenesis and thereby augment cellular oxidative capacity. Thyroid hormones induce substantial modifications in mitochondrial inner membrane protein and lipid compositions. Results are consistent with the idea that thyroid hormones activate the uncoupling of oxidative phosphorylation through various mechanisms involving inner membrane proteins and lipids. Increased uncoupling appears to be responsible for some of the hypermetabolic effects of thyroid hormones. ATP synthesis and turnover reactions are also affected. There appear to be complex relationships between mitochondrial proton leak mechanisms, reactive oxygen species production, and thyroid status. As the majority of studies have focused on the effects of thyroid status on rat liver preparations, there is still a need to address fundamental questions regarding thyroid hormone effects in other tissues and species.
... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... hormone production. Also, human chorionic gonadotropin (hCG) , the hormone that supports the growth of the fetus in pregnancy , can act like ...
You, Tongjian; Wang, Xuewen; Murphy, Karin M.; Lyles, Mary F.; Demons, Jamehl L.; Yang, Rongze; Gong, Da-Wei; Nicklas, Barbara J.
2014-01-01
Objective To compare the regional differences in subcutaneous adipose tissue hormone/cytokine production in abdominally obese women during weight loss. Design and Methods Forty-two abdominally obese, older women underwent a 20-week weight loss intervention composed of hypocaloric diet with or without aerobic exercise (total energy expenditure: ~2800 kcal/week). Subcutaneous (gluteal and abdominal) adipose tissue biopsies were conducted before and after the intervention. Results Adipose tissue gene expression and release of leptin, adiponectin, and interleukin 6 (IL-6) were determined. The intervention resulted in significant weight loss (−10.1 ±0.7 kg, P<0.001). At baseline, gene expression of adiponectin were higher (P<0.01), and gene expression and release of IL-6 were lower (both P<0.05) in abdominal than in gluteal adipose tissue. After intervention, leptin gene expression and release were lower in both gluteal and abdominal adipose tissue compared to baseline (P<0.05 to P<0.01). Abdominal, but not gluteal, adipose tissue adiponectin gene expression and release increased after intervention (both P<0.05). Conclusion A 20-week weight loss program decreased leptin production in both gluteal and abdominal adipose tissue, but only increased adiponectin production from abdominal adipose tissue in obese women. This depot-specific effect may be of importance for the treatment of health complications associated with abdominal adiposity. PMID:24634403
Mix, L S
1987-02-01
The United States dairy industry is projected to go through a major transition by the 2000 with some regions experiencing more change than others. Population growth plus medical discoveries favorable to certain dairy products combined with strengthened marketing programs could increase consumption of milk equivalent from the present 66.3 to 72.1 million metric tons by the yr 2000. Ongoing genetic, feeding, and management improvements could raise average milk production per cow from the 1984 level of 5,680 kg to 7,425 kg by 2000. If growth hormone biotechnology is adopted, average production per cow could reach 9,281 kg by the 21st century. This could reduce US dairy cow numbers 30% from the present 11.1 million to 7.8 million by the yr 2000. Likewise, the dairy industry and others could expect approximately 92,500 fewer commercial dairy farms, a decrease of 51%. This would mean 195,000 fewer employees and 3.6 to 4.1 million fewer crop hectares would be required. A transition of this magnitude will require indepth planning by legislators, policy makers, university teaching, research, and extension personnel, agribusiness, industry representatives, and dairy producers to cope with the necessary adjustments.
USDA-ARS?s Scientific Manuscript database
Termites are eusocial insects that perform social interactions that facilitate chemical signaling. Previous research identified two cytochrome P450s that have homology to other insect p450s responsible for the production of juvenile hormone. Juvenile hormone is an important morphogenic hormone tha...
Ives, Angela M.
2017-01-01
ABSTRACT Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect and establish latency in peripheral neurons, from which they can reactivate to cause recurrent disease throughout the life of the host. Stress is associated with the exacerbation of clinical symptoms and the induction of recurrences in humans and animal models. The viruses preferentially replicate and establish latency in different subtypes of sensory neurons, as well as in neurons of the autonomic nervous system that are highly responsive to stress hormones. To determine if stress-related hormones modulate productive HSV-1 and HSV-2 infections within sensory and autonomic neurons, we analyzed viral DNA and the production of viral progeny after treatment of primary adult murine neuronal cultures with the stress hormones epinephrine and corticosterone. Both sensory trigeminal ganglion (TG) and sympathetic superior cervical ganglion (SCG) neurons expressed adrenergic receptors (activated by epinephrine) and the glucocorticoid receptor (activated by corticosterone). Productive HSV infection colocalized with these receptors in SCG but not in TG neurons. In productively infected neuronal cultures, epinephrine treatment significantly increased the levels of HSV-1 DNA replication and production of viral progeny in SCG neurons, but no significant differences were found in TG neurons. In contrast, corticosterone significantly decreased the levels of HSV-2 DNA replication and production of viral progeny in SCG neurons but not in TG neurons. Thus, the stress-related hormones epinephrine and corticosterone selectively modulate acute HSV-1 and HSV-2 infections in autonomic, but not sensory, neurons. IMPORTANCE Stress exacerbates acute disease symptoms resulting from HSV-1 and HSV-2 infections and is associated with the appearance of recurrent skin lesions in millions of people. Although stress hormones are thought to impact HSV-1 and HSV-2 through immune system suppression, sensory and autonomic neurons that become infected by HSV-1 and HSV-2 express stress hormone receptors and are responsive to hormone fluctuations. Our results show that autonomic neurons are more responsive to epinephrine and corticosterone than are sensory neurons, demonstrating that the autonomic nervous system plays a substantial role in HSV pathogenesis. Furthermore, these results suggest that stress responses have the potential to differentially impact HSV-1 and HSV-2 so as to produce divergent outcomes of infection. PMID:28404850
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1991-01-01
Callus cultures of the diploid daylily (Hemerocallis) clone Autumn Blaze' were initiated and maintained in hormone-containing nutrient medium. At various times (from 6 weeks to 1 year) after being initiated, hormone-derived cultures were evaluated for their ability to be maintained and to multiply on hormone-free medium at low pH (between pH 4 and 4.5). Cultures had to be exposed to hormone-containing medium for at least 12 weeks before they could be maintained on hormone-free medium at low pH. The transition to maintainability on low pH hormone-free medium included the production of many aberrant embryonal forms ( neomorphs'). However, all hormone-derived cultures tested consisted entirely of preglobular stage proembryos (PGSPs) after 12-24 weeks on low pH hormone-free medium. PGSP cultures have been maintained and multiplied as such for over 1 year on low pH hormone-free medium. PGSPs continue their development into various somatic embryo stages when cultured on hormone-free medium buffered at pH 5.8. The production of well-formed somatic embryos was greatly enhanced when PGSPs were plated on activated charcoal impregnated filter papers that were placed on top of the agar surface. The gross morphology and histology of the PGSPs and stages of somatic embryo development are presented. The work shows that the ability of hormone-free medium at low pH to permit PGSP multiplication without development into later stages of embryo development is not restricted to carrot.
Hormone preparation, dosage calculation, and injection technique for induced spawning of foodfish
USDA-ARS?s Scientific Manuscript database
Reliable spawning and fry production of food species is critical for successful commercial production. Environmental stimuli often fail to trigger the requisite hormone cascades for gamete formation, final oocyte maturation, and ovulation in fish held under captive conditions. In general, enviro...
Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams
Buxton, Herbert T.; Kolpin, Dana W.
2002-01-01
A recent study by the Toxic Substances Hydrology Program of the U.S. Geological Survey (USGS) shows that a broad range of chemicals found in residential, industrial, and agricultural wastewaters commonly occurs in mixtures at low concentrations downstream from areas of intense urbanization and animal production. The chemicals include human and veterinary drugs (including antibiotics), natural and synthetic hormones, detergent metabolites, plasticizers, insecticides, and fire retardants. One or more of these chemicals were found in 80 percent of the streams sampled. Half of the streams contained 7 or more of these chemicals, and about one-third of the streams contained 10 or more of these chemicals. This study is the first national-scale examination of these organic wastewater contaminants in streams and supports the USGS mission to assess the quantity and quality of the Nation's water resources. A more complete analysis of these and other emerging water-quality issues is ongoing.
Increased and mistimed sex hormone production in night shift workers.
Papantoniou, Kyriaki; Pozo, Oscar J; Espinosa, Ana; Marcos, Josep; Castaño-Vinyals, Gemma; Basagaña, Xavier; Juanola Pagès, Elena; Mirabent, Joan; Martín, Jordi; Such Faro, Patricia; Gascó Aparici, Amparo; Middleton, Benita; Skene, Debra J; Kogevinas, Manolis
2015-05-01
Night shift work has been associated with an increased risk for breast and prostate cancer. The effect of circadian disruption on sex steroid production is a possible underlying mechanism, underinvestigated in humans. We have assessed daily rhythms of sex hormones and melatonin in night and day shift workers of both sexes. We recruited 75 night and 42 day workers, ages 22 to 64 years, in different working settings. Participants collected urine samples from all voids over 24 hours on a working day. Urinary concentrations of 16 sex steroid hormones and metabolites (estrogens, progestagens, and androgens) and 6-sulfatoxymelatonin were measured in all samples. Mean levels and peak time of total and individual metabolite production were compared between night and day workers. Night workers had higher levels of total progestagens [geometric mean ratio (GMR) 1.65; 95% confidence intervals (CI), 1.17-2.32] and androgens (GMR: 1.44; 95% CI, 1.03-2.00), compared with day workers, after adjusting for potential confounders. The increased sex hormone levels among night shift workers were not related to the observed suppression of 6-sulfatoxymelatonin. Peak time of androgens was significantly later among night workers, compared with day workers (testosterone: 12:14 hours; 10:06-14:48 vs. 08:35 hours; 06:52-10:46). We found increased levels of progestagens and androgens as well as delayed peak androgen production in night shift workers compared with day workers. The increase and mistiming of sex hormone production may explain part of the increased risk for hormone-related cancers observed in night shift workers. ©2015 American Association for Cancer Research.
USDA-ARS?s Scientific Manuscript database
Although growth hormone (GH) increases milk production in dairy animals, the milk production response of lactating rodents to this treatment has been variable. Milk removal frequency in the lactating mouse is about 10-fold higher than that of lactating dairy cows. The hypothesis tested in this study...
Kassotis, Christopher D; Tillitt, Donald E; Lin, Chung-Ho; McElroy, Jane A; Nagel, Susan C
2016-03-01
Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.
USDA-ARS?s Scientific Manuscript database
The effective LHRHa (luteinizing hormone releasing hormone analog) dose based on the gonadal maturity of channel catfish, Ictalurus punctatus to optimize channel x blue hybrid catfish production was evaluated in 4 trials (twice in early part of the season and twice in the peak spawning season) in a ...
Vitzthum, Virginia J; Ringheim, Karin
2005-03-01
Side effects influence the acceptability and continuation of hormonal contraceptives. Counseling the client about the management of side effects is a principal approach advocated for increasing continuation. Evidence of a biological basis for variation in women's tolerance of hormonal contraceptives argues, however, that greater attention should be given to altering the product rather than principally attempting to alter a woman's ability to deal with the product. Discontinuation rates for hormonal contraceptives, largely attributable to side effects and health concerns, are high in nearly all less-developed countries for which Demographic and Health Survey data are available. Oral contraceptives appear to be particularly problematic for Latin American women, most notably in Bolivia. Clinical trials suggest substantial variation in the physiological response to exogenous hormones, and new evidence confirms the hypothesis that the normal hormonal profiles of Bolivian women are significantly lower than those of women in the United States. These findings suggest a need for more population-specific physiological research linked to analyses of the possible association between endogenous hormone differences and contraceptive continuation. Appropriately adjusting the level of the steroid delivered may benefit women's health and improve the acceptability and continuation of hormonal contraceptives.
Sexual Hearing: The influence of sex hormones on acoustic communication in frogs
Arch, Victoria S.; Narins, Peter M.
2009-01-01
The majority of anuran amphibians (frogs and toads) use acoustic communication to mediate sexual behavior and reproduction. Generally, females find and select their mates using acoustic cues provided by males in the form of conspicuous advertisement calls. In these species, vocal signal production and reception are intimately tied to successful reproduction. Research with anurans has demonstrated that acoustic communication is modulated by reproductive hormones, including gonadal steroids and peptide neuromodulators. Most of these studies have focused on the ways in which hormonal systems influence vocal signal production; however, here we will concentrate on a growing body of literature that examines hormonal modulation of call reception. This literature suggests that reproductive hormones contribute to the coordination of reproductive behaviors between signaler and receiver by modulating sensitivity and spectral filtering of the anuran auditory system. It has become evident that the hormonal systems that influence reproductive behaviors are highly conserved among vertebrate taxa, thus studying the endocrine and neuromodulatory bases of acoustic communication in frogs and toads can lead to insights of broader applicability to hormonal modulation of vertebrate sensory physiology and behavior. PMID:19272318
SnapShot: Hormones of the gastrointestinal tract.
Coate, Katie C; Kliewer, Steven A; Mangelsdorf, David J
2014-12-04
Specialized endocrine cells secrete a variety of peptide hormones all along the gastrointestinal (GI) tract, making it one of the largest endocrine organs in the body. Nutrients and developmental and neural cues trigger the secretion of gastrointestinal (GI) hormones from specialized endocrine cells along the GI tract. These hormones act in target tissues to facilitate digestion and regulate energy homeostasis. This SnapShot summarizes the production and functions of GI hormones. Copyright © 2014 Elsevier Inc. All rights reserved.
Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K
2013-09-15
The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sakurai, Akihiro; Takeda, Kyoko; Ain, Kenneth; Ceccarelli, Paola; Nakai, Akira; Seino, Susumu; Bell, Graeme I.; Refetoff, Samuel; Degroot, Leslie J.
1989-11-01
The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. We have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine --> cytosine replacement in the codon for amino acid 340 resulted in a glycine --> arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor β gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor β gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule.
Disrupting Mosquito Reproduction and Parasite Development for Malaria Control
Gabrieli, Paolo; Buckee, Caroline O.; Catteruccia, Flaminia
2016-01-01
The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E) is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance. PMID:27977810
Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.
Hsu, Peter; Nanan, Ralph
2014-10-01
In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
EFFECTS OF ENDOCRINE DISRUPTING CHEMICALS (EDCS) ON FETAL TESTES HORMONE PRODUCTION
Effects of Endocrine Disrupting Chemicals (EDCs) on Fetal Testes Hormone Production
CS Lambright, VS Wilson, JR Furr, CJ Wolf, N Noriega, LE Gray, Jr
US EPA, ORD/NHEERL/RTD, RTP, NC 27711
Exposure to EDCs during critical periods of fetal sexual development can have...
Short-term effects of recombinant human growth hormone and feeding on gluconeogenesis in humans
USDA-ARS?s Scientific Manuscript database
After a short-term fast, lactating women have increased rates of glucose production but not gluconeogenesis (GNG) despite relative hypoinsulinemia. We explored the effects of non-insulin-dependent increase in glucose utilization and recombinant human growth hormone (rhGH) on glucose production, glyc...
Mather, K J; Kim, C; Christophi, C A; Aroda, V R; Knowler, W C; Edelstein, S E; Florez, J C; Labrie, F; Kahn, S E; Goldberg, R B; Barrett-Connor, E
2015-10-01
Steroid sex hormones and SHBG may modify metabolism and diabetes risk, with implications for sex-specific diabetes risk and effects of prevention interventions. This study aimed to evaluate the relationships of steroid sex hormones, SHBG and SHBG single-nucleotide polymorphisms (SNPs) with diabetes risk factors and with progression to diabetes in the Diabetes Prevention Program (DPP). This was a secondary analysis of a multicenter randomized clinical trial involving 27 U.S. academic institutions. The study included 2898 DPP participants: 969 men, 948 premenopausal women not taking exogenous sex hormones, 550 postmenopausal women not taking exogenous sex hormones, and 431 postmenopausal women taking exogenous sex hormones. Participants were randomized to receive intensive lifestyle intervention, metformin, or placebo. Associations of steroid sex hormones, SHBG, and SHBG SNPs with glycemia and diabetes risk factors, and with incident diabetes over median 3.0 years (maximum, 5.0 y). T and DHT were inversely associated with fasting glucose in men, and estrone sulfate was directly associated with 2-hour post-challenge glucose in men and premenopausal women. SHBG was associated with fasting glucose in premenopausal women not taking exogenous sex hormones, and in postmenopausal women taking exogenous sex hormones, but not in the other groups. Diabetes incidence was directly associated with estrone and estradiol and inversely with T in men; the association with T was lost after adjustment for waist circumference. Sex steroids were not associated with diabetes outcomes in women. SHBG and SHBG SNPs did not predict incident diabetes in the DPP population. Estrogens and T predicted diabetes risk in men but not in women. SHBG and its polymorphisms did not predict risk in men or women. Diabetes risk is more potently determined by obesity and glycemia than by sex hormones.
Peripheral auditory processing changes seasonally in Gambel’s white-crowned sparrow
Caras, Melissa L.; Brenowitz, Eliot; Rubel, Edwin W
2010-01-01
Song in oscine birds is a learned behavior that plays important roles in breeding. Pronounced seasonal differences in song behavior, and in the morphology and physiology of the neural circuit underlying song production are well documented in many songbird species. Androgenic and estrogenic hormones largely mediate these seasonal changes. While much work has focused on the hormonal mechanisms underlying seasonal plasticity in songbird vocal production, relatively less work has investigated seasonal and hormonal effects on songbird auditory processing, particularly at a peripheral level. We addressed this issue in Gambel’s white-crowned sparrow (Zonotrichia leucophrys gambelii), a highly seasonal breeder. Photoperiod and hormone levels were manipulated in the laboratory to simulate natural breeding and non-breeding conditions. Peripheral auditory function was assessed by measuring the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs) of males and females in both conditions. Birds exposed to breeding-like conditions demonstrated elevated thresholds and prolonged peak latencies compared with birds housed under non-breeding-like conditions. There were no changes in DPOAEs, however, which indicates that the seasonal differences in ABRs do not arise from changes in hair cell function. These results suggest that seasons and hormones impact auditory processing as well as vocal production in wild songbirds. PMID:20563817
Pipeline for Contraceptive Development
Blithe, Diana L.
2016-01-01
The high rates of unplanned pregnancy reflect unmet need for effective contraceptive methods for women, especially for individuals with health risks such as obesity, diabetes, hypertension, and other conditions that may contraindicate use of an estrogen-containing product. Improvements in safety, user convenience, acceptability and availability of products remain important goals of the contraceptive development program. Another important goal is to minimize the impact of the products on the environment. Development of new methods for male contraception has the potential to address many of these issues with regard to safety for women who have contraindications to effective contraceptive methods but want to protect against pregnancy. It also will address a huge unmet need for men who want to control their fertility. Products under development for men would not introduce eco-toxic hormones in the waste water. Investment in contraceptive research to identify new products for women has been limited in the pharmaceutical industry relative to investment in drug development for other indications. Pharmaceutical R&D for male contraception was active in the 1990’s but was abandoned over a decade ago. The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) has supported a contraceptive development program since 1969. Through a variety of programs including research grants and contracts, NICHD has developed a pipeline of new targets/products for male and female contraception. A number of lead candidates are under evaluation in the NICHD Contraceptive Clinical Trials Network (CCTN) (1–3). PMID:27523300
Sensitivity of T-Lymphocytes to Hormones of the Anterior Pituitary Gland.
Tishevskaya, N V; Gevorkyan, N M; Kozlova, N I
2017-01-01
The review provides information about the features of the sensitivity of thymocytes, lymphoid organs' cells and T-lymphocytes of peripheral blood to the hormones secreted by anterior pituitary gland's cells: growth hormone, thyrotropin, adrenocorticotropic hormone, prolactin and β-endorphin. Some aspects of the T-lymphocytes's response to humoral signals from the hypophysis are shown in the article. Also the pituitary hormones' role in the regulation of proliferation, differentiation, and cytokine production of T-lymphocytes in normal and pathological conditions of the organism being discussed.
Use of hair products containing hormone or placenta by US military personnel.
Tiwary, Chandra M; Ward, John A
2003-09-01
We surveyed 2,097 subjects stationed at a US Army School to study the use of commercial hair products whose labeled ingredients included hormone or placenta. Use of some of these products is associated with premature sexual development. Use by demographics is: All = 14.8%, whites = 6.3%, non-whites = 27.0%; males = 8.7%, females = 24.6%; officers = 7.3%, enlisted = 18.7%. Frequency of use was highest among non-white female enlisted personnel (43 +/- 6.4%) and lowest among white male commissioned officers (2.0 +/- 1.7%). Regardless of ethnicity, 13.4% of respondents' children used the hair product. Use is about four times higher for non-whites than for whites. Females and enlisted personnel are more likely to use the hair product than males or officers. The use of hormonal hair products among children parallels use by their parents. In spite of federal regulation, the use of these hair products is still common.
Wang, M S; Kurokawa, K
1981-11-05
Effect of Ca2+ and parathyroid hormone (PTH) on 14 CO2 production from certain metabolic substrates by isolated glomeruli of rat kidney were examined. Increasing calcium concentration in the incubation medium inhibited 14CO2 production from 14C-labeled alpha-ketoglutarate and succinate, stimulated 14CO2 production from [1-14C]glucose and [1-14C]glutamate, but was without effect on that from [6-14C]glucose. PTH in the presence but not in the absence of Ca2+ inhibited 14CO2 production from labeled alpha-ketoglutarate and glutamate but not from labeled glucose. Additions of cyclic AMP as well as hormonal agents known to act directly on the glomureli, such as histamine, epinephrine, prostaglandin E2, vasopressin, angiotensin II and insulin, did not alter 14 CO2 production from labeled alpha-ketoglutarate. These data show the presence of calcium-dependent inhibitory actions on PTH on oxidation of alpha-ketoglutarate and glutamate which may be independent of cyclic AMP. These metabolic effects of PTH may underlie the alteration in the glomerular ultrafiltration coefficient and glomerular filtration induced by the hormone.
Steroid Hormones and Uterine Vascular Adaptation to Pregnancy
Chang, Katherine; Zhang, Lubo
2008-01-01
Pregnancy is a physiological state that involves a significant decrease in uterine vascular tone and an increase in uterine blood flow, which is mediated in part by steroid hormones, including estrogen, progesterone, and cortisol. Previous studies have demonstrated the involvement of these hormones in the regulation of uterine artery contractility through signaling pathways specific to the endothelium and the vascular smooth muscle. Alterations in endothelial nitric oxide synthase expression and activity, nitric oxide production, and expression of enzymes involved in PGI2 production contribute to the uterine artery endothelium-specific responses. Steroid hormones also have an effect on calcium-activated potassium channel activity, PKC signaling pathway and myogenic tone, and alterations in pharmacomechanical coupling in the uterine artery smooth muscle. This review addresses current understanding of the molecular mechanisms by which steroid hormones including estrogen, progesterone, and cortisol modulate uterine artery contractility to alter uterine blood flow during pregnancy with an emphasis on the pregnant ewe model. PMID:18497342
Falhammar, Henrik; Calissendorff, Jan; Höybye, Charlotte
2017-01-01
Cushing's syndrome due to ectopic adrenocorticotropic hormone production from adrenal medullary lesions has occasionally been described. We retrospectively reviewed all 164 cases of Cushing's syndrome and 77 cases of pheochromocytomas during 10 years. Of all cases with Cushing's syndrome, only two cases (1.2 %) were due to ectopic adrenocorticotropic hormone production from adrenal medullary lesions (one case of pheochromocytoma and one case of adrenal medullary hyperplasia). Of all pheochromocytomas only the above-mentioned case (1.3 %) also gave rise to an ectopic adrenocorticotropic hormone syndrome. The clinical presentation of adrenocorticotropic hormone-secreting pheochromocytoma and adrenal medullary hyperplasia can be anything from mild to dramatic. These are rare conditions important to bear in mind in the workup of a patient with Cushing's syndrome or with pheochromocytoma. The identification of ectopic adrenocorticotropic hormone secretion from adrenal medullary lesions can be life-saving.
Wang, Qiong; Hong, Wanshu; Chen, Shixi; Zhang, Qiyong
2008-02-01
Variation in the production of the plasma steroid hormones E(2), 17alpha-OHP and T in females and T and 11-KT in males, was investigated in the mudskipper Boleophthalmus pectinirostris during the spawning season. Females with oocytes at the vitellogenic stage (GSI 5.97-6.86%) and mature males with GSI of 0.255-0.288% were collected at intervals of 3-4 days within the two complete semilunar cycles from May 31 to June 30, 2006. The results showed that variations in the levels of plasma steroid hormones were synchronized obviously with semilunar periodicity in both females and males. Each steroid hormone level exhibited two cycles, each cycle with a peak. In females, the first peaks in plasma E(2), 17alpha-OHP and T levels were observed 3 days after the first lunar quarter, and the second ones, 4 days after the last lunar quarter. In males, the first peaks of plasma T and 11-KT levels occurred 3 days after the first lunar quarter, and the second ones, at the last lunar quarter. The fact that, in the present study, changes in the levels of plasma steroid hormones were synchronized with semilunar periodicity, although the fish were at the same stages of gonadal development, suggests that variation of plasma steroid hormones is basically regulated by biological rhythms (Zeitgebers), and that tidal movement (with its semilunar periodicity) is the major environmental factor stimulating steroid hormone production in B. pectinirostris.
Multiplex Immunoassay Profiling of Hormones Involved in Metabolic Regulation.
Stephen, Laurie; Guest, Paul C
2018-01-01
Multiplex immunoassays are used for rapid profiling of biomarker proteins and small molecules in biological fluids. The advantages over single immunoassays include lower sample consumption, cost, and labor. This chapter details a protocol to develop a 5-plex assay for glucagon-like peptide 1, growth hormone, insulin, leptin, and thyroid-stimulating hormone on the Luminex ® platform. The results of the analysis of insulin in normal control subjects are given due to the important role of this hormone in nutritional programming diseases.
The Physiology of Growth Hormone-Releasing Hormone (GHRH) in Breast Cancer
2003-06-01
production of growth hormone-releasing factor by carcinoid and pancreatic islet tumors associated with acromegaly . Prog Clin Biol Res 1981; 74:259-271. (16...promotion of apop- cause of acromegaly . More recently, expression has been tosis. These results indicate that disruption of enaog- demonstrated in tumors
Identification of methyl farnesoate from the hemolymph of insects
USDA-ARS?s Scientific Manuscript database
Juvenile hormones (JH) have been a focal point of study in insect endocrinology for more than 80 years and are implicated in regulation of more physiological and behavioral functions than any other insect hormone. Indeed, evidence has suggested that JHs are the only sesquiterpene hormone products s...
Product Description: To understand how some chemicals affect the endocrine system, controlled lab experiments often monitor how chemicals impact natural steroid hormones in fish. Current methods can target only one or two hormones in a single sample, limiting the information that...
Abhinandan, Kumar; Skori, Logan; Stanic, Matija; Hickerson, Neil M. N.; Jamshed, Muhammad; Samuel, Marcus A.
2018-01-01
Rapid global warming directly impacts agricultural productivity and poses a major challenge to the present-day agriculture. Recent climate change models predict severe losses in crop production worldwide due to the changing environment, and in wheat, this can be as large as 42 Mt/°C rise in temperature. Although wheat occupies the largest total harvested area (38.8%) among the cereals including rice and maize, its total productivity remains the lowest. The major production losses in wheat are caused more by abiotic stresses such as drought, salinity, and high temperature than by biotic insults. Thus, understanding the effects of these stresses becomes indispensable for wheat improvement programs which have depended mainly on the genetic variations present in the wheat genome through conventional breeding. Notably, recent biotechnological breakthroughs in the understanding of gene functions and access to whole genome sequences have opened new avenues for crop improvement. Despite the availability of such resources in wheat, progress is still limited to the understanding of the stress signaling mechanisms using model plants such as Arabidopsis, rice and Brachypodium and not directly using wheat as the model organism. This review presents an inclusive overview of the phenotypic and physiological changes in wheat due to various abiotic stresses followed by the current state of knowledge on the identified mechanisms of perception and signal transduction in wheat. Specifically, this review provides an in-depth analysis of different hormonal interactions and signaling observed during abiotic stress signaling in wheat. PMID:29942321
Thyroid-stimulating hormone (TSH) regulates thyroid hormone (TH) production via binding to its receptor (TSHR). The roles of TSHR in human pathologies including hyper/hypothyroidism, Grave’s disease, and thyroid cancer are known, but it is currently unknown whether TSHR is an imp...
Grizzanti, John; Lee, Hyoung-Gon; Camins, Antoni; Pallas, Merce; Casadesus, Gemma
2017-01-01
Aging leads to a number of physiological alterations, specifically changes in circulating hormone levels, increases in fat deposition, decreases in metabolism, changes in inflammatory responses, and reductions in growth factors. These progressive changes in physiology and metabolism are exacerbated by modern culture and Western diet and give rise to diseases such as obesity, metabolic syndrome, and type 2 (non–insulin-dependent) diabetes (T2D). These age and lifestyle-related metabolic diseases are often accompanied by insulin and leptin resistance, as well as aberrant amylin production and signaling. Many of these alterations in hormone production and signaling are directly influenced by an increase in both oxidative stress and inflammation. Importantly, changes in hormone production and signaling have direct effects on brain function and the development of age-related neurologic disorders. Therefore, this review aims to present evidence on the effects that diet and metabolic disease have on age-related cognitive decline and the development of cognitive diseases, particularly Alzheimer disease. This review will focus on the metabolic hormones insulin, leptin, and amylin and their role in cognitive decline, as well as the therapeutic potential of these hormones in treating cognitive disease. Future investigations targeting the long-term effects of insulin and leptin treatment may reveal evidence to reduce risk of cognitive decline and Alzheimer disease. PMID:27923524
Recombinant production, isotope labeling and purification of ENOD40B: a plant peptide hormone.
Chae, Young Kee; Tonneli, Marco; Markley, John L
2012-08-01
The plant peptide hormone ENOD40B was produced in a protein production strain of Escherichia coli harboring an induction controller plasmid (Rosetta(DE3)pLysS) as a His6-tagged ubiquitin fusion protein. The fusion protein product was denatured and refolded as part of the isolation procedure and purified by immobilized metal ion chromatography. The peptide hormone was released from its fusion partner by adding yeast ubiquitin hydrolase (YUH) and subsequently purified by reversed phase chromatography. The purity of the resulting peptide fragment was assayed by MALDITOF mass spectrometry and NMR spectroscopy. The final yields of the target peptide were 7.0 mg per liter of LB medium and 3.4 mg per liter of minimal medium.
Hypothyroidism: etiology, diagnosis, and management.
Almandoz, Jaime P; Gharib, Hossein
2012-03-01
Hypothyroidism is the result of inadequate production of thyroid hormone or inadequate action of thyroid hormone in target tissues. Primary hypothyroidism is the principal manifestation of hypothyroidism, but other causes include central deficiency of thyrotropin-releasing hormone or thyroid-stimulating hormone (TSH), or consumptive hypothyroidism from excessive inactivation of thyroid hormone. Subclinical hypothyroidism is present when there is elevated TSH but a normal free thyroxine level. Treatment involves oral administration of exogenous synthetic thyroid hormone. This review presents an update on the etiology and types of hypothyroidism, including subclinical disease; drugs and thyroid function; and diagnosis and treatment of hypothyroidism. Copyright © 2012 Elsevier Inc. All rights reserved.
Kaieda, Yuya; Masuda, Ryota; Nishida, Ritsuo; Shimell, MaryJane; O’Connor, Michael B.; Ono, Hajime
2018-01-01
Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression. PMID:28782527
Kaieda, Yuya; Masuda, Ryota; Nishida, Ritsuo; Shimell, MaryJane; O'Connor, Michael B; Ono, Hajime
2017-10-01
Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression. Copyright © 2017 Elsevier Inc. All rights reserved.
Eggesbø, Merete; Thomsen, Cathrine; Jørgensen, Jens V.; Becher, Georg; Odland, Jon Øyvind; Longnecker, Matthew P.
2011-01-01
Background Brominated flame retardants (BFRs) have been in widespread use in a vast array of consumer products since the 1970s. The metabolites of some BFRs show a structural similarity to thyroid hormones and experimental animal studies have confirmed that they may interfere with thyroid hormone homeostasis. A major concern has been whether intrauterine exposure to BFRs may disturb thyroid homeostasis since the fetal brain is particularly susceptible to alterations in thyroid hormones. However, few reports on newborns have been published to date. Objectives To evaluate the association between BFRs and neonatal thyroid-stimulating hormone (TSH). Methods We studied six polybrominated diphenyl ethers (PBDEs) measured in milk samples from 239 women who were part of the “Norwegian Human Milk Study” (HUMIS), 2003–2006. Hexabromocyclododecane (HBCD) and BDE-209 were measured in a subset of the women (193 and 46 milk samples, respectively). The milk was sampled at a median of 33 days after delivery. TSH was measured in babies three days after delivery as part of the routine national screening program for early detection of congenital hypothyroidism. Additional information was obtained through the Medical Birth Registry and questionnaires to the mothers. Results The PBDE concentrations in human milk in Norway were comparable to concentrations reported from other European countries and Asia, but not the US and Canada where levels are approximately one order of magnitude higher. We observed no statistically significant associations between BDE-47, 99, 153, 154, 209 and HBCD in human milk and TSH in models adjusted for possible confounders and other environmental toxicants including polychlorinated biphenyls (PCBs). Conclusions We did not observe an association between TSH and exposure to HBCD and PBDEs within the exposure levels observed. PMID:21601188
Goudochnikov, V I
2015-01-01
In parallel to formulating the paradigm of developmental origins of health and disease (DOHaD), the search began on mechanisms of programming/imprinting in ontogeny. Some recent evidence has revealed the important role of glucocorticoids in such mechanisms. However, in the last decades numerous data have been accumulated on participation of other hormones in developmental bioregulation. In present article we analyse these data, as referred to melatonin, but also to neuroactive steroids, somatolactogens and related peptides: insulin-like growth factor of type I (IGF-I) and oxytocin, i.e. peptide regulators related to growth and lactation respectively. Special attention was devoted to the evidence of glucocorticoid interactions with some of these hormones.
Local synthesis of sex hormones: are there consequences for the ocular surface and dry eye?
Gibson, Emma J; Stapleton, Fiona; Wolffsohn, James S; Golebiowski, Blanka
2017-12-01
Sex hormones are associated with the physiology and pathophysiology of almost all organs in the body, as well as most diseases. Interest in the associations between sex hormones and ocular tissues has increased in recent years. Androgens may have a positive effect on dry eye, whereas the effects of oestrogen on ocular conditions remain unclear. Intracrinology, the local synthesis and metabolism of hormones that is unique to humans, is of relevance to the eye and may help to explain why studies of the relationship between oestrogens and dry eye signs and symptoms are inconclusive. Knowledge of the pathways of hormone formation and metabolism is crucial to understanding the pathogenesis of ocular disease including dry eye. This review examines the mechanisms of steroidal sex hormone biosynthesis and reviews the significance of locally produced sex hormones, with a focus on ocular surface tissues. Much of the current literature is based on animal studies, which may not be transferable to humans due to the absence of intracrine production in animals. A large proportion of the human studies investigate systemic hormone levels rather than local levels. There is subsequently a need for additional studies to provide a better understanding of the local production of sex hormones within the human eye and ocular surface and to clarify the relationships between ocular levels of sex hormones and conditions including dry eye. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Multihormonal regulation of thyroglobulin production by the OVNIS 6H thyroid cell line.
Aouani, A; Hovsépian, S; Fayet, G
1988-02-01
The hormonal regulation of thyroglobulin production has been studied using a clone of the ovine thyroid cell line: OVNIS 6H. 3 among the 6 hormones proposed for serum replacement are required for an optimal thyroglobulin production; insulin, hydrocortisone and thyrotropin. Insulin alone stimulates thyroglobulin production. The presence of insulin is also required to observe hydrocortisone and TSH stimulations. Newborn calf serum inhibits thyroglobulin production. The best conditions for optimal thyroglobulin expression and TSH responsiveness are obtained in serum-free medium supplemented with 5 micrograms/ml insulin, 100 nM hydrocortisone and 1 mU/ml TSH.
Predilection for frailty remedial strategies among black and white seniors.
Miller, D K; Morrison, M J; Blair, S D; Miller, J P; Morley, J E
1998-04-01
Frailty prevention and remedial programs based on exercise, hormone replacement, and vitamin supplementation are becoming available for use with older patients, but success of these programs depends largely on seniors' willingness to participate. We evaluated preferences for specific aspects of these programs using a sample of 359 older persons recruited from potential delivery sites. Main effects and subgroup analyses were done. Subjects preferred stretching, chair-based, walking, and dynamic balance exercises over lifting weights, dancing, hormone and vitamin therapy; exercising alone in their own homes over exercising in groups; and vitamins over hormones. Preferences were affected to some extent by sex, race, recruitment site, and functional status. However, subjects' willingness even to consider exercise was rarely as high as the desired levels of participation set forth in Healthy People 2000. Physicians and public health authorities need to educate older persons about effective methods to prevent or treat frailty.
Singh, Varsha; Priyam, Manisha; Tripathy, Mamta; Rai, Umesh
2017-06-01
The present in vitro study, for the first time, demonstrates the production of 25-hydroxycholestrol (25-HC) by testicular macrophages of a non-mammalian vertebrate. The ether extracts of testicular macrophage-conditioned medium (TMCM) were fractionated on a C18 reversed phase high-performance liquid chromatography (HPLC) column using methanol as the mobile phase. The mass spectrometry (MS) fragmentation pattern of HPLC-purified 25-HC was found to be identical to that of authentic 25-HC. Further, a significant seasonal variation in 25-HC concentration was observed with maximal level in regressed and minimal during breeding phase. To understand the hormonal control of 25-HC production, testicular macrophages from regressed phase testes were incubated with 0.5μg/ml of ovine follicle stimulating hormone (FSH) and 0.1, 1 and 10μg/ml of testosterone (T). FSH considerably enhanced 25-HC production by testicular macrophages. In contrast, T markedly inhibited 25-HC production in a dose-dependent manner. In addition, T significantly inhibited FSH-induced 25-HC production, though pre-treatment with T was more effective as compared to post-treatment with T to FSH. Our findings on production, seasonal variation and hormonal control of 25-HC suggest the functional significance of 25-HC in the testis of reptiles. Copyright © 2017 Elsevier Inc. All rights reserved.
Meissner, H O; Mscisz, A; Reich-Bilinska, H; Kapczynski, W; Mrozikiewicz, P; Bobkiewicz-Kozlowska, T; Kedzia, B; Lowicka, A; Barchia, I
2006-12-01
This was a double-blind, randomized, placebo-corrected, outpatient, multi-centre (five sites) clinical study, in which a total of 168 Caucasian early-postmenopausal women volunteers (age>49 years) participated after fulfilling the criteria: follicle stimulating hormone (FSH) >30 IU/ml and estrogen (E2) <40 pg/ml levels at admission. They were randomly allocated to Placebo and Pre-Gelatinized Organic Maca (Maca-GO) treatment, according to different monthly treatment sequences scheduled for each site. Two 500 mg vegetable hard gel capsules with Maca-GO or Placebo powder were self-administered twice daily with meals (total 2 g/day) during three (Trial I; n=102) or four (Trial II; n=66) months study periods. At the baseline and follow- up monthly intervals, blood levels of FSH, E2, progesterone (PRG) and lutinizing hormone (LH), as well as serum cholesterol (CHOL), triglycerides (TRG), high- and low density lipoproteins (HDL and LDL) were measured. Menopausal symptoms were assessed according to Greene's Score (GMS) and Kupperman's Index (KMI). Data were analyzed using multivariate technique on blocs of monthly results in one model and Maca versus Placebo contrast in another model. A total of 124 women concluded the study. Maca-GO significantly stimulated production of E2 (P<0.001) with a simultaneous suppression (P<0.05) of blood FSH, increase (P<0.05) in HDL. Maca-GO significantly reduced both frequency and severity of individual menopausal symptoms (hot flushes and night sweating in particular) resulting in significant (P<0.001) alleviation of KMI (from 22 to 10), thus, offering an attractive non-hormonal addition to the choices available to early-postmenopausal women in the form of a natural plant alternative to Hormone Replacement Therapy (HRT) - hence, reducing dependence on hormone therapy programs.
Meissner, H. O.; Mscisz, A.; Reich-Bilinska, H.; Kapczynski, W.; Mrozikiewicz, P.; Bobkiewicz-Kozlowska, T.; Kedzia, B.; Lowicka, A.; Barchia, I.
2006-01-01
This was a double-blind, randomized, placebo-corrected, outpatient, multi-centre (five sites) clinical study, in which a total of 168 Caucasian early-postmenopausal women volunteers (age>49 years) participated after fulfilling the criteria: follicle stimulating hormone (FSH) >30 IU/ml and estrogen (E2) <40 pg/ml levels at admission. They were randomly allocated to Placebo and Pre-Gelatinized Organic Maca (Maca-GO) treatment, according to different monthly treatment sequences scheduled for each site. Two 500 mg vegetable hard gel capsules with Maca-GO or Placebo powder were self-administered twice daily with meals (total 2 g/day) during three (Trial I; n=102) or four (Trial II; n=66) months study periods. At the baseline and follow- up monthly intervals, blood levels of FSH, E2, progesterone (PRG) and lutinizing hormone (LH), as well as serum cholesterol (CHOL), triglycerides (TRG), high- and low density lipoproteins (HDL and LDL) were measured. Menopausal symptoms were assessed according to Greene’s Score (GMS) and Kupperman’s Index (KMI). Data were analyzed using multivariate technique on blocs of monthly results in one model and Maca versus Placebo contrast in another model. A total of 124 women concluded the study. Maca-GO significantly stimulated production of E2 (P<0.001) with a simultaneous suppression (P<0.05) of blood FSH, increase (P<0.05) in HDL. Maca-GO significantly reduced both frequency and severity of individual menopausal symptoms (hot flushes and night sweating in particular) resulting in significant (P<0.001) alleviation of KMI (from 22 to 10), thus, offering an attractive non-hormonal addition to the choices available to early-postmenopausal women in the form of a natural plant alternative to Hormone Replacement Therapy (HRT) – hence, reducing dependence on hormone therapy programs. PMID:23675005
Lee, Peter A; Sävendahl, Lars; Oliver, Isabelle; Tauber, Maithé; Blankenstein, Oliver; Ross, Judith; Snajderova, Marta; Rakov, Viatcheslav; Pedersen, Birgitte Tønnes; Christesen, Henrik Thybo
2012-07-12
Few studies have compared the response to growth hormone (GH) treatment between indications such as isolated growth hormone deficiency (IGHD), born small for gestational age (SGA), idiopathic short stature (ISS), and multiple pituitary hormone deficiency (MPHD). The aim of this analysis of data, collected from two large ongoing observational outcome studies, was to evaluate growth and insulin-like growth factor-I (IGF-I) response data for children of short stature with IGHD, MPHD, SGA, or ISS following two years of treatment with the recombinant GH product Norditropin® (Novo Nordisk A/S, Bagsværd, Denmark). Analysis of auxologic data from two ongoing prospective observational studies, NordiNet® International Outcomes Study (NordiNet® IOS) and NovoNet®/American Norditropin® Web-enabled Research (ANSWER) Program®. 4,582 children aged <18 years were included: IGHD, n = 3,298; SGA, n = 678; ISS, n = 334; and MPHD, n = 272. After two years' GH treatment, change in height standard deviation score (SDS) was +1.03 in SGA and +0.84 in ISS vs. +0.97 in IGHD (p = 0.047; p < 0.001 vs. IGHD, respectively). Height gain was comparable between IGHD and MPHD. In pre-pubertal children vs. total population, height SDS change after two years was: IGHD, +1.24 vs. +0.97; SGA, +1.17 vs. +1.03; ISS, +1.04 vs. +0.84; and MPHD, +1.16 vs. +0.99 (all p < 0.001). After two years' GH treatment, change in height SDS was greater in SGA and less in ISS, compared with IGHD; the discrepancy in responses may be due to the disease nature or confounders (i.e. age). Height SDS increase was greatest in pre-pubertal children, supporting early treatment initiation to optimize growth outcomes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... Hormone AGENCY: United States Patent and Trademark Office, Commerce. ACTION: Notice of interim patent term... No. 5,496,801. The patent claims the human biological product recombinant human parathyroid hormone... human parathyroid hormone, was filed on October 24, 2013, and is currently undergoing regulatory review...
Code of Federal Regulations, 2012 CFR
2012-04-01
... is that the product will have a therapeutic or some other physiological effect on the body. Therefore... substance formed in some organ of the body, such as the adrenal glands or the pituitary, and carried to another organ or tissue, where it has a specific effect. Hormones include, for example, estrogens...
Code of Federal Regulations, 2014 CFR
2014-04-01
... is that the product will have a therapeutic or some other physiological effect on the body. Therefore... substance formed in some organ of the body, such as the adrenal glands or the pituitary, and carried to another organ or tissue, where it has a specific effect. Hormones include, for example, estrogens...
Code of Federal Regulations, 2013 CFR
2013-04-01
... is that the product will have a therapeutic or some other physiological effect on the body. Therefore... substance formed in some organ of the body, such as the adrenal glands or the pituitary, and carried to another organ or tissue, where it has a specific effect. Hormones include, for example, estrogens...
Plasma steroids, body composition, and fat distribution: effects of age, sex, and exercise training.
He, Zihong; Rankinen, Tuomo; Leon, Arthur S; Skinner, James S; Tchernof, André; Bouchard, Claude
2018-03-05
Plasma steroid hormone levels vary between men and women, but their associations with BMI and adiposity are controversial. Furthermore, little is known about the role of exercise programs on the relationship between steroid hormones and adiposity. This report evaluates these relationships for plasma levels of adrenal, gonadal, and conjugated steroids with body composition and fat distribution in sedentary men and women, aged 17-65 years, and their responses to an exercise program. In the sedentary state, 270 men (29% Blacks) and 304 women (34% Blacks) from the HERITAGE Family Study were available. Among them, 242 men and 238 women completed a 20-week fully standardized exercise program. Fourteen steroid hormones and SHBG concentrations were assayed in a fasted state and were compared for their associations with adiposity in men and women and in response to the exercise program. Covariates adjusted for in partial correlation analysis were age, ancestry, menopause status (women), and oral contraceptives/hormone replacement treatment status (women) at baseline, as well as baseline value of the trait for the training response. Differences among normal weight, overweight, and obese subjects were also considered. Statistical significance was set at P < 0.0001. Baseline levels of dihydrotesterone (DHT), 17 hydroxy progesterone (OHPROG), sex hormone-binding globulin (SHBG), and testosterone (TESTO) were negatively associated with fat mass and abdominal fat (P < 0.0001) in men and for SHBG in women (P < 0.0001). TESTO was not correlated with fat-free mass in men or women, but was significantly associated with % fat-free mass in men. No association was detected between baseline steroid hormone levels and changes in adiposity traits in response to 20 weeks of exercise. In men, low DHT, OHPROG, SHBG, and TESTO were associated with higher adiposity and abdominal and visceral fat. A similar adiposity profile was observed in women with low SHBG.
Epidemiology of soy and cancer: perspectives and directions.
Persky, V; Van Horn, L
1995-03-01
Previous epidemiologic studies of the effects of soy protein on cancer risk have been limited by small variations in soy intake, inability to separate soy from other dietary variables and difficulties inherent in relating dietary intake to the development of cancer several decades later. As a result, although existing data suggest that soy protein may be protective for cancer risk, results are overall inconclusive. There is also evidence that soy products may affect risk factors for cancer, such as endogenous hormone levels. Preliminary data from our group indicate that young Adventist women who are vegetarians with high soy intake and a lower risk of breast cancer may have higher levels of an adrenal androgen, dehydroepiandrosterone sulfate. Other groups have noted that soy protein may be associated with alterations in the regulation and binding of ovarian hormones. Additional studies examining effects of soy protein on risk factors for cancer would help, not only in delineating mechanisms of cancer development, but also in designing dietary programs aimed at cancer prevention.
Effects of food stress on survival and reproductive performance of seabirds
Piatt, John F.; Kitaysky, Sasha
2001-01-01
Traditional field methods of assessing effects of fluctuations in food supply on the survival and reproductive performance of seabirds may give equivocal results. In this project we applied an additional tool: The measure of stress hormones in free-ranging seabirds. Food stress can be quantified by measuring base levels of stress hormones such as corticosterone in the blood of seabirds, or the rise in blood levels of corticosterone in response to a standardized stressor: capture, handling and restraint. We applied these techniques to seabirds breeding in Lower Cook Inlet and also used captive birds for controlled experiments. This study provided a unique opportunity for a concurrent field and captive study of the behavioral and physiological consequences of stress in seabirds. Moreover, this study provides the basis for management of seabird populations in the areas affected by the Exxon Valdez oil spill, which will have broader applications for seabird monitoring programs. This year represents production of a synthesis of the project.
Endocrine System (For Parents)
... the thyroid gland through surgery or radiation treatments. Hypothyroidism. Hypothyroidism is when the levels of thyroid hormones in ... hormone production, is the most common cause of hypothyroidism in kids. Infants can also be born with ...
Chapman, Stephen R; Fitzpatrick, Raymond W; Aladul, Mohammed I
2017-04-11
The patent expiry of a number of biological medicines and the advent of biosimilars raised the expectations of healthcare commissioners that biosimilars would reduce the high cost of these medicines and produce potential savings to the NHS. We aimed to examine the prescribing pattern of different growth hormone preparations (ready to use and reconstitution requiring) in primary and secondary care in England to determine relative rates of decrease or increase and identify the possible factors influencing prescribing following the introduction of biosimilar growth hormone in 2008. Longitudinal observational study. Primary care prescribing cost and volume data was derived from the NHS business services authority website, and for secondary care from the DEFINE database, between April 2011 and December 2015. Quarterly prescribing analysis to examine trends and measure the relationship between usage and price. Expenditure and usage of growth hormone in primary care decreased by 17.91% and 7.29%, respectively, whereas expenditure and usage in secondary care increased by 68.41% and 100%, respectively, between April 2011 and December 2015. The usage of reconstitution requiring products significantly declined in primary care (R²=0.9292) and slightly increased in use in secondary care (R²=0.139). In contrast, the usage of ready-to-use products significantly increased in use in primary (R²=0.7526) and secondary care (R²=0.9633), respectively. Weak or no correlation existed between the usage and price of growth hormone preparations in primary and secondary care. The price of growth hormone products was not the key factor influencing the prescribing of the biological medicines. The main driver for specific product selection was the ease of use and the number of steps in dose preparation. Prescribers appear to be taking into account patient preferences rather than cost in their prescribing decisions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravdin, P.M.; Jordan, V.C.
1988-01-01
Immunization of female rats with a bovine serum albumin-luteinizing hormone releasing hormone conjugate results in suppression of dimethylbenzanthracene mammary tumor incidence. Tumor incidence was 1.3, and 1.29 tumors per rat in bovine serum albumin alone (n = 10) and unimmunized (n = 18) control groups, but no tumors were found in the bovine serum albumin-luteinizing hormone releasing hormone conjugate immunized animals (n = 10). In a second experiment immunization with bovine serum albumin-luteinizing hormone releasing hormone conjugates reduced tumor incidence to 0.3 tumors per rat (n = 10) from the 1.2 tumors per animal seen in the control animals (nmore » = 10) immunized with bovine serum albumin alone. Bovine serum albumin-luteinizing hormone immunization caused the production of anti-LHRH antibodies, an interruption of estrous cycles, lowered serum estradiol and progesterone levels, and atrophy of the ovaries and uteri. Immunization BSA-hormone conjugates is a novel anti-tumor strategy.« less
Use of Gelatinized Maca (Lepidium Peruvianum) in Early Postmenopausal Women
Meissner, H. O.; Kapczynski, W.; Mscisz, A.; Lutomski, J.
2005-01-01
Objective: This double-blind, placebo-corrected clinical pilot study was aimed at assessing the use of hypocotyls of cruciferous Andean plant Maca (Lepidium peruvianum Chacon), in alleviating symptoms of menopausal discomfort experienced by women in early post menopause as measured by profiles of serum hormones: Luteinizing Hormone (LH), Follicle-stimulating Hormone (FSH), Estrogen (E2) and Progesterone (PG) and as assessed by Greene’s Menopausal Index. Design: Study was conducted on 20 Caucasian healthy early-postmenopausal women volunteers during the three months period (Trial I) and on eight women during nine months period (Trial II). Hormone levels were determined in blood with a simultaneous assessment of menopausal index at the start of study, after one month use of placebo, and after two and eight months administration of 2g gelatinized Maca root powder (Maca-GO) in the form of two 500mg hard gel capsules, twice daily. Results: In comparison to placebo, after both, two and eight months administration of Maca-GO capsules to EPMW, level of FSH significantly (P<0.05) decreased with a simultaneous significant (P<0.05) increase in the LH level, resulting in significant (P<0.05) increase in both E2 and PG, after eight months of Maca-GO treatment only. There was a significant (P<0.05) placebo effect resulting in an elevated PG level after one month administration of placebo capsules. Changes in hormone levels was accompanied by substantially-reduced feeling of discomfort associated with menopause, although, there was a distinctive, positive placebo effect as judged by responses to Greene’s questionnaire. Conclusions: It is reasonable to suggest that Maca-GO when used in EPMW, depending on the length of use, was acting as a toner of hormonal processes as reflected by decrease in FSH and increased LH secretion, which stimulated production of both ovarian hormones, E2 and PG and resulted in a substantial reduction of menopausal discomfort felt by women participating in the study, with a distinctive placebo effect, thus, fully justifying further, more complex study on effectiveness of Maca-GO as a reliable alternative to HRT program. PMID:23674952
Bioprocessing feasibility analysis. [thymic hormone bioassay and electrophoresis
NASA Technical Reports Server (NTRS)
1978-01-01
The biology and pathophysiology of the thymus gland is discussed and a clinical procedure for thymic hormone assay is described. The separation of null lymphocytes from mice spleens and the functional characteristics of the cells after storage and transportation were investigated to develop a clinical procedure for thymic hormone assay, and to determine whether a ground-based approach will provide the desired end-product in sufficient quantities, or whether the microgravity of space should be exploited for more economical preparation of the hormone.
[Current Topics on Vitamin D. Cross talks among vitamin D endocrine system, PTH and FGF23].
Fukumoto, Seiji
2015-03-01
1,25-dihydroxyvitamin D and parathyroid hormone have been known to be essential for maintaining serum calcium and phosphate levels. In addition, fibroblast growth factor 23 was shown to work as a phosphotropic hormone. These hormones work through activating different intracellular signaling pathways, but regulate their productions each other directly or indirectly via changes in serum mineral levels. Fine regulation of these hormone actions seems to be essential for maintaining serum mineral levels.
... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... pancreatic tumors called VIPomas (associated with vasoactive intestinal peptide (VIP) hormone production). Concentrations of calcitonin may be increased with ...
Bioidentical Hormones and Menopause
... made products. These are made in a compounding pharmacy (a pharmacy that mixes medications according to a doctor’s instructions). ... that bioidentical hormones, whether prepared by a compounding pharmacy or pharmaceutical company, are safer to use than ...
Grosso, D S; Boyden, T W; Pamenter, R W; Johnson, D G; Stevens, D A; Galgiani, J N
1983-01-01
In vivo perfusion of canine testes with ketoconazole inhibited the stimulation of testosterone production by human chorionic gonadotropin in a dose-dependent manner. Ketoconazole also selectively displaced steroids from serum-binding globulins. Dihydrotestosterone and estradiol binding to sex hormone-binding globulin were inhibited by ketoconazole. Cortisol binding to corticosteroid-binding globulin was unaffected. The concentrations of ketoconazole that inhibited human chorionic gonadotropin stimulation of testicular androgen production and displaced sex steroids from sex hormone-binding globulin were in the range of blood levels found in patients on higher therapeutic dosage regimens. Suppression of testicular testosterone synthesis and displacement of estrogens from sex hormone-binding globulin may decrease the androgen/estrogen ratio of the blood and contribute to the development of gynecomastia that has been reported in some ketoconazole-treated patients. PMID:6301363
Gastric peptides and their regulation of hunger and satiety.
Stengel, Andreas; Taché, Yvette
2012-12-01
Ingestion of food affects the secretion of hormones from specialized endocrine cells scattered within the intestinal mucosa. Upon release, these hormones mostly decrease food intake by signaling information to the brain. Although enteroendocrine cells in the small intestine were thought to represent the predominant gut-brain regulators of food intake, recent advances also established a major role for gastric hormones in these regulatory pathways. First and foremost, the gastric endocrine X/A-like cell was in the focus of many studies due to the production of ghrelin, which is until now the only known orexigenic hormone that is peripherally produced and centrally acting. Although X/A-cells were initially thought to only release one hormone that stimulates food intake, this view has changed with the identification of additional peptide products also derived from this cell, namely desacyl ghrelin, obestatin, and nesfatin-1. Desacyl ghrelin may play a counter-regulatory role to the food intake stimulatory effect of ghrelin. The same property was suggested for obestatin; however, this hypothesis could not be confirmed in numerous subsequent studies. Moreover, the description of the stomach as the major source of the novel anorexigenic hormone nesfatin-1 derived from the NUCB2 gene further corroborated the assumption that the gastric X/A-like cell products are not only stimulant but also inhibitors of feeding, thereby acting as so far unique dual regulator of food intake located in a logistically important place where the gastrointestinal tract has initial contact with food.
Badillo-Suárez, Pilar Amellali; Rodríguez-Cruz, Maricela; Nieves-Morales, Xóchitl
2017-09-01
Obesity is the most common metabolic disease whose prevalence is increasing worldwide. This condition is considered a serious public health problem due to associated comorbidities such as diabetes mellitus and hypertension. Perinatal morbidity related to obesity does not end with birth; this continues affecting the mother/infant binomial and could negatively impact on metabolism during early infant nutrition. Nutrition in early stages of growth may be essential in the development of obesity in adulthood, supporting the concept of "nutritional programming". For this reason, breastfeeding may play an important role in this programming. Breast milk is the most recommended feeding for the newborn due to the provided benefits such as protection against obesity and diabetes. Health benefits are based on milk components such as bioactive molecules, specifically hormones involved in the regulation of food intake. Identification of these molecules has increased in recent years but its action has not been fully clarified. Hormones such as leptin, insulin, ghrelin, adiponectin, resistin, obestatin and insulin-like growth factor-1 copeptin, apelin, and nesfatin, among others, have been identified in the milk of normal-weight women and may influence the energy balance because they can activate orexigenic or anorexigenic pathways depending on energy requirements and body stores. It is important to emphasize that, although the number of biomolecules identified in milk involved in regulating food intake has increased considerably, there is a lack of studies aimed at elucidating the effect these hormones may have on metabolism and development of the newborn. Therefore, we present a state-of-the-art review regarding bioactive compounds such as hormones secreted in breast milk and their possible impact on nutritional programming in the infant, analyzing their functions in appetite regulation.
A brief review on microfluidic platforms for hormones detection.
Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran
2017-01-01
Lab-on-chip technology is attracting great interest due to its potential as miniaturized devices that can automate and integrate many sample-handling steps, minimize consumption of reagent and samples, have short processing time and enable multiplexed analysis. Microfluidic devices have demonstrated their potential for a broad range of applications in life sciences, including point-of-care diagnostics and personalized medicine, based on the routine diagnosis of levels of hormones, cancer markers, and various metabolic products in blood, serum, etc. Microfluidics offers an adaptable platform that can facilitate cell culture as well as monitor their activity and control the cellular environment. Signaling molecules released from cells such as neurotransmitters and hormones are important in assessing the health of cells and the effect of drugs on their functions. In this review, we provide an insight into the state-of-art applications of microfluidics for monitoring of hormones released by cells. In our works, we have demonstrated efficient detection methods for bovine growth hormones using nano and microphotonics integrated microfluidics devices. The bovine growth hormone can be used as a growth promoter in dairy farming to enhance the milk and meat production. In the recent years, a few attempts have been reported on developing very sensitive, fast and low-cost methods of detection of bovine growth hormone using micro devices. This paper reviews the current state-of-art of detection and analysis of hormone using integrated optical micro and nanofluidics systems. In addition, the paper also focuses on various lab-on-a-chip technologies reported recently, and their benefits for screening growth hormones in milk.
Broodstock management and hormonal manipulations of fish reproduction.
Mylonas, Constantinos C; Fostier, Alexis; Zanuy, Silvia
2010-02-01
Control of reproductive function in captivity is essential for the sustainability of commercial aquaculture production, and in many fishes it can be achieved by manipulating photoperiod, water temperature or spawning substrate. The fish reproductive cycle is separated in the growth (gametogenesis) and maturation phase (oocyte maturation and spermiation), both controlled by the reproductive hormones of the brain, pituitary and gonad. Although the growth phase of reproductive development is concluded in captivity in most fishes-the major exemption being the freshwater eel (Anguilla spp.), oocyte maturation (OM) and ovulation in females, and spermiation in males may require exogenous hormonal therapies. In some fishes, these hormonal manipulations are used only as a management tool to enhance the efficiency of egg production and facilitate hatchery operations, but in others exogenous hormones are the only way to produce fertilized eggs reliably. Hormonal manipulations of reproductive function in cultured fishes have focused on the use of either exogenous luteinizing hormone (LH) preparations that act directly at the level of the gonad, or synthetic agonists of gonadotropin-releasing hormone (GnRHa) that act at the level of the pituitary to induce release of the endogenous LH stores, which, in turn act at the level of the gonad to induce steroidogenesis and the process of OM and spermiation. After hormonal induction of maturation, broodstock should spawn spontaneously in their rearing enclosures, however, the natural breeding behavior followed by spontaneous spawning may be lost in aquaculture conditions. Therefore, for many species it is also necessary to employ artificial gamete collection and fertilization. Finally, a common question in regards to hormonal therapies is their effect on gamete quality, compared to naturally maturing or spawning broodfish. The main factors that may have significant consequences on gamete quality-mainly on eggs-and should be considered when choosing a spawning induction procedure include (a) the developmental stage of the gonads at the time the hormonal therapy is applied, (b) the type of hormonal therapy, (c) the possible stress induced by the manipulation necessary for the hormone administration and (d) in the case of artificial insemination, the latency period between hormonal stimulation and stripping for in vitro fertilization. Copyright 2009 Elsevier Inc. All rights reserved.
Beyer, Kyle S; Fukuda, David H; Boone, Carleigh H; Wells, Adam J; Townsend, Jeremy R; Jajtner, Adam R; Gonzalez, Adam M; Fragala, Maren S; Hoffman, Jay R; Stout, Jeffrey R
2016-05-01
Short-term unilateral resistance training results in cross education of strength without changes in muscle size, activation, or endocrine response. J Strength Cond Res 30(5): 1213-1223, 2016-The purpose of this study was to assess the cross education of strength and changes in the underlying mechanisms (muscle size, activation, and hormonal response) after a 4-week unilateral resistance training (URT) program. A group of 9 untrained men completed a 4-week URT program on the dominant leg (DOM), whereas cross education was measured in the nondominant leg (NON); and were compared with a control group (n = 8, CON). Unilateral isometric force (PKF), leg press (LP) and leg extension (LE) strength, muscle size (by ultrasonography) and activation (by electromyography) of the rectus femoris and vastus lateralis, and the hormonal response (testosterone, growth hormone, insulin, and insulin-like growth factor-1) were tested pretraining and posttraining. Group × time interactions were present for PKF, LP, LE, and muscle size in DOM and for LP in NON. In all interactions, the URT group improved significantly better than CON. There was a significant acute hormonal response to URT, but no chronic adaptation after the 4-week training program. Four weeks of URT resulted in an increase in strength and size of the trained musculature, and cross education of strength in the untrained musculature, which may occur without detectable changes in muscle size, activation, or the acute hormonal response.
Meise, Kristine; von Engelhardt, Nikolaus; Forcada, Jaume; Hoffman, Joseph Ivan
2016-01-01
Females of many species adaptively program their offspring to predictable environmental conditions, a process that is often mediated by hormones. Laboratory studies have shown, for instance, that social density affects levels of maternal cortisol and testosterone, leading to fitness-relevant changes in offspring physiology and behaviour. However, the effects of social density remain poorly understood in natural populations due to the difficulty of disentangling confounding influences such as climatic variation and food availability. Colonially breeding marine mammals offer a unique opportunity to study maternal effects in response to variable colony densities under similar ecological conditions. We therefore quantified maternal and offspring hormone levels in 84 Antarctic fur seals (Arctocephalus gazella) from two closely neighbouring colonies of contrasting density. Hair samples were used as they integrate hormone levels over several weeks or months and therefore represent in utero conditions during foetal development. We found significantly higher levels of cortisol and testosterone (both P < 0.001) in mothers from the high density colony, reflecting a more stressful and competitive environment. In addition, offspring testosterone showed a significant positive correlation with maternal cortisol (P < 0.05). Although further work is needed to elucidate the potential consequences for offspring fitness, these findings raise the intriguing possibility that adaptive foetal programming might occur in fur seals in response to the maternal social environment. They also lend support to the idea that hormonally mediated maternal effects may depend more strongly on the maternal regulation of androgen rather than cortisol levels. PMID:26761814
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-25
... several years had indicated that the use of sex hormones during early pregnancy may seriously damage the... exposure to pregestational hormones, the labeling for all progestational drug products except those for use...
In vitro chemical screening assays to identify thyroid hormone disruptors.
Identification of chemicals with potential to impact thyroid hormone function is a priority of the US EPA’s Endocrine Disruptor Screening Program (EDSP). In vitro screening assays can be used to significantly reduce the number of chemicals that need to be considered for tes...
NASA Astrophysics Data System (ADS)
Myers, Niki; Wessling, Francis; Deuser, Mark; Anderson, C. D.; Lewis, Marian
1999-01-01
The primary goals of the BioDyn program are to foster use of the microgravity environment for commercial production of bio-materials from cells, and to develop services and processes for obtaining these materials through space processing. The scope of products includes commercial bio-molecules such as cytokines, other cell growth regulatory proteins, hormones, monoclonal antibodies and enzymes; transplantable cells or tissues which can be improved by low-G processes, or which cannot be obtained through standard processes in earth gravity; agriculture biotechnology products from plant cells; microencapsulation for diabetes treatment; and factors regulating cellular aging. To facilitate BioDyn's commercial science driven goals, hardware designed for ISS incorporates the flexibility for interchange between the different ISS facilities including the glovebox, various thermal units and centrifuges. By providing a permanent research facility, ISS is the critical space-based platform required by scientists for carrying out the long-term experiments necessary for developing bio-molecules and tissues using several cell culture modalities including suspension and anchorage-dependent cell types.
The inhibition of superoxide production in EL4 lymphoma cells overexpressing growth hormone.
Arnold, Robyn E; Weigent, Douglas A
2003-05-01
A substantial body of research exists to support the production of growth hormone by cells of the immune system. However, the function and mechanism of action of lymphocyte-derived growth hormone remain largely unelucidated. Since, it has been found that exogenous growth hormone (GH) primes neutrophils for the production of reactive oxygen intermediates (ROI) and in particular superoxide (O2-), we investigated the role of GH on the production of O2- in T cells. Furthermore, we examined whether endogenous and exogenous GH act similarly. Our studies show that overexpression of GH in EL4, a T-cell lymphoma cell line, results in a decrease in the production of O2- compared to control cells, as detected using the fluorescent dye, dihydroethidium. O2- production in control cells was not affected by treatment with inhibitors of xanthine oxidase or a non-specific NADPH-oxidase inhibitor. However, treatment with diallyl sulfide, an inhibitor of cytochrome P450 2E1 mimicked the reduction in O2- production seen in cells overexpressing GH. Although no significant change could be detected in CYP2E1 protein levels, CYP2E1 activity was found to be greater in control EL4 than in cells overexpressing GH. Both the decrease in O2- production and the lower CYP2E1 activity in GH overexpressing cells could be abrogated by treatment with N(G)-monomethyl-L-arginine, an inhibitor of nitric oxide synthase. The overexpression of GH protects cells from apoptosis induced by isoniazid, a CYP2E1 inducer, suggesting a role for nitric oxide as a mediator in the regulation of xenobiotic metabolism and apoptosis-protection by lymphocyte GH.
Endocrinological control of growth.
Sizonenko, P C
1978-01-01
Many endocrinological factors control cellular growth of different tissues (cell multiplication and cell volume) and skeletal growth. The role of neuro-transmitters and of hypothalamic releasing and inhibiting factors of growth hormone secretion will be reviewed. The importance of the somatomedins on cartilage growth will be stressed. Thyroid hormones, androgens, and oestrogens have important stimulating actions on skeletal growth and maturation. Conversely, glucocorticoids have an important inhibitory effect on growth. The precise roles of these hormone factors in the regulation of growth hormone secretion, somatomedin production and tissue growth, particularly the cartilage, remain to be completely elucidated.
Expression of an Exogenous Growth Hormone Gene by Transplantable Human Epidermal Cells
NASA Astrophysics Data System (ADS)
Morgan, Jeffrey R.; Barrandon, Yann; Green, Howard; Mulligan, Richard C.
1987-09-01
Retrovirus-mediated gene transfer was used to introduce a recombinant human growth hormone gene into cultured human keratinocytes. The transduced keratinocytes secreted biologically active growth hormone into the culture medium. When grafted as an epithelial sheet onto athymic mice, these cultured keratinocytes reconstituted an epidermis that was similar in appearance to that resulting from normal cells, but from which human growth hormone could be extracted. Transduced epidermal cells may prove to be a general vehicle for the delivery of gene products by means of grafting.
Proceedings of the 1972 Lyndon B. Johnson Space Center Endocrine Program Conference
NASA Technical Reports Server (NTRS)
1974-01-01
Subjects covered during the Endocrine Program Conference include the following: (1) endocrine/metabolic studies on the Apollo 16 crewmen; (2) changes in glucose, insulin, and growth hormone levels associated with bed rest; (3) circadian rhythms of heart rate and body temperature during 56 days of bed rest; (4) stress-induced changes in corticosteroid metabolism in man; (5) present status of physiological studies on parathyroid hormone and vitamin D; (6) antagonistic effect of lithium on antidiuretic hormone action; (7) proposed Skylab body-fluid volumes study; (8) daily rhythmic changes in serotonin content in areas of the mouse brain and norepinephrine content in areas of the hamster brain; (9) studies of sodium homeostasis during simulated weightlessness; and (10) application of the water immersion model to man.
15. international conference on plant growth substances: Program -- Abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Since the 14th Conference in Amsterdam in 1991, progress in plant hormone research and developmental plant biology has been truly astonishing. The five ``classical`` plant hormones, auxin, gibberellin, cytokinin, ethylene, and abscisic acid, have been joined by a number of new signal molecules, e.g., systemin, jasmonic acid, salicylic acid, whose biosynthesis and functions are being understood in ever greater detail. Molecular genetics has opened new vistas in an understanding of transduction pathways that regulate developmental processes in response to hormonal and environmental signals. The program of the 15th Conference includes accounts of this progress and brings together scientists whose workmore » focuses on physiological, biochemical, and chemical aspects of plant growth regulation. This volume contains the abstracts of papers presented at this conference.« less
[Neuromuscular system and aging: involutions and implications].
Paillard, Thierry
2013-12-01
In aged human, the number of muscle fibers and motor units decreases. The remaining motor units lose their functionality (decrease of the discharge frequency, greater fluctuation of the discharge) particularly those which contain type II fibers. The renewal of intracellular proteins declines which creates a negative balance between the daily protein losses and the capacities to renew them. The activity of the protein kinase (Akt) that stimulates the synthesis of regulation proteins (mTOR, p70S6, IGFBP-5) declines whereas the factors of degradation of proteins (NF-kappa B) are activated. Besides, the process of activation and proliferation of satellite cells is affected and the production of anabolic hormones and local factors is decreased. After a strength training program, muscle hypertrophy is linked to the protein synthesis at the level of myosin heavy chain (MHC) isoforms in older subjects. However, the transcription of the genes that code the MHC-I (slow form) increases and the transcription of the genes that code the MHC-II (fast form) decreases. Thus, the transition of the phenotype towards a slower form cannot be inverted by strength training during the advanced in age. Moreover, strength training enables to decrease the proportion of fibers containing MHC of hybrid form in the process of evolution. Hence, strength training can engender a stabilization of the muscular phenotype i.e. different isoforms of MHC. In addition, strength training counteracts the noxious effects mentioned above by generating muscular hypertrophy thanks to a reactive increase in the production of anabolic hormones. A program of aerobic training can induce an increase in the synthesis of ARN messengers coding isoforms related to the oxidative metabolism (MHC-I and to a lesser extent MHC-IIa) while the transcribed for the type MHC-IIx decrease.
Optical Detection of Degraded Therapeutic Proteins.
Herrington, William F; Singh, Gajendra P; Wu, Di; Barone, Paul W; Hancock, William; Ram, Rajeev J
2018-03-23
The quality of therapeutic proteins such as hormones, subunit and conjugate vaccines, and antibodies is critical to the safety and efficacy of modern medicine. Identifying malformed proteins at the point-of-care can prevent adverse immune reactions in patients; this is of special concern when there is an insecure supply chain resulting in the delivery of degraded, or even counterfeit, drug product. Identification of degraded protein, for example human growth hormone, is demonstrated by applying automated anomaly detection algorithms. Detection of the degraded protein differs from previous applications of machine-learning and classification to spectral analysis: only example spectra of genuine, high-quality drug products are used to construct the classifier. The algorithm is tested on Raman spectra acquired on protein dilutions typical of formulated drug product and at sample volumes of 25 µL, below the typical overfill (waste) volumes present in vials of injectable drug product. The algorithm is demonstrated to correctly classify anomalous recombinant human growth hormone (rhGH) with 92% sensitivity and 98% specificity even when the algorithm has only previously encountered high-quality drug product.
Veiga-Lopez, Almudena; Astapova, Olga I.; Aizenberg, Esther F.; Lee, James S.; Padmanabhan, Vasantha
2009-01-01
Prenatal testosterone excess leads to neuroendocrine and periovulatory disruptions in the offspring culminating in progressive loss of cyclicity. It is unknown whether the mediary of these disruptions is androgen or estrogen, because testosterone can be aromatized to estrogen. Taking a reproductive life span approach of studying control, prenatal testosterone, and dihydrotestosterone-treated offspring, this study tested the hypothesis that disruptions in estradiol-negative but not -positive feedback effects are programmed by androgenic actions of testosterone and that these disruptions in turn will have an impact on the periovulatory hormonal dynamics. The approach was to test estradiol-negative and -positive feedback responses of all three groups of ovary-intact females during prepubertal age and then compare the periovulatory dynamics of luteinizing hormone, follicle-stimulating hormone, estradiol, and progesterone during the first breeding season. The findings show that estradiol-negative but not estradiol-positive feedback disruptions in prenatal testosterone-treated females are programmed by androgenic actions of prenatal testosterone excess and that follicular phase estradiol and gonadotropins surge disruptions during reproductive life are consistent with estrogenic programming. Additional studies carried out testing estradiol-positive feedback response over time found progressive deterioration of estradiol-positive feedback in prenatal testosterone-treated sheep until the time of puberty. Together, these findings provide insight into the mechanisms by which prenatal testosterone disrupts the reproductive axis. The findings may be of translational relevance since daughters of mothers with hyperandrogenism are at risk of increased exposure to androgens. PMID:19122183
Veiga-Lopez, Almudena; Astapova, Olga I; Aizenberg, Esther F; Lee, James S; Padmanabhan, Vasantha
2009-04-01
Prenatal testosterone excess leads to neuroendocrine and periovulatory disruptions in the offspring culminating in progressive loss of cyclicity. It is unknown whether the mediary of these disruptions is androgen or estrogen, because testosterone can be aromatized to estrogen. Taking a reproductive life span approach of studying control, prenatal testosterone, and dihydrotestosterone-treated offspring, this study tested the hypothesis that disruptions in estradiol-negative but not -positive feedback effects are programmed by androgenic actions of testosterone and that these disruptions in turn will have an impact on the periovulatory hormonal dynamics. The approach was to test estradiol-negative and -positive feedback responses of all three groups of ovary-intact females during prepubertal age and then compare the periovulatory dynamics of luteinizing hormone, follicle-stimulating hormone, estradiol, and progesterone during the first breeding season. The findings show that estradiol-negative but not estradiol-positive feedback disruptions in prenatal testosterone-treated females are programmed by androgenic actions of prenatal testosterone excess and that follicular phase estradiol and gonadotropins surge disruptions during reproductive life are consistent with estrogenic programming. Additional studies carried out testing estradiol-positive feedback response over time found progressive deterioration of estradiol-positive feedback in prenatal testosterone-treated sheep until the time of puberty. Together, these findings provide insight into the mechanisms by which prenatal testosterone disrupts the reproductive axis. The findings may be of translational relevance since daughters of mothers with hyperandrogenism are at risk of increased exposure to androgens.
Effect of sex steroid hormones on replication and transmission of major HIV subtypes.
Ragupathy, Viswanath; Devadas, Krishnakumar; Tang, Shixing; Wood, Owen; Lee, Sherwin; Dastyer, Armeta; Wang, Xue; Dayton, Andrew; Hewlett, Indira
2013-11-01
The HIV epidemic is expanding worldwide with an increasing number of distinct viral subtypes and circulating recombinant forms (CRFs). Out of 34 million adults living with HIV and AIDS, women account for one half of all HIV-1 infections worldwide. These gender differences in HIV pathogenesis may be attributed to sex hormones. Little is known about the role of sex hormone effects on HIV Subtypes pathogenesis. The aim of our study was to determine sex hormone effects on replication and transmissibility of HIV subtypes. Peripheral blood mononuclear cells (PBMC) and monocyte derived dendritic cells (MDDC) from male and female donors were infected with HIV subtypes A-D and CRF02_AG, CRF01_AE, MN (lab adapted), Group-O, Group-N and HIV-2 at a concentration of 5ng/ml of p24 or p27. Virus production was evaluated by measuring p24 and p27 levels in culture supernatants. Similar experiments were carried out in the presence of physiological concentrations of sex steroid hormones. R5/X4 expressions measured by flow cytometry and transmissibility was evaluated by transfer of HIV from primary dendritic cells (DC) to autologous donor PBMC. Our results from primary PBMC and MDDC from male and female donors indicate in the absence of physiological concentrations of hormone treatment virus production was observed in three clusters; high replicating virus (subtype B and C), moderate replicative virus (subtype A, D, CRF01_AE, Group_N) and least replicative virus (strain MN). However, dose of sex steroid hormone treatment influenced HIV replication and transmission kinetics in PBMC, DCs and cell lines. Such effects were inconsistent between donors and HIV subtypes. Sex hormone effects on HIV entry receptors (CCR5/CXCR4) did not correlate with virus production. Subtypes B and C showed higher replication in PBMC from males and females and were transmitted more efficiently through DC to male and female PBMC compared with other HIV-1 subtypes, HIV-1 Group O and HIV-2. These findings are consistent with increased worldwide prevalence of subtype B and C compared to other subtypes. Sex steroid hormones had variable effect on replication or transmission of different subtypes. These findings suggest that subtype, gender and sex hormones may play a crucial role in the replication and transmission of HIV. Published by Elsevier Ltd.
Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes.
Bartlett, Paula J; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L; Combettes, Laurent; Hoek, Jan B; Gaspers, Lawrence D
2017-05-15
Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca 2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca 2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca 2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) production and does not involve changes in the sensitivity of the IP 3 receptor or size of internal Ca 2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca 2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca 2+ ] i ) increases, which can adversely affect mitochondrial Ca 2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca 2+ -mobilizing hormones resulting in more sustained and prolonged [Ca 2+ ] i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca 2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) accumulation and phospholipase C (PLC) activity were significantly potentiated in hepatocytes from alcohol-fed rats compared to controls. Removal of extracellular calcium, or chelation of intracellular calcium did not normalize the differences in hormone-stimulated PLC activity, indicating calcium-dependent PLCs are not upregulated by alcohol. We propose that the liver 'adapts' to chronic alcohol exposure by increasing hormone-dependent IP 3 formation, leading to aberrant calcium increases, which may contribute to hepatocyte injury. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Bristow, A F; Jeffcoate, S L
1992-09-01
Recombinant DNA-derived human growth hormone (somatotropin) is widely used to treat growth hormone-deficient children. The potency of this product is determined by in-vivo bioassay in hypophysectomized rats, which is imprecise, costly and invasive, and there have been suggestions that it could safely be replaced with in-vitro or physico-chemical alternatives. In this report we present the results of a collaborative study designed to test this proposal. Somatotropin was modified by mild or severe proteolysis, mild or severe oxidation or treatment at high pH, and compared in a multi-centre collaborative study with unmodified somatotropin or with dimerized somatotropin. Participating laboratories included manufacturers and national control laboratories, and pharmacopoeial bioassays were compared with in-house in-vitro and physico-chemical bioassays. Although performing adequately with untreated somatotropin, for degraded samples the in-vivo bioassays were relatively unresponsive to changes in the growth hormone molecule. In contrast, the physico-chemical assays, in particular the reverse-phase HPLC, performed with a high degree of selectivity. We conclude that in the case of somatotropin, the in-vivo bioassay can be removed from the routine product specification with an acceptable degree of security. This however does not obviate the requirement rigorously to demonstrate biological activity in-vivo during product development, nor may the conclusions of this study be applied to other therapeutic recombinant proteins without similar collaborative investigations.
The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia.
Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana
2016-08-03
Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections.
The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia
Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana
2016-01-01
Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections. PMID:27484112
Levels of hormones and cytokines associated with growth in Honamlı and native hair goats.
Devrim, A K; Elmaz, O; Mamak, N; Sudagidan, M
2015-01-01
This study was designed to assess alterations of hormone and cytokine levels associated with growth period during puberty in Honamlı goats which were identified as a new goat breed and had one of the highest meat production potential among the other goat breeds in Turkey. Honamlı goats are originated from native hair goats, so parallel studies of sampling and analyzing were conducted also in native hair goats which have moderate meat production. Blood serum samples of Honamlı (n=90) and native hair goats (n=90) were obtained from the pure herds in Korkuteli and Ka districts of Anatolia. Concentrations of growth hormone (GH), myostatin (MSTN), insulin-like growth factor (IGF), growth hormone releasing hormone (GHRH), growth hormone releasing peptide (GHRP), leptin, transforming growth factor-betal (TGF-β1) and vascular endothelial cell growth factor (VEGF) levels were measured by ELISA in each breed in the age groups of 4, 8 and 12 months. The present results indicate interesting correlations among the age groups and all the examined hormone and cytokine parameters exhibited significant (P<0.05 and P<0.001) differences. The parameters investigated were usually begun to increase after 4 months of age in the both breeds and sexes. Therefore, this paper supported the view that the beginning of hormonal alterations of goats could occur at 4th month of age. The results reported here emphasize the primary role played by GH, MSTN, IGF-1, leptin, GHRH, GHRP, TGF-βi and VEGF in the first year growth period of goats.
Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.
Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L
2009-09-01
Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.
[Thyroid hormone metabolism and action].
Köhrle, Josef
2004-05-01
Reductive deiodination of thyroid hormones at the phenolic and tyrosyl ring leads to the activation or inactivation of the thyromimetic activity inherent to thyroid hormones. Alterations in the activities of the three selenocysteine-containing enzymes, the iodothyronine deiodinases, have been reported during development and in specific cells and tissues of the adult organism. Furthermore, pathophysiological changes in the deiodinase expression lead to therapeutically relevant disturbances of the homeostasis of thyroid hormones. Metabolisation of thyroid hormones by conjugation of their phenolic 4'-OH group, their alanine side chain or cleavage of their diphenylether bridge also contributes to both local and systemic supply of thyromimetic activity or hormone degradation. Further components mediating the pleiotropic action of thyroid hormones in part include redundant T3 receptors, binding and transport proteins, metabolising enzymes and T3-regulated gene products. This is achieved in a finely tuned manner with multiple feedback control, malfunction or complete failure of individual components and networks involved in the iodothyronine metabolism and thyroid hormone action can thus be compensated or prevented.
Health literacy and the readability of written information for hormone therapies.
Charbonneau, Deborah H
2013-01-01
Health education and counseling are important elements of the care provided by clinicians. Counseling efforts may involve helping women to understand their options for symptom management related to various reproductive life transitions. In light of this, the need for information during the menopausal transition is critical for assisting women with their health care decisions. Yet the Institute of Medicine estimates that approximately half the adult population in the United States has difficulty understanding and using health information. The US Food and Drug Administration (FDA) mandates the distribution of written information for estrogen-containing products; however, the readability of information for these pharmaceutical products has not been widely studied. To address this gap, this study examined the readability of written information for FDA-approved prescription menopausal hormone therapies (N = 31). Readability of the written information about hormone therapies from 31 hormone therapy products was assessed using the Flesch Reading Ease and Flesch-Kincaid Grade Level formulas. The reading level ranged from 6.70 to 12.30, with an average grade level of 9.33 (ninth-grade reading level). All but one of the hormone therapy products evaluated in this study exceeded the recommended sixth-grade reading level for written health information. In addition, only 48% of the written information instructions in the study sample (n = 15) included illustrations. Assessment of written information about menopausal hormone therapies showed that the majority of the materials are written at a high reading level. These findings have implications for health literacy and counseling efforts when helping women to understand their options for menopausal symptom management. Midwives, nurses, and other health care providers may need to supplement written information with additional consumer-friendly written information, utilize illustrations, and use verbal instructions more frequently to help support women in evaluating their treatment options. © 2013 by the American College of Nurse-Midwives.
Chapman, Stephen R; Fitzpatrick, Raymond W; Aladul, Mohammed I
2017-01-01
Objective The patent expiry of a number of biological medicines and the advent of biosimilars raised the expectations of healthcare commissioners that biosimilars would reduce the high cost of these medicines and produce potential savings to the NHS. We aimed to examine the prescribing pattern of different growth hormone preparations (ready to use and reconstitution requiring) in primary and secondary care in England to determine relative rates of decrease or increase and identify the possible factors influencing prescribing following the introduction of biosimilar growth hormone in 2008. Design Longitudinal observational study. Setting and data sources Primary care prescribing cost and volume data was derived from the NHS business services authority website, and for secondary care from the DEFINE database, between April 2011 and December 2015. Outcomes Quarterly prescribing analysis to examine trends and measure the relationship between usage and price. Results Expenditure and usage of growth hormone in primary care decreased by 17.91% and 7.29%, respectively, whereas expenditure and usage in secondary care increased by 68.41% and 100%, respectively, between April 2011 and December 2015. The usage of reconstitution requiring products significantly declined in primary care (R²=0.9292) and slightly increased in use in secondary care (R²=0.139). In contrast, the usage of ready-to-use products significantly increased in use in primary (R²=0.7526) and secondary care (R²=0.9633), respectively. Weak or no correlation existed between the usage and price of growth hormone preparations in primary and secondary care. Conclusions The price of growth hormone products was not the key factor influencing the prescribing of the biological medicines. The main driver for specific product selection was the ease of use and the number of steps in dose preparation. Prescribers appear to be taking into account patient preferences rather than cost in their prescribing decisions. PMID:28400458
Thyroid hormone use: trends in the United States from 1960 through 1988.
Kaufman, S C; Gross, T P; Kennedy, D L
1991-01-01
Thyroid hormone preparations comprised over 1% of all prescriptions filled by retail pharmacies during 1988 in the conterminous United States, i.e., the 48 contiguous states. Their large market share gives the patterns of their use substantial public health importance. This article describes prescription thyroid hormone use in the United States from 1960 through 1988, using pharmaceutical marketing research data collected from panels of retail pharmacies and office-based physicians. Although the use of natural products has declined by over 50% since 1960, about one fourth of all thyroid hormone prescriptions were for natural preparations as recently as 1988. Per capita thyroid mentions (i.e., patient-physician contacts during which a thyroid agent of any kind was recommended, prescribed, dispensed, administered, ordered to be given by a hospital, or given as a sample) doubled during this period among those over 59 years old. Per capita mentions for synthetic thyroid products increased fourfold and tenfold among men and women in this age group, respectively. Use for weight loss, despite the label's boxed warning indicating it to be ineffective and potentially dangerous, has diminished but persists. Obesity was second only to hypothyroidism among the diagnoses underlying thyroid product mentions.
[Computer simulation of thyroid regulatory mechanisms in health and malignancy].
Abduvaliev, A A; Gil'dieva, M S; Khidirov, B N; Saĭdalieva, M; Saatov, T S
2010-07-01
The paper describes a computer model for regulation of the number of thyroid follicular cells in health and malignancy. The authors'computer program for mathematical simulation of the regulatory mechanisms of a thyroid follicular cellular community cannot be now referred to as good commercial products. For commercialization of this product, it is necessary to draw up a direct relation of the introduced corrected values from the actually existing normal values, such as the peripheral blood concentrations of thyroid hormones or the mean values of endocrine tissue mitotic activity. However, the described computer program has been also used in researches by our scientific group in the study of thyroid cancer. The available biological experimental data and theoretical provisions on thyroid structural and functional organization at the cellular level allow one to construct mathematical models for quantitative analysis of the regulation of the size of a cellular community of a thyroid follicle in health and abnormalities, by using the method for simulation of the regulatory mechanisms of living systems and the equations of cellular community regulatory communities.
Weitoft, T; Larsson, A; Rönnblom, L
2008-03-01
To study metalloproteinase activity and sex steroid hormone production in serum after intra-articular glucocorticoid treatment for knee synovitis. 18 female patients with rheumatoid arthritis and synovitis of the knee with need for intra-articular glucocorticoid treatment were included in this study. Serum samples of matrix metalloproteinases (MMP-1/TIMP complex and MMP-3), dehydroepiandrosterone sulphate, testosterone, oestradiol, steroid hormone binding globulin, follicle stimulating hormone and luteinising hormone were collected before injection with 20 mg triamcinolone hexacetonide, and 24 h, 48 h, 1 week and 2 weeks after injection, respectively. Serum levels of MMP-3 were significantly decreased, but MMP-1/TIMP complex was unaffected. Dehydroepiandrosterone sulphate, testosterone and oestradiol levels all decreased and tended to return to baseline levels during the observation period. Steroid hormone binding globulin, follicle stimulating hormone and luteinising hormone levels were unchanged. Intra-articular glucocorticoid treatment causes a temporary, but considerable suppression of sex steroid hormone secretion. The reduction of MMP-3 indicates an inhibition of the inflammatory, but probably also the cartilage destructive processes within the treated joint.
Hennessey, James V
2015-10-01
To describe the history, refinements, implementation, physiology, and clinical outcomes achieved over the past several centuries of thyroid hormone replacement strategies. A Medline search was initiated using the following search terms: bioidentical thyroid hormone, thyroid hormone extract, combination thyroxine (T4) and tri-iodothyronine (T3) therapy, homeopathic thyroid hormone therapy, and thyroid hormone replacement. Pertinent articles of interest were identified by title (and where available abstract) for further review. Additional references were identified during a review of the identified literature. A rich history of physician intervention in thyroid dysfunction was identified dating back more than 2 millennia. Although not precisely documented, thyroid ingestion from animal sources had been used for centuries but was finally scientifically described and documented in Europe over 130 years ago. Since the reports by Bettencourt and Murray, there has been a continuous documentation of outcomes, refinement of hormone preparation production, and updating of recommendations for the most effective and safe use of these hormones for relieving the symptoms of hypothyroidism. As the thyroid extract preparations contain both levothyroxine (LT4) and liothyronine (LT3), current guidelines do not endorse their use as controlled studies do not clearly document enhanced objective outcomes compared with LT4 monotherapy. Among current issues cited, the optimum ratio of LT4 to LT3 has yet to be determined, and the U.S. Food and Drug Administration (FDA) does not appear to be monitoring the thyroid hormone ratios or content in extract preparations on the market. Taken together, these limitations are important detriments to the use of thyroid extract products. The evolution of thyroid hormone therapies has been significant over the extended period of time they have been in use to treat hypothyroidism. Although numerous websites continue to advocate the use of thyroid hormone extracts as a superior therapy for hypothyroidism, none of the most recent guidelines of major endocrine societies recommend thyroid extract use for hypothyroidism.
Gynecological considerations on the participation of females in future space flights
NASA Technical Reports Server (NTRS)
Mutke, H. G.; Burchard, E. C.
1976-01-01
The NASA Space Shuttle Program in connection with the European Spacelab will provide the opportunity for women to participate in space flight as scientist crew members within the 1980's and 1990's. It is, therefore, necessary to examine gynecologic problems which might have to be considered in connection with these activities. Possible problem areas are related to aspects of menstrual cycle, hormone production disturbances, conception, pregnancy, and delivery. Psychological factors concerning the employment of mixed male-female crews must also be taken into account. Approaches for investigating these problems are discussed, giving attention to the conduction of experiments with female animals.
TRICLOSAN ALTERS THYROID HORMONES HOMEOSTASIS VIA UP-REGULATION OF HEPATIC CATABOLISM.
Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a chlorinated phenolic antibacterial compound used in household and hygiene products. The structural similarity of triclosan to thyroid hormones, in vitro studies demonstrating activation of the human pregnane X receptor (PXR)...
TRICLOSAN AND ENDOCRINE DISRUPTION: EVIDENCE FOR ALTERATIONS IN THYROID HORMONE HOMEOSTASIS.
Impact Statement: Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a chlorinated phenolic antibacterial compound found as an active ingredient in many personal care and household products. Recent studies suggest that triclosan may alter thyroid hormone (TH) homeostasis via ...
Asprosin is a centrally acting orexigenic hormone
USDA-ARS?s Scientific Manuscript database
Asprosin is a recently discovered fasting-induced hormone that promotes hepatic glucose production. Here we demonstrate that asprosin in the circulation crosses the blood–brain barrier and directly activates orexigenic AgRP+ neurons via a cAMPdependent pathway. This signaling results in inhibition o...
A Counterregulatory Mechanism Impacting Androgen Suppression Therapy
2016-03-01
lay audience can understand (Scientific American style). Testosterone, a steroid hormone , plays a key role in the development, growth , and...Sry, Sox9, Dmrt1) (20, 57–60), FSH signaling (Fshr) (61, 62), cell-cell interactions (Clmp, Cldn11, Cx30.2) (19, 38, 63), and peptide hormone ...including genes associated with sex determination (Sry, Sox9, and Dmrt1) (13–17), peptide hormone production (Inha, Inhba, and Amh) (18), gonadotropin
CONTRACEPTION TECHNOLOGY: PAST, PRESENT AND FUTURE
Sitruk-Ware, Regine; Nath, Anita; Mishell, Daniel R.
2012-01-01
Steady progress in contraception research has been achieved over the past 50 years. Hormonal and non-hormonal modern contraceptives have improved women’s lives by reducing different health conditions that contributed to considerable morbidity. However the contraceptives available today are not suitable to all users and the need to expand contraceptive choices still exists. Novel products such as new implants, contraceptive vaginal rings, transdermal patches and newer combinations of oral contraceptives have recently been introduced in family planning programs and hormonal contraception is widely used for spacing and limiting births. Concerns over the adverse effects of hormonal contraceptives have led to research and development of new combinations with improved metabolic profile. Recent developments include use of natural compounds such as estradiol (E2) and estradiol valerate (E2V) with the hope to decrease thrombotic risk, in combination with newer progestins derived from the progesterone structure or from spirolactone, in order to avoid the androgenic effects. Progesterone antagonists and progesterone receptor modulators are highly effective in blocking ovulation and preventing follicular rupture and are undergoing investigations in the form of oral pills and in semi long-acting delivery systems. Future developments also include the combination of a contraceptive with an antiretroviral agent for dual contraception and protection against sexually transmitted diseases, to be used before intercourse or on demand, as well as for continuous use in dual-protection rings. Alhough clinical trials of male contraception have reflected promising results, limited involvement of industry in that area of research has decreased the likelihood of having a male method available in the current decade. Development of non-hormonal methods are still at an early stage of research, with the identification of specific targets within the reproductive system in ovaries and testes, as well as interactions between spermatozoa and ova. It is hoped that the introduction of new methods with additional health benefits would help women and couples with unmet needs to obtain access to a wider range of contraceptives with improved acceptability. PMID:22995540
[A male contraceptive injection can be available within 5 years].
Gottlieb, C; Aanesen, A
1999-09-22
After more than two decades of attempts to develop a safe male contraceptive, the goal now seems attainable. Spermatogenesis, which is dependent on endogenous testosterone production in the testes, may be controlled by such exogenous steroid hormones as testosterone, gestagens, or combinations of them. The recent development of gonadotrophin-releasing hormone (GnRH) antagonists has provided an added means of depressing testosterone production. Other targets for interference with male fertility are the germinal epithelium (e.g. using the cottonseed oil product, Gossypol, or Triptyrigeum Wilfordii extract), or the maturing sperm in the epididymis (using immunoactive substances).
Parathyroid Hormone, Calcitonin, and Vitamin D
NASA Technical Reports Server (NTRS)
Potts, J. T.
1972-01-01
Analyses of secretion of parathyroid hormone during tests of stimulation and suppression of hormone-secretory activity using infusions of EDTA and calcium, respectively, have established that, in contrast to previous views, secretion of the hormone is not autonomous in many patients that have adenomatous hyperparathyroidism, but is responsive to changes in blood-calcium concentration. These findings have led to a new understanding of the pathophysiology of hormone production in hyperparathy-roidism. A related application of the diagnostic use of the radioimmunoassay is the preoperative localization of parathyroid tumors and the distinction between adenomas and chief-cell hyperplasia. Work involving catheterization and radioimmunoassay of blood samples obtained from the subclavin and innominate veins and the venae cavae, led to localization in a high percentage of patients. However, this procedure has been adopted recently to detect hormone concentration in the small veins directly draining the parathyroid glands.
Hyperthyroidism: Diagnosis and Treatment.
Kravets, Igor
2016-03-01
Hyperthyroidism is an excessive concentration of thyroid hormones in tissues caused by increased synthesis of thyroid hormones, excessive release of preformed thyroid hormones, or an endogenous or exogenous extrathyroidal source. The most common causes of an excessive production of thyroid hormones are Graves disease, toxic multinodular goiter, and toxic adenoma. The most common cause of an excessive passive release of thyroid hormones is painless (silent) thyroiditis, although its clinical presentation is the same as with other causes. Hyperthyroidism caused by overproduction of thyroid hormones can be treated with antithyroid medications (methimazole and propylthiouracil), radioactive iodine ablation of the thyroid gland, or surgical thyroidectomy. Radioactive iodine ablation is the most widely used treatment in the United States. The choice of treatment depends on the underlying diagnosis, the presence of contraindications to a particular treatment modality, the severity of hyperthyroidism, and the patient's preference.
Sex in the brain: hormones and sex differences.
Marrocco, Jordan; McEwen, Bruce S
2016-12-01
Contrary to popular belief, sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Many neural and behavioral functions are affected by estrogens, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences, and responses to sex hormones in brain regions and upon functions not previously regarded as subject to such differences, indicate that we are entering a new era in our ability to understand and appreciate the diversity of gender-related behaviors and brain functions.
The History of Growth Hormone Treatment for GHD in Japan.
Yokoya, Susumu; Tanaka, Toshiaki
2017-03-01
In Japan, treatment of growth hormone deficiency with pituitary-extracted human growth hormone (phGH) was covered by health insurance for the first time in 1975. However, because of the shortage of phGH, the Foundation for Growth Science (FGS) was founded in 1977 to control the use of the product by its registration system and to collect pituitary glands in Japan. In 1986, recombinant human growth hormone was first approved. Since then, the FGS has been involved in the harmonization of growth hormone measurement, assessment for treatment eligibility according to the diagnostic criteria by the research group of the Ministry of Health and Welfare, and database generation and its utilization. Copyright© of YS Medical Media ltd.
da Silva, J A
1991-10-01
Epidemiologic data suggest a strong link between hormonal and reproductive factors and the incidence of rheumatoid arthritis. Of interest is a possible protective effect of oral contraceptives or estrogen replacement therapy against the development of rheumatoid arthritis. At least 1 pregnancy also appears to reduce the risk of this disease. It has been hypothesized that hormonal contraceptive use and pregnancy elicit the production of higher amounts of endogenous heat shock proteins, which, in turn, induce immunotolerance to subsequent exposure to the actual triggering agent of rheumatoid arthritis. A related possibility is that pregnant women are exposed to specific types of heat shock proteins produced by the fetus in high concentrations. Heat shock proteins are known to be the predominant antigens related to the induction of reactive arthritis. The production of some such proteins is dependent on sex hormones in a tissue-specific way and their concentrations are raised dramatically by stimulation with estrogen and progesterone. A possible mechanism for heat protein-induced immunotolerance would be the predominant stimulation of a suppressor T cell clone. More research on the pathogenesis of rheumatic diseases and the activity of sex hormones could result in the development of a vaccine against rheumatoid arthritis.
Tatarazako, Norihisa; Oda, Shigeto
2007-02-01
The water flea Daphnia magna (Crustacea, Cladocera) is a cyclical parthenogen, which can reproduce both by parthenogenesis and by sexual reproduction. With its ease of handling in the laboratory, several testing methods using D. magna exist for regulatory toxicity testing. Recently, several studies revealed that one of the major hormone groups in insects and crustaceans, juvenile hormones, are involved in the shift of reproductive mode from parthenogenesis to sexual reproduction (production of male neonates). Using offspring sex ratio as a new endpoint has made it possible to identify chemicals with juvenile hormone-like effects on crustaceans. The testing method using D. magna, in which offspring sex ratio is incorporated as a new endpoint, is now being proposed to the OECD as an enhanced version of the existing OECD Test Guideline 211: Daphnia magna reproduction test. No other clear-cut endpoint for identifying juvenile-hormone disrupting effects has ever been found in crustaceans than the induction of male neonates production in cladocerans. In this regard, it is expected that testing methods using D. magna are suitable for screening and risk assessment of chemicals with juvenile-hormone disrupting effects.
Holterhus, Paul-Martin; Bebermeier, Jan-Hendrik; Werner, Ralf; Demeter, Janos; Richter-Unruh, Annette; Cario, Gunnar; Appari, Mahesh; Siebert, Reiner; Riepe, Felix; Brooks, James D; Hiort, Olaf
2009-01-01
Background Gender appears to be determined by independent programs controlled by the sex-chromosomes and by androgen-dependent programming during embryonic development. To enable experimental dissection of these components in the human, we performed genome-wide profiling of the transcriptomes of peripheral blood mononuclear cells (PBMC) in patients with rare defined "disorders of sex development" (DSD, e.g., 46, XY-females due to defective androgen biosynthesis) compared to normal 46, XY-males and 46, XX-females. Results A discrete set of transcripts was directly correlated with XY or XX genotypes in all individuals independent of male or female phenotype of the external genitalia. However, a significantly larger gene set in the PBMC only reflected the degree of external genital masculinization independent of the sex chromosomes and independent of concurrent post-natal sex steroid hormone levels. Consequently, the architecture of the transcriptional PBMC-"sexes" was either male, female or even "intersex" with a discordant alignment of the DSD individuals' genetic and hormonal sex signatures. Conclusion A significant fraction of gene expression differences between males and females in the human appears to have its roots in early embryogenesis and is not only caused by sex chromosomes but also by long-term sex-specific hormonal programming due to presence or absence of androgen during the time of external genital masculinization. Genetic sex and the androgen milieu during embryonic development might therefore independently modulate functional traits, phenotype and diseases associated with male or female gender as well as with DSD conditions. PMID:19570224
Gokulakrishnan, Kuppan; Ranjani, Harish; Weber, Mary Beth; Pandey, Gautam Kumar; Anjana, Ranjit Mohan; Balasubramanyam, Muthuswamy; Prabhakaran, Dorairaj; Tandon, Nikhil; Narayan, K M; Mohan, Viswanathan
2017-09-01
While lifestyle modification is known to offer several metabolic benefits, there is paucity of comprehensive data on changes in biomarkers of adiposity, inflammation as well as gut hormones. We investigated these biomarkers in overweight/obese individuals with prediabetes randomized to either 4 months of a lifestyle improvement program or standard care and followed them up for a year. Participants [standard care and intervention arm (n = 75 each)] were randomly selected from the Diabetes Community Lifestyle Improvement Program trial. Glycemic and lipid control and anthropometric measurements were assessed by standard protocols. Adipokines, inflammatory markers and gut hormones were measured using multiplex and standard ELISA kits. Along with modest benefits in primary outcomes (glycemic and lipid control and weight reduction), participants in the intervention group showed significant reductions (p < 0.001) in plasma levels of leptin (17.6%), TNF-α (35%), IL-6 (33.3%), MCP-1 (22.3%) and PYY (28.3%) and increased levels of adiponectin (33.1%) and ghrelin (23.6%) at the end of 4 months of lifestyle intervention. The changes were independent of weight and persisted even at 1 year of follow-up. In contrast, participants from the standard care arm did not show any statistically significant improvements on the above parameters. Participants who underwent an intensive lifestyle improvement program showed metabolic benefits as well as favorable beneficial changes in systemic levels of adipokines, cytokines and gut hormones, not only during the intervention period, but also during 12-month follow-up period.
Yuksel, Nese; Treseng, Laetitia; Malik, Bushra; Ogbogu, Ubaka
2017-10-01
To evaluate the quality of information presented and claims made on websites offering bioidentical hormone therapy (BHT) products or services. A quantitative content analysis was completed on 100 websites promoting or offering BHT products or services. Websites were identified through Google search engine from September to October 2013. Search terms included "bioidentical hormone therapy" or "bioidentical progesterone," accompanied by "purchase or buy," "service," or "doctors." The Brief DISCERN instrument was used to determine the quality of the health information. Websites were from Canada (59%), United States (38%), and other countries (3%). Almost half of the websites originated from medical clinics (47%), and healthcare professionals offering BHT services included physicians (50%), pharmacists (19%), and naturopaths (16%). Majority of websites promoted BHT as custom-compounded formulations (62%), with only 27% indicating that BHT is also commercially available. Websites overall claimed that BHT had less risk compared with conventional hormone therapy (62%). BHT was described as having less breast cancer risk (40%), whereas over a quarter of websites described BHT as "protective" for breast cancer. Websites mainly targeted women (99%), with males mentioned in 62% of websites. Product descriptors used to promote BHT included individualization (77%), natural (70%), hormone imbalance (56%), and antiaging (50%). The mean Brief DISCERN score was 15, indicating lower quality of information. Claims made about BHT on the internet are misleading and not consistent with current professional organizations' recommendations. Understanding how BHT may be promoted on the internet can help healthcare professionals when educating patients.
Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.
2015-01-01
Background Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. Objectives We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. Methods We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. Discussion In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. Conclusions We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs. Citation Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. 2016. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264; http://dx.doi.org/10.1289/ehp.1409535 PMID:26311476
Strahm, Emmanuel; Marques-Vidal, Pedro; Pralong, François; Dvorak, Jiri; Saugy, Martial; Baume, Norbert
2011-12-10
Since it is established that human chorionic gonadotropin (hCG) affects testosterone production and release in the human body, the use of this hormone as a performance enhancing drug has been prohibited by the World Anti-Doping Agency. Nowadays, the only validated biomarker of a hCG doping is its direct quantification in urine. However, this specific parameter is subjected to large inter-individual variability and its determination is directly dependent on the reliability of hCG immunoassays used. In order to counteract these weaknesses, new biomarkers need to be evidenced. To address this issue, a pilot clinical study was performed on 10 volunteers submitted to 3 subsequent hCG injections. Blood and urine samples were collected during two weeks in order to follow the physiological effects on related compounds such as the steroid profile or hormones involved in the hypothalamo-pituitary axis. The hCG pharmacokinetic observed in all subjects was, as expected, prone to important inter-individual variations. Using ROC plots, level of testosterone and testosterone on luteinizing hormone ratio in both blood and urine were found to be the most relevant biomarker of a hCG abuse, regardless of inter-individual variations. In conclusion, this study showed the crucial importance of reliable quantification methods to assess low differences in hormonal patterns. In regard to these results and to anti-doping requirements and constraints, blood together with urine matrix should be included in the anti-doping testing program. Together with a longitudinal follow-up approach it could constitute a new strategy to detect a hCG abuse, applicable to further forms of steroid or other forbidden drug manipulation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Comparative endocrinology in the 21st century
Denver, R.J.; Hopkins, P.M.; McCormick, S.D.; Propper, C.R.; Riddiford, L.; Sower, S.A.; Wingfield, J.C.
2009-01-01
Hormones coordinate developmental, physiological, and behavioral processes within and between all living organisms. They orchestrate and shape organogenesis from early in development, regulate the acquisition, assimilation, and utilization of nutrients to support growth and metabolism, control gamete production and sexual behavior, mediate organismal responses to environmental change, and allow for communication of information between organisms. Genes that code for hormones; the enzymes that synthesize, metabolize, and transport hormones; and hormone receptors are important targets for natural selection, and variation in their expression and function is a major driving force for the evolution of morphology and life history. Hormones coordinate physiology and behavior of populations of organisms, and thus play key roles in determining the structure of populations, communities, and ecosystems. The field of endocrinology is concerned with the study of hormones and their actions. This field is rooted in the comparative study of hormones in diverse species, which has provided the foundation for the modern fields of evolutionary, environmental, and biomedical endocrinology. Comparative endocrinologists work at the cutting edge of the life sciences. They identify new hormones, hormone receptors and mechanisms of hormone action applicable to diverse species, including humans; study the impact of habitat destruction, pollution, and climatic change on populations of organisms; establish novel model systems for studying hormones and their functions; and develop new genetic strains and husbandry practices for efficient production of animal protein. While the model system approach has dominated biomedical research in recent years, and has provided extraordinary insight into many basic cellular and molecular processes, this approach is limited to investigating a small minority of organisms. Animals exhibit tremendous diversity in form and function, life-history strategies, and responses to the environment. A major challenge for life scientists in the 21st century is to understand how a changing environment impacts all life on earth. A full understanding of the capabilities of organisms to respond to environmental variation, and the resilience of organisms challenged by environmental changes and extremes, is necessary for understanding the impact of pollution and climatic change on the viability of populations. Comparative endocrinologists have a key role to play in these efforts.
[Neuronal and hormonal regulatory mechanisms of tears production and secretion].
Mrugacz, Małgorzata; Zywalewska, Nella; Bakunowicz-Lazarczyk, Alina
2005-01-01
The ocular surface, tear film, lacrimal glands act as a functional unit to preserve the quality of the refractive surface of the eye, and to resist injury and protect the eye against bodily and environmental conditions. Homeostasis of this functional unit involves neuronal and hormonal regulatory mechanisms. The eye appears to be a target organ for sex hormones particulary the androgen, as they modulate the immune system and trophic functions of the lacrimal and Meibomian glands.
Effect of rejuvenation hormones on spermatogenesis.
Moss, Jared L; Crosnoe, Lindsey E; Kim, Edward D
2013-06-01
To review the current literature for the effect of hormones used in rejuvenation clinics on the maintenance of spermatogenesis. Review of published literature. Not applicable. Men who have undergone exogenous testosterone (T) and/or anabolic androgenic steroid (AAS) therapies. None. Semen analysis, pregnancy outcomes, and time to recovery of spermatogenesis. Exogenous testosterone and anabolic androgenic steroids suppress intratesticular testosterone production, which may lead to azoospermia or severe oligozoospermia. Therapies that protect spermatogenesis involve human chorionic gonadotropin (hCG) therapy and selective estrogen receptor modulators (SERMs). The studies examining the effect of human growth hormone (HGH) on infertile men are uncontrolled and unconvincing, but they do not appear to negatively impact spermatogenesis. At present, routine use of aromatase inhibitors is not recommended based on a lack of long-term data. The use of hormones for rejuvenation is increasing with the aging of the Baby Boomer population. Men desiring children at a later age may be unaware of the side-effect profile of hormones used at rejuvenation centers. Testosterone and anabolic androgenic steroids have well-established detrimental effects on spermatogenesis, but recovery may be possible with cessation. Clomiphene citrate, human growth hormone (HGH)/insulin-like growth factor-1 (IGF-1), human chorionic gonadotropin (hCG), and aromatase inhibitors do not appear to have significant negative effects on sperm production, but quality data are lacking. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Role of maternal thyroid hormones in the developing neocortex and during human evolution
Stenzel, Denise; Huttner, Wieland B.
2013-01-01
The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187
ABSTRACT Polybromindated diphenyl ethers (PBDEs) are a class of polyhalogenated aromatic compounds commercially used as fire retardants in consumer products. These compounds have been shown to decrease thyroid hormone concentrations in rodents after acute exposures. Based on t...
Thyroid hormone transporters in health and disease: advances in thyroid hormone deiodination.
Köhrle, Josef
2007-06-01
Thyroid hormone metabolism by the three deiodinase selenoproteins -- DIO1, DIO2, and DIO3 -- regulates the local availability of various iodothyronine metabolites and thus mediates their effects on gene expression, thermoregulation, energy metabolism, and many key reactions during the development and maintenance of an adult organism. Circulating serum levels of thyroid hormone and thyroid-stimulating hormone, used as a combined indicator of thyroid hormone status, reflect a composite picture of: thyroid secretion; tissue-specific production of T(3) by DIO1 and DIO2 activity, which both contribute to circulating levels of T(3); and degradation of the prohormone T4, of the thyromimetically active T(3), of the inactive rT(3), of other iodothyronines metabolites with a lower iodine content and of thyroid hormone conjugates. Degradation reactions are catalyzed by either DIO1 or DIO3. Aberrant expression of individual deiodinases in disease, single nucleotide polymorphisms in their genes, and novel regulators of DIO gene expression (such as bile acids) provide a more complex picture of the fine tuning and the adaptation of systemic and local bioavailability of thyroid hormones.
Perrett, Rebecca M.; McArdle, Craig A.
2013-01-01
Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian reproductive function in both males and females. It acts via G-protein coupled receptors on gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteinizing hormone and follicle-stimulating hormone. These receptors couple primarily via G-proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl cyclases that generate cGMP. Here we provide an overview of these pathways. We emphasize mechanisms underpinning pulsatile hormone signaling and the possible interplay of GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide signaling. PMID:24312080
New approaches to thyroid hormones and purinergic signaling.
Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar
2013-01-01
It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.
New Approaches to Thyroid Hormones and Purinergic Signaling
Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar
2013-01-01
It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling. PMID:23956925
A study of cell electrophoresis as a means of purifying growth hormone secreting cells
NASA Technical Reports Server (NTRS)
Plank, Lindsay D.; Hymer, W. C.; Kunze, M. Elaine; Marks, Gary M.; Lanham, J. Wayne
1983-01-01
Growth hormone secreting cells of the rat anterior pituitary are heavily laden with granules of growth hormone and can be partialy purified on the basis of their resulting high density. Two methods of preparative cell electrophoresis were investigated as methods of enhancing the purification of growth hormone producing cells: density gradient electrophoresis and continuous flow electrophoresis. Both methods provided a two- to four-fold enrichment in growth hormone production per cell relative to that achieved by previous methods. Measurements of electrophoretic mobilities by two analytical methods, microscopic electrophoresis and laser-tracking electrophoresis, revealed very little distinction between unpurified anterior pituitary cell suspensions and somatotroph-enriched cell suspensions. Predictions calculated on the basis of analytical electrophoretic data are consistent with the hypothesis that sedimentation plays a significant role in both types of preparative electrophoresis and the electrophoretic mobility of the growth hormone secreting subpopulation of cells remains unknown.
Meler, Erika N; Scott-Moncrieff, J Catharine; Peter, Augustine T; Bennett, Sara; Ramos-Vara, Jose; Salisbury, S Kathleen; Naughton, James F
2011-06-01
A 15-year-old, spayed female domestic shorthair cat was evaluated for 1-year duration of cyclic intermittent estrous behavior. Diagnostic testing performed before referral, including baseline progesterone concentration, human chorionic gonadotropin (hCG) hormone stimulation test and surgical exploratory laparotomy, had remained inconclusive for a remnant ovary. Evaluation of sex hormones before and after adrenocorticotropic hormone (ACTH) administration revealed increased basal concentrations of androstenedione, estradiol, progesterone, and 17α-hydroxyprogesterone and normal ACTH-stimulated hormone concentrations. Enlargement of the right adrenal gland was identified by abdominal ultrasound. The cat underwent an adrenalectomy and histopathology of the excised adrenal gland was consistent with an adrenocortical carcinoma. Clinical signs resolved immediately following surgery, and most hormone concentrations declined to within or below the reference interval (RI) by 2 months after surgery. Copyright © 2011 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.
A Hormonally Active Malignant Struma Ovarii
Lara, Carolina; Salame, Latife; Padilla-Longoria, Rafael
2016-01-01
Struma ovarii is a rare monodermal variant of ovarian teratoma that contains at least 50% thyroid tissue. Less than 8% of struma ovarii cases present with clinical and biochemical evidence of thyrotoxicosis due to ectopic production of thyroid hormone and only 5% undergo malignant transformation into a papillary thyroid carcinoma. Only isolated cases of hormonally active papillary thyroid carcinoma developing within a struma ovarii have been reported in the literature. We report the case of a 36-year-old woman who presented with clinical signs and symptoms of hyperthyroidism as well as a left adnexal mass, which proved to be a thyroid hormone-producing, malignant struma ovarii. PMID:27882257
Negative regulation of parathyroid hormone-related protein expression by steroid hormones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko
Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here wemore » studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.« less
Graves' disease: diagnostic and therapeutic challenges (multimedia activity).
Kahaly, George J; Grebe, Stefan K G; Lupo, Mark A; McDonald, Nicole; Sipos, Jennifer A
2011-06-01
Graves' disease is the most common cause of hyperthyroidism in the United States. Graves' disease occurs more often in women with a female:male ratio of 5:1 and a population prevalence of 1% to 2%. A genetic determinant to the susceptibility to Graves' disease is suspected because of familial clustering of the disease, a high sibling recurrence risk, the familial occurrence of thyroid autoantibodies, and the 30% concordance in disease status between identical twins. Graves' disease is an autoimmune thyroid disorder characterized by the infiltration of immune effector cells and thyroid antigen-specific T cells into the thyroid and thyroid-stimulating hormone receptor expressing tissues, with the production of autoantibodies to well-defined thyroidal antigens, such as thyroid peroxidase, thyroglobulin, and the thyroid-stimulating hormone receptor. The thyroid-stimulating hormone receptor is central to the regulation of thyroid growth and function. Stimulatory autoantibodies in Graves' disease activate the thyroid-stimulating hormone receptor leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Below-normal levels of baseline serum thyroid-stimulating hormone receptor, normal to elevated serum levels of T4, elevated serum levels of T3 and thyroid-stimulating hormone receptor autoantibodies, and a diffusely enlarged, heterogeneous, hypervascular (increased Doppler flow) thyroid gland confirm diagnosis of Graves' disease (available at: http://supplements.amjmed.com/2010/hyperthyroid/faculty.php). This Resource Center is also available through the website of The American Journal of Medicine (www.amjmed.com). Click on the “Thyroid/Graves' Disease” link in the “Resource Centers” section, found on the right side of the Journal homepage. Copyright © 2011 Elsevier Inc. All rights reserved.
Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W
2006-05-12
The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.
Hormones in Dairy Foods and Their Impact on Public Health - A Narrative Review Article
MALEKINEJAD, Hassan; REZABAKHSH, Aysa
2015-01-01
Background: The presence of hormones in milk and dairy foods was discussed decades ago but rather more concerns attended to that with respect to finding hormones as biomarkers in milk for diseases and pregnancy diagnosis. Moreover, considerable amount of studies demonstrated that existing of hormones in humans and animals milk are essential for infants growing and immunity. During the last couple of years, increasing body of evidence are indicating another property of hormones in dairy products as possible impact on human health including the role of some estrogens and insulin-like growth factor-1 in initiation and provoking of breast, prostate and endometrial tumours. Methods: Data was gathered from the published articles in database such as MEDLINE, science direct, Google scholar and web of science. We put no limitation on date of published date. Moreover, our own published and conducted methods and results also are presented. In this review we concentrated on several aspects of presence of hormones in dairy foods with especial emphasize on cow’s milk as a major source of consuming milk for humans especially for children. Results: The collected data from other researchers and our own data are indicating that the presence of steroid hormones in dairy products could be counted as an important risk factor for various cancers in humans. Conclusion: Our gathered data in this review paper may suggest more sophisticate analytical detection methods for oestrogens determination and also could be considered as a remarkable concern for consumers, producers and public health authorities. PMID:26258087
Abbasihormozi, Shima; Shahverdi, Abdolhossein; Kouhkan, Azam; Cheraghi, Javad; Akhlaghi, Ali Asghar; Kheimeh, Abolfazl
2013-06-01
Leptin, an adipose tissue-derived hormone, plays an important role in energy homeostasis and metabolism, and in the neuroendocrine and reproductive systems. The function of leptin in male reproduction is unclear; however, it is known to affect sex hormones, sperm motility and its parameters. Leptin induces mitochondrial superoxide production in aortic endothelia and may increase oxidative stress and abnormal sperm production in leptin-treated rats. This study aims to evaluate whether exogenous leptin affects sperm parameters, hormone profiles, and the production of reactive oxygen species (ROS) in adult rats. A total of 65 Sprague-Dawley rats were divided into three treated groups and a control group. Treated rats received daily intraperitoneal injections of 5, 10 and 30 μg/kg of leptin administered for a duration of 7, 15, and 42 days. Control rats were given 0.1 mL of 0.9 % normal saline for the same period. One day after final drug administration, we evaluated serum specimens for follicle-stimulating hormone (FSH), leutinizing hormone (LH), free testosterone (FT), and total testosterone (TT) levels. Samples from the rat epididymis were also evaluated for sperm parameters and motility characteristics by a Computer-Aided Semen Analysis (CASA) system. Samples were treated with 2',7'-dichlorofluorescein-diacetate (DCFH-DA) and analyzed using flow cytometry and TUNEL to determine the impact of leptin administration on sperm DNA fragmentation. According to CASA, significant differences in all sperm parameters in leptin-treated rats and their age-matched controls were detected, except for TM, ALH and BCF. Serum FSH and LH levels were significantly higher in rats that received 10 and 30 μg/kg of leptin compared to those treated with 5 μg/kg of leptin in the same group and control rats (P < 0.05). ROS and sperm DNA fragmentation was significantly higher in rats injected with 10 and 30 μg/kg of leptin for 7 and 15 days compared with rats treated with 5 μg/kg of leptin and the control group (P < 0.05) for the same time period. However, at day 42 of treatment, ROS and sperm DNA fragmentation levels significantly decreased in all groups (P < 0.05). According to these results, leptin can possibly affect male infertility by ROS induction or hormone profile modulation.
Steinmaus, Craig; Pearl, Michelle; Kharrazi, Martin; Blount, Benjamin C; Miller, Mark D; Pearce, Elizabeth N; Valentin-Blasini, Liza; DeLorenze, Gerald; Hoofnagle, Andrew N; Liaw, Jane
2016-06-01
Findings from national surveys suggest that everyone in the United States is exposed to perchlorate. At high doses, perchlorate, thiocyanate, and nitrate inhibit iodide uptake into the thyroid and decrease thyroid hormone production. Small changes in thyroid hormones during pregnancy, including changes within normal reference ranges, have been linked to cognitive function declines in the offspring. We evaluated the potential effects of low environmental exposures to perchlorate on thyroid function. Serum thyroid hormones and anti-thyroid antibodies and urinary perchlorate, thiocyanate, nitrate, and iodide concentrations were measured in 1,880 pregnant women from San Diego County, California, during 2000-2003, a period when much of the area's water supply was contaminated from an industrial plant with perchlorate at levels near the 2007 California regulatory standard of 6 μg/L. Linear regression was used to evaluate associations between urinary perchlorate and serum thyroid hormone concentrations in models adjusted for urinary creatinine and thiocyanate, maternal age and education, ethnicity, and gestational age at serum collection. The median urinary perchlorate concentration was 6.5 μg/L, about two times higher than in the general U.S. Adjusted associations were identified between increasing log10 perchlorate and decreasing total thyroxine (T4) [regression coefficient (β) = -0.70; 95% CI: -1.06, -0.34], decreasing free thyroxine (fT4) (β = -0.053; 95% CI: -0.092, -0.013), and increasing log10 thyroid-stimulating hormone (β = 0.071; 95% CI: 0.008, 0.133). These results suggest that environmental perchlorate exposures may affect thyroid hormone production during pregnancy. This could have implications for public health given widespread perchlorate exposure and the importance of thyroid hormone in fetal neurodevelopment. Steinmaus C, Pearl M, Kharrazi M, Blount BC, Miller MD, Pearce EN, Valentin-Blasini L, DeLorenze G, Hoofnagle AN, Liaw J. 2016. Thyroid hormones and moderate exposure to perchlorate during pregnancy in women in Southern California. Environ Health Perspect 124:861-867; http://dx.doi.org/10.1289/ehp.1409614.
Determination of sex origin of meat and meat products on the DNA basis: a review.
Gokulakrishnan, Palanisamy; Kumar, Rajiv Ranjan; Sharma, Brahm Deo; Mendiratta, Sanjod Kumar; Malav, Omprakash; Sharma, Deepak
2015-01-01
Sex determination of domestic animal's meat is of potential value in meat authentication and quality control studies. Methods aiming at determining the sex origin of meat may be based either on the analysis of hormone or on the analysis of nucleic acids. At the present time, sex determination of meat and meat products based on hormone analysis employ gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS), and enzyme-linked immunosorbent assay (ELISA). Most of the hormone-based methods proved to be highly specific and sensitive but were not performed on a regular basis for meat sexing due to the technical limitations or the expensive equipments required. On the other hand, the most common methodology to determine the sex of meat is unquestionably traditional polymerase chain reaction (PCR) that involves gel electrophoresis of DNA amplicons. This review is intended to provide an overview of the DNA-based methods for sex determination of meat and meat products.
Testis composition and steroidogenic protein abundance in GnRH-II receptor knockdown boars
USDA-ARS?s Scientific Manuscript database
Testosterone, secreted from Leydig cells, is classically stimulated by luteinizing hormone (LH) from the anterior pituitary gland, but an LH-independent mechanism of testosterone production has also been identified in the boar. Gonadotropin-releasing hormone II (GnRH-II) and its receptor (GnRHR-II) ...
Thyroid hormone (TH) disrupting compounds interfere with both thyroidal and extrathyroidal mechanisms to decrease circulating thyroxine (T4). This research tested the hypothesis that serum T4 concentrations of rodents exposed to a mixture of both TH synthesis inhibitors (pesticid...
HPLC-ICP/MS Analysis of Thyroid Hormone and Related Iodinated Compounds in Tissues and Media
Quantifying thyroid hormone (TH) and the synthetic precursors and metabolic products of TH is important for developing models of the hypothalamic-pituitary-thyroid (HPT) axis as well as for understanding the effects of xenobiotics on HPT axis function. In this study, the developm...
Synthesis and chemical reactions of the steroidal hormone 17α-methyltestosterone.
El-Desoky, El-Sayed Ibrahim; Reyad, Mahmoud; Afsah, Elsayed Mohammed; Dawidar, Abdel-Aziz Mahmoud
2016-01-01
Structural modifications of natural products with complex structures like steroids require great synthetic effort. A review of literature is presented on the chemistry of the steroidal hormone 17α-methyltestosterone that is approved by Food and Drug Administration (FDA) in the United States as an androgen for estrogen-androgen hormone replacement therapy treatment. The analog also offers special possibilities for the prevention/treatment of hormone-sensitive cancers. The testosterone skeleton has important functionalities in the molecule that can act as a carbonyl component, an active methylene compound, α,β-unsaturated enone and tertiary hydroxyl group in various chemical reactions to access stereoisomeric steroidal compounds with potent activity. In addition, microbiological methods of synthesis and transformation of this hormone are presented. Copyright © 2015 Elsevier Inc. All rights reserved.
Mechanisms for pituitary tumorigenesis: the plastic pituitary
Melmed, Shlomo
2003-01-01
The anterior pituitary gland integrates the repertoire of hormonal signals controlling thyroid, adrenal, reproductive, and growth functions. The gland responds to complex central and peripheral signals by trophic hormone secretion and by undergoing reversible plastic changes in cell growth leading to hyperplasia, involution, or benign adenomas arising from functional pituitary cells. Discussed herein are the mechanisms underlying hereditary pituitary hypoplasia, reversible pituitary hyperplasia, excess hormone production, and tumor initiation and promotion associated with normal and abnormal pituitary differentiation in health and disease. PMID:14660734
Struwe, Ellen; Berzl, Gabriele M; Schild, Ralf L; Dötsch, Jörg
2009-01-01
Fetal growth restriction is associated with an increased risk for metabolic and cardiovascular disease in later life. To further elucidate mechanisms that might be involved in the process of prenatal programming, we measured the adipokines leptin, resistin, and adiponectin and the GH-releasing hormone ghrelin in the placenta of small for gestational age (SGA) neonates. The control group included 24 placentas of appropriate for gestational age (AGA) newborns, in the study group were 16 placentas of SGA neonates. Gene expression of leptin, resistin, adiponectin, and ghrelin was examined. For hormones showing alterations in gene regulation placental protein expression was measured by Western blot. Placental mRNA expression of leptin was significantly increased in SGA placentas (p=0.0035, related to beta-actin). Protein concentration was increased, as well. There were no differences in placental resistin, adiponectin, or ghrelin gene expressions between SGA neonates and controls. Leptin was the only hormone to demonstrate a significant inverse correlation with birth weight (r=-0.44, p=0.01). Adiponectin correlated significantly with leptin (r=0.53, p=0.0023) and ghrelin (r=0.50, p=0.0045). Placental leptin gene expression and protein concentration showed the expected increase in the SGA group. Leptin was inversely correlated with birth weight. Positive correlation of adiponectin with leptin and ghrelin expression suggests an interaction between these hormones in the placenta. However, the unchanged expression of resistin, adiponectin, and ghrelin in SGA placentas and the absence of correlation with birth weight cast doubt whether these hormones produced in the placenta play a key role in fetal programming.
Genetic engineering of woody plants: current and future targets in a stressful environment.
Osakabe, Yuriko; Kajita, Shinya; Osakabe, Keishi
2011-06-01
Abiotic stress is a major factor in limiting plant growth and productivity. Environmental degradation, such as drought and salinity stresses, will become more severe and widespread in the world. To overcome severe environmental stress, plant biotechnologies, such as genetic engineering in woody plants, need to be implemented. The adaptation of plants to environmental stress is controlled by cascades of molecular networks including cross-talk with other stress signaling mechanisms. The present review focuses on recent studies concerning genetic engineering in woody plants for the improvement of the abiotic stress responses. Furthermore, it highlights the recent advances in the understanding of molecular responses to stress. The review also summarizes the basis of a molecular mechanism for cell wall biosynthesis and the plant hormone responses to regulate tree growth and biomass in woody plants. This would facilitate better understanding of the control programs of biomass production under stressful conditions. Copyright © Physiologia Plantarum 2011.
Woodmansee, W W; Gordon, D F; Dowding, J M; Stolz, B; Lloyd, R V; James, R A; Wood, W M; Ridgway, E C
2000-07-01
Thyroid hormone inhibits thyrotropin (TSH) production and thyrotrope growth. Somatostatin has been implicated as a synergistic factor in the inhibition of thyrotrope function. We have previously shown that pharmacological doses of thyroid hormone (levothyroxine [LT4]) inhibit growth of murine TtT-97 thyrotropic tumors in association with upregulation of somatostatin receptor type 5 (sst5) mRNA and somatostatin receptor binding. In the current study, we examined the effect of physiological thyroid hormone replacement alone or in combination with the long-acting somatostatin analogue, Sandostatin LAR, on thyrotropic tumor growth, thyrotropin growth factor-beta (TSH-beta), and sst5 mRNA expression, as well as somatostatin receptor binding sites. Physiological LT4 replacement therapy resulted in tumor shrinkage in association with increased sst5 mRNA levels, reduced TSH-beta mRNA levels and enhanced somatostatin receptor binding. Sandostatin LAR alone had no effect on any parameter measured. However, Sandostatin LAR combined with LT4 synergistically inhibited TSH-beta mRNA production and reduced final tumor weights to a greater degree. In this paradigm, Sandostatin LAR required a euthyroid status to alter thyrotrope parameters. These data suggest an important interaction between the somatostatinergic system and thyroid hormone in the regulation of thyrotrope cell structure and function.
James-Todd, Tamarra; Senie, Ruby; Terry, Mary Beth
2012-06-01
Estrogen and endocrine-disrupting chemicals (EDCs) that are associated with several health outcomes have been found in hair products. We evaluated the proportion, frequency, duration, and content of hair products in a racially/ethnically diverse population. We recruited n = 301 African-American, African-Caribbean, Hispanic, and white women from the New York metropolitan area. We collected data on hair oil, lotion, leave-in conditioner, root stimulator, perm, and other product use. Estrogen and EDC information was collected from commonly used hair products' labels (used by >3% of population). African-American and African-Caribbean women were more likely to use all types of hair products compared to white women (P < 0.0001). Among hair product users, frequency varied significantly by race/ethnicity, but not duration. More African-Americans (49.4%) and African-Caribbeans (26.4%) used products containing placenta or EDCs compared to whites (7.7%). African-American and African-Caribbean women were more likely to be exposed to hormonally-active chemicals in hair products.
NASA Technical Reports Server (NTRS)
Partridge, N. C.; Bloch, S. R.; Pearman, A. T.
1994-01-01
Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.
Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke
2015-11-10
The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.
Chen, Caiyan; Zou, Junhuang; Zhang, Shuying; Zaitlin, David; Zhu, Lihuang
2009-08-01
Because plants are sessile organisms, the ability to adapt to a wide range of environmental conditions is critical for their survival. As a consequence, plants use hormones to regulate growth, mitigate biotic and abiotic stresses, and to communicate with other organisms. Many plant hormones function pleiotropically in vivo, and often work in tandem with other hormones that are chemically distinct. A newly-defined class of plant hormones, the strigolactones, cooperate with auxins and cytokinins to control shoot branching and the outgrowth of lateral buds. Strigolactones were originally identified as compounds that stimulated the germination of parasitic plant seeds, and were also demonstrated to induce hyphal branching in arbuscular mycorrhizal (AM) fungi. AM fungi form symbioses with higher plant roots and mainly facilitate the absorption of phosphate from the soil. Conforming to the classical definition of a plant hormone, strigolactones are produced in the roots and translocated to the shoots where they inhibit shoot outgrowth and branching. The biosynthesis of this class of compounds is regulated by soil nutrient availability, i.e. the plant will increase its production of strigolactones when the soil phosphate concentration is limited, and decrease production when phosphates are in ample supply. Strigolactones that affect plant shoot branching, AM fungal hyphal branching, and seed germination in parasitic plants facilitate chemical synthesis of similar compounds to control these and other biological processes by exogenous application.
Carrasquilla, Germán D; Berglund, Anita; Gigante, Bruna; Landgren, Britt-Marie; de Faire, Ulf; Hallqvist, Johan; Leander, Karin
2015-06-01
This study aims to assess whether the timing of menopausal hormone therapy initiation in relation to onset of menopause and hormone therapy duration is associated with myocardial infarction risk. This study was based on the Stockholm Heart Epidemiology Program, a population-based case-control study including 347 postmenopausal women who had experienced a nonfatal myocardial infarction and 499 female control individuals matched for age and residential area. Odds ratios (with 95% CIs) for myocardial infarction were calculated using logistic regression. Early initiation of hormone therapy (within 10 y of onset of menopause or before age 60 y), compared with never use, was associated with an odds ratio of 0.87 (95% CI, 0.58-1.30) after adjustments for lifestyle factors, body mass index, and socioeconomic status. For late initiation of hormone therapy, the corresponding odds ratio was 0.97 (95% CI, 0.53-1.76). For hormone therapy duration of 5 years or more, compared with never use, the adjusted odds ratio was 0.64 (95% CI, 0.35-1.18). For hormone therapy duration of less than 5 years, the odds ratio was 0.97 (95% CI, 0.63-1.48). Neither the timing of hormone therapy initiation nor the duration of therapy is significantly associated with myocardial infarction risk.
The use of testosterone as a male contraceptive.
Amory, J K; Bremner, W J
1998-10-01
Testosterone functions as a contraceptive by suppressing secretion of the pituitary gonadotropins luteinizing hormone and follicle stimulating hormone. Low levels of these hormones decrease endogenous testosterone secretion from the testis and deprive developing sperm of the signals required for normal maturation. Interference with sperm maturation causes a decline in sperm production and can lead to reversible infertility in men, raising the possibility that testosterone could be utilized in a commercially available contraceptive. To this end, testosterone has been studied alone and in combination with either gonadotropin releasing hormone analogues or progestins in efforts to improve its contraceptive efficacy. In this chapter, we will review efforts to use testosterone to create a safe, convenient, efficacious contraceptive method for men.
Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a potent antibacterial and antifungal compound that is widely used in personal care products. Studies testing triclosan exposure in the bullfrog showed altered thyroid hormone homeostasis. More recently, triclosan has been s...
USDA-ARS?s Scientific Manuscript database
A long-unresolved question in the developmental biology of Drosophila melanogaster has been whether methyl farnesoid hormones secreted by the ring gland are necessary for larval maturation and metamorphosis. In this study, we have used RNAi techniques to inhibit 3-Hydroxy-3-Methylglutaryl CoA Reduct...
Sennosides A and B production by hairy roots of Senna alata (L.) Roxb.
Putalun, Waraporn; Pimmeuangkao, Suwat; De-Eknamkul, Wanchai; Tanaka, Hiroyuki; Shoyama, Yukihiro
2006-01-01
Hairy roots of Senna alata transformed with Agrobacterium rhizogenes, strain ATCC 15834 were induced and grown in half-strength Murashige and Skoog (MS) medium. Effects of sucrose contents and hormones on the growth and sennosides A, B production were investigated. Hairy roots cultured on hormone-free half-strength MS medium containing 5% sucrose under dark condition mostly stimulated the growth of hairy roots and increased the content of sennosides A and B yielding (169 +/- 4) and (34 +/- 3) microg g(-1) dry wt, respectively.
Broome, Michael R; Peterson, Mark E; Kemppainen, Robert J; Parker, Valerie J; Richter, Keith P
2015-01-01
To describe findings in dogs with exogenous thyrotoxicosis attributable to consumption of commercially available dog foods or treats containing high concentrations of thyroid hormone. Retrospective and prospective case series. 14 dogs. Medical records were retrospectively searched to identify dogs with exogenous thyrotoxicosis attributable to dietary intake. One case was found, and subsequent cases were identified prospectively. Serum thyroid hormone concentrations were evaluated before and after feeding meat-based products suspected to contain excessive thyroid hormone was discontinued. Scintigraphy was performed to evaluate thyroid tissue in 13 of 14 dogs before and 1 of 13 dogs after discontinuation of suspect foods or treats. Seven samples of 5 commercially available products fed to 6 affected dogs were analyzed for thyroxine concentration; results were subjectively compared with findings for 10 other commercial foods and 6 beef muscle or liver samples. Total serum thyroxine concentrations were high (median, 8.8 μg/dL; range, 4.65 to 17.4 μg/dL) in all dogs at initial evaluation; scintigraphy revealed subjectively decreased thyroid gland radionuclide in 13 of 13 dogs examined. At ≥ 4 weeks after feeding of suspect food or treats was discontinued, total thyroxine concentrations were within the reference range for all dogs and signs associated with thyrotoxicosis, if present, had resolved. Analysis of tested food or treat samples revealed a median thyroxine concentration for suspect products of 1.52 μg of thyroxine/g, whereas that of unrelated commercial foods was 0.38 μg of thyroxine/g. Results indicated that thyrotoxicosis can occur secondary to consumption of meat-based products presumably contaminated by thyroid tissue, and can be reversed by identification and elimination of suspect products from the diet.
Sex differences in the human brain and the impact of sex chromosomes and sex hormones.
Lentini, E; Kasahara, M; Arver, S; Savic, I
2013-10-01
While there has been increasing support for the existence of cerebral sex differences, the mechanisms underlying these differences are unclear. Based on animal data, it has long been believed that sexual differentiation of the brain is primarily linked to organizational effects of fetal testosterone. This view is, however, in question as more recent data show the presence of sex differences before the onset of testosterone production. The present study focuses on the impact that sex chromosomes might have on these differences. Utilizing the inherent differences in sex and X-chromosome dosage among XXY males, XY males, and XX females, comparative voxel-based morphometry was conducted using sex hormones and sex chromosomes as covariates. Sex differences in the cerebellar and precentral gray matter volumes (GMV) were found to be related to X-chromosome dosage, whereas sex differences in the amygdala, the parahippocamus, and the occipital cortex were linked to testosterone levels. An increased number of sex chromosomes was associated with reduced GMV in the amygdala, caudate, and the temporal and insular cortices, with increased parietal GMV and reduced frontotemporal white matter volume. No selective, testosterone independent, effect of the Y-chromosome was detected. Based on these observations, it was hypothesized that programming of the motor cortex and parts of cerebellum is mediated by processes linked to X-escapee genes, which do not have Y-chromosome homologs, and that programming of certain limbic structures involves testosterone and X-chromosome escapee genes with Y-homologs.
Trends in recombinant protein use in animal production.
Gifre, Laia; Arís, Anna; Bach, Àlex; Garcia-Fruitós, Elena
2017-03-04
Recombinant technologies have made possible the production of a broad catalogue of proteins of interest, including those used for animal production. The most widely studied proteins for the animal sector are those with an important role in reproduction, feed efficiency, and health. Nowadays, mammalian cells and fungi are the preferred choice for recombinant production of hormones for reproductive purposes and fibrolytic enzymes to enhance animal performance, respectively. However, the development of low-cost products is a priority, particularly in livestock. The study of cell factories such as yeast and bacteria has notably increased in the last decades to make the new developed reproductive hormones and fibrolytic enzymes a real alternative to the marketed ones. Important efforts have also been invested to developing new recombinant strategies for prevention and therapy, including passive immunization and modulation of the immune system. This offers the possibility to reduce the use of antibiotics by controlling physiological processes and improve the efficacy of preventing infections. Thus, nowadays different recombinant fibrolytic enzymes, hormones, and therapeutic molecules with optimized properties have been successfully produced through cost-effective processes using microbial cell factories. However, despite the important achievements for reducing protein production expenses, alternative strategies to further reduce these costs are still required. In this context, it is necessary to make a giant leap towards the use of novel strategies, such as nanotechnology, that combined with recombinant technology would make recombinant molecules affordable for animal industry.
Birdsong and the neural production of steroids
Remage-Healey, Luke; London, Sarah E.; Schinger, Barney A.
2009-01-01
The forebrain circuits involved in singing and audition (the ‘song system’) in songbirds exhibit a remarkable capacity to synthesize and respond to steroid hormones. This review considers how local brain steroid production impacts the development, sexual differentiation, and activity of song system circuitry. The songbird forebrain contains all of the enzymes necessary for the de novo synthesis of steroids - including neuroestrogens - from cholesterol. Steroid production enzymes are found in neuronal cell bodies, but they are also expressed in pre-synaptic terminals in the song system, indicating a novel mode of brain steroid delivery to local circuits. The song system expresses nuclear hormone receptors, consistent with local action of brain-derived steroids. Local steroid production also occurs in brain regions that do not express nuclear hormone receptors, suggesting a non-classical mode-of-action. Recent evidence indicates that local steroid levels can change rapidly within the forebrain, in a manner similar to traditional neuromodulators. Lastly, we consider growing evidence for modulatory interactions between brain-derived steroids and neurotransmitter/neuropeptide networks within the song system. Songbirds have therefore emerged as a rich and powerful model system to explore the neural and neurochemical regulation of social behavior. PMID:19589382
Recombinant follicle-stimulating hormone: new biotechnology for infertility.
Prevost, R R
1998-01-01
The frequency of infertility in developed countries is approximately 8-10%. New drugs are available for assisted reproduction techniques. Two recombinant follicle-stimulating hormone (FSH) products, follitropin-beta (Follistim in the United States, Puregon in Europe) and follitropin-alpha (Gonal-F), join compounds derived through transfecting nonhuman cell lines with genetic material capable of replicating identical amino acid sequences to human compounds. The cell line used for recombinant (r)-FSH production is the Chinese hamster ovary (CHO). Previously, the only agents that showed benefit in controlled ovulatory stimulation were derived from the urine of menopausal women. Those compounds contain additional substances, such as urinary proteins and various amounts of luteininzing hormone. The amino acid sequence of r-FSH is identical to that of human FSH, but the two recombinant products exist in many different isoforms and differ from each other and from human FSH due to varied carbohydrate side chains. Due to variation in the carbohydrate side chains, follitropin-beta in solution has a higher pH than urine-derived FSH, which enhances receptor affinity and therefore is a greater inducer of folliculogenesis. Follitropin-beta does not cause endogenous production of anti-CHO or anti-FSH antibodies, and is well tolerated.
Sultan, Suandi Pratama; Kitani, Shigeru; Miyamoto, Kiyoko T; Iguchi, Hiroyuki; Atago, Tokitaka; Ikeda, Haruo; Nihira, Takuya
2016-11-01
Streptomyces hormones, sometimes called as autoregulators, are important signaling molecules to trigger secondary metabolism across many Streptomyces species. We recently identified a butenolide-type autoregulator (termed avenolide) as a new class of Streptomyces hormone from Streptomyces avermitilis that produces important anthelmintic agent avermectin. Avenolide triggers the production of avermectin with minimum effective concentration of nanomolar. Here, we describe the characterization of avaR1 encoding an avenolide receptor in the regulation of avermectin production and avenolide biosynthesis. The disruption of avaR1 resulted in transcriptional derepression of avenolide biosynthetic gene with an increase in avenolide production, with no change in the avermectin production profile. Moreover, the avaR1 mutant showed increased transcription of avaR1. Together with clear DNA-binding capacity of AvaR1 toward avaR1 upstream region, it suggests that AvaR1 negatively controls the expression of avaR1 through the direct binding to the promoter region of avaR1. These findings revealed that the avenolide receptor AvaR1 functions as a transcriptional repressor for avenolide biosynthesis and its own synthesis.
27 CFR 21.40 - Formula No. 12-A.
Code of Federal Regulations, 2012 CFR
2012-04-01
... products, vitamins, hormones, and yeasts. 343.Processing antibiotics and vaccines. 344.Processing medicinal... medicinal chemicals. 579.Other chemicals. (3) Miscellaneous uses: 812.Product development and pilot plant...
27 CFR 21.40 - Formula No. 12-A.
Code of Federal Regulations, 2013 CFR
2013-04-01
... products, vitamins, hormones, and yeasts. 343.Processing antibiotics and vaccines. 344.Processing medicinal... medicinal chemicals. 579.Other chemicals. (3) Miscellaneous uses: 812.Product development and pilot plant...
27 CFR 21.40 - Formula No. 12-A.
Code of Federal Regulations, 2014 CFR
2014-04-01
... products, vitamins, hormones, and yeasts. 343.Processing antibiotics and vaccines. 344.Processing medicinal... medicinal chemicals. 579.Other chemicals. (3) Miscellaneous uses: 812.Product development and pilot plant...
27 CFR 21.33 - Formula No. 2-B.
Code of Federal Regulations, 2012 CFR
2012-04-01
... crude drugs. 342.Processing glandular products, vitamins, hormones, and yeasts. 343.Processing.... (3) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). (c) Conditions...
27 CFR 21.33 - Formula No. 2-B.
Code of Federal Regulations, 2011 CFR
2011-04-01
... crude drugs. 342.Processing glandular products, vitamins, hormones, and yeasts. 343.Processing.... (3) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). (c) Conditions...
27 CFR 21.33 - Formula No. 2-B.
Code of Federal Regulations, 2013 CFR
2013-04-01
... crude drugs. 342.Processing glandular products, vitamins, hormones, and yeasts. 343.Processing.... (3) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). (c) Conditions...
27 CFR 21.33 - Formula No. 2-B.
Code of Federal Regulations, 2014 CFR
2014-04-01
... crude drugs. 342.Processing glandular products, vitamins, hormones, and yeasts. 343.Processing.... (3) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). (c) Conditions...
Update on the male hormonal contraceptive agents.
Walton, Melanie; Anderson, Richard A
2004-09-01
There remains a need for new acceptable and effective male contraceptives to increase the choice for couples throughout the world. There have been no recent advances in available male contraceptive methods although a number of promising approaches have been identified, of which the hormonal approach is currently undergoing clinical investigation. In recent years the pace of research in this area has quickened significantly with increasing interest and now investment by the pharmaceutical industry. This is vital if the work undertaken so far by the public sector is to be transformed into a commercial reality. The hormonal approach is based on suppression of pituitary gonadotropin secretion resulting in a reversible reduction in spermatogenesis with azoospermia in all men being the ultimate aim. Without stimulation by luteinising hormone from the pituitary, testicular testosterone production also ceases. Therefore, androgen administration to restore physiological levels is an essential component of all male hormonal contraceptive regimes. Male hormonal contraceptives can consist of testosterone alone, or either a progestogen or gonadotropin-releasing hormone antagonist with 'add-back' testosterone. This article reviews the current state of progress in this field.
Dahan, Michael H; Tan, Seang L
2017-04-01
The pituitary gland plays a critical role in reproduction. In response to the hypothalamus the anterior pituitary secretes prolactin, thyroid-stimulating hormone, adreno-corticotropic hormone, follicle-stimulating hormone, luteinizing hormone and growth hormone. Dysregulation in these hormones often lead to reproductive failure. Multiple mechanisms of pituitary injury exist. Simmond's disease is atrophy or destruction of the anterior lobe of the pituitary gland resulting in hypopituitarism. Sheehan's syndrome is post-partum pituitary injury due to massive hemorrhage. Traumatic injury resulting in hemorrhage in a non-pregnancy state can also cause partial or complete pituitary failure. Dahan's syndrome is pituitary injury due to severe vasospasm, without significant hemorrhage. Pituitary apoplexy is infarction of a pituitary adenoma and intra-mass hemorrhage with result injury to hormone production by the gland. Lymphocytic infiltration is the most common cause of hypophysitis and the mechanism is often unknown, although it may be autoimmune-related. The mechanism and treatments of each of these pathologies will be discussed in a context of reproduction.
Yang, J X; Chaudhry, M T; Yao, J Y; Wang, S N; Zhou, B; Wang, M; Han, C Y; You, Y; Li, Y
2018-04-01
Quercetin, a polyphenolic flavonoid with diverse biological activities including anti-inflammatory and antiviral, inhibits lipid peroxidation, prevents oxidative injury and cell death. The purpose of the research was to investigate the effect of quercetin on productive performance, reproductive organs, hormones and apoptotic genes in laying hens between 37 and 45 weeks of age, because of the structure and oestrogenic activities similar to 17β-oestradiol. The trial was conducted using 240 Hessian laying hens (37 weeks old), housed in wire cages with two hens in each cage. These hens were randomly allotted to four treatments with six replicates, 10 hens in each replicate and fed with diets containing quercetin as 0, 0.2, 0.4 and 0.6 g/kg feed for 8 weeks. The results showed that dietary quercetin significantly increased (p < .05) the laying rate and was higher in group supplemented with 0.4 g/kg, and feed-egg ratio was decreased (p < .05) by quercetin. Dietary quercetin has no effect (p > .05) on average egg weight and average daily feed intake. Compared with control, secretion of hormones, oestradiol (E 2 ) , progesterone (P4), follicle-stimulating hormone (FSH), luteinizing hormone (LH), insulin-like growth factors-1 (IGF-1) and growth hormone (GH), was found to be significantly higher (p < .05) in quercetin-supplemented groups. Also ovary index, uterus index and oviduct index were not significantly influenced (p > .05) by quercetin, whereas magnum index, isthmus index, magnum length, isthmus length and follicle numbers were significantly increased (p < .05) with quercetin supplementation. Additionally, expression of apoptotic genes was significantly (p < .05) up-regulated or down-regulated by quercetin. These results indicated that quercetin improved productive performance, and its mechanism may be due to the oestrogen-like activities of quercetin. © 2017 Blackwell Verlag GmbH.
Glycerophosphate-dependent hydrogen peroxide production by rat liver mitochondria.
Jesina, P; Kholová, D; Bolehovská, R; Cervinková, Z; Drahota, Z; Houstek, J
2004-01-01
We studied the extent to which hormonally-induced mitochondrial glycerophosphate dehydrogenase (mGPDH) activity contributes to the supply of reducing equivalents to the mitochondrial respiratory chain in the rat liver. The activity of glycerophosphate oxidase was compared with those of NADH oxidase and/or succinate oxidase. It was found that triiodothyronine-activated mGPDH represents almost the same capacity for the saturation of the respiratory chain as Complex II. Furthermore, the increase of mGPDH activity induced by triiodothyronine correlated with an increase of capacity for glycerophosphate-dependent hydrogen peroxide production. As a result of hormonal treatment, a 3-fold increase in glycerophosphate-dependent hydrogen peroxide production by liver mitochondria was detected by polarographic and luminometric measurements.
Antiluteolytic strategies to improve fertility in cattle.
Binelli, M; Thatcher, W W; Mattos, R; Baruselli, P S
2001-12-01
During early pregnancy, a "critical period" may be defined between Days 15 and 17. Embryonic mortality associated with this period causes significant economic losses to the cattle industry. During this period, the endometrium will follow a default program to release luteolytic pulses of PGF2alpha, unless the conceptus sends appropriate antiluteolytic signals to block PGF2alpha, production. Maintenance of pregnancy is dependent on a successful blockage of endometrial PGF2alpha production. Biology of the critical period is complex and multifactorial. Endocrine, cellular and molecular factors, both from maternal and conceptus origins act in concert to determine whether luteolysis or maintenance of pregnancy will prevail. Understanding the influences of such factors in the biology of the critical period allowed researchers to produce a series of strategies aiming to favor maintenance of pregnancy in lieu of luteolysis. Strategies include hormonal and nutritional manipulations to decrease plasma concentrations of estradiol 17beta (E2) while increasing those of progesterone (P4), and inhibiting the PGF2alpha-synthesizing enzymatic machinery in the endometrium during the critical period. Experimental results indicate that use of such strategies has improved pregnancy rates following artificial insemination and embryo transfer programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gracia, Tannia; Hilscherova, Klara; Jones, Paul D.
2007-12-01
The H295R cell bioassay was used to evaluate the potential endocrine disrupting effects of 18 of the most commonly used pharmaceuticals in the United States. Exposures for 48 h with single pharmaceuticals and binary mixtures were conducted; the expression of five steroidogenic genes, 3{beta}HSD2, CYP11{beta}1, CYP11{beta}2, CYP17 and CYP19, was quantified by Q-RT-PCR. Production of the steroid hormones estradiol (E2), testosterone (T) and progesterone (P) was also evaluated. Antibiotics were shown to modulate gene expression and hormone production. Amoxicillin up-regulated the expression of CYP11{beta}2 and CYP19 by more than 2-fold and induced estradiol production up to almost 3-fold. Erythromycin significantlymore » increased CYP11{beta}2 expression and the production of P and E2 by 3.5- and 2.4-fold, respectively, while production of T was significantly decreased. The {beta}-blocker salbutamol caused the greatest induction of CYP17, more than 13-fold, and significantly decreased E2 production. The binary mixture of cyproterone and salbutamol significantly down-regulated expression of CYP19, while a mixture of ethynylestradiol and trenbolone, increased E2 production 3.7-fold. Estradiol production was significantly affected by changes in concentrations of trenbolone, cyproterone, and ethynylestradiol. Exposures with individual pharmaceuticals showed the possible secondary effects that drugs may exert on steroid production. Results from binary mixture exposures suggested the possible type of interactions that may occur between drugs and the joint effects product of such interactions. Dose-response results indicated that although two chemicals may share a common mechanism of action the concentration effects observed may be significantly different.« less
1992-11-01
Food and Drug Recombinant Bovine Growth Hormone: FDA Approval Should Be Withheld Administration Until the Mastitis Issue Is Resolved (Report, Aug. 6...Care: Demonstration Project Concerning Future Structure of Veterans’ Health Program (Testimony, Aug. 11, 1992, GA(Yr-HRD-92-53). Recombinant Bovine ...Growth Hormone: FDA Approval Should Be Withheld Until the Mastitis Issue Is Resolved (Report, Aug. 6, 1992, GAO/PEMD-92-26). Page 10 GAD/RRD-98-38 Health
Jia, Pei-Tong; Zhang, Xing-Lin; Zuo, Hai-Ning; Lu, Xing; Gai, Peng-Zhou
2017-10-02
The present study was aimed to investigate the effect of triiodothyronine (T3) on the improvement of articular cartilage surface architecture at in vitro level. The T3 hormone was applied to neo-tissues in the range of 50, 100, 150 and 200ng/ml for 5 weeks. At the end of the treatment, biochemical and histological evaluation was carried out in the neo-tissues. T3 hormone application significantly increased the collagen production in neo-cartilage tissues. The properties of tensile and compressive were significantly increased compared to the controls. However, T3 hormone application also induced hypertrophy. At the higher dose concentration of T3 hormone application, tensile and compressive properties were tremendously increased 4.3 and 4.6 fold respectively. Taking all these data together, it suggested that the T3 hormone application could be a potential agent to increase the functional properties such tensile and compressive in neo-tissues. Copyright © 2017 Elsevier GmbH. All rights reserved.
Controlling hormone signaling is a plant and pathogen challenge for growth and survival.
López, Miguel Angel; Bannenberg, Gerard; Castresana, Carmen
2008-08-01
Plants and pathogens have continuously confronted each other during evolution in a battle for growth and survival. New advances in the field have provided fascinating insights into the mechanisms that have co-evolved to gain a competitive advantage in this battle. When plants encounter an invading pathogen, not only responses signaled by defense hormones are activated to restrict pathogen invasion, but also the modulation of additional hormone pathways is required to serve other purposes, which are equally important for plant survival, such as re-allocation of resources, control of cell death, regulation of water stress, and modification of plant architecture. Notably, pathogens can counteract both types of responses as a strategy to enhance virulence. Pathogens regulate production and signaling responses of plant hormones during infection, and also produce phytohormones themselves to modulate plant responses. These results indicate that hormone signaling is a relevant component in plant-pathogen interactions, and that the ability to dictate hormonal directionality is critical to the outcome of an interaction.
Adolescence and the Ontogeny of the Hormonal Stress Response in Male and Female Rats and Mice
Romeo, Russell D.; Patel, Ravenna; Pham, Laurie; So, Veronica M.
2016-01-01
Adolescent development is marked by many changes in neuroendocrine function, resulting in both immediate and long-term influences on an individual’s physiology and behavior. Stress-induced hormonal responses are one such change, with adolescent animals often showing different patterns of hormonal reactivity following a stressor compared with adults. This review will describe the unique ways in which adolescent animals respond to a variety of stressors and how these adolescent-related changes in hormonal responsiveness can be further modified by the sex and previous experience of the individual. Potential central and peripheral mechanisms that contribute to these developmental shifts in stress reactivity are also discussed. Finally, the short- and long-term programming effects of chronic stress exposure during adolescence on later adult hormonal responsiveness are also examined. Though far from a clear understanding of the neurobehavioral consequences of these adolescent-related shifts in stress reactivity, continued study of developmental changes in stress-induced hormonal responses may shed light on the increased vulnerability to physical and psychological dysfunctions that often accompany a stressful adolescence. PMID:27235079
Bhosle, Monali; Klingman, David; Aagren, Mark; Wisniewski, Tami; Lee, Won Chan
2011-01-01
To synthesize current literature on recombinant human growth hormone (rhGH) use and to identify areas of research that have received little to no attention in light of administration practice and patient perception/behavior. Relevant articles for a systematic review were identified through PubMed. A total of 43 articles were identified: 9 (15.9%) studies on product administration practices and 34 (84.1%) on patient behavior patterns. Patients primarily preferred simple, convenient, and easy-to-use delivery devices. However, literature addressing the effect of convenient product administration practices on treatment outcomes using real-world patient/caregiver data is lacking. Better understanding of real-world product administration practices will help nurses identify areas of improvement in patient education and training. © 2010, Wiley Periodicals, Inc.
Purification and cultivation of human pituitary growth hormone secreting cells
NASA Technical Reports Server (NTRS)
Hymer, W. C.
1979-01-01
Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.
[The adaptation reactions in hormonal systems to the internal use of mineral waters].
Polushina, N D
1991-01-01
A single intake of mineral water Essentuki 17 by male Wistar rats (n-130, b. w. 180-250 g) leads to stress reactions. It is evident from elevated levels of ACTH, hydrocortisone, leuenkephaline, glucagon and gastrin. Course intake of the water brings about a rise in most of the hormones levels studied. However, single doses of Essentuki 17 inhibit production of hormones in the adrenals, hypophysis, hypothalamus, the system of endogenic opiates. The enhancement of relevant levels are noted in the gastroenteropancreatic system.
Male hormonal contraception: concept proven, product in sight?
Matthiesson, Kati L; McLachlan, Robert I
2006-01-01
Current male hormonal contraceptive (MHC) regimens act at various levels within the hypothalamic pituitary testicular axis, principally to induce the withdrawal of the pituitary gonadotrophins and in turn intratesticular androgen production and spermatogenesis. Azoospermia or severe oligozoospermia result from the inhibition of spermatogonial maturation and sperm release (spermiation). All regimens include an androgen to maintain virilization, while in many the suppression of gonadotrophins/spermatogenesis is augmented by the addition of another anti-gonadotrophic agent (progestin, GnRH antagonist). The suppression of sperm concentration to 1 x 10(6)/ml appears to provide comparable contraceptive efficacy to female hormonal methods, but the confidence intervals around these estimates remain relatively large, reflecting the limited number of exposure years reported. Also, inconsistencies in the rapidity and depth of spermatogenic suppression, potential for secondary escape of sperm into the ejaculate and onset of fertility return not readily explainable by analysis of subject serum hormone levels, germ cell number or intratesticular steroidogenesis, are apparent. As such, a better understanding of the endocrine and genetic regulation of spermatogenesis is necessary and may allow for new treatment paradigms. The development of an effective, consumer-friendly male contraceptive remains challenging, as it requires strong translational cooperation not only between basic scientists and clinicians but also between public and private sectors. At present, a prototype MHC product using a long-acting injectable testosterone and depot progestin is well advanced.
The effect of inter-set rest intervals on resistance exercise-induced muscle hypertrophy.
Henselmans, Menno; Schoenfeld, Brad J
2014-12-01
Due to a scarcity of longitudinal trials directly measuring changes in muscle girth, previous recommendations for inter-set rest intervals in resistance training programs designed to stimulate muscular hypertrophy were primarily based on the post-exercise endocrinological response and other mechanisms theoretically related to muscle growth. New research regarding the effects of inter-set rest interval manipulation on resistance training-induced muscular hypertrophy is reviewed here to evaluate current practices and provide directions for future research. Of the studies measuring long-term muscle hypertrophy in groups employing different rest intervals, none have found superior muscle growth in the shorter compared with the longer rest interval group and one study has found the opposite. Rest intervals less than 1 minute can result in acute increases in serum growth hormone levels and these rest intervals also decrease the serum testosterone to cortisol ratio. Long-term adaptations may abate the post-exercise endocrinological response and the relationship between the transient change in hormonal production and chronic muscular hypertrophy is highly contentious and appears to be weak. The relationship between the rest interval-mediated effect on immune system response, muscle damage, metabolic stress, or energy production capacity and muscle hypertrophy is still ambiguous and largely theoretical. In conclusion, the literature does not support the hypothesis that training for muscle hypertrophy requires shorter rest intervals than training for strength development or that predetermined rest intervals are preferable to auto-regulated rest periods in this regard.
[Neurodevelopmental assessment of patients with congenital hypothyroidism].
Núñez, Alicia; Bedregal, Paula; Becerra, Carlos; Grob L, Francisca
2017-12-01
Congenital hypothyroidism (CH) is the most common cause of preventable cognitive disability worldwide. Generally, it is produced by an alteration in the embryogenesis of the thyroid gland or by an alteration in the synthesis of thyroid hormones, which determine that affected patients have low or absent thyroid hormone concentrations. The importance of this fact is that brain development during the first three years of life is highly dependent on thyroid hormones. Prior to the implementation of national neonatal screening programs around the world, 8 to 27% of children with CH had an IQ lower than 70. Nowadays, this percentage is close to 0 in countries that have implemented the program. In Chile, CH neonatal screening program achieved national coverage in 1996. Currently, the incidence of the disease in our country is 1: 3163. The degree of disability produced by CH not only depends on the time of detection of the disease and the prompt start of therapy, but also on an adequate monitoring. Despite screening programs, neurocognitive impairment in schoolchildren and teenagers with CH is still observed, reflected in lower scores in cognitive, language and gross motor assessments, receptive communication, expressive communication, fine motor and gross motor skills compared to healthy children. Also, lesser achievements in learning and language disorders are observed. The objective of this review is to update the information available on neurodevelopment of patients with CH.
USDA-ARS?s Scientific Manuscript database
Juvenile hormone (JH) is an important regulator of development and physiology in insects. While in many insect species, including bumble bees, JH function as gonadotropin in adults, in some highly eusocial insects its role has shifted to regulate social behavior including division of labor, dominanc...
Production of a gonadotropin-releasing hormone 2 receptor knockdown (GnRHR2 KD) swine line
USDA-ARS?s Scientific Manuscript database
Swine are the only livestock species that produce both the second mammalian isoform of gonadotropin-releasing hormone (GnRH2) and its receptor (GnRHR2). Previously, we reported that GnRH2 and GnRHR2 mediate LH-independent testosterone secretion from porcine testes. To further explore this ligand-r...
Lovejoy, J C; Smith, S R; Bray, G A; Veldhuis, J D; Rood, J C; Tulley, R
1997-12-01
Although triiodothyronine (T3) exerts major regulatory actions in both animals and humans, most clinical studies of T3 administration have been relatively short-term. The present study examined the effects of more than 2 months (63 days) of low-dose T3 treatment on overnight pulsatile growth hormone (GH) secretion, short-term insulin secretion, and of sex steroid levels in seven healthy, lean men studied at an inpatient metabolic unit. At baseline, there were strong correlations between sex hormone-binding globulin (SHBG) and several measures of GH production, including total GH production (r = .99), GH interburst interval (r = -.75), and GH mass (r = .82). SHBG was also inversely correlated with basal insulin secretion (r = -.74). There was a 42% increase in serum levels of total testosterone (18.5 +/- 1.3 to 26.3 +/- 1.8 nmol/L, P = .005) and a 150% increase in SHBG (18.0 +/- 2.2 to 44.9 +/- 7.0 nmol/L, P = .008) following T3 treatment. Estradiol and free testosterone levels were unchanged by treatment, although free testosterone decreased from 142.8 +/- 18.4 to 137.3 +/- 19.5 pmol/L. T3 treatment significantly reduced the GH interburst interval (P < .05) and produced slight increases in the measures of GH secretion. There were no statistically significant effects of T3 treatment on insulin secretion, although insulin peak amplitude, mass secreted per burst, and total production all decreased. We conclude that experimentally induced T3 excess in healthy men produces significant and sustained changes in sex hormone levels and GH secretion. Furthermore, there are strong associations between SHBG and both GH and insulin secretion independent of thyroid hormone excess that require additional study.
Conserved steroid hormone homology converges on NFκB to modulate inflammation in asthma
Payne, Asha S.; Freishtat, Robert J.
2012-01-01
Asthma is a complex, multifactorial disease comprising multiple different subtypes, rather than a single disease entity [1], yet has a consistent clinical phenotype: recurring episodes of chest tightness, wheezing, and difficulty breathing. Despite the complex pathogenesis of asthma, steroid hormones (e.g. glucocorticoids) are ubiquitous in the acute and chronic management of all types of asthma. Overall, steroid hormones are a class of widely-relevant, biologically-active compounds originating from cholesterol and altered in a stepwise fashion, but maintain a basic 17-carbon, 4-ring structure. Steroids are lipophilic molecules that diffuse readily through cell membranes to directly and/or indirectly affect gene transcription. In addition, they employ rapid, non-genomic actions to affect cellular products. Steroid hormones are comprised of several groups (including glucocorticoids, sex steroid hormones, and secosteroids) with critical divergent biological and physiological functions relevant to health and disease. However, the conserved homology of steroid hormone molecules, receptors, and signaling pathways suggest that each of these is part of dynamic system of hormone interaction, likely involving overlap of downstream signaling mechanisms. Therefore, we will review the similarities and differences of these three groups of steroid hormones (i.e. glucocorticoids, sex steroid hormones, and secosteroids), identifying NFκB as a common inflammatory mediator. Despite our understanding of the impact of individual steroids (e.g. glucocorticoids, sex steroids and secosteroids) on asthma, research has yet to explain the interplay of the dynamic system in which these hormones function. To do so, there needs to be better understanding of the interplay of classical, non-classical, and non-genomic steroid hormone function. However, clues from the conserved homology steroid hormone structure and function and signaling pathways, offer insight into a possible model of steroid hormone regulation of inflammation in asthma through common NFκB-mediated downstream events. PMID:22183120
Vijayan, M.M.; Maule, A.G.; Schreck, C.B.; Moon, T.W.
1993-01-01
The plasma cortisol concentration and liver cytosolic glucocorticoid receptor activities of continuously swimming, food-deprived coho salmon (Oncorhynchus kisutch) did not differ from those of resting, fed fish. Plasma glucose concentration was significantly higher in the exercising, starved fish, but there were no significant differences in either hepatic glycogen concentration or hepatic activities of glycogen phosphorylase, glycogen synthase, pyruvate kinase, or lactate dehydrogenase between the two groups. Total glucose production by hepatocytes did not differ significantly between the two groups; glycogen breakdown accounted for all the glucose produced in the resting, fed fish whereas it explained only 59% of the glucose production in the exercised animals. Epinephrine and glucagon stimulation of glucose production by hepatocytes was decreased in the exercised fish without significantly affecting hepatocyte glycogen breakdown in either group. Insulin prevented glycogen breakdown and enhanced glycogen deposition in exercised fish. The results indicate that food-deprived, continuously swimming coho salmon conserve glycogen by decreasing the responsiveness of hepatocytes to catabolic hormones and by increasing the responsiveness to insulin (anabolic hormone).
O'Brien, J K; Steinman, K J; Fetter, G A; Robeck, T R
2017-01-01
Circulating concentrations of testosterone and its precursor androstenedione, as well as dehydroepiandrosterone (DHEA) and the adrenal hormones cortisol and corticosterone were measured at monthly intervals in 14 male killer whales (Orcinus orca) aged 0.8-38 years. Analyses were performed for examination of the relationships of age, sexual maturation status (STATUS), season, and environmental temperature (monthly air ambient temperature, A-TEMP) with hormone production using a mixed effects linear regression model with animal ID as the random variable. Hormone profiles, derived from enzyme immunoassay procedures validated herein, established that simultaneous up-regulation of androstenedione and testosterone production occurs at puberty, when males are aged 8-12 years. Androgen (testosterone and androstenedione) production in pubertal and adult males was influenced by season, with highest (p < 0.01) concentrations observed in spring and summer months. A significant effect of STATUS and season on DHEA production was also documented, with higher (p < 0.05) concentrations in pubertal and adult males compared to juvenile males, and higher (p < 0.05) concentrations in the months of summer than the fall. Among adult males (≥13 years), those classified as aged (≥31 years) had concentrations of testosterone and both glucocorticoids that were lower (p < 0.05), and those of androstenedione that were higher (p < 0.05) than their younger counterparts. The cortisol:corticosterone ratio for adult males was 7 : 1, and both glucocorticoids were affected by STATUS (p < 0.05), but not season or A-TEMP. Results of this research enhance our understanding of reproductive and adrenocortical function in healthy male killer whales and provide baseline profiles of hormone production for use in the species' health assessment and conservation. © 2016 American Society of Andrology and European Academy of Andrology.
... due to vaginal changes that occur with menopause. Dietary Supplements, Herbs, and Other "Natural" Products - Things that Don' ... women may decide to use products marketed as dietary supplements or over-the-counter “natural” hormone creams to ...
Barrett, E.S.; Thune, I.; Lipson, S.F.; Furberg, A.-S.; Ellison, P.T.
2013-01-01
STUDY QUESTION How are ovarian steroid concentrations, gonadotrophins and menstrual cycle characteristics inter-related within normal menstrual cycles? SUMMARY ANSWER Within cycles, measures of estradiol production are highly related to one another, as are measures of progesterone production; however, the two hormones also show some independence from one another, and measures of cycle length and gonadotrophin concentrations show even greater independence, indicating minimal integration within cycles. WHAT IS KNOWN ALREADY The menstrual cycle is typically conceptualized as a cohesive unit, with hormone levels, follicular development and ovulation all closely inter-related within a single cycle. Empirical support for this idea is limited, however, and to our knowledge, no analysis has examined the relationships among all of these components simultaneously. STUDY DESIGN, SIZE, DURATION A total of 206 healthy, cycling Norwegian women participated in a prospective cohort study (EBBA-I) over the duration of a single menstrual cycle. Of these, 192 contributed hormonal and cycle data to the current analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Subjects provided daily saliva samples throughout the menstrual cycle from which estradiol and progesterone concentrations were measured. FSH and LH concentrations were measured in serum samples from three points in the same menstrual cycle and cycle length characteristics were calculated based on hormonal data and menstrual records. A factor analysis was conducted to examine the underlying relationships among 22 variables derived from the hormonal data and menstrual cycle characteristics. MAIN RESULTS AND THE ROLE OF CHANCE Six rotated factors emerged, explaining 80% of the variance in the data. Of these, factors representing estradiol and progesterone concentrations accounted for 37 and 13% of the variance, respectively. There was some association between measures of estradiol and progesterone production within cycles; however, cycle length characteristics and gonadotrophin concentrations showed little association with any measure of ovarian hormone concentrations. LIMITATIONS, REASONS FOR CAUTION Our summary measures of ovarian hormones may be imprecise in women with extremely long or short cycles, which could affect the patterns emerging in the factor analysis. Given that we only had data from one cycle on each woman, we cannot address how cycle characteristics may covary within individual women across multiple cycles. WIDER IMPLICATIONS OF THE FINDINGS Our findings are generalizable to other healthy populations with typical cycles, however, may not be applicable to cycles that are anovulatory, extreme in length or otherwise atypical. The results support previous findings that measures of estradiol production are highly correlated across the cycle, as are measures of progesterone production. Estradiol and progesterone concentrations are associated with one another, furthermore. However factor analysis also revealed more complex underlying patterns in the menstrual cycle, highlighting the fact that gonadotrophin concentrations and cycle length characteristics are virtually independent of ovarian hormones. These results suggest that despite integration of follicular and luteal ovarian steroid production across the cycle, cycle quality is a multi-faceted construct, rather than a single dimension. STUDY FUNDING/COMPETING INTEREST(S) The EBBA-I study was supported by a grant from the Norwegian Cancer Society (49 258, 05087); Foundation for the Norwegian Health and Rehabilitation Organizations (59010-2000/2001/2002); Aakre Foundation (5695-2000, 5754-2002) and Health Region East. The current analyses were completed under funding from the National Institutes of Health (K12 ES019852). No competing interests declared. PMID:23250924
Evolution of Hormone Signaling Networks in Plant Defense.
Berens, Matthias L; Berry, Hannah M; Mine, Akira; Argueso, Cristiana T; Tsuda, Kenichi
2017-08-04
Studies with model plants such as Arabidopsis thaliana have revealed that phytohormones are central regulators of plant defense. The intricate network of phytohormone signaling pathways enables plants to activate appropriate and effective defense responses against pathogens as well as to balance defense and growth. The timing of the evolution of most phytohormone signaling pathways seems to coincide with the colonization of land, a likely requirement for plant adaptations to the more variable terrestrial environments, which included the presence of pathogens. In this review, we explore the evolution of defense hormone signaling networks by combining the model plant-based knowledge about molecular components mediating phytohormone signaling and cross talk with available genome information of other plant species. We highlight conserved hubs in hormone cross talk and discuss evolutionary advantages of defense hormone cross talk. Finally, we examine possibilities of engineering hormone cross talk for improvement of plant fitness and crop production.
Bajorunaite, Egle; Cirkovas, Andrejus; Radzevicius, Kostas; Larsen, Kim Lambertsen; Sereikaite, Jolanta; Bumelis, Vladas-Algirdas
2009-06-01
Cyclodextrins with different ring size and ring substituents were tested for recombinant mink and porcine growth hormones aggregation suppression in the refolding process from Escherichia coli inclusion bodies. Methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin show a positive effect on the aggregation suppression of both proteins. The influence of different methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin concentrations on the renaturation yield of both growth hormones was investigated. Moreover, methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin suppress not only folding-related, but also temperature-related aggregates formation of both proteins. Circular dichroism experiments (monitoring of protein solution turbidity by registering high tension voltage) showed that the onset temperature of aggregation of both growth hormones increased with increasing 2-hydroxypropyl-beta-cyclodextrin concentration. In conclusion, cyclodextrins have perspectives in biotechnology of veterinary growth hormones not only for protein production, but also for its storage.
Schenk, Sven; Krauditsch, Christian; Frühauf, Peter; Gerner, Christopher; Raible, Florian
2016-11-29
Animals require molecular signals to determine when to divert resources from somatic functions to reproduction. This decision is vital in animals that reproduce in an all-or-nothing mode, such as bristle worms: females committed to reproduction spend roughly half their body mass for yolk and egg production; following mass spawning, the parents die. An enigmatic brain hormone activity suppresses reproduction. We now identify this hormone as the sesquiterpenoid methylfarnesoate. Methylfarnesoate suppresses transcript levels of the yolk precursor Vitellogenin both in cell culture and in vivo , directly inhibiting a central energy-costly step of reproductive maturation. We reveal that contrary to common assumptions, sesquiterpenoids are ancient animal hormones present in marine and terrestrial lophotrochozoans. In turn, insecticides targeting this pathway suppress vitellogenesis in cultured worm cells. These findings challenge current views of animal hormone evolution, and indicate that non-target species and marine ecosystems are susceptible to commonly used insect larvicides.
Holness, M J; Langdown, M L; Sugden, M C
2000-01-01
There is increasing epidemiological evidence in humans which associates low birthweight with later metabolic disorders, including insulin resistance and glucose intolerance. There is evidence that nutritional and hormonal factors (e.g. maternal protein restriction, exposure to excess maternal glucocorticoids) markedly influence intra-uterine growth and development. A picture is also emerging of the biochemical and physiological mechanisms that may underlie these effects. This review focuses on recent research directed towards understanding the molecular basis of the relationship between indices of poor early growth and the subsequent development of glucose intolerance and Type 2 diabetes mellitus using animal models that attempt to recreate the process of programming via an adverse intra-uterine or neonatal environment. Emphasis is on the chain of events and potential mechanisms by which adverse adaptations affect pancreatic-beta-cell insulin secretion and the sensitivity to insulin of key metabolic processes, including hepatic glucose production, skeletal-muscle glucose disposal and adipose-tissue lipolysis. Unravelling the molecular details involved in metabolic programming may provide new insights into the pathogenesis of impaired glucoregulation and Type 2 diabetes. PMID:10903125
Perchlorate in Water Supplies: Sources, Exposures, and Health Effects
Steinmaus, Craig M.
2016-01-01
Perchlorate exposure occurs from ingestion of natural or manmade perchlorate in food or water. Perchlorate is used in a variety of industrial products including missile fuel, fireworks, and fertilizers, and industrial contamination of drinking water supplies has occurred in a number of areas. Perchlorate blocks iodide uptake into the thyroid, and decreases the production of thyroid hormone, a critical hormone for metabolism, neurodevelopment, and other physiologic functions. Occupational and clinical dosing studies have not identified clear adverse effects, but may be limited by small sample sizes, short study durations, and the inclusion of mostly healthy adults. Expanding evidence suggests that young children, pregnant women, fetuses, and people co-exposed to similarly acting agents may be especially susceptible to perchlorate. Given the ubiquitous nature of perchlorate exposure, and the importance of thyroid hormone for brain development, studying the impact of perchlorate on human health could have far-reaching public health implications. PMID:27026358
Marijuana, the Endocannabinoid System and the Female Reproductive System.
Brents, Lisa K
2016-06-01
Marijuana use among women is highly prevalent, but the societal conversation on marijuana rarely focuses on how marijuana affects female reproduction and endocrinology. This article reviews the current scientific literature regarding marijuana use and hypothalamic-pituitary-ovarian (HPO) axis regulation, ovarian hormone production, the menstrual cycle, and fertility. Evidence suggests that marijuana can reduce female fertility by disrupting hypothalamic release of gonadotropin releasing hormone (GnRH), leading to reduced estrogen and progesterone production and anovulatory menstrual cycles. Tolerance to these effects has been shown in rhesus monkeys, but the effects of chronic marijuana use on human female reproduction are largely unknown. Marijuana-induced analgesia, drug reinforcement properties, tolerance, and dependence are influenced by ovarian hormones, with estrogen generally increasing and progesterone decreasing sensitivity to marijuana. Carefully controlled regulation of the Endocannabinoid System (ECS) is required for successful reproduction, and the exogenous cannabinoids in marijuana may disrupt the delicate balance of the ECS in the female reproductive system.
Kwon, Bareum; Ha, Nayoung; Jung, Joeun; Kim, Pan-Gyi; Kho, Younglim; Choi, Kyungho; Ji, Kyunghee
2016-03-01
Adult zebrafish pairs were exposed to sub-lethal concentrations of BaCl2 for 21 days, and the effects on reproduction, sex steroid hormones, and transcription of the genes belonging to the hypothalamic-pituitary-gonad (HPG) axis were investigated. The adverse effects on performances of F1 generation were further examined with or without subsequent exposure to BaCl2. Egg production was significantly decreased, and parental exposure to BaCl2 resulted in lesser rates of hatching. In males, exposure to BaCl2 resulted in greater concentrations of E2 along with greater mRNA expression of cyp19a. The results demonstrated that BaCl2 could modulate gene transcriptions and hormone production of the HPG axis in a sex-dependent way, which could cause adverse effects on reproduction and the development of offspring.
Haaland, Richard E; Holder, Angela; Evans-Strickfaden, Tammy; Nyagol, Beatrice; Makanga, Mumbi; Oyaro, Boaz; Humwa, Felix; Williams, Tiffany; McLellan-Lemal, Eleanor; Desai, Mitesh; Huey, Michael J
2017-06-01
This study sought to measure residual contraceptive hormone levels in vaginal rings as an adherence marker for monitoring product use in clinical trials. Residual etonogestrel and ethinyl estradiol levels from used NuvaRings® of 26 self-reported adherent women enrolled in a clinical trial of vaginal ring acceptability were compared to those from 16 women who used NuvaRing® as their contraceptive choice. Twenty-one (81%) clinical trial rings had contraceptive hormone levels within the range of those used as a contraceptive choice. Five returned rings had unused or discordant levels of residual contraceptive hormones. Residual vaginal ring drug levels could help assess adherence in clinical trials. Published by Elsevier Inc.
Sex differences and sex hormones in anxiety-like behavior of aging rats.
Domonkos, Emese; Borbélyová, Veronika; Csongová, Melinda; Bosý, Martin; Kačmárová, Mária; Ostatníková, Daniela; Hodosy, Július; Celec, Peter
2017-07-01
Sex differences in the prevalence of affective disorders might be attributable to different sex hormone milieu. The effects of short-term sex hormone deficiency on behavior, especially on anxiety have been studied in numerous animal experiments, mainly on young adult rats and mice. However, sex differences in aged animals and the effects of long-term hypogonadism are understudied. The aim of our study was to analyze sex differences in anxiety-like behavior in aged rats and to prove whether they can be attributed to endogenous sex hormone production in males. A battery of tests was performed to assess anxiety-like behavior in aged female, male and gonadectomized male rats castrated before puberty. In addition, the aged gonadectomized male rats were treated with a single injection of estradiol or testosterone or supplemented with estradiol for two-weeks. Female rats displayed a less anxious behavior than male rats in most of the conducted behavioral tests except the light-dark box. Long-term androgen deficiency decreased the sex difference in anxiety either partially (open field, PhenoTyper cage) or completely (elevated plus maze). Neither single injection of sex hormones, nor two-week supplementation of estradiol in gonadectomized aged male rats significantly affected their anxiety-like behavior in the elevated plus maze. In conclusion, our results confirm sex differences in anxiety in aged rats likely mediated by endogenous testosterone production in males. Whether long-term supplementation with exogenous sex hormones could affect anxiety-like behavior in elderly individuals remains to be elucidated. Copyright © 2017 Elsevier Inc. All rights reserved.
Hormonal Changes and Sexual Dysfunction.
Zhou, Eric S; Frederick, Natasha N; Bober, Sharon L
2017-11-01
Sexual dysfunction is a common concern for many patients with cancer after treatment. Hormonal changes as a result of cancer-directed therapy can affect both male and female sexual health. This has the potential to significantly impact patients' quality of life, but is underreported and undertreated in the oncology setting. This review discusses commonly reported sexual issues and the role that hormonal changes play in this dysfunction. Although medical and psychosocial intervention strategies exist, there is a clear need for further research to formally develop programming that can assist people whose sexual health has been impacted by cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Dobnig, H.; Turner, R. T.
1997-01-01
PTH treatment can result in dramatic increases in cancellous bone volume in normal and osteopenic rats. However, this potentially beneficial response is only observed after pulsatile treatment; continuous infusion of PTH leads to hypercalcemia and bone abnormalities. The purpose of these studies was to determine the optimal duration of the PTH pulses. A preliminary study revealed that human PTH-(1-34) (hPTH) is cleared from circulation within 6 h after sc administration of an anabolic dose of the hormone (80 microg/kg). To establish the effects of gradually extending the duration of exposure to hPTH without increasing the daily dose, we programmed implanted Alzet osmotic pumps to deliver the 80 microg/kg x day dose of the hormone during pulses of 1, 2, and 6 h/day, or 40 microg/kg x day continuously. Discontinuous infusion was accomplished by alternate spacing of external tubing with hPTH solution and sesame oil. After 6 days of treatment, we evaluated serum chemistry and bone histomorphometry. As negative and positive controls, groups of rats received pumps that delivered vehicle only and 80 microg/kg x day hPTH by daily sc injection, respectively. Dynamic and static bone histomorphometry revealed that the daily sc injection and 1 h/day infusion dramatically increased osteoblast number and bone formation in the proximal tibial metaphysis, whereas longer infusion resulted in systemic side-effects, including up to a 10% loss in body weight, hypercalcemia, and histological changes in the proximal tibia resembling abnormalities observed in patients with chronic primary hyperparathyroidism, including peritrabecular marrow fibrosis and focal bone resorption. Infusion for as little as 2 h/day resulted in minor weight loss and changes in bone histology that were intermediate between sc and continuous administration. The results demonstrate that the therapeutic interval for hPTH exposure is brief, but that programmed administration of implanted hormone is a feasible alternative to daily injection as a route for administration of the hormone.
Georgetown University and Hampton University Prostate Cancer Undergraduate Fellowship Program
2015-10-01
Tyanna Jones-Gray (Dr. Vicente Notario), Ms. Damara Miller (Dr. Eliot Rosen), Ms. Jasmine Hatcher-Moorman (Dr. MaryBeth Martin), and Mr. Isaiah Brown...undergraduate students: 1. The Hampton University undergraduates (Ms. Tyanna Jones-Gray, Ms. Damara Miller, Ms. Jasmine Hatcher-Moorman, and Mr...cancer progression. Dr. Martin’s lab has identified the environmental hormones referred to as metallo- hormones. In Dr. Martin’s laboratory, Jasmine
Understanding the broad influence of sex hormones and sex differences in the brain.
McEwen, Bruce S; Milner, Teresa A
2017-01-02
Sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes, where they are associated with presynaptic terminals, mitochondria, spine apparatus, and postsynaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects on gene expression induce spine synapses, up- or downregulate and alter the distribution of neurotransmitter receptors, and regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, which influence functions not previously regarded as subject to such differences, indicate that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Understanding the Broad Influence of Sex Hormones and Sex Differences in the Brain
McEwen, Bruce S.; Milner, Teresa A.
2016-01-01
Sex hormones act throughout the entire brain of both males and females via both genomic and non-genomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes where they are associated with presynaptic terminals, mitochondria, spine apparatus, post-synaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects upon gene expression induce spine synapses, up- or down-regulate and alter the distribution of neurotransmitter receptors, regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not-yet-precisely-defined genetic factors including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, and upon functions not previously regarded as subject to such differences, indicates that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. PMID:27870427
Metabolic differences in temperamental Brahman cattle can affect productivity
USDA-ARS?s Scientific Manuscript database
Many factors may adversely affect the growth and productivity of livestock. These include stressors associated with management practices, such as weaning, handling relative to transportation, and vaccination, that can modulate growth through the production of stress-related hormones (i.e., cortisol,...
Kuhla, Björn; Albrecht, Dirk; Bruckmaier, Rupert; Viergutz, Torsten; Nürnberg, Gerd; Metges, Cornelia C
2010-12-01
The hypothalamic-pituitary system controls homeostasis during feed energy reduction. In order to examine which pituitary proteins and hormone variants are potentially associated with metabolic adaptation, pituitary glands from ad libitum and energy restrictively fed dairy cows were characterized using RIA and 2-DE followed by MALDI-TOF-MS. We found 64 different spots of regulatory hormones: growth hormone (44), preprolactin (16), luteinizing hormone (LH) (1), thyrotropin (1), proopiomelanocortin (1) and its cleavage product lipotropin (1), but none of these did significantly differ between feeding groups. Quantification of total pituitary LH and prolactin concentrations by RIA confirmed the results obtained by proteome analysis. Also, feed energy restriction provoked increasing non-esterified fatty acid, decreasing prolactin, but unaltered glucose, LH and growth hormone plasma concentrations. Energy restriction decreased the expression of glial fibrillary acidic protein, triosephosphate isomerase, purine-rich element-binding protein A and elongation factor Tu, whereas it increased expression of proline synthetase co-transcribed homolog, peroxiredoxin III, β-tubulin and annexin A5 which is involved in the hormone secretion process. Our results indicate that in response to feed energy restriction the pituitary reservoir of all posttranslationally modified hormone forms remains constant. Changing plasma hormone concentrations are likely attributed to a regulated releasing process from the gland into the blood. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Medical hypothesis: bifunctional genetic-hormonal pathways to breast cancer.
Davis, D L; Telang, N T; Osborne, M P; Bradlow, H L
1997-04-01
As inherited germ line mutations, such as loss of BRCA1 or AT, account for less than 5% of all breast cancer, most cases involve acquired somatic perturbations. Cumulative lifetime exposure to bioavailable estradiol links most known risk factors (except radiation) for breast cancer. Based on a series of recent experimental and epidemiologic findings, we hypothesize that the multistep process of breast carcinogenesis results from exposure to endogenous or exogenous hormones, including phytoestrogens that directly or indirectly alter estrogen metabolism. Xenohormones are defined as xenobiotic materials that modify hormonal production; they can work bifunctionally, through genetic or hormonal paths, depending on the periods and extent of exposure. As for genetic paths, xenohormones can modify DNA structure or function. As for hormonal paths, two distinct mechanisms can influence the potential for aberrant cell growth: compounds can directly bind with endogenous hormone or growth factor receptors affecting cell proliferation or compounds can modify breast cell proliferation altering the formation of hormone metabolites that influence epithelial-stromal interaction and growth regulation. Beneficial xenohormones, such as indole-3-carbinol, genistein, and other bioflavonoids, may reduce aberrant breast cell proliferation, and influence the rate of DNA repair or apoptosis and thereby influence the genetic or hormonal microenvironments. Upon validation with appropriate in vitro and in vivo studies, biologic markers of the risk for breast cancer, such as hormone metabolites, total bioavailable estradiol, and free radical generators can enhance cancer detection and prevention.
Identification of Chemical Features Linked to Thyroperoxidase Inhibition (SOT)
Disruption of maternal serum thyroid hormone (TH) adversely affects fetal neurodevelopment. Therefore, assay development within the US EPA ToxCast program is ongoing to enable screening for chemicals that may disrupt TH, in support of the Endocrine Disruption Screening Program (E...
Quintela, Telma; Gonçalves, Isabel; Carreto, Laura C; Santos, Manuel A S; Marcelino, Helena; Patriarca, Filipa M; Santos, Cecília R A
2013-01-01
The choroid plexus (CP) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF), the blood-CSF barrier, that are the main site of production and secretion of CSF. Sex hormones are widely recognized as neuroprotective agents against several neurodegenerative diseases, and the presence of sex hormones cognate receptors suggest that it may be a target for these hormones. In an effort to provide further insight into the neuroprotective mechanisms triggered by sex hormones we analyzed gene expression differences in the CP of female and male rats subjected to gonadectomy, using microarray technology. In gonadectomized female and male animals, 3045 genes were differentially expressed by 1.5-fold change, compared to sham controls. Analysis of the CP transcriptome showed that the top-five pathways significantly regulated by the sex hormone background are olfactory transduction, taste transduction, metabolism, steroid hormone biosynthesis and circadian rhythm pathways. These results represent the first overview of global expression changes in CP of female and male rats induced by gonadectomy and suggest that sex hormones are implicated in pathways with central roles in CP functions and CSF homeostasis.
Quintela, Telma; Gonçalves, Isabel; Carreto, Laura C.; Santos, Manuel A. S.; Marcelino, Helena; Patriarca, Filipa M.; Santos, Cecília R. A.
2013-01-01
The choroid plexus (CP) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF), the blood-CSF barrier, that are the main site of production and secretion of CSF. Sex hormones are widely recognized as neuroprotective agents against several neurodegenerative diseases, and the presence of sex hormones cognate receptors suggest that it may be a target for these hormones. In an effort to provide further insight into the neuroprotective mechanisms triggered by sex hormones we analyzed gene expression differences in the CP of female and male rats subjected to gonadectomy, using microarray technology. In gonadectomized female and male animals, 3045 genes were differentially expressed by 1.5-fold change, compared to sham controls. Analysis of the CP transcriptome showed that the top-five pathways significantly regulated by the sex hormone background are olfactory transduction, taste transduction, metabolism, steroid hormone biosynthesis and circadian rhythm pathways. These results represent the first overview of global expression changes in CP of female and male rats induced by gonadectomy and suggest that sex hormones are implicated in pathways with central roles in CP functions and CSF homeostasis. PMID:23585832
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore
Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. Wemore » have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.« less
NASA Astrophysics Data System (ADS)
Yu, Zhiwen; Jin, Tianru
2008-01-01
Pancreatic cells express the proglucagon gene (gcg) and thereby produce the peptide hormone glucagon, which stimulates hepatic glucose production and thereby increases blood glucose levels. The same gcg gene is also expressed in the intestinal endocrine L cells and certain neural cells in the brain. In the gut, gcg expression leads to the production of glucagon-like peptide-1 (GLP-1). This incretin hormone stimulates insulin secretion when blood glucose level is high. In addition, GLP-1 stimulates pancreatic cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. Today, a long-term effective GLP-1 receptor agonist has been developed as a drug in treating diabetes and potentially other metabolic disorders. Extensive investigations have shown that the expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP signaling, and the crosstalk between PKA and Wnt signaling pathway, are also involved in cAMP-stimulated gcg expression and GLP-1 production. Furthermore, functions of GLP-1 in pancreatic cells are mainly mediated by cAMP-PKA, cAMP-Epac and Wnt signaling pathways as well.
Boosting production yield of biomedical peptides
NASA Technical Reports Server (NTRS)
Manatt, S. L.
1978-01-01
Nuclear magnetic resonance (NMR) technique is employed to monitor synthesis of biomedical peptides. Application of NMR technique may improve production yields of insulin, ACTH, and growth hormones, as well as other synthesized biomedical peptides.
Ahn, Ki Hoon; Lee, Seung Hyeun; Park, Hyun Tae; Kim, Tak; Hur, Jun Young; Kim, Young Tae; Kim, Sun Haeng
2010-04-01
The relationship between adiponectin and sex hormones with bone mineral density (BMD) and bone formation markers was investigated in postmenopausal women with subclinical hyperthyroidism (SCH). Seventy-five postmenopausal women were selected among the patients who participated in a health screening program in 2007. Thirty-seven control women with normal thyroid function were matched to 38 women with SCH by age, body mass index (BMI), and years since menopause (YSM). The associations between adiponectin and sex hormones with lumbar spine BMD and bone turnover markers were investigated. Adiponectin, testosterone (T; total and free forms), and thyroid-stimulating hormone were significantly different between the women with SCH and euthyroid. After adjusting for age, BMI, and YSM, free T (r = 0.351; P = 0.029) and estradiol (E2; r = -0.368; P = 0.024) had significant associations with bone alkaline phosphatase (B-ALP). Total T (r = 0.388; P = 0.021) and E2 (r = -0.376; P = 0.026) had significant associations with osteocalcin. However, there were no significant associations between adiponectin and sex hormones with the BMD levels in the SCH subjects. There were correlations between sex hormones with B-ALP and osteocalcin, but no associations between adiponectin and sex hormones with the lumbar spine BMD in postmenopausal SCH patients.
Identification of black market products and potential doping agents in Germany 2010-2013.
Krug, Oliver; Thomas, Andreas; Walpurgis, Katja; Piper, Thomas; Sigmund, Gerd; Schänzer, Wilhelm; Laussmann, Tim; Thevis, Mario
2014-11-01
The desire to increase the athletic performance, to 'optimize' an individual's appearance, and to complement but also to arguably substitute exercise by means of drugs and drug candidates has generated a considerable (illicit) market for compounds such as anabolic-androgenic steroids, stimulants, growth promoting peptide hormones, and so on. Genuinely developed for therapeutic use, their abuse/misuse generates enormous health risks, which has necessitated comprehensive controls of compound trafficking by customs and anti-doping authorities. From 2012 to 2013, the Bureau of Customs Investigation confiscated products containing anabolic-androgenic steroids (AAS; 259 kg), stimulants (13 kg), selective estrogen receptor modulators (SERMs; 24 kg), and human growth hormone (hGH; 3500 ampules). In cooperation with the Bureau and under the umbrella of the European Monitoring Center for Emerging Doping Agents (EuMoCEDA), the Cologne Anti-Doping Laboratory analyzed an additional 337 (black market) products between 2010 and 2013, allowing to monitor developments in drug use and, hence, the anticipation of new challenges in sports drug testing. Main tools utilized in characterizing confiscated materials were liquid chromatography-high resolution mass spectrometry (LC-HRMS), gas chromatography-high resolution mass spectrometry (GC-HRMS), and polyacrylamide gel electrophoresis (PAGE) with subsequent bottom-up identification of peptidic compounds using nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Among the 337 substances analyzed in the doping control laboratory in Cologne, 67 active ingredients were found, 49 of which being categorized as doping agents by the World Anti-Doping Agency (WADA). A total of 83.7 % accounted for steroidal substances (predominantly testosterone, trenbolone, and nandrolone and corresponding esters), 12.8 % accounted for peptide hormones and growth factors (predominantly hGH and growth hormone releasing peptides (GHRPs)), 3.2 % of the products contained hormones and metabolic modulators, and 0.3 % accounted for diuretic agents. Outstanding findings were the detection of the selective androgen receptor modulator (SARM) LGD-4033, the thymic hormone thymosin β4, and a fusion protein of unknown biological activity. Trafficking of considerable amounts of arguably performance and/or body-enhancing compounds has been observed during the past 4 years, the majority of which is categorized as relevant to sports drug testing. Several substances are of fake/non-approved nature and represent enormous health risks to the 'customer'.
The role of the Wnt signaling pathway in incretin hormone production and function
Chiang, Yu-ting A.; Ip, Wilfred; Jin, Tianru
2012-01-01
Glucose metabolism is tightly controlled by multiple hormones and neurotransmitters in response to nutritional, environmental, and emotional changes. In addition to insulin and glucagon produced by pancreatic islets, two incretin hormones, namely glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP, also known as glucose-dependent insulinotropic peptide), also play important roles in blood glucose homeostasis. The incretin hormones mainly exert their regulatory effects via their corresponding receptors, which are expressed in pancreatic islets as well as many other extra-pancreatic organs. Recent studies have shown that the genes which encode these two incretin hormones can be regulated by the effectors of the Wnt signaling pathway, including TCF7L2, a transcription factor identified recently by extensive genome wide association studies as an important type 2 diabetes risk gene. Interestingly, TCF7L2 and β-catenin (β-cat), another effector of Wnt signaling pathway, may also mediate the function of the incretin hormones as well as the expression of their receptors in pancreatic β-cells. In this review, we have introduced the incretin hormones and the Wnt signaling pathway, summarized recent findings in the field, and provided our perspectives. PMID:22934027
Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja
2016-04-25
Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and Sox9(+) adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors.
Immune-Neuroendocrine Interactions and Autoimmune Diseases
Jara, Luis J.; Navarro, Carmen; Medina, Gabriela; Vera-Lastra, Olga; Blanco, Francisco
2006-01-01
The relationship between immune-neuroendocrine system is firmly established. The messengers of this connection are hormones, neuropeptides, neurotransmitters and cytokines. The immune-neuroendocrine system have the capacity to synthesize and release these molecules, which, in turn, can stimulate or suppress the activity of immune or neuroendocrine cells by binding to receptors. In fact, hormones, neuropeptides and neurotransmitters participate in innate and adaptive immune response.Autoimmune rheumatic diseases (ARD) are characterized by aberrant production of pro-inflammatory cytokines, which are a potent activator of the HPA axis. In consequence, high levels of pro-inflammatory hormones such as estrogens and prolactin, and low levels of glucocorticoids, an anti-inflammatory hormone, have been described in the active phase of ARD. In addition, high levels of pro-inflammatory hormones and cytokines have also been frequently detected in organ involvement of patients with ARD, suggesting an abnormal local neuroendocrine immune interaction. There is evidence that hormonal changes may appear before the symptomatic phase of the disease. Therefore, it is possible that a pro-inflammatory hormone favors the rupture of tolerance, which is a key feature of autoimmune diseases. The interactions between the immune-neuroendocrine system have a major impact on our understanding of the pathogenic mechanisms, diagnosis and therapy of ARD. PMID:17162354
Pállinger, Éva; Csaba, György
2008-01-01
The amounts of adrenocorticotropic hormone (ACTH), endorphin and triiodothyronine (T3) in twenty-six blood samples from men and women who were healthy or had non-haematological diseases were determined by flow cytometry. Lymphocytes were immunophenotyped using monoclonal antibodies against cell surface antigens, and monocytes and granulocytes were separated by their size and granularity (using forward-scatter versus side-scatter dot plots). Each hormone was found in each cell type. The hormone content of lymphocytes was balanced, but the concentration of ACTH was significantly lower in activated T cells, that of endorphin was significantly lower in natural killer (NK) cells, and that of T3 was lower in both cell types compared with values for all lymphocytes. Monocytes and granulocytes contained very significantly more hormones than lymphocytes or monocytes. The concentration of endorphin was an order of magnitude higher in granulocytes than in monocytes or lymphocytes, reflecting the pain-relieving role of granulocytes during inflammation. Compared with monocytes, in granulocytes there was a higher concentration of ACTH and a lower concentration of T3, which suggests selective hormone production by these cells. PMID:18005034
Kasote, Deepak M; Ghosh, Ritesh; Chung, Jun Young; Kim, Jonggeun; Bae, Inhwan; Bae, Hanhong
2016-01-01
Plant hormones are the key regulators of adaptive stress response. Abiotic stresses such as drought and salt are known to affect the growth and productivity of plants. It is well known that the levels of plant hormones such as zeatin (ZA), abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and brassinolide (BR) fluctuate upon abiotic stress exposure. At present, there is not any single suitable liquid chromatography-mass spectrometry (LC-MS) method for simultaneous analysis of BR and other plant hormones involved in abiotic stresses. In the present study, we developed a simple, sensitive, and rapid method for simultaneous analysis of five major plant hormones, ZA, ABA, JA, SA, and BR, which are directly or indirectly involved in drought and salt stresses. The optimized extraction procedure was simple and easy to use for simultaneous measurement of these plant hormones in Arabidopsis thaliana. The developed method is highly reproducible and can be adapted for simultaneous measurement of changes in plant hormones (ZA, ABA, JA, SA, and BR) in response to abiotic stresses in plants like A. thaliana and tomato.
Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja
2016-01-01
Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2+ and Sox9+ adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116
Plant hormone signaling in flowering: An epigenetic point of view.
Campos-Rivero, Gerardo; Osorio-Montalvo, Pedro; Sánchez-Borges, Rafael; Us-Camas, Rosa; Duarte-Aké, Fátima; De-la-Peña, Clelia
2017-07-01
Reproduction is one of the most important phases in an organism's lifecycle. In the case of angiosperm plants, flowering provides the major developmental transition from the vegetative to the reproductive stage, and requires genetic and epigenetic reprogramming to ensure the success of seed production. Flowering is regulated by a complex network of genes that integrate multiple environmental cues and endogenous signals so that flowering occurs at the right time; hormone regulation, signaling and homeostasis are very important in this process. Working alone or in combination, hormones are able to promote flowering by epigenetic regulation. Some plant hormones, such as gibberellins, jasmonic acid, abscisic acid and auxins, have important effects on chromatin compaction mediated by DNA methylation and histone posttranslational modifications, which hints at the role that epigenetic regulation may play in flowering through hormone action. miRNAs have been viewed as acting independently from DNA methylation and histone modification, ignoring their potential to interact with hormone signaling - including the signaling of auxins, gibberellins, ethylene, jasmonic acid, salicylic acid and others - to regulate flowering. Therefore, in this review we examine new findings about interactions between epigenetic mechanisms and key players in hormone signaling to coordinate flowering. Copyright © 2017 Elsevier GmbH. All rights reserved.
Cedar Grove Historic Cemetry: A Study in Bio-History.
1983-10-31
1978). This disparity indicates a developmental ( hormonal ) disturbance. Sex: Unknown. 159 ,4 ’ - Race: Unknown. "" - Preservation Condition: Good...age and long bone growth suggests hormonal disfunction most likely somatotrophic. Degenerative: None. Neoplasm: None. Traumatic: None. MORTUARY...as consisting of nothing but fatback and corn, Fogel and Engerman (1974:111) add: Among the other plantation products which slaves consumed were beef
USDA-ARS?s Scientific Manuscript database
The ability of human enteric pathogens to colonize plants and use them as alternate hosts is now well established. Salmonella enterica, similarly to other phytobacteria, appears to be capable of producing the plant hormone auxin (IAA) via IpdC, an indole pyruvate (IPyA) decarboxylase. ipdC is a key ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gantz, I.; Yamada, Tadataka; Tashiro, Takao
1994-01-15
[alpha]-Melanocyte stimulating hormone ([alpha]-MSH), a hormone originally named for its ability to regulate pigmentation of melanocytes, is a 13-amino-acid post-translational product of the pro-opiomelanocortin (POMC) gene. [alpha]-MSH and the other products of POMC processing, which share the core heptapeptide amino acid sequence Met-Glu (Gly)-His-Phe-Arg-Trp-Gly (Asp), the adrenocorticotropic hormone (ACTH), [beta]-MSH, and [gamma]-MSH, are collectively referred to as melanocortins. While best known for their effects on the melanocyte (pigmentation) and adrenal cortical cells (steroidogenesis), melanocortins have been postulated to function in diverse activities, including enhancement of learning and memory, control of the cardiovascular system, analgesia, thermoregulation, immunomodulation, parturition, and neurotrophism. Tomore » identify the chromosomal band encoding the human melanocortin-1 receptor gene, 1 [mu]g of an EMBL clone coding region of the human MC1R and approximately 15 kb of surrounding DNA was labeled with biotin and hybridized to human metaphase chromosomes as previously described. The results indicate that the human MC1R gene is localized to 16q24.3. 15 refs., 1 fig.« less
Kimball, F A; Frielink, R D; Porteus, S E
1978-01-01
Silicone rubber discs containing 15(S)-15-methyl prostaglandin F2 alpha ester (15-Me-PGF2 alpha) in the matrix were implanted in the left side of the scrotums of Sprague-Dawley rats. The effect of 1% and 2% drug concentration was examined for 10, 20, or 28 days and compared with the effects of Silastic discs containing no prostaglandin. The discs containing prostaglandin reduced mean testicular and accessory gland weights. Histologically the testes and epididymides showed decreased or absent spermatogenic elements and hypertrophy of the interstitial cell masses in comparison with other cells. Implanted prostaglandin significantly depressed serum testosterone, luteinizing hormone, and follicle-stimulating hormone (FSH) concentrations when 15-Me-PGF2 alpha plasma concentrations exceeded 2 ng/ml. Hormone concentrations returned to control values as drug concentrations declined. FSH concentrations significantly exceeded control values 10 and 20 days after implantation, when prostaglandin concentration was nondetectable. The acute suppression of all three hormones suggest that 15-Me-PGF2 alpha either may act directly on the tests to suppress testosterone production or may suppress testosterone production or may suppress gonadotropin secretion, resulting in depressed testosterone output.
Dirndorfer, Daniela; Seidel, Ralf P.; Nimrod, Guy; Miesbauer, Margit; Ben-Tal, Nir; Engelhard, Martin; Zimmermann, Richard; Winklhofer, Konstanze F.; Tatzelt, Jörg
2013-01-01
Different neuropeptide hormones, which are either too small to adopt a stable conformation or are predicted to be intrinsically disordered, are synthesized as larger precursors containing a prodomain in addition to an N-terminal signal peptide. We analyzed the biogenesis of three unstructured neuropeptide hormones and observed that translocation of these precursors into the lumen of the endoplasmic reticulum (ER) is critically dependent on the presence of the prodomain. The hormone domains could be deleted from the precursors without interfering with ER import and secretion, whereas constructs lacking the prodomain remained in the cytosol. Domain-swapping experiments revealed that the activity of the prodomains to promote productive ER import resides in their ability to adopt an α-helical structure. Removal of the prodomain from the precursor did not interfere with co-translational targeting of the nascent chain to the Sec61 translocon but with its subsequent productive translocation into the ER lumen. Our study reveals a novel function of prodomains to enable import of small or intrinsically disordered secretory proteins into the ER based on their ability to adopt an α-helical conformation. PMID:23532840
Dirndorfer, Daniela; Seidel, Ralf P; Nimrod, Guy; Miesbauer, Margit; Ben-Tal, Nir; Engelhard, Martin; Zimmermann, Richard; Winklhofer, Konstanze F; Tatzelt, Jörg
2013-05-17
Different neuropeptide hormones, which are either too small to adopt a stable conformation or are predicted to be intrinsically disordered, are synthesized as larger precursors containing a prodomain in addition to an N-terminal signal peptide. We analyzed the biogenesis of three unstructured neuropeptide hormones and observed that translocation of these precursors into the lumen of the endoplasmic reticulum (ER) is critically dependent on the presence of the prodomain. The hormone domains could be deleted from the precursors without interfering with ER import and secretion, whereas constructs lacking the prodomain remained in the cytosol. Domain-swapping experiments revealed that the activity of the prodomains to promote productive ER import resides in their ability to adopt an α-helical structure. Removal of the prodomain from the precursor did not interfere with co-translational targeting of the nascent chain to the Sec61 translocon but with its subsequent productive translocation into the ER lumen. Our study reveals a novel function of prodomains to enable import of small or intrinsically disordered secretory proteins into the ER based on their ability to adopt an α-helical conformation.
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1990-01-01
Wounded zygotic embryos of cultivated carrot produce somatic proembryos on hormone-free nutrient medium containing 1 mM NH4+ as the sole nitrogen source. Continued maintenance of proembryos on this medium leads to a "pure" culture of preglobular stage proembryos (PGSPs). Ethylene had no effect on this process. Also, somatic embryo production was not affected by growing cultures on activated charcoal-impregnated filter papers. However, somatic proembyros initiated on activated charcoal papers were not maintainable as PGSPs and developed into later embryo stages. Normally, medium pH dropped from 5.7 to 4 during each subculture period, but when using activated charcoal papers the pH endpoint was around 6 - 7 due to a leachable substance(s) within the filter papers. When powdered, activated charcoal was used in the medium as an adsorbent of products potentially released after wounding, pH dropped at the normal rate and to the expected levels; proembryos did not mature into later embryo stages and were maintainable exclusively as PGSPs. Low pH (approximately 4) is detrimental to proembyro production, but is essential to maintaining PGSPs on hormone-free nutrient medium, whereas a sustained pH > or = 5.7 allows continued development of PGSPs into later embryo stages.
The Role of Thyroid Hormones as Inductors of Oxidative Stress and Neurodegeneration
Villanueva, I.; Alva-Sánchez, C.; Pacheco-Rosado, J.
2013-01-01
Reactive oxygen species (ROS) are oxidizing agents amply implicated in tissue damage. ROS production is inevitably linked to ATP synthesis in most cells, and the rate of production is related to the rate of cell respiration. Multiple antioxidant mechanisms limit ROS dispersion and interaction with cell components, but, when the balance between ROS production and scavenging is lost, oxidative damage develops. Many traits of aging are related to oxidative damage by ROS, including neurodegenerative diseases. Thyroid hormones (THs) are a major factor controlling metabolic and respiratory rates in virtually all cell types in mammals. The general metabolic effect of THs is a relative acceleration of the basal metabolism that includes an increase of the rate of both catabolic and anabolic reactions. THs are related to oxidative stress not only by their stimulation of metabolism but also by their effects on antioxidant mechanisms. Thyroid dysfunction increases with age, so changes in THs levels in the elderly could be a factor affecting the development of neurodegenerative diseases. However, the relationship is not always clear. In this review, we analyze the participation of thyroid hormones on ROS production and oxidative stress, and the way the changes in thyroid status in aging are involved in neurodegenerative diseases. PMID:24386502
Reduced maximal oxygen consumption and overproduction of proinflammatory cytokines in athletes.
Vaisberg, Mauro; de Mello, Marco Tulio; Seelaender, Marília Cerqueira Leite; dos Santos, Ronaldo Vagner Thomatieli; Costa Rosa, Luis Fernando Bicudo Pereira
2007-01-01
It was the aim of this study to evaluate whether chronic pain in athletes is related to performance, measured by the maximum oxygen consumption and production of hormones and cytokines. Fifty-five athletes with a mean age of 31.9 +/- 4.2 years engaged in regular competition and showing no symptoms of acute inflammation, particularly fever, were studied. They were divided into 2 subgroups according to the occurrence of pain. Plasma concentrations of adrenaline, noradrenaline, cortisol, prolactin, growth hormone and dopamine were measured by radioimmunoassay, and the production of the cytokines interleukin (IL)-1, IL-2, IL-4, IL-6, tumor necrosis factor-alpha, interferon-alpha and prostaglandin E(2) by whole-blood culture. Maximal oxygen consumption was determined during an incremental treadmill test. There was no change in the concentration of stress hormones, but the athletes with chronic pain showed a reduction in maximum oxygen consumption (22%) and total consumption at the anaerobic threshold (25%), as well as increased cytokine production. Increases of 2.7-, 8.1-, 1.7- and 3.7-fold were observed for IL-1, IL-2, tumor necrosis factor-alpha and interferon-alpha, respectively. Our data show that athletes with chronic pain have enhanced production of proinflammatory cytokines and lipid mediators and reduced performance in the ergospirometric test. (c) 2008 S. Karger AG, Basel.
Growth versus immunity--a redirection of the cell cycle?
Eichmann, Ruth; Schäfer, Patrick
2015-08-01
Diseases caused by plant pathogens significantly reduce growth and yield in agricultural crop production. Raising immunity in crops is therefore a major aim in breeding programs. However, efforts to enhance immunity are challenged by the occurrence of growth inhibition triggered by immunity that can be as detrimental as diseases. In this review, we will propose molecular models to explain the inhibitory growth-immunity crosstalk. We will briefly discuss why the resource reallocation model might not represent the driving force for the observed growth-immunity trade-offs. We suggest a model in which immunity redirects and initiates hormone signalling activities that can impair plant growth by antagonising cell cycle regulation and meristem activities. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
STRATEGIES TO REDUCE OR REPLACE THE USE OF ANIMALS IN THE ENDOCRINE SCREENING AND TESTING PROGRAM.
Abstract: The US Environmental Protection Agency (EPA) is developing a screening and testing program for endocrine disrupting chemicals (EDCs) to detect alterations of hypothalamic-pituitary-gonadal (HPG) function, estrogen, androgen and thyroid hormone synthesis and androgen (AR...
Miller, Gregory E; Chen, Edith; Parker, Karen J
2011-11-01
Among people exposed to major psychological stressors in early life, there are elevated rates of morbidity and mortality from chronic diseases of aging. The most compelling data come from studies of children raised in poverty or maltreated by their parents, who show heightened vulnerability to vascular disease, autoimmune disorders, and premature mortality. These findings raise challenging theoretical questions. How does childhood stress get under the skin, at the molecular level, to affect risk for later diseases? And how does it incubate there, giving rise to diseases several decades later? Here we present a biological embedding model, which attempts to address these questions by synthesizing knowledge across several behavioral and biomedical literatures. This model maintains that childhood stress gets "programmed" into macrophages through epigenetic markings, posttranslational modifications, and tissue remodeling. As a consequence these cells are endowed with proinflammatory tendencies, manifest in exaggerated cytokine responses to challenge and decreased sensitivity to inhibitory hormonal signals. The model goes on to propose that over the life course, these proinflammatory tendencies are exacerbated by behavioral proclivities and hormonal dysregulation, themselves the products of exposure to early stress. Behaviorally, the model posits that childhood stress gives rise to excessive threat vigilance, mistrust of others, poor social relationships, impaired self-regulation, and unhealthy lifestyle choices. Hormonally, early stress confers altered patterns of endocrine and autonomic discharge. This milieu amplifies the proinflammatory environment already instantiated by macrophages. Acting in concert with other exposures and genetic liabilities, the resulting inflammation drives forward pathogenic mechanisms that ultimately foster chronic disease.
Peter, Valsa S; Peter, M C Subhash
2011-12-01
Endocrines, the chief components of chemical centers which produce hormones in tune with intrinsic and extrinsic clues, create a chemical bridge between the organism and the environment. In fishes also hormones integrate and modulate many physiologic functions and its synthesis, release, biological actions and metabolic clearance are well regulated. Consequently, thyroid hormones (THs) and cortisol, the products of thyroid and interrenal axes, have been identified for their common integrative actions on metabolic and osmotic functions in fish. On the other hand, many anthropogenic chemical substances, popularly known as endocrine disrupting chemicals, have been shown to disrupt the hormone-receptor signaling pathways in a number fish species. These chemicals which are known for their ability to induce endocrine disruption particularly on thyroid and interrenals can cause malfunction or maladaptation of many vital processes which are involved in the development, growth and reproduction in fish. On the contrary, evidence is presented that the endocrine interrupting agents (EIAs) can cause interruption of thyroid and interrenals, resulting in physiologic compensatory mechanisms which can be adaptive, though such hormonal interactions are less recognized in fishes. The EIAs of physical, chemical and biological origins can specifically interrupt and modify the hormonal interactions between THs and cortisol, resulting in specific patterns of inter-hormonal interference. The physiologic analysis of these inter-hormonal interruptions during acclimation and post-acclimation to intrinsic or extrinsic EIAs reveals that combinations of anti-hormonal, pro-hormonal or stati-hormonal interference may help the fish to fine-tune their metabolic and osmotic performances as part of physiologic adaptation. This novel hypothesis on the phenomenon of inter-hormonal interference and its consequent physiologic interference during thyroid and interrenal interruption thus forms the basis of physiologic acclimation. This interfering action of TH and cortisol during hormonal interruption may subsequently promote ecological adaptation in fish as these physiologic processes ultimately favor them to survive in their hostile environment. Copyright © 2011 Elsevier Inc. All rights reserved.
Sex hormones and skeletal muscle weakness.
Sipilä, Sarianna; Narici, Marco; Kjaer, Michael; Pöllänen, Eija; Atkinson, Ross A; Hansen, Mette; Kovanen, Vuokko
2013-06-01
Human ageing is accompanied with deterioration in endocrine functions the most notable and well characterized of which being the decrease in the production of sex hormones. Current research literature suggests that low sex hormone concentration may be among the key mechanism for sarcopenia and muscle weakness. Within the European large scale MYOAGE project, the role of sex hormones, estrogens and testosterone, in causing the aging-related loss of muscle mass and function was further investigated. Hormone replacement therapy (HRT) in women is shown to diminish age-associated muscle loss, loss in fast muscle function (power), and accumulation of fat in skeletal muscle. Further HRT raises the protein synthesis rate in skeletal muscle after resistance training, and has an anabolic effect upon connective tissue in both skeletal muscle and tendon, which influences matrix structure and mechanical properties. HRT influences gene expression in e.g. cytoskeletal and cell-matrix proteins, has a stimulating effect upon IGF-I, and a role in IL-6 and adipokine regulation. Despite low circulating steroid-hormone level, postmenopausal women have a high local concentration of steroidogenic enzymes in skeletal muscle.
Phosphoglycerolipids are master players in plant hormone signal transduction.
Janda, Martin; Planchais, Severine; Djafi, Nabila; Martinec, Jan; Burketova, Lenka; Valentova, Olga; Zachowski, Alain; Ruelland, Eric
2013-06-01
Phosphoglycerolipids are essential structural constituents of membranes and some also have important cell signalling roles. In this review, we focus on phosphoglycerolipids that are mediators in hormone signal transduction in plants. We first describe the structures of the main signalling phosphoglycerolipids and the metabolic pathways that generate them, namely the phospholipase and lipid kinase pathways. In silico analysis of Arabidopsis transcriptome data provides evidence that the genes encoding the enzymes of these pathways are transcriptionally regulated in responses to hormones, suggesting some link with hormone signal transduction. The involvement of phosphoglycerolipid signalling in the early responses to abscisic acid, salicylic acid and auxins is then detailed. One of the most important signalling lipids in plants is phosphatidic acid. It can activate or inactivate protein kinases and/or protein phosphatases involved in hormone signalling. It can also activate NADPH oxidase leading to the production of reactive oxygen species. We will interrogate the mechanisms that allow the activation/deactivation of the lipid pathways, in particular the roles of G proteins and calcium. Mediating lipids thus appear as master players of cell signalling, modulating, if not controlling, major transducing steps of hormone signals.
Skin autofluorescence associates with vascular calcification in chronic kidney disease.
Wang, Angela Yee-Moon; Wong, Chun-Kwok; Yau, Yat-Yin; Wong, Sharon; Chan, Iris Hiu-Shuen; Lam, Christopher Wai-Kei
2014-08-01
This study aims to evaluate the relationship between tissue advanced glycation end products, as reflected by skin autofluorescence, and vascular calcification in chronic kidney disease. Three hundred patients with stage 3 to 5 chronic kidney disease underwent multislice computed tomography to estimate total coronary artery calcium score (CACS) and had tissue advanced glycation end product assessed using a skin autofluorescence reader. Intact parathyroid hormone (P<0.001) displaced estimated glomerular filtration rate as third most significant factor associated with skin autofluorescence after age (P<0.001) and diabetes mellitus (P<0.001) in multiple regression analysis. On univariate multinomial logistic regression analysis, every 1-U increase in skin autofluorescence was associated with a 7.43-fold (95% confidence intervals, 3.59-15.37; P<0.001) increased odds of having CACS ≥400 compared with those with zero CACS. Skin autofluorescence retained significance in predicting CACS ≥400 (odds ratio, 3.63; 95% confidence intervals, 1.44-9.18; P=0.006) when adjusting for age, sex, serum calcium, phosphate, albumin, C-reactive protein, lipids, blood pressure, estimated glomerular filtration rate, and intact parathyroid hormone but marginally lost significance when additionally adjusting for diabetes mellitus (odds ratio, 2.23; 95% confidence intervals, 0.81-6.14; P=0.1). Combination of diabetes mellitus and higher intact parathyroid hormone was associated with greater skin autofluorescence and CACS versus those without diabetes mellitus and having lower intact parathyroid hormone. Tissue advanced glycation end product, as reflected by skin autofluorescence, showed a significant novel association with vascular calcification in chronic kidney disease. These data suggest that increased tissue advanced glycation end product may contribute to vascular calcification in chronic kidney disease and diabetes mellitus and warrant further experimental investigation. © 2014 American Heart Association, Inc.
López-Siguero, Juan Pedro; Palla García, Margarida; Martínez Busto, Elena; Rebollo, Francisco José; Pombo, Manuel
2018-04-01
Recombinant human growth hormone (rhGH) is the first biosimilar drug approved by the European Medicines Agency in 2006, using the biosimilar registration process. It was authorised for the treatment of growth hormone deficiency, and growth disorders associated with Turner's syndrome, chronic renal failure, Prader-Willi syndrome, and growth disorders in children/adolescents born small for gestational age, and replacement therapy in adults with pronounced growth hormone deficiency. This review is focused on the scientific evidence published about this drug in the last ten years, including the clinical trials on which the approval of the regulatory authority is based, and the most relevant studies evaluating the clinical impact of the drug in clinical practice. The equivalence between biosimilar and original product has been confirmed in the clinical trials published by Romer et al. and López-Siguero et al. Furthermore, studies carried out in real-life conditions confirm its long-term efficacy and safety, as well as the absence of clinical impact by switching treatment from the original to the biosimilar product. The number of patients receiving this medication has continuously increased since its approval. Its equivalence with the original product has been verified. Preliminary data from the post-authorisation PATRO study confirm the efficacy and safety of the biosimilar product in comparison with data from clinical trials. However, final results must be evaluated at the end of the study, which will provide additional information about the long-term efficacy and safety of the biosimilar drug. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
Hormones that Stimulate the Growth of Blood Cells.
ERIC Educational Resources Information Center
Golde, David W.; Gasson, Judith C.
1988-01-01
Describes the nature and action of hematopoietic proteins which regulate the production of specific sets of blood cells. Discusses the production of these hematopoietins by recombinant-DNA methods in an effort to enable physicians to treat patients by eliciting production of specific types of blood cells. (CW)
Puttabyatappa, Muraly; Cardoso, Rodolfo C.; Herkimer, Carol; Veiga-Lopez, Almudena; Padmanabhan, Vasantha
2016-01-01
Gestational testosterone (T) excess, acting via both the androgenic and estrogenic pathways, advances puberty and disrupts the neuroendocrine estradiol (E) feedback and periovulatory hormonal dynamics in female sheep. These prenatally programmed defects may be subject to postnatal modifications by continued organizational and/or activational effects of steroids. The present study investigated 1) the organizational contribution of prenatal estrogen excess and 2) the impact of postnatal exposure to E in modulating the effects of prenatal androgen excess (T and dihydrotestosterone [DHT]) on puberty, neuroendocrine feedback mechanisms, and periovulatory hormonal dynamics in sheep. Pregnant Suffolk sheep were treated with T, DHT, E, or E plus DHT (ED) from days 30 to 90 of gestation. A subset of the control (C), T, and DHT female offspring received a constant-release E implant postnatally. Findings revealed that 1) prenatal E-treatment failed to reproduce the neuroendocrine disruptions predicted to be programmed by the estrogenic pathway and 2) prenatal ED-treatment did not adequately replicate the reproductive neuroendocrine defects induced by prenatal T excess. More importantly, continuous postnatal E-treatment, while delaying the onset of puberty and reducing the inhibitory effects of E on tonic luteinizing hormone (LH) release, failed to amplify the E positive feedback and periovulatory defects induced by prenatal T-treatment. Our results indicate that disruptions in E positive feedback mechanisms and periovulatory gonadotropin secretion induced by prenatal T-treatment are programmed predominantly during the prenatal life with postnatal exposure to E excess not contributing further to these disruptions. PMID:27222598
Castaldi, Maria; Safadjou, Saman; Elrafei, Tarek; McNelis, John
Cancer health disparities affecting low-income and minority patients have been well documented to lead to poor outcomes. This report examines the impact of patient navigation on adherence to prescribed adjuvant breast cancer treatment. A multidisciplinary patient navigation program was initiated at a public safety net hospital to improve compliance with 3 National Quality Forum measures: (1) administration of combination chemotherapy for women with Stage (defined by the American Joint Committee on Cancer [AJCC]) T1c, II, or III hormone receptor-negative breast cancer within 120 days; (2) administration of endocrine therapy for women with AJCC Stage T1c, II, or III hormone receptor-positive breast cancer within 365 days; and (3) radiation therapy for women receiving breast-conserving surgery within one year. Implementation of a multidisciplinary patient navigation program reduced time to treatment and improved compliance with adjuvant therapy for breast cancer in an underserved minority community.
Oliveira, Louise H; Sanches, Carlos P; Seddon, Adriano S; Veras, Marcio B; Lima, Flávio A; Monteiro, Pedro L J; Wiltbank, Milo C; Sartori, Roberto
2016-11-01
The objective was to evaluate in vitro embryo production (IVEP) in nonlactating Holstein cows after ovarian superstimulation. Cows were randomly assigned in a crossover design to 1 of 2 groups: control (n=35), which was not synchronized and not treated with hormones before ovum pick-up (OPU), or hormone-treated (n=35), in which wave emergence was synchronized and animals treated with porcine (p)-FSH in the presence of norgestomet before OPU. In the hormone-treated group, all follicles ≥7mm in diameter were aspirated for synchronization of wave emergence and cows received a norgestomet ear implant. After 36h, treatment with p-FSH (6 doses of 40mg each, 12h apart, i.m.) started. Ovum pick-up from follicles >2mm in diameter was performed 44h after the last p-FSH (coasting). Then, IVEP was performed. The total number of cumulus-oocyte complexes recovered (16.0 vs. 20.5±2.2) and number of grades I to III (viable) oocytes (10.7 vs. 12.3±1.6) did not differ between hormone-treated and control groups Additionally, no differences were found in the number of blastocysts per cow per OPU (3.0 vs. 2.6±0.5) or in blastocyst rates (17.1 vs. 12.2±2.4%) between hormone-treated and control, respectively. Thus, in this study, ovarian follicle superstimulation with p-FSH followed by coasting in nonlactating Holstein cows that had synchronization of wave emergence and progestin supplementation did not improve oocyte quality or IVEP compared to no hormonal treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Reproductive and Appetite Hormones and Bulimic Symptoms During Midlife
Baker, Jessica H.; Peterson, Claire M.; Thornton, Laura M.; Brownley, Kimberly A.; Bulik, Cynthia M.; Girdler, Susan S.; Marcus, Marsha D.; Bromberger, Joyce T.
2017-01-01
Eating disorders and related symptoms occur during midlife; however, little is known about their etiology. It has been hypothesized that perimenopause represents a window of vulnerability for the development or exacerbation of eating disorder symptomatology because, like puberty, perimenopause is a period of reproductive hormone change. We compared symptoms of bulimia nervosa (bulimic symptomatology) assessed via mean scores on a self-report questionnaire in premenopausal and perimenopausal women. We also examined the association between hormone concentrations (reproductive/appetite) and bulimic symptomatology. No mean differences in bulimic symptomatology were observed between premenopause and perimenopause. However, there was a significant positive association between leptin and binge eating. Although no significant associations between reproductive hormones and bulimic symptomatology were observed, additional research is needed to provide definitive information. It is essential to learn more about the etiology of eating disorders and related symptomatology across the lifespan in order to develop age-relevant treatment and prevention programs. PMID:28276114
Hormone signaling through protein destruction: a lesson from plants.
Tan, Xu; Zheng, Ning
2009-02-01
Ubiquitin-dependent protein degradation has emerged as a major pathway regulating eukaryotic biology. By employing a variety of ubiquitin ligases to target specific cellular proteins, the ubiquitin-proteasome system controls physiological processes in a highly regulated fashion. Recent studies on a plant hormone auxin have unveiled a novel paradigm of signal transduction in which ubiquitin ligases function as hormone receptors. Perceived by the F-box protein subunit of the SCF(TIR1) ubiquitin ligase, auxin directly promotes the recruitment of a family of transcriptional repressors for ubiquitination, thereby activating extensive transcriptional programs. Structural studies have revealed that auxin functions through a "molecular glue" mechanism to enhance protein-protein interactions with the assistance of another small molecule cofactor, inositol hexakisphosphate. Given the extensive repertoire of similar ubiquitin ligases in eukaryotic cells, this novel and widely adopted hormone-signaling mechanism in plants may also exist in other organisms.
Nguyen, Thao Bich; Kitani, Shigeru; Shimma, Shuichi; Nihira, Takuya
2018-05-01
In streptomycetes, autoregulators are important signaling compounds that trigger secondary metabolism, and they are regarded as Streptomyces hormones based on their extremely low effective concentrations (nM) and the involvement of specific receptor proteins. Our previous distribution study revealed that butenolide-type Streptomyces hormones, including avenolide, are a general class of signaling molecules in streptomycetes and that Streptomyces albus strain J1074 may produce butenolide-type Streptomyces hormones. Here, we describe metabolite profiling of a disruptant of the S. albus aco gene, which encodes a key biosynthetic enzyme for butenolide-type Streptomyces hormones, and identify four butenolide compounds from S. albus J1074 that show avenolide activity. The compounds structurally resemble avenolide and show different levels of avenolide activity. A dual-culture assay with imaging mass spectrometry (IMS) analysis for in vivo metabolic profiling demonstrated that the butenolide compounds of S. albus J1074 stimulate avermectin production in another Streptomyces species, Streptomyces avermitilis , illustrating the complex chemical interactions through interspecies signals in streptomycetes. IMPORTANCE Microorganisms produce external and internal signaling molecules to control their complex physiological traits. In actinomycetes, Streptomyces hormones are low-molecular-weight signals that are key to our understanding of the regulatory mechanisms of Streptomyces secondary metabolism. This study reveals that acyl coenzyme A (acyl-CoA) oxidase is a common and essential biosynthetic enzyme for butenolide-type Streptomyces hormones. Moreover, the diffusible butenolide compounds from a donor Streptomyces strain were recognized by the recipient Streptomyces strain of a different species, resulting in the initiation of secondary metabolism in the recipient. This is an interesting report on the chemical interaction between two different streptomycetes via Streptomyces hormones. Information on the metabolite network may provide useful hints not only to clarification of the regulatory mechanism of secondary metabolism, but also to understanding of the chemical communication among streptomycetes to control their physiological traits. Copyright © 2018 American Society for Microbiology.
Cantero-Navarro, Elena; Romero-Aranda, Remedios; Fernández-Muñoz, Rafael; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco; Albacete, Alfonso
2016-10-01
Water availability is the most important factor limiting food production, thus developing new scientific strategies to allow crops to more efficiently use water could be crucial in a world with a growing population. Tomato is a highly water consuming crop and improving its water use efficiency (WUE) implies positive economic and environmental effects. This work aimed to study and exploit root-derived hormonal traits to improve WUE in tomato by grafting on selected rootstocks. Firstly, root-related hormonal parameters associated to WUE were identified in a population of recombinant inbred lines (RILs) derived from the wild tomato species Solanum pimpinellifolium. A principal component analysis (PCA) revealed that some hormonal traits were associated with productivity (plant biomass and photosynthesis) and WUE in the RIL population. Leaf ABA concentration was associated to the first component (PC1) of the PCA, which explained a 60% of the variance in WUE, while the ethylene precursor ACC and the ratio ACC/ABA were also associated to PC1 but in the opposite direction. Secondly, we selected RILs according to their extreme biomass (high, B, low, b) and water use (high, W, low, w), and studied the differential effect of shoot and root on WUE by reciprocal grafting. In absence of any imposed stress, there were no rootstock effects on vegetative shoot growth and water relations. Finally, we exploited the previously identified root-related hormonal traits by grafting a commercial tomato variety onto the selected RILs to improve WUE. Interestingly, rootstocks that induced low biomass and water use, 'bw', improved fruit yield and WUE (defined as fruit yield/water use) by up to 40% compared to self-grafted plants. Although other hormonal factors appear implicated in this response, xylem ACC concentration seems an important root-derived trait that inhibits leaf growth but does not limit fruit yield. Thus tomato WUE can be improved exploiting rootstock-derived hormonal signals which control leaf growth. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mohanty, Banalata
2006-01-01
Extracellular accumulations of two distinct types, colloid-filled follicles and fibrous-material-containing cysts, were observed in the pituitary gland of two species of Indian wild birds, Halcyon smyrnensis perpulchra and Lonchura striata striata. Colloid follicles were regular structures and distributed throughout the pars distalis (PD). The fibrous cysts were irregular structures, bigger than the colloid follicles and mostly observed towards the ventral margin of the PD. Sometimes disruption of the outer margin with depletion of fibrous material from the cavity was observed. Hormone-secreting cells of various types, anti-adrenocorticotropic-hormone-, anti-prolactin-, anti-growth-hormone- and anti-luteinizing-hormone-immunoreactive cells were encountered bordering both the colloid follicles and fibrous cysts. Neither the colloid nor the fibrous material showed any immunoreaction to any of the pituitary hormone antisera. On histochemical staining colloid was positive to periodic acid-Schiff (PAS) and fibrous materials stained with Alcian blue-PAS-orange G staining. Colloid depositions in the pituitary gland of these two wild birds were correlated to age, more in numbers in the adult birds than in the young ones. Fibrous-material-containing cysts were elucidated in the pituitary gland of adult birds only. These were more prevalent in the pituitary of reproductively active birds. Regular morphology of the colloid follicles, overall distribution in the adenohypophysis and dense nature of deposition of the colloid suggest the accumulation of this type may be the secretory products of both granulated and agranulated pituitary cell types. Absence of immunoreactivity of the colloid against pituitary hormone antisera points out that the storage form may differ chemically from the bioactive hormones. The spatial distribution of fibrous-material-containing cysts mostly towards the ventral PD, observations of immunoreactive cell fragmentations inside the cysts, and their disrupted margins suggest these structures may have some role in discharging the intraglandular degradation products. 2006 S. Karger AG, Basel
Recent advances in the synchronization of estrus and ovulation in dairy cows.
Macmillan, Keith L
2010-01-01
Synchronization programs have become standard components in the current breeding management of cows in the dairy herds of most dairy industries. Many are based on protocols that allow timed inseminations (TAI) so as to circumvent the practical difficulties associated with estrus detection. These difficulties are exacerbated in modern herds of high producing cows either because of increasing herd size in which individual animal monitoring is difficult and often subjective, or because small intensively managed herds are milked in robotic systems that minimize animal: staff interactions. Additional reasons arise from high producing cows having less obvious symptoms of estrus, partly because of housing systems combined with intensive feeding and milking, partly because of higher metabolic clearance rates of reproductive hormones like estradiol and partly because of the increasing prevalence of prolonged post-partum anestrus and reproductive tract pathology. The most recently developed programs include protocols for resynchronization following first or subsequent inseminations. These re-synchronization protocols may involve selected forms of hormonal intervention during the diestrous and pro-estrous periods following TAI, or following pregnancy diagnosis by ultrasound from 28 days after TAI. The latter form of re-synchronization has become increasingly important with the recognition that late embryonic/early foetal death has become a major factor compromising the reproductive performance of high producing Holstein cows in many dairy industries. Although cows detected in estrus without any hormonal treatment before insemination have higher conception rates than those inseminated following synchronization and TAI, the low detection rates combined with embryonic death means that intervals from calving to conception (days open) are usually less when synchronization programs have been successfully implemented. One of the significant factors affecting a program's success is the compliance rate that may sometimes be less than 70%. Almost all programs involve strategically timed injections of prostaglandin F2alpha (PGF) and gonadotropin releasing hormone (GnRH). Injections of an estradiol ester and progesterone supplementation per vaginum may be included in some programs. The basic program is the "Ovsynch" regimen. Numerous variations have been tested and developed. Many involve increasingly complex protocols that increase the risk of non-compliance, none has consistently achieved conception rates that exceed 40% and few have reduced the incidence of embryonic death. These synchronization programs are the best that are currently available. They have not been able to overcome the consequences of lowered fertility associated with high levels of milk yield, forms of nutrition and environmental factors like heat stress that have profound effects on the physiology and metabolism of the high producing dairy cow.
The hormone prolactin (PRL) plays a critical role in normal breast development by stimulating the proliferation of mammary cells, the production of milk proteins, and the formation of new mammary blood vessels. Unfortunately, the same cell and vessel growth pathways controlled by PRL in normal cells also operate in breast cancer cells, and elevated plasma PRL is a risk factor
Activational effects of sex hormones on cognition in men.
Ulubaev, A; Lee, D M; Purandare, N; Pendleton, N; Wu, F C W
2009-11-01
Changing world demographic patterns, such as the increasing number of older people and the growing prevalence of cognitive impairment, present serious obstacles to preserving the quality of life and productivity of individuals. The severity of dementia varies from subclinical, mild cognitive impairment to neurodegenerative diseases such as Alzheimer's. In normally ageing men, these age-related cognitive declines are accompanied by gradual but marked decreases in androgen levels and changes in other hormone profiles. While developmental effects of sex hormones on cognition in the pre- and early postnatal period have been demonstrated, their activational effects in later life are still a focus of contemporary research. Although there is a plethora of published research on the topic, results have been inconsistent with different studies reporting positive, negative or no effects of sex hormones on various aspects of mental agility. This review summarizes the evidence supporting the biological plausibility of the activational effects of sex hormones upon cognition and describes the mechanisms of their actions. It offers a comprehensive summary of the studies of the effects of sex hormones on fluid intelligence in men utilizing elements from the Cochrane Collaboration Guidelines for Reviews. The results of both observational (cross-sectional and longitudinal) and interventional studies published to date are collated in table form and further discussed in the text. Factors contributing to the difficulties in understanding the effects of sex hormones on cognition are also examined. Although there is convincing evidence that steroid sex hormones play an organizational role in brain development in men, the evidence for activational effects of sex hormones affecting cognition in healthy men throughout adult life remains inconsistent. To address this issue, a new multifactorial approach is proposed which takes into account the status of other elements of the sex hormones axis including receptors, enzymes and other hormones.
The emergence of levothyroxine as a treatment for hypothyroidism.
Hennessey, James V
2017-01-01
To describe the historical refinements, understanding of physiology and clinical outcomes observed with thyroid hormone replacement strategies. A Medline search was initiated using the search terms, levothyroxine, thyroid hormone history, levothyroxine mono therapy, thyroid hormone replacement, combination LT4 therapy, levothyroxine Bioequivalence. Pertinent articles of interest were identified by title and where available abstract for further review. Additional references were identified in the course of review of the literature identified. Physicians have intervened in cases of thyroid dysfunction for more than two millennia. Ingestion of animal thyroid derived preparations has been long described but only scientifically documented for the last 130 years. Refinements in hormone preparation, pharmaceutical production and regulation continue to this day. The literature provides documentation of physiologic, pathologic and clinical outcomes which have been reported and continuously updated. Recommendations for effective and safe use of these hormones for reversal of patho-physiology associated with hypothyroidism and the relief of symptoms of hypothyroidism has documented a progressive refinement in our understanding of thyroid hormone use. Studies of thyroid hormone metabolism, action and pharmacokinetics have allowed evermore focused recommendations for use in clinical practice. Levothyroxine mono-therapy has emerged as the therapy of choice of all recent major guidelines. The evolution of thyroid hormone therapies has been significant over an extended period of time. Thyroid hormone replacement is very useful in the treatment of those with hypothyroidism. All of the most recent guidelines of major endocrine societies recommend levothyroxine mono-therapy for first line use in hypothyroidism.
Kajino, T; Saito, Y; Asami, O; Yamada, Y; Hirai, M; Udata, S
1997-10-01
The characteristic features of the Bacillus brevis system are very high productivity of heterologous proteins and very low extracellular protease activity. However, degradation of some heterologous proteins, especially mammalian proteins, can be observed and resulted in a lowering of protein productivity. By using a mutant expressing low levels of proteases and the addition of EDTA to the medium, intact human growth hormone (hGH) was successfully produced with the B. brevis system. Signal peptide modification with higher basicity in the amino terminal region and higher hydrophobicity in the middle region brought about a twelve-fold increase in hGH production. The hGH yield was further elevated to 240 mg L-1 by optimization of culture conditions. Thus, biologically active and mature hGH can be efficiently produced directly in the medium with the B. brevis system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karman, Bethany N., E-mail: bklement@illinois.edu; Basavarajappa, Mallikarjuna S., E-mail: mbshivapur@gmail.com; Craig, Zelieann R., E-mail: zelieann@illinois.edu
The persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an ovarian toxicant. These studies were designed to characterize the actions of TCDD on steroidogenesis and growth of intact mouse antral follicles in vitro. Specifically, these studies tested the hypothesis that TCDD exposure leads to decreased sex hormone production/secretion by antral follicles as well as decreased growth of antral follicles in vitro. Since TCDD acts through binding to the aryl hydrocarbon receptor (AHR), and the AHR has been identified as an important factor in ovarian function, we also conducted experiments to confirm the presence and activation of the AHR in our tissue culturemore » system. To do so, we exposed mouse antral follicles for 96 h to a series of TCDD doses previously shown to have effects on ovarian tissues and cells in culture, which also encompass environmentally relevant and pharmacological exposures (0.1–100 nM), to determine a dose response for TCDD in our culture system for growth, hormone production, and expression of the Ahr and Cyp1b1. The results indicate that TCDD decreases progesterone, androstenedione, testosterone, and estradiol levels in a non-monotonic dose response manner without altering growth of antral follicles. The addition of pregnenolone substrate (10 μM) restores hormone levels to control levels. Additionally, Cyp1b1 levels were increased by 3–4 fold regardless of the dose of TCDD exposure, evidence of AHR activation. Overall, these data indicate that TCDD may act prior to pregnenolone formation and through AHR transcriptional control of Cyp1b1, leading to decreased hormone levels without affecting growth of antral follicles. -- Highlights: ►TCDD disrupts sex steroid hormone levels, but not growth of antral follicles. ►Pregnenolone co-treatment by-passes TCDD-induced steroid hormone disruption. ►TCDD affects steroid hormone levels through an AHR pathway in antral follicles.« less
Immune Alterations in Male and Female Mice after 2-Deoxy-D-Glucose Administration
NASA Technical Reports Server (NTRS)
Dreau, Didier; Morton, Darla S.; Foster, Mareva; Swiggett, Jeanene P.; Sonnenfeld, Gerald
1995-01-01
Administration of 2-deoxy-D-glucose (2-DG), an analog of glucose which inhibits glycolysis by competitive antagonism for phosphohexose isomerase, results in acute periods of intracellular glucoprivation and hyperglycemia resulting in hyperphagia. In addition to these changes in the carbohydrate metabolism, injection of 2-DG results in alterations of both the endocrine and neurological systems as suggested by modifications in oxytocin and glucocorticoid levels and norepinephrine production. Moreover, alterations of the immune response, such as a decrease in the in vitro proliferation of splenocytes after mitogen-stimulation, were observed in mice injected with 2-DG. Sex, genotype and environment are among the factors that may modulate effects of catecholamines and hypothalamo-pituitary-adrenal axis on these immune changes. Sexual dimorphism in immune function resulting from the effects of sex hormones on immune effector cells has been shown in both animals and humans. These observations have important implications, especially with regard to higher incidence of many autoimmune diseases in females. Evidence exists that reproductive hormones influence the immune system and increase the risk of immunologically related disorders in both animals and humans. Indeed, immunological responses in stressful situations may also be confounded by fluctuations of sex hormones especially in females. Lymphocyte distribution, cytoldne production, and the ability of lymphocyte to proliferate in vitro were analyzed in male and female mice to determine if sex influenced 2-DG immunomodulation. In addition, the influence of hormones, especially sex hormones, on these changes were evaluated.
Chu, Po-Wei; Yang, Zhi-Jie; Huang, Hui-Hsin; Chang, Ai-An; Cheng, Yu-Chen; Wu, Gwo-Jang; Lan, Hsin-Chieh
2018-02-01
Bisphenol A (BPA) is an industrial material used for many plastic products and is considered an endocrine disruptor. BPA can be released into the environment and can spread through the food chain. It is well known that BPA exposure leads to lesions, especially in the reproductive system. According to previous studies, BPA reduces newborn numbers in pregnant mice and affects placentation. The placenta is a special endocrine organ during pregnancy. It secretes important hormones, such as progesterone and estrogen, to maintain gestation. In steroid hormone synthesis, two specific enzymes are important: P450scc (CYP11A1) converts cholesterol to pregnenolone and aromatase (CYP19) induces androgen conversion to estrogen.To determine the effects of a low dose of BPA on hormone synthesis in the placenta, we used JEG-3 cells as a model. We found that the steroidogenic genes CYP11A1 and CYP19 were downregulated in human tissues by detectable concentrations of BPA (1-1000 nM), which do not affect cell viability. Furthermore, we demonstrated that BPA influenced the ERK signaling pathway and resulted in hormone reductions. An analysis of trophoblasts in primary culture from a term human placenta showed the same phenomena. Our data demonstrate that treatment with a low dose of BPA does not affect human placental cell survival, but decreases hormone production via to the downregulation of steroidogenic genes and ERK signaling pathway changes.
Personal care products that contain estrogens or xenoestrogens may increase breast cancer risk.
Donovan, Maryann; Tiwary, Chandra M; Axelrod, Deborah; Sasco, Annie J; Jones, Lovell; Hajek, Richard; Sauber, Erin; Kuo, Jean; Davis, Devra L
2007-01-01
Established models of breast cancer risk, such as the Gail model, do not account for patterns of the disease in women under the age of 35, especially in African Americans. With the possible exceptions of ionizing radiation or inheriting a known genetic mutation, most of the known risk factors for breast cancer are related to cumulative lifetime exposure to estrogens. Increased risk of breast cancer has been associated with earlier onset of menses or later age at menopause, nulliparity or late first parity, use of hormonal contraceptives or hormone replacement therapy, shorter lactation history, exposure to light at night, obesity, and regular ingestion of alcohol, all of which increase circulating levels of unbound estradiol. Among African Americans at all ages, use of hormone-containing personal care products (PCPs) is more common than among whites, as is premature appearance of secondary sexual characteristics among infants and toddlers. We hypothesize that the use of estrogen and other hormone-containing PCPs in young African American women accounts, in part, for their increased risk of breast cancer prior to menopause, by subjecting breast buds to elevated estrogen exposure during critical windows of vulnerability in utero and in early life. These early life and continuing exposures to estrogenic and xenoestrogenic agents may also contribute to the increased lethality of breast cancer in young women in general and in African American women of all ages. Public disclosure by manufacturers of proprietary hormonally active ingredients is required for this research to move forward.
Mechanical stress regulation of plant growth and development
NASA Technical Reports Server (NTRS)
Mitchell, C. A.; Myers, P. N.
1995-01-01
The authors introduce the chapter with a discussion of lessons from nature, agriculture, and landscapes; terms and definitions; and an historical perspective of mechanical stress regulation of plant growth and development. Topics include developmental responses to mechanical stress; mechanical stress-environment interactions; metabolic, productivity, and compositional changes; hormonal involvement; mechanoperception and early transduction mechanisms; applications in agriculture; and research implications. The discussion of hormonal involvement in mechanical stress physiology includes ethylene, auxin, gibberellins, and other phytohormones. The discussion of applications in agriculture examines windbreaks, nursery practices, height control and conditioning, and enhancement of growth and productivity. Implications for research are related to handling plant materials, space biology, and future research needs.
Should dairy be recommended as part of a healthy vegetarian diet? Point.
Weaver, Connie M
2009-05-01
A benefit-risk evaluation of the evidence for including dairy foods in the diet is presented. For many persons dairy products provide a substantial portion of essential nutrients, but especially calcium, potassium, and magnesium. Dietary supplements and fortified foods can be alternative sources of these nutrients, although other components of dairy foods such as amino acid composition and conjugated linoleic acid may be instrumental in the benefits associated with dairy product consumption for bone health and reduced risk of stroke, metabolic syndrome, and some cancers. Newer evidence shows that protein-induced calciuria does not have a detrimental effect on net calcium retention, and the concentrations of hormones in milk are not outside of the range of endogenous concentrations. Increased dietary protein, including from milk, can elevate serum concentrations of insulin-like growth factor I, which has an unknown relation to cancer. The concern over consumption of milk leading to increased risk of prostate cancer through reduction of serum 1,25-dihydroxyvitamin D, a potent anti-prostate cancer hormone, has been resolved with new evidence that local production of this hormone is independent of diet. Overall, evidence suggests that being a lactovegetarian has greater health benefits and reduced health risks than being a vegan.
Pérez, Jonathan H; Meddle, Simone L; Wingfield, John C; Ramenofsky, Marilyn
2018-01-01
Most seasonal species rely on the annual change in day length as the primary cue to appropriately time major spring events such as pre-nuptial molt and breeding. Thyroid hormones are thought to be involved in the regulation of both of these spring life history stages. Here we investigated the effects of chemical inhibition of thyroid hormone production using methimazole, subsequently coupled with either triiodothyronine (T3) or thyroxine (T4) replacement, on the photostimulation of pre-nuptial molt and breeding in Gambel's white-crowned sparrows (Zonotrichia leuchophrys gambelii). Suppression of thyroid hormones completely prevented pre-nuptial molt, while both T3 and T4 treatment restored normal patterns of molt in thyroid hormone-suppressed birds. Testicular recrudescence was blocked by methimazole, and restored by T4 but not T3, in contrast to previous findings demonstrating central action of T3 in the photostimulation of breeding. Methimazole and replacement treatments elevated plasma luteinizing hormone levels compared to controls. These data are partially consistent with existing theories on the role of thyroid hormones in the photostimulation of breeding, while highlighting the possibility of additional feedback pathways. Thus we suggest that regulation of the hypothalamic pituitary gonad axis that controls breeding may be more complex than previously considered. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Association between asthma and female sex hormones.
Baldaçara, Raquel Prudente de Carvalho; Silva, Ivaldo
2017-01-01
The relationship between sex hormones and asthma has been evaluated in several studies. The aim of this review article was to investigate the association between asthma and female sex hormones, under different conditions (premenstrual asthma, use of oral contraceptives, menopause, hormone replacement therapy and pregnancy). Narrative review of the medical literature, Universidade Federal do Tocantins (UFT) and Universidade Federal de São Paulo (Unifesp). We searched the CAPES journal portal, a Brazilian platform that provides access to articles in the MEDLINE, PubMed, SciELO, and LILACS databases. The following keywords were used based on Medical Subject Headings: asthma, sex hormones, women and use of oral contraceptives. The associations between sex hormones and asthma remain obscure. In adults, asthma is more common in women than in men. In addition, mortality due to asthma is significantly higher among females. The immune system is influenced by sex hormones: either because progesterone stimulates progesterone-induced blocking factor and Th2 cytokines or because contraceptives derived from progesterone and estrogen stimulate the transcription factor GATA-3. The associations between asthma and female sex hormones remain obscure. We speculate that estrogen fluctuations are responsible for asthma exacerbations that occur in women. Because of the anti-inflammatory action of estrogen, it decreases TNF-α production, interferon-γ expression and NK cell activity. We suggest that further studies that highlight the underlying physiopathological mechanisms contributing towards these interactions should be conducted.
Schenk, Sven; Krauditsch, Christian; Frühauf, Peter; Gerner, Christopher; Raible, Florian
2016-01-01
Animals require molecular signals to determine when to divert resources from somatic functions to reproduction. This decision is vital in animals that reproduce in an all-or-nothing mode, such as bristle worms: females committed to reproduction spend roughly half their body mass for yolk and egg production; following mass spawning, the parents die. An enigmatic brain hormone activity suppresses reproduction. We now identify this hormone as the sesquiterpenoid methylfarnesoate. Methylfarnesoate suppresses transcript levels of the yolk precursor Vitellogenin both in cell culture and in vivo, directly inhibiting a central energy–costly step of reproductive maturation. We reveal that contrary to common assumptions, sesquiterpenoids are ancient animal hormones present in marine and terrestrial lophotrochozoans. In turn, insecticides targeting this pathway suppress vitellogenesis in cultured worm cells. These findings challenge current views of animal hormone evolution, and indicate that non-target species and marine ecosystems are susceptible to commonly used insect larvicides. DOI: http://dx.doi.org/10.7554/eLife.17126.001 PMID:27894418
Brown, Megan E; Converse, Sarah J.; Chandler, Jane N.; Shafer, Charles; Brown, Janine L; Keefer, Carol L; Songsasen, Nucharin
2016-01-01
Reproductive success of endangered whooping cranes (Grus americana) maintained ex situ is poor. As part of an effort to identify potential causes of poor reproductive success in a captive colony, we used non-invasive endocrine monitoring to assess gonadal and adrenal steroids of bird pairs with various reproductive outcomes and evaluated the relationships of hormones and behaviors to reproductive performance. Overall, reproductively successful (i.e., egg laying) females had significantly higher mean estrogen levels but lower mean progestogen concentrations than did unsuccessful females. Other hormones, including glucocorticoids and androgens, were not significantly different between successful and unsuccessful individuals. Observations of specific behaviors such as unison calling, marching, and the number of copulation attempts, along with overall time spent performing reproductive behaviors, were significantly higher in successful pairs. Our findings indicate that overall reproductive performance of whooping crane pairs is linked to female gonadal hormone excretion and reproductive behaviors, but not to altered adrenal hormone production.
Allaway, Heather C M; Southmayd, Emily A; De Souza, Mary Jane
2016-02-01
An energy deficiency is the result of inadequate energy intake relative to high energy expenditure. Often observed with the development of an energy deficiency is a high drive for thinness, dietary restraint, and weight and shape concerns in association with eating behaviors. At a basic physiologic level, a chronic energy deficiency promotes compensatory mechanisms to conserve fuel for vital physiologic function. Alterations have been documented in resting energy expenditure (REE) and metabolic hormones. Observed metabolic alterations include nutritionally acquired growth hormone resistance and reduced insulin-like growth factor-1 (IGF-1) concentrations; hypercortisolemia; increased ghrelin, peptide YY, and adiponectin; and decreased leptin, triiodothyronine, and kisspeptin. The cumulative effect of the energetic and metabolic alterations is a suppression of the hypothalamic-pituitary-ovarian axis. Gonadotropin releasing hormone secretion is decreased with consequent suppression of luteinizing hormone and follicle stimulating hormone release. Alterations in hypothalamic-pituitary secretion alters the production of estrogen and progesterone resulting in subclinical or clinical menstrual dysfunction.
Brown, Megan E; Converse, Sarah J; Chandler, Jane N; Shafer, Charles; Brown, Janine L; Keefer, Carol L; Songsasen, Nucharin
2016-05-01
Reproductive success of endangered whooping cranes (Grus americana) maintained ex situ is poor. As part of an effort to identify potential causes of poor reproductive success in a captive colony, we used non-invasive endocrine monitoring to assess gonadal and adrenal steroids of bird pairs with various reproductive outcomes and evaluated the relationships of hormones and behaviors to reproductive performance. Overall, reproductively successful (i.e., egg laying) females had significantly higher mean estrogen levels but lower mean progestogen concentrations than did unsuccessful females. Other hormones, including glucocorticoids and androgens, were not significantly different between successful and unsuccessful individuals. Observations of specific behaviors such as unison calling, marching, and the number of copulation attempts, along with overall time spent performing reproductive behaviors, were significantly higher in successful pairs. Our findings indicate that overall reproductive performance of whooping crane pairs is linked to female gonadal hormone excretion and reproductive behaviors, but not to altered adrenal hormone production. Published by Elsevier Inc.
Peptide processing and biology in human disease.
Kovac, Suzana; Shulkes, Arthur; Baldwin, Graham S
2009-02-01
To describe recent advances in the processing of gastrointestinal hormones, and the consequences for human disease of mutations in the enzymes involved. Although gastrointestinal prohormones were long regarded as devoid of biological activity, recent data indicate that the prohormones for both gastrin and gastrin-releasing peptide are bioactive, through different receptors from the mature hormones. Mutations in the family of prohormone convertases responsible for the initial steps in the processing of gastrointestinal hormones are associated with several different pathophysiological conditions in humans. Human mutational studies, when taken together with the phenotypes observed in mice deficient in the prohormone convertases, emphasize the crucial importance of the processing enzymes in mammalian biology. Although the phenotypes may often be ascribed to defective production of a mature hormone or growth factor, the recognition that the precursors are independently bioactive suggests that the increased precursor concentrations may also contribute to the symptoms. The observation that the precursors often act through different receptors from the mature hormones may permit the development of precursor-selective antagonists for therapeutic use.
Dong, Du-Juan; Jing, Yu-Pu; Liu, Wen; Wang, Jin-Xing; Zhao, Xiao-Fan
2015-01-01
The steroid hormone 20-hydroxyecdysone (20E) and the serine/threonine Ste20-like kinase Hippo signal promote programmed cell death (PCD) during development, although the interaction between them remains unclear. Here, we present evidence that 20E up-regulates Hippo to induce PCD during the metamorphic development of insects. We found that Hippo is involved in 20E-induced metamorphosis via promoting the phosphorylation and cytoplasmic retention of Yorkie (Yki), causing suppressed expression of the inhibitor of apoptosis (IAP), thereby releasing its inhibitory effect on caspase. Furthermore, we show that 20E induced the expression of Hippo at the transcriptional level through the ecdysone receptor (EcR), ultraspiracle protein (USP), and hormone receptor 3 (HR3). We also found that Hippo suppresses the binding of Yki complex to the HR3 promoter. In summary, 20E up-regulates the transcription of Hippo via EcRB1, USP1, and HR3 to induce PCD, and Hippo has negative feedback effects on HR3 expression. These two signaling pathways coordinate PCD during insect metamorphosis. PMID:26272745
West Europe Report, Science and Technology, No. 136.
1983-02-01
their barriers and work with the large enterprises (Pechiney, Sanofi , Rhone- Poulenc) or the small and medium-size industrial enterprises on specific...traditional products of the agro-nutritional industries, —production of amino acids, antibiotics, vitamins, vaccines , hormones, en- zymes and...systems engineering; 4. Production of bioreagents for analysis, vaccines , monoclonal antibodies, and new cell-derived products for therapeutic
Effects of 2G on Gene Expression of Stress-Related Hormones in Rat Placenta
NASA Technical Reports Server (NTRS)
Benson, S.; Talyansky, Y.; Moyer, E. L.; Lowe, M.; Baer, L. A.; Ronca, A. E.
2017-01-01
Understanding the effects of spaceflight on mammalian reproductive and developmental physiology is important to future human space exploration and permanent settlement beyond Earth orbit. Fetal developmental programming, including modulation of the HPA axis, is thought to originate at the placental-uterine interface, where both transfer of maternal hormones to the fetus and synthesis of endogenous hormones occurs. In healthy rats, fetal corticosterone levels are kept significantly lower by 11BetaHSD-2, which inactivates corticosterone by conversion into cortisone. Placental tissues express endogenous HPA axis-associated hormones including corticotropin-releasing hormone (CRH), pre-opiomelanocortin (POMC), and vasopressin, which may contribute to fetal programming alongside maternal hormones. DNA methylase 3A, 11BetaHSD-2, and 11BetaHSD-1, which are involved in the regulation of maternal cortisol transfer and modulation of the HPA axis, are also expressed in placental tissues along with glucocorticoid receptor and may be affected by differential gravity exposure during pregnancy. Fetuses may respond differently to maternal glucocorticoid exposure during gestation through sexually dimorphic expression of corticosterone-modulating hormones. To elucidate effects of altered gravity on placental gene expression, here we present a ground-based analogue study involving continuous centrifugation to produce 2g hypergravity. We hypothesized that exposure to 2g would induce a decrease in 11BetaHSD-2 expression through the downregulation of DNA methylase 3a and GC receptor, along with concurrent upregulation in endogenous CRH, POMC, and vasopressin expression. Timed pregnant female rats were exposed to 2G from Gestational day 6 to Gestational day 20, and comparisons made with Stationary Control (SC) and Vivarium Control (VC) dams at 1G. Dams were euthanized and placentas harvested on G20. We homogenized placental tissues, extracted and purified RNA, synthesized cDNA, and quantified the expression levels of the genes of interest relative to the GAPDH housekeeping gene, using RT-qPCR and gene-specific cDNA probes. Elucidation of glucocorticoid transfer and synthesis in the placenta can provide new insights into the unique dynamics of mammalian development in microgravity and guide future multi-generational studies in space.
A High-Throughput Screening Assay to Detect Thyroperoxidase Inhibitors (Teratology Society)
In support of the Endocrine Disruption Screening Program (EDSP21), the US EPA ToxCast program is developing assays to enable screening for chemicals that may disrupt thyroid hormone synthesis. Thyroperoxidase (TPO) is critical for TH synthesis and is a known target of thyroid-dis...
Wang, Yu Annie; Wu, Di; Auclair, Jared R; Salisbury, Joseph P; Sarin, Richa; Tang, Yang; Mozdzierz, Nicholas J; Shah, Kartik; Zhang, Anna Fan; Wu, Shiaw-Lin; Agar, Jeffery N; Love, J Christopher; Love, Kerry R; Hancock, William S
2017-12-05
With the advent of biosimilars to the U.S. market, it is important to have better analytical tools to ensure product quality from batch to batch. In addition, the recent popularity of using a continuous process for production of biopharmaceuticals, the traditional bottom-up method, alone for product characterization and quality analysis is no longer sufficient. Bottom-up method requires large amounts of material for analysis and is labor-intensive and time-consuming. Additionally, in this analysis, digestion of the protein with enzymes such as trypsin could induce artifacts and modifications which would increase the complexity of the analysis. On the other hand, a top-down method requires a minimum amount of sample and allows for analysis of the intact protein mass and sequence generated from fragmentation within the instrument. However, fragmentation usually occurs at the N-terminal and C-terminal ends of the protein with less internal fragmentation. Herein, we combine the use of the complementary techniques, a top-down and bottom-up method, for the characterization of human growth hormone degradation products. Notably, our approach required small amounts of sample, which is a requirement due to the sample constraints of small scale manufacturing. Using this approach, we were able to characterize various protein variants, including post-translational modifications such as oxidation and deamidation, residual leader sequence, and proteolytic cleavage. Thus, we were able to highlight the complementarity of top-down and bottom-up approaches, which achieved the characterization of a wide range of product variants in samples of human growth hormone secreted from Pichia pastoris.
Neuroimmune response to endogenous and exogenous pyrogens is differently modulated by sex steroids.
Mouihate, A; Pittman, Q J
2003-06-01
The objective of this study was to explore whether and how ovarian hormones interact with the febrile response to pyrogens. Estrogen and progesterone treatment of ovariectomized rats was associated with a reduction in lipopolysaccharide (LPS)-induced fever, compared with ovariectomized controls. LPS-fever reduction was accompanied by reduced levels of the inducible cyclooxygenase-2 (COX-2) protein expression in the hypothalamus as well as reduced plasma levels of IL-1beta. The amount of LPS-induced IL-6 in the plasma was not affected by ovarian hormone replacement. In contrast, hypothalamic COX-2 expression in response to intraperitoneal injection of IL-1beta was potentiated by the ovarian hormone replacement. IL-1beta induced a moderate increase in plasma levels of IL-6 that was suppressed by ovarian hormone replacement. These data suggest that ovarian hormone replacement attenuated the proinflammatory response to LPS by suppressing the LPS-induced IL-1beta production and COX-2 expression in the hypothalamus. The markedly different action of ovarian hormones on IL-1beta and LPS effects suggests that this sex hormone modulation of the immune response is a function of the nature of infection and provides further evidence that LPS actions are different from those of IL-1beta.
NASA Astrophysics Data System (ADS)
Hall, Gregory M.; Tittiger, Claus; Andrews, Gracie L.; Mastick, Grant S.; Kuenzli, Marilyn; Luo, Xin; Seybold, Steven J.; Blomquist, Gary J.
2002-02-01
For over three decades the site and pathways of bark beetle aggregation pheromone production have remained elusive. Studies on pheromone production in Ips spp. bark beetles have recently shown de novo biosynthesis of pheromone components via the mevalonate pathway. The gene encoding a key regulated enzyme in this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase ( HMG-R), showed high transcript levels in the anterior midgut of male pine engravers, Ips pini (Say) (Coleoptera:Scolytidae). HMG-R expression in the midgut was sex, juvenile hormone, and feeding dependent, providing strong evidence that this is the site of acyclic monoterpenoid (ipsdienol) pheromone production in male beetles. Additionally, isolated midgut tissue from fed or juvenile hormone III (JH III)-treated males converted radiolabeled acetate to ipsdienol, as assayed by radio-HPLC. These data support the de novo production of this frass-associated aggregation pheromone component by the mevalonate pathway. The induction of a metazoan HMG-R in this process does not support the postulated role of microorganisms in ipsdienol production.
Tremellen, Kelton; Syedi, Naeema; Tan, Sze; Pearce, Karma
2015-04-01
Medical conditions such as obesity and inflammatory bowel disease are associated with impaired luteal function, menstrual disturbance and infertility. It is proposed that the disturbance in gut wall integrity ("leaky gut") seen in these conditions may result in the passage of bacterial endotoxin (LPS) from the colonic lumen into the circulation that may initiate inflammation in the ovary and subsequently impair hormone production. Quantify the association between systemic levels of LBP, a marker of endotoxin exposure, and levels of inflammation in the ovary (follicular fluid IL-6), plus steroid hormone production in 45 women undergoing IVF treatment. Endotoxaemia (LBP) were positively correlated with plasma CRP and inflammation within the ovary (follicular fluid IL-6). Furthermore, endotoxaemia was negatively correlated with progesterone production. The observed correlations, together with previously published animal studies linking endotoxin exposure to impaired luteal function, suggest that the translocation of bacterial endotoxin from the gut lumen into the circulation has the potential to interfere with progesterone production and result in luteal deficiency.
Rybak, Fanny; Gahr, Manfred
2004-06-01
The respective influence of testosterone and estradiol on the structure of the Common Canary Serinus canaria song was studied by experimentally controlling blood levels of steroid hormones in males and analyzing the consequent effects on acoustic parameters. A detailed acoustic analysis of the songs produced before and after hormonal manipulation revealed that testosterone and estradiol seem to control distinct song parameters independently. The presence of receptors for testosterone and estradiol in the brain neural pathway controlling song production strongly suggests that the observed effects are mediated by a steroid action at the neuronal level.
Marijuana, the Endocannabinoid System and the Female Reproductive System
Brents, Lisa K.
2016-01-01
Marijuana use among women is highly prevalent, but the societal conversation on marijuana rarely focuses on how marijuana affects female reproduction and endocrinology. This article reviews the current scientific literature regarding marijuana use and hypothalamic-pituitary-ovarian (HPO) axis regulation, ovarian hormone production, the menstrual cycle, and fertility. Evidence suggests that marijuana can reduce female fertility by disrupting hypothalamic release of gonadotropin releasing hormone (GnRH), leading to reduced estrogen and progesterone production and anovulatory menstrual cycles. Tolerance to these effects has been shown in rhesus monkeys, but the effects of chronic marijuana use on human female reproduction are largely unknown. Marijuana-induced analgesia, drug reinforcement properties, tolerance, and dependence are influenced by ovarian hormones, with estrogen generally increasing and progesterone decreasing sensitivity to marijuana. Carefully controlled regulation of the Endocannabinoid System (ECS) is required for successful reproduction, and the exogenous cannabinoids in marijuana may disrupt the delicate balance of the ECS in the female reproductive system. PMID:27354844
Sayers, G; Beall, R J; Seelig, S
1972-03-10
Corticosterone production by isolated adrenal cells in response to adrenocorticotropic hormone is reduced when the cells are incubated in a medium that contains no calcium. This reduction is associated with an equal reduction of accumulation of cyclic adenosine monophosphate. Production of corticosterone and accumulation of cyclic adenosine monophosphate are increased when the calcium concentration in the medium is increased (from zero to 7.65 millimolar). This is in contrast to the situation in "subcellular membrane fragments" of adrenal tissue where high calcium in the medium (> 1.0 millimolar) inhibits cyclic adenosine monophosphate accumulation. We propose that adenyl cyclase in the intact plasma membrane is located in a compartment wherein calcium concentration is low and remains unaffected by the concentration of calcium in the extracellular space. It is proposed that, as the concentration of calcium in the incubation medium is increased from zero to 7.65 millimolar, the strength of the signal generated by the interaction of adrenocorticotropic hormone with its receptor and transmitted to the adenyl cyclase compartment is proportionately increased.
Kerr, Warwick Estevam; Akahira, Yukio; Camargo, Conceição A.
1975-01-01
Cell number and volume of corpora allata was determined for 8 phases of development, the first prepupal stage to adults 30 days old, in the social Apidae Melipona quadrifasciata. In the second prepupal stage a strong correlation was found between cell number and body weight ( r=0.651**), and cell number and corpora allata volume in prepupal stage (r=0.535*), which indicates that juvenile hormone has a definite role in caste determination in Melipona. The distribution of the volume of corpus allatum suggest a 3:1 segregation between bees with high volume of corpora allata against low and medium volume. This implies that genes xa and xb code for an enzyme that directly participates in juvenile hormone production. It was also concluded that the number of cells in the second prepupal stage is more important than the weight of the prepupa for caste determination. A scheme summarizing the genic control of sex and caste determination in Melipona bees in the prepupal phase is given. PMID:1213273
Radioimmunoassay of Human Serum Thyrotrophin
Hall, Reginald; Amos, Jacqueline; Ormston, Brian J.
1971-01-01
The double antibody radioimmunoassay of serum thyroid-stimulating hormone (TSH) allows measurement of circulating levels of the hormone in most normal subjects. The serum TSH level in normal subjects is 1·6 ± 0·8μU/ml. Patients with non-toxic goitre and acromegaly have normal TSH levels. Values are always raised in hypothyroid patients (with primary thyroid disease) and are significantly lowered in those with hyperthyroidism. Of the many stimuli used in an attempt to raise TSH levels in normal adult subjects only three—synthetic thyrotrophin-releasing hormone, ethinyloestradiol, and carbimazole plus iodides—have been effective. The major clinical application of the TSH immunoassay lies in the diagnosis of minor degrees of hypothyroidism. An impaired response of serum TSH to synthetic thyrotrophin-releasing hormone should also help in the diagnosis of hypopituitarism affecting TSH production. PMID:5548300
Sawadro, Marta; Bednarek, Agata; Babczyńska, Agnieszka
2017-06-01
The neuroendocrine system of insects, including the presence of the main neuroactive compounds, and their role in ontogenesis are probably best understood of all the arthropods. Development, metamorphosis, the maturation of the gonads, vitellogenesis and egg production are regulated by hormones (juvenile hormones, ecdysteroids) and neuropeptides. However, knowledge about their presence and functions in spiders is fragmentary. In this paper, we present a summary of the current data about the juvenile hormones, ecdysteroids and neuropeptides in selected groups of arthropods, with particular emphasis on spiders. This is the first article that takes into account the occurrence, action and role of hormones and neuropeptides in spiders. In addition, the suggestions for possible ways to study these compounds in Araneomorphae spiders are unique and cannot be found in the arachnological literature.
Caron-Beaudoin, Elyse; Viau, Rachel; Hudon-Thibeault, Andrée-Anne; Vaillancourt, Cathy; Sanderson, J Thomas
2017-10-01
Estrogen biosynthesis during pregnancy is dependent on the collaboration between the fetus producing the androgen precursors, and the placenta expressing the enzyme aromatase (CYP19). Disruption of estrogen production by contaminants may result in serious pregnancy outcomes. We used our recently developed in vitro co-culture model of fetoplacental steroidogenesis to screen the effects of three neonicotinoid insecticides on the catalytic activity of aromatase and the production of steroid hormones. A co-culture of H295R human adrenocortical carcinoma cells with fetal characteristics and BeWo human choriocarcinoma cells which display characteristics of the villous cytotrophoblast was exposed for 24h to various concentrations of three neonicotinoids: thiacloprid, thiamethoxam and imidacloprid. Aromatase catalytic activity was determined in both cell lines using the tritiated water-release assay. Hormone production was measured by ELISA. The three neonicotinoids induced aromatase activity in our fetoplacental co-culture and concordingly, estradiol and estrone production were increased. In contrast, estriol production was strongly inhibited by the neonicotinoids. All three pesticides induced the expression of CYP3A7 in H295R cells, and this induction was reversed by co-treatment of H295R cells with exogenous estriol. CYP3A7 is normally expressed in fetal liver and is a key enzyme involved in estriol synthesis. We suggest that neonicotinoids are metabolized by CYP3A7, thus impeding the 16α-hydroxylation of fetal DHEA(-sulfate), which is normally converted to estriol by placental aromatase. We successfully used the fetoplacental co-culture as a physiologically relevant tool to highlight the potential effects of neonicotinoids on estrogen production, aromatase activity and CYP3A7 expression during pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.
Bronneberg, R G G; Stegeman, J A; Vernooij, J C M; Dieleman, S J; Decuypere, E; Bruggeman, V; Taverne, M A M
2007-06-01
In this study we described and analysed changes in the numbers of large ovarian follicles (diameter 6.1-9.0 cm) and in the plasma concentrations of luteinizing hormone (LH) and estradiol-17beta (E(2)beta) in relation to individual egg production figures of farmed ostriches (Struthio camelus spp.) throughout one year. Ultrasound scanning and blood sampling for plasma hormone analysis were performed in 9 hens on a monthly basis during the breeding season and in two periods of the non-breeding season. Our data demonstrated that: (1) large follicles were detected and LH concentrations were elevated already 1 month before first ovipositions of the egg production season took place; (2) E(2)beta concentrations increased as soon as the egg production season started; (3) numbers of large follicles, LH and E(2)beta concentrations were elevated during the entire egg production season; and that (4) numbers of large follicles, LH and E(2)beta concentrations decreased simultaneous with or following the last ovipositions of the egg production season. By comparing these parameters during the egg production season with their pre-and post-seasonal values, significant differences were found in the numbers of large follicles and E(2)beta concentrations between the pre-seasonal, seasonal and post-seasonal period; while LH concentrations were significantly different between the seasonal and post-seasonal period. In conclusion, our data demonstrate that changes in numbers of large follicles and in concentrations of LH and E(2)beta closely parallel individual egg production figures and provide some new cues that egg production in ostriches is confined to a marked reproductive season. Moreover, our data provide indications that mechanism, initiating, maintaining and terminating the egg production season in farmed breeding ostriches are quite similar to those already known for other seasonal breeding bird species.
Oduwole, Olayiwola O; Peltoketo, Hellevi; Poliandri, Ariel; Vengadabady, Laura; Chrusciel, Marcin; Doroszko, Milena; Samanta, Luna; Owen, Laura; Keevil, Brian; Rahman, Nafis A; Huhtaniemi, Ilpo T
2018-05-01
Spermatogenesis is regulated by the 2 pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). This process is considered impossible without the absolute requirement of LH-stimulated testicular testosterone (T) production. The role of FSH remains unclear because men and mice with inactivating FSH receptor (FSHR) mutations are fertile. We revisited the role of FSH in spermatogenesis using transgenic mice expressing a constitutively strongly active FSHR mutant in a LH receptor-null (LHR-null) background. The mutant FSHR reversed the azoospermia and partially restored fertility of Lhr-/- mice. The finding was initially ascribed to the residual Leydig cell T production. However, when T action was completely blocked with the potent antiandrogen flutamide, spermatogenesis persisted. Hence, completely T-independent spermatogenesis is possible through strong FSHR activation, and the dogma of T being a sine qua non for spermatogenesis may need modification. The mechanism for the finding appeared to be that FSHR activation maintained the expression of Sertoli cell genes considered androgen dependent. The translational message of our findings is the possibility of developing a new strategy of high-dose FSH treatment for spermatogenic failure. Our findings also provide an explanation of molecular pathogenesis for Pasqualini syndrome (fertile eunuchs; LH/T deficiency with persistent spermatogenesis) and explain how the hormonal regulation of spermatogenesis has shifted from FSH to T dominance during evolution.
Ezcurra, Diego; Humaidan, Peter
2014-10-03
Gonadotropins extracted from the urine of post-menopausal women have traditionally been used to stimulate folliculogenesis in the treatment of infertility and in assisted reproductive technology (ART). Products, such as human menopausal gonadotropin (hMG), consist not only of a mixture of the hormones, follicle-stimulating hormone (FSH), luteinising hormone (LH) and human chorionic gonadotropin (hCG), but also other biologically active contaminants, such as growth factors, binding proteins and prion proteins. The actual amount of molecular LH in hMG preparations varies considerably due to the purification process, thus hCG, mimicking LH action, is added to standardise the product. However, unlike LH, hCG plays a different role during the natural human menstrual cycle. It is secreted by the embryo and placenta, and its main role is to support implantation and pregnancy. More recently, recombinant gonadotropins (r-hFSH and r-hLH) have become available for ART therapies. Recombinant LH contains only LH molecules. In the field of reproduction there has been controversy in recent years over whether r-hLH or hCG should be used for ART. This review examines the existing evidence for molecular and functional differences between LH and hCG and assesses the clinical implications of hCG-supplemented urinary therapy compared with recombinant therapies used for ART.
TSH increment and the risk of incident type 2 diabetes mellitus in euthyroid subjects.
Jun, Ji Eun; Jin, Sang-Man; Jee, Jae Hwan; Bae, Ji Cheol; Hur, Kyu Yeon; Lee, Moon-Kyu; Kim, Sun Wook; Kim, Jae Hyeon
2017-03-01
Thyroid function is known to influence glucose metabolism, and thyroid-stimulating hormone is the most useful parameter in screening for thyroid dysfunction. Therefore, the aim of this study was to investigate the incidence of type 2 diabetes according to baseline thyroid-stimulating hormone level and thyroid-stimulating hormone change in euthyroid subjects. We identified and enrolled 17,061 euthyroid subjects without diabetes among participants who had undergone consecutive thyroid function tests between 2006 and 2012 as a part of yearly health check-up program. Thyroid-stimulating hormone changes were determined by subtracting baseline thyroid-stimulating hormone level from thyroid-stimulating hormone level at 1 year before diagnosis of diabetes or at the end of follow-up in subjects who did not develope diabetes. During 84,595 person-years of follow-up, there were 956 new cases of type 2 diabetes. Cox proportional hazards models showed the risk of incident type 2 diabetes was significantly increased with each 1 μIU/mL increment in TSH after adjustment for multiple confounding factors (hazard ratio = 1.13, 95% confidence interval: 1.07-1.20, P < 0.001). Compared with individuals in the lowest tertile (-4.08 to 0.34 μIU/mL), those in the highest thyroid-stimulating hormone change tertile (0.41-10.84 μIU/mL) were at greater risk for incident type 2 diabetes (hazard ratio = 1.25, 95% confidence interval: 1.05-1.48, P for trend = 0.011). However, baseline thyroid-stimulating hormone level and tertile were not associated with the risk for diabetes. Prominent increase in thyroid-stimulating hormone concentration can be an additional risk factor for the development of type 2 diabetes in euthyroid subjects.
Effects of phytoestrogens on the trophoblast tumour cell lines BeWo and Jeg3.
Plessow, D; Waldschläger, J; Richter, D U; Jeschke, U; Bruer, G; Briese, V; Friese, K
2003-01-01
Phytoestrogens are a diverse group of nonsteroidal plant compounds that occur naturally in many plants. Because they possess a ring system similar to estrogens they are able to bind to estrogen receptors in humans. With this study we tested the effects of the phytoestrogens genistein and daidzein in cell proliferation and the production of progesterone and hCG in trophoblast tumour cells of the cell lines BeWo and Jeg3. The phytoestrogens genistein and daidzein were incubated in different concentrations with trophoblast tumour cells. Untreated cells were used as controls. At designated times, aliquots were removed and tested for progesterone and hCG. In addition we tested the effects of phytoestrogens on cell proliferation. Different concentrations of genistein and daidzein were cultivated with trophoblast tumour cells. After designated times, 1 microCi thymidin-(methyl-3H) was added. Methyl-3H thymidin incorporation was tested and compared to incorporation results of untreated cells. With this study we could show that the production of the steroid hormone progesterone and the protein hormone hCG is influenced by the phytoestrogens genistein and daidzein in trophoblast tumour cells of the cell lines BeWo and Jeg3. We found a correlation between the effects on the proliferation and the production of progesterone and hCG at high concentrations of genistein and daidzein in the cell lines tested. With low concentrations of genistein and daidzein we observed a stimulation of the production of hCG and a weak inhibition of proliferation in both cell lines BeWo and Jeg3. The results obtained with this study suggest that only high doses of phytoestrogens (> 1 mumol/ml) can reduce the proliferation of trophoblast tumour cells significantly. Low doses of phytoestrogens induced a higher hCG production in both cell lines tested. Although high hCG production did not lead to a higher proliferation rate of the tumour cells tested, hCG is able to induce neovascularisation in tumour cells. In summary, with this in vitro study we showed that high doses of phytoestrogens inhibit proliferation and progesterone production in trophoblast tumour cells. High doses of phytoestrogens could be useful candidates for special diet programs for prevention and surgery for patients with this type of disease. In addition we found a useful cell culture model for the testing of new types of phytoestrogens.
Energy homeostasis and appetite regulating hormones as predictors of weight loss in men and women.
Williams, Rebecca L; Wood, Lisa G; Collins, Clare E; Morgan, Philip J; Callister, Robin
2016-06-01
Sex differences in weight loss are often seen despite using the same weight loss program. There has been relatively little investigation of physiological influences on weight loss success in males and females, such as energy homeostasis and appetite regulating hormones. The aims were to 1) characterise baseline plasma leptin, ghrelin and adiponectin concentrations in overweight and obese males and females, and 2) determine whether baseline concentrations of these hormones predict weight loss in males and females. Subjects were overweight or obese (BMI 25-40 kg/m(2)) adults aged 18-60 years. Weight was measured at baseline, and after three and six months participation in a weight loss program. Baseline concentrations of leptin, adiponectin and ghrelin were determined by enzyme-linked immunosorbent assay (ELISA). An independent t-test or non-parametric equivalent was used to determine any differences between sex. Linear regression determined whether baseline hormone concentrations were predictors of six-month weight change. Females had significantly higher baseline concentrations of leptin, adiponectin and unacylated ghrelin as well as ratios of leptin:adiponectin and leptin:ghrelin. The ratio of acylated:unacylated ghrelin was significantly higher in males. In males and females, a higher baseline concentration of unacylated ghrelin predicted greater weight loss at six months. Additionally in females, higher baseline total ghrelin predicted greater weight loss and a higher ratio of leptin:ghrelin predicted weight gain at six months. A higher pre-weight-loss plasma concentration of unacylated ghrelin is a modest predictor of weight loss success in males and females, while a higher leptin:ghrelin ratio is a predictor of weight loss failure in females. Further investigation is required into what combinations and concentrations of these hormones are optimal for weight loss success. Copyright © 2016 Elsevier Ltd. All rights reserved.
GLUCOCORTICOID TREATMENT—EFFECT ON ADRENAL MEDULLARY CATECHOLAMINE PRODUCTION
Sharara-Chami, Rana I.; Joachim, Maria; Pacak, Karel; Majzoub, Joseph A.
2016-01-01
Glucocorticoid and epinephrine are important stress hormones secreted from the adrenal gland during critical illness. Adrenal glucocorticoid stimulates phenylethanolamine N-methyltransferase (PNMT) to convert norepinephrine to epinephrine in the adrenal medulla. Glucocorticoid is sometimes used in catecholamine-resistant septic shock in critically ill patients. By suppressing adrenal glucocorticoid production, glucocorticoid therapy might also reduce the secretion of epinephrine during stress. To investigate this, we used a mouse model subjected to glucocorticoid therapy under basal conditions (experiment 1) and during stress (experiment 2). In experiment 1, pellets containing 0% to 8% dexamethasone were implanted subcutaneously in mice for 4 weeks. In experiment 2, animals received 14 days of intraperitoneal injections of normal saline, low- or high-dose dexamethasone, followed by 2 h of restraint. We found that in experiment 1, adrenal corticosterone did not differ with dexamethasone treatment. Phenylethanolamine N-methyltransferase messenger RNA levels and adrenal catecholamines were highest in the 8% dexamethasone group. Compared with experiment 1, restrained control mice in experiment 2 had high adrenal corticosterone, which decreased with dexamethasone. Phenylethanolamine N-methyltransferase messenger RNA content doubled with restraint but decreased with dexamethasone treatment. As in experiment 1, adrenal catecholamine content increased significantly with dexamethasone treatment. We conclude that without stress, when adrenocorticotropic hormone is low, high doses of exogenous dexamethasone stimulate PNMT and catecholamine synthesis, likely independently of adrenal corticosterone concentration. After stress, adrenocorticotropic hormone levels are elevated, and exogenous dexamethasone suppresses endogenous corticosterone and PNMT production. Nonetheless, catecholamines increase, possibly due to direct neural stimulation, which may override the hormonal regulation of epinephrine synthesis during stress. PMID:19503019
Swarbrick, Michael M.
2008-01-01
Abstract Adiponectin is an adipocyte hormone that links visceral adiposity with insulin resistance and atherosclerosis. It is unique among adipocyte-derived hormones in that its circulating concentrations are inversely proportional to adiposity, and low adiponectin concentrations predict the development of type 2 diabetes and cardiovascular disease. Consequently, in the decade since its discovery, adiponectin has generated immense interest as a potential therapeutic target for the metabolic syndrome and diabetes. This review summarizes current research regarding the regulation of circulating adiponectin concentrations by physiological, pharmacological, and nutritional factors, with an emphasis on human studies. In humans, plasma adiponectin concentrations are influenced by age and gender, and are inversely proportional to visceral adiposity. In vitro studies suggest that adiponectin production may be determined primarily by adipocyte size and insulin sensitivity, with larger, insulin-resistant adipocytes producing less adiponectin. While adiponectin concentrations are unchanged after meal ingestion, they are increased by significant weight loss, such as after bariatric surgery. In addition, adiponectin production is inhibited by a number of hormones, including testosterone, prolactin, glucocorticoids and growth hormone, and by inflammation and oxidative stress in adipose tissue. Smoking decreases, while moderate alcohol consumption increases, circulating adiponectin concentrations. Dietary fatty acid composition in rodents influences adiponectin production via ligand-activated nuclear receptors (PPARs); however, current evidence in humans is equivocal. In addition to PPAR agonists (such as thiazolidinediones and fibrates), a number of pharmacological agents (angiotensin receptor type 1 blockers, ACE inhibitors, and cannabinoid receptor antagonists) used in treatment of the metabolic syndrome also increase adiponectin concentrations in humans. PMID:18510434
Martin, Negin P.; Fernandez de Velasco, Ezequiel Marron; Mizuno, Fengxia; Scappini, Erica L.; Gloss, Bernd; Erxleben, Christian; Williams, Jason G.; Stapleton, Heather M.; Gentile, Saverio
2014-01-01
Several rapid physiological effects of thyroid hormone on mammalian cells in vitro have been shown to be mediated by the phosphatidylinositol 3-kinase (PI3K), but the molecular mechanism of PI3K regulation by nuclear zinc finger receptor proteins for thyroid hormone and its relevance to brain development in vivo have not been elucidated. Here we show that, in the absence of hormone, the thyroid hormone receptor TRβ forms a cytoplasmic complex with the p85 subunit of PI3K and the Src family tyrosine kinase, Lyn, which depends on two canonical phosphotyrosine motifs in the second zinc finger of TRβ that are not conserved in TRα. When hormone is added, TRβ dissociates and moves to the nucleus, and phosphatidylinositol (3, 4, 5)-trisphosphate production goes up rapidly. Mutating either tyrosine to a phenylalanine prevents rapid signaling through PI3K but does not prevent the hormone-dependent transcription of genes with a thyroid hormone response element. When the rapid signaling mechanism was blocked chronically throughout development in mice by a targeted point mutation in both alleles of Thrb, circulating hormone levels, TRβ expression, and direct gene regulation by TRβ in the pituitary and liver were all unaffected. However, the mutation significantly impaired maturation and plasticity of the Schaffer collateral synapses on CA1 pyramidal neurons in the postnatal hippocampus. Thus, phosphotyrosine-dependent association of TRβ with PI3K provides a potential mechanism for integrating regulation of development and metabolism by thyroid hormone and receptor tyrosine kinases. PMID:24932806
Second messenger production in avian medullary nephron segments in response to peptide hormones.
Goldstein, D L; Reddy, V; Plaga, K
1999-03-01
We examined the sites of peptide hormone activation within medullary nephron segments of the house sparrow (Passer domesticus) kidney by measuring rates of hormone-induced generation of cyclic nucleotide second messenger. Thin descending limbs, thick ascending limbs, and collecting ducts had baseline activity of adenylyl cyclase that resulted in cAMP accumulation of 207 +/- 56, 147 +/- 31, and 151 +/- 41 fmol. mm-1. 30 min-1, respectively. In all segments, this activity increased 10- to 20-fold in response to forskolin. Activity of adenylyl cyclase in the thin descending limb was stimulated approximately twofold by parathyroid hormone (PTH) but not by any of the other hormones tested [arginine vasotocin (AVT), glucagon, atrial natriuretic peptide (ANP), or isoproterenol, each at 10(-6) M]. Thick ascending limb was stimulated two- to threefold by both AVT and PTH; however, glucagon and isoproterenol had no effect, and ANP stimulated neither cAMP nor cGMP accumulation. Adenylyl cyclase activity in the collecting duct was stimulated fourfold by AVT but not by the other hormones; likewise, ANP did not stimulate cGMP accumulation in this segment. These data support a tubular action of AVT and PTH in the avian renal medulla.
How cereal grass shoots perceive and respond to gravity
NASA Technical Reports Server (NTRS)
Kaufman, P. B.; Brock, T. G.; Song, I.; Rho, Y. B.; Ghosheh, N. S.
1987-01-01
The leaf-sheath pulvinus of grasses presents a unique system for studying gravitropism, primarily because of its differences from other organs. The mature pulvinus is a discrete organ specialized for gravitropism: it is nongrowing in the absence of gravistimulation and capable of displaying a graviresponse independent of the rest of the plant. In this paper we present a model for gravitropism in pulvini based on recent findings from studies on the mechanisms of graviperception and graviresponse. According to this model, amyloplasts play an essential role in perceiving a change in the orientation of the pulvinus. The perception of this reorientation leads to the enhanced synthesis and release from conjugate of the auxin IAA, and the increased conjugation of gibberellin, on a localized basis. Because there is a graded growth promotion across the gravistimulated pulvinus, it is suggested that the observed hormonal asymmetry is actually an indication of a linear gradient of hormone concentration, as well as hormone response, across the pulvinus. It is further suggested that the linear gradient of hormone concentration may be predominantly the result of local changes in hormone level, rather than a product of hormonal movement into or across the pulvinus.
Novel perspectives for the engineering of abiotic stress tolerance in plants.
Cabello, Julieta V; Lodeyro, Anabella F; Zurbriggen, Matias D
2014-04-01
Adverse environmental conditions pose serious limitations to agricultural production. Classical biotechnological approaches towards increasing abiotic stress tolerance focus on boosting plant endogenous defence mechanisms. However, overexpression of regulatory elements or effectors is usually accompanied by growth handicap and yield penalties due to crosstalk between developmental and stress-response networks. Herein we offer an overview on novel strategies with the potential to overcome these limitations based on the engineering of regulatory systems involved in the fine-tuning of the plant response to environmental hardships, including post-translational modifications, small RNAs, epigenetic control of gene expression and hormonal networks. The development and application of plant synthetic biology tools and approaches will add new functionalities and perspectives to genetic engineering programs for enhancing abiotic stress tolerance. Copyright © 2013 Elsevier Ltd. All rights reserved.
2004-10-01
significantly either, indicating that chronic exercise and dieting do not result in favorable changes in two hormonal biomarkers for breast cancer. 14...physical activity and or diet in the risk of breast cancer, the battery of metabolic hormones that comprise the proposed method must be amenable to...new and important information regarding the degree to which an exercise and diet program that results in an energy deficit will reduce the risk of
... produces too much thyroid hormone, speeding the body's metabolism, and causing certain symptoms) in adults and children ... to learn about take-back programs in your community. See the FDA's Safe Disposal of Medicines website ( ...
... called nonsteroidal antiandrogens. It works by blocking the effect of androgen (a male hormone), to stop the ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...
... medications called antiandrogens. It works by blocking the effect of androgen (a male hormone), to stop the ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...
... called nonsteroidal antiandrogens. It works by blocking the effects of androgen (a male hormone) to stop the ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...
Focazio, Michael J.; Kolpin, Dana W.; Buxton, Herbert T.
2003-01-01
Recent decades have brought increasing concerns for potential contamination of water resources that could inadvertently result during production, use, and disposal of the numerous chemicals offering improvements in industry, agriculture, medical treatment, and even common household products. Increasing knowledge of the environmental occurrence or toxicological behavior of these contaminants from various studies in Europe, United States, and elsewhere has resulted in increased concern for potential adverse environmental and human health effects (Daughton and Ternes, 1999). Ecologists and public health experts often have incomplete understandings of the toxicological significance of many of these contaminants, particularly long-term, low-level exposure and when they occur in mixtures with other contaminants (Daughton and Ternes, 1999; Kümmerer, 2001). In addition, these ‘emerging contaminants’ are not typically monitored or assessed in ambient water resources. The need to understand the processes controlling the transport and fate of these contaminants in the environment, and the lack of knowledge of the significance of long-term exposures have increased the need to study environmental occurrence down to trace (nanogram per liter) levels. Furthermore, the possibility that mixtures of environmental contaminants may interact synergistically or antagonistically has increased the need to characterize the types of mixtures that are found in our waters. The U.S. Geological Survey’s Toxic Substances Hydrology Program (Toxics Program) is developing information and tools on emerging water-quality issues that will be used to design and improve water-quality monitoring and assessment programs of the USGS and others, and for proactive decision-making by industry, regulators, the research community, and the public (http://toxics.usgs.gov/regional/emc.html). This research on emerging water-quality issues includes a combination of laboratory work to develop new analytical capabilities as well as field work on the occurrence, fate, and effects of these contaminants.
Puttabyatappa, Muraly; Cardoso, Rodolfo C; Herkimer, Carol; Veiga-Lopez, Almudena; Padmanabhan, Vasantha
2016-08-01
Gestational testosterone (TS) excess, acting via both the androgenic and estrogenic pathways, advances puberty and disrupts the neuroendocrine estradiol (E2) feedback and periovulatory hormonal dynamics in female sheep. These prenatally programmed defects may be subject to postnatal modifications by continued organizational and/or activational effects of steroids. This study investigated (1) the organizational contribution of prenatal estrogen excess and (2) the impact of postnatal exposure to E2 in modulating the effects of prenatal androgen excess (TS and dihydrotestosterone (DHT)) on puberty, neuroendocrine feedback mechanisms, and periovulatory hormonal dynamics in sheep. Pregnant Suffolk sheep were treated with TS, DHT, E2, or E2 plus DHT (ED) from days 30 to 90 of gestation. A subset of the control (C), TS, and DHT female offspring received a constant-release E2 implant postnatally. Findings revealed that (1) prenatal E2-treatment failed to reproduce the neuroendocrine disruptions predicted to be programmed by the estrogenic pathway and (2) prenatal E2D-treatment did not adequately replicate the reproductive neuroendocrine defects induced by prenatal TS excess. More importantly, continuous postnatal E2-treatment, while delaying the onset of puberty and reducing the inhibitory effects of E2 on tonic luteinizing hormone (LH) release, failed to amplify the E2-positive feedback and periovulatory defects induced by prenatal TS-treatment. Our results indicate that disruptions in E2-positive feedback mechanisms and periovulatory gonadotropin secretion induced by prenatal TS-treatment are programmed predominantly during the prenatal life with postnatal exposure to E2 excess not contributing further to these disruptions. © 2016 Society for Reproduction and Fertility.
Jerusalem, Guy; Neven, Patrick; Marinsek, Nina; Zhang, Jie; Degun, Ravi; Benelli, Giancarlo; Saletan, Stephen; Ricci, Jean-François; Andre, Fabrice
2015-10-24
Healthcare resource utilization in breast cancer varies by disease characteristics and treatment choices. However, lack of clarity in guidelines can result in varied interpretation and heterogeneous treatment management and costs. In Europe, the extent of this variability is unclear. Therefore, evaluation of chemotherapy use and costs versus hormone therapy across Europe is needed. This retrospective chart review (N = 355) examined primarily direct costs for chemotherapy versus hormone therapy in postmenopausal women with hormone-receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-) advanced breast cancer across 5 European countries (France, Germany, The Netherlands, Belgium, and Sweden). Total direct costs across the first 3 treatment lines were approximately €10,000 to €14,000 lower for an additional line of hormone therapy-based treatment versus switching to chemotherapy-based treatment. Direct cost difference between chemotherapy-based and hormone therapy-based regimens was approximately €1900 to €2500 per month. Chemotherapy-based regimens were associated with increased resource utilization (managing side effects; concomitant targeted therapy use; and increased frequencies of hospitalizations, provider visits, and monitoring tests). The proportion of patients taking sick leave doubled after switching from hormone therapy to chemotherapy. These results suggest chemotherapy is associated with increased direct costs and potentially with increased indirect costs (lower productivity of working patients) versus hormone therapy in HR+, HER2- advanced breast cancer.
Role of Estrogens in the Regulation of Liver Lipid Metabolism.
Palmisano, Brian T; Zhu, Lin; Stafford, John M
2017-01-01
Before menopause, women are protected from atherosclerotic heart disease associated with obesity relative to men. Sex hormones have been proposed as a mechanism that differentiates this risk. In this review, we discuss the literature around how the endogenous sex hormones and hormone treatment approaches after menopause regulate fatty acid, triglyceride, and cholesterol metabolism to influence cardiovascular risk.The important regulatory functions of estrogen signaling pathways with regard to lipid metabolism have been in part obscured by clinical trials with hormone treatment of women after menopause, due to different formulations, routes of delivery, and pairings with progestins. Oral hormone treatment with several estrogen preparations increases VLDL triglyceride production. Progestins oppose this effect by stimulating VLDL clearance in both humans and animals. Transdermal estradiol preparations do not increase VLDL production or serum triglycerides.Many aspects of sex differences in atherosclerotic heart disease risk are influenced by the distributed actions of estrogens in the muscle, adipose, and liver. In humans, 17β-estradiol (E2) is the predominant circulating estrogen and signals through estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G-protein-coupled estrogen receptor (GPER). Over 1000 human liver genes display a sex bias in their expression, and the top biological pathways are in lipid metabolism and genes related to cardiovascular disease. Many of these genes display variation depending on estrus cycling in the mouse. Future directions will likely rely on targeting estrogens to specific tissues or specific aspects of the signaling pathways in order to recapitulate the protective physiology of premenopause therapeutically after menopause.
GH/IGF-I Transgene Expression on Muscle Homeostasis
NASA Technical Reports Server (NTRS)
Schwartz, Robert J.
1999-01-01
We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.
Convissar, Scott M; Bennett, Jill; Baumgarten, Sarah C; Lydon, John P; DeMayo, Francesco J; Stocco, Carlos
2015-12-01
The surge of luteinizing hormone triggers the genomic reprogramming, cell differentiation, and tissue remodeling of the ovulated follicle, leading to the formation of the corpus luteum. During this process, called luteinization, follicular granulosa cells begin expressing a new set of genes that allow the resulting luteal cells to survive in a vastly different hormonal environment and to produce the extremely high amounts of progesterone (P4) needed to sustain pregnancy. To better understand the molecular mechanisms involved in the regulation of luteal P4 production in vivo, the transcription factors GATA4 and GATA6 were knocked down in the corpus luteum by crossing mice carrying Gata4 and Gata6 floxed genes with mice carrying Cre recombinase fused to the progesterone receptor. This receptor is expressed exclusively in granulosa cells after the luteinizing hormone surge, leading to recombination of floxed genes during follicle luteinization. The findings demonstrated that GATA4 and GATA6 are essential for female fertility, whereas targeting either factor alone causes subfertility. When compared to control mice, serum P4 levels and luteal expression of key steroidogenic genes were significantly lower in conditional knockdown mice. The results also showed that GATA4 and GATA6 are required for the expression of the receptors for prolactin and luteinizing hormone, the main luteotropic hormones in mice. The findings demonstrate that GATA4 and GATA6 are crucial regulators of luteal steroidogenesis and are required for the normal response of luteal cells to luteotropins. © 2015 by the Society for the Study of Reproduction, Inc.
Effects of heat acclimation on time perception.
Tamm, Maria; Jakobson, Ainika; Havik, Merle; Timpmann, Saima; Burk, Andres; Ööpik, Vahur; Allik, Jüri; Kreegipuu, Kairi
2015-03-01
Cognitive performance is impaired during prolonged exercise in hot environment compared to temperate conditions. These effects are related to both peripheral markers of heats stress and alterations in CNS functioning. Repeated-exposure to heat stress results in physiological adaptations, and therefore improvement in exercise capacity and cognitive functioning are observed. The objective of the current study was to clarify the factors contributing to time perception under heat stress and examine the effect of heat acclimation. 20 young healthy male subjects completed three exercise tests on a treadmill: H1 (at 60% VO(2)peak until exhaustion at 42°C), N (at 22°C; duration equal to H1) and H2 (walk until exhaustion at 42°C) following a 10-day heat acclimation program. Core temperature (T(C)) and heart rate (HR), ratings of perceived fatigue and exertion were obtained continuously during the exercise, and blood samples of hormones were taken before, during and after the exercise test for estimating the prolactin, growth hormone and cortisol response to acute exercise-heat stress. Interval production task was performed before, during and after the exercise test. Lower rate of rise in core temperature, heart rate, hormone response and subjective ratings indicated that the subjects had successfully acclimated. Before heat acclimation, significant distortions in produced intervals occurred after 60 minutes of exercise relative to pre-trial coefficients, indicating speeded temporal processing. However, this effect was absent after in acclimated subjects. Blood prolactin concentration predicted temporal performance in both conditions. Heat acclimation slows down the increase in physiological measures, and improvement in temporal processing is also evident. The results are explained within the internal clock model in terms of the pacemaker-accumulator functioning. Copyright © 2014 Elsevier B.V. All rights reserved.
2016-01-01
Hyperthyroidism is characterised by increased thyroid hormone synthesis and secretion from the thyroid gland, whereas thyrotoxicosis refers to the clinical syndrome of excess circulating thyroid hormones, irrespective of the source. The most common cause of hyperthyroidism is Graves’ disease, followed by toxic nodular goitre. Other important causes of thyrotoxicosis include thyroiditis, iodine-induced and drug-induced thyroid dysfunction, and factitious ingestion of excess thyroid hormones. Treatment options for Graves’ disease include antithyroid drugs, radioactive iodine therapy, and surgery, whereas antithyroid drugs are not generally used long term in toxic nodular goitre, because of the high relapse rate of thyrotoxicosis after discontinuation. β blockers are used in symptomatic thyrotoxicosis, and might be the only treatment needed for thyrotoxicosis not caused by excessive production and release of the thyroid hormones. Thyroid storm and hyperthyroidism in pregnancy and during the post-partum period are special circumstances that need careful assessment and treatment. PMID:27038492
De Leo, Simone; Lee, Sun Y; Braverman, Lewis E
2016-08-27
Hyperthyroidism is characterised by increased thyroid hormone synthesis and secretion from the thyroid gland, whereas thyrotoxicosis refers to the clinical syndrome of excess circulating thyroid hormones, irrespective of the source. The most common cause of hyperthyroidism is Graves' disease, followed by toxic nodular goitre. Other important causes of thyrotoxicosis include thyroiditis, iodine-induced and drug-induced thyroid dysfunction, and factitious ingestion of excess thyroid hormones. Treatment options for Graves' disease include antithyroid drugs, radioactive iodine therapy, and surgery, whereas antithyroid drugs are not generally used long term in toxic nodular goitre, because of the high relapse rate of thyrotoxicosis after discontinuation. β blockers are used in symptomatic thyrotoxicosis, and might be the only treatment needed for thyrotoxicosis not caused by excessive production and release of the thyroid hormones. Thyroid storm and hyperthyroidism in pregnancy and during the post-partum period are special circumstances that need careful assessment and treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fox, B K; Riley, L G; Hirano, T; Grau, E G
2006-09-15
Effects of fasting on the growth hormone (GH)--growth hormone receptor (GHR)-insulin-like growth factor-I (IGF-I) axis were characterized in seawater-acclimated tilapia (Oreochromis mossambicus). Fasting for 4 weeks resulted in significant reductions in body weight and specific growth rate. Plasma GH and pituitary GH mRNA levels were significantly elevated in fasted fish, whereas significant reductions were observed in plasma IGF-I and hepatic IGF-I mRNA levels. There was a significant negative correlation between plasma levels of GH and IGF-I in the fasted fish. No effect of fasting was observed on hepatic GHR mRNA levels. Plasma glucose levels were reduced significantly in fasted fish. The fact that fasting elicited increases in GH and decreases in IGF-I production without affecting GHR expression indicates a possible development of GH resistance.
Synergistic Effect of Hormones and Biosolids on Scenedesmus abundans for Eliciting Total Biolipids.
Chellamboli, Chelladurai; Perumalsamy, Muthiah
2016-12-01
This study states an integrated approach to grow Scenedesmus abundans in the presence of biostimulants as a robust flourishing organism pertaining to attain the maximum yield of the biodiesel through transesterification. These assessments are especially targeted to achieve the appreciable profit on biodiesel using three biostimulants such as, Indole 3-acetic acid (3 IAA), 6-Benzylaminopurine (6 BAP), and Gibberellic acid (GA) hormones. The proposed schema proved a rise in biomass; as well as lipid content, compared with an alga grown in the absence of hormones. The harvested S. abundans was exposed to many physio-chemical analyses for characterization of formulating microalgae cells. S. abundans cultivated in the 6-BAP hormone exhibit 2.17, 0.95, 1.745, and 15.6 fold increase in biomass, protein, carbohydrate and lipid content. Therefore, S. abundans was emphatically an apt species for the production of biodiesel.
Ingredients Organic foods are not necessarily pesticide-free. The pesticides that are allowed for organic food differences between organic and conventional food production. Terms like "free-range", "hormone -free", and "natural" do not mean organic. Pesticide product labels may display a certain
The hormone prolactin (PRL) plays a critical role in normal breast development by stimulating the proliferation of mammary cells, the production of milk proteins, and the formation of new mammary blood vessels. Unfortunately, the same cell and vessel growth pathways controlled by PRL in normal cells also operate in breast cancer cells, and elevated plasma PRL is a risk factor for breast cancer, especially in post-menopausal women.
Dafopoulos, Konstantinos; Venetis, Christos; Pournaras, Spyros; Kallitsaris, Athanasios; Messinis, Ioannis E
2009-10-01
This study investigated the ovarian control of LH responsiveness to GnRH in anovulatory women with the polycystic ovary syndrome (PCOS). It is suggested that the enhanced pituitary sensitivity of LH secretion to GnRH in anovulatory women with PCOS is not due to a reduced production but rather to a defect in the interaction of ovarian factors on the hypothalamic-pituitary system.
Richards, Mark P; Proszkowiec-Weglarz, Monika; Rosebrough, Robert W; McMurtry, John P; Angel, Roselina
2010-12-01
The embryo to neonate transition is a critical period of development that has significant impact on broiler production. During this time important genetic programs governing metabolism and growth are established. The goal of this work was to study the effects of early post-hatch (PH) development and the time of initiation of feeding on activation of the genetic program regulating hepatic lipogenesis. A comparison of liver total RNA samples at hatch and 7 days PH was performed using oligonucleotide-based (Affymetrix GeneChip®) chicken genome microarrays. During the first week PH there was significant up-regulation of key lipogenic genes including: ATP citrate lyase (ACL), malic enzyme (ME), fatty acid synthase (FAS), acetyl-CoA carboxylase alpha (ACCα), stearoyl-CoA desaturase-1 (SCD-1), sterol regulatory element binding protein-2 (SREBP-2) and thyroid hormone responsive spot 14α (Spot 14α) among others. These findings were confirmed using gene-specific RT-PCR assays. In a follow-up study, we investigated the effects of withholding feed for the first 48 h PH (delayed feeding, DF) on lipogenic gene expression through 8 days PH. Body weight gain was significantly depressed by DF. Plasma levels of the major metabolic hormones that regulate lipogenic gene expression (insulin, glucagon and T(3)) changed significantly during PH development, but were largely unaffected by DF. Plasma glucose was significantly lower in the DF group at 24h PH but recovered thereafter. In general, DF inhibited the up-regulation of lipogenic genes until feeding was initiated. Delayed up-regulation was also observed for the lipogenic transcription factor genes, SREBP-1, SREBP-2 and peroxisome proliferator-activated receptor gamma (PPARγ), but not for carbohydrate response element binding protein (ChREB) or liver X receptor (LXR). Our results offer additional insight into the transcriptional programming of hepatic lipogenesis in response to the transition from high fat (yolk) to high carbohydrate (feed) nutrition that occurs during early PH development. Published by Elsevier Inc.
Hormonal regulation of wheat growth during hydroponic culture
NASA Technical Reports Server (NTRS)
Wetherell, Donald
1988-01-01
Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.
Plants provide many beneficial nutrients (phytochemicals) which may protect against cancer. Isothiocyanates (found in broccoli, cauliflower and brussel sprouts) may suppress tumor growth and hormone production. Flavonoids ( ...
Gallardo; Hagiwara; Snell
2000-09-05
Juvenile hormone (JH) and serotonin (5-HT) were previously shown to enhance mictic (sexual) female production of the rotifer Brachionus plicatilis in batch cultures. To explore the basis of these effects, experiments were conducted on isolated individuals. JH treatment of maternal rotifers with 5 and 50 µgml(-1) (18.8 and 187.7 µM) resulted in significantly higher (P<0.05) mictic female production in the second (F(2)) and third (F(3)) generations. JH treatment was effective even at a lower food concentration of 7x10(5) cellsml(-1), but it was not effective when free ammonia was added at 2.4 and 3.1 µgml(-1). Mictic female production was not increased with exposure to 5-HT up to 50 µgml(-1) (129.1 µM) concentrations. When food level was reduced to 7x10(5) cellsml(-1), however, 5-HT-treated rotifers produced significantly (P<0.05) more mictic females than the control, particularly in F(3) generation. Mictic female production of 5-HT-treated rotifers did not differ from that of the control with or without free ammonia, but the intrinsic rate of natural increase (r) of 5-HT-treated rotifers at 3.1 µgml(-1) free ammonia was significantly higher than the control. These results show that juvenile hormone increases mictic female production under optimum and sub-optimum food levels, whereas 5-HT increases both mictic female production at low food level and population growth rate at high free ammonia concentrations. These compounds could be used to manage rotifer cultures and probe the mechanisms controlling the rotifer life cycle as it switches to mictic reproduction.
Barberà, M; Martínez-Torres, D
2017-10-01
Insect hormones control essential aspects of physiology, behaviour and development in insects. The majority of insect hormones are peptide hormones that perform a highly diverse catalogue of functions. Prothoracicotropic hormone (PTTH) is a brain neuropeptide hormone whose main function is to stimulate the secretion of ecdysone (the moulting hormone) by the prothoracic glands in insect larvae thus playing a key role in the control of moulting and metamorphosis. Moreover, both PTTH release or blockade have been reported to act as a switch to terminate or initiate larval and pupal diapauses. In insects, diapause is a prevalent response often regulated by the photoperiod. It has been shown that PTTH participates as an output of the circadian clock and a role in photoperiodic processes is suggested in some insect species. Aphids (Hemiptera: Aphididae) reproduce by cyclical parthenogenesis with a sexual phase, induced by short photoperiods, that leads to the production of diapausing eggs. With the availability of the pea aphid (Acyrthosiphon pisum) genome, efforts to identify and characterize genes relevant to essential aspects of aphid biology have multiplied. In spite of its relevance, several genomic and transcriptomic studies on aphid neuropeptides failed to detect aphid PTTH amongst them. Here we report on the first identification of the aphid PTTH coding gene and the neuroanatomical localization of its expression in the aphid brain. © 2017 The Royal Entomological Society.
Müller, M J; Seitz, H J
1984-01-02
The effect of thyroid hormones on mitochondrial respiration are summarized: T3 directly stimulates mitochondrial respiration and the synthesis of adenosine 5'-triphosphate (ATP). Cytosolic ATP availability is increased by a thyroid hormone-induced increase in adenine nucleotide translocation across the mitochondrial membrane; the steady state ATP concentration and the cytosolic ATP/adenosine 5'-diphosphate (ADP) ratio is even decreased in hyperthyroid tissues because of the simultaneous stimulation of the synthesis and consumption of ATP. With regard to the thyroid hormone-induced energy wasting processes, heart work, intra- and interorgan futile cycling and Na+/K+-ATPase are involved to varying degrees. As a consequence of the thyroid hormone-induced hydrolysis of ATP, thermogenesis is increased in hyper- and decreased in hypothyroidism. Despite an increased rate of glucose utilization, clinical and experimental hyperthyroidism is often characterized by an abnormal oral glucose tolerance test. This finding is due to the thyroid hormone-induced increase in intestinal glucose absorption as well as the still enhanced endogenous glucose production in the liver. Hypothyroid patients show a reduced glucose tolerance test because of a decrease in intestinal glucose absorption and a sometimes reduced glucose turnover. The thyroid hormone-induced alterations in glucose metabolism are most probably not due to alterations in serum insulin levels and/or to a peripheral insulin resistance at the receptor level.
New strategies for providing hormonal contraception in developing countries.
Townsend, John W; Sitruk-Ware, Regine; Williams, Katherine; Askew, Ian; Brill, Klaus
2011-05-01
Even with progress in increasing access to effective contraception over the past decades, and the growing range of contraceptive methods available on the market, women in developing countries continue to report an unmet need for family planning. This constraint continues to challenge reproductive health policies and programs, while the momentum of population growth and the young age structure in developing countries leads to larger numbers of potential contraceptive users and increasing global demand in contraceptive markets. Of late, there is a renewed focus on increasing access to long-acting hormonal methods to effectively meet this need, establishing and effectively implementing new service delivery strategies. A number of processes have profoundly affected the procurement and use of hormonal contraceptive methods in developing countries: a supportive policy environment, evidence-based practices and an increasing diversity of delivery strategies play a significant part in increasing number of contraceptive users and the demand for hormonal contraception. Copyright © 2011 Elsevier Inc. All rights reserved.
Advances on human milk hormones and protection against obesity.
Savino, F; Benetti, S; Liguori, S A; Sorrenti, M; Cordero Di Montezemolo, L
2013-11-03
Extensive research shows that breast milk could have positive health effects not limited to infancy, but extend into childhood and adulthood. Recently many studies have provided new evidence on the long—term positive effects of breastfeeding, in particular protection against obesity and type 2 diabetes, suggesting that breast milk may have a role in the programming of later metabolic diseases. The mechanism throughout breastfeeding that exerts these effects has been a major focus of interest for researchers and it is still not completely known. There are some hints for biological plausibility of beneficial effects of breastfeeding including macronutrient intake, hormonal and behavioural mechanisms related to breast milk composition. Breast milk biochemical components, such as protein quantity and quality, polyunsaturated fatty acids, oligosaccharides, cytokines and hormones, in particular leptin, adiponectin and resistin together with the breastfeeding practice itself can influence infants feeding behaviour and regulation of growth and appetite control later in life. Further research is needed to confirm the possibility that hormones present in breast milk exert a metabolic and beneficial effects.
Evaluation of two over-the-counter natural thyroid hormone preparations in human volunteers.
Csako, G; Corso, D M; Kestner, J; Bokser, A D; Kennedy, P E; Pucino, F
1992-04-01
To determine the pharmacologic activity of over-the-counter (OTC) thyroid preparations. In vitro analysis and a prospective, crossover study in vivo. Tertiary care center. Two healthy adult volunteers. Three OTC preparations (Thyrotrophin PMG [bovine thyroid PMG extract], Thyro Forte [thyroid lymphogland concentrate with synergistic complex], and Thyro Complex [thyroid lyophilized gland concentrate with synergistic complex]) were analyzed in vitro. Volunteers were administered two times the manufacturer's maximum recommended daily dose of either Thyrotrophin PMG or Thyro Forte for one week, washed out for four to five weeks, and crossed over to receive the opposite tablet preparation for an additional week. The triiodothyronine (T3) and thyroxine (T4) contents of OTC preparations were measured by HPLC. Vital signs, serum total and free T4, total T3, thyroid stimulating hormone, thyroxine binding globulin, thyroglobulin, and general chemistry tests (including glucose and cholesterol) were monitored before, during, and between administration of the products. HPLC analysis of the three OTC preparations showed no T4 but did show possible T3 in two of these products. We found no definite clinical or laboratory evidence of thyroid hormone excess with either product. Healthcare professionals should advise against the use of these scientifically unsound and relatively expensive OTC thyroid preparations, of which the therapeutic efficacy is unknown.
Peptide processing and biology in human disease
Kovac, Suzana; Shulkes, Arthur; Baldwin, Graham S.
2008-01-01
Purpose of review To describe recent advances in the processing of gastrointestinal hormones, and the consequences for human disease of mutations in the enzymes involved. Recent findings Although gastrointestinal prohormones were long regarded as devoid of biological activity, recent data indicates that the prohormones for both gastrin and gastrin-releasing peptide are bioactive, through different receptors from the mature hormones. Mutations in the family of prohormone convertases responsible for the initial steps in the processing of gastrointestinal hormones are associated with several different pathophysiological conditions in humans. Summary Human mutational studies, when taken together with the phenotypes observed in mice deficient in the prohormone convertases, emphasize the crucial importance of the processing enzymes in mammalian biology. Although the phenotypes may often be ascribed to defective production of a mature hormone or growth factor, the recognition that the precursors are independently bioactive suggests that the increased precursor concentrations may also contribute to the symptoms. The observation that the precursors often act through different receptors from the mature hormones may permit the development of precursor-selective antagonists for therapeutic use. PMID:19104240
GDF15 is a heart-derived hormone that regulates body growth.
Wang, Ting; Liu, Jian; McDonald, Caitlin; Lupino, Katherine; Zhai, Xiandun; Wilkins, Benjamin J; Hakonarson, Hakon; Pei, Liming
2017-08-01
The endocrine system is crucial for maintaining whole-body homeostasis. Little is known regarding endocrine hormones secreted by the heart other than atrial/brain natriuretic peptides discovered over 30 years ago. Here, we identify growth differentiation factor 15 (GDF15) as a heart-derived hormone that regulates body growth. We show that pediatric heart disease induces GDF15 synthesis and secretion by cardiomyocytes. Circulating GDF15 in turn acts on the liver to inhibit growth hormone (GH) signaling and body growth. We demonstrate that blocking cardiomyocyte production of GDF15 normalizes circulating GDF15 level and restores liver GH signaling, establishing GDF15 as a bona fide heart-derived hormone that regulates pediatric body growth. Importantly, plasma GDF15 is further increased in children with concomitant heart disease and failure to thrive (FTT). Together these studies reveal a new endocrine mechanism by which the heart coordinates cardiac function and body growth. Our results also provide a potential mechanism for the well-established clinical observation that children with heart diseases often develop FTT. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
[Male hormonal contraception: past, present, future].
Pásztor, Norbert; Hegyi, Borbála Eszter; Badó, Attila; Németh, Gábor
2017-11-01
In certain regions of the world the enormous rate of population growth raises economic and public health concerns and widely accessible contraceptive methods would be desired. In contrast, in other countries the use of effective contraception is a question of individual preferences. Today, most of the reliable contraceptive methods are applied by women, while the options for male methods are quite limited. It is well known that significant portion of pregnancies are still unplanned and several data revealed men's willingness to take part in family planning. Based on these needs, remarkable efforts have been made to develop a suitable hormonal contraceptive agent for men. With the exogenous suppression of follicle stimulating hormone and luteinizing hormone secretion, the inhibition of the testicular testosterone production and the spermatogenesis can be achieved. In the beginning, testosterone-derivatives, or testosterone-progestin combinations were administered, later synthetic androgen agents were developed. Despite of these efforts, unfortunately, there is no safe, widely feasible male hormonal contraception to date, but in the future this goal can be achieved by solving the key hurdles. Orv Hetil. 2017; 158(46): 1819-1830.
Update on subclinical hyperthyroidism.
Donangelo, Ines; Braunstein, Glenn D
2011-04-15
Subclinical hyperthyroidism is defined by low or undetectable serum thyroid-stimulating hormone levels, with normal free thyroxine and total or free triiodothyronine levels. It can be caused by increased endogenous production of thyroid hormone (as in Graves disease or toxic nodular goiter), administration of thyroid hormone for treatment of malignant thyroid disease, or unintentional excessive thyroid hormone therapy. The rate of progression to overt hyperthyroidism is higher in persons who have suppressed thyroid-stimulating hormone levels compared with those who have low but detectable levels. Subclinical hyperthyroidism is associated with an increased risk of atrial fibrillation in older adults, and with decreased bone mineral density in postmenopausal women; however, the effectiveness of treatment in preventing these conditions is unknown. There is lesser-quality evidence suggesting an association between subclinical hyperthyroidism and other cardiovascular effects, including increased heart rate and left ventricular mass, and increased bone turnover markers. Possible associations between subclinical hyperthyroidism and quality of life parameters, cognition, and increased mortality rates are controversial. Prospective randomized controlled trials are needed to address the effects of early treatment on potential morbidities to help determine whether screening should be recommended in the asymptomatic general population.
Hormone replacement therapy in young women with primary ovarian insufficiency and early menopause
Sullivan, Shannon D.; Sarrel, Philip M.; Nelson, Lawrence M.
2016-01-01
Primary ovarian insufficiency (POI) is a rare but important cause of ovarian hormone deficiency and infertility in women. In addition to causing infertility, POI is associated with multiple health risks, including bothersome menopausal symptoms, decreased bone density and increased risk of fractures, early progression of cardiovascular disease, psychological impact that may include depression, anxiety, and decreased perceived psychosocial support, potential early decline in cognition, and dry eye syndrome. Appropriate hormone replacement therapy to replace premenopausal levels of ovarian sex steroids is paramount to increasing quality of life for women with POI and ameliorating associated health risks. In this review, we discuss POI and complications associated with this disorder, as well as safe and effective hormone replacement therapy options. To decrease morbidity associated with POI, we recommend using HRT formulations that most closely mimic normal ovarian hormone production and continuing HRT until the normal age of natural menopause, ~50 years. We address special populations of women with POI, including women with Turner Syndrome, women with increased risk of breast or ovarian cancer, women approaching the age of natural menopause, and breastfeeding women. PMID:27912889
Borjeson, Tiffany M; Pang, Jassia; Fox, James G; García, Alexis
2014-01-01
In the past decade, the use of genetically engineered rats has increased exponentially; therefore, the ability to perform embryo transfer (ET) in rats to rederive, reanimate, or create mutant rat lines is increasingly important. However, the successful generation of pseudopregnant female rats for ET represents a limiting factor. We here evaluated the subcutaneous administration of 40 µg luteinizing hormone releasing hormone agonist (LHRHa) for estrus synchronization during the development and implementation of a rat ET program. Our first experiment assessed endogenous estrus cycling patterns by examining vaginal cytology without administration of LHRHa in 5-wk-old peripubertal Sprague–Dawley female rats. These rats then received LHRHa at approximately 7 wk of age; 57% of the rats were synchronized in proestrus or estrus as assessed by vaginal cytology 96 h later. In a second experiment, 8-wk-old virgin, unmanipulated Sprague–Dawley female rats received LHRHa; 55% were synchronized in proestrus or estrus 96 h later. Copulatory plugs were confirmed in 28% and 82% of the rats that had been synchronized in the first and second experiments, respectively, and mated with vasectomized male rats. Embryo transfer surgery was performed, and live pups were born from both fresh and cryopreserved transgenic rat embryos. Our results indicate that subcutaneous administration of 40 µg LHRHa followed by examination of vaginal cytology 96 h later is an effective technique to generate multiple pseudopregnant recipient rats for use in an ET program. PMID:24827564
Xu, W H; Sato, Y; Ikeda, M; Yamashita, O
1995-02-24
Embryonic diapause and sex pheromone biosynthesis in the silkworm, Bombyx mori, are, respectively, induced by diapause hormone (DH) and pheromone biosynthesis activating neuropeptide (PBAN), which are produced in the subesophageal ganglion from a common polyprotein precursor (DH-PBAN precursor) encoded by a single gene (DH-PBAN gene). Using DH-PBAN cDNA as a probe, we quantitatively measured DH-PBAN mRNA content throughout embryonic and postembryonic development and observed the effects of incubation temperature, which is a key factor for determination of diapause, on DH-PBAN gene expression. The silkworm, which is programmed to lay diapause eggs by being incubated at 25 degrees C, showed peaks of DH-PBAN mRNA content at five different stages throughout the life cycle: at the late embryonic stage, at the middle of the fourth and the fifth larval instars, and at early and late stages of pupal-adult development. In the non-diapause type silkworms programmed by a 15 degrees C incubation, only the last peak of DH-PBAN mRNA in pupal-adult development was found, and the other peaks were absent. Furthermore, interruption of the incubation period at 25 degrees C by incubation at 15 degrees C decreased both DH-PBAN mRNA content in mature embryos and in subesophageal ganglia of day 3 pupae and the incidence of diapause eggs. Thus, there were two types of regulatory mechanisms for DH-PBAN gene expression. One is a temperature-controlled expression that is responsible for diapause induction, and the other is a temperature-independent, stage-dependent expression related to pheromone production.
Pathology of excessive production of growth hormone.
Scheithauer, B W; Kovacs, K; Randall, R V; Horvath, E; Laws, E R
1986-08-01
Since its clinical description in the last century, much progress has been made in our understanding of acromegaly. From an initial description of pituitary enlargement as just another manifestation of generalized visceromegaly, the pituitary abnormality has come to be recognized, in most instances, as the underlying aetiological factor. Gigantism and acromegaly are manifestations of disordered pituitary physiology, but the lesion responsible may be hypothalamic, adenohypophyseal or ectopic in location. The best known pathological hypothalamic basis for acromegaly is represented by a neuronal malformation or 'gangliocytoma'. It usually takes the form of an intrasellar gangliocytoma or, more rarely, a hypothalamic hamartoma. The neuronal elaboration of GHRH may play a role in the development of a growth hormone adenoma; the pituitary process may pass through an intermediate stage of somatotropic hyperplasia. When acromegaly has its basis in a pituitary abnormality, the lesion is almost exclusively an adenoma; the non-tumorous adenohypophysis shows no evidence of coexistent hyperplasia. Surprisingly, such tumours are more often engaged in the formation of multiple hormones rather than GH alone. They frequently produce not only GH and prolactin, the products characteristics of cells of the acidophil line, but also glycoprotein hormones, usually TSH. The spectrum of adenomas also varies in its degree of differentiation from a histogenetically primitive lesion, the acidophil stem cell adenoma, to well-differentiated tumours of varying cellular composition and hormone content. Each adenoma type has its clinicopathological, histochemical, immunocytological and ultrastructural characteristics. The isolation and characterization of GHRH has permitted the identification of neuroendocrine tumours, most of foregut origin, elaborating this releasing hormone. Such functional tumours induce hyperplasia of pituitary somatotrophs and may, on occasion, result in the formation of growth hormone adenomas. Resection of these GHRH-producing neoplasms results in reversal of endocrinological and sellar abnormalities. Future efforts should be directed toward the elucidation of the aetiology of pituitary adenomas, specifically whether they represent a proliferative process having its origin in endocrinological imbalance, presumably a hypothalamic abnormality, or whether it has a 'de novo' origin in the 'usual process of neoplastic transformation'.
[Degradation of prolactin 125-I in the mammary gland of lactating rats].
Marinchenko, G V; Taranenko, A G
1977-01-01
Prolactin-125I metabolism in the mammary gland of lactating rats was studied; the hormone was injected intraperitoneally. Radioactive products accumulated by the mammary gland tissue were extracted with isotonic medium. Tissue extracts, blood serum and milk were analyzed by gel filtration on Sephadex G-200. The Blood displayed a gradual reduction of prolactin-125I content as a result of its splitting in the organs and binding with blood proteins; as to the mammary gland--there occurred accumulation of the products of prolactin-125I degradation. Some hormone was inactivated losing immunological properties without any significant changes in the molecular weight. Besides, the mammary gland displayed an intensive accumulation of the products of prolactin-125I splitting in the other organs and in the gland proper. Radioactivity accumulated in the milk was mainly referred to the products of prolactin-125I degradation. There was also shown the presence of immunologically active prolactin-125I in the milk.
Shimizu, Takashi; Echizenya, Riku; Miyamoto, Akio
2016-04-01
The aim of this study is to examine the effect of lipopolysaccharide (LPS) on progesterone production during luteinization of granulosa and theca cells isolated from bovine large follicles. Granulosa and theca cells isolated from large follicles of bovine ovaries were exposed to LPS under appropriate hormone conditions in vitro. Progesterone (P4) production in theca cells, but not granulosa cells, was decreased by long-term exposure of LPS. Long-term exposure of LPS suppressed the gene expression of luteinizing hormone receptor in theca cells. Although long-term exposure of LPS did not affect the expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxy-steroid dehydrogenase (3β-HSD) genes, it did inhibit the protein expression of StAR and 3β-HSD in theca cells. These findings suggest that theca cells, rather than granulosa cells, are susceptible to LPS during luteinization and that LPS inhibits P4 production by decreasing protein levels of StAR during luteinization of theca cells. © 2016 Wiley Periodicals, Inc.
Immune and hormonal changes following intense military training.
Gomez-Merino, Danielle; Chennaoui, Mounir; Burnat, Pascal; Drogou, Catherine; Guezennec, Charles Yannick
2003-12-01
This study was designed to determine whether the immune and hormonal systems were affected by a 5-day military course following 3 weeks of combat training in a population of 26 male soldiers (mean age, 21 +/- 2 years). The combination of continuous heavy physical activity and sleep deprivation led to energy deficiency. At the beginning of the training program and immediately after the combat course, saliva samples were assayed for secretory immunoglobulin A and plasma samples were assayed for interleukin-6, dehydroepiandrosterone sulfate, prolactin, catecholamines, glucocorticoids, and testosterone. Secretory immunoglobulin A was lower and circulating interleukin-6 was increased by the end of the course, which was attributed to sympathoadrenergic stimulation. Dehydroepiandrosterone sulfate, prolactin, and testosterone levels fell significantly. These results suggest that prolonged and repeated exercise such as that encountered in a military training program induces immune impairment via a decrease in mucosal immunity and a release of interleukin-6 into the circulation. The impaired secretion of dehydroepiandrosterone sulfate and prolactin, two immunomodulatory hormones, was thought to be a response to the chronic stressors. Lowered testosterone reflects a general decrease in steroid synthesis as a consequence of the physical and psychological strain.
Dong, Du-Juan; Jing, Yu-Pu; Liu, Wen; Wang, Jin-Xing; Zhao, Xiao-Fan
2015-10-09
The steroid hormone 20-hydroxyecdysone (20E) and the serine/threonine Ste20-like kinase Hippo signal promote programmed cell death (PCD) during development, although the interaction between them remains unclear. Here, we present evidence that 20E up-regulates Hippo to induce PCD during the metamorphic development of insects. We found that Hippo is involved in 20E-induced metamorphosis via promoting the phosphorylation and cytoplasmic retention of Yorkie (Yki), causing suppressed expression of the inhibitor of apoptosis (IAP), thereby releasing its inhibitory effect on caspase. Furthermore, we show that 20E induced the expression of Hippo at the transcriptional level through the ecdysone receptor (EcR), ultraspiracle protein (USP), and hormone receptor 3 (HR3). We also found that Hippo suppresses the binding of Yki complex to the HR3 promoter. In summary, 20E up-regulates the transcription of Hippo via EcRB1, USP1, and HR3 to induce PCD, and Hippo has negative feedback effects on HR3 expression. These two signaling pathways coordinate PCD during insect metamorphosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Developmental Programming and Endocrine Disruptor Effects on Reproductive Neuroendocrine Systems
Gore, Andrea C.
2009-01-01
The ability of a species to reproduce successfully requires the careful orchestration of developmental processes during critical time points, particularly the late embryonic and early postnatal periods. This article begins with a brief presentation of the evidence for how gonadal steroid hormones exert these imprinting effects upon the morphology of sexually differentiated hypothalamic brain regions, the mechanisms underlying these effects, and their implications in adulthood. Then, I review the evidence that aberrant exposure to hormonally-active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood. The field of endocrine disruption has shed new light on the discipline of basic reproductive neuroendocrinology through studies on how early life exposures to EDCs may alter gene expression via non-genomic, epigenetic mechanisms, including DNA methylation and histone acetylation. Importantly, these effects may be transmitted to future generations if the germline is affected via transgenerational, epigenetic actions. By understanding the mechanisms by which natural hormones and xenobiotics affect reproductive neuroendocrine systems, we will gain a better understanding of normal developmental processes, as well as to develop the potential ability to intervene when development is disrupted. PMID:18394690
Kolachevskaya, Oksana O; Sergeeva, Lidiya I; Floková, Kristyna; Getman, Irina A; Lomin, Sergey N; Alekseeva, Valeriya V; Rukavtsova, Elena B; Buryanov, Yaroslav I; Romanov, Georgy A
2017-03-01
Ectopic auxin overproduction in transgenic potato leads to enhanced productivity accompanied with concerted and occasional changes in hormonal status, and causing altered response of transformants to exogenous auxin or cytokinin. Previously, we generated potato transformants expressing Agrobacterium-derived auxin synthesis gene tms1 driven by tuber-specific patatin gene promoter (B33-promoter). Here, we studied the endogenous hormonal status and the response to exogenous phytohormones in tms1 transformants cultured in vitro. Adding indole-3-acetic acid (IAA) or kinetin to culture medium affected differently tuberization of tms1-transformed and control plants, depending also on sucrose content in the medium. Exogenous phytohormones ceased to stimulate the tuber initiation in transformants at high (5-8%) sucrose concentration, while in control plants the stimulation was observed in all experimental settings. Furthermore, exogenous auxin partly inhibited the tuber initiation, and exogenous cytokinin reduced the average tuber weight in most transformants at high sucrose content. The elevated auxin level in tubers of the transformants was accompanied with a decrease in content of cytokinin bases and their ribosides in tubers and most shoots. No concerted changes in contents of abscisic, jasmonic, salicylic acids and gibberellins in tubers were detected. The data on hormonal status indicated that the enhanced productivity of tms1 transformants was due to auxin and not mediated by other phytohormones. In addition, exogenous cytokinin was shown to upregulate the expression of genes encoding orthologs of auxin receptors. Overall, the results showed that tms1 expression and local increase in IAA level in transformants affect both the balance of endogenous cytokinins and the dynamics of tuberization in response to exogenous hormones (auxin, cytokinin), the latter reaction depending also on the carbohydrate supply. We introduce a basic model for the hormonal network controlling tuberization.
Nutritional management to optimize fertility of dairy cows in pasture-based systems.
Butler, S T
2014-05-01
The efficiency of milk production in pasture-based systems is heavily influenced by calving pattern, necessitating excellent reproductive performance in a short-breeding season. Where grazed pasture is the major component of the diet, cows are underfed relative to their intake potential. The cow responds by reducing milk output, but fertility is generally better than high intake confinement systems that achieve greater milk production per cow. A number of studies have identified body condition score (BCS) measurements that are related to likelihood of both submission and conception. Blood metabolites and metabolic hormones linked to fertility outcomes are now well characterized. In general, fertility variables have favourable associations with circulating concentrations of glucose, insulin and IGF-1 and unfavourable associations with non-esterified fatty acids, β-hydroxybutyrate and endogenous growth hormone. Nutritional strategies to impact these metabolic indicators have been utilized, but effects on herd fertility are inconsistent. Simply supplementing cows with additional energy in the form of standard concentrates does not appear to have a pronounced effect on fertility. Energy from additional concentrates fed during lactation is preferentially partitioned towards extra milk production rather than BCS repletion. The higher the genetic merit for milk production, the greater the partitioning of additional nutrients to the mammary gland. This review outlines the unique nutritional challenges of pasture-based systems, the role of specific metabolic hormones and metabolites in regulating reproductive function, and nutritional strategies to improve herd fertility.
Tonini, Patricia Pinho; Purgatto, Eduardo; Buckeridge, Marcos Silveira
2010-10-01
Endospermic legumes are abundant in tropical forests and their establishment is closely related to the mobilization of cell-wall storage polysaccharides. Endosperm cells also store large numbers of protein bodies that play an important role as a nitrogen reserve in this seed. In this work, a systems approach was adopted to evaluate some of the changes in carbohydrates and hormones during the development of seedlings of the rain forest tree Sesbania virgata during the period of establishment. Seeds imbibed abscisic acid (ABA), glucose and sucrose in an atmosphere of ethylene, and the effects of these compounds on the protein contents, α-galactosidase activity and endogenous production of ABA and ethylene by the seeds were observed. The presence of exogenous ABA retarded the degradation of storage protein in the endosperm and decreased α-galactosidase activity in the same tissue during galactomannan degradation, suggesting that ABA represses enzyme action. On the other hand, exogenous ethylene increased α-galactosidase activity in both the endosperm and testa during galactomannan degradation, suggesting an inducing effect of this hormone on the hydrolytic enzymes. Furthermore, the detection of endogenous ABA and ethylene production during the period of storage mobilization and the changes observed in the production of these endogenous hormones in the presence of glucose and sucrose, suggested a correlation between the signalling pathway of these hormones and the sugars. These findings suggest that ABA, ethylene and sugars play a role in the control of the hydrolytic enzyme activities in seeds of S. virgata, controlling the process of storage degradation. This is thought to ensure a balanced flow of the carbon and nitrogen for seedling development.
[Familial hypophosphatemic rickets].
Reusz, G
2001-12-02
Familiar hypophosphatemic rickets (FHR) is characterized by isolated defect of renal phosphate reabsorption, hypophosphataemia, rickets and poor growth. In untreated cases parathyroid hormone and calcitriol levels are normal. FHR is caused by mutations of the PHEX gene encoding a zinc-binding metalloprotease enzyme. PHEX is expressed in bones and the parathyroid gland but not in the kidney. The gene product is involved in the inactivation of a phosphate regulating hormone (phosphatonin). The presence of this hormone through unknown mechanisms decreases the sodium-dependent phosphate cotransporter in the kidney resulting in impaired phosphate transport. In addition the PHEX gene product exerts autocrine and paracrine effects on the bone. Despite recent advances in the understanding of the pathomechanism, treatment of FHR is still symptomatic. It consists of active vitamin D analogues and oral phosphate supplementation. Nephrocalcinosis is a well-known, usually non-progressive side effect of the conventional therapy. As shown by pilot studies, poorly growing children with FHR may benefit from the positive effect of human recombinant growth hormone (rhGH). However, rhGH treatment could aggravate the already existing tendency to disproportionate growth resulting in the overgrowth of the trunk. The disturbed phosphate homeostasis persists during the whole life span of the FHR patients. It is therefore essential to provide lifelong care, to prevent late skeletal and dental consequences or to treat them if already established. That care should be done by the teamwork of the pediatrician, internist, orthopedist, dentist and the psychologist.
Sahoo, Ranjan Kumar; Ansari, Mohammad Wahid; Tuteja, Renu; Tuteja, Narendra
2014-01-01
The SUV3 (suppressor of Var 3) gene encodes a DNA and RNA helicase, which is localized in the mitochondria. Plant SUV3 has not yet been characterized in detail. However, the Arabidopsis ortholog of SUV3 (AT4G14790) has been shown to be involved in embryo sac development. Previously, we have reported that rice SUV3 functions as DNA and RNA helicase and provides salinity stress tolerance by maintaining photosynthesis and antioxidant machinery. Here, we report further analysis of the transgenic OsSUV3 rice plants under salt stress. The transgenic OsSUV3 overexpressing rice T1 lines showed significantly higher endogenous content of plant hormones viz., gibberellic acid (GA3), zeatin (Z) and indole-3-acetic acid (IAA) in leaf, stem and root as compared to wild-type (WT), vector control (VC) and antisense (AS) plants under salt (200 mM NaCl) stress condition. A similar trend of endogenous plant hormones profile was also reflected in the T2 generation of OsSUV3 transgenic rice under defined parameters and stress condition. In response to stress, OsSUV3 rice plants maintained plant hormone levels that regulate the expression of several stress-induced genes and reduce adverse effects of salt on plant growth and development and therefore sustains crop productivity.
Update on Multiple Ovulations in Dairy Cattle.
Macmillan, Kira; Kastelic, John P; Colazo, Marcos G
2018-04-24
This review updates the causal mechanisms and risk factors for multiple ovulations (MOV) in cattle. Clearly, MOV can lead to twin pregnancies, which negatively affects the health, production, and reproduction of cows. Therefore, a better understanding of the factors causing MOV may help to reduce twinning. Multiple ovulations occur after two or more follicles deviate and achieve codominance. The MOV rate is influenced by a complex network of hormones. For example, MOV is more common during periods of low progesterone (P4), that is, in anovulatory cattle or when luteolysis coincides with the selection of the future ovulatory follicle. There is also strong evidence for the luteinizing hormone (LH) being the primary factor leading to codominance, as high P4 concentrations suppress the transient LH surges and can reduce the ovulation rate in cattle or even inhibit deviation. Rates of MOV are increased in older and higher-producing dairy cows. Increased milk production and dry matter intake (DMI) increases hormone clearance, including P4; however, the association between milk yield and MOV has not been consistent. Additional risk factors for MOV include ovarian cysts, diet, season, and genetics.
Status and future direction of male contraceptive development.
Lyttle, C Richard; Kopf, Gregory S
2003-12-01
Control of fertility constitutes a global health issue, as overpopulation and unintended pregnancy have both major personal and societal impact. Although the contraceptive revolution in the 1960s following the development of hormonal-based oral contraceptives for women has had a major impact on societal dynamics in several cultures, little product innovation has occurred since then. One solution to this global health issue lies in the development of new and innovative contraceptives for both women and men, the goal of which is to provide a range of options for people at all stages and walks of life. Currently, three options for male-based contraception exist (i.e. withdrawal, condoms and vasectomy), and these are acknowledged as woefully inadequate. Introduction of new forms of male contraception based on both hormonal and non-hormonal paradigms are wanted and needed; this need is now becoming recognized by both the public and private sectors. New and innovative products will come from our knowledge of the unique physiology and genetics of reproduction, as well as by exploiting existing and future genomics, proteomics and protein network platforms.
Neuroendocrine activity of the melanocyte
Slominski, Andrzej
2009-01-01
More than 15 years ago, we have proposed that melanocytes are sensory and regulatory cells with computing capability, which transform external and/or internal signals/energy into organized regulatory network(s) for the maintenance of the cutaneous homeostasis. This concept is substantiated by accumulating evidence that melanocytes produce classical stress neurotransmitters, neuropeptides and hormones, express corresponding receptors and these processes are modified and/or regulated by ultraviolet radiation, biological factors or stress. Examples of the above are catecholamines, serotonin, N-acetyl-serotonin, melatonin, proopiomelanocortin-derived adrenocorticotropic hormone, β-endorphin or melanocyte-stimulating hormone peptides, corticotropin releasing factor, related urocortins and corticosteroids including cortisol and corticosterone as well as their precursors. Furthermore, their production is not random, but hierarchical and follows the structures of classical neuroendocrine organizations such as hypothalamic-pituitary-adrenal axis, serotoninergic, melatoninergic and catecholaminergic systems. An example of an intrinsic but overlooked neuroendocrine activity is production and secretion of melanogenesis intermediates including L-DOPA or its derivatives that could enter circulation and act on distant sites. Such capabilities have defined melanocytes as neuroendocrine cells that not only coordinate cutaneous but also can affect a global homeostasis. PMID:19558501
Sun, Li; Zhu, Ling-Ling; Lu, Ping; Yuen, Tony; Li, Jianhua; Ma, Risheng; Baliram, Ramkumarie; Moonga, Surinder S.; Liu, Peng; Zallone, Alberta; New, Maria I.; Davies, Terry F.; Zaidi, Mone
2013-01-01
Clinical data showing correlations between low thyroid-stimulating hormone (TSH) levels and high bone turnover markers, low bone mineral density, and an increased risk of osteoporosis-related fractures are buttressed by mouse genetic and pharmacological studies identifying a direct action of TSH on the skeleton. Here we show that the skeletal actions of TSH deficiency are mediated, in part, through TNFα. Compound mouse mutants generated by genetically deleting the Tnfα gene on a Tshr−/− (homozygote) or Tshr+/− (heterozygote) background resulted in full rescue of the osteoporosis, low bone formation, and hyperresorption that accompany TSH deficiency. Studies using ex vivo bone marrow cell cultures showed that TSH inhibits and stimulates TNFα production from macrophages and osteoblasts, respectively. TNFα, in turn, stimulates osteoclastogenesis but also enhances the production in bone marrow of a variant TSHβ. This locally produced TSH suppresses osteoclast formation in a negative feedback loop. We speculate that TNFα elevations due to low TSH signaling in human hyperthyroidism contribute to the bone loss that has traditionally been attributed solely to high thyroid hormone levels. PMID:23716650
Direct calorimetry of free-moving eels with manipulated thyroid status
NASA Astrophysics Data System (ADS)
van Ginneken, Vincent; Ballieux, Bart; Antonissen, Erik; van der Linden, Rob; Gluvers, Ab; van den Thillart, Guido
2007-02-01
In birds and mammals, the thyroid gland secretes the iodothyronine hormones of which tetraiodothyronine (T4) is less active than triiodothyronine (T3). The action of T3 and T4 is calorigenic and is involved in the control of metabolic rate. Across all vertebrates, thyroid hormones also play a major role in differentiation, development and growth. Although the fish thyroidal system has been researched extensively, its role in thermogenesis is unclear. In this study, we measured overall heat production to an accuracy of 0.1 mW by direct calorimetry in a free-moving European eel ( Anguilla anguilla L.) with different thyroid status. Hyperthyroidism was induced by injection of T3 and T4, and hypothyroidism was induced with phenylthiourea. The results show for the first time at the organismal level, using direct calorimetry, that neither overall heat production nor overall oxygen consumption in eels is affected by hyperthyroidism. Therefore, we conclude that the thermogenic metabolism-stimulating effect of thyroid hormones (TH) is not present with a cold-blooded fish species like the European eel. This supports the concept that TH does not stimulate thermogenesis in poikilothermic species.
Effects of growth hormone over-expression on reproduction in the common carp Cyprinus carpio L.
Cao, Mengxi; Chen, Ji; Peng, Wei; Wang, Yaping; Liao, Lanjie; Li, Yongming; Trudeau, Vance L; Zhu, Zuoyan; Hu, Wei
2014-01-01
To study the complex interaction between growth and reproduction we have established lines of transgenic common carp (Cyprinus carpio) carrying a grass carp (Ctenopharyngodon idellus) growth hormone (GH) transgene. The GH-transgenic fish showed delayed gonadal development compared with non-transgenic common carp. To gain a better understanding of the phenomenon, we studied body growth, gonad development, changes of reproduction related genes and hormones of GH-transgenic common carp for 2years. Over-expression of GH elevated peripheral gh transcription, serum GH levels, and inhibited endogenous GH expression in the pituitary. Hormone analyses indicated that GH-transgenic common carp had reduced pituitary and serum level of luteinizing hormone (LH). Among the tested genes, pituitary lhβ was inhibited in GH-transgenic fish. Further analyses in vitro showed that GH inhibited lhβ expression. Localization of ghr with LH indicates the possibility of direct regulation of GH on gonadotrophs. We also found that GH-transgenic common carp had reduced pituitary sensitivity to stimulation by co-treatments with a salmon gonadotropin-releasing hormone (GnRH) agonist and a dopamine antagonist. Together these results suggest that the main cause of delayed reproductive development in GH transgenic common carp is reduced LH production and release. Copyright © 2013 Elsevier Inc. All rights reserved.
Autosomal Dominant Growth Hormone Deficiency (Type II).
Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T
2015-06-01
Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.
McGrath, Kris G
2009-06-01
Breast and prostate cancer share similarities and likely represent homologous cancers in females and males, respectively. The role of hormones such as testosterone and estrogen in carcinogenesis is well established. Despite worldwide research efforts, the pathogenesis of these diseases is largely not well understood. Personal care products containing estrogens or xenoestrogens have raised concern as a breast cancer risk, especially in young African-American women. In the United States (US) there is a parallel rise in the incidence in breast and prostate cancer compared to selected non-hormone dependent tumors. Observed US and global breast and prostate cancer incidence increases were occurring before exogenous hormone replacement and xenoestrogen exposure were commonplace. An unintentional, inadvertent, and long term hormone exposure may occur from transdermal absorption of sex hormones and pheromones (androgens) from axillary apocrine sweat gland obstruction by aluminum-based antiperspirants. The global rise in antiperspirant use parallels rises in breast and prostate cancer incidence and mortality rates. A multi-disciplinary literature based set of evidence is presented on how such a link is possible, to prompt confirmatory investigations in the pursuit of unmet needs in breast and prostate cancer etiology and prevention.
Aged PROP1 Deficient Dwarf Mice Maintain ACTH Production
Bavers, David L.; Beuschlein, Felix; Mortensen, Amanda H.; Keegan, Catherine E.; Hammer, Gary D.; Camper, Sally A.
2011-01-01
Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1null (Prop1-/-) and the Ames dwarf (Prop1df/df) mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism. PMID:22145038
Molecular Identification of XY Sex-Reversed Female and YY Male Channel Catfish
USDA-ARS?s Scientific Manuscript database
Production of channel catfish leads U.S. aquaculture, and monosex culture may provide higher production efficiencies. Determination of phenotypic sex is labor intensive and not practical for large scale culture. Catfish have an X-Y sex determination system with monomorphic sex chromosomes. Hormonal...
Bragg, Leslie M.; Tetreault, Gerald R.; Bahamonde, Paulina A.; Tanna, Rajiv N.; Bennett, Charles J.; McMaster, Mark E.; Servos, Mark R.
2016-01-01
Municipal wastewater effluent (MWWE) and its constituents, such as chemicals of emerging concern, pose a potential threat to the sustainability of fish populations by disrupting key endocrine functions in aquatic organisms. While studies have demonstrated changes in biological markers of exposure of aquatic organisms to groups of chemicals of emerging concern, the variability of these markers over time has not been sufficiently described in wild fish species. The aim of this study was to assess the spatial and temporal variability of biological markers in response to MWWE exposure and to test the consistency of these responses between seasons and among years. Rainbow darter (Etheostoma caeruleum) were collected in spring and fall seasons over a 5-year period in the Grand River, Ontario, Canada. In addition to surface water chemistry (nutrients and selected pharmaceuticals), measures were taken across levels of biological organization in rainbow darter. The measurements of hormone production, gonad development, and intersex severity were temporally consistent and suggested impaired reproduction in male fish collected downstream of MWWE outfalls. In contrast, ovarian development and hormone production in females appeared to be influenced more by urbanization than MWWE. Measures of gene expression and somatic indices were highly variable between sites and years, respectively, and were inconclusive in terms of the impacts of MWWE overall. Robust biomonitoring programs must consider these factors in both the design and interpretation of results, especially when spatial and temporal sampling of biological endpoints is limited. Assessing the effects of contaminants and other stressors on fish in watersheds would be greatly enhanced by an approach that considers natural variability in the endpoints being measured. PMID:27776151
Sperm count as a surrogate endpoint for male fertility control.
Benda, Norbert; Gerlinger, Christoph
2007-11-30
When assessing the effectiveness of a hormonal method of fertility control in men, the classical approach used for the assessment of hormonal contraceptives in women, by estimating the pregnancy rate or using a life-table analysis for the time to pregnancy, is difficult to apply in a clinical development program. The main reasons are the dissociation of the treated unit, i.e. the man, and the observed unit, i.e. his female partner, the high variability in the frequency of male intercourse, the logistical cost and ethical concerns related to the monitoring of the trial. A reasonable surrogate endpoint of the definite endpoint time to pregnancy is sperm count. In addition to the avoidance of the mentioned problems, trials that compare different treatments are possible with reasonable sample sizes, and study duration can be shorter. However, current products do not suppress sperm production to 100 per cent in all men and the sperm count is only observed with measurement error. Complete azoospermia might not be necessary in order to achieve an acceptable failure rate compared with other forms of male fertility control. Therefore, the use of sperm count as a surrogate endpoint must rely on the results of a previous trial in which both the definitive- and surrogate-endpoint results were assessed. The paper discusses different estimation functions of the mean pregnancy rate (corresponding to the cumulative hazard) that are based on the results of sperm count trial and a previous trial in which both sperm count and time to pregnancy were assessed, as well as the underlying assumptions. Sample size estimations are given for pregnancy rate estimation with a given precision.
Modeling hormonal control of cambium proliferation.
Oles, Vladyslav; Panchenko, Alexander; Smertenko, Andrei
2017-01-01
Rise of atmospheric CO2 is one of the main causes of global warming. Catastrophic climate change can be avoided by reducing emissions and increasing sequestration of CO2. Trees are known to sequester CO2 during photosynthesis, and then store it as wood biomass. Thus, breeding of trees with higher wood yield would mitigate global warming as well as augment production of renewable construction materials, energy, and industrial feedstock. Wood is made of cellulose-rich xylem cells produced through proliferation of a specialized stem cell niche called cambium. Importance of cambium in xylem cells production makes it an ideal target for the tree breeding programs; however our knowledge about control of cambium proliferation remains limited. The morphology and regulation of cambium are different from those of stem cell niches that control axial growth. For this reason, translating the knowledge about axial growth to radial growth has limited use. Furthermore, genetic approaches cannot be easily applied because overlaying tissues conceal cambium from direct observation and complicate identification of mutants. To overcome the paucity of experimental tools in cambium biology, we constructed a Boolean network CARENET (CAmbium REgulation gene NETwork) for modelling cambium activity, which includes the key transcription factors WOX4 and HD-ZIP III as well as their potential regulators. Our simulations predict that: (1) auxin, cytokinin, gibberellin, and brassinosteroids act cooperatively in promoting transcription of WOX4 and HD-ZIP III; (2) auxin and cytokinin pathways negatively regulate each other; (3) hormonal pathways act redundantly in sustaining cambium activity; (4) individual cambium cells can have diverse molecular identities. CARENET can be extended to include components of other signalling pathways and be integrated with models of xylem and phloem differentiation. Such extended models would facilitate breeding trees with higher wood yield.
Mohan, K G; Muraleedharan, D
2005-12-01
Topical supply of methoprene, a juvenile hormone analogue (JHa) caused notable morphological disturbance in insects. Topical supply of methoprene to newly emerged adult female D. cingulatus caused notable disturbance and induced a dramatic reduction in the total haemolymph protein pattern and lipophorin production in tissues like fat body, ovary and haemolymph. Total protein concentration in haemolymph also showed significant reduction in 1 day old insects but increased slightly as age advanced. Application of 20-hydroxyecdysone (20-HE) to 2-day-old adult female stimulated protein synthesis intensively. Lipophorin levels in fat body and ovary also simultaneously increased. Densitometric analysis revealed that methoprene inhibits while 20-HE stimulates lipophorin production in D. cingulatus.
Ohira, Tsuyoshi; Okumura, Takuji; Suzuki, Michio; Yajima, Yosuke; Tsutsui, Naoaki; Wilder, Marcy N; Nagasawa, Hiromichi
2006-06-01
Recombinant peptides related to vitellogenesis-inhibiting hormone (VIH) of the American lobster Homarus americanus were expressed in bacterial cells, and then purified after being allowed to refold. Biological activities of the recombinant VIHs having an amidated C-terminus (rHoa-VIH-amide) and a free carboxyl-terminus (rHoa-VIH-OH) were examined using an ovarian fragment incubation system derived from the kuruma prawn, Marsupenaeus japonicus. The rHoa-VIH-amide significantly reduced vitellogenin mRNA levels in the ovary, while rHoa-VIH-OH had no effect. This is the first report that describes the production of a crustacean VIH having biological activity and the importance of the C-terminal amidation for its vitellogenesis-inhibiting activity.
Meyerholz, Marie Margarete; Mense, Kirsten; Linden, Matthias; Raliou, Mariam; Sandra, Olivier; Schuberth, Hans-Joachim; Hoedemaker, Martina; Schmicke, Marion
2016-09-08
Before the onset of fetal thyroid hormone production, the transplacental delivery of maternal thyroid hormones is necessary for embryonic and fetal development. Therefore, the adaptation of maternal thyroid hormone metabolism may be important for pregnancy success and embryo survival. The aims of this study were to determine the thyroid hormone levels during the early peri-implantation period until day 18 and on the day of ovulation, to determine whether pregnancy success is dependent on a "normothyroid status" and to determine whether physiological adaptations in maternal thyroid hormone metabolism occur, which may be necessary to provide sufficient amounts of biologically active T3 to support early pregnancy. Therefore, blood samples obtained on the day of ovulation (day 0) and days 14 and 18 of the Holstein-Friesian heifers (n = 10) during the respective pregnant, non-pregnant and negative control cycles were analyzed for thyroid-stimulating-hormone (TSH), thyroxine (T4) and triiodothyronine (T3). Liver biopsies (day 18) from pregnant and respective non-pregnant heifers were analyzed for mRNA expression of the most abundant hepatic thyroid hormone deiodinase (DIO1) by real time qPCR. Although liver DIO1 mRNA expression did not differ between the pregnant and non-pregnant heifers on day 18, the serum concentrations of TSH and T3 on day 18 were higher in non-pregnant heifers compared to pregnant heifers (P < 0.05). Moreover, T3 decreased between day 0 and 18 in pregnant heifers (P < 0.001). In conclusion, no associations between thyroid hormone patterns on day 18 and pregnancy success were detected. During the early peri-implantation period, TSH and T3 may be affected by the pregnancy status because both TSH and T3 were lower on day 18 in pregnant heifers compared to non-pregnant dairy heifers. In further studies, the thyroid hormone axis should be evaluated throughout the entire gestation to confirm these data and identify other possible effects of pregnancy on the thyroid hormone axis in cattle.
Cardoso, Rodolfo C; Puttabyatappa, Muraly; Padmanabhan, Vasantha
2015-01-01
The susceptibility of the reproductive system to early exposure to steroid hormones has become a major concern in our modern societies. Human fetuses are at risk of abnormal programming via exposure to endocrine disrupting chemicals, inadvertent use of contraceptive pills during pregnancy, as well as from excess exposure to steroids due to disease states. Animal models provide an unparalleled resource to understand the developmental origin of diseases. In female sheep, prenatal exposure to testosterone excess results in an array of adult reproductive disorders that recapitulate those seen in women with polycystic ovary syndrome (PCOS), including disrupted neuroendocrine feedback mechanisms, increased pituitary sensitivity to gonadotropin-releasing hormone, luteinizing hormone excess, functional hyperandrogenism, and multifollicular ovarian morphology culminating in early reproductive failure. Prenatal testosterone treatment also leads to fetal growth retardation, insulin resistance, and hypertension. Mounting evidence suggests that developmental exposure to an improper steroidal/metabolic environment may mediate the programming of adult disorders in prenatal testosterone-treated females, and these defects are maintained or amplified by the postnatal sex steroid and metabolic milieu. This review addresses the steroidal and metabolic contributions to the development and maintenance of the PCOS phenotype in the prenatal testosterone-treated sheep model, including the effects of prenatal and postnatal treatment with an androgen antagonist or insulin sensitizer as potential strategies to prevent/ameliorate these dysfunctions. Insights obtained from these intervention strategies on the mechanisms underlying these defects are likely to have translational relevance to human PCOS. © 2015 S. Karger AG, Basel.
Brown, T. R.; Doan, L. L.; Gore, A. C.; Skakkebaek, N. E.; Soto, A. M.; Woodruff, T. J.; Vom Saal, F. S.
2012-01-01
An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action. The potential for deleterious effects of EDC must be considered relative to the regulation of hormone synthesis, secretion, and actions and the variability in regulation of these events across the life cycle. The developmental age at which EDC exposures occur is a critical consideration in understanding their effects. Because endocrine systems exhibit tissue-, cell-, and receptor-specific actions during the life cycle, EDC can produce complex, mosaic effects. This complexity causes difficulty when a static approach to toxicity through endocrine mechanisms driven by rigid guidelines is used to identify EDC and manage risk to human and wildlife populations. We propose that principles taken from fundamental endocrinology be employed to identify EDC and manage their risk to exposed populations. We emphasize the importance of developmental stage and, in particular, the realization that exposure to a presumptive “safe” dose of chemical may impact a life stage when there is normally no endogenous hormone exposure, thereby underscoring the potential for very low-dose EDC exposures to have potent and irreversible effects. Finally, with regard to the current program designed to detect putative EDC, namely, the Endocrine Disruptor Screening Program, we offer recommendations for strengthening this program through the incorporation of basic endocrine principles to promote further understanding of complex EDC effects, especially due to developmental exposures. PMID:22733974
Hogan, Natacha S; Wartman, Cheryl A; Finley, Megan A; van der Lee, Jennifer G; van den Heuvel, Michael R
2008-12-11
A method to evaluate the expression of three hormone responsive genes, vitellogenin (estrogens), spiggin (androgens), and an androgen receptor (ARbeta) using real-time PCR in threespine stickleback is presented. Primers were designed from previously characterised spiggin and ARbeta sequences, while a homology cloning strategy was used to isolate a partial gene sequence for stickleback vitellogenin (Vtg). Spiggin mRNA was significantly higher in kidneys of field-caught males compared to females by greater than five orders of magnitude while ARbeta levels were only 1.4-fold higher in males. Female fish had four order of magnitude higher liver Vtg expression than wild-captured males. To determine the sensitivity of these genes to induction by hormones, male and female sticklebacks were exposed to 1, 10 and 100 ng/L of methyltestosterone (MT) or estradiol (E2) in a flow-through exposure system for 7 days. Spiggin induction in females, and Vtg induction in males were both detectable at 10 ng/L of MT and E2, respectively. MT exposure did not induce ARbeta expression in the kidneys of female stickleback. In vitro gonadal steroid hormones production was measured in testes and ovaries of exposed stickleback to compare gene expression endpoints to an endpoint of hormonal reproductive alteration. Reduction in testosterone production in ovaries at all three MT exposure concentrations, and ovarian estradiol synthesis at the 100 ng/L exposure were the only effects observed in the in vitro steroidogenesis for either hormone exposure. Application of these methods to assess both androgenic, estrogenic, and anti-steroidogenic properties of environmental contaminants in a single fish species will be a valuable tool for identifying compounds causing reproductive dysfunction in fishes.
Heyland, Andreas; Hodin, Jason
2004-03-01
Recent work on a diverse array of echinoderm species has demonstrated, as is true in amphibians, that thyroid hormone (TH) accelerates development to metamorphosis. Interestingly, the feeding larvae of several species of sea urchins seem to obtain TH through their diet of planktonic algae (exogenous source), whereas nonfeeding larvae of the sand dollar Peronella japonica produce TH themselves (endogenous source). Here we examine the effects of TH (thyroxine) and a TH synthesis inhibitor (thiourea) on the development of Dendraster excentricus, a sand dollar with a feeding larva. We report reduced larval skeleton lengths and more rapid development of the juvenile rudiment in the exogenous TH treatments when compared to controls. Also, larvae treated with exogenous TH reached metamorphic competence faster at a significantly reduced juvenile size, representing the greatest reduction in juvenile size ever reported for an echinoid species with feeding larvae. These effects of TH on D. excentricus larval development are strikingly similar to the phenotypically plastic response of D. excentricus larvae reared under high food conditions. We hypothesize that exogenous (algae-derived) TH is the plasticity cue in echinoid larvae, and that the larvae use ingested TH levels as an indicator for larval nutrition, ultimately signaling the attainment of metamorphic competence. Furthermore, our experiments with the TH synthesis inhibitor thiourea indicate that D. excentricus larvae can produce some TH endogenously. Endogenous TH production might, therefore, be a shared feature among sand dollars, facilitating the evolution of nonfeeding larval development in that group. Mounting evidence on the effects of thyroid hormones in echinoderm development suggests life-history models need to incorporate metamorphic hormone effects and the evolution of metamorphic hormone production.
Jannuzzo, Maria Gabriella; Di Salle, Enrico; Spinelli, Riccardo; Pirotta, Nicoletta; Buchan, Peter; Bello, Akintunde
2009-02-01
Luteinizing hormone-releasing hormone (LHRH) agonists (e.g., triptorelin) reduce ovarian estrogen production in premenopausal women with hormone-sensitive breast cancer. Aromatase inhibitors (e.g., exemestane) inhibit extraovarian production of estrogen and may further reduce circulating estrogens when combined with an LHRH agonist. Healthy premenopausal women were randomized to receive 3.75 mg triptorelin (T) on days 1 and 29 with 25 mg exemestane (EX) or matched placebo once daily for 8 weeks, from day 1 to day 56. The primary objective was to evaluate the effect of T +/- EX on estradiol (E(2)) suppression by comparing the AUC(day 36-57 )for the 2 treatments. Secondary objectives included evaluation of estrone (E(1)), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) suppression; effects of EX on the T-induced gonadotrophin and estrogen flare; pharmacokinetics (PK); and safety. Twenty-eight (14 in each arm) were evaluable for efficacy and PK. Mean plasma estrogen levels (AUC(day 36-57)) were significantly lower for subjects who received T + EX than for subjects who received T alone (20.6 vs. 54.0 pg d/ml [-62%; P < 0.05], and 38.9 vs. 198.0 pg d/ml [-80%; P < 0.01] for E(2) and E(1), respectively). Coadministration of EX did not affect the initial flare or subsequent suppression of LH and FSH following the first dose of T, or the PK of T. Both treatments were well tolerated. Coadministration of T and EX resulted in greater estrogen suppression than when T was given alone. These findings could translate into improved clinical outcomes for premenopausal breast cancer patients receiving LHRH agonists.
Oduwole, Olayiwola O.; Vydra, Natalia; Wood, Nicholas E. M.; Samanta, Luna; Owen, Laura; Keevil, Brian; Donaldson, Mandy; Naresh, Kikkeri; Huhtaniemi, Ilpo T.
2014-01-01
Testosterone (T), alone or in combination with progestin, provides a promising approach to hormonal male contraception. Its principle relies on enhanced negative feedback of exogenous T to suppress gonadotropins, thereby blocking the testicular T production needed for spermatogenesis, while simultaneously maintaining the extragonadal androgen actions, such as potency and libido, to avoid hypogonadism. A serious drawback of the treatment is that a significant proportion of men do not reach azoospermia or severe oligozoospermia, commensurate with contraceptive efficacy. We tested here, using hypogonadal luteinizing hormone/choriongonadotropin receptor (LHCGR) knockout (LHR−/−) mice, the basic principle of the T-based male contraceptive method, that a specific T dose could maintain extragonadal androgen actions without simultaneously activating spermatogenesis. LHR−/− mice were treated with increasing T doses, and the responses of their spermatogenesis and extragonadal androgen actions (including gonadotropin suppression and sexual behavior) were assessed. Conspicuously, all dose responses to T were practically superimposable, and no dose of T could be defined that would maintain sexual function and suppress gonadotropins without simultaneously activating spermatogenesis. This finding, never addressed in clinical contraceptive trials, is not unexpected in light of the same androgen receptor mediating androgen actions in all organs. When extrapolated to humans, our findings may jeopardize the current approach to hormonal male contraception and call for more effective means of inhibiting intratesticular T production or action, to achieve consistent spermatogenic suppression.—Oduwole, O. O., Vydra, N., Wood, N. E. M., Samanta, L., Owen, L., Keevil, B., Donaldson, M., Naresh, K., Huhtaniemi, I. T. Overlapping dose responses of spermatogenic and extragonadal testosterone actions jeopardize the principle of hormonal male contraception. PMID:24599970
Nickmilder, M; Bernard, A
2011-01-01
The goal was to evaluate the associations between testicular hormones at adolescence and the exposure to chlorination by-products when attending chlorinated swimming pools. We obtained serum samples from 361 school male adolescents (aged 14–18 years) who had visited swimming pools disinfected with chlorine or by copper–silver ionization. We analysed serum concentrations of inhibin B (two different assays), total and free testosterone, sex hormone-binding globulin, luteinizing hormone (LH), follicle stimulating hormone (FSH) and dehydroepiandrosterone sulphate (DHEAS). There were strong inverse associations between serum levels of inhibin B (both assays) or of total testosterone, adjusted or unadjusted for gonadotropins and the time adolescents had spent in indoor chlorinated pools, especially during their childhood. Adolescents having attended indoor chlorinated pools for more than 250 h before the age of 10 years or for more than 125 h before the age of 7 years were about three times more likely to have an abnormally low serum inhibin B and/or total testosterone (<10th percentile) than their peers who never visited this type of pool during their childhood (odds ratio, 95% CI, 2.83, 1.06–7.52, p = 0.04 and 3.67, 1.45–9.34, p = 0.006, respectively). Such associations were not seen with free testosterone, LH, FSH and DHEAS or with the attendance of outdoor chlorinated pools or of the copper–silver pool. Swimming in indoor chlorinated pools during childhood is strongly associated with lower levels of serum inhibin B and total testosterone. The absorption of reprotoxic chlorination by-products across the highly permeable scrotum might explain these associations. PMID:21631527
60 YEARS OF POMC: N-terminal POMC peptides and adrenal growth.
Bicknell, Andrew B
2016-05-01
The peptide hormones contained within the sequence of proopiomelanocortin (POMC) have diverse roles ranging from pigmentation to regulation of adrenal function to control of our appetite. It is generally acknowledged to be the archetypal hormone precursor, and as its biology has been unravelled, so too have many of the basic principles of hormone biosynthesis and processing. This short review focuses on one group of its peptide products, namely, those derived from the N-terminal of POMC and their role in the regulation of adrenal growth. From a historical and a personal perspective, it describes how their role in regulating proliferation of the adrenal cortex was identified and also highlights the key questions that remain to be answered. © 2016 Society for Endocrinology.
Nile tilapia and blue tilapia fry production in a subtropical climate
USDA-ARS?s Scientific Manuscript database
The relationship between production in earthen ponds located in a subtropical climate of fry suitable for hormonal sex inversion and degree-days was quantified for Nile tilapia (Oreochromis niloticus; Egypt strain) and blue tilapia (O. aureus). Degree-days were calculated for each trial as the sum o...
Thyroiditis: an integrated approach.
Sweeney, Lori B; Stewart, Christopher; Gaitonde, David Y
2014-09-15
Thyroiditis is a general term that encompasses several clinical disorders characterized by inflammation of the thyroid gland. The most common is Hashimoto thyroiditis; patients typically present with a nontender goiter, hypothyroidism, and an elevated thyroid peroxidase antibody level. Treatment with levothyroxine ameliorates the hypothyroidism and may reduce goiter size. Postpartum thyroiditis is transient or persistent thyroid dysfunction that occurs within one year of childbirth, miscarriage, or medical abortion. Release of preformed thyroid hormone into the bloodstream may result in hyperthyroidism. This may be followed by transient or permanent hypothyroidism as a result of depletion of thyroid hormone stores and destruction of thyroid hormone-producing cells. Patients should be monitored for changes in thyroid function. Beta blockers can treat symptoms in the initial hyperthyroid phase; in the subsequent hypothyroid phase, levothyroxine should be considered in women with a serum thyroid-stimulating hormone level greater than 10 mIU per L, or in women with a thyroid-stimulating hormone level of 4 to 10 mIU per L who are symptomatic or desire fertility. Subacute thyroiditis is a transient thyrotoxic state characterized by anterior neck pain, suppressed thyroid-stimulating hormone, and low radioactive iodine uptake on thyroid scanning. Many cases of subacute thyroiditis follow an upper respiratory viral illness, which is thought to trigger an inflammatory destruction of thyroid follicles. In most cases, the thyroid gland spontaneously resumes normal thyroid hormone production after several months. Treatment with high-dose acetylsalicylic acid or nonsteroidal anti-inflammatory drugs is directed toward relief of thyroid pain.
Rible, Radhika D; Taylor, DeShawn; Wilson, Melissa L; Stanczyk, Frank Z; Mishell, Daniel R
2009-03-01
Combined oral contraceptive (COC) formulations with 20 mcg ethinyl estradiol (EE) have a greater incidence of ovarian hormone production and follicular development, which can be managed by shortening the number of hormone-free days per COC cycle. This study evaluates differences in follicular development during a 7-day versus 4-day hormone-free interval in a COC regimen with 20 mcg EE and 1 mg norethindrone acetate. Forty-one healthy women were randomized in an open-label fashion to this formulation in either a 24/4 or a 21/7 day regimen for three cycles. Estradiol, progesterone, follicle-stimulating hormone, luteinizing hormone and inhibin B were measured daily from Cycle 2, Day 21 to Cycle 3, Day 3 and on Day 7 of Cycle 3. Follicular diameter and Hoogland score were calculated on Cycle 2, Days 21, 24 and 28 and Cycle 3, Days 3 and 7. Sixty-six percent of subjects in the 21/7 group and 70% of the subjects in the 24/4 group developed a follicle greater than 10 mm diameter. Ovarian steroid hormone levels, Hoogland scores and bleeding patterns were not statistically significant between the groups. In contrast to prior studies, this analysis suggests no difference in follicle development or bleeding patterns among women receiving a 21/7 or 24/4 regimen of a 20-mcg EE/1-mg norethindrone acetate COC.
The Effects of Hormonal Contraception on the Voice: History of Its Evolution in the Literature.
Rodney, Jennifer P; Sataloff, Robert Thayer
2016-11-01
Women of reproductive age commonly use hormonal contraceptives, the vocal effects of which have been studied. Otolaryngologists should be aware of this relationship to make recommendations on hormonal contraception as it relates to each patient's voice requirements. A comprehensive literature review of PubMed was completed. The terms "contraception," "vocal folds," "vocal cords," and "voice" were searched in various combinations. Articles from 1971 to 2015 that addressed the effects of contraception on the vocal folds were included. In total, 24 articles were available for review. Historically, contraception was believed to affect the voice negatively. However, more recent studies using low-dose oral contraceptive pills (OCPs) show that they stabilize the voice. However, stabilization generally occurs only during sustained vowel production; connected speech appears unaffected. Therefore, singers may be the only population that experiences clinically increased vocal stability as a result of taking hormonal contraceptives. Only combined OCPs have been studied; other forms of hormonal contraception have not been evaluated for effects on the voice. Significant variability exists between studies in the physical attributes of patients and parameters tested. Hormonal contraception likely has no clinically perceptible effects on the speaking voice. Singers may experience increased vocal stability with low-dose, combined OCP use. Other available forms of contraception have not been studied. Greater consistency in methodology is needed in future research, and other forms of hormonal contraception require study. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Júnior, R P; Vargas, L; Valentim-Zabott, M; Ribeiro, R P; da Silva, A V; Otutumi, L K
2012-07-01
Nile tilapia (Oreochromis niloticus), are widely used in fish farming, hormonal treatments are used to increase productivity. Studies of the characteristics of the fiber types are important in species that have well developed muscle mass, such as Nile tilapia. A total of 4800 post-larval fish were randomly assigned by tank to receive one of three treatments: Control (30°GL alcohol), Homeopathic complex (Homeopatila RS) or Hormone (17-α-methyltestosterone) supplemented in the feed for 28 days. Survival and morphological parameters were measured at day 45. At day 45, the survival rates were 54.1% (Control), 87.8% (Homeopathy), 50.3% (Hormone). The mean final weight for Homeopathy was statistically significantly lower (1.07 g) than the other two groups: Control (1.81 g) and Hormone (2.04 g). Mean total lengths were Control (4.75 cm), Hormone (4.49 cm), statistically significantly different from Homeopathy (3.83 cm). Average partial length, trunk length, height and body width were significantly lower for Homeopathy than Control or Hormone (p<0.05) Homeopathy treated fish had significantly greater muscle fiber diameter than the other two groups. Fish treated with the homeopathic complex had improved survival and muscle fiber hypertrophy, but were smaller (probably related to increased survival and overcrowding) compared to fingerlings treated with synthetic hormone or control. Copyright © 2012 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
MORI, Kenji
2017-01-01
A mixture of (E,Z)-isomers of methyl 12-trishomofarnesoate (methyl 3,7,11-trimethyl-2,6,10-pentadecatrienoate), a juvenile hormone mimic, was synthesized in nine steps (32.6% overall yield) by starting from only four commercially available materials: 2-hexanone, vinylmagnesium bromide, methyl acetoacetate and trimethyl phosphonoacetate. The mimic is useful in increasing the yield of silk by elongating the larval period of the silkworm, Bombyx mori (L.). PMID:29021513
Hyperthyroidism secondary to a pituitary adenoma secreting TSH, FSH, alpha-subunit and GH.
Patrick, A W; Atkin, S L; MacKenzie, J; Foy, P M; White, M C; MacFarlane, I A
1994-02-01
A 51-year-old man had been treated for hyperthyroidism with antithyroid drugs for 8 years. He was then found to have a large pituitary adenoma with biochemical evidence of overproduction of TSH, FSH and alpha-subunit. Subsequent immunocytochemical and tissue culture studies confirmed secretion of these hormones. In addition, the tumour stained for GH and was capable of GH production in vitro. This combination of hormones produced by a pituitary adenoma has not been previously reported.
Mori, Kenji
2017-01-01
A mixture of (E,Z)-isomers of methyl 12-trishomofarnesoate (methyl 3,7,11-trimethyl-2,6,10-pentadecatrienoate), a juvenile hormone mimic, was synthesized in nine steps (32.6% overall yield) by starting from only four commercially available materials: 2-hexanone, vinylmagnesium bromide, methyl acetoacetate and trimethyl phosphonoacetate. The mimic is useful in increasing the yield of silk by elongating the larval period of the silkworm, Bombyx mori (L.).
Aghili, Zahra Sadat; Zarkesh-Esfahani, Sayyed Hamid
2018-02-01
Growth hormone deficiency results in growth retardation in children and the GH deficiency syndrome in adults and they need to receive recombinant-GH in order to rectify the GH deficiency symptoms. Mammalian cells have become the favorite system for production of recombinant proteins for clinical application compared to prokaryotic systems because of their capability for appropriate protein folding, assembly, post-translational modification and proper signal. However, production level in mammalian cells is generally low compared to prokaryotic hosts. Taguchi has established orthogonal arrays to describe a large number of experimental situations mainly to reduce experimental errors and to enhance the efficiency and reproducibility of laboratory experiments.In the present study, rhGH was produced in CHO cells and production of rhGH was assessed using Dot blotting, western blotting and Elisa assay. For optimization of rhGH production in CHO cells using Taguchi method An M16 orthogonal experimental design was used to investigate four different culture components. The biological activity of rhGH was assessed using LHRE-TK-Luciferase reporter gene system in HEK-293 and compared to the biological activity of prokaryotic rhGH.A maximal productivity of rhGH was reached in the conditions of 1%DMSO, 1%glycerol, 25 µM ZnSO 4 and 0 mM NaBu. Our findings indicate that control of culture conditions such as the addition of chemical components helps to develop an efficient large-scale and industrial process for the production of rhGH in CHO cells. Results of bioassay indicated that rhGH produced by CHO cells is able to induce GH-mediated intracellular cell signaling and showed higher bioactivity when compared to prokaryotic GH at the same concentrations. © Georg Thieme Verlag KG Stuttgart · New York.
Toorie, Anika M.; Cyr, Nicole E.; Steger, Jennifer S.; Beckman, Ross; Farah, George; Nillni, Eduardo A.
2016-01-01
Understanding the role of hypothalamic neuropeptides and hormones in energy balance is paramount in the search for approaches to mitigate the obese state. Increased hypothalamic-pituitary-adrenal axis activity leads to increased levels of glucocorticoids (GC) that are known to regulate body weight. The axis initiates the production and release of corticotropin-releasing hormone (CRH) from the paraventricular nucleus (PVN) of the hypothalamus. Levels of active CRH peptide are dependent on the processing of its precursor pro-CRH by the action of two members of the family of prohormone convertases 1 and 2 (PC1 and PC2). Here, we propose that the nutrient sensor sirtuin 1 (Sirt1) regulates the production of CRH post-translationally by affecting PC2. Data suggest that Sirt1 may alter the preproPC2 gene directly or via deacetylation of the transcription factor Forkhead box protein O1 (FoxO1). Data also suggest that Sirt1 may alter PC2 via a post-translational mechanism. Our results show that Sirt1 levels in the PVN increase in rats fed a high fat diet for 12 weeks. Furthermore, elevated Sirt1 increased PC2 levels, which in turn increased the production of active CRH and GC. Collectively, this study provides the first evidence supporting the hypothesis that PVN Sirt1 activates the hypothalamic-pituitary-adrenal axis and basal GC levels by enhancing the production of CRH through an increase in the biosynthesis of PC2, which is essential in the maturation of CRH from its prohormone, pro-CRH. PMID:26755731
Johnston, Shirley; Rhodes, Linda
2015-09-01
For many years, researchers have been studying reproduction of cats and dogs, including approaches to non-surgical sterilization, but scant funding has been available for this work. Recognizing the need to fund research and to attract researchers from the biomedical community to apply their expertise to this area, the Michelson Prize & Grants (MPG) in Reproductive Biology program was founded. Since 2009, it has funded 34 research projects in seven countries toward discovery of a safe single-administration lifetime non-surgical sterilant in male and female cats and dogs. The goal of the MPG program is the reduction or elimination of the approximately 2.7 million deaths of healthy shelter cats and dogs in the US every year. The successful product is expected to be a single-dose injectable product approved by the US Food and Drug Administration as a veterinary prescription item. The most optimistic prediction is that such a product will reach the hands of practicing veterinarians within the next decade. Active research is in progress using approaches such as immunocontraception with a single-administration vaccine against gonadotropin releasing hormone (GnRH). Long-term therapy with GnRH agonists such as deslorelin administered in controlled-release devices is also being studied. Other scientists are targeting cells in the brain or gonads with cytotoxins, such as are used in cancer chemotherapy. Gene therapy expressing proteins that suppress reproduction and gene silencing of peptides essential to reproduction are further avenues of research. Findings are available at www.michelsonprizeandgrants.org/michelson-grants/research-findings. © The Author(s) 2015.
77 FR 67239 - National Organic Program; Periodic Residue Testing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
... genetically modified organisms (GMOs). AMS does not intend for the testing conducted under section 205.670 to..., but not limited to, pesticides, hormones, antibiotics, and GMOs. AMS notes that, under section 205.671...
[Melatonin secretion in women of advanced reproductive age].
Ermolenko, K S; Rapoport, S I; Solov'eva, A V
2013-01-01
The patient's age is a key factor determining success of in vitro fertilization. The ovarian reserve and oocyte quality are known to decrease with age. Much attention has been given recently to the role of epiphysis and its hormone, melatonin, in synchronization of daily and seasonal biorhythms in anti-stress protection and neuroregulation of reproductive processes. The aim of our work was to study melatonin levels in infertile women of reproductive age. We also measured sex hormones, anti-Mullerian hormone, FSH, and LH in blood and melatonin sulfate in urine at 8 points (RIA). Women of advanced reproductive age showed markedly reduced melatonin secretion due to functional disorders in the hypothalamic-pituitary-gonadal axis. Results of the study suggest the necessity of prescription of exogenous melatonin to the patients included in assisted reproduction programs for the improvement of their efficacy.
Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans.
Motola, Daniel L; Cummins, Carolyn L; Rottiers, Veerle; Sharma, Kamalesh K; Li, Tingting; Li, Yong; Suino-Powell, Kelly; Xu, H Eric; Auchus, Richard J; Antebi, Adam; Mangelsdorf, David J
2006-03-24
In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.
Pituitary gland development and disease: from stem cell to hormone production.
Davis, Shannon W; Ellsworth, Buffy S; Peréz Millan, María Inés; Gergics, Peter; Schade, Vanessa; Foyouzi, Nastaran; Brinkmeier, Michelle L; Mortensen, Amanda H; Camper, Sally A
2013-01-01
Many aspects of pituitary development have become better understood in the past two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multipotent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone-producing cell types. We now realize that pulsatile hormone secretion involves a 3D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade, we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas. © 2013 Elsevier Inc. All rights reserved.
Pituitary Gland Development and Disease: From Stem Cell to Hormone Production
Davis, Shannon W.; Ellsworth, Buffy S.; Peréz Millan, María Inés; Gergics, Peter; Schade, Vanessa; Foyouzi, Nastaran; Brinkmeier, Michelle L.; Mortensen, Amanda H.
2014-01-01
Many aspects of pituitary development have become better understood in the last two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multi-potent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone producing cell types. We now realize that pulsatile hormone secretion involves a 3-D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas. PMID:24290346
Effect of composting on the fate of steroids in beef cattle manure.
Bartelt-Hunt, Shannon L; Devivo, Shannon; Johnson, Leslie; Snow, Daniel D; Kranz, William L; Mader, Terry L; Shapiro, Charles A; van Donk, Simon J; Shelton, David P; Tarkalson, David D; Zhang, Tian C
2013-07-01
In this study, the fate of steroid hormones in beef cattle manure composting is evaluated. The fate of 16 steroids and metabolites was evaluated in composted manure from beef cattle administered growth promotants and from beef cattle with no steroid hormone implants. The fate of estrogens (primary detected as estrone), androgens, progesterone, and the fusarium metabolite and implant α-zearalanol was monitored in manure compost piles. First-order decay rates were calculated for steroid half-lives in compost and ranged from 8 d for androsterone to 69 d for 4-androstenedione. Other steroid concentration data could not be fit to first-order decay models, which may indicate that microbial processes may result in steroid production or synthesis in composting systems. We demonstrate that composting is an effective strategy to remove steroid hormones from manure. Total steroid hormone removal in composted beef cattle manure ranged from 79 to 87%. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Topaloglu, A Kemal; Reimann, Frank; Guclu, Metin; Yalin, Ayse Serap; Kotan, L Damla; Porter, Keith M; Serin, Ayse; Mungan, Neslihan O; Cook, Joshua R; Imamoglu, Sazi; Akalin, N Sema; Yuksel, Bilgin; O'Rahilly, Stephen; Semple, Robert K
2009-03-01
The timely secretion of gonadal sex steroids is essential for the initiation of puberty, the postpubertal maintenance of secondary sexual characteristics and the normal perinatal development of male external genitalia. Normal gonadal steroid production requires the actions of the pituitary-derived gonadotropins, luteinizing hormone and follicle-stimulating hormone. We report four human pedigrees with severe congenital gonadotropin deficiency and pubertal failure in which all affected individuals are homozygous for loss-of-function mutations in TAC3 (encoding Neurokinin B) or its receptor TACR3 (encoding NK3R). Neurokinin B, a member of the substance P-related tachykinin family, is known to be highly expressed in hypothalamic neurons that also express kisspeptin, a recently identified regulator of gonadotropin-releasing hormone secretion. These findings implicate Neurokinin B as a critical central regulator of human gonadal function and suggest new approaches to the pharmacological control of human reproduction and sex hormone-related diseases.
Plant hormones: a fungal point of view.
Chanclud, Emilie; Morel, Jean-Benoit
2016-10-01
Most classical plant hormones are also produced by pathogenic and symbiotic fungi. The way in which these molecules favour the invasion of plant tissues and the development of fungi inside plant tissues is still largely unknown. In this review, we examine the different roles of such hormone production by pathogenic fungi. Converging evidence suggests that these fungal-derived molecules have potentially two modes of action: (i) they may perturb plant processes, either positively or negatively, to favour invasion and nutrient uptake; and (ii) they may also act as signals for the fungi themselves to engage appropriate developmental and physiological processes adapted to their environment. Indirect evidence suggests that abscisic acid, gibberellic acid and ethylene produced by fungi participate in pathogenicity. There is now evidence that auxin and cytokinins could be positive regulators required for virulence. Further research should establish whether or not fungal-derived hormones act like other fungal effectors. © 2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.
Dry Eye Syndrome in Menopause and Perimenopausal Age Group.
Peck, Travis; Olsakovsky, Leslie; Aggarwal, Shruti
2017-01-01
Dry eye disease (DED) is a multifactorial ocular surface disease that causes symptoms of ocular pain, discomfort, and decreased visual acuity. It significantly affects quality of life of patients. It is more prevalent in the females and is being specifically in the menopausal and postmenopausal age group. This is believed to be due to the changes in balance of sex hormones. Sex hormones - estrogens and androgens - influence production of all components of the tear film including aqueous layer, lipid, and mucin. Various mechanisms such as decrease in hormonal levels, shift in feedback mechanisms, and changes in receptor receptivity interplay to alter the ocular surface homeostasis and subsequently result in DED. Several studies have suggested potential role of hormone replacement therapy in menopause-associated dry eye symptoms. The purpose of this review is to help the non ophthalmic physicians about DED encountered commonly in menopausal age group. It is important for primary care physicians to understand DED due to its high prevalence, often debilitating symptoms and the potentially preventable and treatable nature of the condition.
Zaman, Mohammad; Kurepin, Leonid V; Catto, Warwick; Pharis, Richard P
2016-02-01
Fertilisation of established perennial ryegrass forage pastures with nitrogen (N)-based fertilisers is currently the most common practice used on farms to increase pasture forage biomass yield. However, over-fertilisation can lead to undesired environmental impacts, including nitrate leaching into waterways and increased gaseous emissions of ammonia and nitrous oxide to the atmosphere. Additionally, there is growing interest from pastoral farmers to adopt methods for increasing pasture dry matter yield which use 'natural', environmentally safe plant growth stimulators, together with N-based fertilisers. Such plant growth stimulators include plant hormones and plant growth promotive microorganisms such as bacteria and fungi ('biostimulators', which may produce plant growth-inducing hormones), as well as extracts of seaweed (marine algae). This review presents examples and discusses current uses of plant hormones and biostimulators, applied alone or together with N-based fertilisers, to enhance shoot dry matter yield of forage pasture species, with an emphasis on perennial ryegrass. © 2015 Society of Chemical Industry.
De Leo, Vincenzo; Morgante, Giuseppe; Piomboni, Paola; Musacchio, Maria Concetta; Petraglia, Felice; Cianci, Antonio
2007-07-01
To investigate whether the administration of an oral contraceptive containing the new antiandrogenic drospirenone is associated with reduced adrenal androgen synthesis in hyperandrogenic women with diagnosis of polycystic ovary syndrome. Drospirenone, an analogue of spironolactone and aldosterone antagonist, is a novel progestin under clinical development that is similar to the natural hormone progesterone, combining potent progestogenic with antimineralocorticoid and antiandrogenic activities. Prospective study. Healthy volunteers in University Department of Obstetrics and Gynecology. Fifteen women ages 18 to 28 years with the diagnosis of polycystic ovary syndrome. Three months of contraceptive use (30 mcg ethinylestradiol, 3 mg drospirenone). An adrenocorticotropic hormone test was performed before and after the study. Adrenal production of cortisol was unchanged after therapy with oral contraceptives. An interesting observation was reduced basal concentrations of androgens such as androstenedione, dehydroepiandrosterone sulfate, testosterone, and free testosterone during therapy. The ratios of the areas of substrates to products before and after oral contraceptive administration were compared for differences in 17alpha-hydroxylase (17-hydroxyprogesterone/progesterone) and 17,20-lyase (androstenedione/17-hydroxyprogesterone); activities were significantly reduced, indicating a reduction in the activities of these enzymes. The present results show for the first time that oral contraceptives containing drospirenone affect adrenal steroidogenesis by reducing synthesis and release of androgens in response to adrenocorticotropic hormone, leaving adrenal production of cortisol unchanged.
Daily rhythm of salivary IL-1ß, cortisol and melatonin in day and night workers.
Reinhardt, Érica Lui; Fernandes, Pedro Augusto Carlos Magno; Markus, Regina Pekelmann; Fischer, Frida Marina
2012-01-01
Shiftwork-induced sleep deprivation and circadian disruption probably leads to an increase in the production of cytokines and dysregulation of innate immune system, respectively. This project aims evaluating changes in salivary IL-1 beta, cortisol, and melatonin in night workers. Method. Two day and three night healthy workers participated in this study. Sleep was evaluated by actimetry and activity protocols. Saliva was collected at waking and bedtime the last workday and the following two days-off and was analyzed by ELISA. Results. Neither sleep duration nor efficiency showed any association with salivary IL-1beta. IL-1beta levels were higher at waking than at bedtime during working days for all workers, but only one day and one night-worker maintained this pattern and hormone rhythms during days off. For this night worker, melatonin levels were shifted to daytime. A second one presented clear alterations in IL-1beta and hormone rhythms on days-off. Conclusions. Our preliminary results suggest that night work can disturb the variation pattern of salivary IL-1beta. No association of this variation with sleep was observed. It seems that disruption in hormone rhythms interfere with salivary IL-1beta production. IL- 1beta production pattern seems to be maintained when rhythms are present, in spite of a shift in melatonin secretion.
Azzouz, Abdelmonaim; Ballesteros, Evaristo
2013-11-01
The potential presence of pharmaceuticals, hormones and personal care products in drinking water supplies has raised concerned over the efficiency with which these substances are removed by water treatment processes. In this work, we analyzed samples of raw, unprocessed water collected in different periods and found them to contain higher levels of these contaminants in the colder periods (viz. 12-314 ng L(-1) in autumn and winter as compared to 8-127 ng L(-1) in spring and summer) as a result of their biodegradation being favoured by high temperatures and solar irradiance. We also assessed the efficiency with which these contaminants are removed from drinking water by a water treatment plant operating in south-eastern Spain. Preoxidation with potassium permanganate and chloramination with sodium hypochlorite in the presence of highly concentrated ammonia were found to be the treatment steps most markedly contributing to the removal of pharmaceuticals, hormones and personal care products from drinking water (especially in the warmer periods, where these contaminants were completely removed from the water). By contrast, water treated in the colder periods (autumn and winter) still contained small amounts of ibuprofen and carbamazepine (0.09-0.5 ng L(-1)) which, however, accounted for less than 0.2% of their original concentrations in the water prior to treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren
2004-09-01
Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.
Brominated flame retardants as possible endocrine disrupters.
Darnerud, P O
2008-04-01
Brominated flame retardants (BFR) are endocrine disrupters in experimental systems, both in vitro and in vivo. Although BFR effects on thyroid hormones are well confirmed, studies of effects on oestrogen/androgen systems are fewer but today growing in numbers. The effects of BFR on other hormone systems are still unknown. Hormonal effect levels in animals start from ca 1 mg/kg b.w., but there are exceptions: effects on spermatogenesis, suggesting hormonal causes, have been observed at a low dose (60 microg/kg b.w.) of a polybrominated diphenyl ether (PBDE) congener, BDE-99. It could be concluded that hormonal effects are of importance in risk assessment, and in some cases where effects are seen at low levels safety margins may be insufficient. One additional uncertainty is the lack of reliable human data that could be used to support animal BFR observations. In spite of the recent regulation of PBDE production, levels of both PBDE and of other BFR groups are still present in environmental samples. Thus, we have to deal with the possible effects of human BFR exposure for times to come. In order to reduce BFR exposure, the routes of exposure should be carefully examined and ways to reduce levels in major exposure routes considered.
Perry, Adam N.; Westenbroek, Christel; Hedges, Valerie L.; Becker, Jill B.; Mermelstein, Paul G.
2013-01-01
After reproductive senescence or gonadectomy, changes occur in neural gene expression, ultimately altering brain function. The endocrine mechanisms underlying these changes in gene expression beyond immediate hormone loss are poorly understood. To investigate this, we measured changes in gene expression the dorsal striatum, where 17β-estradiol modulates catecholamine signaling. In human caudate, quantitative PCR determined a significant elevation in β1-adrenergic receptor (β1AR) expression in menopausal females when compared with similarly aged males. No differences were detected in β2-adrenergic and D1- and D2-dopamine receptor expression. Consistent with humans, adult ovariectomized female rats exhibited a similar increase in β1AR expression when compared with gonadectomized males. No sex difference in β1AR expression was detected between intact adults, prepubertal juveniles, or adults gonadectomized before puberty, indicating the necessity of pubertal development and adult ovariectomy. Additionally, increased β1AR expression in adult ovariectomized females was not observed if animals were masculinized/defeminized with testosterone injections as neonates. To generate a model system for assessing functional impact, increased β1AR expression was induced in female-derived cultured striatal neurons via exposure to and then removal of hormone-containing serum. Increased β1AR action on cAMP formation, cAMP response element-binding protein phosphorylation and gene expression was observed. This up-regulation of β1AR action was eliminated with 17β-estradiol addition to the media, directly implicating this hormone as a regulator of β1AR expression. Beyond having implications for the known sex differences in striatal function and pathologies, these data collectively demonstrate that critical periods early in life and at puberty program adult gene responsiveness to hormone loss after gonadectomy and potentially reproductive senescence. PMID:23533220
Chong, Yih Harng; Dennis, Nicola A.; Connolly, Martin J.; Teh, Ruth; Jones, Gregory T.; van Rij, Andre M.; Farrand, Stephanie; Campbell, A. John; MLennan, Ian S.
2013-01-01
The Sertoli cells of the testes secrete anti-Müllerian hormone (Müllerian inhibiting Substance, AMH) and inhibin B (InhB). AMH triggers the degeneration of the uterine precursor in male embryos, whereas InhB is part of the gonadal-pituitary axis for the regulation of sperm production in adults. However, both hormones are also putative regulators of homeostasis, and age-related changes in these hormones may therefore be important to the health status of elderly men. The levels of AMH in elderly men are unknown, with limited information being available about age-related changes in InhB. We have therefore used ELISAs to measure Sertoli cell hormone levels in 3 cohorts of community-dwelling men in New Zealand. In total, 615 men were examined, 493 of which were aged 65 or older. Serum AMH and InhB levels inversely correlated with age in men older than 50 years (p<0.001) but not in the younger men. A minority of elderly men had undetectable levels of AMH and InhB. The variation in hormone levels between similarly aged men increased with the age of men. AMH and InhB partially correlated with each other as expected (r = 0.48, p<0.001). However, the ratio of the two Sertoli hormones varied significantly between men, with this variation increasing with age. Elderly men selected for the absence of cardiovascular disease had AMH levels similar to those of young men whereas their InhB levels did not differ from aged-matched controls. These data suggests that Sertoli cell number and function changes with age, but with the extent and nature of the changes varying between men. PMID:23940675
Reproductive and Appetite Hormones and Bulimic Symptoms during Midlife.
Baker, Jessica H; Peterson, Claire M; Thornton, Laura M; Brownley, Kimberly A; Bulik, Cynthia M; Girdler, Susan S; Marcus, Marsha D; Bromberger, Joyce T
2017-05-01
Eating disorders and related symptoms occur during midlife; however, little is known about their aetiology. It has been hypothesised that perimenopause represents a window of vulnerability for the development or exacerbation of eating disorder symptomatology because, like puberty, perimenopause is a period of reproductive hormone change. We compared symptoms of bulimia nervosa (bulimic symptomatology) assessed via mean scores on a self-report questionnaire in premenopausal and perimenopausal women. We also examined the association between hormone concentrations (reproductive/appetite) and bulimic symptomatology. No mean differences in bulimic symptomatology were observed between premenopause and perimenopause. However, there was a significant positive association between leptin and binge eating. Although no significant associations between reproductive hormones and bulimic symptomatology were observed, additional research is needed to provide definitive information. It is essential to learn more about the aetiology of eating disorders and related symptomatology across the lifespan in order to develop age-relevant treatment and prevention programs. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.
Al-Anazi, Abdullah Foraih; Qureshi, Viquar Fatima; Javaid, Khalida; Qureshi, Shoeb
2011-01-01
Estrogen deficiency is a major risk factor for osteoporosis in postmenopausal women. Although hormone replacement therapy (HRT) has been rampantly used to recompense for the bone loss, but the procedure is coupled with severe adverse effects. Hence, there is a boost in the production of newer synthetic products to ward off the effects of menopause-related osteoporosis. As of today, there are several prescription products available for the treatment of postmenopause osteoporosis; most of these are estrogenic agents and combination products. Nevertheless, in view of the lack of effect and/or toxicity of these products, majority of the postmenopausal women are now fascinated by highly publicized natural products. This is an offshoot of the generalized consensus that these products are more effective and free from any adverse effects. Recently, certain plant-derived natural products, mostly phytoestrogens (isoflavones, lignans, coumestanes, stilbenes, flavonoids) and many more novel estrogen-like compounds in plants have been immensely used to prevent menopause-related depletion in bone mineral density (BMD). Although, a number of papers are published on menopause-related general symptoms, sexual dysfunction, cardiovascular diseases, Alzheimer's disease, diabetes, colon, and breast cancers, there is paucity of literature on the accompanying osteoporosis and its treatment. In view of the controversies on synthetic hormones and drugs and drift of a major population of patients toward natural drugs, it was found worthwhile to investigate if these drugs are suitable to be used in the treatment of postmenopausal osteoporosis. Preparation of this paper is an attempt to review the (a) epidemiology of postmenopausal osteoporosis, (b) treatment modalities of postmenopausal osteoporosis by hormones and synthetic drugs and the associated drawbacks and adverse effects, and (c) prevention and treatment of postmenopausal osteoporosis by phytoestrogens, their drawbacks and toxicity. It is apparent that both the categories of treatment are useful and both have adverse effects, but the plant products are nonscientific and hence are not advised to be used till more studies are undertaken to ensure that the benefits clearly outweigh the risk, in addition to recognition by Food and Drug Administration. PMID:22346228
Multigner, L; Brik, E Ben; Arnaud, I; Haguenoer, J M; Jouannet, P; Auger, J; Eustache, F
2007-01-01
Objectives Apparent increases in human male reproductive disorders, including low sperm production, may have occurred because of increased chemical exposure. Various glycol ether‐based solvents have pronounced adverse effects on sperm production and male fertility in laboratory animals. The authors investigated the effects of past and current exposure to glycol ether‐containing products on semen quality and reproductive hormones among men employed by the Paris Municipality. Methods Between 2000 and 2001 the authors recruited 109 men who gave semen, blood and urine samples and underwent an andrological examination. Information on lifestyle, occupation, exposure and medical history was obtained by interview. According to their job and chemical products used during the period 1990–2000, men were classified as either occupationally exposed or non‐exposed. Current exposure levels to glycol ethers at the time of the study were evaluated by biological monitoring of six urinary metabolites. Results Previous exposure to glycol ethers was associated with an increased risk for sperm concentration, for rapid progressive motility and for morphologically normal sperm below the World Health Organization semen reference values. No effect of previous glycol ether exposure on hormones levels was observed. By contrast, current glycol ether exposure levels were low and not correlated with either seminal quality or hormone levels. Conclusions This study suggests that most glycol ethers currently used do not impact on human semen characteristics. Those that were more prevalent from the 1960s until recently may have long lasting negative effects on human semen quality. PMID:17332140
Hot issues in female and male hormonal contraception.
Gava, Giulia; Lantadilla, Claudia; Martelli, Valentina; Fattorini, Anna; Seracchioli, Renato; Meriggiola, Maria C
2016-02-01
In recent years a number of significant developments in the field of female hormonal contraception have been made which have produced new formulations and delivery systems providing high efficacy, safety and important non-contraceptive benefits. In particular long-acting reversible contraception (LARC) formulations have been demonstrated to ensure extremely high efficacy in typical use, minimal contraindications, optimal safety in all women thereby representing the best option for most women of all ages. Their effectiveness is not reliant upon user adherence and their ability to reduce unintended pregnancies and abortions has been proven. Unfortunately the same considerations cannot be made for male hormonal contraception. Although a large number of men are interested and would welcome the opportunity to use male contraceptive methods, no safe, effective and reversible methods are available on the market. Current methods available for men are limited to condoms and vasectomy. Highly effective prototype regimens have been developed but the pharmaceutical industry is unwilling to pursue further development and market these products. Of all new approaches to male contraception, hormonal methods are the closest to clinical application. These are based on the reversible suppression of luteinizing hormone and follicle stimulating hormone with subsequent reversible inhibition of spermatogenesis and consequent replacement to maintain androgen dependent physiological functions. Most approaches tested combination regimens such as testosterone and a progestin or testosterone and a GnRH analog.
Milk consumption and the prepubertal somatotropic axis.
Rich-Edwards, Janet W; Ganmaa, Davaasambuu; Pollak, Michael N; Nakamoto, Erika K; Kleinman, Ken; Tserendolgor, Uush; Willett, Walter C; Frazier, A Lindsay
2007-09-27
Nutrients, hormones and growth factors in dairy foods may stimulate growth hormone (GH), insulin-like growth factor I (IGF-I), and raise the ratio of IGF-I to its binding protein, IGFBP-3. We conducted pilot studies in Mongolia and Massachusetts to test the extent to which milk intake raised somatotropic hormone concentrations in prepubertal children. In Ulaanbaatar, we compared plasma levels before and after introducing 710 ml daily whole milk for a month among 46 10-11 year old schoolchildren. In a randomized cross-over study in Boston, we compared plasma hormone levels of 28 6-8 year old girls after one week of drinking 710 ml low fat (2%) milk with their hormone levels after one week of consuming a macronutrient substitute for milk. After a month of drinking whole milk, Mongolian children had higher mean plasma levels of IGF-I (p < 0.0001), IGF-I/IGFBP-3 (p < 0.0001), and 75th percentile of GH levels (p = 0.005). After a week of drinking low fat milk, Boston girls had small and non-significant increases in IGF-1, IGF-1/IGFBP-3 and GH. Milk drinking may cause increases in somatotropic hormone levels of prepubertal girls and boys. The finding that milk intake may raise GH levels is novel, and suggests that nutrients or bioactive factors in milk may stimulate endogenous GH production.
Sheehan's Syndrome (Postpartum Hypopituitarism)
... gland controls: thyroid, adrenal, breast milk production and menstrual function hormones. These include: Difficulty breast-feeding or an inability to breast-feed No menstrual periods (amenorrhea) or infrequent menstruation (oligomenorrhea) Inability to ...
Endogenous Pyrogen Physiology.
ERIC Educational Resources Information Center
Beisel, William R.
1980-01-01
Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)
Electrophoretic separation of cells and particles from rat pituitary and rat spleen
NASA Technical Reports Server (NTRS)
Hymer, Wesley C.
1993-01-01
There are 3 parts to the IML-2 TX-101 experiment. Part 1 is a pituitary cell culture experiment. Part 2 is a pituitary cell separation experiment using the Japanese free flow electrophoresis unit (FFEU). Part 3 is a pituitary secretory granule separation experiment using the FFEU. The objectives of this three part experiment are: (1) to determine the kinetics of production of biologically active growth hormone (GH) and prolactin (PRL) in rat pituitary GH and PRL cells in microgravity (micro-g); (2) to investigate three mechanisms by which a micro-g-induced lesion in hormone production may occur; and (3) to determine the quality of separations of pituitary cells and organelles by continuous flow electrophoresis (CFE) in micro-g under conditions where buoyancy-induced convection is eliminated.
Amiri, Mina; Ramezani Tehrani, Fahimeh; Nahidi, Fatemeh; Kabir, Ali; Azizi, Fereidoun
2018-04-25
Different products of combined oral contraceptives (COCs) can improve clinical and biochemical findings in patients with polycystic ovary syndrome (PCOS) through suppression of the hypothalamic-pituitary-gonadal (HPG) axis. This systematic review and meta-analysis aimed to compare the effects of COCs containing progestins with low androgenic and antiandrogenic activities on the HPG axis in patients with PCOS. We searched PubMed, Scopus, Google Scholar, ScienceDirect, and Web of Science databases (1980-2017) to identify randomized controlled trials or nonrandomized studies investigating the effect of COCs containing progestins with low androgenic and antiandrogenic activities, including the products containing desogestrel, cyproterone acetate, and drospirenone, on the HPG axis in patients with PCOS. In this meta-analysis, fixed and random effect models were used. Outcomes of interest were weighted mean differences (WMD) of hormonal parameters, including the follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH-to-FSH ratio, estradiol, total testosterone, and sex hormone-binding globulin. Potential sources of heterogeneity were investigated using meta-regression and subgroup analyses. Subgroup analyses were performed based on the used progestin compound and treatment duration. We assessed quality of included studies and their risk of bias using Cochrane guidelines. Publication bias was assessed using Egger test and funnel plot. COC use was significantly associated with a decrease in gonadotropin levels, including FSH and LH. Use of products containing cyproterone acetate was associated with a decrease in FSH levels after 3 months (WMD=-0.48; 95% CI -0.81 to -0.15), 6 months (WMD=-2.33; 95% CI -3.48 to -1.18), and 12 months (WMD=-4.70; 95% CI -4.98 to -4.42) and a decrease in LH levels after 3 months (WMD=-3.57; 95% CI -5.14 to -1.99), 6 months (WMD=-5.68; 95% CI -9.57 to -1.80), and 12 months (WMD=-11.60; 95% CI -17.60 to -5.60). Use of COCs containing drospirenone for 6 months decreased FSH (WMD=-0.93; 95% CI -1.79 to -0.08) and LH (WMD=-4.59; 95% CI -7.53 to -1.66) levels. Data for products containing desogestrel were few, but this compound generally had no statistically significant influence on gonadotropin levels similar to that observed with COCs containing cyproterone acetate and drospirenone. Use of COCs was not associated with any significant change in LH-to-FSH ratio. COCs containing cyproterone acetate showed maximum effect on gonadotropin suppression. COCs containing cyproterone acetate significantly decreased estradiol concentrations, whereas those containing drospirenone exhibited no such effect. All COCs demonstrated improvement in androgenic profile and had the same effects on total testosterone and sex hormone-binding globulin concentrations. Progestin compound and treatment duration had no statistically significant effects on changing total testosterone and sex hormone-binding globulin levels. COCs containing cyproterone acetate can effectively suppress gonadotropins, leading to a decrease in androgenic parameters. Although different products of COCs could significantly suppress the androgenic profile, it seems that products containing cyproterone acetate are more effective in suppressing gonadotropin and estradiol levels in patients with PCOS. ©Mina Amiri, Fahimeh Ramezani Tehrani, Fatemeh Nahidi, Ali Kabir, Fereidoun Azizi. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 25.04.2018.
Budget impact analysis of 8 hormonal contraceptive options.
Crespi, Simone; Kerrigan, Matthew; Sood, Vipan
2013-07-01
To develop a model comparing costs of 8 hormonal contraceptives and determine whether acquisition costs for implants and intrauterine devices (IUDs) were offset by decreased pregnancy-related costs over a 3-year time horizon from a managed care perspective. A model was developed to assess the budget impact of branded or generic oral contraceptives (OCs), quarterly intramuscular depot medroxyprogesterone, etonogestrel/ethinyl estradiol vaginal ring, etonogestrel implant, levonorgestrel IUD, norelgestromin/ethinyl estradiol transdermal contraceptive, and ethinyl estradiol/levonorgestrel extended-cycle OC. Major variables included drug costs, typical use failure rates, discontinuation rates, and pregnancy costs. The base case assessed costs for 1000 women initiating each of the hormonal contraceptives. The etonogestrel implant and levonorgestrel IUD resulted in the fewest pregnancies, 63 and 85, respectively, and the least cost, $1.75 million and $2.0 million, respectively. In comparison, generic OC users accounted for a total of 243 pregnancies and $3.4 million in costs. At the end of year 1, costs for the etonogestrel implant ($800,471) and levonorgestrel IUD ($949,721) were already lower than those for generic OCs ($1,146,890). Sensitivity analysis showed that the cost of pregnancies, not product acquisition cost, was the primary cost driver. Higher initial acquisition costs for the etonogestrel implant and levonorgestrel IUD were offset within 1 year by lower contraceptive failure rates and consequent pregnancy costs. Thus, after accounting for typical use failure rates of contraceptive products, the etonogestrel implant and levonorgestrel IUD emerged as the least expensive hormonal contraceptives.
Nutrition of women with hair loss problem during the period of menopause
2016-01-01
During the period of menopause as an effect of changes in hormone status, one of the most common ailments for women is hair loss. Taking into consideration fact that the ingredients of diet contained in various groups of consumed food products are both precursors in steroid hormones synthesis as well as have direct impact on structure, growth and keeping hair in skin integument, this is the reason why nourishing support for women during this period of life as well as during the hair loss therapy is reasonable. Standard value proteins containing Sulphur amino-acids: cysteine and methionine as precursor to keratin hair protein synthesis are basic element of diet conditioning of hair building. Irreplaceable having impact on keeping hair in skin integument is exogenous L-lysine, mainly present in the inner part of hair root is responsible for hair shape and volume. Fats present in the diet take part in steroid hormones synthesis (from cholesterol) thus have influence on keeping hair in skin integument. Women diet should contain products rich in complex carbohydrates, with low glycemic index and load containing fiber regulating carbohydrate-lipid metabolism of the body. Vitamins also have impact on the state of hair: C vitamin, group B and A vitamins. Minerals which influence hair growth are: Zn, Fe, Cu, Se, Si, Mg and Ca. It is worthwhile to pay closer attention to diet in women who besides hormone changes and undertaken pharmacotherapy are additionally exposed to chronic stress and improperly conducted cosmetic's and hairdresser's treatments. PMID:27095961
Nutrition of women with hair loss problem during the period of menopause.
Goluch-Koniuszy, Zuzanna Sabina
2016-03-01
During the period of menopause as an effect of changes in hormone status, one of the most common ailments for women is hair loss. Taking into consideration fact that the ingredients of diet contained in various groups of consumed food products are both precursors in steroid hormones synthesis as well as have direct impact on structure, growth and keeping hair in skin integument, this is the reason why nourishing support for women during this period of life as well as during the hair loss therapy is reasonable. Standard value proteins containing Sulphur amino-acids: cysteine and methionine as precursor to keratin hair protein synthesis are basic element of diet conditioning of hair building. Irreplaceable having impact on keeping hair in skin integument is exogenous L-lysine, mainly present in the inner part of hair root is responsible for hair shape and volume. Fats present in the diet take part in steroid hormones synthesis (from cholesterol) thus have influence on keeping hair in skin integument. Women diet should contain products rich in complex carbohydrates, with low glycemic index and load containing fiber regulating carbohydrate-lipid metabolism of the body. Vitamins also have impact on the state of hair: C vitamin, group B and A vitamins. Minerals which influence hair growth are: Zn, Fe, Cu, Se, Si, Mg and Ca. It is worthwhile to pay closer attention to diet in women who besides hormone changes and undertaken pharmacotherapy are additionally exposed to chronic stress and improperly conducted cosmetic's and hairdresser's treatments.
FoxO inhibits juvenile hormone biosynthesis and vitellogenin production in the German cockroach.
Süren-Castillo, Songül; Abrisqueta, Marc; Maestro, José L
2012-07-01
The transcription factor Forkhead-box O (FoxO) is the main transcriptional effector of the Insulin Receptor/Phosphatidylinositol 3-kinase (InR/PI3K) pathway. In a situation of nutrient restriction, the pathway is inactive and FoxO translocates to the nucleus to exert its transcriptional action. In starved females of the cockroach Blattella germanica, the reproductive processes, and in particular the synthesis of juvenile hormone in the corpora allata and that of vitellogenin in the fat body, are arrested. In the present report we examine the possible role of FoxO in the transduction of the nutritional signals to these reproductive events. We first cloned FoxO cDNA from B. germanica (BgFoxO), and showed that its expression is not nutritionally regulated. BgFoxO knockdown using systemic RNAi in vivo in starved females elicited an increase of juvenile hormone biosynthesis, although without modifying mRNA levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase-1, HMG-CoA synthase-2, HMG-CoA reductase or methyl farnesoate epoxidase (CYP15A1) in corpora allata. In addition, BgFoxO RNAi treatment produced a remarkable increase of vitellogenin mRNA levels in fat body and of vitellogenin protein in the haemolymph. Our results indicate that BgFoxO plays an inhibitory role on juvenile hormone biosynthesis and vitellogenin production in a situation of nutrient shortage. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rahman, Md Saydur; Takemura, Akihiro; Takano, Kazunori
2002-01-01
To assess the relationship between lunar cycle and steroidogenesis in the ovaries of the golden rabbitfish, Siganus guttatus, the intact follicles of oocytes were incubated in vitro with human chorionic gonadotropin (hCG) and seven steroid hormones, 17alpha,20beta-dihydroxy-4-pregnen-3-one (DHP), 17alpha,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S), 17alpha-hydroxyprogesterone (17alpha-OHP), progesterone (P), cortisol, estradiol-17beta (E2) and testosterone, during the two lunar phases, the new moon (1 week before spawning) and the first lunar quarter (just before spawning). Around the new moon, germinal vesicle breakdown (GVBD) could not be induced by addition of hCG or any steroid hormones. Around the first lunar quarter, GVBD was induced by addition of hCG, DHP, 20beta-S, 17alpha-OHP, P, and cortisol. DHP was the most potent steroid hormone. When the intact follicles of oocytes were incubated with hCG in both lunar phases, the production of E2 and DHP measured by enzyme immunoassay decreased and increased significantly from the new moon to the first lunar quarter, respectively. These results suggest that the ovarian follicles produce E2 around the new moon and DHP around the first lunar quarter and that the production/conversion of the steroid hormones is under the influence of gonadotropin(s). The synchronous increase in ovarian activity supports the hypothesis that lunar periodicity is a major factor for the ovarian development of S. guttatus.
A study of photon interaction in some hormones
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2013-05-01
The effective atomic numbers (Z eff) and electron density (N el) of some hormones such as testosterone, methandienone, estradiol and rogesterone for total and partial photon interactions have been computed in the wide energy region 1 keV-100 GeV using an accurate database of photon-interaction cross sections and the WinXCom program. The computed Z eff and N el are compared with the values generated by XMuDat program. The computer tomography (CT) numbers and kerma values relative to air are also calculated and the computed data of CT numbers in the low-energy region help in visualizing the image of the biological samples and to obtain precise accuracy in treating the inhomogenity of them in medical radiology. In view of dosimetric interest, the photon absorbed dose rates of some commonly used gamma sources (Na-21, Cs-137, Mn-52, Co-60 and Na-22) are also estimated.
Diet and the role of lipoproteins, lipases, and thyroid hormones in coronary lesion growth
NASA Technical Reports Server (NTRS)
Barth, Jacques D.; Jansen, Hans; Reiber, Johan H. C.; Birkenhager, Jan C.; Kromhout, Daan
1987-01-01
The relationships between the coronary lesion growth and the blood contents of lipoprotein fractions, thyroic hormones, and the lipoprotein lipase activity were investigated in male patients with severe coronary atherosclerosis, who participated in a lipid-lowering dietary intervention program. A quantitative computer-assisted image-processing technique was used to assess the severity of coronary obstructions at the beginning of the program and at its termination two years later. Based on absolute coronary scores, patients were divided into a no-lesion growth group (14 patients) and a progression group (21 paients). At the end of the trial, the very-low-density lipoprotein cholesterol and triglycerides were found to be significantly higher, while the high-density lipoprotein cholesterol and hepatic lipase (HL) were lower in the progression group. Multivariate regression analysis showed HL to be the most important determinant of changes in coronary atherosclerotic lesions.
Melanin-concentrating hormone and its receptor are expressed and functional in human skin.
Hoogduijn, Martin J; Ancans, Janis; Suzuki, Itaru; Estdale, Siân; Thody, Anthony J
2002-08-23
In this study, we have demonstrated the presence of melanin-concentrating hormone (MCH) and melanin-concentrating hormone receptor (MCHR1) transcripts in human skin. Sequence analysis confirmed that the transcripts of both genes were identical to those previously found in human brain. In culture, endothelial cells showed pro-MCH expression whereas no signal was found in keratinocytes, melanocytes, and fibroblasts. MCHR1 expression was restricted to melanocytes and melanoma cells. Stimulation of cultured human melanocytes with MCH reduced the alpha-MSH-induced increase in cAMP production. Furthermore, the melanogenic actions of alpha-MSH were inhibited by MCH. We propose that the MCH/MCHR1 signalling system is present in human skin and may have a role with the melanocortins in regulating the melanocyte.
Non-hormonal male contraception: A review and development of an Eppin based contraceptive.
O'Rand, Michael G; Silva, Erick J R; Hamil, Katherine G
2016-01-01
Developing a non-hormonal male contraceptive requires identifying and characterizing an appropriate target and demonstrating its essential role in reproduction. Here we review the development of male contraceptive targets and the current therapeutic agents under consideration. In addition, the development of EPPIN as a target for contraception is reviewed. EPPIN is a well characterized surface protein on human spermatozoa that has an essential function in primate reproduction. EPPIN is discussed as an example of target development, testing in non-human primates, and the search for small organic compounds that mimic contraceptive antibodies; binding EPPIN and blocking sperm motility. Although many hurdles remain before the success of a non-hormonal male contraceptive, continued persistence should yield a marketable product. Copyright © 2015 Elsevier Inc. All rights reserved.
Long-acting injectable hormonal dosage forms for contraception.
Wu, Linfeng; Janagam, Dileep R; Mandrell, Timothy D; Johnson, James R; Lowe, Tao L
2015-07-01
Although great efforts have been made to develop long-acting injectable hormonal contraceptives for more than four decades, few long-acting injectable contraceptives have reached the pharmaceutical market or even entered clinical trials. On the other hand, in clinical practice there is an urgent need for injectable long-acting reversible contraceptives which can provide contraceptive protection for more than 3 months after one single injection. Availability of such products will offer great flexibility to women and resolve certain continuation issues currently occurring in clinics. Herein, we reviewed the strategies exploited in the past to develop injectable hormonal contraceptive dosages including drug microcrystal suspensions, drug-loaded microsphere suspensions and in situ forming depot systems for long-term contraception and discussed the potential solutions for remaining issues met in the previous development.
Plant hormones as signals in arbuscular mycorrhizal symbiosis.
Miransari, Mohammad; Abrishamchi, A; Khoshbakht, K; Niknam, V
2014-06-01
Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.
USDA-ARS?s Scientific Manuscript database
Channel x blue catfish are exclusively produced by hormone-induced spawning of channel catfish and the stripped eggs are fertilized with pooled blue catfish sperm in hatcheries. Even though hybrid fry production has increased in recent years, variable and inconsistent hybrid catfish fry production ...
Differential pituitary response to GNRH and GNIH in low and high egg producing turkey hens
USDA-ARS?s Scientific Manuscript database
Turkey hens with low egg production have a negative economic impact on the industry as these hens produce fewer poults yet cost the same to maintain as their high egg-producing counterparts. Egg production begins with the secretion of gonadotropin releasing hormone (GNRH) from the hypothalamus caus...
Tutton, P. J.; Barkla, D. H.
1981-01-01
Previous studies have shown that various amine hormones are able to influence the growth rate of human colorectal carcinomas propagated as xenografts in immune-deprived mice, and it is now well known that the effects of many amine and other hormones are mediated by cyclic nucleotides, acting as second messengers within cells. In the present study the influence of various derivatives of cyclic adenosine monophosphate and cyclic guanosine monophosphate on the growth of two different lines of colorectal cancer growing in immune-deprived mice, and on the cell production rate in the colonic crypt epithelium of the rat, was assessed. Growth of each tumour line, as well as crypt-cell production, was suppressed by treatment wit N6O2' dibutyryl and N6 monobutyryl derivatives of cyclic adenosine monophosphate. Dibutyryl cyclic guanosine monophosphate, on the other hand, was found to promote the growth of Tumour HXK4 and to promote crypt cell production, but to have no significant effect on Tumour HXM2. PMID:6268136
Tutton, P J; Barkla, D H
1981-08-01
Previous studies have shown that various amine hormones are able to influence the growth rate of human colorectal carcinomas propagated as xenografts in immune-deprived mice, and it is now well known that the effects of many amine and other hormones are mediated by cyclic nucleotides, acting as second messengers within cells. In the present study the influence of various derivatives of cyclic adenosine monophosphate and cyclic guanosine monophosphate on the growth of two different lines of colorectal cancer growing in immune-deprived mice, and on the cell production rate in the colonic crypt epithelium of the rat, was assessed. Growth of each tumour line, as well as crypt-cell production, was suppressed by treatment wit N6O2' dibutyryl and N6 monobutyryl derivatives of cyclic adenosine monophosphate. Dibutyryl cyclic guanosine monophosphate, on the other hand, was found to promote the growth of Tumour HXK4 and to promote crypt cell production, but to have no significant effect on Tumour HXM2.
Absence of detectable melatonin and preservation of cortisol and thyrotropin rhythms in tetraplegia
NASA Technical Reports Server (NTRS)
Zeitzer, J. M.; Ayas, N. T.; Shea, S. A.; Brown, R.; Czeisler, C. A.
2000-01-01
The human circadian timing system regulates the temporal organization of several endocrine functions, including the production of melatonin (via a neural pathway that includes the spinal cord), TSH, and cortisol. In traumatic spinal cord injury, afferent and efferent circuits that influence the basal production of these hormones may be disrupted. We studied five subjects with chronic spinal cord injury (three tetraplegic and two paraplegic, all neurologically complete injuries) under stringent conditions in which the underlying circadian rhythmicity of these hormones could be examined. Melatonin production was absent in the three tetraplegic subjects with injury to their lower cervical spinal cord and was of normal amplitude and timing in the two paraplegic subjects with injury to their upper thoracic spinal cord. The amplitude and the timing of TSH and cortisol rhythms were robust in the paraplegics and in the tetraplegics. Our results indicate that neurologically complete cervical spinal injury results in the complete loss of pineal melatonin production and that neither the loss of melatonin nor the loss of spinal afferent information disrupts the rhythmicity of cortisol or TSH secretion.
Beaulah Budithi, Neema Raja; Kumar, Vinod; Yalla, Suneel Kumar; Rai, Upashna; Umapathy, Govindhaswamy
2016-09-01
The red panda (Ailurus fulgens fulgens) is classified as endangered due to its declining population, habitat fragmentation and poaching. Efforts are being made to breed them in captivity as part of nationwide conservation breeding program. This study aimed to standardize Enzyme immunoassays (EIAs) to monitor reproductive (Progesterone metabolite, Testosterone) and stress hormone (Cortisol) in red panda. For this purpose, we collected 1471 faecal samples from four females and one male over a period of one year from Padmaja Naidu Himalayan Zoological Park, Darjeeling, India. HPLC confirmed the presence of immunoreactive 5α-pregnan-3α-ol-20-one, testosterone and cortisol metabolites in faecal samples. Using 5α-pregnan-3α-ol-20-one EIA, we were able to monitor reproduction and detect pregnancy in one of the females, which successfully conceived and delivered during the study period. We were also able to monitor testosterone and cortisol in faecal samples of the red panda. Faecal testosterone levels were found in higher concentration in breeding season than in non-breeding season. Faecal cortisol concentrations showed a negative relationship with ambient temperature and peaked during winter months in all animals. Standardization of EIAs and faecal hormone monitoring would facilitate red panda conservation breeding programs in India and elsewhere. Copyright © 2016 Elsevier B.V. All rights reserved.
Case consultation: ablatio penis.
Money, J
1998-01-01
In male infants, traumatic ablation of the penis, with or without loss of the testicles may occur as a sequel to mutilatory violence, accidental injury, or circumcision error. Post-traumatically, one program of case management is surgical sex reassignment to live as a girl, with female hormonal therapy at the age of puberty. The other program is genital reconstructive surgery to live as a boy, with male hormonal therapy at puberty if the testicles are missing. In both programs, the long term outcome is less than perfect and is contingent on intervening variables that include societal ideology; surgical technology; juvenile and adolescent timing and frequency of hospital admissions construed by the child as nosocomial abuse; development of body image; health and sex education; fertility versus sterility; coitus and orgasm; possible lesbian orientation if living as a girl; and long-term cost accounting, including the psychic cost of being a pawn in possible malpractice litigation on whose disability a very large fortune in compensation may devolve. There is, as yet, no unanimously endorsed set of guidelines for the treatment of genital trauma and mutilation in infancy, and no provision for a statistical depository for outcome data.
A randomized community trial of enhanced family planning outreach in Rakai, Uganda.
Lutalo, Tom; Kigozi, Godfrey; Kimera, Edward; Serwadda, David; Wawer, Maria J; Zabin, Laurie Schwab; Gray, Ronald H
2010-03-01
A randomized community trial of a family planning outreach program was conducted in Rakai District, Uganda. Five communities received standard services; six intervention communities received additional family planning information, counseling, and contraceptive methods from government service providers and community-based volunteer agents using social marketing and other strategies. Condom use was promoted in all of the communities. The community-based family planning outreach program was implemented in two phases--1999-2000 (early) and 2001(late)--and its impact was evaluated by means of population surveys in 2002-03. At follow-up, hormonal contraceptive prevalence was 23 percent in the intervention communities, compared with 20 percent in the control communities. The differential was greater in the early-intervention communities than the late-intervention communities. Pregnancy rates at follow-up were 15 percent in the control and 13 percent in the intervention communities. No differentials in condom use were found between study arms. Family planning outreach via social marketing can significantly increase hormonal contraceptive use and decrease pregnancy rates, but the impact of this outreach program was modest.
Southmayd, Emily A; De Souza, Mary Jane
2017-02-01
Bone growth, development, and remodeling are modulated by numerous circulating hormones. Throughout the lifespan, the extent to which each of the hormones impacts bone differs. Understanding the independent and combined impact of these hormones on controlling bone remodeling allows for the development of more informed decision making regarding pharmacology, specifically the use of hormonal medication, at all ages. Endocrine control of bone health in women is largely dictated by the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis and the hypothalamic-pituitary-ovarian (HPO) axis. Growth hormone, secreted from the pituitary gland, stimulates cells in almost every tissue to secrete IGF-1, although the majority of circulating IGF-1 is produced hepatically. Indeed, systemic IGF-1 concentrations have been found to be correlated with bone mineral density (BMD) in both pre- and post-menopausal women and is often used as a marker of bone formation. Sex steroids produced by the ovaries, namely estradiol, mediate bone resorption through binding to estrogen receptors on osteoclasts and osteoblasts. Specifically, by increasing osteoclast apoptosis and decreasing osteoblast apoptosis, adequate estrogen levels prevent excessive bone resorption, which helps to explain the rapid decline in bone mass that occurs with the menopausal decrease in estrogen production. Though there are documented correlations between endogenous estrogen concentrations and GH/IGF-1 dynamics, this relationship changes across the lifespan as sex-steroid dynamics fluctuate and, possibly, as tissue responsiveness to GH stimulation decreases. Aside from the known role of endogenous sex steroids on bone health, the impact of exogenous estrogen administration is of interest, as exogenous formulations further modulate GH and IGF-1 production. However, the effect and extent of GH and IGF-1 modulation seems to be largely dependent on age at administration and route of administration. Specifically, premenopausal women using combined oral contraceptive therapy (COC), post-menopausal women taking oral hormone therapy (HT), and both pre- and post-menopausal women using a transdermal form of estrogen therapy (COC or HT) demonstrate disparate GH/IGF-1 responses to exogenous estrogen. This review serves to summarize what is currently known regarding the influence of exogenous estrogen administration across the lifespan on the GH/IGF-1 axis and implications for bone health. Copyright © 2016 Elsevier Ltd. All rights reserved.
21 CFR 862.1285 - Etiocholanolone test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... intended to measure etiocholanolone in serum and urine. Etiocholanolone is a metabolic product of the hormone testosterone and is excreted in the urine. Etiocholanolone measurements are used in the diagnosis...
Hamid, Hanna; Eskicioglu, Cigdem
2013-09-15
Fate and removal of 16 steroidal (estrogenic, androgenic and progestogenic) hormones were studied during advanced anaerobic digestion of sludge cake using microwave (MW) pretreatment. Effect of pretreatment temperature (80, 120, 160 °C), operating temperature (mesophilic at 35 ± 2 °C, thermophilic at 55 ± 2 °C) and sludge retention time (SRT: 20, 10, 5 days) were studied employing eight lab-scale semi-continuously fed digesters. To determine the potential effect of MW hydrolysis, hormones were quantified in total (sorbed + soluble) and supernatant (soluble) phases of the digester influent and effluent streams. Seven of 16 hormones were above the method reporting limit (RL) in one or more of the samples. Hormone concentrations in total phase of un-pretreated (control) and pretreated digester feeds ranged in <157-2491 ng/L and <157-749 ng/L, respectively. The three studied factors were found to be statistically significant (95% confidence level) in removal of one or more hormones from soluble and/or total phase. MW hydrolysis of the influent resulted in both release (from sludge matrix) and attenuation of hormones in the soluble phase. Accumulation of estrone (E1) as well as progesterone (Pr) and androstenedione (Ad) in most of the digesters indicated possible microbial transformations among the hormones. Compared to controls, all pretreated digesters had lower total hormone concentrations in their influent streams. At 20 days SRT, highest total removal (E1+E2+Ad +Pr) was observed for the thermophilic control digester (56%), followed by pretreated mesophilic digesters at 120 °C and 160 °C with around 48% efficiency. In terms of conventional performance parameters, relative (to control) improvements of MW pretreated digesters at a 5-d SRT ranged in 98-163% and 57-121%, for volatile solids removal and methane production, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Willis, Sherilyn A; Kuehl, Thomas J; Spiekerman, A Michael; Sulak, Patricia J
2006-08-01
Our objective was to test the hypothesis that shortening the hormone-free interval (HFI) between cycles of 21 days of oral contraceptives (OCs) reduces pituitary secretion of gonadotropins and ovarian production of estradiol and inhibin-B. We used a prospective trial design comparing the standard 7-day HFI and shortened HFI during cycles, with an OC containing 0.03 mg of ethinyl estradiol and 3 mg of drospirenone. Twelve current OC users initially utilized an OC in the standard fashion, with 21 days of active pills and a 7-day HFI, followed by 21 days of active pills with randomization to either a 3-day or a 4-day HFI. Nine daily blood samples were obtained for the measurement of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol and inhibin-B, beginning with active pill 21 days before each HFI of the two cycles. Analysis of variance was used to compare hormones for 9 days bracketing the standard 7-day HFI and to compare, within individuals, the 7-day HFI and the subsequent shortened HFI. During the 7-day HFI, all four hormones significantly (p>.001) increased from baseline. FSH increased beginning on HFI Day 4, inhibin-B increased beginning on HFI Day 5, and LH and estradiol increased beginning on HFI Day 6. Subjects randomized to the 3-day or the 4-day HFI did not differ with regard to age and body size (p=.88) or initial hormone level (p=.67). Greater pituitary and ovarian suppression was seen with the shortened HFI for all four hormones (p<.001). Hormone levels in the 7 days after the last active pill of the second cycle did not differ (p>.4) between the 3-day and the 4-day HFI groups. Shortening the HFI from 7 days to 3 or 4 days blunts increases in the pituitary-ovarian axis during cycles of OC use.
Associations between brominated flame retardants in house dust and hormone levels in men
Johnson, Paula I.; Stapleton, Heather M.; Mukherjee, Bhramar; Hauser, Russ; Meeker, John D.
2013-01-01
Brominated flame retardants (BFRs) are used in the manufacture of a variety of materials and consumer products in order to meet fire safety standards. BFRs may persist in the environment and have been detected in wildlife, humans and indoor dust and air. Some BFRs have demonstrated endocrine and reproductive effects in animals, but human studies are limited. In this exploratory study, we measured serum hormone levels and flame retardant concentrations [31 polybrominated diphenyl ether (PBDE) congeners and 6 alternate flame retardants] in house dust from men recruited through a US infertility clinic. PBDE congeners in dust were grouped by commercial mixtures (i.e. penta-, octaand deca-BDE). In multivariable linear regression models adjusted by age and body mass index (BMI), significant positive associations were found between house dust concentrations of pentaBDEs and serum levels of free T4, total T3, estradiol, and sex hormone binding globulin (SHBG), along with an inverse association with follicle stimulating hormone (FSH). There were also positive associations of octaBDE concentrations with serum free T4, thyroid stimulating hormone (TSH), luteinizing hormone (LH) and testosterone and an inverse association of decaBDE concentrations with testosterone. Hexabromocyclododecane (HBCD) was associated with decreased SHBG and increased free androgen index. Dust concentrations of bis-tribromophenoxyethane (BTBPE) and tetrabromo-diethylhexylphthalate (TBPH) were positively associated with total T3. These findings are consistent with our previous report of associations between PBDEs (BDE 47, 99 and 100) in house dust and hormone levels in men, and further suggest that exposure to contaminants in indoor dust may be leading to endocrine disruption in men. PMID:23333513
Oxenkrug, Gregory F.
2011-01-01
The original 1969 Lancet paper proposed, “in depression the activity of liver tryptophan-pyrrolase is stimulated by raised blood corticosteroids levels, and metabolism of tryptophan is shunted away from serotonin production, and towards kynurenine production.” Discovery of neurotropic activity of kynurenines suggested that up-regulation of the tryptophan-kynurenine pathway not only augmented serotonin deficiency but also underlined depression-associated anxiety, psychosis and cognitive decline. The present review of genetic and hormonal factors regulating kynurenine pathway of tryptophan metabolism suggests that this pathway mediates both genetic and environmental mechanisms of depression. Rate-limiting enzymes of kynurenine formation, tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are activated by stress hormones (TDO) and/or by pro-inflammatory cytokines (IDO). Simultaneous presence of high producers alleles of proinflammatory cytokines genes (e.g., interferon-gamma and tumor necrosis factor-alpha) determines the genetic predisposition to depression via up-regulation of IDO while impact of environmental stresses is mediated via hormonal activation of TDO. Tryptophan-kynurenine pathway represents a major meeting point of gene-environment interaction in depression and a new target for pharmacological intervention. PMID:20686200
Therapy Insight: preserving fertility in cyclophosphamide-treated patients with rheumatic disease.
Dooley, Mary Anne; Nair, Raj
2008-05-01
Cyclophosphamide remains a necessary treatment for severe rheumatic diseases, despite the continued search for alternative therapies with less gonadal toxicity. The risk of premature gonadal failure and sterility might lead young patients to delay treatment with cyclophosphamide. The patient's age at treatment and the cumulative dose received remain important risk factors for cyclophosphamide-induced gonadal failure in both males and females. Estrogen-containing oral contraceptives for females and testosterone for males are suggested to reduce the gonadal toxicity of cyclophosphamide, although few studies support these interventions. Owing to increased side effects, hormonal therapy is often avoided in patients with edema, hypertension, nephrotic syndrome or antiphospholipid antibodies. Agonists and antagonists of gonadotropin receptors are under study. Gonadotropin-receptor agonists might have beneficial effects in addition to suppression of sex-hormone production. The outcome of attempted cryopreservation of eggs, embryos or ovaries remains uncertain for women seeking to preserve their reproductive potential. Storing male gametes before chemotherapy is widely practiced and technically successful. As recovery of menses or production of testosterone does not predict individual fertility, identification of biomarkers of gonadal function and reserve, including serum levels of several hormones, ultrasonographic measurements of ovarian volume and antral follicle count, are necessary.
Influence of thyroid hormones and transforming growth factor-β1 on cystatin C concentrations.
Kotajima, N; Yanagawa, Y; Aoki, T; Tsunekawa, K; Morimura, T; Ogiwara, T; Nara, M; Murakami, M
2010-01-01
Serum cystatin C concentrations are reported to increase in the hyperthyroid state. Serum concentrations of cystatin C and transforming growth factor-β1 (TGF-β1) were measured in patients with thyroid dysfunction, and the effects of 3,5,3'-tri-iodothyronine (T(3)) and TGF-β1 on cystatin C production in human hepatoblastoma (Hep G2) cells were studied. Serum concentrations of cystatin C and TGF-β1 were significantly higher in patients with Graves' disease compared with control subjects. Significantly positive correlations were observed between thyroid hormones and cystatin C, thyroid hormones and TGF-β1, and TGF-β1 and cystatin C in patients with thyroid dysfunction. Serum concentrations of cystatin C and TGF-β1 decreased after treatment for hyperthyroidism. Cystatin C mRNA levels and cystatin C secretion were increased by T(3) and TGF-β1 in cultured Hep G2 cells. These results suggest that serum cystatin C concentrations increase in patients with hyperthyroidism. The mechanisms for this may involve elevation of serum TGF-β1 levels and the stimulatory effects of T(3) and TGF-β1 on cystatin C production.
Molecular Characterization of Growth Hormone-producing Tumors in the GC Rat Model of Acromegaly.
Martín-Rodríguez, Juan F; Muñoz-Bravo, Jose L; Ibañez-Costa, Alejandro; Fernandez-Maza, Laura; Balcerzyk, Marcin; Leal-Campanario, Rocío; Luque, Raúl M; Castaño, Justo P; Venegas-Moreno, Eva; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso; Cano, David A
2015-11-09
Acromegaly is a disorder resulting from excessive production of growth hormone (GH) and consequent increase of insulin-like growth factor 1 (IGF-I), most frequently caused by pituitary adenomas. Elevated GH and IGF-I levels results in wide range of somatic, cardiovascular, endocrine, metabolic, and gastrointestinal morbidities. Subcutaneous implantation of the GH-secreting GC cell line in rats leads to the formation of tumors. GC tumor-bearing rats develop characteristics that resemble human acromegaly including gigantism and visceromegaly. However, GC tumors remain poorly characterized at a molecular level. In the present work, we report a detailed histological and molecular characterization of GC tumors using immunohistochemistry, molecular biology and imaging techniques. GC tumors display histopathological and molecular features of human GH-producing tumors, including hormone production, cell architecture, senescence activation and alterations in cell cycle gene expression. Furthermore, GC tumors cells displayed sensitivity to somatostatin analogues, drugs that are currently used in the treatment of human GH-producing adenomas, thus supporting the GC tumor model as a translational tool to evaluate therapeutic agents. The information obtained would help to maximize the usefulness of the GC rat model for research and preclinical studies in GH-secreting tumors.
Molecular Characterization of Growth Hormone-producing Tumors in the GC Rat Model of Acromegaly
Martín-Rodríguez, Juan F.; Muñoz-Bravo, Jose L.; Ibañez-Costa, Alejandro; Fernandez-Maza, Laura; Balcerzyk, Marcin; Leal-Campanario, Rocío; Luque, Raúl M.; Castaño, Justo P.; Venegas-Moreno, Eva; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso; Cano, David A.
2015-01-01
Acromegaly is a disorder resulting from excessive production of growth hormone (GH) and consequent increase of insulin-like growth factor 1 (IGF-I), most frequently caused by pituitary adenomas. Elevated GH and IGF-I levels results in wide range of somatic, cardiovascular, endocrine, metabolic, and gastrointestinal morbidities. Subcutaneous implantation of the GH-secreting GC cell line in rats leads to the formation of tumors. GC tumor-bearing rats develop characteristics that resemble human acromegaly including gigantism and visceromegaly. However, GC tumors remain poorly characterized at a molecular level. In the present work, we report a detailed histological and molecular characterization of GC tumors using immunohistochemistry, molecular biology and imaging techniques. GC tumors display histopathological and molecular features of human GH-producing tumors, including hormone production, cell architecture, senescence activation and alterations in cell cycle gene expression. Furthermore, GC tumors cells displayed sensitivity to somatostatin analogues, drugs that are currently used in the treatment of human GH-producing adenomas, thus supporting the GC tumor model as a translational tool to evaluate therapeutic agents. The information obtained would help to maximize the usefulness of the GC rat model for research and preclinical studies in GH-secreting tumors. PMID:26549306
Circadian redox signaling in plant immunity and abiotic stress.
Spoel, Steven H; van Ooijen, Gerben
2014-06-20
Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive.
... Beckwith-Wiedemann syndrome (growth disorder that causes large body size, large organs, and other symptoms) Congenital hypothyroidism (decreased production of thyroid hormone) Diabetes (high blood sugar caused by body producing too little or no insulin) Down syndrome ( ...
... Calcifediol is in a class of medications called vitamin D analogs. It works by helping the body to use more of the calcium found in foods or supplements and by regulating the body's production of parathyroid hormone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haggard, Derik E.; Noyes, Pamela D.; Waters, Katrina M.
There is a need to develop novel, high-throughput screening and prioritization methods to identify chemicals with adverse estrogen, androgen, and thyroid activity to protect human health and the environment and is of interest to the Endocrine Disruptor Screening Program. The current aim is to explore the utility of zebrafish as a testing paradigm to classify endocrine activity using phenotypically anchored transcriptome profiling. Transcriptome analysis was conducted on embryos exposed to 25 estrogen-, androgen-, or thyroid-active chemicals at a concentration that elicited adverse malformations or mortality at 120 hours post-fertilization in 80% of the animals exposed. Analysis of the top 1000more » significant differentially expressed transcripts across all treatments identified a unique transcriptional and phenotypic profile for thyroid hormone receptor agonists, which can be used as a biomarker screen for potential thyroid hormone agonists.« less
Industrial College of the Armed Forces Industry Studies 2002: Biotechnology
2002-01-01
The following technologies are commonly included as parts of the biotechnology "industry":3 Fermentation : Early humans realized that the by-products...leavening agent. Yeast also produces alcohol during the production of wine and beer. Bacteria produce lactic acid for making yogurt and acetic acid...for making vinegar. New fermentation processes are being used to produce a wide variety of products including antibiotics, hormones, and enzymes
Liu, B; Zhang, L; Guo, R W; Wang, W J; Duan, X Q; Liu, Y W
2014-01-01
The synchronization of the uterus and mature eggs at the molecular level is the key factor in embryo transfer, and the regulation of synchronization depends on a variety of cytokines. C-reactive protein (CRP), as the first acute phase reaction protein, is involved in the entire process of embryo transfer. The study is designed to investigate the correlation among CRP, sex hormone, controlled ovarian hyperstimulation (COH) cycle, and pregnancy outcome. Ninety-two patients who accepted in vitro fertilization (IVF) treatment cycles because of tubal factor were included in the study. Seventy treated cases were included to complete final analysis with the full set of results. Respectively on the second day of the menstruation (Day-2) in gonadotropin-releasing hormone agonist (GnRH-a) short program treatment, on the morning in human chorionic gonadotropin (hCG) treatment (Day-hCG) and the embryo transplant day (Day-ET), plasma CRP level was tested by enzyme-linked immunosorbent assay (ELISA). The correlativity among CRP level, sex hormone, COH, and pregnancy outcome was analyzed by statistical methods. In the short program GnRH-a of 70 cases, there was no relationship between serum CRP level and the infertility age, gonadotropin (Gn) dosage, number of oocytes retrieved, the number of normal fertilization, and sex hormone. In the short program of GnRH-a, the change of serum CRP levels in Day-2, Day-hCG, Day-ET: serum CRP in Day-2 < Day-hCG < Day-ET and the level of serum CRP gradually increased in Day-2, Day-hCG, and Day-ET in both the pregnant group and non-pregnant group. In non-pregnant group, the ratio of hCG/D2 and ET/hCG-day were significantly higher than the pregnant group. The area under receiver operating characteristic (ROC) curve was 0.806, indicating the accuracy of diagnostic tests is medium, the authors chose the point which presents the ratio of CRP in Day-ET to Day-hCG which was less than 1.752 as a predictor of treatment outcome, the sensitivity of the experiment was 77.8%, and the specificity 75%. CRP as a sensitive inflammatory marker, CRP ratio of Day-ET/Day-hCG could be a predictor of treatment outcome by ROC curve analysis in COH program.
CRC handbook of neurohypophyseal hormone analogs. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jost, K.; Lebl, M.; Brtnik, F.
1987-01-01
This book is discussed in two parts. The Part 1 discusses the: Prohormones and Hormonogens of Neuro-hypophyseal Hormones, Analogs with Inhibitory properties. Analogs with Dissociated and/or High activities. Introduction. Uterotonic Activity. Galactogogic Activity. Pressor Activity. Antidiuretic Activity. References. Part 2 discusses the Other Important Activities. CNS Activities. Corticotropin- and ..beta..-Entriuretic Action. Natriferic Action. References. Practical Use in Human and Veterinary Medicine. Introduction. Methyloxytocin. Deamino-Oxytocin. Cargutocin. Glypressin. Octapressin. Desmopressin. Analogs Clinically Tried But Not Introduced into Production and Routine Clinical Practice. References. Tables of Analogs and Index.
Genetics Home Reference: Greenberg dysplasia
... domain, plays an important role in the production (synthesis) of cholesterol. Cholesterol is a type of fat ... of certain hormones and digestive acids. During cholesterol synthesis, the sterol reductase function of the lamin B ...
Circadian and sleep-dependent regulation of hormone release in humans
NASA Technical Reports Server (NTRS)
Czeisler, C. A.; Klerman, E. B.
1999-01-01
Daily oscillations characterize the release of nearly every hormone. The circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, generates circadian, approximately 24-hour rhythms in many physiologic functions. However, the observed hormonal oscillations do not simply reflect the output of this internal clock. Instead, daily hormonal profiles are the product of a complex interaction between the output of the circadian pacemaker, periodic changes in behavior, light exposure, neuroendocrine feedback mechanisms, gender, age, and the timing of sleep and wakefulness. The interaction of these factors can affect hormonal secretory pulse frequency and amplitude, with each endocrine system differentially affected by these factors. This chapter examines recent advances in understanding the effects on endocrine rhythms of a number of these factors. Sleep exerts a profound effect on endocrine secretion. Sleep is a dynamic process that is characterized by periodic changes in electrophysiologic activity. These electrophysiologic changes, which are used to mark the state and depth of sleep, are associated with periodic, short-term variations in hormonal levels. The secretion of hormones such as renin and human growth hormone are strongly influenced by sleep or wake state, while melatonin and cortisol levels are relatively unaffected by sleep or wake state. In addition, sleep is associated with changes in posture, behavior, and light exposure, each of which is known to affect endocrine secretion. Furthermore, the tight concordance of habitual sleep and wake times with certain circadian phases has made it difficult to distinguish sleep and circadian effects on these hormones. Specific protocols, designed to extract circadian and sleep information semi-independently, have been developed and have yielded important insights into the effects of these regulatory processes. These results may help to account for changes in endocrine rhythms observed in circadian rhythm sleep disorders, including the dyssomnia of shift work and visual impairment. Yet to be fully investigated are the interactions of these factors with age and gender. Characterization of the factors governing hormone secretion is critical to understanding the temporal regulation of endocrine systems and presents many exciting areas for future research.
Bonansco, Christian; Martínez-Pinto, Jonathan; Silva, Roxana A; Velásquez, Victoria B; Martorell, Andrés; Selva, Mónica V; Espinosa, Pedro; Moya, Pablo R; Cruz, Gonzalo; Andrés, María Estela; Sotomayor-Zárate, Ramón
2018-01-29
Steroid sex hormones produce physiological effects in reproductive tissues and also in non-reproductive tissues such as the brain, particularly in cortical, limbic and midbrain areas. Dopamine (DA) neurons involved in processes such as prolactin secretion (tuberoinfundibular system), motor circuit regulation (nigrostriatal system) and driving of motivated behavior (mesocorticolimbic system), are specially regulated by sex hormones. Indeed, sex hormones promote neurochemical and behavioral effects induced by drugs of abuse by tuning midbrain DA neurons in adult animals. However, the long-term effects induced by neonatal exposure to sex hormones on dopaminergic neurotransmission have not been fully studied. The focus of this work was to reveal if a single neonatal exposure with estradiol valerate (EV) results in a programming of dopaminergic neurotransmission in the nucleus accumbens (NAcc) of adult female rats. To answer this question, electrophysiological, neurochemical, cellular, molecular and behavioral techniques were used. The data show that frequency but not amplitude of the spontaneous excitatory postsynaptic current (sEPSC) is significantly increased in NAcc medium spiny neurons (MSNs) of EV-treated rats. In addition, DA content and release are both increased in the NAcc of EV-treated rats, caused by an increased synthesis of this neurotransmitter. These results are functionally associated with a higher percentage of EV-treated rats conditioned to morphine, a drug of abuse, compared with controls. In conclusion, neonatal programming with estradiol increases NAcc dopaminergic neurotransmission in the adulthood, which may be associated with increased reinforcing effects of drugs of abuse. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ross, Judith L; Lee, Peter A; Gut, Robert; Germak, John
2015-12-01
This study aimed to assess attainment of genetic height potential after long-term growth hormone (GH) treatment in GH-naïve children diagnosed with isolated growth hormone deficiency (IGHD), multiple pituitary hormone deficiency (MPHD), born small for gestational age (SGA), or idiopathic short stature (ISS) enrolled in the American Norditropin® Web-enabled Research (ANSWER) Program. Children with IGHD (n=2884), MPHD (n=200), SGA (n=481), or ISS (n=733) with baseline height standard deviation score (HSDS)≤-2 were assessed over 5 years of GH treatment for mean HSDS, change in HSDS (ΔHSDS), and corrected HSDS (HSDS-target HSDS). Mean HSDS and corrected HSDS significantly increased to close to target height across all diagnostic groups after 5 years of GH treatment (P<0.0001). ∆HSDS at year 5 increased for all groups (IGHD: 1.8; MPHD: 2.1; SGA: 1.8; ISS: 1.6). Among patients who continued GH for 5 years, mean insulin-like growth factor-I (IGF-I) SDS increased to within normal range across all groups. Body mass index (BMI) SDS remained relatively stable in all diagnostic groups. Bone age (BA) increased, and the mean BA to chronological age (BA/CA) ratio reached or approached 1 across diagnostic groups over 5 years of GH treatment. Long-term GH therapy resulted in a significant increase in mean HSDS and corrected HSDS from baseline values in all diagnostic groups. The observed increase in mean corrected HSDS is consistent with growth that approached the patients' genetic height potential, although complete height gains will be evaluated at the attainment of final height. Copyright © 2015 Elsevier Ltd. All rights reserved.
Welberg, L A; Seckl, J R; Holmes, M C
2001-01-01
Glucocorticoids may underlie the association between low birth weight and adult disorders such as hypertension, type 2 diabetes and affective dysfunction. We investigated the behavioural and molecular consequences of two paradigms of prenatal dexamethasone administration in rats. Rats received dexamethasone (100 microg/kg per day) throughout pregnancy (DEX1-3), in the last third of pregnancy only (DEX3) or vehicle. Both dexamethasone treatments reduced birth weight, only DEX1-3 offspring had reduced body weight in adulthood. In adult offspring, both prenatal dexamethasone paradigms reduced exploratory behaviour in an open field. In contrast, only DEX3 reduced exploration in an elevated plus-maze and impaired behavioural responses and learning in a forced-swim test. This behavioural inhibition may reflect increased baseline corticotrophin-releasing hormone mRNA levels (30% higher) in the central nucleus of the amygdala in both dexamethasone-exposed groups. Adult DEX3 offspring also showed increased corticotrophin-releasing hormone mRNA with unaltered glucocorticoid receptor mRNA in the hypothalamic paraventricular nucleus and reduced hippocampal glucocorticoid- and mineralocorticoid receptor mRNA expression, suggesting reduced hippocampal sensitivity to glucocorticoid suppression of the stress axis. In contrast, DEX1-3 rats had no changes in hippocampal corticosteroid receptors, but showed increased mRNA levels for both receptors in the basolateral nucleus of the amygdala. From this data we suggest that prenatal glucocorticoid exposure programs behavioural inhibition perhaps via increased amygdalar corticotrophin-releasing hormone levels, while DEX3 also impairs coping and learning in aversive situations, possibly via altered hippocampal corticosteroid receptor levels. Overexposure to glucocorticoids, especially late in gestation, may explain the link between reduced early growth and adult affective dysfunction.