NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Sparse linear programming subprogram
Hanson, R.J.; Hiebert, K.L.
1981-12-01
This report describes a subprogram, SPLP(), for solving linear programming problems. The package of subprogram units comprising SPLP() is written in Fortran 77. The subprogram SPLP() is intended for problems involving at most a few thousand constraints and variables. The subprograms are written to take advantage of sparsity in the constraint matrix. A very general problem statement is accepted by SPLP(). It allows upper, lower, or no bounds on the variables. Both the primal and dual solutions are returned as output parameters. The package has many optional features. Among them is the ability to save partial results and then use them to continue the computation at a later time.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
NASA Technical Reports Server (NTRS)
Ferencz, Donald C.; Viterna, Larry A.
1991-01-01
ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.
Linear Programming across the Curriculum
ERIC Educational Resources Information Center
Yoder, S. Elizabeth; Kurz, M. Elizabeth
2015-01-01
Linear programming (LP) is taught in different departments across college campuses with engineering and management curricula. Modeling an LP problem is taught in every linear programming class. As faculty teaching in Engineering and Management departments, the depth to which teachers should expect students to master this particular type of…
Linear Programming across the Curriculum
ERIC Educational Resources Information Center
Yoder, S. Elizabeth; Kurz, M. Elizabeth
2015-01-01
Linear programming (LP) is taught in different departments across college campuses with engineering and management curricula. Modeling an LP problem is taught in every linear programming class. As faculty teaching in Engineering and Management departments, the depth to which teachers should expect students to master this particular type of…
ALPS - A LINEAR PROGRAM SOLVER
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1994-01-01
Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.
On the linear programming bound for linear Lee codes.
Astola, Helena; Tabus, Ioan
2016-01-01
Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.
Ranking Forestry Investments With Parametric Linear Programming
Paul A. Murphy
1976-01-01
Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.
Gadgets, approximation, and linear programming
Trevisan, L.; Sudan, M.; Sorkin, G.B.; Williamson, D.P.
1996-12-31
We present a linear-programming based method for finding {open_quotes}gadgets{close_quotes}, i.e., combinatorial structures reducing constraints of one optimization problems to constraints of another. A key step in this method is a simple observation which limits the search space to a finite one. Using this new method we present a number of new, computer-constructed gadgets for several different reductions. This method also answers a question posed by on how to prove the optimality of gadgets-we show how LP duality gives such proofs. The new gadgets improve hardness results for MAX CUT and MAX DICUT, showing that approximating these problems to within factors of 60/61 and 44/45 respectively is N P-hard. We also use the gadgets to obtain an improved approximation algorithm for MAX 3SAT which guarantees an approximation ratio of .801. This improves upon the previous best bound of .7704.
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Investigating Integer Restrictions in Linear Programming
ERIC Educational Resources Information Center
Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.
2015-01-01
Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…
Investigating Integer Restrictions in Linear Programming
ERIC Educational Resources Information Center
Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.
2015-01-01
Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…
Timetabling an Academic Department with Linear Programming.
ERIC Educational Resources Information Center
Bezeau, Lawrence M.
This paper describes an approach to faculty timetabling and course scheduling that uses computerized linear programming. After reviewing the literature on linear programming, the paper discusses the process whereby a timetable was created for a department at the University of New Brunswick. Faculty were surveyed with respect to course offerings…
Solution Methods for Stochastic Dynamic Linear Programs.
1980-12-01
Linear Programming, IIASA , Laxenburg, Austria, June 2-6, 1980. [2] Aghili, P., R.H., Cramer and H.W. Thompson, "On the applicability of two- stage...Laxenburg, Austria, May, 1978. [52] Propoi, A. and V. Krivonozhko, ’The simplex method for dynamic linear programs", RR-78-14, IIASA , Vienna, Austria
The Use of Linear Programming for Prediction.
ERIC Educational Resources Information Center
Schnittjer, Carl J.
The purpose of the study was to develop a linear programming model to be used for prediction, test the accuracy of the predictions, and compare the accuracy with that produced by curvilinear multiple regression analysis. (Author)
A neural network for bounded linear programming
Culioli, J.C.; Protopopescu, V.; Britton, C.; Ericson, N. )
1989-01-01
The purpose of this paper is to describe a neural network implementation of an algorithm recently designed at ORNL to solve the Transportation and the Assignment Problems, and, more generally, any explicitly bounded linear program. 9 refs.
Breadboard linear array scan imager program
NASA Technical Reports Server (NTRS)
1975-01-01
The performance was evaluated of large scale integration photodiode arrays in a linear array scan imaging system breadboard for application to multispectral remote sensing of the earth's resources. Objectives, approach, implementation, and test results of the program are presented.
On Solving Linear Complementarity Problems as Linear Programs.
1976-03-01
obtainedb, •,. b ,.,. the linear program minimize rTv . subject to q + Yv > 0, Xv > 0 19 ,., for any positive vector r Rn Letting x Xv, we see that x is...1.21 1.6 3352 .81 1.7 2353 .65 .8 1490 .50 1.9 664 .37 ti TABLE 4 ,43 i Inputs: n1 7. qT (,-1, -4, 6, -5, 3, -2) starting iterate x y 0 ; original
Deciding Tuition Structure with Linear Programming.
ERIC Educational Resources Information Center
Troutt, Marvin D.
1983-01-01
A linear programing approach is applied to college cost information to suggest optimal tuition increases under some broad policy constraints concerning consistency of the rates. Factors such as balance of credit hour and per-student charges, and differentiation by program and other student groupings, are considered. (MSE)
Linear Programming With Applications to Educational Planning.
ERIC Educational Resources Information Center
Carman, Robert A.
This document discusses the value of linear programing in finding minimum and maximum solutions to problems of resource allocation. Three models using this technique are given for the areas of educational finance, school district personnel compensation, and instructional program evaluation. (RA)
Fuzzy linear programming for bulb production
NASA Astrophysics Data System (ADS)
Siregar, I.; Suantio, H.; Hanifiah, Y.; Muchtar, M. A.; Nasution, T. H.
2017-01-01
The research was conducted at a bulb company. This company has a high market demand. The increasing of the market demand has caused the company’s production could not fulfill the demand due to production planning is not optimal. Bulb production planning is researched with the aim to enable the company to fulfill the market demand in accordance with the limited resources available. From the data, it is known that the company cannot reach the market demand in the production of the Type A and Type B bulb. In other hands, the Type C bulb is produced exceeds market demand. By using fuzzy linear programming, then obtained the optimal production plans and to reach market demand. Completion of the simple method is done by using software LINGO 13. Application of fuzzy linear programming is being able to increase profits amounted to 7.39% of the ordinary concept of linear programming.
Portfolio optimization using fuzzy linear programming
NASA Astrophysics Data System (ADS)
Pandit, Purnima K.
2013-09-01
Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.
Primal-Dual Methods for Linear Programming
1991-05-01
Dulce B. Poncele6n and Michael A. Saunders TECHNICAL REPORT SOL 91-3 May 1991 Department of Operations-Research Stanford University 91-03882Stanford, CA...for Linear Programming by Philip E. Gill, Walter Murray, Dulce B. Poncele6n and Michael A. Saunders TECHNICAL REPORT SOL 91-3 May 1991 U ’ .mve dj 1...DUAL METHODS FOR LINEAR PROGRAMMING* Philip E. GILLt Walter MURRAY$ Dulce B. PONCELE6N§ and Michael A. SAUNDERS t Technical Report SOL 91-31 May 1991
Menu-Driven Solver Of Linear-Programming Problems
NASA Technical Reports Server (NTRS)
Viterna, L. A.; Ferencz, D.
1992-01-01
Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).
Generalised Assignment Matrix Methodology in Linear Programming
ERIC Educational Resources Information Center
Jerome, Lawrence
2012-01-01
Discrete Mathematics instructors and students have long been struggling with various labelling and scanning algorithms for solving many important problems. This paper shows how to solve a wide variety of Discrete Mathematics and OR problems using assignment matrices and linear programming, specifically using Excel Solvers although the same…
Generalised Assignment Matrix Methodology in Linear Programming
ERIC Educational Resources Information Center
Jerome, Lawrence
2012-01-01
Discrete Mathematics instructors and students have long been struggling with various labelling and scanning algorithms for solving many important problems. This paper shows how to solve a wide variety of Discrete Mathematics and OR problems using assignment matrices and linear programming, specifically using Excel Solvers although the same…
Spline smoothing of histograms by linear programming
NASA Technical Reports Server (NTRS)
Bennett, J. O.
1972-01-01
An algorithm for an approximating function to the frequency distribution is obtained from a sample of size n. To obtain the approximating function a histogram is made from the data. Next, Euclidean space approximations to the graph of the histogram using central B-splines as basis elements are obtained by linear programming. The approximating function has area one and is nonnegative.
Linear programming computational experience with onyx
Atrek, E.
1994-12-31
ONYX is a linear programming software package based on an efficient variation of the gradient projection method. When fully configured, it is intended for application to industrial size problems. While the computational experience is limited at the time of this abstract, the technique is found to be robust and competitive with existing methodology in terms of both accuracy and speed. An overview of the approach is presented together with a description of program capabilities, followed by a discussion of up-to-date computational experience with the program. Conclusions include advantages of the approach and envisioned future developments.
A program for identification of linear systems
NASA Technical Reports Server (NTRS)
Buell, J.; Kalaba, R.; Ruspini, E.; Yakush, A.
1971-01-01
A program has been written for the identification of parameters in certain linear systems. These systems appear in biomedical problems, particularly in compartmental models of pharmacokinetics. The method presented here assumes that some of the state variables are regularly modified by jump conditions. This simulates administration of drugs following some prescribed drug regime. Parameters are identified by a least-square fit of the linear differential system to a set of experimental observations. The method is especially suited when the interval of observation of the system is very long.
Controller design approach based on linear programming.
Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa
2013-11-01
This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor.
Evolving evolutionary algorithms using linear genetic programming.
Oltean, Mihai
2005-01-01
A new model for evolving Evolutionary Algorithms is proposed in this paper. The model is based on the Linear Genetic Programming (LGP) technique. Every LGP chromosome encodes an EA which is used for solving a particular problem. Several Evolutionary Algorithms for function optimization, the Traveling Salesman Problem and the Quadratic Assignment Problem are evolved by using the considered model. Numerical experiments show that the evolved Evolutionary Algorithms perform similarly and sometimes even better than standard approaches for several well-known benchmarking problems.
A LINEAR PROGRAMMING MODEL OF THE GASEOUSDIFFUSION ISOTOPE-SEPARATION PROCESS,
ISOTOPE SEPARATION, LINEAR PROGRAMMING ), (*GASEOUS DIFFUSION SEPARATION, LINEAR PROGRAMMING ), (* LINEAR PROGRAMMING , GASEOUS DIFFUSION SEPARATION), NUCLEAR REACTORS, REACTOR FUELS, URANIUM, PURIFICATION
Neural network models for Linear Programming
Culioli, J.C.; Protopopescu, V.; Britton, C.; Ericson, N. )
1989-01-01
The purpose of this paper is to present a neural network that solves the general Linear Programming (LP) problem. In the first part, we recall Hopfield and Tank's circuit for LP and show that although it converges to stable states, it does not, in general, yield admissible solutions. This is due to the penalization treatment of the constraints. In the second part, we propose an approach based on Lagragrange multipliers that converges to primal and dual admissible solutions. We also show that the duality gap (measuring the optimality) can be rendered, in principle, as small as needed. 11 refs.
Lincoln Near-Earth Asteroid Program (LINEAR)
NASA Astrophysics Data System (ADS)
Stokes, Grant H.; Evans, Jenifer B.; Viggh, Herbert E. M.; Shelly, Frank C.; Pearce, Eric C.
2000-11-01
The Lincoln Near-Earth Asteroid Research (LINEAR) program has applied electro-optical technology developed for Air Force Space Surveillance applications to the problem of discovering near-Earth asteroids (NEAs) and comets. This application is natural due to the commonality between the surveillance of the sky for man-made satellites and the search for near-Earth objects (NEOs). Both require the efficient search of broad swaths of sky to detect faint, moving objects. Currently, the Air Force Ground-based Electro-Optic Deep Space Surveillance (GEODSS) systems, which operate as part of the worldwide U.S. space surveillance network, are being upgraded to state-of-the-art charge-coupled device (CCD) detectors. These detectors are based on recent advances made by MIT Lincoln Laboratory in the fabrication of large format, highly sensitive CCDs. In addition, state-of-the-art data processing algorithms have been developed to employ the new detectors for search operations. In order to address stressing space surveillance requirements, the Lincoln CCDs have a unique combination of features, including large format, high quantum efficiency, frame transfer, high readout rate, and low noise, not found on any commercially available CCD. Systems development for the GEODSS upgrades has been accomplished at the Lincoln Laboratory Experimental Test Site (ETS) located near Socorro, New Mexico, over the past several years. Starting in 1996, the Air Force funded a small effort to demonstrate the effectiveness of the CCD and broad area search technology when applied to the problem of finding asteroids and comets. This program evolved into the current LINEAR program, which is jointly funded by the Air Force Office of Scientific Research and NASA. LINEAR, which started full operations in March of 1998, has discovered through September of 1999, 257 NEAs (of 797 known to date), 11 unusual objects (of 44 known), and 32 comets. Currently, LINEAR is contributing ∼70% of the worldwide NEA
New approaches to linear and nonlinear programming
Murray, W.; Saunders, M.A.
1990-03-01
During the last twelve months, research has concentrated on barrier- function methods for linear programming (LP) and quadratic programming (QP). Some ground-work for the application of barrier methods to nonlinearly constrained problems has also begun. In our previous progress report we drew attention to the difficulty of developing robust implementations of barrier methods for LP. We have continued to refine both the primal algorithm and the dual algorithm. We still do not claim that the barrier algorithms are as robust as the simplex method; however, the dual algorithm has solved all the problems in our extensive test set. We have also gained some experience with using the algorithms to solve aircrew scheduling problems.
Matching by linear programming and successive convexification.
Jiang, Hao; Drew, Mark S; Li, Ze-Nian
2007-06-01
We present a novel convex programming scheme to solve matching problems, focusing on the challenging problem of matching in a large search range and with cluttered background. Matching is formulated as metric labeling with L1 regularization terms, for which we propose a novel linear programming relaxation method and an efficient successive convexification implementation. The unique feature of the proposed relaxation scheme is that a much smaller set of basis labels is used to represent the original label space. This greatly reduces the size of the searching space. A successive convexification scheme solves the labeling problem in a coarse to fine manner. Importantly, the original cost function is reconvexified at each stage, in the new focus region only, and the focus region is updated so as to refine the searching result. This makes the method well-suited for large label set matching. Experiments demonstrate successful applications of the proposed matching scheme in object detection, motion estimation, and tracking.
Quantum Algorithm for Linear Programming Problems
NASA Astrophysics Data System (ADS)
Joag, Pramod; Mehendale, Dhananjay
The quantum algorithm (PRL 103, 150502, 2009) solves a system of linear equations with exponential speedup over existing classical algorithms. We show that the above algorithm can be readily adopted in the iterative algorithms for solving linear programming (LP) problems. The first iterative algorithm that we suggest for LP problem follows from duality theory. It consists of finding nonnegative solution of the equation forduality condition; forconstraints imposed by the given primal problem and for constraints imposed by its corresponding dual problem. This problem is called the problem of nonnegative least squares, or simply the NNLS problem. We use a well known method for solving the problem of NNLS due to Lawson and Hanson. This algorithm essentially consists of solving in each iterative step a new system of linear equations . The other iterative algorithms that can be used are those based on interior point methods. The same technique can be adopted for solving network flow problems as these problems can be readily formulated as LP problems. The suggested quantum algorithm cansolveLP problems and Network Flow problems of very large size involving millions of variables.
Optimized groundwater containment using linear programming
Quinn, J.J.; Johnson, R.L.; Durham, L.A.
1998-07-01
Groundwater extraction systems are typically installed to contain contaminant plumes. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield is to use a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, optimal locations and pump rates of extraction wells are difficult to determine when the objectives of the potential pumping scheme and the site hydrogeology are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. Calculations were conducted by using ModMan to link a calibrated MODFLOW flow model with LINDO, a linear programming package. Past activities at the site under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input water budget as groundwater discharge from the disposal area. The objective function of the optimization was to minimize the rate of groundwater extraction while preventing discharge to the marsh across a user-specified boundary. In this manner, the optimization routine selects well locations and pump rates to produce a groundwater divide along this boundary.
Consensus contact prediction by linear programming.
Gao, Xin; Bu, Dongbo; Li, Shuai Cheng; Li, Ming; Xu, Jinbo
2007-01-01
Protein inter-residue contacts are of great use for protein structure determination or prediction. Recent CASP events have shown that a few accurately predicted contacts can help improve both computational efficiency and prediction accuracy of the ab inito folding methods. This paper develops an integer linear programming (ILP) method for consensus-based contact prediction. In contrast to the simple "majority voting" method assuming that all the individual servers are equal and independent, our method evaluates their correlations using the maximum likelihood method and constructs some latent independent servers using the principal component analysis technique. Then, we use an integer linear programming model to assign weights to these latent servers in order to maximize the deviation between the correct contacts and incorrect ones; our consensus prediction server is the weighted combination of these latent servers. In addition to the consensus information, our method also uses server-independent correlated mutation (CM) as one of the prediction features. Experimental results demonstrate that our contact prediction server performs better than the "majority voting" method. The accuracy of our method for the top L/5 contacts on CASP7 targets is 73.41%, which is much higher than previously reported studies. On the 16 free modeling (FM) targets, our method achieves an accuracy of 37.21%.
An Algorithm for Linearly Constrained Nonlinear Programming Programming Problems.
1980-01-01
ALGORITHM FOR LINEARLY CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS Mokhtar S. Bazaraa and Jamie J. Goode In this paper an algorithm for solving a linearly...distance pro- gramr.ing, as in the works of Bazaraa and Goode 12], and Wolfe [16 can be used for solving this problem. Special methods that take advantage of...34 Pacific Journal of Mathematics, Volume 16, pp. 1-3, 1966. 2. M. S. Bazaraa and J. j. Goode, "An Algorithm for Finding the Shortest Element of a
Ensemble segmentation using efficient integer linear programming.
Alush, Amir; Goldberger, Jacob
2012-10-01
We present a method for combining several segmentations of an image into a single one that in some sense is the average segmentation in order to achieve a more reliable and accurate segmentation result. The goal is to find a point in the "space of segmentations" which is close to all the individual segmentations. We present an algorithm for segmentation averaging. The image is first oversegmented into superpixels. Next, each segmentation is projected onto the superpixel map. An instance of the EM algorithm combined with integer linear programming is applied on the set of binary merging decisions of neighboring superpixels to obtain the average segmentation. Apart from segmentation averaging, the algorithm also reports the reliability of each segmentation. The performance of the proposed algorithm is demonstrated on manually annotated images from the Berkeley segmentation data set and on the results of automatic segmentation algorithms.
Robust Control Design via Linear Programming
NASA Technical Reports Server (NTRS)
Keel, L. H.; Bhattacharyya, S. P.
1998-01-01
This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.
LPNORM: A linear programming normative analysis code
NASA Astrophysics Data System (ADS)
de Caritat, Patrice; Bloch, John; Hutcheon, Ian
1994-04-01
The computer code LPNORM implements the mathematical method of linear programming to calculate the mineralogical makeup of mineral mixtures, such as rock, sediment, or soil samples, from their bulk geochemical composition and from the mineralogical (or geochemical) composition of the contained minerals. This method simultaneously solves the set of linear equations governing the distribution of oxides into these minerals, subject to an objective function and a set of basic constraints. LPNORM allows the user to specify what minerals will be considered for normative analysis, what their composition is (in terms of mineral formula or geochemical composition), and whether to maximize mineral abundances, minimize slack variables (oxides that can not be accounted for), or do both at once in the objective function. Independent knowledge about the abundance of one or several of the minerals in the sample can be entered as additional equality or inequality constraints. Trial-and-error approach enables the user to "optimize" the composition of one or a few of the contained minerals. Results of comparative tests, highlighting the efficiency, as well as the shortcomings, of LPNORM are presented.
Linear programming for learning in neural networks
NASA Astrophysics Data System (ADS)
Raghavan, Raghu
1991-08-01
The authors have previously proposed a network of probabilistic cellular automata (PCAs) as part of an image recognition system designed to integrate model-based and data-driven approaches in a connectionist framework. The PCA arises from some natural requirements on the system which include incorporation of prior knowledge such as in inference rules, locality of inferences, and full parallelism. This network has been applied to recognize objects in both synthetic and in real data. This approach achieves recognition through the short-, rather than the long-time behavior of the dynamics of the PCA. In this paper, some methods are developed for learning the connection strengths by solving linear inequalities: the figures of merit are tendencies or directions of movement of the dynamical system. These 'dynamical' figures of merit result in inequality constraints on the connection strengths which are solved by linear (LP) or quadratic programs (QP). An algorithm is described for processing a large number of samples to determine weights for the PCA. The work may be regarded as either pointing out another application for constrained optimization, or as pointing out the need to extend the perceptron and similar methods for learning. The extension is needed because the neural network operates on a different principle from that for which the perceptron method was devised.
User's manual for LINEAR, a FORTRAN program to derive linear aircraft models
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Patterson, Brian P.; Antoniewicz, Robert F.
1987-01-01
This report documents a FORTRAN program that provides a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.
Optimized remedial groundwater extraction using linear programming
Quinn, J.J.
1995-12-31
Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary.
Linear programming models for cost reimbursement.
Diehr, G; Tamura, H
1989-01-01
Tamura, Lauer, and Sanborn (1985) reported a multiple regression approach to the problem of determining a cost reimbursement (rate-setting) formula for facilities providing long-term care (nursing homes). In this article we propose an alternative approach to this problem, using an absolute-error criterion instead of the least-squares criterion used in regression, with a variety of side constraints incorporated in the derivation of the formula. The mathematical tool for implementation of this approach is linear programming (LP). The article begins with a discussion of the desirable characteristics of a rate-setting formula. The development of a formula with these properties can be easily achieved, in terms of modeling as well as computation, using LP. Specifically, LP provides an efficient computational algorithm to minimize absolute error deviation, thus protecting rates from the effects of unusual observations in the data base. LP also offers modeling flexibility to impose a variety of policy controls. These features are not readily available if a least-squares criterion is used. Examples based on actual data are used to illustrate alternative LP models for rate setting. PMID:2759871
User's manual for interactive LINEAR: A FORTRAN program to derive linear aircraft models
NASA Technical Reports Server (NTRS)
Antoniewicz, Robert F.; Duke, Eugene L.; Patterson, Brian P.
1988-01-01
An interactive FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models is documented in this report. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.
VARAN: A Linear Model Variance Analysis Program.
ERIC Educational Resources Information Center
Hall, Charles E.; And Others
This memorandum is the manual for the VARAN (VARiance ANalysis) program, which is the latest addition to a series of computer programs for multivariate analysis of variance. As with earlier programs, analysis of variance, univariate and multivariate, is the main target of the program. Correlation analysis of all types is available with printout in…
An Intuitive Approach in Teaching Linear Programming in High School.
ERIC Educational Resources Information Center
Ulep, Soledad A.
1990-01-01
Discusses solving inequality problems involving linear programing. Describes the usual and alternative approaches. Presents an intuitive approach for finding a feasible solution by maximizing the objective function. (YP)
A Teaching Tool for Linear Programming
1993-07-01
U I Bibliography U Anton, Howard. Elementary Linear Algebra . 5th ed. New York: John Wiley & Sons, 1973.I...Richard 0. Jr. Elementary Linear Algebra with Applications. 2nd ed. San Diego: Harcourt Brace Jovanovich, 1991.I I Hillier, Frederick S. Pnd Gerald
Comparison of open-source linear programming solvers.
Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.; Jones, Katherine A.; Martin, Nathaniel; Detry, Richard Joseph
2013-10-01
When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.
A Sawmill Manager Adapts To Change With Linear Programming
George F. Dutrow; James E. Granskog
1973-01-01
Linear programming provides guidelines for increasing sawmill capacity and flexibility and for determining stumpagepurchasing strategy. The operator of a medium-sized sawmill implemented improvements suggested by linear programming analysis; results indicate a 45 percent increase in revenue and a 36 percent hike in volume processed.
Symmetry Groups for Linear Programming Relaxations of Orthogonal Array Problems
2015-03-26
Symmetry Groups for Linear Programming Relaxations of Orthogonal Array Problems THESIS MARCH 2015 David M. Arquette, Second Lieutenant, USAF AFIT-ENC...work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENC-MS-15-M-003 SYMMETRY GROUPS FOR LINEAR...PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENC-MS-15-M-003 SYMMETRY GROUPS FOR LINEAR PROGRAMMING RELAXATIONS OF ORTHOGONAL ARRAY PROBLEMS David M
Stochastic Optimal Control and Linear Programming Approach
Buckdahn, R.; Goreac, D.; Quincampoix, M.
2011-04-15
We study a classical stochastic optimal control problem with constraints and discounted payoff in an infinite horizon setting. The main result of the present paper lies in the fact that this optimal control problem is shown to have the same value as a linear optimization problem stated on some appropriate space of probability measures. This enables one to derive a dual formulation that appears to be strongly connected to the notion of (viscosity sub) solution to a suitable Hamilton-Jacobi-Bellman equation. We also discuss relation with long-time average problems.
Linear Fresnel lens photovoltaic concentrator program
Kull, J.; Maraschin, R.; Rafinejad, D.; Spencer, R.; Sutton, G.
1983-08-01
This report describes Acurex Corporation's design of a linear Fresnel lens Photovoltaic Concentrator Panel. The panel consists of four concentrator modules in an integrated structure. Each module is 10 ft long and has a 39.85 in aperture. The solar cell's active width is 0.90 in. and the cell-lens edge spacing is 23.39 in. There are 58 cells per module. A prototype panel was built and tested. Test results showed a peak electrical efficiency of 10.5% at the operating conditions of 800 W/m/sup 2/ insolation and 90/sup 0/F coolant temperature. The prototype exhibits the manufacturing and assembly concepts developed.
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
ERIC Educational Resources Information Center
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
NASA Astrophysics Data System (ADS)
Park, Jae Woo
1996-06-01
The generalized linear impulsive correction problem is applied to make a linear programming problem for optimizing trajectory of an orbiting spacecraft. Numerical application for the stationkeeping maneuver problem of geostationary satellite shows that this problem can efficiently find the optimal solution of the stationkeeping parameters, such as velocity changes, and the points of impulse by using the revised simplex method.
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
ERIC Educational Resources Information Center
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
Evaluating forest management policies by parametric linear programing
Daniel I. Navon; Richard J. McConnen
1967-01-01
An analytical and simulation technique, parametric linear programing explores alternative conditions and devises an optimal management plan for each condition. Its application in solving policy-decision problems in the management of forest lands is illustrated in an example.
EZLP: An Interactive Computer Program for Solving Linear Programming Problems. Final Report.
ERIC Educational Resources Information Center
Jarvis, John J.; And Others
Designed for student use in solving linear programming problems, the interactive computer program described (EZLP) permits the student to input the linear programming model in exactly the same manner in which it would be written on paper. This report includes a brief review of the development of EZLP; narrative descriptions of program features,…
Linear Programming and Its Application to Pattern Recognition Problems
NASA Technical Reports Server (NTRS)
Omalley, M. J.
1973-01-01
Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.
The RANDOM computer program: A linear congruential random number generator
NASA Technical Reports Server (NTRS)
Miles, R. F., Jr.
1986-01-01
The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.
Linear Programming for Vocational Education Planning. Interim Report.
ERIC Educational Resources Information Center
Young, Robert C.; And Others
The purpose of the paper is to define for potential users of vocational education management information systems a quantitative analysis technique and its utilization to facilitate more effective planning of vocational education programs. Defining linear programming (LP) as a management technique used to solve complex resource allocation problems…
Planning Student Flow with Linear Programming: A Tunisian Case Study.
ERIC Educational Resources Information Center
Bezeau, Lawrence
A student flow model in linear programming format, designed to plan the movement of students into secondary and university programs in Tunisia, is described. The purpose of the plan is to determine a sufficient number of graduating students that would flow back into the system as teachers or move into the labor market to meet fixed manpower…
Hierarchical Multiobjective Linear Programming Problems with Fuzzy Domination Structures
NASA Astrophysics Data System (ADS)
Yano, Hitoshi
2010-10-01
In this paper, we focus on hierarchical multiobjective linear programming problems with fuzzy domination structures where multiple decision makers in a hierarchical organization have their own multiple objective linear functions together with common linear constraints. After introducing decision powers and the solution concept based on the α-level set for the fuzzy convex cone Λ which reflects a fuzzy domination structure, we propose a fuzzy approach to obtain a satisfactory solution which reflects not only the hierarchical relationships between multiple decision makers but also their own preferences for their membership functions. In the proposed method, instead of Pareto optimal concept, a generalized Λ˜α-extreme point concept is introduced. In order to obtain a satisfactory solution from among a generalized Λ˜α-extreme point set, an interactive algorithm based on linear programming is proposed, and an interactive processes are demonstrated by means of an illustrative numerical example.
A linear-programming approach to temporal reasoning
Jonsson, P.; Baeckstroem, C.
1996-12-31
We present a new formalism, Horn Disjunctive Linear Relations (Horn DLRs), for reasoning about temporal constraints. We prove that deciding satisfiability of sets of Horn DLRs is polynomial by exhibiting an algorithm based upon linear programming. Furthermore, we prove that most other approaches to tractable temporal constraint reasoning can be encoded as Horn DLRs, including the ORD-Horn algebra and most methods for purely quantitative reasoning.
Convergence of linear programming using a Hopfield net
Lu, Shin-yee; Berryman, J.G.
1990-11-01
Hopfield nets are interconnected networks of simple analog Processors. Such networks have been applied to a variety of optimization problems including linear programming problems. We revised the energy function used in a Hopfield net such that the network can be implemented on a digital computer to solve linearing programming problems. We also proved that the revised discrete Hopfield net coverages, and gave the conditions of convergence. The approach is tested on two large and sparse linear programming problems. In both cases we could not reach the optimal solutions, but solutions with 1% error can be attained in less than 3 minutes of CPU time on a SUN SPARC station. The optimal solutions can be obtained by the simplex method, but required five times more CPU time. 10 refs., 1 tab.
An Instructional Note on Linear Programming--A Pedagogically Sound Approach.
ERIC Educational Resources Information Center
Mitchell, Richard
1998-01-01
Discusses the place of linear programming in college curricula and the advantages of using linear-programming software. Lists important characteristics of computer software used in linear programming for more effective teaching and learning. (ASK)
From Parity and Payoff Games to Linear Programming
NASA Astrophysics Data System (ADS)
Schewe, Sven
This paper establishes a surprising reduction from parity and mean payoff games to linear programming problems. While such a connection is trivial for solitary games, it is surprising for two player games, because the players have opposing objectives, whose natural translations into an optimisation problem are minimisation and maximisation, respectively. Our reduction to linear programming circumvents the need for concurrent minimisation and maximisation by replacing one of them, the maximisation, by approximation. The resulting optimisation problem can be translated to a linear programme by a simple space transformation, which is inexpensive in the unit cost model, but results in an exponential growth of the coefficients. The discovered connection opens up unexpected applications - like μ-calculus model checking - of linear programming in the unit cost model, and thus turns the intriguing academic problem of finding a polynomial time algorithm for linear programming in this model of computation (and subsequently a strongly polynomial algorithm) into a problem of paramount practical importance: All advancements in this area can immediately be applied to accelerate solving parity and payoff games, or to improve their complexity analysis.
Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae
NASA Technical Reports Server (NTRS)
Rosu, Grigore; Havelund, Klaus
2001-01-01
The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.
Linear combination reading program for capture gamma rays
Tanner, Allan B.
1971-01-01
This program computes a weighting function, Qj, which gives a scalar output value of unity when applied to the spectrum of a desired element and a minimum value (considering statistics) when applied to spectra of materials not containing the desired element. Intermediate values are obtained for materials containing the desired element, in proportion to the amount of the element they contain. The program is written in the BASIC language in a format specific to the Hewlett-Packard 2000A Time-Sharing System, and is an adaptation of an earlier program for linear combination reading for X-ray fluorescence analysis (Tanner and Brinkerhoff, 1971). Following the program is a sample run from a study of the application of the linear combination technique to capture-gamma-ray analysis for calcium (report in preparation).
THE SEPARATION OF URANIUM ISOTOPES BY GASEOUS DIFFUSION: A LINEAR PROGRAMMING MODEL,
URANIUM, ISOTOPE SEPARATION), (*GASEOUS DIFFUSION SEPARATION, LINEAR PROGRAMMING ), (* LINEAR PROGRAMMING , GASEOUS DIFFUSION SEPARATION), MATHEMATICAL MODELS, GAS FLOW, NUCLEAR REACTORS, OPERATIONS RESEARCH
Interior-Point Methods for Linear Programming: A Review
ERIC Educational Resources Information Center
Singh, J. N.; Singh, D.
2002-01-01
The paper reviews some recent advances in interior-point methods for linear programming and indicates directions in which future progress can be made. Most of the interior-point methods belong to any of three categories: affine-scaling methods, potential reduction methods and central path methods. These methods are discussed together with…
Interior-Point Methods for Linear Programming: A Review
ERIC Educational Resources Information Center
Singh, J. N.; Singh, D.
2002-01-01
The paper reviews some recent advances in interior-point methods for linear programming and indicates directions in which future progress can be made. Most of the interior-point methods belong to any of three categories: affine-scaling methods, potential reduction methods and central path methods. These methods are discussed together with…
A Partitioning and Bounded Variable Algorithm for Linear Programming
ERIC Educational Resources Information Center
Sheskin, Theodore J.
2006-01-01
An interesting new partitioning and bounded variable algorithm (PBVA) is proposed for solving linear programming problems. The PBVA is a variant of the simplex algorithm which uses a modified form of the simplex method followed by the dual simplex method for bounded variables. In contrast to the two-phase method and the big M method, the PBVA does…
On the Feasibility of a Generalized Linear Program
1989-03-01
generealized linear program by applying the same algorithm to a "phase-one" problem without requiring that the initial basic feasible solution to the latter be non-degenerate. secUrMTY C.AMlIS CAYI S OP ?- PAeES( UII -W & ,
A Partitioning and Bounded Variable Algorithm for Linear Programming
ERIC Educational Resources Information Center
Sheskin, Theodore J.
2006-01-01
An interesting new partitioning and bounded variable algorithm (PBVA) is proposed for solving linear programming problems. The PBVA is a variant of the simplex algorithm which uses a modified form of the simplex method followed by the dual simplex method for bounded variables. In contrast to the two-phase method and the big M method, the PBVA does…
A Heuristic Ceiling Point Algorithm for General Integer Linear Programming
1988-11-01
narrowly satisfies the il h constraint: taking a unit step from x toward the ilh constraining hyperplane in a direction parallel to some coordinate...Business, Stanford Univesity , Stanford, Calif., December 1964. Hillier, F., "Efficient Heuristic Procedures for Integer Linear Programming with an Inte- rior
Linear decomposition approach for a class of nonconvex programming problems.
Shen, Peiping; Wang, Chunfeng
2017-01-01
This paper presents a linear decomposition approach for a class of nonconvex programming problems by dividing the input space into polynomially many grids. It shows that under certain assumptions the original problem can be transformed and decomposed into a polynomial number of equivalent linear programming subproblems. Based on solving a series of liner programming subproblems corresponding to those grid points we can obtain the near-optimal solution of the original problem. Compared to existing results in the literature, the proposed algorithm does not require the assumptions of quasi-concavity and differentiability of the objective function, and it differs significantly giving an interesting approach to solving the problem with a reduced running time.
Train repathing in emergencies based on fuzzy linear programming.
Meng, Xuelei; Cui, Bingmou
2014-01-01
Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.
Train Repathing in Emergencies Based on Fuzzy Linear Programming
Cui, Bingmou
2014-01-01
Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm. PMID:25121128
LFSPMC: Linear feature selection program using the probability of misclassification
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.; Marion, B. P.
1975-01-01
The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.
Linear programming model to develop geodiversity map using utility theory
NASA Astrophysics Data System (ADS)
Sepehr, Adel
2015-04-01
In this article, the classification and mapping of geodiversity based on a quantitative methodology was accomplished using linear programming, the central idea of which being that geosites and geomorphosites as main indicators of geodiversity can be evaluated by utility theory. A linear programming method was applied for geodiversity mapping over Khorasan-razavi province located in eastern north of Iran. In this route, the main criteria for distinguishing geodiversity potential in the studied area were considered regarding rocks type (lithology), faults position (tectonic process), karst area (dynamic process), Aeolian landforms frequency and surface river forms. These parameters were investigated by thematic maps including geology, topography and geomorphology at scales 1:100'000, 1:50'000 and 1:250'000 separately, imagery data involving SPOT, ETM+ (Landsat 7) and field operations directly. The geological thematic layer was simplified from the original map using a practical lithologic criterion based on a primary genetic rocks classification representing metamorphic, igneous and sedimentary rocks. The geomorphology map was provided using DEM at scale 30m extracted by ASTER data, geology and google earth images. The geology map shows tectonic status and geomorphology indicated dynamic processes and landform (karst, Aeolian and river). Then, according to the utility theory algorithms, we proposed a linear programming to classify geodiversity degree in the studied area based on geology/morphology parameters. The algorithm used in the methodology was consisted a linear function to be maximized geodiversity to certain constraints in the form of linear equations. The results of this research indicated three classes of geodiversity potential including low, medium and high status. The geodiversity potential shows satisfied conditions in the Karstic areas and Aeolian landscape. Also the utility theory used in the research has been decreased uncertainty of the evaluations.
ERIC Educational Resources Information Center
Matzke, Orville R.
The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…
Planning under uncertainty solving large-scale stochastic linear programs
Infanger, G. |
1992-12-01
For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.
The box method for linear programming: Part 1, Basic theory
Zikan, K.; Cottle, R.W.
1987-06-01
This paper presents a new interior-point algorithm for linear programming where the constraints are all expressed as inequalities. Along with the concept of ''minimum-weight basis'', the algorithm features a novel mechanism for finding search directions. Unlike other interior-point methods which implicitly or explicitly involve optimization over ellipsoids for their direction-finding schemes, the one reported here uses ''boxes''. The corresponding subproblems are simple linear programs having closed form solutions. It is shown that the iterates generated by the algorithm converge to an extreme point of the feasible region. When this point is nondegenerate, it is optimal and reached within finitely any steps. The methodology introduced here also gives rise to a polyhedral subdivision of the problem's feasible region and in fact to the entire space of decision variables.
Algorithmic Trading with Developmental and Linear Genetic Programming
NASA Astrophysics Data System (ADS)
Wilson, Garnett; Banzhaf, Wolfgang
A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.
Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution
Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati
2014-06-19
This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.
Finding Stable Orientations of Assemblies with Linear Programming
1993-06-01
AD-A266 990 Finding Stable Orientations of Assemblies with Linear Programming David Baraff Raju Mattikalli Bruno Repetto Pradeep Khosla CMU-RI-TR-93...Mattikalli, Bruno Repetto and Pradeep Khosla 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER The Robotics... Repetto , and D. Baraff. Stability of assemblies. In Interna- tional Conference on Intelligent Robots and Systems, page (to appear). IEEE/RSJ, July 1993
Efficient numerical methods for entropy-linear programming problems
NASA Astrophysics Data System (ADS)
Gasnikov, A. V.; Gasnikova, E. B.; Nesterov, Yu. E.; Chernov, A. V.
2016-04-01
Entropy-linear programming (ELP) problems arise in various applications. They are usually written as the maximization of entropy (minimization of minus entropy) under affine constraints. In this work, new numerical methods for solving ELP problems are proposed. Sharp estimates for the convergence rates of the proposed methods are established. The approach described applies to a broader class of minimization problems for strongly convex functionals with affine constraints.
Linear programming using symmetric triangular intuitionistic fuzzy numbers
NASA Astrophysics Data System (ADS)
Parvathi, R.; Malathi, C.
2012-09-01
This paper introduces Symmetric Triangular Intuitionistic Fuzzy Numbers (STriFNs) and also proposes a new type of intuitionistic fuzzy arithmetic operations on STriIFNs. A special ranking function for ordering STriIFNs has been introduced. A solution methodology for Intuitionistic Fuzzy Linear Programming Problems (IFLPPs) with STriIFNs as parameters has been proposed by using Intuitionistic Fuzzy Simplex Method and the arithmetic operations on STriIFNs. Finally, an illustrative numerical example is presented to demonstrate the proposed approach.
Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution
NASA Astrophysics Data System (ADS)
Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati
2014-06-01
This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α-. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen's method is employed to find a compromise solution, supported by illustrative numerical example.
MAGDM linear-programming models with distinct uncertain preference structures.
Xu, Zeshui S; Chen, Jian
2008-10-01
Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.
Solving linear integer programming problems by a novel neural model.
Cavalieri, S
1999-02-01
The paper deals with integer linear programming problems. As is well known, these are extremely complex problems, even when the number of integer variables is quite low. Literature provides examples of various methods to solve such problems, some of which are of a heuristic nature. This paper proposes an alternative strategy based on the Hopfield neural network. The advantage of the strategy essentially lies in the fact that hardware implementation of the neural model allows for the time required to obtain a solution so as not depend on the size of the problem to be solved. The paper presents a particular class of integer linear programming problems, including well-known problems such as the Travelling Salesman Problem and the Set Covering Problem. After a brief description of this class of problems, it is demonstrated that the original Hopfield model is incapable of supplying valid solutions. This is attributed to the presence of constant bias currents in the dynamic of the neural model. A demonstration of this is given and then a novel neural model is presented which continues to be based on the same architecture as the Hopfield model, but introduces modifications thanks to which the integer linear programming problems presented can be solved. Some numerical examples and concluding remarks highlight the solving capacity of the novel neural model.
An algorithm for the solution of dynamic linear programs
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1989-01-01
The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation
An Algorithm for Solving Interval Linear Programming Problems
1974-11-01
34regularized" a lä Chames -Cooper so that infeasibility is determined at optimal solution if that is the case. If I(x*(v)) - 0 then x*(v) is an... Chames and Cooper J3]) may be used to compute the new inverse. Theorem 2 The algorithm described above terminates in a finite number of steps...I J 19- REFERENCES 1) A. Ben-Israel and A. Chames , "An Explicit Solution of A Special Class of Linear Programming Problems", Operations
Mining Knowledge from Multiple Criteria Linear Programming Models
NASA Astrophysics Data System (ADS)
Zhang, Peng; Zhu, Xingquan; Li, Aihua; Zhang, Lingling; Shi, Yong
As a promising data mining tool, Multiple Criteria Linear Programming (MCLP) has been widely used in business intelligence. However, a possible limitation of MCLP is that it generates unexplainable black-box models which can only tell us results without reasons. To overcome this shortage, in this paper, we propose a Knowledge Mining strategy which mines from black-box MCLP models to get explainable and understandable knowledge. Different from the traditional Data Mining strategy which focuses on mining knowledge from data, this Knowledge Mining strategy provides a new vision of mining knowledge from black-box models, which can be taken as a special topic of “Intelligent Knowledge Management”.
A linear programming approach for optimal contrast-tone mapping.
Wu, Xiaolin
2011-05-01
This paper proposes a novel algorithmic approach of image enhancement via optimal contrast-tone mapping. In a fundamental departure from the current practice of histogram equalization for contrast enhancement, the proposed approach maximizes expected contrast gain subject to an upper limit on tone distortion and optionally to other constraints that suppress artifacts. The underlying contrast-tone optimization problem can be solved efficiently by linear programming. This new constrained optimization approach for image enhancement is general, and the user can add and fine tune the constraints to achieve desired visual effects. Experimental results demonstrate clearly superior performance of the new approach over histogram equalization and its variants.
Extracting Embedded Generalized Networks from Linear Programming Problems.
1984-09-01
E EXTRACTING EMBEDDED GENERALIZED NETWORKS FROM LINEAR PROGRAMMING PROBLEMS by Gerald G. Brown * . ___Richard D. McBride * R. Kevin Wood LcL7...authorized. EA Gerald ’Brown Richar-rD. McBride 46;val Postgrduate School University of Southern California Monterey, California 93943 Los Angeles...REOT UBE . OV S.SF- PERFOING’ CAORG soN UER. 7. AUTNOR(a) S. CONTRACT ON GRANT NUME111() Gerald G. Brown Richard D. McBride S. PERFORMING ORGANIZATION
A scalable parallel algorithm for multiple objective linear programs
NASA Technical Reports Server (NTRS)
Wiecek, Malgorzata M.; Zhang, Hong
1994-01-01
This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.
Fuzzy Linear Programming and its Application in Home Textile Firm
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2011-06-01
In this paper, new fuzzy linear programming (FLP) based methodology using a specific membership function, named as modified logistic membership function is proposed. The modified logistic membership function is first formulated and its flexibility in taking up vagueness in parameter is established by an analytical approach. The developed methodology of FLP has provided a confidence in applying to real life industrial production planning problem. This approach of solving industrial production planning problem can have feedback with the decision maker, the implementer and the analyst.
A recurrent neural network for solving bilevel linear programming problem.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian
2014-04-01
In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.
Inverting feedforward neural networks using linear and nonlinear programming.
Lu, B L; Kita, H; Nishikawa, Y
1999-01-01
The problem of inverting trained feedforward neural networks is to find the inputs which yield a given output. In general, this problem is an ill-posed problem because the mapping from the output space to the input space is a one-to-many mapping. In this paper, we present a method for dealing with the inverse problem by using mathematical programming techniques. The principal idea behind the method is to formulate the inverse problem as a nonlinear programming (NLP) problem, a separable programming (SP) problem, or a linear programming (LP) problem according to the architectures of networks to be inverted or the types of network inversions to be computed. An important advantage of the method over the existing iterative inversion algorithm is that various designated network inversions of multilayer perceptrons (MLP's) and radial basis function (RBF) neural networks can be obtained by solving the corresponding SP problems, which can be solved by a modified simplex method, a well-developed and efficient method for solving LP problems. We present several examples to demonstrate the proposed method and the applications of network inversions to examining and improving the generalization performance of trained networks. The results show the effectiveness of the proposed method.
Linear programming based on neural networks for radiotherapy treatment planning.
Wu, X; Zhu, Y; Luo, L
2000-03-01
In this paper, we propose a neural network model for linear programming that is designed to optimize radiotherapy treatment planning (RTP). This kind of neural network can be easily implemented by using a kind of 'neural' electronic system in order to obtain an optimization solution in real time. We first give an introduction to the RTP problem and construct a non-constraint objective function for the neural network model. We adopt a gradient algorithm to minimize the objective function and design the structure of the neural network for RTP. Compared to traditional linear programming methods, this neural network model can reduce the time needed for convergence, the size of problems (i.e., the number of variables to be searched) and the number of extra slack and surplus variables needed. We obtained a set of optimized beam weights that result in a better dose distribution as compared to that obtained using the simplex algorithm under the same initial condition. The example presented in this paper shows that this model is feasible in three-dimensional RTP.
Assembling networks of microbial genomes using linear programming
2010-01-01
Background Microbial genomes exhibit complex sets of genetic affinities due to lateral genetic transfer. Assessing the relative contributions of parent-to-offspring inheritance and gene sharing is a vital step in understanding the evolutionary origins and modern-day function of an organism, but recovering and showing these relationships is a challenging problem. Results We have developed a new approach that uses linear programming to find between-genome relationships, by treating tables of genetic affinities (here, represented by transformed BLAST e-values) as an optimization problem. Validation trials on simulated data demonstrate the effectiveness of the approach in recovering and representing vertical and lateral relationships among genomes. Application of the technique to a set comprising Aquifex aeolicus and 75 other thermophiles showed an important role for large genomes as 'hubs' in the gene sharing network, and suggested that genes are preferentially shared between organisms with similar optimal growth temperatures. We were also able to discover distinct and common genetic contributors to each sequenced representative of genus Pseudomonas. Conclusions The linear programming approach we have developed can serve as an effective inference tool in its own right, and can be an efficient first step in a more-intensive phylogenomic analysis. PMID:21092133
Assembling networks of microbial genomes using linear programming.
Holloway, Catherine; Beiko, Robert G
2010-11-20
Microbial genomes exhibit complex sets of genetic affinities due to lateral genetic transfer. Assessing the relative contributions of parent-to-offspring inheritance and gene sharing is a vital step in understanding the evolutionary origins and modern-day function of an organism, but recovering and showing these relationships is a challenging problem. We have developed a new approach that uses linear programming to find between-genome relationships, by treating tables of genetic affinities (here, represented by transformed BLAST e-values) as an optimization problem. Validation trials on simulated data demonstrate the effectiveness of the approach in recovering and representing vertical and lateral relationships among genomes. Application of the technique to a set comprising Aquifex aeolicus and 75 other thermophiles showed an important role for large genomes as 'hubs' in the gene sharing network, and suggested that genes are preferentially shared between organisms with similar optimal growth temperatures. We were also able to discover distinct and common genetic contributors to each sequenced representative of genus Pseudomonas. The linear programming approach we have developed can serve as an effective inference tool in its own right, and can be an efficient first step in a more-intensive phylogenomic analysis.
Direct linear programming solver in C for structural applications
NASA Astrophysics Data System (ADS)
Damkilde, L.; Hoyer, O.; Krenk, S.
1994-08-01
An optimization problem can be characterized by an object-function, which is maximized, and restrictions, which limit the variation of the variables. A subclass of optimization is Linear Programming (LP), where both the object-function and the restrictions are linear functions of the variables. The traditional solution methods for LP problems are based on the simplex method, and it is customary to allow only non-negative variables. Compared to other optimization routines the LP solvers are more robust and the optimum is reached in a finite number of steps and is not sensitive to the starting point. For structural applications many optimization problems can be linearized and solved by LP routines. However, the structural variables are not always non-negative, and this requires a reformation, where a variable x is substituted by the difference of two non-negative variables, x(sup + ) and x(sup - ). The transformation causes a doubling of the number of variables, and in a computer implementation the memory allocation doubles and for a typical problem the execution time at least doubles. This paper describes a LP solver written in C, which can handle a combination of non-negative variables and unlimited variables. The LP solver also allows restart, and this may reduce the computational costs if the solution to a similar LP problem is known a priori. The algorithm is based on the simplex method, and differs only in the logical choices. Application of the new LP solver will at the same time give both a more direct problem formulation and a more efficient program.
LCAP2 (Linear Controls Analysis Program). Volume 3. Source Code Description.
1983-11-15
The computer program LCAP2 (Linear Controls Analysis Program) provides the analyst with the capability to numerically perform classical linear ... control analysis techniques such as transfer function manipulation, transfer function evaluation, frequency response, root locus, time response and sampled
LCAP2 (Linear Controls Analysis Program). Volume 2. Interactive LCAP2 User’s Guide.
1983-11-15
The computer program LCAP2 (Linear Controls Analysis Program) provides the analyst with the capability to numerically perform classical linear ... control analysis techniques such as transfer function manuipulation, transfer function evaluation, frequency response, root locus, time response and sampled
LCAP2 (Linear Control Analysis Program). Volume 1. Batch LCAP2 User’s Guide.
1983-11-15
The computer program LCAP2 (Linear Controls Analysis Program) provides the analyst with the capability to numerically perform classical linear ... control analysis techniques such as transfer function manipulation, transfer function evaluation, frequency response, root locus, time response and sampled
APPLICATION OF LINEAR PROGRAMMING TO FACILITY MAINTENANCE PROBLEMS IN THE NAVY SHORE ESTABLISHMENT.
LINEAR PROGRAMMING ), (*NAVAL SHORE FACILITIES, MAINTENANCE), (*MAINTENANCE, COSTS, MATHEMATICAL MODELS, MANAGEMENT PLANNING AND CONTROL, MANPOWER, FEASIBILITY STUDIES, OPTIMIZATION, MANAGEMENT ENGINEERING.
Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming
Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo
2013-05-23
This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.
Manipulating multiqudit entanglement witnesses by using linear programming
Jafarizadeh, M. A.; Najarbashi, G.; Habibian, H.
2007-05-15
A class of entanglement witnesses (EWs) called reduction-type entanglement witnesses is introduced, which can detect some multipartite entangled states including positive partial transpose ones with Hilbert space of dimension d{sub 1}(multiply-in-circle sign)d{sub 2}(multiply-in-circle sign){center_dot}{center_dot}{center_dot}(multiply-in-circle sign)d{sub n}. In fact the feasible regions of these EWs turn out to be convex polygons and hence the manipulation of them reduces to linear programming which can be solved exactly by using the simplex method. The decomposability and nondecomposability of these EWs are studied and it is shown that it has a close connection with eigenvalues and optimality of EWs. Also using the Jamiolkowski isomorphism, the corresponding possible positive maps, including the generalized reduction maps of Hall [Phys. Rev. A 72, 022311 (2005)] are obtained.
Linear programming phase unwrapping for dual-wavelength digital holography.
Wang, Zhaomin; Jiao, Jiannan; Qu, Weijuan; Yang, Fang; Li, Hongru; Tian, Ailing; Asundi, Anand
2017-01-20
A linear programming phase unwrapping method in dual-wavelength digital holography is proposed and verified experimentally. The proposed method uses the square of height difference as a convergence standard and theoretically gives the boundary condition in a searching process. A simulation was performed by unwrapping step structures at different levels of Gaussian noise. As a result, our method is capable of recovering the discontinuities accurately. It is robust and straightforward. In the experiment, a microelectromechanical systems sample and a cylindrical lens were measured separately. The testing results were in good agreement with true values. Moreover, the proposed method is applicable not only in digital holography but also in other dual-wavelength interferometric techniques.
Manipulating multiqudit entanglement witnesses by using linear programming
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Najarbashi, G.; Habibian, H.
2007-05-01
A class of entanglement witnesses (EWs) called reduction-type entanglement witnesses is introduced, which can detect some multipartite entangled states including positive partial transpose ones with Hilbert space of dimension d1⊗d2⊗⋯⊗dn . In fact the feasible regions of these EWs turn out to be convex polygons and hence the manipulation of them reduces to linear programming which can be solved exactly by using the simplex method. The decomposability and nondecomposability of these EWs are studied and it is shown that it has a close connection with eigenvalues and optimality of EWs. Also using the Jamiołkowski isomorphism, the corresponding possible positive maps, including the generalized reduction maps of Hall [Phys. Rev. A 72, 022311 (2005)] are obtained.
Longitudinal force distribution using quadratically constrained linear programming
NASA Astrophysics Data System (ADS)
Klomp, M.
2011-12-01
In this paper, a new method is presented for the optimisation of force distribution for combined traction/braking and cornering. In order to provide a general, simple and flexible problem formulation, the optimisation is addressed as a quadratically constrained linear programming (QCLP) problem. Apart from fast numerical solutions, different driveline configurations can be included in the QCLP problem in a very straightforward fashion. The optimisation of the distribution of the individual wheel forces using the quasi-steady-state assumption is known to be useful for the study of the influence of particular driveline configurations on the combined lateral and longitudinal grip envelope of a particular vehicle-driveline configuration. The addition of the QCLP problem formulation makes another powerful tool available to the vehicle dynamics analyst to perform such studies.
Towards lexicographic multi-objective linear programming using grossone methodology
NASA Astrophysics Data System (ADS)
Cococcioni, Marco; Pappalardo, Massimo; Sergeyev, Yaroslav D.
2016-10-01
Lexicographic Multi-Objective Linear Programming (LMOLP) problems can be solved in two ways: preemptive and nonpreemptive. The preemptive approach requires the solution of a series of LP problems, with changing constraints (each time the next objective is added, a new constraint appears). The nonpreemptive approach is based on a scalarization of the multiple objectives into a single-objective linear function by a weighted combination of the given objectives. It requires the specification of a set of weights, which is not straightforward and can be time consuming. In this work we present both mathematical and software ingredients necessary to solve LMOLP problems using a recently introduced computational methodology (allowing one to work numerically with infinities and infinitesimals) based on the concept of grossone. The ultimate goal of such an attempt is an implementation of a simplex-like algorithm, able to solve the original LMOLP problem by solving only one single-objective problem and without the need to specify finite weights. The expected advantages are therefore obvious.
Split diversity in constrained conservation prioritization using integer linear programming.
Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt
2015-01-01
Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2012-11-01
A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.
Dense image registration through MRFs and efficient linear programming.
Glocker, Ben; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir; Paragios, Nikos
2008-12-01
In this paper, we introduce a novel and efficient approach to dense image registration, which does not require a derivative of the employed cost function. In such a context, the registration problem is formulated using a discrete Markov random field objective function. First, towards dimensionality reduction on the variables we assume that the dense deformation field can be expressed using a small number of control points (registration grid) and an interpolation strategy. Then, the registration cost is expressed using a discrete sum over image costs (using an arbitrary similarity measure) projected on the control points, and a smoothness term that penalizes local deviations on the deformation field according to a neighborhood system on the grid. Towards a discrete approach, the search space is quantized resulting in a fully discrete model. In order to account for large deformations and produce results on a high resolution level, a multi-scale incremental approach is considered where the optimal solution is iteratively updated. This is done through successive morphings of the source towards the target image. Efficient linear programming using the primal dual principles is considered to recover the lowest potential of the cost function. Very promising results using synthetic data with known deformations and real data demonstrate the potentials of our approach.
Accurate construction of consensus genetic maps via integer linear programming.
Wu, Yonghui; Close, Timothy J; Lonardi, Stefano
2011-01-01
We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html.
Mixed integer linear programming for maximum-parsimony phylogeny inference.
Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell
2008-01-01
Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.
Maximum likelihood pedigree reconstruction using integer linear programming.
Cussens, James; Bartlett, Mark; Jones, Elinor M; Sheehan, Nuala A
2013-01-01
Large population biobanks of unrelated individuals have been highly successful in detecting common genetic variants affecting diseases of public health concern. However, they lack the statistical power to detect more modest gene-gene and gene-environment interaction effects or the effects of rare variants for which related individuals are ideally required. In reality, most large population studies will undoubtedly contain sets of undeclared relatives, or pedigrees. Although a crude measure of relatedness might sometimes suffice, having a good estimate of the true pedigree would be much more informative if this could be obtained efficiently. Relatives are more likely to share longer haplotypes around disease susceptibility loci and are hence biologically more informative for rare variants than unrelated cases and controls. Distant relatives are arguably more useful for detecting variants with small effects because they are less likely to share masking environmental effects. Moreover, the identification of relatives enables appropriate adjustments of statistical analyses that typically assume unrelatedness. We propose to exploit an integer linear programming optimisation approach to pedigree learning, which is adapted to find valid pedigrees by imposing appropriate constraints. Our method is not restricted to small pedigrees and is guaranteed to return a maximum likelihood pedigree. With additional constraints, we can also search for multiple high-probability pedigrees and thus account for the inherent uncertainty in any particular pedigree reconstruction. The true pedigree is found very quickly by comparison with other methods when all individuals are observed. Extensions to more complex problems seem feasible. © 2012 Wiley Periodicals, Inc.
Learning oncogenetic networks by reducing to mixed integer linear programming.
Shahrabi Farahani, Hossein; Lagergren, Jens
2013-01-01
Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.
A Mixed Integer Linear Program for Airport Departure Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Jung, Yoon Chul
2009-01-01
Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced
Very Low-Cost Nutritious Diet Plans Designed by Linear Programming.
ERIC Educational Resources Information Center
Foytik, Jerry
1981-01-01
Provides procedural details of Linear Programing, developed by the U.S. Department of Agriculture to devise a dietary guide for consumers that minimizes food costs without sacrificing nutritional quality. Compares Linear Programming with the Thrifty Food Plan, which has been a basis for allocating coupons under the Food Stamp Program. (CS)
NASA Astrophysics Data System (ADS)
Zhadan, V. G.
2016-07-01
The linear semidefinite programming problem is considered. The dual affine scaling method in which all current iterations belong to the feasible set is proposed for its solution. Moreover, the boundaries of the feasible set may be reached. This method is a generalization of a version of the affine scaling method that was earlier developed for linear programs to the case of semidefinite programming.
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Chen, Y. H.
1974-01-01
An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.
Development and validation of a general purpose linearization program for rigid aircraft models
NASA Technical Reports Server (NTRS)
Duke, E. L.; Antoniewicz, R. F.
1985-01-01
A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft.
A User’s Manual for Interactive Linear Control Programs on IBM/3033.
1982-12-01
There existed a need for an interactive program that would provide the user assistance it solving applications of linear control theory. The linear ...analysis, design and simulation of a broad class of linear control problems. LINCON consists of two groups: matrix manipulation, transfer function and... control program (LINCON) and its user’s guide satisfy this need. A series of ten interactive programs are presented which permit the user to carry out
AN INTRODUCTION TO THE APPLICATION OF DYNAMIC PROGRAMMING TO LINEAR CONTROL SYSTEMS
DYNAMIC PROGRAMMING APPLIED TO OPTIMIZE LINEAR CONTROL SYSTEMS WITH QUADRATIC PERFORMANCE MEASURES. MATHEMATICAL METHODS WHICH MAY BE APPLIED TO SPACE VEHICLE AND RELATED GUIDANCE AND CONTROL PROBLEMS.
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Bodson, Marc; Acosta, Diana M.
2009-01-01
The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.
SUBOPT: A CAD program for suboptimal linear regulators
NASA Technical Reports Server (NTRS)
Fleming, P. J.
1985-01-01
An interactive software package which provides design solutions for both standard linear quadratic regulator (LQR) and suboptimal linear regulator problems is described. Intended for time-invariant continuous systems, the package is easily modified to include sampled-data systems. LQR designs are obtained by established techniques while the large class of suboptimal problems containing controller and/or performance index options is solved using a robust gradient minimization technique. Numerical examples demonstrate features of the package and recent developments are described.
Fundamental solution of the problem of linear programming and method of its determination
NASA Technical Reports Server (NTRS)
Petrunin, S. V.
1978-01-01
The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited.
ERIC Educational Resources Information Center
Schmitt, M. A.; And Others
1994-01-01
Compares traditional manure application planning techniques calculated to meet agronomic nutrient needs on a field-by-field basis with plans developed using computer-assisted linear programming optimization methods. Linear programming provided the most economical and environmentally sound manure application strategy. (Contains 15 references.) (MDH)
ERIC Educational Resources Information Center
Schmitt, M. A.; And Others
1994-01-01
Compares traditional manure application planning techniques calculated to meet agronomic nutrient needs on a field-by-field basis with plans developed using computer-assisted linear programming optimization methods. Linear programming provided the most economical and environmentally sound manure application strategy. (Contains 15 references.) (MDH)
A linear circuit analysis program with stiff systems capability
NASA Technical Reports Server (NTRS)
Cook, C. H.; Bavuso, S. J.
1973-01-01
Several existing network analysis programs have been modified and combined to employ a variable topological approach to circuit translation. Efficient numerical integration techniques are used for transient analysis.
How Relevant Is Linear, Dichotomous Reasoning to Ongoing Program Evaluation?
ERIC Educational Resources Information Center
Nguyen, Tuan D.
1978-01-01
Criticizes Strasser and Deniston's post-planned evaluation (TM 504 253) because of their: (1) emphasis on evaluation research; (2) imposition of experimental rigor; (3) inapplicability to human service projects; (4) inattention to congruity between the program and its environment; (5) distinct characteristics of program evaluation; and (6)…
Effective radiological safety program for electron linear accelerators
Swanson, W.P.
1980-10-01
An outline is presented of some of the main elements of an electron accelerator radiological safety program. The discussion includes types of accelerator facilities, types of radiations to be anticipated, activity induced in components, air and water, and production of toxic gases. Concepts of radiation shielding design are briefly discussed and organizational aspects are considered as an integral part of the overall safety program.
Zhao, Yingfeng; Liu, Sanyang
2016-01-01
We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.
NASA Technical Reports Server (NTRS)
Fleming, P.
1985-01-01
A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.
NASA Technical Reports Server (NTRS)
Fleming, P.
1985-01-01
A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.
Application of linear programming techniques for controlling linear dynamic plants in real time
NASA Astrophysics Data System (ADS)
Gabasov, R.; Kirillova, F. M.; Ha, Vo Thi Thanh
2016-03-01
The problem of controlling a linear dynamic plant in real time given its nondeterministic model and imperfect measurements of the inputs and outputs is considered. The concepts of current distributions of the initial state and disturbance parameters are introduced. The method for the implementation of disclosable loop using the separation principle is described. The optimal control problem under uncertainty conditions is reduced to the problems of optimal observation, optimal identification, and optimal control of the deterministic system. To extend the domain where a solution to the optimal control problem under uncertainty exists, a two-stage optimal control method is proposed. Results are illustrated using a dynamic plant of the fourth order.
Programmable calculator program for linear somatic cell scores to estimate mastitis yield losses.
Kirk, J H
1984-02-01
A programmable calculator program calculates loss of milk yield in dairy cows based on linear somatic cell count scores. The program displays the distribution of the herd by lactation number and linear score for present and optimal goal situations. Loss of yield is in pounds and dollars by cow and herd. The program estimates optimal milk production and numbers of fewer cows at the goal for mastitis infection.
LINOPT: A FORTRAN Routine for Solving Linear Programming Problems,
1981-10-09
MD 20910 2R44EA501 I I. CONTROLLING OFFICE NAME ANO AOORESS 12. REPORT DATE 9 October 1981 ’I. NUMBER OF PAGES 46 11. MONITORING AGENCY NAME...block /XXXLP/, which must accordingly be a common block in the calling program. ROUNDOFF CONTROL In the program there are three input variables which...can be used to control roundoff error accummulations. EPS is a tolerance used in checking constraint violations. H is also used to zero out
Mixed-Integer Conic Linear Programming: Challenges and Perspectives
2013-10-01
The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky
A linear programming approach for placement of applicants to academic programs.
Kassa, Biniyam Asmare
2013-01-01
This paper reports a linear programming approach for placement of applicants to study programs developed and implemented at the college of Business & Economics, Bahir Dar University, Bahir Dar, Ethiopia. The approach is estimated to significantly streamline the placement decision process at the college by reducing required man hour as well as the time it takes to announce placement decisions. Compared to the previous manual system where only one or two placement criteria were considered, the new approach allows the college's management to easily incorporate additional placement criteria, if needed. Comparison of our approach against manually constructed placement decisions based on actual data for the 2012/13 academic year suggested that about 93 percent of the placements from our model concur with the actual placement decisions. For the remaining 7 percent of placements, however, the actual placements made by the manual system display inconsistencies of decisions judged against the very criteria intended to guide placement decisions by the college's program management office. Overall, the new approach proves to be a significant improvement over the manual system in terms of efficiency of the placement process and the quality of placement decisions.
The Use of Linear (Goal) Programming in the Construction of a Test Blueprint.
ERIC Educational Resources Information Center
Busch, John Christian; Taylor, Raymond G.
The use of a variation of linear programing (goal programing) to develop a test blueprint with multiple specification requirements, is the topic of this paper. The computer program STORM was used to develop a table of test specifications for a test that would measure achievement in introductory statistics in the subdomains of frequency…
NASA Astrophysics Data System (ADS)
Indarsih, Indrati, Ch. Rini
2016-02-01
In this paper, we define variance of the fuzzy random variables through alpha level. We have a theorem that can be used to know that the variance of fuzzy random variables is a fuzzy number. We have a multi-objective linear programming (MOLP) with fuzzy random of objective function coefficients. We will solve the problem by variance approach. The approach transform the MOLP with fuzzy random of objective function coefficients into MOLP with fuzzy of objective function coefficients. By weighted methods, we have linear programming with fuzzy coefficients and we solve by simplex method for fuzzy linear programming.
Bruhn, Peter; Geyer-Schulz, Andreas
2002-01-01
In this paper, we introduce genetic programming over context-free languages with linear constraints for combinatorial optimization, apply this method to several variants of the multidimensional knapsack problem, and discuss its performance relative to Michalewicz's genetic algorithm with penalty functions. With respect to Michalewicz's approach, we demonstrate that genetic programming over context-free languages with linear constraints improves convergence. A final result is that genetic programming over context-free languages with linear constraints is ideally suited to modeling complementarities between items in a knapsack problem: The more complementarities in the problem, the stronger the performance in comparison to its competitors.
User's manual for interfacing a leading edge, vortex rollup program with two linear panel methods
NASA Technical Reports Server (NTRS)
Desilva, B. M. E.; Medan, R. T.
1979-01-01
Sufficient instructions are provided for interfacing the Mangler-Smith, leading edge vortex rollup program with a vortex lattice (POTFAN) method and an advanced higher order, singularity linear analysis for computing the vortex effects for simple canard wing combinations.
The Effect of Data Scaling on Dual Prices and Sensitivity Analysis in Linear Programs
ERIC Educational Resources Information Center
Adlakha, V. G.; Vemuganti, R. R.
2007-01-01
In many practical situations scaling the data is necessary to solve linear programs. This note explores the relationships in translating the sensitivity analysis between the original and the scaled problems.
NASA Technical Reports Server (NTRS)
1979-01-01
The computer program Linear SCIDNT which evaluates rotorcraft stability and control coefficients from flight or wind tunnel test data is described. It implements the maximum likelihood method to maximize the likelihood function of the parameters based on measured input/output time histories. Linear SCIDNT may be applied to systems modeled by linear constant-coefficient differential equations. This restriction in scope allows the application of several analytical results which simplify the computation and improve its efficiency over the general nonlinear case.
The MARX Modulator Development Program for the International Linear Collider
Leyh, G.E.; /SLAC
2006-06-12
The ILC Marx Modulator Development Program at SLAC is working towards developing a full-scale ILC Marx ''Reference Design'' modulator prototype, with the goal of significantly reducing the size and cost of the ILC modulator while improving overall modulator efficiency and availability. The ILC Reference Design prototype will provide a proof-of-concept model to industry in advance of Phase II SBIR funding, and also allow operation of the new 10MW L-Band Klystron prototypes immediately upon their arrival at SLAC.
Mapping Efficient Numerical Methods to the Solution of Multiple Objective Linear Programs
1991-03-01
dependent upon the technology of solving related sy ems of linear equations. Gill, Murray and Wright have emphasized the importance of rank-1 up- dates to...Bibliography 1. Bazaraa, Mokhtar S., John J. Jarvis and Hanif D. Sherali. Linear Programming and Network Flows. 2nd ed New York: John Wiley ^ Sons, Inc., 1990. 2
Optimizing the Teaching-Learning Process Through a Linear Programming Model--Stage Increment Model.
ERIC Educational Resources Information Center
Belgard, Maria R.; Min, Leo Yoon-Gee
An operations research method to optimize the teaching-learning process is introduced in this paper. In particular, a linear programing model is proposed which, unlike dynamic or control theory models, allows the computer to react to the responses of a learner in seconds or less. To satisfy the assumptions of linearity, the seemingly complicated…
ERIC Educational Resources Information Center
Smith, H. Gene; And Others
The report describes a project for developing a linear programing technique and a data base to facilitate decision making in State level planning of occupational training programs. The first 32 pages of the report describe the methods and procedures, results, conclusions, and recommendations of the study and include a brief bibliography. The…
FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.
Li, Pu; Chen, Bing
2011-04-01
Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk.
LP Relaxation of the Potts Labeling Problem Is as Hard as any Linear Program.
Prusa, Daniel; Werner, Tomas
2016-06-20
In our recent work, we showed that solving the LP relaxation of the pairwise min-sum labeling problem (also known as MAP inference in graphical models or discrete energy minimization) is not much easier than solving any linear program. Precisely, the general linear program reduces in linear time (assuming the Turing model of computation) to the LP relaxation of the min-sum labeling problem. The reduction is possible, though in quadratic time, even to the min-sum labeling problem with planar structure. Here we prove similar results for the pairwise minsum labeling problem with attractive Potts interactions (also known as the uniform metric labeling problem).
Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing.
Yang, Changju; Kim, Hyongsuk
2016-08-19
A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model.
Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing
Yang, Changju; Kim, Hyongsuk
2016-01-01
A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model. PMID:27548186
The Computer Program LIAR for Beam Dynamics Calculations in Linear Accelerators
Assmann, R.W.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Siemann, R.H.; Thompson, K.; /SLAC
2011-08-26
Linear accelerators are the central components of the proposed next generation of linear colliders. They need to provide acceleration of up to 750 GeV per beam while maintaining very small normalized emittances. Standard simulation programs, mainly developed for storage rings, do not meet the specific requirements for high energy linear accelerators. We present a new program LIAR ('LInear Accelerator Research code') that includes wakefield effects, a 6D coupled beam description, specific optimization algorithms and other advanced features. Its modular structure allows to use and to extend it easily for different purposes. The program is available for UNIX workstations and Windows PC's. It can be applied to a broad range of accelerators. We present examples of simulations for SLC and NLC.
Micosoft Excel Sensitivity Analysis for Linear and Stochastic Program Feed Formulation
USDA-ARS?s Scientific Manuscript database
Sensitivity analysis is a part of mathematical programming solutions and is used in making nutritional and economic decisions for a given feed formulation problem. The terms, shadow price and reduced cost, are familiar linear program (LP) terms to feed formulators. Because of the nonlinear nature of...
1991-10-31
Problems, Mathematical Programming Studies, 48:1, 1-18. R. E. Marsten, 1989. User’s Manual for: OB1/XMP, Interior Point Methods for Linear Programming. R. E...Industrial Dr. Istvan Maros E.T.S. Ingenieros Industriales Computer and Automation Institute Jose Gutierrez Abascal, 2 Hungarian Academy of Sciences E
NASA Technical Reports Server (NTRS)
Bowman, L. M.
1984-01-01
An interactive steady state frequency response computer program with graphics is documented. Single or multiple forces may be applied to the structure using a modal superposition approach to calculate response. The method can be reapplied to linear, proportionally damped structures in which the damping may be viscous or structural. The theoretical approach and program organization are described. Example problems, user instructions, and a sample interactive session are given to demonstate the program's capability in solving a variety of problems.
Object matching using a locally affine invariant and linear programming techniques.
Li, Hongsheng; Huang, Xiaolei; He, Lei
2013-02-01
In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.
Optimal control of a satellite-robot system using direct collocation with non-linear programming
NASA Astrophysics Data System (ADS)
Coverstone-Carroll, V. L.; Wilkey, N. M.
1995-08-01
The non-holonomic behavior of a satellite-robot system is used to develop the system's equations of motion. The resulting non-linear differential equations are transformed into a non-linear programming problem using direct collocation. The link rates of the robot are minimized along optimal reorientations. Optimal solutions to several maneuvers are obtained and the results are interpreted to gain an understanding of the satellite-robot dynamics.
Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle
NASA Technical Reports Server (NTRS)
Bergmann, E.; Weiler, P.
1983-01-01
An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft.
A New Bound for the Ration Between the 2-Matching Problem and Its Linear Programming Relaxation
Boyd, Sylvia; Carr, Robert
1999-07-28
Consider the 2-matching problem defined on the complete graph, with edge costs which satisfy the triangle inequality. We prove that the value of a minimum cost 2-matching is bounded above by 4/3 times the value of its linear programming relaxation, the fractional 2-matching problem. This lends credibility to a long-standing conjecture that the optimal value for the traveling salesman problem is bounded above by 4/3 times the value of its linear programming relaxation, the subtour elimination problem.
Fault detection and initial state verification by linear programming for a class of Petri nets
NASA Technical Reports Server (NTRS)
Rachell, Traxon; Meyer, David G.
1992-01-01
The authors present an algorithmic approach to determining when the marking of a LSMG (live safe marked graph) or a LSFC (live safe free choice) net is in the set of live safe markings M. Hence, once the marking of a net is determined to be in M, then if at some time thereafter the marking of this net is determined not to be in M, this indicates a fault. It is shown how linear programming can be used to determine if m is an element of M. The worst-case computational complexity of each algorithm is bounded by the number of linear programs necessary to compute.
A novel recurrent neural network with finite-time convergence for linear programming.
Liu, Qingshan; Cao, Jinde; Chen, Guanrong
2010-11-01
In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.
Fault detection and initial state verification by linear programming for a class of Petri nets
NASA Technical Reports Server (NTRS)
Rachell, Traxon; Meyer, David G.
1992-01-01
The authors present an algorithmic approach to determining when the marking of a LSMG (live safe marked graph) or a LSFC (live safe free choice) net is in the set of live safe markings M. Hence, once the marking of a net is determined to be in M, then if at some time thereafter the marking of this net is determined not to be in M, this indicates a fault. It is shown how linear programming can be used to determine if m is an element of M. The worst-case computational complexity of each algorithm is bounded by the number of linear programs necessary to compute.
NASA Technical Reports Server (NTRS)
Mitchell, C. E.; Eckert, K.
1979-01-01
A program for predicting the linear stability of liquid propellant rocket engines is presented. The underlying model assumptions and analytical steps necessary for understanding the program and its input and output are also given. The rocket engine is modeled as a right circular cylinder with an injector with a concentrated combustion zone, a nozzle, finite mean flow, and an acoustic admittance, or the sensitive time lag theory. The resulting partial differential equations are combined into two governing integral equations by the use of the Green's function method. These equations are solved using a successive approximation technique for the small amplitude (linear) case. The computational method used as well as the various user options available are discussed. Finally, a flow diagram, sample input and output for a typical application and a complete program listing for program MODULE are presented.
An Integer Linear Program to Combine Container Handling and Yard Crane Deployment
2007-06-01
Automated Stacking Crane (ASC) (Figure 6), Rail Mounted Gantry Crane ( RMG ) (Figure 7), and Rubber Tired Gantry Crane (RTG) (Figure 8). Of these three...PROGRAM TO COMBINE CONTAINER HANDLING AND YARD CRANE DEPLOYMENT by Kamil Akel June 2007 Thesis Advisor: Robert F. Dell Second Reader...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE An Integer Linear Program to Combine Container Handling and Yard Crane Deployment 6
Moryakov, A. V. Pylyov, S. S.
2012-12-15
This paper presents the formulation of the problem and the methodical approach for solving large systems of linear differential equations describing nonstationary processes with the use of CUDA technology; this approach is implemented in the ANGEL program. Results for a test problem on transport of radioactive products over loops of a nuclear power plant are given. The possibilities for the use of the ANGEL program for solving various problems that simulate arbitrary nonstationary processes are discussed.
Detection and discovery of near-earth asteroids by the linear program
NASA Astrophysics Data System (ADS)
Stokes, G.; Evans, J.
The Lincoln Near-Earth Asteroid Research (LINEAR) program, which applies space surveillance technology developed for the United States Air Force to discovering asteroids, has been operating for 5 years. During that time LINEAR has provided almost 65% of the worldwide discovery stream and has now discovered 50% of all known asteroids including near-Earth asteroids whose orbital parameters could allow them to pass close to the Earth. In addition, LINEAR has become the leading ground-based discoverer of comets, with more than one hundred comets now named "LINEAR." Generally, LINEAR discovers comets when they are far away from the Sun on their inbound trajectory, thus allowing observation of the heating process commonly missed previously when comets were discovered closer to the Sun. This paper provides an update to recent enhancements of the LINEAR system, details the productivity of the program, and highlights some of the more interesting objects discovered. This work was sponsored by the National Aeronautics and Space Administration under Air Force Contract F19628-00-C-2002. "Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government."
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1975-01-01
STICAP (Stiff Circuit Analysis Program) is a FORTRAN 4 computer program written for the CDC-6400-6600 computer series and SCOPE 3.0 operating system. It provides the circuit analyst a tool for automatically computing the transient responses and frequency responses of large linear time invariant networks, both stiff and nonstiff (algorithms and numerical integration techniques are described). The circuit description and user's program input language is engineer-oriented, making simple the task of using the program. Engineering theories underlying STICAP are examined. A user's manual is included which explains user interaction with the program and gives results of typical circuit design applications. Also, the program structure from a systems programmer's viewpoint is depicted and flow charts and other software documentation are given.
ERIC Educational Resources Information Center
Dyehouse, Melissa; Bennett, Deborah; Harbor, Jon; Childress, Amy; Dark, Melissa
2009-01-01
Logic models are based on linear relationships between program resources, activities, and outcomes, and have been used widely to support both program development and evaluation. While useful in describing some programs, the linear nature of the logic model makes it difficult to capture the complex relationships within larger, multifaceted…
2007-11-02
scarce resources ( Bazaraa vii). The modeling capabilities linear programming provides has made it a success in many fields of study. Since the...Planning and Programming of Facility Construction Projects. 12 May 1994. Bazaraa , Mokhtar S., John J Jarvis and Hanif D. Sherali. Linear Programming
An Interactive Method to Solve Infeasibility in Linear Programming Test Assembling Models
ERIC Educational Resources Information Center
Huitzing, Hiddo A.
2004-01-01
In optimal assembly of tests from item banks, linear programming (LP) models have proved to be very useful. Assembly by hand has become nearly impossible, but these LP techniques are able to find the best solutions, given the demands and needs of the test to be assembled and the specifics of the item bank from which it is assembled. However,…
ERIC Educational Resources Information Center
Huitzing, Hiddo A.
2004-01-01
This article shows how set covering with item sampling (SCIS) methods can be used in the analysis and preanalysis of linear programming models for test assembly (LPTA). LPTA models can construct tests, fulfilling a set of constraints set by the test assembler. Sometimes, no solution to the LPTA model exists. The model is then said to be…
Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.
ERIC Educational Resources Information Center
Shama, Gilli; Dreyfus, Tommy
1994-01-01
Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…
ERIC Educational Resources Information Center
Findorff, Irene K.
This document summarizes the results of a project at Tulane University that was designed to adapt, test, and evaluate a computerized information and menu planning system utilizing linear programing techniques for use in school lunch food service operations. The objectives of the menu planning were to formulate menu items into a palatable,…
Land Use and Soil Erosion. A National Linear Programming Model. Technical Bulletin Number 1742.
ERIC Educational Resources Information Center
Huang, Wen-Yuan; And Others
This technical bulletin documents a model, the Natural Resource Linear Programming (NRLP) model, capable of measuring the effects of land use restrictions imposed as conservation measures. The primary use for the model is to examine the government expenditures required to compensate farmers for retiring potentially erodible private cropland. The…
Maximizing Profits for a Commercail Salmon Rearing Facility Using Linear Programming.
A linear programming model of a commercial salmon rearing facility is formulated. A scheme is provided for facility expansion at an optimum rate...maximizing profit to the grower. The variables are the number of fish started in each year and the number of fresh water ponds and salt water pens to
Secret Message Decryption: Group Consulting Projects Using Matrices and Linear Programming
ERIC Educational Resources Information Center
Gurski, Katharine F.
2009-01-01
We describe two short group projects for finite mathematics students that incorporate matrices and linear programming into fictional consulting requests presented as a letter to the students. The students are required to use mathematics to decrypt secret messages in one project involving matrix multiplication and inversion. The second project…
Secret Message Decryption: Group Consulting Projects Using Matrices and Linear Programming
ERIC Educational Resources Information Center
Gurski, Katharine F.
2009-01-01
We describe two short group projects for finite mathematics students that incorporate matrices and linear programming into fictional consulting requests presented as a letter to the students. The students are required to use mathematics to decrypt secret messages in one project involving matrix multiplication and inversion. The second project…
Eric J. Gustafson; L. Jay Roberts; Larry A. Leefers
2006-01-01
Forest management planners require analytical tools to assess the effects of alternative strategies on the sometimes disparate benefits from forests such as timber production and wildlife habitat. We assessed the spatial patterns of alternative management strategies by linking two models that were developed for different purposes. We used a linear programming model (...
Nutrient density score of typical Indonesian foods and dietary formulation using linear programming.
Jati, Ignasius Radix A P; Vadivel, Vellingiri; Nöhr, Donatus; Biesalski, Hans Konrad
2012-12-01
The present research aimed to analyse the nutrient density (ND), nutrient adequacy score (NAS) and energy density (ED) of Indonesian foods and to formulate a balanced diet using linear programming. Data on typical Indonesian diets were obtained from the Indonesian Socio-Economic Survey 2008. ND was investigated for 122 Indonesian foods. NAS was calculated for single nutrients such as Fe, Zn and vitamin A. Correlation analysis was performed between ND and ED, as well as between monthly expenditure class and food consumption pattern in Indonesia. Linear programming calculations were performed using the software POM-QM for Windows version 3. Republic of Indonesia, 2008. Public households (n 68 800). Vegetables had the highest ND of the food groups, followed by animal-based foods, fruits and staple foods. Based on NAS, the top ten food items for each food group were identified. Most of the staple foods had high ED and contributed towards daily energy fulfillment, followed by animal-based foods, vegetables and fruits. Commodities with high ND tended to have low ED. Linear programming could be used to formulate a balanced diet. In contrast to staple foods, purchases of fruit, vegetables and animal-based foods increased with the rise of monthly expenditure. People should select food items based on ND and NAS to alleviate micronutrient deficiencies in Indonesia. Dietary formulation calculated using linear programming to achieve RDA levels for micronutrients could be recommended for different age groups of the Indonesian population.
Chen, W Y C; Dress, A W M; Yu, W Q
2007-09-01
Here, the reliability of a recent approach to use parameterised linear programming for detecting community structures in network has been investigated. Using a one-parameter family of objective functions, a number of "perturbation experiments' document that our approach works rather well. A real-life network and a family of benchmark network are also analysed.
The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R
Pang, Haotian; Liu, Han; Vanderbei, Robert
2014-01-01
We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems. PMID:25620890
The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.
Pang, Haotian; Liu, Han; Vanderbei, Robert
2014-02-01
We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.
Bhadra, Sahely; Bhattacharyya, Chiranjib; Chandra, Nagasuma R; Mian, I Saira
2009-01-01
Background A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In
STAR adaptation of QR algorithm. [program for solving over-determined systems of linear equations
NASA Technical Reports Server (NTRS)
Shah, S. N.
1981-01-01
The QR algorithm used on a serial computer and executed on the Control Data Corporation 6000 Computer was adapted to execute efficiently on the Control Data STAR-100 computer. How the scalar program was adapted for the STAR-100 and why these adaptations yielded an efficient STAR program is described. Program listings of the old scalar version and the vectorized SL/1 version are presented in the appendices. Execution times for the two versions applied to the same system of linear equations, are compared.
User's Guide to the Weighted-Multiple-Linear Regression Program (WREG version 1.0)
Eng, Ken; Chen, Yin-Yu; Kiang, Julie.E.
2009-01-01
Streamflow is not measured at every location in a stream network. Yet hydrologists, State and local agencies, and the general public still seek to know streamflow characteristics, such as mean annual flow or flood flows with different exceedance probabilities, at ungaged basins. The goals of this guide are to introduce and familiarize the user with the weighted multiple-linear regression (WREG) program, and to also provide the theoretical background for program features. The program is intended to be used to develop a regional estimation equation for streamflow characteristics that can be applied at an ungaged basin, or to improve the corresponding estimate at continuous-record streamflow gages with short records. The regional estimation equation results from a multiple-linear regression that relates the observable basin characteristics, such as drainage area, to streamflow characteristics.
Digital program for solving the linear stochastic optimal control and estimation problem
NASA Technical Reports Server (NTRS)
Geyser, L. C.; Lehtinen, B.
1975-01-01
A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.
Ab initio synthesis of linearly compensated zoom lenses by evolutionary programming.
Pal, Sourav; Hazra, Lakshminarayan
2011-04-01
An approach for ab initio synthesis of the thin lens structure of linearly compensated zoom lenses is reported. This method uses evolutionary programming that explores the available configuration space formed by powers of the individual components, the intercomponent separations, and the relative movement parameters of the moving components. Useful thin lens structures of optically and linearly compensated zoom lens systems are obtained by suitable formulation of the merit function of optimization. This paper reports our investigations on three-component zoom lens structures. Illustrative numerical results are presented.
NASA Astrophysics Data System (ADS)
Zimmermann, Karl-Heinz; Achtziger, Wolfgang
2001-09-01
The size of a systolic array synthesized from a uniform recurrence equation, whose computations are mapped by a linear function to the processors, matches the problem size. In practice, however, there exist several limiting factors on the array size. There are two dual schemes available to derive arrays of smaller size from large-size systolic arrays based on the partitioning of the large-size arrays into subarrays. In LSGP, the subarrays are clustered one-to-one into the processors of a small-size array, while in LPGS, the subarrays are serially assigned to a reduced-size array. In this paper, we propose a common methodology for both LSGP and LPGS based on polyhedral partitionings of large-size k-dimensional systolic arrays which are synthesized from n-dimensional uniform recurrences by linear mappings for allocation and timing. In particular, we address the optimization problem of finding optimal piecewise linear timing functions for small-size arrays. These are mappings composed of linear timing functions for the computations of the subarrays. We study a continuous approximation of this problem by passing from piecewise linear to piecewise quasi-linear timing functions. The resultant problem formulation is then a quadratic programming problem which can be solved by standard algorithms for nonlinear optimization problems.
An application of a linear programing technique to nonlinear minimax problems
NASA Technical Reports Server (NTRS)
Schiess, J. R.
1973-01-01
A differential correction technique for solving nonlinear minimax problems is presented. The basis of the technique is a linear programing algorithm which solves the linear minimax problem. By linearizing the original nonlinear equations about a nominal solution, both nonlinear approximation and estimation problems using the minimax norm may be solved iteratively. Some consideration is also given to improving convergence and to the treatment of problems with more than one measured quantity. A sample problem is treated with this technique and with the least-squares differential correction method to illustrate the properties of the minimax solution. The results indicate that for the sample approximation problem, the minimax technique provides better estimates than the least-squares method if a sufficient amount of data is used. For the sample estimation problem, the minimax estimates are better if the mathematical model is incomplete.
LDRD final report on massively-parallel linear programming : the parPCx system.
Parekh, Ojas; Phillips, Cynthia Ann; Boman, Erik Gunnar
2005-02-01
This report summarizes the research and development performed from October 2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) project ''Massively-Parallel Linear Programming''. We developed a linear programming (LP) solver designed to use a large number of processors. LP is the optimization of a linear objective function subject to linear constraints. Companies and universities have expended huge efforts over decades to produce fast, stable serial LP solvers. Previous parallel codes run on shared-memory systems and have little or no distribution of the constraint matrix. We have seen no reports of general LP solver runs on large numbers of processors. Our parallel LP code is based on an efficient serial implementation of Mehrotra's interior-point predictor-corrector algorithm (PCx). The computational core of this algorithm is the assembly and solution of a sparse linear system. We have substantially rewritten the PCx code and based it on Trilinos, the parallel linear algebra library developed at Sandia. Our interior-point method can use either direct or iterative solvers for the linear system. To achieve a good parallel data distribution of the constraint matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan partitioning library. We describe the design and implementation of our new LP solver called parPCx and give preliminary computational results. We summarize a number of issues related to efficient parallel solution of LPs with interior-point methods including data distribution, numerical stability, and solving the core linear system using both direct and iterative methods. We describe a number of applications of LP specific to US Department of Energy mission areas and we summarize our efforts to integrate parPCx (and parallel LP solvers in general) into Sandia's massively-parallel integer programming solver PICO (Parallel Interger and Combinatorial Optimizer). We
A computer program for linear nonparametric and parametric identification of biological data.
Werness, S A; Anderson, D J
1984-01-01
A computer program package for parametric ad nonparametric linear system identification of both static and dynamic biological data, written for an LSI-11 minicomputer with 28 K of memory, is described. The program has 11 possible commands including an instructional help command. A user can perform nonparametric spectral analysis and estimation of autocorrelation and partial autocorrelation functions of univariate data and estimate nonparametrically the transfer function and possibly an associated noise series of bivariate data. In addition, the commands provide the user the means to derive a parametric autoregressive moving average model for univariate data, to derive a parametric transfer function and noise model for bivariate data, and to perform several model evaluation tests such as pole-zero cancellation, examination of residual whiteness and uncorrelatedness with the input. The program, consisting of a main program and driver subroutine as well as six overlay segments, may be run interactively or automatically.
Linear-phase approximation in the triangular facet near-field physical optics computer program
NASA Technical Reports Server (NTRS)
Imbriale, W. A.; Hodges, R. E.
1990-01-01
Analyses of reflector antenna surfaces use a computer program based on a discrete approximation of the radiation integral. The calculation replaces the actual surface with a triangular facet representation; the physical optics current is assumed to be constant over each facet. Described here is a method of calculation using linear-phase approximation of the surface currents of parabolas, ellipses, and shaped subreflectors and compares results with a previous program that used a constant-phase approximation of the triangular facets. The results show that the linear-phase approximation is a significant improvement over the constant-phase approximation, and enables computation of 100 to 1,000 lambda reflectors within a reasonable time on a Cray computer.
Ren, Jingzheng; Dong, Liang; Sun, Lu; Goodsite, Michael Evan; Tan, Shiyu; Dong, Lichun
2015-01-01
The aim of this work was to develop a model for optimizing the life cycle cost of biofuel supply chain under uncertainties. Multiple agriculture zones, multiple transportation modes for the transport of grain and biofuel, multiple biofuel plants, and multiple market centers were considered in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed model, and the results showed that the proposed model is feasible for designing biofuel supply chain under uncertainties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Refining and end use study of coal liquids II - linear programming analysis
Lowe, C.; Tam, S.
1995-12-31
A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for the petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.
The use of linear programming in optimization of HDR implant dose distributions.
Jozsef, Gabor; Streeter, Oscar E; Astrahan, Melvin A
2003-05-01
The introduction of high dose rate brachytherapy enabled optimization of dose distributions to be used on a routine basis. The objective of optimization is to homogenize the dose distribution within the implant while simultaneously satisfying dose constraints on certain points. This is accomplished by varying the time the source dwells at different locations. As the dose at any point is a linear function of the dwell times, a linear programming approach seems to be a natural choice. The dose constraints are inherently linear inequalities. Homogeneity requirements are linearized by minimizing the maximum deviation of the doses at points inside the implant from a prescribed dose. The revised simplex method was applied for the solution of this linear programming problem. In the homogenization process the possible source locations were chosen as optimization points. To avoid the problem of the singular value of the dose at a source location from the source itself we define the "self-contribution" as the dose at a small distance from the source. The effect of varying this distance is discussed. Test cases were optimized for planar, biplanar and cylindrical implants. A semi-irregular, fan-like implant with diverging needles was also investigated. Mean central dose calculation based on 3D Delaunay-triangulation of the source locations was used to evaluate the dose distributions. The optimization method resulted in homogeneous distributions (for brachytherapy). Additional dose constraints--when applied--were satisfied. The method is flexible enough to include other linear constraints such as the inclusion of the centroids of the Delaunay-triangulation for homogenization, or limiting the maximum allowable dwell time.
A new neural network model for solving random interval linear programming problems.
Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza
2017-05-01
This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique.
Non-linear Internal Wave Evolution in the South China Sea: 2005 Field Program
2009-05-01
code) 05/01/2009 Final 11/18/05 - 09/30/07 Non-linear Internal Wave Evolution in the South China Sea : 2005 Field Program N00014-05-1-0140 Pinkel...challenge was to see if the waves arriving at the western slopes of the South China Sea were in fact, propagating trans-basin from generating sites... Sea : 2005 Field Program Final Report: N00014-05-1-0140 Robert Pinkel Marine Physical Laboratory Scripps Institution of Oceanography
A new one-layer neural network for linear and quadratic programming.
Gao, Xingbao; Liao, Li-Zhi
2010-06-01
In this paper, we present a new neural network for solving linear and quadratic programming problems in real time by introducing some new vectors. The proposed neural network is stable in the sense of Lyapunov and can converge to an exact optimal solution of the original problem when the objective function is convex on the set defined by equality constraints. Compared with existing one-layer neural networks for quadratic programming problems, the proposed neural network has the least neurons and requires weak stability conditions. The validity and transient behavior of the proposed neural network are demonstrated by some simulation results.
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L. C.
1984-01-01
AESOP is a computer program for use in designing feedback controls and state estimators for linear multivariable systems. AESOP is meant to be used in an interactive manner. Each design task that the program performs is assigned a "function" number. The user accesses these functions either (1) by inputting a list of desired function numbers or (2) by inputting a single function number. In the latter case the choice of the function will in general depend on the results obtained by the previously executed function. The most important of the AESOP functions are those that design,linear quadratic regulators and Kalman filters. The user interacts with the program when using these design functions by inputting design weighting parameters and by viewing graphic displays of designed system responses. Supporting functions are provided that obtain system transient and frequency responses, transfer functions, and covariance matrices. The program can also compute open-loop system information such as stability (eigenvalues), eigenvectors, controllability, and observability. The program is written in ANSI-66 FORTRAN for use on an IBM 3033 using TSS 370. Descriptions of all subroutines and results of two test cases are included in the appendixes.
Romeijn, H Edwin; Ahuja, Ravindra K; Dempsey, James F; Kumar, Arvind; Li, Jonathan G
2003-11-07
We present a novel linear programming (LP) based approach for efficiently solving the intensity modulated radiation therapy (IMRT) fluence-map optimization (FMO) problem to global optimality. Our model overcomes the apparent limitations of a linear-programming approach by approximating any convex objective function by a piecewise linear convex function. This approach allows us to retain the flexibility offered by general convex objective functions, while allowing us to formulate the FMO problem as a LP problem. In addition, a novel type of partial-volume constraint that bounds the tail averages of the differential dose-volume histograms of structures is imposed while retaining linearity as an alternative approach to improve dose homogeneity in the target volumes, and to attempt to spare as many critical structures as possible. The goal of this work is to develop a very rapid global optimization approach that finds high quality dose distributions. Implementation of this model has demonstrated excellent results. We found globally optimal solutions for eight 7-beam head-and-neck cases in less than 3 min of computational time on a single processor personal computer without the use of partial-volume constraints. Adding such constraints increased the running times by a factor of 2-3, but improved the sparing of critical structures. All cases demonstrated excellent target coverage (> 95%), target homogeneity (< 10% overdosing and < 7% underdosing) and organ sparing using at least one of the two models.
Annular precision linear shaped charge flight termination system for the ODES program
Vigil, M.G.; Marchi, D.L.
1994-06-01
The work for the development of an Annular Precision Linear Shaped Charge (APLSC) Flight Termination System (FTS) for the Operation and Deployment Experiment Simulator (ODES) program is discussed and presented in this report. The Precision Linear Shaped Charge (PLSC) concept was recently developed at Sandia. The APLSC component is designed to produce a copper jet to cut four inch diameter holes in each of two spherical tanks, one containing fuel and the other an oxidizer that are hyperbolic when mixed, to terminate the ODES vehicle flight if necessary. The FTS includes two detonators, six Mild Detonating Fuse (MDF) transfer lines, a detonator block, detonation transfer manifold, and the APLSC component. PLSCs have previously been designed in ring components where the jet penetrating axis is either directly away or toward the center of the ring assembly. Typically, these PLSC components are designed to cut metal cylinders from the outside inward or from the inside outward. The ODES program requires an annular linear shaped charge. The (Linear Shaped Charge Analysis) LESCA code was used to design this 65 grain/foot APLSC and data comparing the analytically predicted to experimental data are presented. Jet penetration data are presented to assess the maximum depth and reproducibility of the penetration. Data are presented for full scale tests, including all FTS components, and conducted with nominal 19 inch diameter, spherical tanks.
The solution of the optimization problem of small energy complexes using linear programming methods
NASA Astrophysics Data System (ADS)
Ivanin, O. A.; Director, L. B.
2016-11-01
Linear programming methods were used for solving the optimization problem of schemes and operation modes of distributed generation energy complexes. Applicability conditions of simplex method, applied to energy complexes, including installations of renewable energy (solar, wind), diesel-generators and energy storage, considered. The analysis of decomposition algorithms for various schemes of energy complexes was made. The results of optimization calculations for energy complexes, operated autonomously and as a part of distribution grid, are presented.
A linear programming approach to characterizing norm bounded uncertainty from experimental data
NASA Technical Reports Server (NTRS)
Scheid, R. E.; Bayard, D. S.; Yam, Y.
1991-01-01
The linear programming spectral overbounding and factorization (LPSOF) algorithm, an algorithm for finding a minimum phase transfer function of specified order whose magnitude tightly overbounds a specified nonparametric function of frequency, is introduced. This method has direct application to transforming nonparametric uncertainty bounds (available from system identification experiments) into parametric representations required for modern robust control design software (i.e., a minimum-phase transfer function multiplied by a norm-bounded perturbation).
Stable computation of search directions for near-degenerate linear programming problems
Hough, P.D.
1997-03-01
In this paper, we examine stability issues that arise when computing search directions ({delta}x, {delta}y, {delta} s) for a primal-dual path-following interior point method for linear programming. The dual step {delta}y can be obtained by solving a weighted least-squares problem for which the weight matrix becomes extremely il conditioned near the boundary of the feasible region. Hough and Vavisis proposed using a type of complete orthogonal decomposition (the COD algorithm) to solve such a problem and presented stability results. The work presented here addresses the stable computation of the primal step {delta}x and the change in the dual slacks {delta}s. These directions can be obtained in a straight-forward manner, but near-degeneracy in the linear programming instance introduces ill-conditioning which can cause numerical problems in this approach. Therefore, we propose a new method of computing {delta}x and {delta}s. More specifically, this paper describes and orthogonal projection algorithm that extends the COD method. Unlike other algorithms, this method is stable for interior point methods without assuming nondegeneracy in the linear programming instance. Thus, it is more general than other algorithms on near-degenerate problems.
Asumptotic behavior of trajectories associated with the exponential penalty in linear programming
Cominetti, R.
1994-12-31
We consider the exponential penality function f(x, r) = c{prime} x + r {Sigma} exp[A{sub i}x - b{sub i}/r] associated with a linear program of the form min {l_brace}c{prime}x : Ax {<=} b{r_brace}. We show that for r close to 0, the unique unconstrained minimizer x(r) of f({center_dot}, r) admits an symptotic expansion of the form x(r) = x* + rd* + {eta}(r) where x* is a particular optimal solution of the linear program and the error term {eta}(r) has an exponentially fast decay. Using duality theory we exhibit an associated dual trajectory {Lambda}(r) which converges exponentially fast to a particular dual optimal solution. Then we study the asymptotic behavior of the solutions of the steepest descent differential equation u(t) = - {del}{sub x}f(u(t), r(t)), u(t{sub 0}) = u{sub 0}; showing that, under suitable conditions on the rate of decrease of r(t), u(t) converges towards an optimal solution {bar u} of the linear program. In particular, if r(t) decays slowly we find that {bar u} = x*.
Katz, Josh M; Winter, Carl K; Buttrey, Samuel E; Fadel, James G
2012-03-01
Western and guideline based diets were compared to determine if dietary improvements resulting from following dietary guidelines reduce acrylamide intake. Acrylamide forms in heat treated foods and is a human neurotoxin and animal carcinogen. Acrylamide intake from the Western diet was estimated with probabilistic techniques using teenage (13-19 years) National Health and Nutrition Examination Survey (NHANES) food consumption estimates combined with FDA data on the levels of acrylamide in a large number of foods. Guideline based diets were derived from NHANES data using linear programming techniques to comport to recommendations from the Dietary Guidelines for Americans, 2005. Whereas the guideline based diets were more properly balanced and rich in consumption of fruits, vegetables, and other dietary components than the Western diets, acrylamide intake (mean±SE) was significantly greater (P<0.001) from consumption of the guideline based diets (0.508±0.003 μg/kg/day) than from consumption of the Western diets (0.441±0.003 μg/kg/day). Guideline based diets contained less acrylamide contributed by French fries and potato chips than Western diets. Overall acrylamide intake, however, was higher in guideline based diets as a result of more frequent breakfast cereal intake. This is believed to be the first example of a risk assessment that combines probabilistic techniques with linear programming and results demonstrate that linear programming techniques can be used to model specific diets for the assessment of toxicological and nutritional dietary components.
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
SLFP: A stochastic linear fractional programming approach for sustainable waste management
Zhu, H.; Huang, G.H.
2011-12-15
Highlights: > A new fractional programming (SLFP) method is developed for waste management. > SLFP can solve ratio optimization problems associated with random inputs. > A case study of waste flow allocation demonstrates its applicability. > SLFP helps compare objectives of two aspects and reflect system efficiency. > This study supports in-depth analysis of tradeoffs among multiple system criteria. - Abstract: A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk.
A new gradient-based neural network for solving linear and quadratic programming problems.
Leung, Y; Chen, K Z; Jiao, Y C; Gao, X B; Leung, K S
2001-01-01
A new gradient-based neural network is constructed on the basis of the duality theory, optimization theory, convex analysis theory, Lyapunov stability theory, and LaSalle invariance principle to solve linear and quadratic programming problems. In particular, a new function F(x, y) is introduced into the energy function E(x, y) such that the function E(x, y) is convex and differentiable, and the resulting network is more efficient. This network involves all the relevant necessary and sufficient optimality conditions for convex quadratic programming problems. For linear programming and quadratic programming (QP) problems with unique and infinite number of solutions, we have proven strictly that for any initial point, every trajectory of the neural network converges to an optimal solution of the QP and its dual problem. The proposed network is different from the existing networks which use the penalty method or Lagrange method, and the inequality constraints are properly handled. The simulation results show that the proposed neural network is feasible and efficient.
Automated design and optimization of flexible booster autopilots via linear programming, volume 1
NASA Technical Reports Server (NTRS)
Hauser, F. D.
1972-01-01
A nonlinear programming technique was developed for the automated design and optimization of autopilots for large flexible launch vehicles. This technique, which resulted in the COEBRA program, uses the iterative application of linear programming. The method deals directly with the three main requirements of booster autopilot design: to provide (1) good response to guidance commands; (2) response to external disturbances (e.g. wind) to minimize structural bending moment loads and trajectory dispersions; and (3) stability with specified tolerances on the vehicle and flight control system parameters. The method is applicable to very high order systems (30th and greater per flight condition). Examples are provided that demonstrate the successful application of the employed algorithm to the design of autopilots for both single and multiple flight conditions.
Zörnig, Peter
2015-08-01
We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.
A strictly improving linear programming alorithm based on a series of Phase 1 problems
Leichner, S.A.; Dantzig, G.B.; Davis, J.W.
1992-04-01
When used on degenerate problems, the simplex method often takes a number of degenerate steps at a particular vertex before moving to the next. In theory (although rarely in practice), the simplex method can actually cycle at such a degenerate point. Instead of trying to modify the simplex method to avoid degenerate steps, we have developed a new linear programming algorithm that is completely impervious to degeneracy. This new method solves the Phase II problem of finding an optimal solution by solving a series of Phase I feasibility problems. Strict improvement is attained at each iteration in the Phase I algorithm, and the Phase II sequence of feasibility problems has linear convergence in the number of Phase I problems. When tested on the 30 smallest NETLIB linear programming test problems, the computational results for the new Phase II algorithm were over 15% faster than the simplex method; on some problems, it was almost two times faster, and on one problem it was four times faster.
Automatic tracking of linear features on SPOT images using dynamic programming
NASA Astrophysics Data System (ADS)
Bonnefon, Regis; Dherete, Pierre; Desachy, Jacky
1999-12-01
Detection of geographic elements on images is important in the perspective of adding new elements in geographic databases which are sometimes old and so, some elements are not represented. Our goal is to look for linear features like roads, rivers or railways on SPOT images with a resolution of 10 meters. Several methods allow this detection to be realized and may be classified in three categories: (1) Detection operators: the best known is the DUDA Road Operator which determine the belonging degree of a pixel to a linear feature from several 5 X 5 filters. Results are often unsatisfactory. It exists too the Infinite Size Exponential Filter (ISEF), which is a derivative filter and allows edge, valley or roof profile to be found on the image. It can be utilized as an additional information for others methods. (2) Structural tracking: from a starting point, an analysis in several directions is performed to determine the best next point (features may be: homogeneity of radiometry, contrast with environment, ...). From this new point and with an updated direction, the process goes on. Difficulty of these methods is the consideration of occlusions (bridges, tunnels, dense vegetation, ...). (3) Dynamic programming: F* algorithm and snakes are the best known. They allow a path with a minimal cost to be found in a search window. Occlusions are not a problem but two points or more near the searched linear feature must be known to define the window. The method described below is a mixture of structural tracking and dynamic programming (F* algorithm).
Wavelet-linear genetic programming: A new approach for modeling monthly streamflow
NASA Astrophysics Data System (ADS)
Ravansalar, Masoud; Rajaee, Taher; Kisi, Ozgur
2017-06-01
The streamflows are important and effective factors in stream ecosystems and its accurate prediction is an essential and important issue in water resources and environmental engineering systems. A hybrid wavelet-linear genetic programming (WLGP) model, which includes a discrete wavelet transform (DWT) and a linear genetic programming (LGP) to predict the monthly streamflow (Q) in two gauging stations, Pataveh and Shahmokhtar, on the Beshar River at the Yasuj, Iran were used in this study. In the proposed WLGP model, the wavelet analysis was linked to the LGP model where the original time series of streamflow were decomposed into the sub-time series comprising wavelet coefficients. The results were compared with the single LGP, artificial neural network (ANN), a hybrid wavelet-ANN (WANN) and Multi Linear Regression (MLR) models. The comparisons were done by some of the commonly utilized relevant physical statistics. The Nash coefficients (E) were found as 0.877 and 0.817 for the WLGP model, for the Pataveh and Shahmokhtar stations, respectively. The comparison of the results showed that the WLGP model could significantly increase the streamflow prediction accuracy in both stations. Since, the results demonstrate a closer approximation of the peak streamflow values by the WLGP model, this model could be utilized for the simulation of cumulative streamflow data prediction in one month ahead.
Optimisation of substrate blends in anaerobic co-digestion using adaptive linear programming.
García-Gen, Santiago; Rodríguez, Jorge; Lema, Juan M
2014-12-01
Anaerobic co-digestion of multiple substrates has the potential to enhance biogas productivity by making use of the complementary characteristics of different substrates. A blending strategy based on a linear programming optimisation method is proposed aiming at maximising COD conversion into methane, but simultaneously maintaining a digestate and biogas quality. The method incorporates experimental and heuristic information to define the objective function and the linear restrictions. The active constraints are continuously adapted (by relaxing the restriction boundaries) such that further optimisations in terms of methane productivity can be achieved. The feasibility of the blends calculated with this methodology was previously tested and accurately predicted with an ADM1-based co-digestion model. This was validated in a continuously operated pilot plant, treating for several months different mixtures of glycerine, gelatine and pig manure at organic loading rates from 1.50 to 4.93 gCOD/Ld and hydraulic retention times between 32 and 40 days at mesophilic conditions.
Modified Cholesky factorizations in interior-point algorithms for linear programming.
Wright, S.; Mathematics and Computer Science
1999-01-01
We investigate a modified Cholesky algorithm typical of those used in most interior-point codes for linear programming. Cholesky-based interior-point codes are popular for three reasons: their implementation requires only minimal changes to standard sparse Cholesky algorithms (allowing us to take full advantage of software written by specialists in that area); they tend to be more efficient than competing approaches that use alternative factorizations; and they perform robustly on most practical problems, yielding good interior-point steps even when the coefficient matrix of the main linear system to be solved for the step components is ill conditioned. We investigate this surprisingly robust performance by using analytical tools from matrix perturbation theory and error analysis, illustrating our results with computational experiments. Finally, we point out the potential limitations of this approach.
On Implicit Active Constraints in Linear Semi-Infinite Programs with Unbounded Coefficients
Goberna, M. A.; Lancho, G. A.; Todorov, M. I.; Vera de Serio, V. N.
2011-04-15
The concept of implicit active constraints at a given point provides useful local information about the solution set of linear semi-infinite systems and about the optimal set in linear semi-infinite programming provided the set of gradient vectors of the constraints is bounded, commonly under the additional assumption that there exists some strong Slater point. This paper shows that the mentioned global boundedness condition can be replaced by a weaker local condition (LUB) based on locally active constraints (active in a ball of small radius whose center is some nominal point), providing geometric information about the solution set and Karush-Kuhn-Tucker type conditions for the optimal solution to be strongly unique. The maintaining of the latter property under sufficiently small perturbations of all the data is also analyzed, giving a characterization of its stability with respect to these perturbations in terms of the strong Slater condition, the so-called Extended-Nuernberger condition, and the LUB condition.
Frega, Romeo; Lanfranco, Jose Guerra; De Greve, Sam; Bernardini, Sara; Geniez, Perrine; Grede, Nils; Bloem, Martin; de Pee, Saskia
2012-09-01
Linear programming has been used for analyzing children's complementary feeding diets, for optimizing nutrient adequacy of dietary recommendations for a population, and for estimating the economic value of fortified foods. To describe and apply a linear programming tool ("Cost of the Diet") with data from Mozambique to determine what could be cost-effective fortification strategies. Based on locally assessed average household dietary needs, seasonal market prices of available food products, and food composition data, the tool estimates the lowest-cost diet that meets almost all nutrient needs. The results were compared with expenditure data from Mozambique to establish the affordability of this diet by quintiles of the population. Three different applications were illustrated: identifying likely "limiting nutrients," comparing cost effectiveness of different fortification interventions at the household level, and assessing economic access to nutritious foods. The analysis identified iron, vitamin B2, and pantothenic acid as "limiting nutrients." Under the Mozambique conditions, vegetable oil was estimated as a more cost-efficient vehicle for vitamin A fortification than sugar; maize flour may also be an effective vehicle to provide other constraining micronutrients. Multiple micronutrient fortification of maize flour could reduce the cost of the "lowest-cost nutritious diet" by 18%, but even this diet can be afforded by only 20% of the Mozambican population. Within the context of fortification, linear programming can be a useful tool for identifying likely nutrient inadequacies, for comparing fortification options in terms of cost effectiveness, and for illustrating the potential benefit of fortification for improving household access to a nutritious diet.
NASA Astrophysics Data System (ADS)
Han, Jeongwoo
Decision-making under uncertainty is particularly challenging in the case of multi-disciplinary, multilevel system optimization problems. Subsystem interactions cause strong couplings, which may be amplified by uncertainty. Thus, effective coordination strategies can be particularly beneficial. Analytical target cascading (ATC) is a deterministic optimization method for multilevel hierarchical systems, which was recently extended to probabilistic design. Solving the optimization problem requires propagation of uncertainty, namely, evaluating or estimating output distributions given random input variables. This uncertainty propagation can be a challenging and computationally expensive task for nonlinear functions, but is relatively easy for linear ones. In order to overcome the difficulty in uncertainty propagation, this dissertation introduces the use of Sequential Linear Programming (SLP) for solving ATC problems, and specifically extends this use for Probabilistic Analytical Target Cascading (PATC) problems. A new coordination strategy is proposed for ATC and PATC, which coordinates linking variables among subproblems using sequential lineralizations. By linearizing and solving a hierarchy of problems successively, the algorithm takes advantage of the simplicity and ease of uncertainty propagation for a linear system. Linearity of subproblems is maintained using an Linfinity norm to measure deviations between targets and responses. A subproblem suspension strategy is used to temporarily suspend inclusion of subproblems that do not need significant redesign, based on trust region and target value step size. A global convergence proof of the SLP-based coordination strategy is derived. Experiments with test problems show that, relative to standard ATC and PATC coordination, the number of subproblem evaluations is reduced considerably while maintaining accuracy. To demonstrate the applicability of the proposed strategies to problems of practical complexity, a hybrid
Evaluating the impact of AND/OR search on 0-1 integer linear programming.
Marinescu, R; Dechter, R
2010-01-01
AND/OR search spaces accommodate advanced algorithmic schemes for graphical models which can exploit the structure of the model. We extend and evaluate the depth-first and best-first AND/OR search algorithms to solving 0-1 Integer Linear Programs (0-1 ILP) within this framework. We also include a class of dynamic variable ordering heuristics while exploring an AND/OR search tree for 0-1 ILPs. We demonstrate the effectiveness of these search algorithms on a variety of benchmarks, including real-world combinatorial auctions, random uncapacitated warehouse location problems and MAX-SAT instances.
Evaluating the impact of AND/OR search on 0-1 integer linear programming
Dechter, R.
2010-01-01
AND/OR search spaces accommodate advanced algorithmic schemes for graphical models which can exploit the structure of the model. We extend and evaluate the depth-first and best-first AND/OR search algorithms to solving 0-1 Integer Linear Programs (0-1 ILP) within this framework. We also include a class of dynamic variable ordering heuristics while exploring an AND/OR search tree for 0-1 ILPs. We demonstrate the effectiveness of these search algorithms on a variety of benchmarks, including real-world combinatorial auctions, random uncapacitated warehouse location problems and MAX-SAT instances. PMID:21052484
Huang, Hao; Zhang, Guifu; Zhao, Kun; ...
2016-10-20
A hybrid method of combining linear programming (LP) and physical constraints is developed to estimate specific differential phase (KDP) and to improve rain estimation. Moreover, the hybrid KDP estimator and the existing estimators of LP, least squares fitting, and a self-consistent relation of polarimetric radar variables are evaluated and compared using simulated data. Our simulation results indicate the new estimator's superiority, particularly in regions where backscattering phase (δhv) dominates. Further, a quantitative comparison between auto-weather-station rain-gauge observations and KDP-based radar rain estimates for a Meiyu event also demonstrate the superiority of the hybrid KDP estimator over existing methods.
Dufour, F.; Prieto-Rumeau, T.
2016-08-15
We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.
NASA Technical Reports Server (NTRS)
Fleming, P.
1983-01-01
A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a nonlinear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer. One concerns helicopter longitudinal dynamics and the other the flight dynamics of an aerodynamically unstable aircraft.
A Linear programming formulation for routing asynchronous power systems of the Digital Grid
NASA Astrophysics Data System (ADS)
Shibano, Kyohei; Kontani, Reo; Hirai, Hiroshi; Hasegawa, Mikio; Aihara, Kazuyuki; Taoka, Hisao; McQuilkin, David; Abe, Rikiya
2014-10-01
In recent years, practical research related to distributed power generation and networked distribution grids has been increasing. This research uses a relatively abstract model for the cost reduction in the Digital Grid Power Network. In the Digital Grid, the traditional wide-area synchronous grid is divided into smaller segmented grids which are connected asynchronously. In this paper, we demonstrate how to formulate the minimized cost of power generation by using linear programming methods, while considering the cost of electric transmission and distribution and using asynchronous power interchange among separate grids.
Sun Wei; Huang, Guo H.; Lv Ying; Li Gongchen
2012-06-15
Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate
Zheng, Yuanjie; Hunter, Allan A; Wu, Jue; Wang, Hongzhi; Gao, Jianbin; Maguire, Maureen G; Gee, James C
2011-01-01
In this paper, we address the problem of landmark matching based retinal image registration. Two major contributions render our registration algorithm distinguished from many previous methods. One is a novel landmark-matching formulation which enables not only a joint estimation of the correspondences and transformation model but also the optimization with linear programming. The other contribution lies in the introduction of a reinforced self-similarities descriptor in characterizing the local appearance of landmarks. Theoretical analysis and a series of preliminary experimental results show both the effectiveness of our optimization scheme and the high differentiating ability of our features.
Observations on the linear programming formulation of the single reflector design problem.
Canavesi, Cristina; Cassarly, William J; Rolland, Jannick P
2012-02-13
We implemented the linear programming approach proposed by Oliker and by Wang to solve the single reflector problem for a point source and a far-field target. The algorithm was shown to produce solutions that aim the input rays at the intersections between neighboring reflectors. This feature makes it possible to obtain the same reflector with a low number of rays - of the order of the number of targets - as with a high number of rays, greatly reducing the computation complexity of the problem.
An improved multiple linear regression and data analysis computer program package
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1972-01-01
NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.
NASA Astrophysics Data System (ADS)
Bicocchi, R.; Melacci, P. T.; Bucciarelli, T.
1984-06-01
The design of a sidelobe-reduction network for coherent high-resolution radars using Barker codes and the results of an analytical investigation of its performance are presented and illustrated graphically. Compression is achieved by a matched filter followed by a weighting network designed using linear programming to minimize the implementation to adapt to different operating modes. It is found that the network gives significant increases in sensitivity and resolution while limiting mismatching losses to about 0.2 dB. A typical digital implementation requires only 66 devices for 10-bit input and sampling rate 150 nsec.
A FORTRAN program for the analysis of linear continuous and sample-data systems
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1976-01-01
A FORTRAN digital computer program which performs the general analysis of linearized control systems is described. State variable techniques are used to analyze continuous, discrete, and sampled data systems. Analysis options include the calculation of system eigenvalues, transfer functions, root loci, root contours, frequency responses, power spectra, and transient responses for open- and closed-loop systems. A flexible data input format allows the user to define systems in a variety of representations. Data may be entered by inputing explicit data matrices or matrices constructed in user written subroutines, by specifying transfer function block diagrams, or by using a combination of these methods.
NASA Astrophysics Data System (ADS)
Veera Raghavan, Srikant
Semidefinite programming (SDP) is a relatively modern subfield of convex optimization which has been applied to many problems in the reduced density matrix (RDM) formulation of electronic structure. SDPs deal with minimization (or maximization) of linear objective functions of matrices, subject to linear equality and inequality constraints and positivity constraints on the eigenvalues of the matrices. Energies of chemical systems can be expressed as linear functions of RDMs, whose eigenvalues are electron occupation numbers or their products which are expected to be non-negative. Therefore, it is perhaps not surprising that SDPs fit rather naturally in the RDM framework in electronic structure. This dissertation presents SDP applications to two electronic structure theories. The first part of this dissertation (chaps. 1-3) reformulates Hartree-Fock theory in terms of SDPs in order to obtain upper and lower bounds to global Hartree-Fock energies. The upper and lower bounds on the energies are frequently equal thereby providing a first-ever certificate of global optimality for many Hartree-Fock solutions. The SDP approach provides an alternative to the conventional self-consistent field method of obtaining Hartree-Fock energies and densities with the added benefit of global optimality or a rigorous lower bound. Applications are made to the potential energy curves of (H 4)2, N2, C2, CN, Cr2 and NO2. Energies of the first-row transition elements are also calculated. In chapter 4, the effect of using the Hartree-Fock solutions that we calculate as references for coupled cluster singles doubles calculations is presented for some of the above molecules. The second part of this dissertation (chap. 5) presents a SDP approach to electronic structure methods which scale linearly with system size. Linear scaling electronic structure methods are essential in order to make calculations on large systems feasible. Among these methods the so-called density matrix based ones seek to
Consideration in selecting crops for the human-rated life support system: a linear programming model
NASA Astrophysics Data System (ADS)
Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.
A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.
Consideration in selecting crops for the human-rated life support system: a Linear Programming model
NASA Technical Reports Server (NTRS)
Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)
1996-01-01
A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.
Consideration in selecting crops for the human-rated life support system: a Linear Programming model
NASA Technical Reports Server (NTRS)
Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)
1996-01-01
A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.
Murray, W.; Saunders, M.A.
1990-03-01
During the last twelve months, research has concentrated on barrier- function methods for linear programming (LP) and quadratic programming (QP). Some ground-work for the application of barrier methods to nonlinearly constrained problems has also begun. In our previous progress report we drew attention to the difficulty of developing robust implementations of barrier methods for LP. We have continued to refine both the primal algorithm and the dual algorithm. We still do not claim that the barrier algorithms are as robust as the simplex method; however, the dual algorithm has solved all the problems in our extensive test set. We have also gained some experience with using the algorithms to solve aircrew scheduling problems.
A novel approach based on preference-based index for interval bilevel linear programming problem.
Ren, Aihong; Wang, Yuping; Xue, Xingsi
2017-01-01
This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrained programming. With the consideration of different preferences of different decision makers, the concept of the preference level that the interval objective function is preferred to a target interval is defined based on the preference-based index. Then a preference-based deterministic bilevel programming problem is constructed in terms of the preference level and the order relation [Formula: see text]. Furthermore, the concept of a preference δ-optimal solution is given. Subsequently, the constructed deterministic nonlinear bilevel problem is solved with the help of estimation of distribution algorithm. Finally, several numerical examples are provided to demonstrate the effectiveness of the proposed approach.
Djukanovic, M.; Babic, B.; Milosevic, B.; Sobajic, D.J.; Pao, Y.H. |
1996-05-01
In this paper the blending/transloading facilities are modeled using an interactive fuzzy linear programming (FLP), in order to allow the decision-maker to solve the problem of uncertainty of input information within the fuel scheduling optimization. An interactive decision-making process is formulated in which decision-maker can learn to recognize good solutions by considering all possibilities of fuzziness. The application of the fuzzy formulation is accompanied by a careful examination of the definition of fuzziness, appropriateness of the membership function and interpretation of results. The proposed concept provides a decision support system with integration-oriented features, whereby the decision-maker can learn to recognize the relative importance of factors in the specific domain of optimal fuel scheduling (OFS) problem. The formulation of a fuzzy linear programming problem to obtain a reasonable nonfuzzy solution under consideration of the ambiguity of parameters, represented by fuzzy numbers, is introduced. An additional advantage of the FLP formulation is its ability to deal with multi-objective problems.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
Averaging and Linear Programming in Some Singularly Perturbed Problems of Optimal Control
Gaitsgory, Vladimir; Rossomakhine, Sergey
2015-04-15
The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem of optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.
Briend, André; Darmon, Nicole; Ferguson, Elaine; Erhardt, Juergen G
2003-01-01
During the complementary feeding period, children require a nutrient-dense diet to meet their high nutritional requirements. International interest exists in the promotion of affordable, nutritionally adequate complementary feeding diets based on locally available foods. In this context, two questions are often asked: 1) is it possible to design a diet suitable for the complementary feeding period using locally available food? and 2) if this is possible, what is the lowest-cost, nutritionally adequate diet available? These questions are usually answered using a "trial and error" approach. However, a more efficient and rigorous technique, based on linear programming, is also available. It has become more readily accessible with the advent of powerful personal computers. The purpose of this review, therefore, is to inform pediatricians and public health professionals about this tool. In this review, the basic principles of linear programming are briefly examined and some practical applications for formulating sound food-based nutritional recommendations in different contexts are explained. This review should facilitate the adoption of this technique by international health professionals.
Chen, Ruoying; Zhang, Zhiwang; Wu, Di; Zhang, Peng; Zhang, Xinyang; Wang, Yong; Shi, Yong
2011-01-21
Protein-protein interactions are fundamentally important in many biological processes and it is in pressing need to understand the principles of protein-protein interactions. Mutagenesis studies have found that only a small fraction of surface residues, known as hot spots, are responsible for the physical binding in protein complexes. However, revealing hot spots by mutagenesis experiments are usually time consuming and expensive. In order to complement the experimental efforts, we propose a new computational approach in this paper to predict hot spots. Our method, Rough Set-based Multiple Criteria Linear Programming (RS-MCLP), integrates rough sets theory and multiple criteria linear programming to choose dominant features and computationally predict hot spots. Our approach is benchmarked by a dataset of 904 alanine-mutated residues and the results show that our RS-MCLP method performs better than other methods, e.g., MCLP, Decision Tree, Bayes Net, and the existing HotSprint database. In addition, we reveal several biological insights based on our analysis. We find that four features (the change of accessible surface area, percentage of the change of accessible surface area, size of a residue, and atomic contacts) are critical in predicting hot spots. Furthermore, we find that three residues (Tyr, Trp, and Phe) are abundant in hot spots through analyzing the distribution of amino acids.
Solving and analyzing side-chain positioning problems using linear and integer programming.
Kingsford, Carleton L; Chazelle, Bernard; Singh, Mona
2005-04-01
Side-chain positioning is a central component of homology modeling and protein design. In a common formulation of the problem, the backbone is fixed, side-chain conformations come from a rotamer library, and a pairwise energy function is optimized. It is NP-complete to find even a reasonable approximate solution to this problem. We seek to put this hardness result into practical context. We present an integer linear programming (ILP) formulation of side-chain positioning that allows us to tackle large problem sizes. We relax the integrality constraint to give a polynomial-time linear programming (LP) heuristic. We apply LP to position side chains on native and homologous backbones and to choose side chains for protein design. Surprisingly, when positioning side chains on native and homologous backbones, optimal solutions using a simple, biologically relevant energy function can usually be found using LP. On the other hand, the design problem often cannot be solved using LP directly; however, optimal solutions for large instances can still be found using the computationally more expensive ILP procedure. While different energy functions also affect the difficulty of the problem, the LP/ILP approach is able to find optimal solutions. Our analysis is the first large-scale demonstration that LP-based approaches are highly effective in finding optimal (and successive near-optimal) solutions for the side-chain positioning problem.
Glocker, Ben; Paragios, Nikos; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir
2007-01-01
In this paper we propose a novel non-rigid volume registration based on discrete labeling and linear programming. The proposed framework reformulates registration as a minimal path extraction in a weighted graph. The space of solutions is represented using a set of a labels which are assigned to predefined displacements. The graph topology corresponds to a superimposed regular grid onto the volume. Links between neighborhood control points introduce smoothness, while links between the graph nodes and the labels (end-nodes) measure the cost induced to the objective function through the selection of a particular deformation for a given control point once projected to the entire volume domain, Higher order polynomials are used to express the volume deformation from the ones of the control points. Efficient linear programming that can guarantee the optimal solution up to (a user-defined) bound is considered to recover the optimal registration parameters. Therefore, the method is gradient free, can encode various similarity metrics (simple changes on the graph construction), can guarantee a globally sub-optimal solution and is computational tractable. Experimental validation using simulated data with known deformation, as well as manually segmented data demonstrate the extreme potentials of our approach.
Uncovering signal transduction networks from high-throughput data by integer linear programming.
Zhao, Xing-Ming; Wang, Rui-Sheng; Chen, Luonan; Aihara, Kazuyuki
2008-05-01
Signal transduction is an important process that transmits signals from the outside of a cell to the inside to mediate sophisticated biological responses. Effective computational models to unravel such a process by taking advantage of high-throughput genomic and proteomic data are needed to understand the essential mechanisms underlying the signaling pathways. In this article, we propose a novel method for uncovering signal transduction networks (STNs) by integrating protein interaction with gene expression data. Specifically, we formulate STN identification problem as an integer linear programming (ILP) model, which can be actually solved by a relaxed linear programming algorithm and is flexible for handling various prior information without any restriction on the network structures. The numerical results on yeast MAPK signaling pathways demonstrate that the proposed ILP model is able to uncover STNs or pathways in an efficient and accurate manner. In particular, the prediction results are found to be in high agreement with current biological knowledge and available information in literature. In addition, the proposed model is simple to be interpreted and easy to be implemented even for a large-scale system.
Fan, Yurui; Huang, Guohe; Veawab, Amornvadee
2012-01-01
In this study, a generalized fuzzy linear programming (GFLP) method was developed to deal with uncertainties expressed as fuzzy sets that exist in the constraints and objective function. A stepwise interactive algorithm (SIA) was advanced to solve GFLP model and generate solutions expressed as fuzzy sets. To demonstrate its application, the developed GFLP method was applied to a regional sulfur dioxide (SO2) control planning model to identify effective SO2 mitigation polices with a minimized system performance cost under uncertainty. The results were obtained to represent the amount of SO2 allocated to different control measures from different sources. Compared with the conventional interval-parameter linear programming (ILP) approach, the solutions obtained through GFLP were expressed as fuzzy sets, which can provide intervals for the decision variables and objective function, as well as related possibilities. Therefore, the decision makers can make a tradeoff between model stability and the plausibility based on solutions obtained through GFLP and then identify desired policies for SO2-emission control under uncertainty.
A wavelet-linear genetic programming model for sodium (Na+) concentration forecasting in rivers
NASA Astrophysics Data System (ADS)
Ravansalar, Masoud; Rajaee, Taher; Zounemat-Kermani, Mohammad
2016-06-01
The prediction of water quality parameters in water resources such as rivers is of importance issue that needs to be considered in better management of irrigation systems and water supplies. In this respect, this study proposes a new hybrid wavelet-linear genetic programming (WLGP) model for prediction of monthly sodium (Na+) concentration. The 23-year monthly data used in this study, were measured from the Asi River at the Demirköprü gauging station located in Antakya, Turkey. At first, the measured discharge (Q) and Na+ datasets are initially decomposed into several sub-series using discrete wavelet transform (DWT). Then, these new sub-series are imposed to the ad hoc linear genetic programming (LGP) model as input patterns to predict monthly Na+ one month ahead. The results of the new proposed WLGP model are compared with LGP, WANN and ANN models. Comparison of the models represents the superiority of the WLGP model over the LGP, WANN and ANN models such that the Nash-Sutcliffe efficiencies (NSE) for WLGP, WANN, LGP and ANN models were 0.984, 0.904, 0.484 and 0.351, respectively. The achieved results even points to the superiority of the single LGP model than the ANN model. Continuously, the capability of the proposed WLGP model in terms of prediction of the Na+ peak values is also presented in this study.
Radial-interval linear programming for environmental management under varied protection levels.
Tan, Qian; Huang, Guo H; Cai, Yanpeng
2010-09-01
In this study, a radial-interval linear programming (RILP) approach was developed for supporting waste management under uncertainty. RILP improved interval-parameter linear programming and its extensions in terms of input reasonableness and output robustness. From the perspective of modeling inputs, RILP could tackle highly uncertain information at the bounds of interval parameters through introducing the concept of fluctuation radius. Regarding modeling outputs, RILP allows controlling the degree of conservatism associated with interval solutions and is capable of quantifying corresponding system risks and benefits. This could facilitate the reflection of interactive relationship between the feasibility of system and the uncertainty of parameters. A computationally tractable algorithm was provided to solve RILP. Then, a long-term waste management case was studied to demonstrate the applicability of the developed methodology. A series of interval solutions obtained under varied protection levels were compared, helping gain insights into the interactions among protection level, violation risk, and system cost. Potential waste allocation alternatives could be generated from these interval solutions, which would be screened in real-world practices according to various projected system conditions as well as decision-makers' willingness to pay and risk tolerance levels. Sensitivity analysis further revealed the significant impact of fluctuation radii of interval parameters on the system. The results indicated that RILP is applicable to a wide spectrum of environmental management problems that are subject to compound uncertainties.
Matthew J. Tonkin; Claire R. Tiedeman; D. Matthew Ely; and Mary C. Hill
2007-08-16
The OPR-PPR program calculates the Observation-Prediction (OPR) and Parameter-Prediction (PPR) statistics that can be used to evaluate the relative importance of various kinds of data to simulated predictions. The data considered fall into three categories: (1) existing observations, (2) potential observations, and (3) potential information about parameters. The first two are addressed by the OPR statistic; the third is addressed by the PPR statistic. The statistics are based on linear theory and measure the leverage of the data, which depends on the location, the type, and possibly the time of the data being considered. For example, in a ground-water system the type of data might be a head measurement at a particular location and time. As a measure of leverage, the statistics do not take into account the value of the measurement. As linear measures, the OPR and PPR statistics require minimal computational effort once sensitivities have been calculated. Sensitivities need to be calculated for only one set of parameter values; commonly these are the values estimated through model calibration. OPR-PPR can calculate the OPR and PPR statistics for any mathematical model that produces the necessary OPR-PPR input files. In this report, OPR-PPR capabilities are presented in the context of using the ground-water model MODFLOW-2000 and the universal inverse program UCODE_2005. The method used to calculate the OPR and PPR statistics is based on the linear equation for prediction standard deviation. Using sensitivities and other information, OPR-PPR calculates (a) the percent increase in the prediction standard deviation that results when one or more existing observations are omitted from the calibration data set; (b) the percent decrease in the prediction standard deviation that results when one or more potential observations are added to the calibration data set; or (c) the percent decrease in the prediction standard deviation that results when potential information on one
Tonkin, Matthew J.; Tiedeman, Claire R.; Ely, D. Matthew; Hill, Mary C.
2007-01-01
The OPR-PPR program calculates the Observation-Prediction (OPR) and Parameter-Prediction (PPR) statistics that can be used to evaluate the relative importance of various kinds of data to simulated predictions. The data considered fall into three categories: (1) existing observations, (2) potential observations, and (3) potential information about parameters. The first two are addressed by the OPR statistic; the third is addressed by the PPR statistic. The statistics are based on linear theory and measure the leverage of the data, which depends on the location, the type, and possibly the time of the data being considered. For example, in a ground-water system the type of data might be a head measurement at a particular location and time. As a measure of leverage, the statistics do not take into account the value of the measurement. As linear measures, the OPR and PPR statistics require minimal computational effort once sensitivities have been calculated. Sensitivities need to be calculated for only one set of parameter values; commonly these are the values estimated through model calibration. OPR-PPR can calculate the OPR and PPR statistics for any mathematical model that produces the necessary OPR-PPR input files. In this report, OPR-PPR capabilities are presented in the context of using the ground-water model MODFLOW-2000 and the universal inverse program UCODE_2005. The method used to calculate the OPR and PPR statistics is based on the linear equation for prediction standard deviation. Using sensitivities and other information, OPR-PPR calculates (a) the percent increase in the prediction standard deviation that results when one or more existing observations are omitted from the calibration data set; (b) the percent decrease in the prediction standard deviation that results when one or more potential observations are added to the calibration data set; or (c) the percent decrease in the prediction standard deviation that results when potential information on one
ERIC Educational Resources Information Center
Nakhanu, Shikuku Beatrice; Musasia, Amadalo Maurice
2015-01-01
The topic Linear Programming is included in the compulsory Kenyan secondary school mathematics curriculum at form four. The topic provides skills for determining best outcomes in a given mathematical model involving some linear relationship. This technique has found application in business, economics as well as various engineering fields. Yet many…
Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen
2012-06-01
To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.
Linear ground-water flow, flood-wave response program for programmable calculators
Kernodle, John Michael
1978-01-01
Two programs are documented which solve a discretized analytical equation derived to determine head changes at a point in a one-dimensional ground-water flow system. The programs, written for programmable calculators, are in widely divergent but commonly encountered languages and serve to illustrate the adaptability of the linear model to use in situations where access to true computers is not possible or economical. The analytical method assumes a semi-infinite aquifer which is uniform in thickness and hydrologic characteristics, bounded on one side by an impermeable barrier and on the other parallel side by a fully penetrating stream in complete hydraulic connection with the aquifer. Ground-water heads may be calculated for points along a line which is perpendicular to the impermeable barrie and the fully penetrating stream. Head changes at the observation point are dependent on (1) the distance between that point and the impermeable barrier, (2) the distance between the line of stress (the stream) and the impermeable barrier, (3) aquifer diffusivity, (4) time, and (5) head changes along the line of stress. The primary application of the programs is to determine aquifer diffusivity by the flood-wave response technique. (Woodard-USGS)
NASA Technical Reports Server (NTRS)
Young, Katherine C.; Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
This project has two objectives. The first is to determine whether linear programming techniques can improve performance when handling design optimization problems with a large number of design variables and constraints relative to the feasible directions algorithm. The second purpose is to determine whether using the Kreisselmeier-Steinhauser (KS) function to replace the constraints with one constraint will reduce the cost of total optimization. Comparisons are made using solutions obtained with linear and non-linear methods. The results indicate that there is no cost saving using the linear method or in using the KS function to replace constraints.
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1975-01-01
A digital computer program (ORACLS) for implementing the optimal regulator theory approach to the design of controllers for linear time-invariant systems is described. The user-oriented program employs the latest numerical techniques and is applicable to both the digital and continuous control problems.
Huang, Hao; Zhang, Guifu; Zhao, Kun; Giangrande, Scott E.
2016-10-20
A hybrid method of combining linear programming (LP) and physical constraints is developed to estimate specific differential phase (K_{DP}) and to improve rain estimation. Moreover, the hybrid K_{DP} estimator and the existing estimators of LP, least squares fitting, and a self-consistent relation of polarimetric radar variables are evaluated and compared using simulated data. Our simulation results indicate the new estimator's superiority, particularly in regions where backscattering phase (δ_{hv}) dominates. Further, a quantitative comparison between auto-weather-station rain-gauge observations and K_{DP}-based radar rain estimates for a Meiyu event also demonstrate the superiority of the hybrid K_{DP} estimator over existing methods.
Optimization Of Irrigation Area of Ukai Right Bank Main Canal-A Linear Programming Approach
NASA Astrophysics Data System (ADS)
Bhuvandas, Nishi; Mirajkar, A. B.; Timbadiya, P. V.; Patel, P. L.
2010-11-01
This paper presents a Linear Programming (LP) model for obtaining optimized cropping area in the command of Ukai reservoir. The objective is to maximize the sum of the relative yields from all crops in the irrigated area for specific range of water availability like 100%, 90%, 80% and 70%. The present study is aimed to get the optimal allocation of irrigation water depending upon the availability of water from the source. The net revenue from agricultural production will be maximized for available irrigation water taking into account the sets of constraints like crop area, cropping pattern and water requirement. The model is applied to a part of Ukai reservoir system namely Ukai Right Bank Main Canal (URBMC), in Gujarat state, India.
Highlights of the SLD Physics Program at the SLAC Linear Collider
Willocq, Stephane
2001-09-07
Starting in 1989, and continuing through the 1990s, high-energy physics witnessed a flowering of precision measurements in general and tests of the standard model in particular, led by e{sup +}e{sup -} collider experiments operating at the Z{sup 0} resonance. Key contributions to this work came from the SLD collaboration at the SLAC Linear Collider. By exploiting the unique capabilities of this pioneering accelerator and the SLD detector, including a polarized electron beam, exceptionally small beam dimensions, and a CCD pixel vertex detector, SLD produced a broad array of electroweak, heavy-flavor, and QCD measurements. Many of these results are one of a kind or represent the world's standard in precision. This article reviews the highlights of the SLD physics program, with an eye toward associated advances in experimental technique, and the contribution of these measurements to our dramatically improved present understanding of the standard model and its possible extensions.
Xia, Bisheng; Qian, Xin; Yao, Hong
2017-09-18
Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.
Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach
Dufour, F.; Piunovskiy, A. B.
2016-08-15
In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures of the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.
A primary shift rotation nurse scheduling using zero-one linear goal programming.
Huarng, F
1999-01-01
In this study, the author discusses the effect of nurse shift schedules on circadian rhythm and some important ergonomics criteria. The author also reviews and compares different nurse shift scheduling methods via the criteria of flexibility, fairness, continuity in shift assignments, nurses' preferences, and ergonomics principles. In this article, a primary shift rotation system is proposed to provide better continuity in shift assignments to satisfy nurses' preferences. The primary shift rotation system is modeled as a zero-one linear goal programming (LGP) problem. To generate the shift assignment for a unit with 13 nurses, the zero-one LGP model takes less than 3 minutes on average, whereas the head nurses spend approximately 2 to 3 hours on shift scheduling. This study reports the process of implementing the primary shift rotation system.
Boundary detection by linear programming with application to lung fields segmentation
NASA Astrophysics Data System (ADS)
Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo
2011-03-01
Medical image segmentation is typically used to locate boundaries of anatomical structures in images acquired by different modalities. As segmentation is of utmost importance for quantitative measurements and analysis of anatomical structures, tracking anatomical changes over time, building anatomical atlases and visualization of medical images, a huge amount of methods have been developed and tested on a wide range of applications in the past. Deformable or parametric shape models are a class of methods that have been widely used for segmentation. A drawback of deformable model approaches it that they require initialization near the final solution. In this paper, we present a segmentation algorithm that incorporates prior knowledge and is composed of two steps. First, reference points on the boundary of an anatomical structure are found by linear programming incorporating prior knowledge. Second, paths between reference points, representing boundary segments, are searched for by optimal control. The segmentation method has been applied to chest radiographs from the publicly available SCR database.
Approximating high-dimensional dynamics by barycentric coordinates with linear programming
Hirata, Yoshito Aihara, Kazuyuki; Suzuki, Hideyuki; Shiro, Masanori; Takahashi, Nozomu; Mas, Paloma
2015-01-15
The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.
Neji, Radhouène; Besbes, Ahmed; Komodakis, Nikos; Deux, Jean-François; Maatouk, Mezri; Rahmouni, Alain; Bassez, Guillaume; Fleury, Gilles; Paragios, Nikos
2009-01-01
In this paper, we present a manifold clustering method fo the classification of fibers obtained from diffusion tensor images (DTI) of the human skeletal muscle. Using a linear programming formulation of prototype-based clustering, we propose a novel fiber classification algorithm over manifolds that circumvents the necessity to embed the data in low dimensional spaces and determines automatically the number of clusters. Furthermore, we propose the use of angular Hilbertian metrics between multivariate normal distributions to define a family of distances between tensors that we generalize to fibers. These metrics are used to approximate the geodesic distances over the fiber manifold. We also discuss the case where only geodesic distances to a reduced set of landmark fibers are available. The experimental validation of the method is done using a manually annotated significant dataset of DTI of the calf muscle for healthy and diseased subjects.
A minimax technique for time-domain design of preset digital equalizers using linear programming
NASA Technical Reports Server (NTRS)
Vaughn, G. L.; Houts, R. C.
1975-01-01
A linear programming technique is presented for the design of a preset finite-impulse response (FIR) digital filter to equalize the intersymbol interference (ISI) present in a baseband channel with known impulse response. A minimax technique is used which minimizes the maximum absolute error between the actual received waveform and a specified raised-cosine waveform. Transversal and frequency-sampling FIR digital filters are compared as to the accuracy of the approximation, the resultant ISI and the transmitted energy required. The transversal designs typically have slightly better waveform accuracy for a given distortion; however, the frequency-sampling equalizer uses fewer multipliers and requires less transmitted energy. A restricted transversal design is shown to use the least number of multipliers at the cost of a significant increase in energy and loss of waveform accuracy at the receiver.
Approximating high-dimensional dynamics by barycentric coordinates with linear programming.
Hirata, Yoshito; Shiro, Masanori; Takahashi, Nozomu; Aihara, Kazuyuki; Suzuki, Hideyuki; Mas, Paloma
2015-01-01
The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.
A linear programming model for determining efficient combinations of 8-, 10-, and 12-hour shifts.
Cooper, R B
1981-11-01
I have formulated a linear programming model to determine changes in efficiency and productivity that would result from scheduling personnel to work combinations of 8-, 10-, and 12-hour shifts in a section of our pulmonary medicine department. My objective was to minimize the number of staff hours worked each day, subject to the constraints imposed by the levels of staffing required during each hour of the day. I found that a combination of 8-, 10- and 12-hour shifts could increase productivity 8.1% and reduce personnel requirements by one full-time equivalent. Salary expenses would decrease 7.5% if overtime were not paid for the extended hours of the 10- and 12-hour shifts. Two considerations in implementing the proposed schedule are the willingness of staff to work extended hours and the necessity of developing a format for communication between therapists who work discontinuous shifts.
Decomposition and (importance) sampling techniques for multi-stage stochastic linear programs
Infanger, G.
1993-11-01
The difficulty of solving large-scale multi-stage stochastic linear programs arises from the sheer number of scenarios associated with numerous stochastic parameters. The number of scenarios grows exponentially with the number of stages and problems get easily out of hand even for very moderate numbers of stochastic parameters per stage. Our method combines dual (Benders) decomposition with Monte Carlo sampling techniques. We employ importance sampling to efficiently obtain accurate estimates of both expected future costs and gradients and right-hand sides of cuts. The method enables us to solve practical large-scale problems with many stages and numerous stochastic parameters per stage. We discuss the theory of sharing and adjusting cuts between different scenarios in a stage. We derive probabilistic lower and upper bounds, where we use importance path sampling for the upper bound estimation. Initial numerical results turned out to be promising.
Primal/dual linear programming and statistical atlases for cartilage segmentation.
Glocker, Ben; Komodakis, Nikos; Paragios, Nikos; Glaser, Christian; Tziritas, Georgios; Navab, Nassir
2007-01-01
In this paper we propose a novel approach for automatic segmentation of cartilage using a statistical atlas and efficient primal/dual linear programming. To this end, a novel statistical atlas construction is considered from registered training examples. Segmentation is then solved through registration which aims at deforming the atlas such that the conditional posterior of the learned (atlas) density is maximized with respect to the image. Such a task is reformulated using a discrete set of deformations and segmentation becomes equivalent to finding the set of local deformations which optimally match the model to the image. We evaluate our method on 56 MRI data sets (28 used for the model and 28 used for evaluation) and obtain a fully automatic segmentation of patella cartilage volume with an overlap ratio of 0.84 with a sensitivity and specificity of 94.06% and 99.92%, respectively.
Linear programming method for computing the gamut of object color solid.
Li, Changjun; Luo, M Ronnier; Cho, Maeng-Sub; Kim, Jin-Seo
2010-05-01
Recently there has been great interest in establishing the color gamut of solid colors or the optimum colors. The optimum colors are widely used for quantifying the quality of light sources and evaluating reproduction devices. An enumeration method was developed by Martinez-Verdu et al. [J. Opt. Soc. Am. A 24, 1501 (2007)] for finding optimum colors. However, it was found that the method is too time-costly. In this paper, a linear programming approach is proposed. The proposed method is simple and faster and has the advantage of keeping the characteristics of the true boundary. Comparison of the present method with the method of Martinez-Verdu et al. is also given.
A Linear Programing Economic Analysis of Lake Quality Improvements Using Phosphorus Buffer Curves
NASA Astrophysics Data System (ADS)
Ogg, Clayton W.; Pionke, Harry B.; Heimlich, Ralph E.
1983-02-01
A linear programing model is used to evaluate the economic feasibility of reducing phosphorus loads from cropland to levels that are expected to alter adequately the trophic conditions of a water supply reservoir. The model employs phosphorus buffer curves for distributing phosphorus losses between runoff and eroded soil. Phosphorus pollution reductions are estimated for conservation activities according to the amount of erosion control and phosphorus fertility status. The planning model is intended to provide the best available estimates of pollution control attainable with given budget outlays, as well as to allocate pollution control funds efficiently among watersheds. It also contains sufficient detail to suggest practices for each local soil that are consistent with water quality plans.
Baran, Richard; Northen, Trent R
2013-10-15
Untargeted metabolite profiling using liquid chromatography and mass spectrometry coupled via electrospray ionization is a powerful tool for the discovery of novel natural products, metabolic capabilities, and biomarkers. However, the elucidation of the identities of uncharacterized metabolites from spectral features remains challenging. A critical step in the metabolite identification workflow is the assignment of redundant spectral features (adducts, fragments, multimers) and calculation of the underlying chemical formula. Inspection of the data by experts using computational tools solving partial problems (e.g., chemical formula calculation for individual ions) can be performed to disambiguate alternative solutions and provide reliable results. However, manual curation is tedious and not readily scalable or standardized. Here we describe an automated procedure for the robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming optimization (RAMSI). Chemical rules among related ions are expressed as linear constraints and both the spectra interpretation and chemical formula calculation are performed in a single optimization step. This approach is unbiased in that it does not require predefined sets of neutral losses and positive and negative polarity spectra can be combined in a single optimization. The procedure was evaluated with 30 experimental mass spectra and was found to effectively identify the protonated or deprotonated molecule ([M + H](+) or [M - H](-)) while being robust to the presence of background ions. RAMSI provides a much-needed standardized tool for interpreting ions for subsequent identification in untargeted metabolomics workflows.
Tetens, Inge; Dejgård Jensen, Jørgen; Smed, Sinne; Gabrijelčič Blenkuš, Mojca; Rayner, Mike; Darmon, Nicole; Robertson, Aileen
2016-01-01
Background Food-Based Dietary Guidelines (FBDGs) are developed to promote healthier eating patterns, but increasing food prices may make healthy eating less affordable. The aim of this study was to design a range of cost-minimized nutritionally adequate health-promoting food baskets (FBs) that help prevent both micronutrient inadequacy and diet-related non-communicable diseases at lowest cost. Methods Average prices for 312 foods were collected within the Greater Copenhagen area. The cost and nutrient content of five different cost-minimized FBs for a family of four were calculated per day using linear programming. The FBs were defined using five different constraints: cultural acceptability (CA), or dietary guidelines (DG), or nutrient recommendations (N), or cultural acceptability and nutrient recommendations (CAN), or dietary guidelines and nutrient recommendations (DGN). The variety and number of foods in each of the resulting five baskets was increased through limiting the relative share of individual foods. Results The one-day version of N contained only 12 foods at the minimum cost of DKK 27 (€ 3.6). The CA, DG, and DGN were about twice of this and the CAN cost ~DKK 81 (€ 10.8). The baskets with the greater variety of foods contained from 70 (CAN) to 134 (DGN) foods and cost between DKK 60 (€ 8.1, N) and DKK 125 (€ 16.8, DGN). Ensuring that the food baskets cover both dietary guidelines and nutrient recommendations doubled the cost while cultural acceptability (CAN) tripled it. Conclusion Use of linear programming facilitates the generation of low-cost food baskets that are nutritionally adequate, health promoting, and culturally acceptable. PMID:27760131
Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang
2014-01-01
Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images
Using linear programming and geographical information systems (GIS) to model material reuse
Nobel, C.E.; Keckler, S.E.; Allen, D.T.
1998-12-31
A material reuse model that identifies cost-optimal reuse scenarios has been developed and applied to a water reuse planning problem. The model utilizes a linear programming algorithm within a Geographic Information Systems (GIS) map-based framework. Specifically, the model integrates database operations and optimization methods with the visualization benefits and geographic analysis offered by maps. The model was applied to water reuse planning because of the many possibilities for water reuse among a set of co-located facilities. The two steps of the water reuse modeling process are: determining the feasible reuse opportunities based on quality and solving a linear program to find the cost-based optimal scenario. This paper focuses on the development, formulation, and potential of this model. The model is illustrated through a case study of the Bayport Industrial Complex in Pasadena, Texas. The case study included an industrial water treatment plant, a wastewater treatment plant, and more than forty manufacturing facilities. For a set of three industries in the Bayport complex, potential cost savings of 11 percent and water savings of 82 percent were identified. For a set of eleven industries, cost savings of 18 percent and water savings of 76 percent were found. The cost included treatment, purchase price, and an water transportation cost based on distance. This model has applicability to water reclamation project planning as well as water management in water-poor regions. Additionally, with minor modifications, the water reuse model presented here may be used to quantitatively analyze the use and reuse of other materials. Thus, this model provides a quantitative tool to promote more efficient and sustainable system-based material cycles.
Parlesak, Alexandr; Tetens, Inge; Dejgård Jensen, Jørgen; Smed, Sinne; Gabrijelčič Blenkuš, Mojca; Rayner, Mike; Darmon, Nicole; Robertson, Aileen
2016-01-01
Food-Based Dietary Guidelines (FBDGs) are developed to promote healthier eating patterns, but increasing food prices may make healthy eating less affordable. The aim of this study was to design a range of cost-minimized nutritionally adequate health-promoting food baskets (FBs) that help prevent both micronutrient inadequacy and diet-related non-communicable diseases at lowest cost. Average prices for 312 foods were collected within the Greater Copenhagen area. The cost and nutrient content of five different cost-minimized FBs for a family of four were calculated per day using linear programming. The FBs were defined using five different constraints: cultural acceptability (CA), or dietary guidelines (DG), or nutrient recommendations (N), or cultural acceptability and nutrient recommendations (CAN), or dietary guidelines and nutrient recommendations (DGN). The variety and number of foods in each of the resulting five baskets was increased through limiting the relative share of individual foods. The one-day version of N contained only 12 foods at the minimum cost of DKK 27 (€ 3.6). The CA, DG, and DGN were about twice of this and the CAN cost ~DKK 81 (€ 10.8). The baskets with the greater variety of foods contained from 70 (CAN) to 134 (DGN) foods and cost between DKK 60 (€ 8.1, N) and DKK 125 (€ 16.8, DGN). Ensuring that the food baskets cover both dietary guidelines and nutrient recommendations doubled the cost while cultural acceptability (CAN) tripled it. Use of linear programming facilitates the generation of low-cost food baskets that are nutritionally adequate, health promoting, and culturally acceptable.
PAPR reduction in FBMC using an ACE-based linear programming optimization
NASA Astrophysics Data System (ADS)
van der Neut, Nuan; Maharaj, Bodhaswar TJ; de Lange, Frederick; González, Gustavo J.; Gregorio, Fernando; Cousseau, Juan
2014-12-01
This paper presents four novel techniques for peak-to-average power ratio (PAPR) reduction in filter bank multicarrier (FBMC) modulation systems. The approach extends on current PAPR reduction active constellation extension (ACE) methods, as used in orthogonal frequency division multiplexing (OFDM), to an FBMC implementation as the main contribution. The four techniques introduced can be split up into two: linear programming optimization ACE-based techniques and smart gradient-project (SGP) ACE techniques. The linear programming (LP)-based techniques compensate for the symbol overlaps by utilizing a frame-based approach and provide a theoretical upper bound on achievable performance for the overlapping ACE techniques. The overlapping ACE techniques on the other hand can handle symbol by symbol processing. Furthermore, as a result of FBMC properties, the proposed techniques do not require side information transmission. The PAPR performance of the techniques is shown to match, or in some cases improve, on current PAPR techniques for FBMC. Initial analysis of the computational complexity of the SGP techniques indicates that the complexity issues with PAPR reduction in FBMC implementations can be addressed. The out-of-band interference introduced by the techniques is investigated. As a result, it is shown that the interference can be compensated for, whilst still maintaining decent PAPR performance. Additional results are also provided by means of a study of the PAPR reduction of the proposed techniques at a fixed clipping probability. The bit error rate (BER) degradation is investigated to ensure that the trade-off in terms of BER degradation is not too severe. As illustrated by exhaustive simulations, the SGP ACE-based technique proposed are ideal candidates for practical implementation in systems employing the low-complexity polyphase implementation of FBMC modulators. The methods are shown to offer significant PAPR reduction and increase the feasibility of FBMC as
Projection-free parallel quadratic programming for linear model predictive control
NASA Astrophysics Data System (ADS)
Di Cairano, S.; Brand, M.; Bortoff, S. A.
2013-08-01
A key component in enabling the application of model predictive control (MPC) in fields such as automotive, aerospace, and factory automation is the availability of low-complexity fast optimisation algorithms to solve the MPC finite horizon optimal control problem in architectures with reduced computational capabilities. In this paper, we introduce a projection-free iterative optimisation algorithm and discuss its application to linear MPC. The algorithm, originally developed by Brand for non-negative quadratic programs, is based on a multiplicative update rule and it is shown to converge to a fixed point which is the optimum. An acceleration technique based on a projection-free line search is also introduced, to speed-up the convergence to the optimum. The algorithm is applied to MPC through the dual of the quadratic program (QP) formulated from the MPC finite time optimal control problem. We discuss how termination conditions with guaranteed degree of suboptimality can be enforced, and how the algorithm performance can be optimised by pre-computing the matrices in a parametric form. We show computational results of the algorithm in three common case studies and we compare such results with the results obtained by other available free and commercial QP solvers.
Drag reduction of a car model by linear genetic programming control
NASA Astrophysics Data System (ADS)
Li, Ruiying; Noack, Bernd R.; Cordier, Laurent; Borée, Jacques; Harambat, Fabien
2017-08-01
We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at ReH≈ 3× 105 based on body height. The actuation is performed with pulsed jets at all trailing edges (multiple inputs) combined with a Coanda deflection surface. The flow is monitored with 16 pressure sensors distributed at the rear side (multiple outputs). We apply a recently developed model-free control strategy building on genetic programming in Dracopoulos and Kent (Neural Comput Appl 6:214-228, 1997) and Gautier et al. (J Fluid Mech 770:424-441, 2015). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combinations thereof. Key enabler is linear genetic programming (LGP) as powerful regression technique for optimizing the multiple-input multiple-output control laws. The proposed LGP control can select the best open- or closed-loop control in an unsupervised manner. Approximately 33% base pressure recovery associated with 22% drag reduction is achieved in all considered classes of control laws. Intriguingly, the feedback actuation emulates periodic high-frequency forcing. In addition, the control identified automatically the only sensor which listens to high-frequency flow components with good signal to noise ratio. Our control strategy is, in principle, applicable to all multiple actuators and sensors experiments.
Linear Mode Photon Counting LADAR Camera Development for the Ultra-Sensitive Detector Program
NASA Astrophysics Data System (ADS)
Jack, M.; Bailey, S.; Edwards, J.; Burkholder, R.; Liu, K.; Asbrock, J.; Randall, V.; Chapman, G.; Riker, J.
Advanced LADAR receivers enable high accuracy identification of targets at ranges beyond standard EOIR sensors. Increased sensitivity of these receivers will enable reductions in laser power, hence more affordable, smaller sensors as well as much longer range of detection. Raytheon has made a recent breakthrough in LADAR architecture by combining very low noise ~ 30 electron front end amplifiers with moderate gain >60 Avalanche Photodiodes. The combination of these enables detection of laser pulse returns containing as few as one photon up to 1000s of photons. Because a lower APD gain is utilized the sensor operation differs dramatically from traditional "geiger mode APD" LADARs. Linear mode photon counting LADAR offers advantages including: determination of intensity as well as time of arrival, nanosecond recovery times and discrimination between radiation events and signals. In our talk we will review the basic amplifier and APD component performance, the front end architecture, the demonstration of single photon detection using a simple 4 x 4 SCA and the design of a fully integrated photon counting camera under development in support of the Ultra-Sensitive Detector (USD) program sponsored by the Air Force Research Laboratory at Kirtland AFB, NM. Work Supported in Part by AFRL - Contract # FA8632-05-C-2454 Dr. Jim Riker Program Manager.
Takabe, Satoshi; Hukushima, Koji
2016-05-01
Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α-uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α=2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c=e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c=1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α≥3, minimum vertex covers on α-uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c=e/(α-1) where the replica symmetry is broken.
NASA Astrophysics Data System (ADS)
Takabe, Satoshi; Hukushima, Koji
2016-05-01
Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α -uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α =2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c =e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c =1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α ≥3 , minimum vertex covers on α -uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c =e /(α -1 ) where the replica symmetry is broken.
A two-stage sequential linear programming approach to IMRT dose optimization
Zhang, Hao H; Meyer, Robert R; Wu, Jianzhou; Naqvi, Shahid A; Shi, Leyuan; D’Souza, Warren D
2010-01-01
The conventional IMRT planning process involves two stages in which the first stage consists of fast but approximate idealized pencil beam dose calculations and dose optimization and the second stage consists of discretization of the intensity maps followed by intensity map segmentation and a more accurate final dose calculation corresponding to physical beam apertures. Consequently, there can be differences between the presumed dose distribution corresponding to pencil beam calculations and optimization and a more accurately computed dose distribution corresponding to beam segments that takes into account collimator-specific effects. IMRT optimization is computationally expensive and has therefore led to the use of heuristic (e.g., simulated annealing and genetic algorithms) approaches that do not encompass a global view of the solution space. We modify the traditional two-stage IMRT optimization process by augmenting the second stage via an accurate Monte-Carlo based kernel-superposition dose calculations corresponding to beam apertures combined with an exact mathematical programming based sequential optimization approach that uses linear programming (SLP). Our approach was tested on three challenging clinical test cases with multileaf collimator constraints corresponding to two vendors. We compared our approach to the conventional IMRT planning approach, a direct-aperture approach and a segment weight optimization approach. Our results in all three cases indicate that the SLP approach outperformed the other approaches, achieving superior critical structure sparing. Convergence of our approach is also demonstrated. Finally, our approach has also been integrated with a commercial treatment planning system and may be utilized clinically. PMID:20071764
Optimal Design of IIR Filters Using Linear Semi-Infinite Programming Method
NASA Astrophysics Data System (ADS)
Yamazaki, Takayuki; Suyama, Kenji
In this paper, an optimal design method for stable IIR(Infinite Impulse Response) filters in a criterion of min-max sense is proposed. The design problem is considered one of the complex Chebyshev approximation for rational function including the stability constraint, we formulated such the problem as a real linear semi-infinite programming using the real rotation theorem. Then, the problem is solved by the three phase method that is one of the methods solving semi-infinite programming problem. The three phase method is composed of three operations. In the first operation, some candidates of active constraints are selected by the iterative simplex method. Next, the second operation integrates some degenerate constraints. In the third operation, the approximation solution obtained until second operation is adjusted so as to satisfy the optimality condition. As a result, the filters designed by the method are more precise than one designed by conventional method. Several design examples are shown to present effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Wei, Peng; Sridhar, Banavar; Chen, Neil Yi-Nan; Sun, Dengfent
2012-01-01
A class of strategies has been proposed to reduce contrail formation in the United States airspace. A 3D grid based on weather data and the cruising altitude level of aircraft is adjusted to avoid the persistent contrail potential area with the consideration to fuel-efficiency. In this paper, the authors introduce a contrail avoidance strategy on 3D grid by considering additional operationally feasible constraints from an air traffic controller's aspect. First, shifting too many aircraft to the same cruising level will make the miles-in-trail at this level smaller than the safety separation threshold. Furthermore, the high density of aircraft at one cruising level may exceed the workload for the traffic controller. Therefore, in our new model we restrict the number of total aircraft at each level. Second, the aircraft count variation for successive intervals cannot be too drastic since the workload to manage climbing/descending aircraft is much larger than managing cruising aircraft. The contrail reduction is formulated as an integer-programming problem and the problem is shown to have the property of total unimodularity. Solving the corresponding relaxed linear programming with the simplex method provides an optimal and integral solution to the problem. Simulation results are provided to illustrate the methodology.
ERIC Educational Resources Information Center
BEANE, DONALD G.
SIXTY-FIVE STUDENTS IN TWO CLASSES IN HIGH SCHOOL GEOMETRY WERE ASSIGNED BY STRATIFIED RANDOM PROCEDURE ON THE BASIS OF THE HENNON-NELSON TEST OF MENTAL ABILITY TO FOUR EXPERIMENTAL GROUPS--TWO USING A LINEAR OR A BRANCHING TYPE PROGRAM EXCLUSIVELY, AND TWO SWITCHING PROGRAM TYPE MIDWAY THROUGH THE EXPERIMENT. A THIRD CLASS, TAUGHT BY THE SAME…
Chen, Vivian Yi-Ju; Yang, Tse-Chuan
2012-08-01
An increasing interest in exploring spatial non-stationarity has generated several specialized analytic software programs; however, few of these programs can be integrated natively into a well-developed statistical environment such as SAS. We not only developed a set of SAS macro programs to fill this gap, but also expanded the geographically weighted generalized linear modeling (GWGLM) by integrating the strengths of SAS into the GWGLM framework. Three features distinguish our work. First, the macro programs of this study provide more kernel weighting functions than the existing programs. Second, with our codes the users are able to better specify the bandwidth selection process compared to the capabilities of existing programs. Third, the development of the macro programs is fully embedded in the SAS environment, providing great potential for future exploration of complicated spatially varying coefficient models in other disciplines. We provided three empirical examples to illustrate the use of the SAS macro programs and demonstrated the advantages explained above.
Aspect-Object Alignment with Integer Linear Programming in Opinion Mining
Zhao, Yanyan; Qin, Bing; Liu, Ting; Yang, Wei
2015-01-01
Target extraction is an important task in opinion mining. In this task, a complete target consists of an aspect and its corresponding object. However, previous work has always simply regarded the aspect as the target itself and has ignored the important "object" element. Thus, these studies have addressed incomplete targets, which are of limited use for practical applications. This paper proposes a novel and important sentiment analysis task, termed aspect-object alignment, to solve the "object neglect" problem. The objective of this task is to obtain the correct corresponding object for each aspect. We design a two-step framework for this task. We first provide an aspect-object alignment classifier that incorporates three sets of features, namely, the basic, relational, and special target features. However, the objects that are assigned to aspects in a sentence often contradict each other and possess many complicated features that are difficult to incorporate into a classifier. To resolve these conflicts, we impose two types of constraints in the second step: intra-sentence constraints and inter-sentence constraints. These constraints are encoded as linear formulations, and Integer Linear Programming (ILP) is used as an inference procedure to obtain a final global decision that is consistent with the constraints. Experiments on a corpus in the camera domain demonstrate that the three feature sets used in the aspect-object alignment classifier are effective in improving its performance. Moreover, the classifier with ILP inference performs better than the classifier without it, thereby illustrating that the two types of constraints that we impose are beneficial. PMID:26000635
Aspect-object alignment with Integer Linear Programming in opinion mining.
Zhao, Yanyan; Qin, Bing; Liu, Ting; Yang, Wei
2015-01-01
Target extraction is an important task in opinion mining. In this task, a complete target consists of an aspect and its corresponding object. However, previous work has always simply regarded the aspect as the target itself and has ignored the important "object" element. Thus, these studies have addressed incomplete targets, which are of limited use for practical applications. This paper proposes a novel and important sentiment analysis task, termed aspect-object alignment, to solve the "object neglect" problem. The objective of this task is to obtain the correct corresponding object for each aspect. We design a two-step framework for this task. We first provide an aspect-object alignment classifier that incorporates three sets of features, namely, the basic, relational, and special target features. However, the objects that are assigned to aspects in a sentence often contradict each other and possess many complicated features that are difficult to incorporate into a classifier. To resolve these conflicts, we impose two types of constraints in the second step: intra-sentence constraints and inter-sentence constraints. These constraints are encoded as linear formulations, and Integer Linear Programming (ILP) is used as an inference procedure to obtain a final global decision that is consistent with the constraints. Experiments on a corpus in the camera domain demonstrate that the three feature sets used in the aspect-object alignment classifier are effective in improving its performance. Moreover, the classifier with ILP inference performs better than the classifier without it, thereby illustrating that the two types of constraints that we impose are beneficial.
A linear programming model to optimize diets in environmental policy scenarios.
Moraes, L E; Wilen, J E; Robinson, P H; Fadel, J G
2012-03-01
The objective was to develop a linear programming model to formulate diets for dairy cattle when environmental policies are present and to examine effects of these policies on diet formulation and dairy cattle nitrogen and mineral excretions as well as methane emissions. The model was developed as a minimum cost diet model. Two types of environmental policies were examined: a tax and a constraint on methane emissions. A tax was incorporated to simulate a greenhouse gas emissions tax policy, and prices of carbon credits in the current carbon markets were attributed to the methane production variable. Three independent runs were made, using carbon dioxide equivalent prices of $5, $17, and $250/t. A constraint was incorporated into the model to simulate the second type of environmental policy, reducing methane emissions by predetermined amounts. The linear programming formulation of this second alternative enabled the calculation of marginal costs of reducing methane emissions. Methane emission and manure production by dairy cows were calculated according to published equations, and nitrogen and mineral excretions were calculated by mass conservation laws. Results were compared with respect to the values generated by a base least-cost model. Current prices of the carbon credit market did not appear onerous enough to have a substantive incentive effect in reducing methane emissions and altering diet costs of our hypothetical dairy herd. However, when emissions of methane were assumed to be reduced by 5, 10, and 13.5% from the base model, total diet costs increased by 5, 19.1, and 48.5%, respectively. Either these increased costs would be passed onto the consumer or dairy producers would go out of business. Nitrogen and potassium excretions were increased by 16.5 and 16.7% with a 13.5% reduction in methane emissions from the base model. Imposing methane restrictions would further increase the demand for grains and other human-edible crops, which is not a progressive
Dyehouse, Melissa; Bennett, Deborah; Harbor, Jon; Childress, Amy; Dark, Melissa
2009-08-01
Logic models are based on linear relationships between program resources, activities, and outcomes, and have been used widely to support both program development and evaluation. While useful in describing some programs, the linear nature of the logic model makes it difficult to capture the complex relationships within larger, multifaceted programs. Causal loop diagrams based on a systems thinking approach can better capture a multidimensional, layered program model while providing a more complete understanding of the relationship between program elements, which enables evaluators to examine influences and dependencies between and within program components. Few studies describe how to conceptualize and apply systems models for educational program evaluation. The goal of this paper is to use our NSF-funded, Interdisciplinary GK-12 project: Bringing Authentic Problem Solving in STEM to Rural Middle Schools to illustrate a systems thinking approach to model a complex educational program to aid in evaluation. GK-12 pairs eight teachers with eight STEM doctoral fellows per program year to implement curricula in middle schools. We demonstrate how systems thinking provides added value by modeling the participant groups, instruments, outcomes, and other factors in ways that enhance the interpretation of quantitative and qualitative data. Limitations of the model include added complexity. Implications include better understanding of interactions and outcomes and analyses reflecting interacting or conflicting variables.
NASA Technical Reports Server (NTRS)
Heidergott, K. W.
1979-01-01
The computer program known as QR is described. Classical control systems analysis and synthesis (root locus, time response, and frequency response) can be performed using this program. Programming details of the QR program are presented.
Identification of human gene structure using linear discriminant functions and dynamic programming
Solovyev, V.V.; Salamov, A.A.; Lawrence, C.B.
1995-12-31
Development of advanced technique to identify gene structure is one of the main challenges of the Human Genome Project. Discriminant analysis was applied to the construction of recognition functions for various components of gene structure. Linear discriminant functions for splice sites, 5{prime}-coding, internal exon, and Y-coding region recognition have been developed. A gene structure prediction system FGENE has been developed based on the exon recognition functions. We compute a graph of mutual compatibility of different exons and present a gene structure models as paths of this directed acyclic graph. For an optimal model selection we apply a variant of dynamic programming algorithm to search for the path in the graph with the maximal value of the corresponding discriminant functions. Prediction by FGENE for 185 complete human gene sequences has 81% exact exon recognition accuracy and 91% accuracy at the level of individual exon nucleotides with the correlation coefficient (C) equals 0.90. Testing FGENE on 35 genes not used in the development of discriminant functions shows 71% accuracy of exact exon prediction and 89% at the nucleotide level (C=0.86). FGENE compares very favorably with the other programs currently used to predict protein-coding regions. Analysis of uncharacterized human sequences based on our methods for splice site (HSPL, RNASPL), internal exons (HEXON), all type of exons (FEXH) and human (FGENEH) and bacterial (CDSB) gene structure prediction and recognition of human and bacterial sequences (HBR) (to test a library for E. coli contamination) is available through the University of Houston, Weizmann Institute of Science network server and a WWW page of the Human Genome Center at Baylor College of Medicine.
Triple/quadruple patterning layout decomposition via linear programming and iterative rounding
NASA Astrophysics Data System (ADS)
Lin, Yibo; Xu, Xiaoqing; Yu, Bei; Baldick, Ross; Pan, David Z.
2017-04-01
As the feature size of the semiconductor technology scales down to 10 nm and beyond, multiple patterning lithography (MPL) has become one of the most practical candidates for lithography, along with other emerging technologies, such as extreme ultraviolet lithography (EUVL), e-beam lithography (EBL), and directed self-assembly. Due to the delay of EUVL and EBL, triple and even quadruple patterning is considered to be used for lower metal and contact layers with tight pitches. In the process of MPL, layout decomposition is the key design stage, where a layout is split into various parts and each part is manufactured through a separate mask. For metal layers, stitching may be allowed to resolve conflicts, whereas it is forbidden for contact and via layers. We focus on the application of layout decomposition where stitching is not allowed, such as for contact and via layers. We propose a linear programming (LP) and iterative rounding solving technique to reduce the number of nonintegers in the LP relaxation problem. Experimental results show that the proposed algorithms can provide high quality decomposition solutions efficiently while introducing as few conflicts as possible.
Christodoulou, Manolis A; Kontogeorgou, Chrysa
2008-10-01
In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming.
NASA Astrophysics Data System (ADS)
Vorwerk, Kristoffer; Kennings, Andrew; Anjos, Miguel
2008-06-01
In VLSI layout, floorplanning refers to the task of placing macrocells on a chip without overlap while minimizing design objectives such as timing, congestion, and wire length. Experienced VLSI designers have traditionally been able to produce more efficient floorplans than automated methods. However, with the increasing complexity of modern circuits, manual design flows have become infeasible. An efficient top-down strategy for overlap removal which repairs overlaps in floorplans produced by placement algorithms or rough floorplanning methodologies is presented in this article. The algorithmic framework proposed incorporates a novel geometric shifting technique coupled with topological constraint graphs and linear programming within a top-down flow. The effectiveness of this framework is quantified across a broad range of floorplans produced by multiple tools. The method succeeds in producing valid placements in almost all cases; moreover, compared with leading methods, it requires only one-fifth of the run-time and produces placements with 4-13% less wire length and up to 43% less cell movement.
A depth-first search algorithm to compute elementary flux modes by linear programming
2014-01-01
Background The decomposition of complex metabolic networks into elementary flux modes (EFMs) provides a useful framework for exploring reaction interactions systematically. Generating a complete set of EFMs for large-scale models, however, is near impossible. Even for moderately-sized models (<400 reactions), existing approaches based on the Double Description method must iterate through a large number of combinatorial candidates, thus imposing an immense processor and memory demand. Results Based on an alternative elementarity test, we developed a depth-first search algorithm using linear programming (LP) to enumerate EFMs in an exhaustive fashion. Constraints can be introduced to directly generate a subset of EFMs satisfying the set of constraints. The depth-first search algorithm has a constant memory overhead. Using flux constraints, a large LP problem can be massively divided and parallelized into independent sub-jobs for deployment into computing clusters. Since the sub-jobs do not overlap, the approach scales to utilize all available computing nodes with minimal coordination overhead or memory limitations. Conclusions The speed of the algorithm was comparable to efmtool, a mainstream Double Description method, when enumerating all EFMs; the attrition power gained from performing flux feasibility tests offsets the increased computational demand of running an LP solver. Unlike the Double Description method, the algorithm enables accelerated enumeration of all EFMs satisfying a set of constraints. PMID:25074068
A depth-first search algorithm to compute elementary flux modes by linear programming.
Quek, Lake-Ee; Nielsen, Lars K
2014-07-30
The decomposition of complex metabolic networks into elementary flux modes (EFMs) provides a useful framework for exploring reaction interactions systematically. Generating a complete set of EFMs for large-scale models, however, is near impossible. Even for moderately-sized models (<400 reactions), existing approaches based on the Double Description method must iterate through a large number of combinatorial candidates, thus imposing an immense processor and memory demand. Based on an alternative elementarity test, we developed a depth-first search algorithm using linear programming (LP) to enumerate EFMs in an exhaustive fashion. Constraints can be introduced to directly generate a subset of EFMs satisfying the set of constraints. The depth-first search algorithm has a constant memory overhead. Using flux constraints, a large LP problem can be massively divided and parallelized into independent sub-jobs for deployment into computing clusters. Since the sub-jobs do not overlap, the approach scales to utilize all available computing nodes with minimal coordination overhead or memory limitations. The speed of the algorithm was comparable to efmtool, a mainstream Double Description method, when enumerating all EFMs; the attrition power gained from performing flux feasibility tests offsets the increased computational demand of running an LP solver. Unlike the Double Description method, the algorithm enables accelerated enumeration of all EFMs satisfying a set of constraints.
Linear genetic programming application for successive-station monthly streamflow prediction
NASA Astrophysics Data System (ADS)
Danandeh Mehr, Ali; Kahya, Ercan; Yerdelen, Cahit
2014-09-01
In recent decades, artificial intelligence (AI) techniques have been pronounced as a branch of computer science to model wide range of hydrological phenomena. A number of researches have been still comparing these techniques in order to find more effective approaches in terms of accuracy and applicability. In this study, we examined the ability of linear genetic programming (LGP) technique to model successive-station monthly streamflow process, as an applied alternative for streamflow prediction. A comparative efficiency study between LGP and three different artificial neural network algorithms, namely feed forward back propagation (FFBP), generalized regression neural networks (GRNN), and radial basis function (RBF), has also been presented in this study. For this aim, firstly, we put forward six different successive-station monthly streamflow prediction scenarios subjected to training by LGP and FFBP using the field data recorded at two gauging stations on Çoruh River, Turkey. Based on Nash-Sutcliffe and root mean squared error measures, we then compared the efficiency of these techniques and selected the best prediction scenario. Eventually, GRNN and RBF algorithms were utilized to restructure the selected scenario and to compare with corresponding FFBP and LGP. Our results indicated the promising role of LGP for successive-station monthly streamflow prediction providing more accurate results than those of all the ANN algorithms. We found an explicit LGP-based expression evolved by only the basic arithmetic functions as the best prediction model for the river, which uses the records of the both target and upstream stations.
Brooks, S P; Suelter, C H
1986-09-01
An IBM computer program, WILMAN4, is described which calculates the estimates, Km, V and Km/V from initial velocity measurements according to one of four statistical methods. Three of these methods involve linear regression analysis using weights given by assuming: (i) constant absolute error (G.N. Wilkinson, 1961, Biochem J., 80, 324-332), (ii) constant relative error (G. Johansen and R. Lumry, 1961, C.R. Trav. Lab. Carlsberg, 32, 185-214) and (iii) an error function in between the above two cases. (A. Cornish-Bowden, 1976, Principles of Enzyme Kinetics, Butterworths Inc, Boston, Mass., pp. 168-193). The fourth method is a non-parametric procedure derived by Eisenthal and Cornish-Bowden (Biochim. Biophys. Acta, 532 (1974) 268-272). Residuals are obtained by subtracting the experimental and the calculated velocities. Outliers, or residuals which are greater than two experimental standard deviations, can be identified and removed from the data set. If the sequence of positive and negative signs of the residuals is random as determined by a statistical probability calculation, the data set is assumed to obey the Michaelis-Menten equation.
Non-linear programming in shakedown analysis with plasticity and friction
NASA Astrophysics Data System (ADS)
Spagnoli, A.; Terzano, M.; Barber, J. R.; Klarbring, A.
2017-07-01
Complete frictional contacts, when subjected to cyclic loading, may sometimes develop a favourable situation where slip ceases after a few cycles, an occurrence commonly known as frictional shakedown. Its resemblance to shakedown in plasticity has prompted scholars to apply direct methods, derived from the classical theorems of limit analysis, in order to assess a safe limit to the external loads applied on the system. In circumstances where zones of plastic deformation develop in the material (e.g., because of the large stress concentrations near the sharp edges of a complete contact), it is reasonable to expect an effect of mutual interaction of frictional slip and plastic strains on the load limit below which the global behaviour is non dissipative, i.e., both slip and plastic strains go to zero after some dissipative load cycles. In this paper, shakedown of general two-dimensional discrete systems, involving both friction and plasticity, is discussed and the shakedown limit load is calculated using a non-linear programming algorithm based on the static theorem of limit analysis. An illustrative example related to an elastic-plastic solid containing a frictional crack is provided.
Zheng, Jialin; Zhuang, Wei; Yan, Nian; Kou, Gang; Peng, Hui; McNally, Clancy; Erichsen, David; Cheloha, Abby; Herek, Shelley; Shi, Chris
2004-01-01
The ability to identify neuronal damage in the dendritic arbor during HIV-1-associated dementia (HAD) is crucial for designing specific therapies for the treatment of HAD. To study this process, we utilized a computer-based image analysis method to quantitatively assess HIV-1 viral protein gp120 and glutamate-mediated individual neuronal damage in cultured cortical neurons. Changes in the number of neurites, arbors, branch nodes, cell body area, and average arbor lengths were determined and a database was formed (http://dm.ist.unomaha. edu/database.htm). We further proposed a two-class model of multiple criteria linear programming (MCLP) to classify such HIV-1-mediated neuronal dendritic and synaptic damages. Given certain classes, including treatments with brain-derived neurotrophic factor (BDNF), glutamate, gp120 or non-treatment controls from our in vitro experimental systems, we used the two-class MCLP model to determine the data patterns between classes in order to gain insight about neuronal dendritic damages. This knowledge can be applied in principle to the design and study of specific therapies for the prevention or reversal of neuronal damage associated with HAD. Finally, the MCLP method was compared with a well-known artificial neural network algorithm to test for the relative potential of different data mining applications in HAD research.
Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398
Cho, J H; Ahn, K H; Chung, W J; Gwon, E M
2003-01-01
A waste load allocation model using linear programming has been developed for economic water quality management. A modified Qual2e model was used for water quality calculations and transfer coefficients were derived from the calculated water quality. This allocation model was applied to the heavily polluted Gyungan River, located in South Korea. For water quality management of the river, two scenarios were proposed. Scenario 1 proposed to minimise the total waste load reduction in the river basin. Scenario 2 proposed to minimise waste load reduction considering regional equity. Waste loads, which have to be reduced at each sub-basin and WWTP, were determined to meet the water quality goal of the river. Application results of the allocation model indicate that advanced treatment is required for most of the existing WWTPs in the river basin and construction of new WWTPs and capacity expansion of existing plants are necessary. Distribution characteristics of pollution sources and pollutant loads in the river basin was analysed using Arc/View GIS.
NASA Astrophysics Data System (ADS)
Jordi, Antoni; Georgas, Nickitas; Blumberg, Alan
2017-05-01
This paper presents a new parallel domain decomposition algorithm based on integer linear programming (ILP), a mathematical optimization method. To minimize the computation time of coastal ocean circulation models, the ILP decomposition algorithm divides the global domain in local domains with balanced work load according to the number of processors and avoids computations over as many as land grid cells as possible. In addition, it maintains the use of logically rectangular local domains and achieves the exact same results as traditional domain decomposition algorithms (such as Cartesian decomposition). However, the ILP decomposition algorithm may not converge to an exact solution for relatively large domains. To overcome this problem, we developed two ILP decomposition formulations. The first one (complete formulation) has no additional restriction, although it is impractical for large global domains. The second one (feasible) imposes local domains with the same dimensions and looks for the feasibility of such decomposition, which allows much larger global domains. Parallel performance of both ILP formulations is compared to a base Cartesian decomposition by simulating two cases with the newly created parallel version of the Stevens Institute of Technology's Estuarine and Coastal Ocean Model (sECOM). Simulations with the ILP formulations run always faster than the ones with the base decomposition, and the complete formulation is better than the feasible one when it is applicable. In addition, parallel efficiency with the ILP decomposition may be greater than one.
A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.
Röhl, Annika; Bockmayr, Alexander
2017-01-03
Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.
Error Analysis Of Students Working About Word Problem Of Linear Program With NEA Procedure
NASA Astrophysics Data System (ADS)
Santoso, D. A.; Farid, A.; Ulum, B.
2017-06-01
Evaluation and assessment is an important part of learning. In evaluation process of learning, written test is still commonly used. However, the tests usually do not following-up by further evaluation. The process only up to grading stage not to evaluate the process and errors which done by students. Whereas if the student has a pattern error and process error, actions taken can be more focused on the fault and why is that happen. NEA procedure provides a way for educators to evaluate student progress more comprehensively. In this study, students’ mistakes in working on some word problem about linear programming have been analyzed. As a result, mistakes are often made students exist in the modeling phase (transformation) and process skills (process skill) with the overall percentage distribution respectively 20% and 15%. According to the observations, these errors occur most commonly due to lack of precision of students in modeling and in hastiness calculation. Error analysis with students on this matter, it is expected educators can determine or use the right way to solve it in the next lesson.
2014-01-01
Background A linear programming (LP) model was proposed to create de-identified data sets that maximally include spatial detail (e.g., geocodes such as ZIP or postal codes, census blocks, and locations on maps) while complying with the HIPAA Privacy Rule’s Expert Determination method, i.e., ensuring that the risk of re-identification is very small. The LP model determines the transition probability from an original location of a patient to a new randomized location. However, it has a limitation for the cases of areas with a small population (e.g., median of 10 people in a ZIP code). Methods We extend the previous LP model to accommodate the cases of a smaller population in some locations, while creating de-identified patient spatial data sets which ensure the risk of re-identification is very small. Results Our LP model was applied to a data set of 11,740 postal codes in the City of Ottawa, Canada. On this data set we demonstrated the limitations of the previous LP model, in that it produces improbable results, and showed how our extensions to deal with small areas allows the de-identification of the whole data set. Conclusions The LP model described in this study can be used to de-identify geospatial information for areas with small populations with minimal distortion to postal codes. Our LP model can be extended to include other information, such as age and gender. PMID:24885457
Method of expanding hyperspheres - an interior algorithm for linear programming problems
Chandrupatla, T.
1994-12-31
A new interior algorithm using some properties of hyperspheres is proposed for the solution of linear programming problems with inequality constraints: maximize c{sup T} x subject to Ax {<=} b where c and rows of A are normalized in the Euclidean sense such that {parallel} c {parallel} = {radical}c{sup T}c = 1 {parallel} a{sub i} {parallel} {radical} A{sub i}A{sub i}{sup T} = 1 for i = 1 to m. The feasible region in the polytope bounded by the constraint planes. We start from an interior point. We pass a plane normal to c until it touches a constraint plane. Then the sphere is expanded so that it keeps contact with the previously touched planes and the expansion proceeds till it touches another plane. The procedure is continued till the sphere touches the c-plane and n constraint planes. We move to the center of the sphere and repeat the process. The interior maximum is reached when the radius of the expanded sphere is less than a critical value say {epsilon}. Problems of direction finding, determination of incoming constraint, sphere jamming, and evaluation of the initial feasible point are discussed.
Optimization of HDR brachytherapy dose distributions using linear programming with penalty costs
Alterovitz, Ron; Lessard, Etienne; Pouliot, Jean; Hsu, I-Chow Joe; O'Brien, James F.; Goldberg, Ken
2006-11-15
Prostate cancer is increasingly treated with high-dose-rate (HDR) brachytherapy, a type of radiotherapy in which a radioactive source is guided through catheters temporarily implanted in the prostate. Clinicians must set dwell times for the source inside the catheters so the resulting dose distribution minimizes deviation from dose prescriptions that conform to patient-specific anatomy. The primary contribution of this paper is to take the well-established dwell times optimization problem defined by Inverse Planning by Simulated Annealing (IPSA) developed at UCSF and exactly formulate it as a linear programming (LP) problem. Because LP problems can be solved exactly and deterministically, this formulation provides strong performance guarantees: one can rapidly find the dwell times solution that globally minimizes IPSA's objective function for any patient case and clinical criteria parameters. For a sample of 20 prostates with volume ranging from 23 to 103 cc, the new LP method optimized dwell times in less than 15 s per case on a standard PC. The dwell times solutions currently being obtained clinically using simulated annealing (SA), a probabilistic method, were quantitatively compared to the mathematically optimal solutions obtained using the LP method. The LP method resulted in significantly improved objective function values compared to SA (P=1.54x10{sup -7}), but none of the dosimetric indices indicated a statistically significant difference (P<0.01). The results indicate that solutions generated by the current version of IPSA are clinically equivalent to the mathematically optimal solutions.
Triple/quadruple patterning layout decomposition via novel linear programming and iterative rounding
NASA Astrophysics Data System (ADS)
Lin, Yibo; Xu, Xiaoqing; Yu, Bei; Baldick, Ross; Pan, David Z.
2016-03-01
As feature size of the semiconductor technology scales down to 10nm and beyond, multiple patterning lithography (MPL) has become one of the most practical candidates for lithography, along with other emerging technologies such as extreme ultraviolet lithography (EUVL), e-beam lithography (EBL) and directed self assembly (DSA). Due to the delay of EUVL and EBL, triple and even quadruple patterning are considered to be used for lower metal and contact layers with tight pitches. In the process of MPL, layout decomposition is the key design stage, where a layout is split into various parts and each part is manufactured through a separate mask. For metal layers, stitching may be allowed to resolve conflicts, while it is forbidden for contact and via layers. In this paper, we focus on the application of layout decomposition where stitching is not allowed such as for contact and via layers. We propose a linear programming and iterative rounding (LPIR) solving technique to reduce the number of non-integers in the LP relaxation problem. Experimental results show that the proposed algorithms can provide high quality decomposition solutions efficiently while introducing as few conflicts as possible.
Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment.
Karimzadehgan, Maryam; Zhai, Chengxiang
2012-07-01
Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching.
Quality evaluation of millet-soy blended extrudates formulated through linear programming.
Balasubramanian, S; Singh, K K; Patil, R T; Onkar, Kolhe K
2012-08-01
Whole pearl millet, finger millet and decorticated soy bean blended (millet soy) extrudates formulations were designed using a linear programming (LP) model to minimize the total cost of the finished product. LP formulated composite flour was extruded through twin screw food extruder at different feed rate (6.5-13.5 kg/h), screw speed (200-350 rpm, constant feed moisture (14% wb), barrel temperature (120 °C) and cutter speed (15 rpm). The physical, functional, textural and pasting characteristics of extrudates were examined and their responses were studied. Expansion index (2.31) and sectional expansion index (5.39) was found to be was found maximum for feed rate and screw speed combination 9.5 kg/h and 250 rpm. However, density (0.25 × 10(-3) g/mm(3)) was maximum for 9.5 kg/h and 300 rpm combination. Maximum color change (10.32) was found for 9.5 kg/h feed rate and 200 rpm screw speed. The lower hardness was obtained for the samples extruded at lowest feed rate (6.5 kg/h) for all screw speed and feed rate at 9.5 kg/h for 300-350 rpm screw speed. Peak viscosity decreases with all screw speed of 9.5 kg/h feed rate.
Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G
2012-01-01
Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.
How to use composite indicator and linear programming model for determine sustainable tourism.
Ziaabadi, Maryam; Malakootian, Mohammad; Zare Mehrjerdi, Mohammad Reza; Jalaee, Seied Abdolmajid; Mehrabi Boshrabadi, Hosein
2017-01-01
The tourism industry which is one of the most dynamic economic activities in today's world plays a significant role in the sustainable development. Therefore, in addition to paying attention to tourism, sustainable tourism must be taken into huge account; otherwise, the environment and its health will be damaged irreparably. To determine the level of sustainability in this study, indicators of sustainable tourism were first presented in three environmental health, economic and social aspects. Then, the levels of sustainable tourism and environmental sustainability were practically measured in different cities of Kerman Province using a composite indicator, a linear programming model, Delphi method and the questionnaire technique. Finally, the study cities (tourist attractions) were ranked. Result of this study showed that unfortunately the tourism opportunities were not used appropriately in these cities and tourist destinations, and that environmental aspect (health and environmental sustainability) had very bad situations compared to social and economic aspects. In other words, environmental health had the lowest levels of sustainability. The environment is a place for all human activities like tourism, social and economic issues; therefore, its stability and health is of great importance. Thus, it is necessary to pay more attention to sustainability of activities, management and environmental health in planning sustainable development in regional and national policy.
Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.
Talaei, Behzad; Jagannathan, Sarangapani; Singler, John
2017-03-02
This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.
Earthquake mechanisms from linear-programming inversion of seismic-wave amplitude ratios
Julian, B.R.; Foulger, G.R.
1996-01-01
The amplitudes of radiated seismic waves contain far more information about earthquake source mechanisms than do first-motion polarities, but amplitudes are severely distorted by the effects of heterogeneity in the Earth. This distortion can be reduced greatly by using the ratios of amplitudes of appropriately chosen seismic phases, rather than simple amplitudes, but existing methods for inverting amplitude ratios are severely nonlinear and require computationally intensive searching methods to ensure that solutions are globally optimal. Searching methods are particularly costly if general (moment tensor) mechanisms are allowed. Efficient linear-programming methods, which do not suffer from these problems, have previously been applied to inverting polarities and wave amplitudes. We extend these methods to amplitude ratios, in which formulation on inequality constraint for an amplitude ratio takes the same mathematical form as a polarity observation. Three-component digital data for an earthquake at the Hengill-Grensdalur geothermal area in southwestern Iceland illustrate the power of the method. Polarities of P, SH, and SV waves, unusually well distributed on the focal sphere, cannot distinguish between diverse mechanisms, including a double couple. Amplitude ratios, on the other hand, clearly rule out the double-couple solution and require a large explosive isotropic component.
Automatic design of synthetic gene circuits through mixed integer non-linear programming.
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.
TERA high gradient test program of RF cavities for medical linear accelerators
NASA Astrophysics Data System (ADS)
Degiovanni, A.; Amaldi, U.; Bonomi, R.; Garlasché, M.; Garonna, A.; Verdú-Andrés, S.; Wegner, R.
2011-11-01
The scientific community and the medical industries are putting a considerable effort into the design of compact, reliable and cheap accelerators for hadrontherapy. Up to now only circular accelerators are used to deliver beams with energies suitable for the treatment of deep seated tumors. The TERA Foundation has proposed and designed a hadrontherapy facility based on the cyclinac concept: a high gradient linear accelerator placed downstream of a cyclotron used as an injector. The overall length of the linac, and therefore its final cost, is almost inversely proportional to the average accelerating gradient achieved in the linac. TERA, in collaboration with the CLIC RF group, has started a high gradient test program. The main goal is to study the high gradient behavior of prototype cavities and to determine the appropriate linac operating frequency considering important issues such as machine reliability and availability of distributed power sources. A preliminary test of a 3 GHz cavity has been carried out at the beginning of 2010, giving encouraging results. Further investigations are planned before the end of 2011. A set of 5.7 GHz cavities is under production and will be tested in a near future. The construction and test of a multi-cell structure is also foreseen.
Gustafson, Eric J; Roberts, L Jay; Leefers, Larry A
2006-12-01
Forest management planners require analytical tools to assess the effects of alternative strategies on the sometimes disparate benefits from forests such as timber production and wildlife habitat. We assessed the spatial patterns of alternative management strategies by linking two models that were developed for different purposes. We used a linear programming model (Spectrum) to optimize timber harvest schedules, then a simulation model (HARVEST) to project those schedules in a spatially explicit way and produce maps from which the spatial pattern of habitat could be calculated. We demonstrated the power of this approach by evaluating alternative plans developed for a national forest plan revision in Wisconsin, USA. The amount of forest interior habitat was inversely related to the amount of timber cut, and increased under the alternatives compared to the current plan. The amount of edge habitat was positively related to the amount of timber cut, and increased under all alternatives. The amount of mature northern hardwood interior and edge habitat increased for all alternatives, but mature pine habitat area varied. Mature age classes of all forest types increased, and young classes decreased under all alternatives. The average size of patches (defined by age class) generally decreased. These results are consistent with the design goals of each of the alternatives, but reveal that the spatial differences among the alternatives are modest. These complementary models are valuable for quantifying and comparing the spatial effects of alternative management strategies.
Morris, Melody K.; Saez-Rodriguez, Julio; Lauffenburger, Douglas A.; Alexopoulos, Leonidas G.
2012-01-01
Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms. PMID:23226239
Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-06-02
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments.
An improved exploratory search technique for pure integer linear programming problems
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1990-01-01
The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.
Optimising the selection of food items for FFQs using Mixed Integer Linear Programming.
Gerdessen, Johanna C; Souverein, Olga W; van 't Veer, Pieter; de Vries, Jeanne Hm
2015-01-01
To support the selection of food items for FFQs in such a way that the amount of information on all relevant nutrients is maximised while the food list is as short as possible. Selection of the most informative food items to be included in FFQs was modelled as a Mixed Integer Linear Programming (MILP) model. The methodology was demonstrated for an FFQ with interest in energy, total protein, total fat, saturated fat, monounsaturated fat, polyunsaturated fat, total carbohydrates, mono- and disaccharides, dietary fibre and potassium. The food lists generated by the MILP model have good performance in terms of length, coverage and R 2 (explained variance) of all nutrients. MILP-generated food lists were 32-40 % shorter than a benchmark food list, whereas their quality in terms of R 2 was similar to that of the benchmark. The results suggest that the MILP model makes the selection process faster, more standardised and transparent, and is especially helpful in coping with multiple nutrients. The complexity of the method does not increase with increasing number of nutrients. The generated food lists appear either shorter or provide more information than a food list generated without the MILP model.
Optimizing financial effects of HIE: a multi-party linear programming approach.
Sridhar, Srikrishna; Brennan, Patricia Flatley; Wright, Stephen J; Robinson, Stephen M
2012-01-01
To describe an analytical framework for quantifying the societal savings and financial consequences of a health information exchange (HIE), and to demonstrate its use in designing pricing policies for sustainable HIEs. We developed a linear programming model to (1) quantify the financial worth of HIE information to each of its participating institutions and (2) evaluate three HIE pricing policies: fixed-rate annual, charge per visit, and charge per look-up. We considered three desired outcomes of HIE-related emergency care (modeled as parameters): preventing unrequired hospitalizations, reducing duplicate tests, and avoiding emergency department (ED) visits. We applied this framework to 4639 ED encounters over a 12-month period in three large EDs in Milwaukee, Wisconsin, using Medicare/Medicaid claims data, public reports of hospital admissions, published payer mix data, and use data from a not-for-profit regional HIE. For this HIE, data accesses produced net financial gains for all providers and payers. Gains, due to HIE, were more significant for providers with more health maintenance organizations patients. Reducing unrequired hospitalizations and avoiding repeat ED visits were responsible for more than 70% of the savings. The results showed that fixed annual subscriptions can sustain this HIE, while ensuring financial gains to all participants. Sensitivity analysis revealed that the results were robust to uncertainties in modeling parameters. Our specific HIE pricing recommendations depend on the unique characteristics of this study population. However, our main contribution is the modeling approach, which is broadly applicable to other populations.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2014-05-01
Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.
Efficient linear programming algorithm to generate the densest lattice sphere packings.
Marcotte, Étienne; Torquato, Salvatore
2013-06-01
Finding the densest sphere packing in d-dimensional Euclidean space R(d) is an outstanding fundamental problem with relevance in many fields, including the ground states of molecular systems, colloidal crystal structures, coding theory, discrete geometry, number theory, and biological systems. Numerically generating the densest sphere packings becomes very challenging in high dimensions due to an exponentially increasing number of possible sphere contacts and sphere configurations, even for the restricted problem of finding the densest lattice sphere packings. In this paper we apply the Torquato-Jiao packing algorithm, which is a method based on solving a sequence of linear programs, to robustly reproduce the densest known lattice sphere packings for dimensions 2 through 19. We show that the TJ algorithm is appreciably more efficient at solving these problems than previously published methods. Indeed, in some dimensions, the former procedure can be as much as three orders of magnitude faster at finding the optimal solutions than earlier ones. We also study the suboptimal local density-maxima solutions (inherent structures or "extreme" lattices) to gain insight about the nature of the topography of the "density" landscape.
A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem
NASA Technical Reports Server (NTRS)
Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad
2010-01-01
Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.
Optimal Reservoir Operation for Hydropower Generation using Non-linear Programming Model
NASA Astrophysics Data System (ADS)
Arunkumar, R.; Jothiprakash, V.
2012-05-01
Hydropower generation is one of the vital components of reservoir operation, especially for a large multi-purpose reservoir. Deriving optimal operational rules for such a large multi-purpose reservoir serving various purposes like irrigation, hydropower and flood control are complex, because of the large dimension of the problem and the complexity is more if the hydropower production is not an incidental. Thus optimizing the operations of a reservoir serving various purposes requires a systematic study. In the present study such a large multi-purpose reservoir, namely, Koyna reservoir operations are optimized for maximizing the hydropower production subject to the condition of satisfying the irrigation demands using a non-linear programming model. The hydropower production from the reservoir is analysed for three different dependable inflow conditions, representing wet, normal and dry years. For each dependable inflow conditions, various scenarios have been analyzed based on the constraints on the releases and the results are compared. The annual power production, combined monthly power production from all the powerhouses, end of month storage levels, evaporation losses and surplus are discussed. From different scenarios, it is observed that more hydropower can be generated for various dependable inflow conditions, if the restrictions on releases are slightly relaxed. The study shows that Koyna dam is having potential to generate more hydropower.
Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment
Karimzadehgan, Maryam; Zhai, ChengXiang
2011-01-01
Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970
Analysis of metabolic networks using a pathway distance metric through linear programming.
Simeonidis, Evangelos; Rison, Stuart C G; Thornton, Janet M; Bogle, I David L; Papageorgiou, Lazaros G
2003-07-01
The solution of the shortest path problem in biochemical systems constitutes an important step for studies of their evolution. In this paper, a linear programming (LP) algorithm for calculating minimal pathway distances in metabolic networks is studied. Minimal pathway distances are identified as the smallest number of metabolic steps separating two enzymes in metabolic pathways. The algorithm deals effectively with circularity and reaction directionality. The applicability of the algorithm is illustrated by calculating the minimal pathway distances for Escherichia coli small molecule metabolism enzymes, and then considering their correlations with genome distance (distance separating two genes on a chromosome) and enzyme function (as characterised by enzyme commission number). The results illustrate the effectiveness of the LP model. In addition, the data confirm that propinquity of genes on the genome implies similarity in function (as determined by co-involvement in the same region of the metabolic network), but suggest that no correlation exists between pathway distance and enzyme function. These findings offer insight into the probable mechanism of pathway evolution.
lpNet: a linear programming approach to reconstruct signal transduction networks.
Matos, Marta R A; Knapp, Bettina; Kaderali, Lars
2015-10-01
With the widespread availability of high-throughput experimental technologies it has become possible to study hundreds to thousands of cellular factors simultaneously, such as coding- or non-coding mRNA or protein concentrations. Still, extracting information about the underlying regulatory or signaling interactions from these data remains a difficult challenge. We present a flexible approach towards network inference based on linear programming. Our method reconstructs the interactions of factors from a combination of perturbation/non-perturbation and steady-state/time-series data. We show both on simulated and real data that our methods are able to reconstruct the underlying networks fast and efficiently, thus shedding new light on biological processes and, in particular, into disease's mechanisms of action. We have implemented the approach as an R package available through bioconductor. This R package is freely available under the Gnu Public License (GPL-3) from bioconductor.org (http://bioconductor.org/packages/release/bioc/html/lpNet.html) and is compatible with most operating systems (Windows, Linux, Mac OS) and hardware architectures. bettina.knapp@helmholtz-muenchen.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lefkoff, L.J.; Gorelick, S.M.
1987-01-01
A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)
Patricia K. Lebow; Henry Spelter; Peter J. Ince
2003-01-01
This report provides documentation and user information for FPL-PELPS, a personal computer price endogenous linear programming system for economic modeling. Originally developed to model the North American pulp and paper industry, FPL-PELPS follows its predecessors in allowing the modeling of any appropriate sector to predict consumption, production and capacity by...
Maillot, Matthieu; Ferguson, Elaine L; Drewnowski, Adam; Darmon, Nicole
2008-06-01
Nutrient profiling ranks foods based on their nutrient content. They may help identify foods with a good nutritional quality for their price. This hypothesis was tested using diet modeling with linear programming. Analyses were undertaken using food intake data from the nationally representative French INCA (enquête Individuelle et Nationale sur les Consommations Alimentaires) survey and its associated food composition and price database. For each food, a nutrient profile score was defined as the ratio between the previously published nutrient density score (NDS) and the limited nutrient score (LIM); a nutritional quality for price indicator was developed and calculated from the relationship between its NDS:LIM and energy cost (in euro/100 kcal). We developed linear programming models to design diets that fulfilled increasing levels of nutritional constraints at a minimal cost. The median NDS:LIM values of foods selected in modeled diets increased as the levels of nutritional constraints increased (P = 0.005). In addition, the proportion of foods with a good nutritional quality for price indicator was higher (P < 0.0001) among foods selected (81%) than among foods not selected (39%) in modeled diets. This agreement between the linear programming and the nutrient profiling approaches indicates that nutrient profiling can help identify foods of good nutritional quality for their price. Linear programming is a useful tool for testing nutrient profiling systems and validating the concept of nutrient profiling.
ERIC Educational Resources Information Center
Mills, James W.; And Others
1973-01-01
The Study reported here tested an application of the Linear Programming Model at the Reading Clinic of Drew University. Results, while not conclusive, indicate that this approach yields greater gains in speed scores than a traditional approach for this population. (Author)
USDA-ARS?s Scientific Manuscript database
Ready-to-use therapeutic food (RUTF) is the standard of care for children suffering from noncomplicated severe acute malnutrition (SAM). The objective was to develop a comprehensive linear programming (LP) tool to create novel RUTF formulations for Ethiopia. A systematic approach that surveyed inter...
CAMPBELL, PHILIP L.
1999-08-01
This report presents an implementation of the Berlekamp-Massey linear feedback shift-register (LFSR) synthesis algorithm in the C programming language. Two pseudo-code versions of the code are given, the operation of LFSRs is explained, C-version of the pseudo-code versions is presented, and the output of the code, when run on two input samples, is shown.
NASA Technical Reports Server (NTRS)
Geyser, L. C.
1978-01-01
A digital computer program, DYGABCD, was developed that generates linearized, dynamic models of simulated turbofan and turbojet engines. DYGABCD is based on an earlier computer program, DYNGEN, that is capable of calculating simulated nonlinear steady-state and transient performance of one- and two-spool turbojet engines or two- and three-spool turbofan engines. Most control design techniques require linear system descriptions. For multiple-input/multiple-output systems such as turbine engines, state space matrix descriptions of the system are often desirable. DYGABCD computes the state space matrices commonly referred to as the A, B, C, and D matrices required for a linear system description. The report discusses the analytical approach and provides a users manual, FORTRAN listings, and a sample case.
NASA Astrophysics Data System (ADS)
Chang, L.; Chen, Y.; Pan, C.
2009-12-01
Surface water resources are strongly influenced by hydrological conditions, and using only surface water resources as water supplies may have higher shortage risk than before because of the climate change caused by the global warming. Conjunctive use of surface and subsurface water is one of the most effective water resource practices to increase water supply reliability with minimal cost and environmental impact. Therefore, this paper presents a novel stepwise optimization model for optimizing the conjunctive use of surface and subsurface water resources management. At each time step, a two level decomposition approach was proposed to divide the nonlinear optimal conjunctive use problem into a linear surface water subproblem and a nonlinear groundwater subproblem. Because of the two level decomposition approach, a hybrid framework is used for the implementation of the conjunctive use model. In the hybrid framework, evolution algorithms, Genetic Algorithm (GA) and Artificial Neural Network (ANN), and Linear Programming (LP) are used for model solving. GA and LP are respectively used for determining the optimal pumping quantities and reservoir allocation, and ANN is used for the groundwater simulation. In the groundwater simulation, this study uses an ANN to simulate groundwater response and greatly reduce computational loading for unconfined aquifers, unlike conventional “response matrix method” or “embedding method”. Because of the very high performance of LP, the usage of LP for the linear surface water subproblem can significantly decrease the computational burden of entire model. In this study, four cases have been demonstrated. Case #1 is a pure surface water case and others are conjunctive use cases. In Case #2, “surface water supply firstly” is the supply principle between surface water. In Case #3 and #4, the “Index Balance” theory is the supply principle and different operation curves used in different cases respectively. The case result
Integrating Genomics and Proteomics Data to Predict Drug Effects Using Binary Linear Programming
Ji, Zhiwei; Su, Jing; Liu, Chenglin; Wang, Hongyan; Huang, Deshuang; Zhou, Xiaobo
2014-01-01
The Library of Integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding of biology by cataloging changes in gene expression and signal transduction that occur when cells are exposed to a variety of perturbations. It is helpful for understanding cell pathways and facilitating drug discovery. Here, we developed a novel approach to infer cell-specific pathways and identify a compound's effects using gene expression and phosphoproteomics data under treatments with different compounds. Gene expression data were employed to infer potential targets of compounds and create a generic pathway map. Binary linear programming (BLP) was then developed to optimize the generic pathway topology based on the mid-stage signaling response of phosphorylation. To demonstrate effectiveness of this approach, we built a generic pathway map for the MCF7 breast cancer cell line and inferred the cell-specific pathways by BLP. The first group of 11 compounds was utilized to optimize the generic pathways, and then 4 compounds were used to identify effects based on the inferred cell-specific pathways. Cross-validation indicated that the cell-specific pathways reliably predicted a compound's effects. Finally, we applied BLP to re-optimize the cell-specific pathways to predict the effects of 4 compounds (trichostatin A, MS-275, staurosporine, and digoxigenin) according to compound-induced topological alterations. Trichostatin A and MS-275 (both HDAC inhibitors) inhibited the downstream pathway of HDAC1 and caused cell growth arrest via activation of p53 and p21; the effects of digoxigenin were totally opposite. Staurosporine blocked the cell cycle via p53 and p21, but also promoted cell growth via activated HDAC1 and its downstream pathway. Our approach was also applied to the PC3 prostate cancer cell line, and the cross-validation analysis showed very good accuracy in predicting effects of 4 compounds. In summary, our computational model can be
Mitsos, Alexander; Melas, Ioannis N; Siminelakis, Paraskeuas; Chairakaki, Aikaterini D; Saez-Rodriguez, Julio; Alexopoulos, Leonidas G
2009-12-01
Understanding the mechanisms of cell function and drug action is a major endeavor in the pharmaceutical industry. Drug effects are governed by the intrinsic properties of the drug (i.e., selectivity and potency) and the specific signaling transduction network of the host (i.e., normal vs. diseased cells). Here, we describe an unbiased, phosphoproteomic-based approach to identify drug effects by monitoring drug-induced topology alterations. With our proposed method, drug effects are investigated under diverse stimulations of the signaling network. Starting with a generic pathway made of logical gates, we build a cell-type specific map by constraining it to fit 13 key phopshoprotein signals under 55 experimental conditions. Fitting is performed via an Integer Linear Program (ILP) formulation and solution by standard ILP solvers; a procedure that drastically outperforms previous fitting schemes. Then, knowing the cell's topology, we monitor the same key phosphoprotein signals under the presence of drug and we re-optimize the specific map to reveal drug-induced topology alterations. To prove our case, we make a topology for the hepatocytic cell-line HepG2 and we evaluate the effects of 4 drugs: 3 selective inhibitors for the Epidermal Growth Factor Receptor (EGFR) and a non-selective drug. We confirm effects easily predictable from the drugs' main target (i.e., EGFR inhibitors blocks the EGFR pathway) but we also uncover unanticipated effects due to either drug promiscuity or the cell's specific topology. An interesting finding is that the selective EGFR inhibitor Gefitinib inhibits signaling downstream the Interleukin-1alpha (IL1alpha) pathway; an effect that cannot be extracted from binding affinity-based approaches. Our method represents an unbiased approach to identify drug effects on small to medium size pathways which is scalable to larger topologies with any type of signaling interventions (small molecules, RNAi, etc). The method can reveal drug effects on
Integrating genomics and proteomics data to predict drug effects using binary linear programming.
Ji, Zhiwei; Su, Jing; Liu, Chenglin; Wang, Hongyan; Huang, Deshuang; Zhou, Xiaobo
2014-01-01
The Library of Integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding of biology by cataloging changes in gene expression and signal transduction that occur when cells are exposed to a variety of perturbations. It is helpful for understanding cell pathways and facilitating drug discovery. Here, we developed a novel approach to infer cell-specific pathways and identify a compound's effects using gene expression and phosphoproteomics data under treatments with different compounds. Gene expression data were employed to infer potential targets of compounds and create a generic pathway map. Binary linear programming (BLP) was then developed to optimize the generic pathway topology based on the mid-stage signaling response of phosphorylation. To demonstrate effectiveness of this approach, we built a generic pathway map for the MCF7 breast cancer cell line and inferred the cell-specific pathways by BLP. The first group of 11 compounds was utilized to optimize the generic pathways, and then 4 compounds were used to identify effects based on the inferred cell-specific pathways. Cross-validation indicated that the cell-specific pathways reliably predicted a compound's effects. Finally, we applied BLP to re-optimize the cell-specific pathways to predict the effects of 4 compounds (trichostatin A, MS-275, staurosporine, and digoxigenin) according to compound-induced topological alterations. Trichostatin A and MS-275 (both HDAC inhibitors) inhibited the downstream pathway of HDAC1 and caused cell growth arrest via activation of p53 and p21; the effects of digoxigenin were totally opposite. Staurosporine blocked the cell cycle via p53 and p21, but also promoted cell growth via activated HDAC1 and its downstream pathway. Our approach was also applied to the PC3 prostate cancer cell line, and the cross-validation analysis showed very good accuracy in predicting effects of 4 compounds. In summary, our computational model can be
Automatic identification of epileptic seizures from EEG signals using linear programming boosting.
Hassan, Ahnaf Rashik; Subasi, Abdulhamit
2016-11-01
Computerized epileptic seizure detection is essential for expediting epilepsy diagnosis and research and for assisting medical professionals. Moreover, the implementation of an epilepsy monitoring device that has low power and is portable requires a reliable and successful seizure detection scheme. In this work, the problem of automated epilepsy seizure detection using singe-channel EEG signals has been addressed. At first, segments of EEG signals are decomposed using a newly proposed signal processing scheme, namely complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Six spectral moments are extracted from the CEEMDAN mode functions and train and test matrices are formed afterward. These matrices are fed into the classifier to identify epileptic seizures from EEG signal segments. In this work, we implement an ensemble learning based machine learning algorithm, namely linear programming boosting (LPBoost) to perform classification. The efficacy of spectral features in the CEEMDAN domain is validated by graphical and statistical analyses. The performance of CEEMDAN is compared to those of its predecessors to further inspect its suitability. The effectiveness and the appropriateness of LPBoost are demonstrated as opposed to the commonly used classification models. Resubstitution and 10 fold cross-validation error analyses confirm the superior algorithm performance of the proposed scheme. The algorithmic performance of our epilepsy seizure identification scheme is also evaluated against state-of-the-art works in the literature. Experimental outcomes manifest that the proposed seizure detection scheme performs better than the existing works in terms of accuracy, sensitivity, specificity, and Cohen's Kappa coefficient. It can be anticipated that owing to its use of only one channel of EEG signal, the proposed method will be suitable for device implementation, eliminate the onus of clinicians for analyzing a large bulk of data manually, and
NASA Astrophysics Data System (ADS)
Singh, Vikas; Xu, Jinhui; Hoffmann, Kenneth R.; Noël, Peter B.; Walczak, Alan M.
2006-03-01
Multi-view imaging is the primary modality for high-spatial-resolution imaging of the vasculature. The 3D vascular structure can be reconstructed if the imaging geometries are determined using known corresponding point-pairs (or k-tuples) in two or more images. Because the accuracy improves with more input corresponding point-pairs, we propose a new technique to automatically determine corresponding point-pairs in multi-view (k-view) images, from 2D vessel image centerlines. We formulate the problem, first as a multi-partite graph-matching problem. Each 2D centerline point is a vertex; each individual graph contains all vessel-points (vertices) in an image. The weight ('cost') of the edges between vertices (in different graphs) is the shortest distance between the points' respective projection-lines. Using this construction, a universe of mappings (k-tuples) is created, each k-tuple having k vertices (one from each image). A k-tuple's weight is the sum of pair-wise 'costs' of its members. Ideally, a set of such mappings is desired that preserves the ordering of points along the vessel and minimizes an appropriate global cost function, such that all vertices (in all graphs) participate in at least one mapping. We formulate this problem as a special case of the well-studied Set-Cover problem with additional constraints. Then, the equivalent linear program is solved, and randomized-rounding techniques are used to yield a feasible set of mappings. Our algorithm is efficient and yields a theoretical quality guarantee. In simulations, the correct matching is achieved in ~98% cases, even with high input error. In clinical data, apparently correct matching is achieved in >90% cases. This method should provide the basis for improving the calculated 3D vasculature from multi-view data-sets.
NASA Technical Reports Server (NTRS)
Utku, S.
1969-01-01
A general purpose digital computer program for the in-core solution of linear equilibrium problems of structural mechanics is documented. The program requires minimum input for the description of the problem. The solution is obtained by means of the displacement method and the finite element technique. Almost any geometry and structure may be handled because of the availability of linear, triangular, quadrilateral, tetrahedral, hexahedral, conical, triangular torus, and quadrilateral torus elements. The assumption of piecewise linear deflection distribution insures monotonic convergence of the deflections from the stiffer side with decreasing mesh size. The stresses are provided by the best-fit strain tensors in the least squares at the mesh points where the deflections are given. The selection of local coordinate systems whenever necessary is automatic. The core memory is used by means of dynamic memory allocation, an optional mesh-point relabelling scheme and imposition of the boundary conditions during the assembly time.
Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report
1997-12-31
Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that people from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.
NASA Technical Reports Server (NTRS)
Dieudonne, J. E.
1978-01-01
A numerical technique was developed which generates linear perturbation models from nonlinear aircraft vehicle simulations. The technique is very general and can be applied to simulations of any system that is described by nonlinear differential equations. The computer program used to generate these models is discussed, with emphasis placed on generation of the Jacobian matrices, calculation of the coefficients needed for solving the perturbation model, and generation of the solution of the linear differential equations. An example application of the technique to a nonlinear model of the NASA terminal configured vehicle is included.
Li, Y P; Huang, G H
2006-11-01
In this study, an interval-parameter two-stage mixed integer linear programming (ITMILP) model is developed for supporting long-term planning of waste management activities in the City of Regina. In the ITMILP, both two-stage stochastic programming and interval linear programming are introduced into a general mixed integer linear programming framework. Uncertainties expressed as not only probability density functions but also discrete intervals can be reflected. The model can help tackle the dynamic, interactive and uncertain characteristics of the solid waste management system in the City, and can address issues concerning plans for cost-effective waste diversion and landfill prolongation. Three scenarios are considered based on different waste management policies. The results indicate that reasonable solutions have been generated. They are valuable for supporting the adjustment or justification of the existing waste flow allocation patterns, the long-term capacity planning of the City's waste management system, and the formulation of local policies and regulations regarding waste generation and management.
Tsantili, Ivi C; Karim, M Nazmul; Klapa, Maria I
2007-01-01
Background The need for discovery of alternative, renewable, environmentally friendly energy sources and the development of cost-efficient, "clean" methods for their conversion into higher fuels becomes imperative. Ethanol, whose significance as fuel has dramatically increased in the last decade, can be produced from hexoses and pentoses through microbial fermentation. Importantly, plant biomass, if appropriately and effectively decomposed, is a potential inexpensive and highly renewable source of the hexose and pentose mixture. Recently, the engineered (to also catabolize pentoses) anaerobic bacterium Zymomonas mobilis has been widely discussed among the most promising microorganisms for the microbial production of ethanol fuel. However, Z. mobilis genome having been fully sequenced in 2005, there is still a small number of published studies of its in vivo physiology and limited use of the metabolic engineering experimental and computational toolboxes to understand its metabolic pathway interconnectivity and regulation towards the optimization of its hexose and pentose fermentation into ethanol. Results In this paper, we reconstructed the metabolic network of the engineered Z. mobilis to a level that it could be modelled using the metabolic engineering methodologies. We then used linear programming (LP) analysis and identified the Z. mobilis metabolic boundaries with respect to various biological objectives, these boundaries being determined only by Z. mobilis network's stoichiometric connectivity. This study revealed the essential for bacterial growth reactions and elucidated the association between the metabolic pathways, especially regarding main product and byproduct formation. More specifically, the study indicated that ethanol and biomass production depend directly on anaerobic respiration stoichiometry and activity. Thus, enhanced understanding and improved means for analyzing anaerobic respiration and redox potential in vivo are needed to yield further
2012-01-01
Background Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. Results In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. Conclusions Our result demonstrates that metabolic profiling
Modeling the distribution of ciliate protozoa in the reticulo-rumen using linear programming.
Hook, S E; Dijkstra, J; Wright, A-D G; McBride, B W; France, J
2012-01-01
The flow of ciliate protozoa from the reticulo-rumen is significantly less than expected given the total density of rumen protozoa present. To maintain their numbers in the reticulo-rumen, protozoa can be selectively retained through association with feed particles and the rumen wall. Few mathematical models have been designed to model rumen protozoa in both the free-living and attached phases, and the data used in the models were acquired using classical techniques. It has therefore become necessary to provide an updated model that more accurately represents these microorganisms and incorporates the recent literature on distribution, sequestration, and generation times. This paper represents a novel approach to synthesizing experimental data on rumen microorganisms in a quantitative and structured manner. The development of a linear programming model of rumen protozoa in an approximate steady state will be described and applied to data from healthy ruminants consuming commonly fed diets. In the model, protozoa associated with the liquid phase and protozoa attached to particulate matter or sequestered against the rumen wall are distinguished. Growth, passage, death, and transfer of protozoa between both pools are represented. The results from the model application using the contrasting diets of increased forage content versus increased starch content indicate that the majority of rumen protozoa, 63 to 90%, are found in the attached phase, either attached to feed particles or sequestered on the rumen wall. A slightly greater proportion of protozoa are found in the attached phase in animals fed a hay diet compared with a starch diet. This suggests that experimental protocols that only sample protozoa from the rumen fluid could be significantly underestimating the size of the protozoal population of the rumen. Further data are required on the distribution of ciliate protozoa in the rumen of healthy animals to improve model development, but the model described herein
Wu, Z; Zhang, Y
2008-01-01
The double digestion problem for DNA restriction mapping has been proved to be NP-complete and intractable if the numbers of the DNA fragments become large. Several approaches to the problem have been tested and proved to be effective only for small problems. In this paper, we formulate the problem as a mixed-integer linear program (MIP) by following (Waterman, 1995) in a slightly different form. With this formulation and using state-of-the-art integer programming techniques, we can solve randomly generated problems whose search space sizes are many-magnitude larger than previously reported testing sizes.
DRIESSEN,BRIAN; SADEGH,NADER
2000-04-25
This work presents a method of finding near global optima to minimum-time trajectory generation problem for systems that would be linear if it were not for the presence of Coloumb friction. The required final state of the system is assumed to be maintainable by the system, and the input bounds are assumed to be large enough so that they can overcome the maximum static Coloumb friction force. Other than the previous work for generating minimum-time trajectories for non redundant robotic manipulators for which the path in joint space is already specified, this work represents, to the best of the authors' knowledge, the first approach for generating near global optima for minimum-time problems involving a nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway to simulate such a system numerically). The method closely resembles previous methods for generating minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear programming problem. For the nonlinear systems considered herein, the core operation is instead the solution of a mixed integer linear programming problem.
Fernandes, L.; Friedlander, A.; Guedes, M.; Judice, J.
2001-07-01
This paper addresses a General Linear Complementarity Problem (GLCP) that has found applications in global optimization. It is shown that a solution of the GLCP can be computed by finding a stationary point of a differentiable function over a set defined by simple bounds on the variables. The application of this result to the solution of bilinear programs and LCPs is discussed. Some computational evidence of its usefulness is included in the last part of the paper.
Mo, S.C.
1991-01-01
The successive linear programming technique is applied to obtain the optimum thermal flux in the reflector region of a high flux reactor using LEU fuel. The design variables are the reactor power, core radius and coolant channel thickness. The constraints are the cycle length, average heat flux and peak/average power density ratio. The characteristics of the optimum solutions with various constraints are discussed.
Mo, S.C.
1991-12-31
The successive linear programming technique is applied to obtain the optimum thermal flux in the reflector region of a high flux reactor using LEU fuel. The design variables are the reactor power, core radius and coolant channel thickness. The constraints are the cycle length, average heat flux and peak/average power density ratio. The characteristics of the optimum solutions with various constraints are discussed.
NASA Technical Reports Server (NTRS)
Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric
2014-01-01
We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.
Yang, X.
1998-12-31
Modeling ground motions from multi-shot, delay-fired mining blasts is important to the understanding of their source characteristics such as spectrum modulation. MineSeis is a MATLAB{reg_sign} (a computer language) Graphical User Interface (GUI) program developed for the effective modeling of these multi-shot mining explosions. The program provides a convenient and interactive tool for modeling studies. Multi-shot, delay-fired mining blasts are modeled as the time-delayed linear superposition of identical single shot sources in the program. These single shots are in turn modeled as the combination of an isotropic explosion source and a spall source. Mueller and Murphy`s (1971) model for underground nuclear explosions is used as the explosion source model. A modification of Anandakrishnan et al.`s (1997) spall model is developed as the spall source model. Delays both due to the delay-firing and due to the single-shot location differences are taken into account in calculating the time delays of the superposition. Both synthetic and observed single-shot seismograms can be used to construct the superpositions. The program uses MATLAB GUI for input and output to facilitate user interaction with the program. With user provided source and path parameters, the program calculates and displays the source time functions, the single shot synthetic seismograms and the superimposed synthetic seismograms. In addition, the program provides tools so that the user can manipulate the results, such as filtering, zooming and creating hard copies.
AESOP: A computer-aided design program for linear multivariable control systems
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L. C.
1982-01-01
An interactive computer program (AESOP) which solves quadratic optimal control and is discussed. The program can also be used to perform system analysis calculations such as transient and frequency responses, controllability, observability, etc., in support of the control and filter design computations.
Ahlfeld, D.P.; Dougherty, D.E.
1994-11-01
MODLP is a computational tool that may help design capture zones for controlling the movement of contaminated groundwater. It creates and solves linear optimization programs that contain constraints on hydraulic head or head differences in a groundwater system. The groundwater domain is represented by USGS MODFLOW groundwater flow simulation model. This document describes the general structure of the computer program, MODLP, the types of constraints that may be imposed, detailed input instructions, interpretation of the output, and the interaction with the MODFLOW simulation kernel.
Non-Linear Editing for the Smaller College-Level Production Program, Rev. 2.0.
ERIC Educational Resources Information Center
Tetzlaff, David
This paper focuses on a specific topic and contention: Non-linear editing earns its place in a liberal arts setting because it is a superior tool to teach the concepts of how moving picture discourse is constructed through editing. The paper first points out that most students at small liberal arts colleges are not going to wind up working…
NASA Technical Reports Server (NTRS)
Carlson, Harry W.
1985-01-01
The purpose here is to show how two linearized theory computer programs in combination may be used for the design of low speed wing flap systems capable of high levels of aerodynamic efficiency. A fundamental premise of the study is that high levels of aerodynamic performance for flap systems can be achieved only if the flow about the wing remains predominantly attached. Based on this premise, a wing design program is used to provide idealized attached flow camber surfaces from which candidate flap systems may be derived, and, in a following step, a wing evaluation program is used to provide estimates of the aerodynamic performance of the candidate systems. Design strategies and techniques that may be employed are illustrated through a series of examples. Applicability of the numerical methods to the analysis of a representative flap system (although not a system designed by the process described here) is demonstrated in a comparison with experimental data.
Communications oriented programming of parallel iterative solutions of sparse linear systems
NASA Technical Reports Server (NTRS)
Patrick, M. L.; Pratt, T. W.
1986-01-01
Parallel algorithms are developed for a class of scientific computational problems by partitioning the problems into smaller problems which may be solved concurrently. The effectiveness of the resulting parallel solutions is determined by the amount and frequency of communication and synchronization and the extent to which communication can be overlapped with computation. Three different parallel algorithms for solving the same class of problems are presented, and their effectiveness is analyzed from this point of view. The algorithms are programmed using a new programming environment. Run-time statistics and experience obtained from the execution of these programs assist in measuring the effectiveness of these algorithms.
Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami
2017-08-01
Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. The software is implemented in Matlab, and is provided as supplementary information . hyunseob.song@pnnl.gov. Supplementary data are available at Bioinformatics online.
Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B
2012-09-11
In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.
NASA Astrophysics Data System (ADS)
Qin, Chunbin; Zhang, Huaguang; Luo, Yanhong
2014-05-01
In this paper, a novel theoretic formulation based on adaptive dynamic programming (ADP) is developed to solve online the optimal tracking problem of the continuous-time linear system with unknown dynamics. First, the original system dynamics and the reference trajectory dynamics are transformed into an augmented system. Then, under the same performance index with the original system dynamics, an augmented algebraic Riccati equation is derived. Furthermore, the solutions for the optimal control problem of the augmented system are proven to be equal to the standard solutions for the optimal tracking problem of the original system dynamics. Moreover, a new online algorithm based on the ADP technique is presented to solve the optimal tracking problem of the linear system with unknown system dynamics. Finally, simulation results are given to verify the effectiveness of the theoretic results.
NASA Astrophysics Data System (ADS)
Zhang, Chenglong; Guo, Ping
2017-10-01
The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.
NASA Technical Reports Server (NTRS)
Maskew, B.
1982-01-01
VSAERO is a computer program used to predict the nonlinear aerodynamic characteristics of arbitrary three-dimensional configurations in subsonic flow. Nonlinear effects of vortex separation and vortex surface interaction are treated in an iterative wake-shape calculation procedure, while the effects of viscosity are treated in an iterative loop coupling potential-flow and integral boundary-layer calculations. The program employs a surface singularity panel method using quadrilateral panels on which doublet and source singularities are distributed in a piecewise constant form. This user's manual provides a brief overview of the mathematical model, instructions for configuration modeling and a description of the input and output data. A listing of a sample case is included.
Numerical Scheme for Viability Computation Using Randomized Technique with Linear Programming
Djeridane, Badis
2008-06-12
We deal with the problem of computing viability sets for nonlinear continuous or hybrid systems. Our main objective is to beat the curse of dimensionality, that is, we want to avoid the exponential growth of required computational resource with respect to the dimension of the system. We propose a randomized approach for viability computation: we avoid griding the state-space, use random extraction of points instead, and the computation of viable set test is formulated as a classical feasibility problem. This algorithm was implemented successfully to linear and nonlinear examples. We provide comparison of our results with results of other method.
Dose and linear energy transfer spectral measurements for the supersonic transport program
NASA Technical Reports Server (NTRS)
Philbrick, R. B.
1972-01-01
The purpose of the package, called the high altitude radiation instrumentation system (HARIS), is to measure the radiation hazard to supersonic transport passengers from solar and galactic cosmic rays. The HARIS includes gaseous linear energy transfer spectrometer, a tissue equivalent ionization chamber, and a geiger meuller tube. The HARIS is flown on RB-57F aircraft at 60,000 feet. Data from the HARIS are reduced to give rad and rem dose rates measured by the package during the flights. Results presented include ambient data obtained on background flights, altitude comparison data, and solar flare data.
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Akyuz, F. A.; Heer, E.
1972-01-01
This program, an extension of the linear equilibrium problem solver ELAS, is an updated and extended version of its earlier form (written in FORTRAN 2 for the IBM 7094 computer). A synchronized material property concept utilizing incremental time steps and the finite element matrix displacement approach has been adopted for the current analysis. A special option enables employment of constant time steps in the logarithmic scale, thereby reducing computational efforts resulting from accumulative material memory effects. A wide variety of structures with elastic or viscoelastic material properties can be analyzed by VISCEL. The program is written in FORTRAN 5 language for the Univac 1108 computer operating under the EXEC 8 system. Dynamic storage allocation is automatically effected by the program, and the user may request up to 195K core memory in a 260K Univac 1108/EXEC 8 machine. The physical program VISCEL, consisting of about 7200 instructions, has four distinct links (segments), and the compiled program occupies a maximum of about 11700 words decimal of core storage.
ERIC Educational Resources Information Center
Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.
This student text presents instructional materials for a unit of mathematics within the Biomedical Interdisciplinary Curriculum Project (BICP), a two-year interdisciplinary precollege curriculum aimed at preparing high school students for entry into college and vocational programs leading to a career in the health field. Lessons concentrate on…
ERIC Educational Resources Information Center
Bennett, Susan V.; Calderone, Cynthia; Dedrick, Robert F.; Gunn, AnnMarie Alberton
2015-01-01
In this mixed method research, we examined the effects of reading and singing software program (RSSP) as a reading intervention on struggling readers' reading achievement as measured by the Florida Comprehensive Assessment Test, the high stakes state test administered in the state of Florida, at one elementary school. Our team defined struggling…
ERIC Educational Resources Information Center
Bennett, Susan V.; Calderone, Cynthia; Dedrick, Robert F.; Gunn, AnnMarie Alberton
2015-01-01
In this mixed method research, we examined the effects of reading and singing software program (RSSP) as a reading intervention on struggling readers' reading achievement as measured by the Florida Comprehensive Assessment Test, the high stakes state test administered in the state of Florida, at one elementary school. Our team defined struggling…
Liu Zhongyi Sun, Wenyu Tian Fangbao
2009-10-15
This paper proposes an infeasible interior-point algorithm with full-Newton step for linear programming, which is an extension of the work of Roos (SIAM J. Optim. 16(4):1110-1136, 2006). The main iteration of the algorithm consists of a feasibility step and several centrality steps. We introduce a kernel function in the algorithm to induce the feasibility step. For parameter p element of [0,1], the polynomial complexity can be proved and the result coincides with the best result for infeasible interior-point methods, that is, O(nlog n/{epsilon})
Joustra, P E; de Wit, J; Struben, V M D; Overbeek, B J H; Fockens, P; Elkhuizen, S G
2010-03-01
To reduce the access times of an endoscopy department, we developed an iterative combination of Discrete Event simulation and Integer Linear Programming. We developed the method in the Endoscopy Department of the Academic Medical Center in Amsterdam and compared different scenarios to reduce the access times for the department. The results show that by a more effective allocation of the current capacity, all procedure types will meet their corresponding performance targets in contrast to the current situation. This improvement can be accomplished without requiring additional equipment and staff. Currently, our recommendations are implemented.
Lorenzo-Seva, Urbano; Ferrando, Pere J
2011-03-01
We provide an SPSS program that implements currently recommended techniques and recent developments for selecting variables in multiple linear regression analysis via the relative importance of predictors. The approach consists of: (1) optimally splitting the data for cross-validation, (2) selecting the final set of predictors to be retained in the equation regression, and (3) assessing the behavior of the chosen model using standard indices and procedures. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.
Safikhani, Zhaleh; Sadeghi, Mehdi; Pezeshk, Hamid; Eslahchi, Changiz
2013-01-01
Recent advances in the sequencing technologies have provided a handful of RNA-seq datasets for transcriptome analysis. However, reconstruction of full-length isoforms and estimation of the expression level of transcripts with a low cost are challenging tasks. We propose a novel de novo method named SSP that incorporates interval integer linear programming to resolve alternatively spliced isoforms and reconstruct the whole transcriptome from short reads. Experimental results show that SSP is fast and precise in determining different alternatively spliced isoforms along with the estimation of reconstructed transcript abundances. The SSP software package is available at http://www.bioinf.cs.ipm.ir/software/ssp.
Mathur, Rinku; Adlakha, Neeru
2014-06-01
Phylogenetic trees give the information about the vertical relationships of ancestors and descendants but phylogenetic networks are used to visualize the horizontal relationships among the different organisms. In order to predict reticulate events there is a need to construct phylogenetic networks. Here, a Linear Programming (LP) model has been developed for the construction of phylogenetic network. The model is validated by using data sets of chloroplast of 16S rRNA sequences of photosynthetic organisms and Influenza A/H5N1 viruses. Results obtained are in agreement with those obtained by earlier researchers.
Leroy, Jef L; García-Guerra, Armando; García, Raquel; Dominguez, Clara; Rivera, Juan; Neufeld, Lynnette M
2008-04-01
The goal of this study was to evaluate the impact of Mexico's conditional cash transfer program, Oportunidades, on the growth of children <24 mo of age living in urban areas. Beneficiary families received cash transfers, a fortified food (targeted to pregnant and lactating women, children 6-23 mo, and children with low weight 2-4 y), and curative health services, among other benefits. Program benefits were conditional on preventative health care utilization and attendance of health and nutrition education sessions. We estimated the impact of the program after 2 y of operation in a panel of 432 children <24 mo of age at baseline (2002). We used difference-in-difference propensity score matching, which takes into account nonrandom program participation and the effects of unobserved fixed characteristics on outcomes. All models controlled for child age, sex, baseline anthropometry, and maternal height. Anthropometric Z-scores were calculated using the new WHO growth reference standards. There was no overall association between program participation and growth in children 6 to 24 mo of age. Children in intervention families younger than 6 mo of age at baseline grew 1.5 cm (P < 0.05) more than children in comparison families, corresponding to 0.41 height-for-age Z-scores (HAZ) (P < 0.05). They also gained an additional 0.76 kg (P < 0.01) or 0.47 weight-for-height Z-scores (P < 0.05). Children living in the poorest intervention households tended (0.05 < P < 0.10) to be taller than comparison children (0.9 cm, 0.27 HAZ). Oportunidades, with its strong nutrition component, is an effective tool to improve the growth of infants in poor urban households.
Serang, Oliver
2012-01-01
Linear programming (LP) problems are commonly used in analysis and resource allocation, frequently surfacing as approximations to more difficult problems. Existing approaches to LP have been dominated by a small group of methods, and randomized algorithms have not enjoyed popularity in practice. This paper introduces a novel randomized method of solving LP problems by moving along the facets and within the interior of the polytope along rays randomly sampled from the polyhedral cones defined by the bounding constraints. This conic sampling method is then applied to randomly sampled LPs, and its runtime performance is shown to compare favorably to the simplex and primal affine-scaling algorithms, especially on polytopes with certain characteristics. The conic sampling method is then adapted and applied to solve a certain quadratic program, which compute a projection onto a polytope; the proposed method is shown to outperform the proprietary software Mathematica on large, sparse QP problems constructed from mass spectometry-based proteomics. PMID:22952741
Serang, Oliver
2012-01-01
Linear programming (LP) problems are commonly used in analysis and resource allocation, frequently surfacing as approximations to more difficult problems. Existing approaches to LP have been dominated by a small group of methods, and randomized algorithms have not enjoyed popularity in practice. This paper introduces a novel randomized method of solving LP problems by moving along the facets and within the interior of the polytope along rays randomly sampled from the polyhedral cones defined by the bounding constraints. This conic sampling method is then applied to randomly sampled LPs, and its runtime performance is shown to compare favorably to the simplex and primal affine-scaling algorithms, especially on polytopes with certain characteristics. The conic sampling method is then adapted and applied to solve a certain quadratic program, which compute a projection onto a polytope; the proposed method is shown to outperform the proprietary software Mathematica on large, sparse QP problems constructed from mass spectometry-based proteomics.
NASA Technical Reports Server (NTRS)
Hauser, F. D.; Szollosi, G. D.; Lakin, W. S.
1972-01-01
COEBRA, the Computerized Optimization of Elastic Booster Autopilots, is an autopilot design program. The bulk of the design criteria is presented in the form of minimum allowed gain/phase stability margins. COEBRA has two optimization phases: (1) a phase to maximize stability margins; and (2) a phase to optimize structural bending moment load relief capability in the presence of minimum requirements on gain/phase stability margins.
Advances in Normal Conducting Accelerator Technology from the X-Band Linear Collider Program
Adolphsen, C; /SLAC
2005-06-22
In the mid-1990's, groups at SLAC and KEK began dedicated development of X-band (11.4 GHz) rf technology for a next generation, TeV-scale linear collider. The choice of a relatively high frequency, four times that of the SLAC 50 GeV Linac, was motivated by the cost benefits of having lower rf energy per pulse (hence fewer rf sources) and reasonable efficiencies at high gradients (hence shorter linacs). To realize such savings, however, requires operation at gradients and peak powers much higher than that hitherto achieved. During the past twelve years, these challenges were met through innovations on several fronts. This paper reviews these achievements, which include developments in the generation and transport of high power rf, and new insights into high gradient limitations.
Dalla-Favera, Natalia; Hamacek, Josef; Borkovec, Michal; Jeannerat, Damien; Gumy, Frédéric; Bünzli, Jean-Claude G; Ercolani, Gianfranco; Piguet, Claude
2008-01-01
The contribution of the solvation energies to the assembly of polynuclear helicates reduces the free energy of intermetallic repulsion, DeltaE(MM), in condensed phase to such an extent that stable D(3)-symmetrical tetranuclear lanthanide-containing triple-stranded helicates [Ln(4)(L4)(3)](12+) are quantitatively produced at millimolar concentrations, despite the twelve positive charge borne by these complexes. A detailed modelling of the formation constants using statistical factors, adapted to self-assembly processes involving intra- and intermolecular connections, provides a set of five microscopic parameters, which can be successfully used for rationalizing the stepwise generation of linear bi-, tri- and tetranuclear analogues. Photophysical studies of [Eu(4)(L4)(3)](12+) confirm the existence of two different binding sites producing differentiated metal-centred emission at low temperature, which transforms into single site luminescence at room temperature because of intramolecular energy funelling processes.
NASA Astrophysics Data System (ADS)
Ellis, J. H.; McBean, E. A.; Farquhar, G. J.
A Linear Programming model is presented for development of acid rain abatement strategies in eastern North America. For a system comprised of 235 large controllable point sources and 83 uncontrolled area sources, it determines the least-cost method of reducing SO 2 emissions to satisfy maximum wet sulfur deposition limits at 20 sensitive receptor locations. In this paper, the purely deterministic model is extended to a probabilistic form by incorporating the effects of meteorologic variability on the long-range pollutant transport processes. These processes are represented by source-receptor-specific transfer coefficients. Experiments for quantifying the spatial variability of transfer coefficients showed their distributions to be approximately lognormal with logarithmic standard deviations consistently about unity. Three methods of incorporating second-moment random variable uncertainty into the deterministic LP framework are described: Two-Stage Programming Under Uncertainty (LPUU), Chance-Constrained Programming (CCP) and Stochastic Linear Programming (SLP). A composite CCP-SLP model is developed which embodies the two-dimensional characteristics of transfer coefficient uncertainty. Two probabilistic formulations are described involving complete colinearity and complete noncolinearity for the transfer coefficient covariance-correlation structure. Complete colinearity assumes complete dependence between transfer coefficients. Complete noncolinearity assumes complete independence. The completely colinear and noncolinear formulations are considered extreme bounds in a meteorologic sense and yield abatement strategies of largely didactic value. Such strategies can be characterized as having excessive costs and undesirable deposition results in the completely colinear case and absence of a clearly defined system risk level (other than expected-value) in the noncolinear formulation.
Zou, Rui; Liu, Yong; Yu, Yajuan
2013-01-01
The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of “low risk and high return efficiency” in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management. PMID:24191144
Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan
2013-01-01
The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.
Brown, Angus M
2006-04-01
The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.
Linear Regression Modeling of Selected Analytes from the Balad Air Sampling Program
2012-04-05
Modeling of Selected Analytes from the Balad Air Sampling Program by Major Hildehardo Viado, Jr. Environmental Science Engineer Officer United...sampling site distances in kilometers…………………....24 Table 2-3. Material source(s) of combustion and potential health risks from exposure for the...13 Figure 2-3. Contract workers segregating waste materials at Camp Taji, Iraq…..………………………………………………………………....16 Figure 2-4. Camp Taji, Iraq
CAD of control systems: Application of nonlinear programming to a linear quadratic formulation
NASA Technical Reports Server (NTRS)
Fleming, P.
1983-01-01
The familiar suboptimal regulator design approach is recast as a constrained optimization problem and incorporated in a Computer Aided Design (CAD) package where both design objective and constraints are quadratic cost functions. This formulation permits the separate consideration of, for example, model following errors, sensitivity measures and control energy as objectives to be minimized or limits to be observed. Efficient techniques for computing the interrelated cost functions and their gradients are utilized in conjunction with a nonlinear programming algorithm. The effectiveness of the approach and the degree of insight into the problem which it affords is illustrated in a helicopter regulation design example.
A Decomposition Method and Its Application to Block Angular Linear Programs.
1981-01-01
Theorem 2.2 If the f. are strongly convex then the ft are finite every-1 2. where and are Lipschitz continuously differentiable . Hence g is also finite...everywhere and is Lipschitz continuously differentiable . -10- . . . . ." The derivative g’ of g at the point y is given by 9 (y) - a- A.(x.(y)) where...the dual problem (2.5) and the quadratic programming problems (3.2).. Recall that g(y) is a Lipschitz continuously differentiable function, so to solve
Ament, D; Ho, J; Loute, E; Remmelswaal, M
1980-06-01
Nested decomposition of linear programs is the result of a multilevel, hierarchical application of the Dantzig-Wolfe decomposition principle. The general structure is called lower block-triangular, and permits direct accounting of long-term effects of investment, service life, etc. LIFT, an algorithm for solving lower block triangular linear programs, is based on state-of-the-art modular LP software. The algorithmic and software aspects of LIFT are outlined, and computational results are presented. 5 figures, 6 tables. (RWR)
Knapp, Bettina; Kaderali, Lars
2013-01-01
Perturbation experiments for example using RNA interference (RNAi) offer an attractive way to elucidate gene function in a high throughput fashion. The placement of hit genes in their functional context and the inference of underlying networks from such data, however, are challenging tasks. One of the problems in network inference is the exponential number of possible network topologies for a given number of genes. Here, we introduce a novel mathematical approach to address this question. We formulate network inference as a linear optimization problem, which can be solved efficiently even for large-scale systems. We use simulated data to evaluate our approach, and show improved performance in particular on larger networks over state-of-the art methods. We achieve increased sensitivity and specificity, as well as a significant reduction in computing time. Furthermore, we show superior performance on noisy data. We then apply our approach to study the intracellular signaling of human primary nave CD4(+) T-cells, as well as ErbB signaling in trastuzumab resistant breast cancer cells. In both cases, our approach recovers known interactions and points to additional relevant processes. In ErbB signaling, our results predict an important role of negative and positive feedback in controlling the cell cycle progression.
Current Status of the Next Linear Collider X-Band Klystron Development Program
Caryotakis, G.; Haase, A.A.; Jongewaard, E.N.; Pearson, C.; Sprehn, D.W.; /SLAC
2005-05-09
Klystrons capable of driving accelerator sections in the Next Linear Collider (NLC) have been developed at SLAC during the last decade. In addition to fourteen 50 MW solenoid-focused devices and a 50 MW Periodic Permanent Magnet focused (PPM) klystron, a 500 kV 75 MW PPM klystron was tested in 1999 to 80 MW with 3 {micro}s pulses, but very low duty. Subsequent 75 MW prototypes aimed for low-cost manufacture by employing reusable focusing structures external to the vacuum, similar to a solenoid electromagnet. During the PPM klystron development, several partners (CPI, EEV and Toshiba) have participated by constructing partial or complete PPM klystrons. After early failures during testing of the first two devices, SLAC has recently tested this design (XP3-3) to the full NLC specifications of 75 MW, 1.6 {micro}s pulse length, and 120 Hz. This 14.4 kW average power operation came with an efficiency of 50%. The XP3-3 average and peak output power, together with the focusing method, arguably makes it the most advanced high power klystron ever built anywhere in the world. Design considerations and test results for these latest prototypes will be presented.
Experimental program to build a multimegawatt lasertron for super linear colliders
Garwin, E.L.; Herrmannsfeldt, W.B.; Sinclair, C.; Weaver, J.N.; Welch, J.J.; Wilson, P.B.
1985-04-01
A lasertron (a microwave ''triode'' with an RF output cavity and an RF modulated laser to illuminate a photocathode) is a possible high power RF amplifier for TeV linear colliders. As the first step toward building a 35 MW, S-band lasertron for a proof of principle demonstration, a 400 kV dc diode is being designed with a GaAs photocathode, a drift-tube and a collector. After some cathode life tests are made in the diode, an RF output cavity will replace the drift tube and a mode-locked, frequency-doubled, Nd:YAG laser, modulated to produce a 1 us-long comb of 60 ps pulses at a 2856 MHz rate, will be used to illuminate the photocathode to make an RF power source out of the device. This paper discusses the plans for the project and includes some results of numerical simulation studies of the lasertron as well as some of the ultra-high vacuum and mechanical design requirements for incorporating a photocathode.
IKE: An interactive klystron evaluation program for SLAC linear collider klystron performance
Kleban, S.D.; Koontz, R.F.; Vlieks, A.E.
1987-03-01
When the new 65 MW klystrons for the SLC were planned, a computer based interlock and data recording system was implemented in the general electronics upgrade. Significant klystron operating parameters are interlocked and displayed in the SLC central control room through the VAX control computer. A program titled ''IKE'' has been written to record klystron operating data each day, store the data in a database, and provide various sorted operating and statistical information to klystron engineers, and maintenance personnel in the form of terminal listings, bar graphs, and special printed reports. This paper gives an overview of the IKE system, describes its use as a klystron maintenance tool, and explains why it is valuable to klystron engineers.
Blumberg, Leonid M; Desmet, Gert
2016-12-09
The mixing rate (Rϕ) is the temporal rate of increase in the solvent strength in gradient LC. The optimal Rϕ (Rϕ,Opt) is the one at which a required peak capacity of gradient LC analysis is obtained in the shortest time. The balanced mixing program is a one where, for better separation of early eluting solutes, the mixing ramp is preceded by a balanced isocratic hold of the duration depending on Rϕ. The improvement in the separation of the earlier eluites due to the balanced programming has been evaluated. The value of Rϕ,Opt depends on the solvent composition range covered by the mixing ramp and on the column pressure conditions. The Rϕ,Opt for a column operating at maximum instrumental pressure is different from Rϕ,Opt for a column operating below the instrumental pressure limit. On the other hand, it has been shown that the difference in the Rϕ,Opt values under different conditions is not very large so that a single default Rϕ previously recommended for gradient analyses without the isocratic hold also yields a good approximation to the shortest analysis time for all conditions in the balanced analyses. With or without the initial balance isocratic hold, the recommended default Rϕ is about 5%/t0 (5% increase in the solvent strength per each t0-long increment in time) for small-molecule samples, and about an order of magnitude slower (0.5%/t0) for protein samples. A discussion illustrating the use of the optimization criteria employed here for the techniques other than LSS gradient LC is included.
Johnson, Glen D; Mesler, Kristine; Kacica, Marilyn A
2017-02-06
Objective The objective is to estimate community needs with respect to risky adolescent sexual behavior in a way that is risk-adjusted for multiple community factors. Methods Generalized linear mixed modeling was applied for estimating teen pregnancy and sexually transmitted disease (STD) incidence by postal ZIP code in New York State, in a way that adjusts for other community covariables and residual spatial autocorrelation. A community needs index was then obtained by summing the risk-adjusted estimates of pregnancy and STD cases. Results Poisson regression with a spatial random effect was chosen among competing modeling approaches. Both the risk-adjusted caseloads and rates were computed for ZIP codes, which allowed risk-based prioritization to help guide funding decisions for a comprehensive adolescent pregnancy prevention program. Conclusions This approach provides quantitative evidence of community needs with respect to risky adolescent sexual behavior, while adjusting for other community-level variables and stabilizing estimates in areas with small populations. Therefore, it was well accepted by the affected groups and proved valuable for program planning. This methodology may also prove valuable for follow up program evaluation. Current research is directed towards further improving the statistical modeling approach and applying to different health and behavioral outcomes, along with different predictor variables.
Nowak, Christoph; Heinrichs, Nina
2008-09-01
A meta-analysis encompassing all studies evaluating the impact of the Triple P-Positive Parenting Program on parent and child outcome measures was conducted in an effort to identify variables that moderate the program's effectiveness. Hierarchical linear models (HLM) with three levels of data were employed to analyze effect sizes. The results (N=55 studies) indicate that Triple P causes positive changes in parenting skills, child problem behavior and parental well-being in the small to moderate range, varying as a function of the intensity of the intervention. The most salient findings of variables moderating the interventions' impact were larger effects found on parent report as compared to observational measures and more improvement associated with more intensive formats and initially more distressed families. Sample characteristics (e.g., child's age, being a boy) and methodological features (e.g., study quality) exhibited different degrees of predictive power. The analysis clearly identified several strengths of the Triple P system, most importantly its ability to effect meaningful improvement in parents and children. Some limitations pertain to the small evidence-base of certain formats of Triple P and the lack of follow-up data beyond 3 years after the intervention. Many of the present findings may be relevant to other evidence-based parenting programs.
Okubo, Hitomi; Sasaki, Satoshi; Murakami, Kentaro; Yokoyama, Tetsuji; Hirota, Naoko; Notsu, Akiko; Fukui, Mitsuru; Date, Chigusa
2015-06-06
Simultaneous dietary achievement of a full set of nutritional recommendations is difficult. Diet optimization model using linear programming is a useful mathematical means of translating nutrient-based recommendations into realistic nutritionally-optimal food combinations incorporating local and culture-specific foods. We used this approach to explore optimal food intake patterns that meet the nutrient recommendations of the Dietary Reference Intakes (DRIs) while incorporating typical Japanese food selections. As observed intake values, we used the food and nutrient intake data of 92 women aged 31-69 years and 82 men aged 32-69 years living in three regions of Japan. Dietary data were collected with semi-weighed dietary record on four non-consecutive days in each season of the year (16 days total). The linear programming models were constructed to minimize the differences between observed and optimized food intake patterns while also meeting the DRIs for a set of 28 nutrients, setting energy equal to estimated requirements, and not exceeding typical quantities of each food consumed by each age (30-49 or 50-69 years) and gender group. We successfully developed mathematically optimized food intake patterns that met the DRIs for all 28 nutrients studied in each sex and age group. Achieving nutritional goals required minor modifications of existing diets in older groups, particularly women, while major modifications were required to increase intake of fruit and vegetables in younger groups of both sexes. Across all sex and age groups, optimized food intake patterns demanded greatly increased intake of whole grains and reduced-fat dairy products in place of intake of refined grains and full-fat dairy products. Salt intake goals were the most difficult to achieve, requiring marked reduction of salt-containing seasoning (65-80%) in all sex and age groups. Using a linear programming model, we identified optimal food intake patterns providing practical food choices and
NASA Astrophysics Data System (ADS)
Mori, Masayuki; Inakazu, Toyono; Koizumi, Akira; Watanabe, Haruhiko; Arai, Yasuhiro; Nishizawa, Tsunehiko
The purpose of this study is to propose an economical and steady planning model of long-term replacement project on water distribution system to co nsider uncertainty of water demand in future. For economical efficiency as the first objective, the model deals with minimization of expected value of total cost in a planning period. Assuming that uncertainty of future water demand appears as width of estimated cost variation, the second objective is minimization of total cost width. Two LP (Linear Programming) models are defined for the first and the second objectives respectively. Successively, we propose a Fuzzy LP model with two objectives combining each characteristic of the two models. Case study demonstrates that the proposed model has advantage achieving balance of these two objectives well over the two models, and usefulness of the proposed one is confirmed. Furthermore, through comparison of produced plans by the three models, meanings of both economic efficiency and steadiness in the pipeline replacement planning are considered.
NASA Technical Reports Server (NTRS)
Houts, R. C.; Burlage, D. W.
1972-01-01
A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.
Catanzaro, Daniele; Shackney, Stanley E; Schaffer, Alejandro A; Schwartz, Russell
2016-01-01
Ductal Carcinoma In Situ (DCIS) is a precursor lesion of Invasive Ductal Carcinoma (IDC) of the breast. Investigating its temporal progression could provide fundamental new insights for the development of better diagnostic tools to predict which cases of DCIS will progress to IDC. We investigate the problem of reconstructing a plausible progression from single-cell sampled data of an individual with synchronous DCIS and IDC. Specifically, by using a number of assumptions derived from the observation of cellular atypia occurring in IDC, we design a possible predictive model using integer linear programming (ILP). Computational experiments carried out on a preexisting data set of 13 patients with simultaneous DCIS and IDC show that the corresponding predicted progression models are classifiable into categories having specific evolutionary characteristics. The approach provides new insights into mechanisms of clonal progression in breast cancers and helps illustrate the power of the ILP approach for similar problems in reconstructing tumor evolution scenarios under complex sets of constraints.
Catanzaro, Daniele; Schäffer, Alejandro A.; Schwartz, Russell
2016-01-01
Ductal Carcinoma In Situ (DCIS) is a precursor lesion of Invasive Ductal Carcinoma (IDC) of the breast. Investigating its temporal progression could provide fundamental new insights for the development of better diagnostic tools to predict which cases of DCIS will progress to IDC. We investigate the problem of reconstructing a plausible progression from single-cell sampled data of an individual with Synchronous DCIS and IDC. Specifically, by using a number of assumptions derived from the observation of cellular atypia occurring in IDC, we design a possible predictive model using integer linear programming (ILP). Computational experiments carried out on a preexisting data set of 13 patients with simultaneous DCIS and IDC show that the corresponding predicted progression models are classifiable into categories having specific evolutionary characteristics. The approach provides new insights into mechanisms of clonal progression in breast cancers and helps illustrate the power of the ILP approach for similar problems in reconstructing tumor evolution scenarios under complex sets of constraints. PMID:26353381
NASA Astrophysics Data System (ADS)
Noor-E-Alam, Md.; Doucette, John
2015-08-01
Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.
NASA Astrophysics Data System (ADS)
Jamali, A.; Khaleghi, E.; Gholaminezhad, I.; Nariman-zadeh, N.
2016-05-01
In this paper, a new multi-objective genetic programming (GP) with a diversity preserving mechanism and a real number alteration operator is presented and successfully used for Pareto optimal modelling of some complex non-linear systems using some input-output data. In this study, two different input-output data-sets of a non-linear mathematical model and of an explosive cutting process are considered separately in three-objective optimisation processes. The pertinent conflicting objective functions that have been considered for such Pareto optimisations are namely, training error (TE), prediction error (PE), and the length of tree (complexity of the network) (TL) of the GP models. Such three-objective optimisation implementations leads to some non-dominated choices of GP-type models for both cases representing the trade-offs among those objective functions. Therefore, optimal Pareto fronts of such GP models exhibit the trade-off among the corresponding conflicting objectives and, thus, provide different non-dominated optimal choices of GP-type models. Moreover, the results show that no significant optimality in TE and PE may occur when the TL of the corresponding GP model exceeds some values.
Wood, Scott T; Dean, Brian C; Dean, Delphine
2013-04-01
This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery.
NASA Astrophysics Data System (ADS)
Sharqawy, Mostafa H.
2016-12-01
Pore network models (PNM) of Berea and Fontainebleau sandstones were constructed using nonlinear programming (NLP) and optimization methods. The constructed PNMs are considered as a digital representation of the rock samples which were based on matching the macroscopic properties of the porous media and used to conduct fluid transport simulations including single and two-phase flow. The PNMs consisted of cubic networks of randomly distributed pores and throats sizes and with various connectivity levels. The networks were optimized such that the upper and lower bounds of the pore sizes are determined using the capillary tube bundle model and the Nelder-Mead method instead of guessing them, which reduces the optimization computational time significantly. An open-source PNM framework was employed to conduct transport and percolation simulations such as invasion percolation and Darcian flow. The PNM model was subsequently used to compute the macroscopic properties; porosity, absolute permeability, specific surface area, breakthrough capillary pressure, and primary drainage curve. The pore networks were optimized to allow for the simulation results of the macroscopic properties to be in excellent agreement with the experimental measurements. This study demonstrates that non-linear programming and optimization methods provide a promising method for pore network modeling when computed tomography imaging may not be readily available.
Cabrera, V E
2010-01-01
The purpose of the study was 2-fold: 1) to propose a novel modeling framework using Markovian linear programming to optimize dairy farmer-defined goals under different decision schemes and 2) to illustrate the model with a practical application testing diets for entire lactations. A dairy herd population was represented by cow state variables defined by parity (1 to 15), month in lactation (1 to 24), and pregnancy status (0 nonpregnant and 1 to 9 mo of pregnancy). A database of 326,000 lactations of Holsteins from AgSource Dairy Herd Improvement service (http://agsource.crinet.com/page249/DHI) was used to parameterize reproduction, mortality, and involuntary culling. The problem was set up as a Markovian linear program model containing 5,580 decision variables and 8,731 constraints. The model optimized the net revenue of the steady state dairy herd population having 2 options in each state: keeping or replacing an animal. Five diets were studied to assess economic, environmental, and herd structural outcomes. Diets varied in proportions of alfalfa silage (38 to 98% of dry matter), high-moisture ear corn (0 to 42% of dry matter), and soybean meal (0 to 18% of dry matter) within and between lactations, which determined dry matter intake, milk production, and N excretion. Diet ingredient compositions ranged from one of high concentrates to alfalfa silage only. Hence, the model identified the maximum net revenue that included the value of nutrient excretion and the cost of manure disposal associated with the optimal policy. Outcomes related to optimal solutions included the herd population structure, the replacement policy, and the amount of N excreted under each diet experiment. The problem was solved using the Excel Risk Solver Platform with the Standard LP/Quadratic Engine. Consistent replacement policies were to (1) keep pregnant cows, (2) keep primiparous cows longer than multiparous cows, and (3) decrease replacement rates when milk and feed prices are favorable
Diffendorfer, James E.; Richards, Paul M.; Dalrymple, George H.; DeAngelis, Donald L.
2001-01-01
We present the application of Linear Programming for estimating biomass fluxes in ecosystem and food web models. We use the herpetological assemblage of the Everglades as an example. We developed food web structures for three common Everglades freshwater habitat types: marsh, prairie, and upland. We obtained a first estimate of the fluxes using field data, literature estimates, and professional judgment. Linear programming was used to obtain a consistent and better estimate of the set of fluxes, while maintaining mass balance and minimizing deviations from point estimates. The results support the view that the Everglades is a spatially heterogeneous system, with changing patterns of energy flux, species composition, and biomasses across the habitat types. We show that a food web/ecosystem perspective, combined with Linear Programming, is a robust method for describing food webs and ecosystems that requires minimal data, produces useful post-solution analyses, and generates hypotheses regarding the structure of energy flow in the system.
NASA Astrophysics Data System (ADS)
Bostan, Mohamad; Hadi Afshar, Mohamad; Khadem, Majed
2015-04-01
This article proposes a hybrid linear programming (LP-LP) methodology for the simultaneous optimal design and operation of groundwater utilization systems. The proposed model is an extension of an earlier LP-LP model proposed by the authors for the optimal operation of a set of existing wells. The proposed model can be used to optimally determine the number, configuration and pumping rates of the operational wells out of potential wells with fixed locations to minimize the total cost of utilizing a two-dimensional confined aquifer under steady-state flow conditions. The model is able to take into account the well installation, piping and pump installation costs in addition to the operational costs, including the cost of energy and maintenance. The solution to the problem is defined by well locations and their pumping rates, minimizing the total cost while satisfying a downstream demand, lower/upper bound on the pumping rates, and lower/upper bound on the water level drawdown at the wells. A discretized version of the differential equation governing the flow is first embedded into the model formulation as a set of additional constraints. The resulting mixed-integer highly constrained nonlinear optimization problem is then decomposed into two subproblems with different sets of decision variables, one with a piezometric head and the other with the operational well locations and the corresponding pumping rates. The binary variables representing the well locations are approximated by a continuous variable leading to two LP subproblems. Having started with a random value for all decision variables, the two subproblems are solved iteratively until convergence is achieved. The performance and ability of the proposed method are tested against a hypothetical problem from the literature and the results are presented and compared with those obtained using a mixed-integer nonlinear programming method. The results show the efficiency and effectiveness of the proposed method for
Diegelmann, Mona; Jansen, Carl-Philipp; Wahl, Hans-Werner; Schilling, Oliver K; Schnabel, Eva-Luisa; Hauer, Klaus
2017-04-18
Physical activity (PA) may counteract depressive symptoms in nursing home (NH) residents considering biological, psychological, and person-environment transactional pathways. Empirical results, however, have remained inconsistent. Addressing potential shortcomings of previous research, we examined the effect of a whole-ecology PA intervention program on NH residents' depressive symptoms using generalized linear mixed-models (GLMMs). We used longitudinal data from residents of two German NHs who were included without any pre-selection regarding physical and mental functioning (n = 163, Mage = 83.1, 53-100 years; 72% female) and assessed on four occasions each three months apart. Residents willing to participate received a 12-week PA training program. Afterwards, the training was implemented in weekly activity schedules by NH staff. We ran GLMMs to account for the highly skewed depressive symptoms outcome measure (12-item Geriatric Depression Scale-Residential) by using gamma distribution. Exercising (n = 78) and non-exercising residents (n = 85) showed a comparable level of depressive symptoms at pretest. For exercising residents, depressive symptoms stabilized between pre-, posttest, and at follow-up, whereas an increase was observed for non-exercising residents. The intervention group's stabilization in depressive symptoms was maintained at follow-up, but increased further for non-exercising residents. Implementing an innovative PA intervention appears to be a promising approach to prevent the increase of NH residents' depressive symptoms. At the data-analytical level, GLMMs seem to be a promising tool for intervention research at large, because all longitudinally available data points and non-normality of outcome data can be considered.
NASA Astrophysics Data System (ADS)
Hung, Linda; Huang, Chen; Shin, Ilgyou; Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.
2010-12-01
Orbital-free density functional theory (OFDFT) is a first principles quantum mechanics method to find the ground-state energy of a system by variationally minimizing with respect to the electron density. No orbitals are used in the evaluation of the kinetic energy (unlike Kohn-Sham DFT), and the method scales nearly linearly with the size of the system. The PRinceton Orbital-Free Electronic Structure Software (PROFESS) uses OFDFT to model materials from the atomic scale to the mesoscale. This new version of PROFESS allows the study of larger systems with two significant changes: PROFESS is now parallelized, and the ion-electron and ion-ion terms scale quasilinearly, instead of quadratically as in PROFESS v1 (L. Hung and E.A. Carter, Chem. Phys. Lett. 475 (2009) 163). At the start of a run, PROFESS reads the various input files that describe the geometry of the system (ion positions and cell dimensions), the type of elements (defined by electron-ion pseudopotentials), the actions you want it to perform (minimize with respect to electron density and/or ion positions and/or cell lattice vectors), and the various options for the computation (such as which functionals you want it to use). Based on these inputs, PROFESS sets up a computation and performs the appropriate optimizations. Energies, forces, stresses, material geometries, and electron density configurations are some of the values that can be output throughout the optimization. New version program summaryProgram Title: PROFESS Catalogue identifier: AEBN_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBN_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 68 721 No. of bytes in distributed program, including test data, etc.: 1 708 547 Distribution format: tar.gz Programming language: Fortran 90 Computer
Simic, Vladimir; Dimitrijevic, Branka
2015-02-01
An interval linear programming approach is used to formulate and comprehensively test a model for optimal long-term planning of vehicle recycling in the Republic of Serbia. The proposed model is applied to a numerical case study: a 4-year planning horizon (2013-2016) is considered, three legislative cases and three scrap metal price trends are analysed, availability of final destinations for sorted waste flows is explored. Potential and applicability of the developed model are fully illustrated. Detailed insights on profitability and eco-efficiency of the projected contemporary equipped vehicle recycling factory are presented. The influences of the ordinance on the management of end-of-life vehicles in the Republic of Serbia on the vehicle hulks procuring, sorting generated material fractions, sorted waste allocation and sorted metals allocation decisions are thoroughly examined. The validity of the waste management strategy for the period 2010-2019 is tested. The formulated model can create optimal plans for procuring vehicle hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Obtained results are valuable for supporting the construction and/or modernisation process of a vehicle recycling system in the Republic of Serbia. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Ezenwaji, Emma E.; Anyadike, Raymond N. C.; Igu, Nnaemeka I.
2014-03-01
Recent studies in water supply in Enugu urban area have observed that there is a persistent water supply shortage relative to demand. One of the strategies for achieving a good water supply under the circumstance is through efficient water allocation to consumers. The existing allocation system by the Enugu State Water Corporation is not achieving the desired goal, because it is not based on any scientific criteria. In this study, we have employed the linear programming modelling technique to optimise the allocation of 35,000,000 L of water produced daily by the State Water Corporation and supplied to the four sectors of the town. The result shows that the model allocated 27,470,000 L to the residential sector, 3,360,000 L to commercial, 3,120,000 L to industrial and 882,000 L to public institutions sectors leaving a balance of 168,000 L to be utilised in emergency situations. This allocation pattern departs sharply from the present management technique adopted by the corporation. It is then suggested that for urban water supply to be sustainable in the town, the corporation should rely on this technique for water supply.
Rosenblum, Michael; Liu, Han; Yen, En-Hsu
2014-01-01
We propose new, optimal methods for analyzing randomized trials, when it is suspected that treatment effects may differ in two predefined subpopulations. Such subpopulations could be defined by a biomarker or risk factor measured at baseline. The goal is to simultaneously learn which subpopulations benefit from an experimental treatment, while providing strong control of the familywise Type I error rate. We formalize this as a multiple testing problem and show it is computationally infeasible to solve using existing techniques. Our solution involves a novel approach, in which we first transform the original multiple testing problem into a large, sparse linear program. We then solve this problem using advanced optimization techniques. This general method can solve a variety of multiple testing problems and decision theory problems related to optimal trial design, for which no solution was previously available. In particular, we construct new multiple testing procedures that satisfy minimax and Bayes optimality criteria. For a given optimality criterion, our new approach yields the optimal tradeoff between power to detect an effect in the overall population versus power to detect effects in subpopulations. We demonstrate our approach in examples motivated by two randomized trials of new treatments for HIV.
Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas
2014-06-01
Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative.
NASA Astrophysics Data System (ADS)
Stenvall, A.; Tarhasaari, T.
2010-07-01
Due to the rapid development of personal computers from the beginning of the 1990s, it has become a reality to simulate current penetration, and thus hysteresis losses, in superconductors with other than very simple one-dimensional (1D) Bean model computations or Norris formulae. Even though these older approaches are still usable, they do not consider, for example, multifilamentary conductors, local critical current dependency on magnetic field or varying n-values. Currently, many numerical methods employing different formulations are available. The problem of hysteresis losses can be scrutinized via an eddy current formulation of the classical theory of electromagnetism. The difficulty of the problem lies in the non-linear resistivity of the superconducting region. The steep transition between the superconducting and the normal states often causes convergence problems for the most common finite element method based programs. The integration methods suffer from full system matrices and, thus, restrict the number of elements to a few thousands at most. The so-called T - phiv formulation and the use of edge elements, or more precisely Whitney 1-forms, within the finite element method have proved to be a very suitable method for hysteresis loss simulations of different geometries. In this paper we consider making such finite element method software from first steps, employing differential geometry and forms.
Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862
Lee, Dongyul; Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.
Torquato, S; Jiao, Y
2010-12-01
We have formulated the problem of generating dense packings of nonoverlapping, nontiling nonspherical particles within an adaptive fundamental cell subject to periodic boundary conditions as an optimization problem called the adaptive-shrinking cell (ASC) formulation [S. Torquato and Y. Jiao, Phys. Rev. E 80, 041104 (2009)]. Because the objective function and impenetrability constraints can be exactly linearized for sphere packings with a size distribution in d-dimensional Euclidean space R(d), it is most suitable and natural to solve the corresponding ASC optimization problem using sequential-linear-programming (SLP) techniques. We implement an SLP solution to produce robustly a wide spectrum of jammed sphere packings in R(d) for d=2, 3, 4, 5, and 6 with a diversity of disorder and densities up to the respective maximal densities. A novel feature of this deterministic algorithm is that it can produce a broad range of inherent structures (locally maximally dense and mechanically stable packings), besides the usual disordered ones (such as the maximally random jammed state), with very small computational cost compared to that of the best known packing algorithms by tuning the radius of the influence sphere. For example, in three dimensions, we show that it can produce with high probability a variety of strictly jammed packings with a packing density anywhere in the wide range [0.6, 0.7408...], where π/√18 = 0.7408... corresponds to the density of the densest packing. We also apply the algorithm to generate various disordered packings as well as the maximally dense packings for d=2, 4, 5, and 6. Our jammed sphere packings are characterized and compared to the corresponding packings generated by the well-known Lubachevsky-Stillinger (LS) molecular-dynamics packing algorithm. Compared to the LS procedure, our SLP protocol is able to ensure that the final packings are truly jammed, produces disordered jammed packings with anomalously low densities, and is appreciably
NASA Astrophysics Data System (ADS)
Karterakis, Stefanos M.; Karatzas, George P.; Nikolos, Ioannis K.; Papadopoulou, Maria P.
2007-09-01
SummaryIn the past optimization techniques have been combined with simulation models to determine cost-effective solutions for various environmental management problems. In the present study, a groundwater management problem in a coastal karstic aquifer in Crere, Greece subject to environmental criteria has been studied using classical linear programming and heuristic optimization methodologies. A numerical simulation model of the unconfined coastal aquifer has been first developed to represent the complex non-linear physical system. Then the classical linear programming optimization algorithm of the Simplex method is used to solve the groundwater management problem where the main objective is the hydraulic control of the saltwater intrusion. A piecewise linearization of the non-linear optimization problem is obtained by sequential implementation of the Simplex algorithm and a convergence to the optimal solution is achieved. The solution of the non-linear management problem is also obtained using a heuristic algorithm. A Differential Evolution (DE) algorithm that emulates some of the principles of evolution is used. A comparison of the results obtained by the two different optimization approaches is presented. Finally, a sensitivity analysis is employed in order to examine the influence of the active pumping wells in the evolution of the seawater intrusion front along the coastline.
NASA Astrophysics Data System (ADS)
Ebrahimnejad, Ali
2015-08-01
There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.
ERIC Educational Resources Information Center
Bessler, William Carl
This paper presents the procedures, results, and conclusions of a study designed to determine the effectiveness of an electronic student response system in teaching biology to the non-major. Nine group-paced linear programs were used. Subjects were 664 college students divided into treatment and control groups. The effectiveness of the response…
Ureba, A.; Salguero, F. J.; Barbeiro, A. R.; Jimenez-Ortega, E.; Baeza, J. A.; Leal, A.; Miras, H.; Linares, R.; Perucha, M.
2014-08-15
Purpose: The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. Methods: The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called “biophysical” map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Results: Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast
Ureba, A; Salguero, F J; Barbeiro, A R; Jimenez-Ortega, E; Baeza, J A; Miras, H; Linares, R; Perucha, M; Leal, A
2014-08-01
The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called "biophysical" map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast irradiation case (Case II) solved
Alexopoulos, Leonidas G.; Klamt, Steffen
2013-01-01
Cross-referencing experimental data with our current knowledge of signaling network topologies is one central goal of mathematical modeling of cellular signal transduction networks. We present a new methodology for data-driven interrogation and training of signaling networks. While most published methods for signaling network inference operate on Bayesian, Boolean, or ODE models, our approach uses integer linear programming (ILP) on interaction graphs to encode constraints on the qualitative behavior of the nodes. These constraints are posed by the network topology and their formulation as ILP allows us to predict the possible qualitative changes (up, down, no effect) of the activation levels of the nodes for a given stimulus. We provide four basic operations to detect and remove inconsistencies between measurements and predicted behavior: (i) find a topology-consistent explanation for responses of signaling nodes measured in a stimulus-response experiment (if none exists, find the closest explanation); (ii) determine a minimal set of nodes that need to be corrected to make an inconsistent scenario consistent; (iii) determine the optimal subgraph of the given network topology which can best reflect measurements from a set of experimental scenarios; (iv) find possibly missing edges that would improve the consistency of the graph with respect to a set of experimental scenarios the most. We demonstrate the applicability of the proposed approach by interrogating a manually curated interaction graph model of EGFR/ErbB signaling against a library of high-throughput phosphoproteomic data measured in primary hepatocytes. Our methods detect interactions that are likely to be inactive in hepatocytes and provide suggestions for new interactions that, if included, would significantly improve the goodness of fit. Our framework is highly flexible and the underlying model requires only easily accessible biological knowledge. All related algorithms were implemented in a freely
Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A
2016-03-01
In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/.
Melas, Ioannis N; Samaga, Regina; Alexopoulos, Leonidas G; Klamt, Steffen
2013-01-01
Cross-referencing experimental data with our current knowledge of signaling network topologies is one central goal of mathematical modeling of cellular signal transduction networks. We present a new methodology for data-driven interrogation and training of signaling networks. While most published methods for signaling network inference operate on Bayesian, Boolean, or ODE models, our approach uses integer linear programming (ILP) on interaction graphs to encode constraints on the qualitative behavior of the nodes. These constraints are posed by the network topology and their formulation as ILP allows us to predict the possible qualitative changes (up, down, no effect) of the activation levels of the nodes for a given stimulus. We provide four basic operations to detect and remove inconsistencies between measurements and predicted behavior: (i) find a topology-consistent explanation for responses of signaling nodes measured in a stimulus-response experiment (if none exists, find the closest explanation); (ii) determine a minimal set of nodes that need to be corrected to make an inconsistent scenario consistent; (iii) determine the optimal subgraph of the given network topology which can best reflect measurements from a set of experimental scenarios; (iv) find possibly missing edges that would improve the consistency of the graph with respect to a set of experimental scenarios the most. We demonstrate the applicability of the proposed approach by interrogating a manually curated interaction graph model of EGFR/ErbB signaling against a library of high-throughput phosphoproteomic data measured in primary hepatocytes. Our methods detect interactions that are likely to be inactive in hepatocytes and provide suggestions for new interactions that, if included, would significantly improve the goodness of fit. Our framework is highly flexible and the underlying model requires only easily accessible biological knowledge. All related algorithms were implemented in a freely
NASA Astrophysics Data System (ADS)
Cuevas Vivas, Gabriel Francisco
A methodology to optimize enrichment distributions in Light Water Reactor (LWR) fuel assemblies is developed and tested. The optimization technique employed is the linear programming revised simplex method, and the fuel assembly's performance is evaluated with a neutron transport code that is also utilized in the calculation of sensitivity coefficients. The enrichment distribution optimization procedure begins from a single-value (flat) enrichment distribution until a target, maximum local power peaking factor, is achieved. The optimum rod enrichment distribution, with 1.00 for the maximum local power peaking factor and with each rod having its own enrichment, is calculated at an intermediate stage of the analysis. Later, the best locations and values for a reduced number of rod enrichments is obtained as a function of a target maximum local power peaking factor by applying sensitivity to change techniques. Finally, a shuffling process that assigns individual rod enrichments among the enrichment groups is performed. The relative rod power distribution is then slightly modified and the rod grouping redefined until the optimum configuration is attained. To verify the accuracy of the relative rod power distribution, a full computation with the neutron transport code using the optimum enrichment distribution is carried out. The results are compared and tested for assembly designs loaded with fresh Low Enriched Uranium (LEU) and plutonium Mixed OXide (MOX) fuels. MOX isotopics for both reactor-grade and weapons-grade plutonium were utilized to demonstrate the wide-range of applicability of the optimization technique. The features of the assembly designs used for evaluation purposes included burnable absorbers and internal water regions, and were prepared to resemble the configurations of modern assemblies utilized in commercial Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). In some cases, a net improvement in the relative rod power distribution or
Simic, Vladimir
2015-01-01
End-of-life vehicles (ELVs) are vehicles that have reached the end of their useful lives and are no longer registered or licensed for use. The ELV recycling problem has become very serious in the last decade and more and more efforts are made in order to reduce the impact of ELVs on the environment. This paper proposes the fuzzy risk explicit interval linear programming model for ELV recycling planning in the EU. It has advantages in reflecting uncertainties presented in terms of intervals in the ELV recycling systems and fuzziness in decision makers' preferences. The formulated model has been applied to a numerical study in which different decision maker types and several ELV types under two EU ELV Directive legislative cases were examined. This study is conducted in order to examine the influences of the decision maker type, the α-cut level, the EU ELV Directive and the ELV type on decisions about vehicle hulks procuring, storing unprocessed hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Decision maker type can influence quantity of vehicle hulks kept in storages. The EU ELV Directive and decision maker type have no influence on which vehicle hulk type is kept in the storage. Vehicle hulk type, the EU ELV Directive and decision maker type do not influence the creation of metal allocation plans, since each isolated metal has its regular destination. The valid EU ELV Directive eco-efficiency quotas can be reached even when advanced thermal treatment plants are excluded from the ELV recycling process. The introduction of the stringent eco-efficiency quotas will significantly reduce the quantities of land-filled waste fractions regardless of the type of decision makers who will manage vehicle recycling system. In order to reach these stringent quotas, significant quantities of sorted waste need to be processed in advanced thermal treatment plants. Proposed model can serve as the support for the European
Liu, Yong; Qin, Xiaosheng; Guo, Huaicheng; Zhou, Feng; Wang, Jinfeng; Lv, Xiaojian; Mao, Guozhu
2007-12-01
Lake areas in urban fringes are under increasing urbanization pressure. Consequently, the conflict between rapid urban development and the maintenance of water bodies in such areas urgently needs to be addressed. An inexact chance-constrained linear programming (ICCLP) model for optimal land-use management of lake areas in urban fringes was developed. The ICCLP model was based on land-use suitability assessment and land evaluation. The maximum net economic benefit (NEB) was selected as the objective of land-use allocation. The total environmental capacity (TEC) of water systems and the public financial investment (PFI) at different probability levels were considered key constraints. Other constraints included in the model were land-use suitability, governmental requirements on the ratios of various land-use types, and technical constraints. A case study implementing the system was performed for the lake area of Hanyang at the urban fringe of Wuhan, central China, based on our previous study on land-use suitability assessment. The Hanyang lake area is under significant urbanization pressure. A 15-year optimal model for land-use allocation is proposed during 2006 to 2020 to better protect the water system and to gain the maximum benefits of development. Sixteen constraints were set for the optimal model. The model results indicated that NEB was between $1.48 x 10(9) and $8.76 x 10(9) or between $3.98 x 10(9) and $16.7 x 10(9), depending on the different urban-expansion patterns and land demands. The changes in total developed area and the land-use structure were analyzed under different probabilities (q ( i )) of TEC. Changes in q ( i ) resulted in different urban expansion patterns and demands on land, which were the direct result of the constraints imposed by TEC and PFI. The ICCLP model might help local authorities better understand and address complex land-use systems and develop optimal land-use management strategies that better balance urban expansion and
NASA Astrophysics Data System (ADS)
Hilbert, Bryan
2012-10-01
These observations will be used to monitor the signal non-linearity of the IR channel, as well as to update the IR channel non-linearity calibration reference file. The non-linearity behavior of each pixel in the detector will be investigated through the use of full frame and subarray flat fields, while the photometric behavior of point sources will be studied using observations of 47 Tuc. This is a continuation of the Cycle 19 non-linearity monitor, program 12696.
NASA Astrophysics Data System (ADS)
Hilbert, Bryan
2013-10-01
These observations will be used to monitor the signal non-linearity of the IR channel, as well as to update the IR channel non-linearity calibration reference file. The non-linearity behavior of each pixel in the detector will be investigated through the use of full frame and subarray flat fields, while the photometric behavior of point sources will be studied using observations of 47 Tuc. This is a continuation of the Cycle 20 non-linearity monitor, program 13079.
NASA Technical Reports Server (NTRS)
Walker, K. P.
1981-01-01
Results of a 20-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are reported. The program included: (1) the evaluation of a number of viscoplastic constitutive models in the published literature; (2) incorporation of three of the most appropriate constitutive models into the MARC nonlinear finite element program; (3) calibration of the three constitutive models against experimental data using Hastelloy-X material; and (4) application of the most appropriate constitutive model to a three dimensional finite element analysis of a cylindrical combustor liner louver test specimen to establish the capability of the viscoplastic model to predict component structural response.
NASA Astrophysics Data System (ADS)
Guo, P.; Huang, G. H.; Li, Y. P.
2010-01-01
In this study, an inexact fuzzy-chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is developed for flood diversion planning under multiple uncertainties. A concept of the distribution with fuzzy boundary interval probability is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets and probability distributions. IFCTIP integrates the inexact programming, two-stage stochastic programming, integer programming and fuzzy-stochastic programming within a general optimization framework. IFCTIP incorporates the pre-regulated water-diversion policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised targets are violated. More importantly, it can facilitate dynamic programming for decisions of capacity-expansion planning under fuzzy-stochastic conditions. IFCTIP is applied to a flood management system. Solutions from IFCTIP provide desired flood diversion plans with a minimized system cost and a maximized safety level. The results indicate that reasonable solutions are generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of flood flows.
1980-05-31
Multiconstraint Zero - One Knapsack Problem ," The Journal of the Operational Research Society, Vol. 30, 1979, pp. 369-378. 69 [41] Kepler, C...programming. Shih [401 has written on a branch and bound method , Kepler and Blackman [41] have demonstrated the use of dynamic programming in the selection of...Portfolio Selection Model," IEEE A. Transactions on Engineering Management, Vol. EM-26, No. 1, 1979, pp. 2-7. [40] Shih, Wei, "A Branch and
Chen, Wen; Schuster, Gary B
2012-01-18
Nanometer-scale arrays of conducting polymers were prepared on scaffolds of self-assembling DNA modules. A series of DNA oligomers was prepared, each containing six 2,5-bis(2-thienyl)pyrrole (SNS) monomer units linked covalently to N4 atoms of alternating cytosines placed between leading and trailing 12-nucleobase recognition sequences. These DNA modules were encoded so the recognition sequences would uniquely associate through Watson-Crick assembly to form closed-cycle or linear arrays of aligned SNS monomers. The melting behavior and electrophoretic migration of these assemblies showed cooperative formation of multicomponent arrays containing two to five DNA modules (i.e., 12-30 SNS monomers). The treatment of these arrays with horseradish peroxidase and H(2)O(2) resulted in oxidative polymerization of the SNS monomers with concomitant ligation of the DNA modules. The resulting cyclic and linear arrays exhibited chemical and optical properties typical of conducting thiophene-like polymers, with a red-end absorption beyond 1250 nm. AFM images of the cyclic array containing 18 SNS units revealed highly regular 10 nm diameter objects. © 2011 American Chemical Society
NASA Technical Reports Server (NTRS)
Bielawa, R. L.
1976-01-01
The differential equations of motion for the lateral and torsional deformations of a nonlinearly twisted rotor blade in steady flight conditions together with those additional aeroelastic features germane to composite bearingless rotors are derived. The differential equations are formulated in terms of uncoupled (zero pitch and twist) vibratory modes with exact coupling effects due to finite, time variable blade pitch and, to second order, twist. Also presented are derivations of the fully coupled inertia and aerodynamic load distributions, automatic pitch change coupling effects, structural redundancy characteristics of the composite bearingless rotor flexbeam - torque tube system in bending and torsion, and a description of the linearized equations appropriate for eigensolution analyses. Three appendixes are included presenting material appropriate to the digital computer program implementation of the analysis, program G400.
Maillot, Matthieu; Drewnowski, Adam
2011-02-01
The 2010 Dietary Guidelines Advisory Committee has recommended that no more than 5-15% of total dietary energy should be derived from solid fats and added sugars (SoFAS). The guideline was based on USDA food pattern modeling analyses that met the Dietary Reference Intake recommendations and Dietary Guidelines and followed typical American eating habits. This study recreated food intake patterns for 6 of the same gender-age groups by using USDA data sources and a mathematical optimization technique known as linear programming. The analytic process identified food consumption patterns based on 128 food categories that met the nutritional goals for 9 vitamins, 9 minerals, 8 macronutrients, and dietary fiber and minimized deviation from typical American eating habits. Linear programming Model 1 created gender- and age-specific food patterns that corresponded to energy needs for each group. Model 2 created food patterns that were iso-caloric with diets observed for that group in the 2001-2002 NHANES. The optimized food patterns were evaluated with respect to MyPyramid servings goals, energy density [kcal/g (1 kcal = 4.18 kJ)], and energy cost (US$/2000 kcal). The optimized food patterns had more servings of vegetables and fruit, lower energy density, and higher cost compared with the observed diets. All nutrient goals were met. In contrast to the much lower USDA estimates, the 2 models placed SoFAS allowances at between 17 and 33% of total energy, depending on energy needs.
NASA Astrophysics Data System (ADS)
Halbach, Heiner; Chatterjee, Niranjan D.
1984-11-01
The technique of linear parametric programming has been applied to derive sets of internally consistent thermodynamic data for 21 condensed phases of the quaternary system CaO-Al2O3-SiO2-H2O (CASH) (Table 4). This was achieved by simultaneously processing: a) calorimetric data for 16 of these phases (Table 1), and b) experimental phase equilibria reversal brackets for 27 reactions (Table 3) involving these phases. Calculation of equilibrium P-T curves of several arbitrarily picked reactions employing the preferred set of internally consistent thermodynamic data from Table 4 shows that the input brackets are invariably satisfied by the calculations (Fig. 2a). By contrast, the same equilibria calculated on the basis of a set of thermodynamic data derived by applying statistical methods to a large body of comparable input data (Haas et al. 1981; Hemingway et al. 1982) do not necessarily agree with the experimental reversal brackets. Prediction of some experimentally investigated phase relations not included into the linear programming input database also appears to be remarkably successful. Indications are, therefore, that the thermodynamic data listed in Table 4 may be used with confidence to predict geologic phase relations in the CASH system with considerable accuracy. For such calculated phase diagrams and their petrological implications, the reader's attention is drawn to the paper by Chatterjee et al. (1984).
Wang, Hsiao-Fan; Hsu, Hsin-Wei
2010-11-01
With the urgency of global warming, green supply chain management, logistics in particular, has drawn the attention of researchers. Although there are closed-loop green logistics models in the literature, most of them do not consider the uncertain environment in general terms. In this study, a generalized model is proposed where the uncertainty is expressed by fuzzy numbers. An interval programming model is proposed by the defined means and mean square imprecision index obtained from the integrated information of all the level cuts of fuzzy numbers. The resolution for interval programming is based on the decision maker (DM)'s preference. The resulting solution provides useful information on the expected solutions under a confidence level containing a degree of risk. The results suggest that the more optimistic the DM is, the better is the resulting solution. However, a higher risk of violation of the resource constraints is also present. By defining this probable risk, a solution procedure was developed with numerical illustrations. This provides a DM trade-off mechanism between logistic cost and the risk.
Holm, Åsa; Larsson, Torbjörn; Tedgren, Åsa Carlsson
2013-08-15
Purpose: Recent research has shown that the optimization model hitherto used in high-dose-rate (HDR) brachytherapy corresponds weakly to the dosimetric indices used to evaluate the quality of a dose distribution. Although alternative models that explicitly include such dosimetric indices have been presented, the inclusion of the dosimetric indices explicitly yields intractable models. The purpose of this paper is to develop a model for optimizing dosimetric indices that is easier to solve than those proposed earlier.Methods: In this paper, the authors present an alternative approach for optimizing dose distributions for HDR brachytherapy where dosimetric indices are taken into account through surrogates based on the conditional value-at-risk concept. This yields a linear optimization model that is easy to solve, and has the advantage that the constraints are easy to interpret and modify to obtain satisfactory dose distributions.Results: The authors show by experimental comparisons, carried out retrospectively for a set of prostate cancer patients, that their proposed model corresponds well with constraining dosimetric indices. All modifications of the parameters in the authors' model yield the expected result. The dose distributions generated are also comparable to those generated by the standard model with respect to the dosimetric indices that are used for evaluating quality.Conclusions: The authors' new model is a viable surrogate to optimizing dosimetric indices and quickly and easily yields high quality dose distributions.
Holm, Åsa; Larsson, Torbjörn; Tedgren, Åsa Carlsson
2013-08-01
Recent research has shown that the optimization model hitherto used in high-dose-rate (HDR) brachytherapy corresponds weakly to the dosimetric indices used to evaluate the quality of a dose distribution. Although alternative models that explicitly include such dosimetric indices have been presented, the inclusion of the dosimetric indices explicitly yields intractable models. The purpose of this paper is to develop a model for optimizing dosimetric indices that is easier to solve than those proposed earlier. In this paper, the authors present an alternative approach for optimizing dose distributions for HDR brachytherapy where dosimetric indices are taken into account through surrogates based on the conditional value-at-risk concept. This yields a linear optimization model that is easy to solve, and has the advantage that the constraints are easy to interpret and modify to obtain satisfactory dose distributions. The authors show by experimental comparisons, carried out retrospectively for a set of prostate cancer patients, that their proposed model corresponds well with constraining dosimetric indices. All modifications of the parameters in the authors' model yield the expected result. The dose distributions generated are also comparable to those generated by the standard model with respect to the dosimetric indices that are used for evaluating quality. The authors' new model is a viable surrogate to optimizing dosimetric indices and quickly and easily yields high quality dose distributions.
NASA Technical Reports Server (NTRS)
Rybicki, G. B.
1985-01-01
The linear instability of line-driven stellar winds to take proper account of the dynamical effect of scattered radiation were analyzed. It is found that: (1) the drag effect of the mean scattered radiation does greatly reduce the contribution of scattering lines to the instability at the very base of the wind, but the instability growth rate associated with such lines rapidly increases as the flow moves outward from the base, reaching more than 50% of the growth rate for pure absorption lines within a stellar radius of the surface, and eventually reaching 80% of that rate at large radii; (2) perturbations in the scattered radiation field may be important for the propagation of wind disturbances, but they have little effect on the wind instability; and (3) the contribution of strongly shadowed lines to the wind instability is often reduced compared to that of unshadowed lines, but their overall effect is not one of damping in the outer parts of the wind. It is concluded that, even when all scattering effects are taken into account, the bulk of the flow in a line-driven stellar wind is still highly unstable.
NASA Astrophysics Data System (ADS)
Sidorin, Anatoly
2010-01-01
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
Sidorin, Anatoly
2010-01-05
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
METRIC GEOMETRY LINEAR MEASURE.
ERIC Educational Resources Information Center
FOLEY, JACK L.
THIS BOOKLET, ONE OF A SERIES, HAS BEEN DEVELOPED FOR THE PROJECT, A PROGRAM FOR MATHEMATICALLY UNDERDEVELOPED PUPILS. A PROJECT TEAM, INCLUDING INSERVICE TEACHERS, IS BEING USED TO WRITE AND DEVELOP THE MATERIALS FOR THIS PROGRAM. THE MATERIALS DEVELOPED IN THIS BOOKLET INCLUDE (1) THE HISTORY AND MEANING OF LINEAR MEASURE, (2) FINDING THE…
Wang, Jun-Sheng; Yang, Guang-Hong
2017-07-25
This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.
Kang, Bongmun; Yoon, Ho-Sung
2015-02-01
Recently, microalgae was considered as a renewable energy for fuel production because its production is nonseasonal and may take place on nonarable land. Despite all of these advantages, microalgal oil production is significantly affected by environmental factors. Furthermore, the large variability remains an important problem in measurement of algae productivity and compositional analysis, especially, the total lipid content. Thus, there is considerable interest in accurate determination of total lipid content during the biotechnological process. For these reason, various high-throughput technologies were suggested for accurate measurement of total lipids contained in the microorganisms, especially oleaginous microalgae. In addition, more advanced technologies were employed to quantify the total lipids of the microalgae without a pretreatment. However, these methods are difficult to measure total lipid content in wet form microalgae obtained from large-scale production. In present study, the thermal analysis performed with two-step linear temeperature program was applied to measure heat evolved in temperature range from 310 to 351 °C of Nostoc sp. KNUA003 obtained from large-scale cultivation. And then, we examined the relationship between the heat evolved in 310-351 °C (HE) and total lipid content of the wet Nostoc cell cultivated in raceway. As a result, the linear relationship was determined between HE value and total lipid content of Nostoc sp. KNUA003. Particularly, there was a linear relationship of 98% between the HE value and the total lipid content of the tested microorganism. Based on this relationship, the total lipid content converted from the heat evolved of wet Nostoc sp. KNUA003 could be used for monitoring its lipid induction in large-scale cultivation. Copyright © 2014 Elsevier Inc. All rights reserved.
Grgic, Jozo; Mikulic, Pavle; Podnar, Hrvoje; Pedisic, Zeljko
2017-01-01
Periodization is an important component of resistance training programs. It is meant to improve adherence to the training regimen, allow for constant progression, help in avoiding plateaus, and reduce occurrence and severity of injuries. Previous findings regarding the effects of different periodization models on measures of muscle hypertrophy are equivocal. To provide a more in-depth look at the topic, we undertook a systematic review of the literature and a meta-analysis of intervention trials comparing the effects of linear periodization (LP) and daily undulating periodization (DUP) resistance training programs on muscle hypertrophy. A comprehensive literature search was conducted through PubMed/MEDLINE, Scopus, Web of Science, SPORTDiscus, Networked Digital Library of Theses and Dissertations (NDLTD) and Open Access Theses and Dissertations (OATD). The pooled standardized mean difference (Cohen's d) from 13 eligible studies for the difference between the periodization models on muscle hypertrophy was -0.02 (95% confidence interval [-0.25, 0.21], p = 0.848). The meta-analysis comparing LP and DUP indicated that the effects of the two periodization models on muscle hypertrophy are likely to be similar. However, more research is needed in this area, particularly among trained individuals and clinical populations. Future studies may benefit from using instruments that are more sensitive for detecting changes in muscle mass, such as ultrasound or magnetic resonance imaging.
Mikulic, Pavle; Podnar, Hrvoje; Pedisic, Zeljko
2017-01-01
Background Periodization is an important component of resistance training programs. It is meant to improve adherence to the training regimen, allow for constant progression, help in avoiding plateaus, and reduce occurrence and severity of injuries. Previous findings regarding the effects of different periodization models on measures of muscle hypertrophy are equivocal. To provide a more in-depth look at the topic, we undertook a systematic review of the literature and a meta-analysis of intervention trials comparing the effects of linear periodization (LP) and daily undulating periodization (DUP) resistance training programs on muscle hypertrophy. Materials and Methods A comprehensive literature search was conducted through PubMed/MEDLINE, Scopus, Web of Science, SPORTDiscus, Networked Digital Library of Theses and Dissertations (NDLTD) and Open Access Theses and Dissertations (OATD). Results The pooled standardized mean difference (Cohen’s d) from 13 eligible studies for the difference between the periodization models on muscle hypertrophy was −0.02 (95% confidence interval [−0.25, 0.21], p = 0.848). Conclusions The meta-analysis comparing LP and DUP indicated that the effects of the two periodization models on muscle hypertrophy are likely to be similar. However, more research is needed in this area, particularly among trained individuals and clinical populations. Future studies may benefit from using instruments that are more sensitive for detecting changes in muscle mass, such as ultrasound or magnetic resonance imaging. PMID:28848690
Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I.; Merz, Kenneth M. Jr; Westerhoff, Lance M.
2014-05-01
Semiempirical quantum-chemical X-ray macromolecular refinement using the program DivCon integrated with PHENIX is described. Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.
Yang, X.
1998-04-01
Large scale (up to 5 kt) chemical blasts are routinely conducted by mining and quarry industries around the world to remove overburden or to fragment rocks. Because of their ability to trigger the future International Monitoring System (IMS) of the Comprehensive Test Ban Treaty (CTBT), these blasts are monitored and studied by verification seismologists for the purpose of discriminating them from possible clandestine nuclear tests. One important component of these studies is the modeling of ground motions from these blasts with theoretical and empirical source models. The modeling exercises provide physical bases to regional discriminants and help to explain the observed signal characteristics. The program MineSeis has been developed to implement the synthetic seismogram modeling of multi-shot blast sources with the linear superposition of single shot sources. Single shot sources used in the modeling are the spherical explosion plus spall model mentioned here. Mueller and Murphy`s (1971) model is used as the spherical explosion model. A modification of Anandakrishnan et al.`s (1997) spall model is developed for the spall component. The program is implemented with the MATLAB{reg_sign} Graphical User Interface (GUI), providing the user with easy, interactive control of the calculation.
1985-04-01
for a Stirling cycle cryocooler . 26 * .*o .. * COMPRESSOR MOTOR FORCE VERSUS ROTOR AXIAL POSITION COMPRESSOR P-V DIAGRAM *COMPRESSOR MOTOR COMPRESSOR...potential. However, the limited test program has demonstrated the application of linear motor drive technology to a Stirling cycle cryocooler design. L...Ace-ss Ion& For flTIC TAB - TABLE OF CONTENTS TITLE IPAGE - 2. DETAILED DESIGN OF LINEAR RESONANCE CRYOCOOLER ......... 3 2.2 Expander
Piecewise Linear Slope Estimation.
Ingle, A N; Sethares, W A; Varghese, T; Bucklew, J A
2014-11-01
This paper presents a method for directly estimating slope values in a noisy piecewise linear function. By imposing a Markov structure on the sequence of slopes, piecewise linear fitting is posed as a maximum a posteriori estimation problem. A dynamic program efficiently solves this by traversing a linearly growing trellis. The alternating maximization algorithm (a kind of pseudo-EM method) is used to estimate the model parameters from data and its convergence behavior is analyzed. Ultrasound shear wave imaging is presented as a primary application. The algorithm is general enough for applicability in other fields, as suggested by an application to the estimation of shifts in financial interest rate data.
Piecewise Linear Slope Estimation
Sethares, W. A.; Bucklew, J. A.
2015-01-01
This paper presents a method for directly estimating slope values in a noisy piecewise linear function. By imposing a Markov structure on the sequence of slopes, piecewise linear fitting is posed as a maximum a posteriori estimation problem. A dynamic program efficiently solves this by traversing a linearly growing trellis. The alternating maximization algorithm (a kind of pseudo-EM method) is used to estimate the model parameters from data and its convergence behavior is analyzed. Ultrasound shear wave imaging is presented as a primary application. The algorithm is general enough for applicability in other fields, as suggested by an application to the estimation of shifts in financial interest rate data. PMID:26229417
Dibari, Filippo; Diop, El Hadji I; Collins, Steven; Seal, Andrew
2012-05-01
According to the United Nations (UN), 25 million children <5 y of age are currently affected by severe acute malnutrition and need to be treated using special nutritional products such as ready-to-use therapeutic foods (RUTF). Improved formulations are in demand, but a standardized approach for RUTF design has not yet been described. A method relying on linear programming (LP) analysis was developed and piloted in the design of a RUTF prototype for the treatment of wasting in East African children and adults. The LP objective function and decision variables consisted of the lowest formulation price and the weights of the chosen commodities (soy, sorghum, maize, oil, and sugar), respectively. The LP constraints were based on current UN recommendations for the macronutrient content of therapeutic food and included palatability, texture, and maximum food ingredient weight criteria. Nonlinear constraints for nutrient ratios were converted to linear equations to allow their use in LP. The formulation was considered accurate if laboratory results confirmed an energy density difference <10% and a protein or lipid difference <5 g · 100 g(-1) compared to the LP formulation estimates. With this test prototype, the differences were 7%, and 2.3 and -1.0 g · 100 g(-1), respectively, and the formulation accuracy was considered good. LP can contribute to the design of ready-to-use foods (therapeutic, supplementary, or complementary), targeting different forms of malnutrition, while using commodities that are cheaper, regionally available, and meet local cultural preferences. However, as with all prototype feeding products for medical use, composition analysis, safety, acceptability, and clinical effectiveness trials must be conducted to validate the formulation.
Oz, U; Orhan, K; Abe, N
2011-01-01
Objective The aim of this study was to compare the linear and angular measurements made on two-dimensional (2D) conventional cephalometric images and three-dimensional (3D) cone beam CT (CBCT) generated cephalograms derived from a 3D volumetric rendering program. Methods Pre-treatment cephalometric digital radiographs of 11 patients and their corresponding CBCT images were randomly selected. The digital cephalometric radiographs were traced using Vista Dent OC (GAC International, Inc Bohemia, NY) and by hand. CBCT and Maxilim® (Medicim, Sint-Niklass, Belgium) software were used to generate cephalograms from the CBCT data set that were then linked to the 3D hard-tissue surface representations. In total, 16 cephalometric landmarks were identified and 18 widely used measurements (11 linear and 7 angular) were performed by 2 independent observers. Intraobserver reliability was assessed by calculating intraclass correlation coefficients (ICC), interobserver reliability was assessed with Student t-test and analysis of variance (ANOVA). Mann–Whitney U-tests and Kruskal–Wallis H tests were also used to compare the three methods (P < 0.05). Results The results demonstrated no statistically significant difference between interobserver analyses for CBCT-generated cephalograms (P < 0.05), except for Gonion-Menton (Go-Me) and Condylion-Gnathion (Co-Gn). Intraobserver examinations showed low ICCs, which was an indication of poor reproducibility for Go-Me and Sella-Nasion (S-N) in CBCT-generated cephalograms and poor reproducibility for Articulare-Gonion (Ar-Go) in the 2D hand tracing method (P < 0.05). No statistical significance was found for Vista Dent OC measurements (P > 0.05). Conclusions Measurements from in vivo CBCT-generated cephalograms from Maxilim® software were found to be similar to conventional images. Thus, owing to higher radiation exposure, CBCT examinations should only be used when the inherent 3D information could improve the outcome of treatment. PMID
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Santika, Otte; Fahmida, Umi; Ferguson, Elaine L
2009-01-01
Effective population-specific, food-based complementary feeding recommendations (CFR) are required to combat micronutrient deficiencies. To facilitate their formulation, a modeling approach was recently developed. However, it has not yet been used in practice. This study therefore aimed to use this approach to develop CFR for 9- to 11-mo-old Indonesian infants and to identify nutrients that will likely remain low in their diets. The CFR were developed using a 4-phase approach based on linear and goal programming. Model parameters were defined using dietary data collected in a cross-sectional survey of 9- to 11-mo-old infants (n = 100) living in the Bogor District, West-Java, Indonesia and a market survey of 3 local markets. Results showed theoretical iron requirements could not be achieved using local food sources (highest level achievable, 63% of recommendations) and adequate levels of iron, niacin, zinc, and calcium were difficult to achieve. Fortified foods, meatballs, chicken liver, eggs, tempe-tofu, banana, and spinach were the best local food sources to improve dietary quality. The final CFR were: breast-feed on demand, provide 3 meals/d, of which 1 is a fortified infant cereal; > or = 5 servings/wk of tempe/tofu; > or = 3 servings/wk of animal-source foods, of which 2 servings/wk are chicken liver; vegetables, daily; snacks, 2 times/d, including > or = 2 servings/wk of banana; and > or = 4 servings/wk of fortified-biscuits. Results showed that the approach can be used to objectively formulate population-specific CFR and identify key problem nutrients to strengthen nutrition program planning and policy decisions. Before recommending these CFR, their long-term acceptability, affordability, and effectiveness should be assessed.
NASA Astrophysics Data System (ADS)
Asbrock, J.; Bailey, S.; Baley, D.; Boisvert, J.; Chapman, G.; Crawford, G.; de Lyon, T.; Drafahl, B.; Edwards, J.; Herrin, E.; Hoyt, C.; Jack, M.; Kvaas, R.; Liu, K.; McKeag, W.; Rajavel, R.; Randall, V.; Rengarajan, S.; Riker, J.
2008-04-01
Advanced LADAR receivers enable high accuracy identification of targets at ranges beyond standard EOIR sensors. Increased sensitivity of these receivers will enable reductions in laser power, hence more affordable, smaller sensors as well as much longer range of detection. Raytheon has made a recent breakthrough in LADAR architecture by combining very low noise ~ 30 electron front end amplifiers with moderate gain >60 Avalanche Photodiodes. The combination of these enables detection of laser pulse returns containing as few as one photon up to 1000s of photons. Because a lower APD gain is utilized the sensor operation differs dramatically from traditional "Geiger mode APD" LADARs. Linear mode photon counting LADAR offers advantages including: determination of intensity as well as time of arrival, nanosecond recovery times and discrimination between radiation events and signals. In our talk we will present an update of this development work: the basic amplifier and APD component performance, the front end architecture, the demonstration of single photon detection using a simple 4 × 4 SCA and the design and evaluation of critical components of a fully integrated photon counting camera under development in support of the Ultra-Sensitive Detector (USD) program sponsored by AFRL-Kirtland.
Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I.; Merz, Kenneth M.; Westerhoff, Lance M.
2014-01-01
Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography. PMID:24816093
Borbulevych, Oleg Y; Plumley, Joshua A; Martin, Roger I; Merz, Kenneth M; Westerhoff, Lance M
2014-05-01
Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.
Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan
2016-03-24
Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML.
Koffi-Tessio, E.N.
1982-01-01
This study examines the interrelationship between the energy sector and the production of three agricultural crops (sugar, macadamia nut, and coffee) by small growers on the Big Island of Hawaii. Specifically, it attempts: to explore the patterns of energy use in agriculture; to determine the relative efficiency of fuel use by farm size among the three crops; and to investigate the impacts of higher energy costs on farmers' net revenues under three output-price and three energy-cost scenarios. To meet these objectives, a linear-programming model was developed. The objective function was to maximize net revenues subject to resource availability, production, marketing, and non-negativity constraints. The major conclusions emerging are: higher energy costs have not significantly impacted on farmers' net revenues, but do have a differential impact depending on the output price and resource endowments of each crop grower; farmers are faced with many constraints that do not permit factor substitution. For policy formulation, it was observed that policy makers are overly concerned with the problems facing growers at the macro level, without considering their constraints at the micro level. These micro factors play a dominant role in resource allocation. They must, therefore, be incorporated into a comprehensive energy and agricultural policy at the county and state level.
Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan
2016-01-01
Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML. PMID:27023575
NASA Technical Reports Server (NTRS)
Magnus, A. E.; Epton, M. A.
1981-01-01
Panel aerodynamics (PAN AIR) is a system of computer programs designed to analyze subsonic and supersonic inviscid flows about arbitrary configurations. A panel method is a program which solves a linear partial differential equation by approximating the configuration surface by a set of panels. An overview of the theory of potential flow in general and PAN AIR in particular is given along with detailed mathematical formulations. Fluid dynamics, the Navier-Stokes equation, and the theory of panel methods were also discussed.
NASA Astrophysics Data System (ADS)
Trzaskuś-Żak, Beata; Żak, Andrzej
2013-09-01
This paper presents a method of binary linear programming for the selection of customers to whom a rebate will be offered. In return for the rebate, the customer undertakes payment of its debt to the mine by the deadline specified. In this way, the company is expected to achieve the required rate of collection of receivables. This, of course, will be at the expense of reduced revenue, which can be made up for by increased sales. Customer selection was done in order to keep the overall cost to the mine of the offered rebates as low as possible: where: KcR - total cost of rebates granted by the mine; kj - cost of granting the rebate to a jth customer; xj - decision variables; j = 1, …, n - particular customers. The calculations were performed with the Solver tool (Excel programme). The cost of rebates was calculated from the formula: kj = ΔPj - Kk(j) where: ΔPj - difference in revenues from customer j; Kk(j)- cost of the so-called trade credit with regard to customer j. The cost of the trade credit was calculated from the formula: where r - interest rate on the bank loan, % ts - collection time for the receivable in days (e.g. t1 = 30, t2 = 45,…, t12 = 360); Ns - value of the receivable at collection date ts. This paper presents the general model of linear binary programming for managing receivables by granting rebates. The model, in its general form, aims at: - minimising the objective function: - with the restrictions: - and: xj ɛ (0,1) where: Ntji - value of the timely payments of a customer j in an ith month of the period analysed; Nnji - value of the overdue receivables of a customer j in an ith month of the period analysed; q - the assumed minimum percentage of timely payments collected; Ni - summarised value of all receivables in the month i; m - the number of months in the period analysed. The general model was used for application to the example of the operating Mine X. Furthermore, the study has been extended through the presentation of a binary
ERIC Educational Resources Information Center
Li, Yuan H.; Yang, Yu N.; Tompkins, Leroy J.; Modarresi, Shahpar
2005-01-01
The statistical technique, "Zero-One Linear Programming," that has successfully been used to create multiple tests with similar characteristics (e.g., item difficulties, test information and test specifications) in the area of educational measurement, was deemed to be a suitable method for creating multiple sets of matched samples to be…
Zaghian, Maryam; Cao, Wenhua; Liu, Wei; Kardar, Laleh; Randeniya, Sharmalee; Mohan, Radhe; Lim, Gino
2017-03-01
Robust optimization of intensity-modulated proton therapy (IMPT) takes uncertainties into account during spot weight optimization and leads to dose distributions that are resilient to uncertainties. Previous studies demonstrated benefits of linear programming (LP) for IMPT in terms of delivery efficiency by considerably reducing the number of spots required for the same quality of plans. However, a reduction in the number of spots may lead to loss of robustness. The purpose of this study was to evaluate and compare the performance in terms of plan quality and robustness of two robust optimization approaches using LP and nonlinear programming (NLP) models. The so-called "worst case dose" and "minmax" robust optimization approaches and conventional planning target volume (PTV)-based optimization approach were applied to designing IMPT plans for five patients: two with prostate cancer, one with skull-based cancer, and two with head and neck cancer. For each approach, both LP and NLP models were used. Thus, for each case, six sets of IMPT plans were generated and assessed: LP-PTV-based, NLP-PTV-based, LP-worst case dose, NLP-worst case dose, LP-minmax, and NLP-minmax. The four robust optimization methods behaved differently from patient to patient, and no method emerged as superior to the others in terms of nominal plan quality and robustness against uncertainties. The plans generated using LP-based robust optimization were more robust regarding patient setup and range uncertainties than were those generated using NLP-based robust optimization for the prostate cancer patients. However, the robustness of plans generated using NLP-based methods was superior for the skull-based and head and neck cancer patients. Overall, LP-based methods were suitable for the less challenging cancer cases in which all uncertainty scenarios were able to satisfy tight dose constraints, while NLP performed better in more difficult cases in which most uncertainty scenarios were hard to meet
Dantzig, G.B.
1992-10-01
Analogous to gunners firing trial shots to bracket a target in order to adjust direction and distance, we demonstate that it is sometimes faster not to apply an algorithm directly, but to roughly approximately solve several perturbations of the problem and then combine these rough approximations to get an exact solution. To find a feasible solution to an m-equation linear program with a convexity constraint, the von Neumann Algorithm generates a sequence of approximate solutions which converge very slowly to the right hand side b{sup 0}. However, it can be redirected so that in the first few iterations it is guaranteed to move rapidly towards the neighborhood of one of m + 1 perturbed right hand sides {cflx b}{sup i}, then redirected in turn to the next {cflx b}{sup i}. Once within the neighborhood of each {cflx b}{sup i}, a weighted sum of the approximate solutions. {bar x}{sup i} yields the exact solution of the unperturbed problem where the weights are found by solving a system of m + 1 equations in m + 1 unknowns. It is assumed an r > 0 is given for which the problem is feasible for all right hand sides b whose distance {parallel}b - b{sup 0}{parallel}{sub 2} {le} r. The feasible solution is found in less than 4(m+ 1){sup 3}/r{sup 2} iterations. The work per iteration is {delta}mn + 2m + n + 9 multiplications plus {delta}mn + m + n + 9 additions or comparisons where {delta} is the density of nonzero coeffients in the matrix.
Dantzig, G.B.
1992-10-01
Analogous to gunners firing trial shots to bracket a target in order to adjust direction and distance, we demonstate that it is sometimes faster not to apply an algorithm directly, but to roughly approximately solve several perturbations of the problem and then combine these rough approximations to get an exact solution. To find a feasible solution to an m-equation linear program with a convexity constraint, the von Neumann Algorithm generates a sequence of approximate solutions which converge very slowly to the right hand side b[sup 0]. However, it can be redirected so that in the first few iterations it is guaranteed to move rapidly towards the neighborhood of one of m + 1 perturbed right hand sides [cflx b][sup i], then redirected in turn to the next [cflx b][sup i]. Once within the neighborhood of each [cflx b][sup i], a weighted sum of the approximate solutions. [bar x][sup i] yields the exact solution of the unperturbed problem where the weights are found by solving a system of m + 1 equations in m + 1 unknowns. It is assumed an r > 0 is given for which the problem is feasible for all right hand sides b whose distance [parallel]b - b[sup 0][parallel][sub 2] [le] r. The feasible solution is found in less than 4(m+ 1)[sup 3]/r[sup 2] iterations. The work per iteration is [delta]mn + 2m + n + 9 multiplications plus [delta]mn + m + n + 9 additions or comparisons where [delta] is the density of nonzero coeffients in the matrix.
Stott, A W; Lloyd, J; Humphry, R W; Gunn, G J
2003-05-30
We combined epidemiological and economic concepts and modelling techniques, to integrate animal health into whole-farm business management. This allowed us to assess the relative contribution that disease prevention could make to whole-farm income and to the variability in farm income (risk). It also allowed us to assess disease losses in the context of a farm business rather than as a disease outbreak in isolation. A linear program ("MOTAD") establishes the combination of decision maker's activities that minimise risk for a given level of income within farm-business constraints. The MOTAD model was applied to farm-management decision making in Scottish cow-calf herds and was linked to an epidemiological model of bovine viral diarrhoea (BVD). When BVD was considered in isolation (i.e. without taking into account risk), the minimum expected total cost of BVD (sum of output losses plus expenditure on prevention) was similar whether the herd was susceptible to BVD or of unknown BVD-status at the outset. However, the expected total cost of BVD fell in response to increasing expenditure on prevention in 'susceptible' herds. This relationship was not apparent in herds of unknown BVD-status. As a consequence of this difference, 'susceptible' herds were better able to use investment in BVD biosecurity as a means to increase farm income at minimum risk than herds of unknown BVD-status. 'Susceptible' herds therefore were able to achieve high income targets with less-intensive production than herds of unknown BVD-status. This suggested that maintaining a cow-calf herd free of BVD contributes to farm income and risk management indirectly through its effect on the management of the whole farm. It follows that measurement of the economic impact of BVD requires a whole-farm perspective that includes a consideration of risk. Because farmers generally are considered to be risk adverse, this means that the least-cost disease-control option might not always be the preferred option.
LINEAR - DERIVATION AND DEFINITION OF A LINEAR AIRCRAFT MODEL
NASA Technical Reports Server (NTRS)
Duke, E. L.
1994-01-01
The Derivation and Definition of a Linear Model program, LINEAR, provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models. LINEAR was developed to provide a standard, documented, and verified tool to derive linear models for aircraft stability analysis and control law design. Linear system models define the aircraft system in the neighborhood of an analysis point and are determined by the linearization of the nonlinear equations defining vehicle dynamics and sensors. LINEAR numerically determines a linear system model using nonlinear equations of motion and a user supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. LINEAR is capable of extracting both linearized engine effects, such as net thrust, torque, and gyroscopic effects and including these effects in the linear system model. The point at which this linear model is defined is determined either by completely specifying the state and control variables, or by specifying an analysis point on a trajectory and directing the program to determine the control variables and the remaining state variables. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to provide easy selection of state, control, and observation variables to be used in a particular model. Thus, the order of the system model is completely under user control. Further, the program provides the flexibility of allowing alternate formulations of both the state and observation equations. Data describing the aircraft and the test case is input to the program through a terminal or formatted data files. All data can be modified interactively from case to case. The aerodynamic model can be defined in two ways: a set of nondimensional stability and control derivatives for the flight point of
Colgate, S.A.
1958-05-27
An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.
Skau, Jutta K H; Bunthang, Touch; Chamnan, Chhoun; Wieringa, Frank T; Dijkhuizen, Marjoleine A; Roos, Nanna; Ferguson, Elaine L
2014-01-01
A new software tool, Optifood, developed by the WHO and based on linear programming (LP) analysis, has been developed to formulate food-based recommendations. This study discusses the use of Optifood for predicting whether formulated complementary food (CF) products can ensure dietary adequacy for target populations in Cambodia. Dietary data were collected by 24-h recall in a cross-sectional survey of 6- to 11-mo-old infants (n = 78). LP model parameters were derived from these data, including a list of foods, median serving sizes, and dietary patterns. Five series of LP analyses were carried out to model the target population's baseline diet and 4 formulated CF products [WinFood (WF), WinFood-Lite (WF-L), Corn-Soy-Blend Plus (CSB+), and Corn-Soy-Blend Plus Plus (CSB++)], which were added to the diet in portions of 33 g/d dry weight (DW) for infants aged 6-8 mo and 40 g/d DW for infants aged 9-11 mo. In each series of analyses, the nutritionally optimal diet and theoretical range, in diet nutrient contents, were determined. The LP analysis showed that baseline diets could not achieve the Recommended Nutrient Intake (RNI) for thiamin, riboflavin, niacin, folate, vitamin B-12, calcium, iron, and zinc (range: 14-91% of RNI in the optimal diets) and that none of the formulated CF products could cover the nutrient gaps for thiamin, niacin, iron, and folate (range: 22-86% of the RNI). Iron was the key limiting nutrient, for all modeled diets, achieving a maximum of only 48% of the RNI when CSB++ was included in the diet. Only WF and WF-L filled the nutrient gap for calcium. WF-L, CSB+, and CSB++ filled the nutrient gap for zinc (9- to 11-mo-olds). The formulated CF products improved the nutrient adequacy of complementary feeding diets but could not entirely cover the nutrient gaps. These results emphasize the value of using LP to evaluate special CF products during the intervention planning phase. The WF study was registered at controlled-trials.com as ISRCTN19918531.
Fahmida, Umi; Kolopaking, Risatianti; Santika, Otte; Sriani, Sriani; Umar, Jahja; Htet, Min Kyaw; Ferguson, Elaine
2015-03-01
Complementary feeding recommendations (CFRs) with the use of locally available foods can be developed by using linear programming (LP). Although its potential has been shown for planning phases of food-based interventions, the effectiveness in the community setting has not been tested to our knowledge. We aimed to assess effectiveness of promoting optimized CFRs for improving maternal knowledge, feeding practices, and child intakes of key problem nutrients (calcium, iron, niacin, and zinc). A community-intervention trial with a quasi-experimental design was conducted in East Lombok, West Nusa Tenggara Province, Indonesia, on children aged 9-16 mo at baseline. A CFR group (n = 240) was compared with a non-CFR group (n = 215). The CFRs, which were developed using LP, were promoted in an intervention that included monthly cooking sessions and weekly home visits. The mother's nutrition knowledge and her child's feeding practices and the child's nutrient intakes were measured before and after the 6-mo intervention by using a structured interview, 24-h recall, and 1-wk food-frequency questionnaire. The CFR intervention improved mothers' knowledge and children's feeding practices and improved children's intakes of calcium, iron, and zinc. At the end line, median (IQR) nutrient densities were significantly higher in the CFR group than in the non-CFR group for iron [i.e., 0.6 mg/100 kcal (0.4-0.8 mg/100 kcal) compared with 0.5 mg/100 kcal (0.4-0.7 mg/100 kcal)] and niacin [i.e., 0.8 mg/100 kcal (0.5-1.0 mg/100 kcal) compared with 0.6 mg/100 kcal (0.4-0.8 mg/100 kcal)]. However, median nutrient densities for calcium, iron, niacin, and zinc in the CFR group (23, 0.6, 0.7, and 0.5 mg/100 kcal, respectively) were still below desired densities (63, 1.0, 0.9, and 0.6 mg/100 kcal, respectively). The CFRs significantly increased intakes of calcium, iron, niacin, and zinc, but nutrient densities were still below desired nutrient densities. When the adoption of optimized CFRs is
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds
These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.
Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.
Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.
NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
NASA Astrophysics Data System (ADS)
Czopek, Kazimierz; Trzaskuś-Żak, Beata
2013-06-01
The paper presents an example of a theoretical linear programming model in the management of mine receivables. To this end, an economic production model of linear programming was applied to optimising the revenue of the mine. The amount of product sold by the mine to individual customers was assumed as the decisive variable, and the product price was the parameter of the objective function. As for boundaries, upper receivable limits were assumed for each of the adopted receivable collection cycles. The sequence of collection cycles, and the receivable values assigned to them, were adopted according to the growing probability of overdue and uncollectible receivables. Two receivables-management optimisation cases were analysed, in which the objective function was to maximise the sales value (revenue) of the Mine. The first case studied in the model involves application of a discount to reduce the product price, in a mine whose production output is not being used to capacity. To improve cash flow, the mine offers its customers a reduced price and increased purchasing up to the mine's capacity in exchange for shortened receivable collection times. Fixed and variable-cost accounting is applied to determine the relevant price reduction. In the other case analysed, the mine sells as much as its current output allows, but despite that is still forced to reduce the price of its products. Application of a discount in this case (reducing the product price) inevitably involves shortened receivable collection times and reduced costs of financing trade credit. Artykuł przedstawia przykład teoretycznego modelu programowania liniowego w zarządzaniu należnościami kopalni. Wykorzystano w tym celu model produkcyjno-gospodarczy programowania liniowego do optymalizacji wartości przychodu kopalni. Jako zmienną decyzyjną modelu przyjęto ilość sprzedaży produktu kopalni do poszczególnych odbiorców, natomiast parametrem funkcji celu jest cena sprzedaży produktu. W
Can linear superiorization be useful for linear optimization problems?
NASA Astrophysics Data System (ADS)
Censor, Yair
2017-04-01
Linear superiorization (LinSup) considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are: (i) does LinSup provide a feasible point whose linear target function value is lower than that obtained by running the same feasibility-seeking algorithm without superiorization under identical conditions? (ii) How does LinSup fare in comparison with the Simplex method for solving linear programming problems? Based on our computational experiments presented here, the answers to these two questions are: ‘yes’ and ‘very well’, respectively.