Automatic control of finite element models for temperature-controlled radiofrequency ablation.
Haemmerich, Dieter; Webster, John G
2005-07-14
The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100 degrees C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.
Automatic control of finite element models for temperature-controlled radiofrequency ablation
Haemmerich, Dieter; Webster, John G
2005-01-01
Background The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. Methods We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. Results We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100°C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. Discussion The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input. PMID:16018811
NASA Astrophysics Data System (ADS)
Semerjyan, Vardan; Yuan, Tao
2011-04-01
Sodium (Na) Faraday filters based spectrometer is a relatively new instrument to study sodium nightglow as well as sodium and oxygen chemistry in the mesopause region. Successful spectrometer measurement demands highly accurate control of filter temperature. The ideal, long-term operation site for the Na spectrometer is an isolated location with minimum nocturnal sky background. Thus, the remote control of the filter temperature is a requirement for such operation, whereas current temperature controllers can only be operated manually. The proposed approach is aimed to not only enhance the temperature control, but also achieve spectrometer's remote and autonomous operation. In the meantime, the redesign should relief the burden of the cost for multi temperature controllers. The program will give to the operator flexibility in setting the operation temperatures of the Faraday filters, monitoring the temperature variations, and logging the data during the operation. Research will make diligent efforts to attach preliminary data analysis subroutine to the main control program. The real-time observation results will be posted online after the observation is completed. This approach also can be a good substitute for the temperature control system currently used to run the Lidar system at Utah State University (USU).
Microcomputer-Aided Control Systems Design.
ERIC Educational Resources Information Center
Roat, S. D.; Melsheimer, S. S.
1987-01-01
Describes a single input/single output feedback control system design program for IBM PC and compatible microcomputers. Uses a heat exchanger temperature control loop to illustrate the various applications of the program. (ML)
Simulation and analysis of main steam control system based on heat transfer calculation
NASA Astrophysics Data System (ADS)
Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai
2018-05-01
In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.
Advanced High Temperature Structural Seals
NASA Technical Reports Server (NTRS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)
2000-01-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.
Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control
NASA Technical Reports Server (NTRS)
Ku, Jentung; Paiva, Kleber; Mantelli, Marcia
2011-01-01
Loop heat pipes (LHPs) have been used for thermal control of several NASA and commercial orbiting spacecraft. The LHP operating temperature is governed by the saturation temperature of its compensation chamber (CC). Most LHPs use the CC temperature for feedback control of its operating temperature. There exists a thermal resistance between the heat source to be cooled by the LHP and the LHP's CC. Even if the CC set point temperature is controlled precisely, the heat source temperature will still vary with its heat output. For most applications, controlling the heat source temperature is of most interest. A logical question to ask is: "Can the heat source temperature be used for feedback control of the LHP operation?" A test program has been implemented to answer the above question. Objective is to investigate the LHP performance using the CC temperature and the heat source temperature for feedback control
NASA's high-temperature engine materials program for civil aeronautics
NASA Technical Reports Server (NTRS)
Gray, Hugh R.; Ginty, Carol A.
1992-01-01
The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.
Fiber-optic temperature probe system for inner body
NASA Astrophysics Data System (ADS)
Liu, Bo; Deng, Xing-Zhong; Cao, Wei; Cheng, Xianping; Xie, Tuqiang; Zhong, Zugen
1991-08-01
The authors have designed a fiber-optic temperature probe system that can quickly insert its probe into bodies to measure temperature. Its thermometer unit has the function of program- controlled zeroing. The single-chip microcomputer is used to control the whole system and process data. The sample system has been tested in a coal furnace.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
.... Incomplete Cycling 6. Mechanical Temperature Controls 7. Ambient Temperature Gradient 8. Definitions.... at 29846-29847. A broad group of stakeholders \\1\\ submitted a joint comment supporting DOE's proposal... for variable defrost control (a control type in which the time interval between successive defrost...
40 CFR 86.1809-12 - Prohibition of defeat devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...
40 CFR 86.1809-10 - Prohibition of defeat devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...
40 CFR 86.1809-12 - Prohibition of defeat devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...
40 CFR 86.1809-10 - Prohibition of defeat devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...
40 CFR 86.1809-10 - Prohibition of defeat devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...
40 CFR 86.1809-12 - Prohibition of defeat devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...
The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller
NASA Astrophysics Data System (ADS)
Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin
The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.
NASA Technical Reports Server (NTRS)
Cook, D. W.
1977-01-01
Computer simulation is used to demonstrate that crewman comfort can be assured by using automatic control of the inlet temperature of the coolant into the liquid cooled garment when input to the controller consists of measurements of the garment inlet temperature and the garment outlet temperature difference. Subsequent tests using a facsimile of the control logic developed in the computer program confirmed the feasibility of such a design scheme.
A temperature controller board for the ARC controller
NASA Astrophysics Data System (ADS)
Tulloch, Simon
2016-07-01
A high-performance temperature controller board has been produced for the ARC Generation-3 CCD controller. It contains two 9W temperature servo loops and four temperature input channels and is fully programmable via the ARC API and OWL data acquisition program. PI-loop control is implemented in an on-board micro. Both diode and RTD sensors can be used. Control and telemetry data is sent via the ARC backplane although a USB-2 interface is also available. Further functionality includes hardware timers and high current drivers for external shutters and calibration LEDs, an LCD display, a parallel i/o port, a pressure sensor interface and an uncommitted analogue telemetry input.
Delineation of soil temperature regimes from HCMM data
NASA Technical Reports Server (NTRS)
Day, R. L.; Petersen, G. W. (Principal Investigator)
1982-01-01
The subsetting of HCMM data into ORSER format was completed for four dates using a modified SUBSET program. Large areas (approximately 2500 scan lines, 1680 elements) were selected to increase the occurrence of suitable control points for registration. Average daily temperatures (ADT) were calculated for each date. The MERGE program combined registered daytime temperature (DAY-IR) with nighttime temperature (NIGHT-IR) to form a separate two-channel data set. The SUBTRAN program averaged the DAY-IR and NIGHT-IR creating a third ADT channel. Registration equations for the four ADT data sets were generated. A one dimensional soil heat flow equation was modified to allow for mean annual soil temperature predictions using merged ADT data sets.
A Temperature Sensor using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis E.
2008-01-01
A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-on-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program--Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued. This work used an SOI 555 timer as its core and is completely new work.
Development of a prototype automatic controller for liquid cooling garment inlet temperature
NASA Technical Reports Server (NTRS)
Weaver, C. S.; Webbon, B. W.; Montgomery, L. D.
1982-01-01
The development of a computer control of a liquid cooled garment (LCG) inlet temperature is descirbed. An adaptive model of the LCG is used to predict the heat-removal rates for various inlet temperatures. An experimental system that contains a microcomputer was constructed. The LCG inlet and outlet temperatures and the heat exchanger outlet temperature form the inputs to the computer. The adaptive model prediction method of control is successful during tests where the inlet temperature is automatically chosen by the computer. It is concluded that the program can be implemented in a microprocessor of a size that is practical for a life support back-pack.
Definition study for temperature control in advanced protein crystal growth
NASA Technical Reports Server (NTRS)
Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.
1990-01-01
Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.
Design of a computerized, temperature-controlled, recirculating aquaria system
Widmer, A.M.; Carveth, C.J.; Keffler, J.W.; Bonar, Scott A.
2006-01-01
We built a recirculating aquaria system with computerized temperature control to maintain static temperatures, increase temperatures 1 ??C/day, and maintain diel temperature fluctuations up to 10 ??C. A LabVIEW program compared the temperature recorded by thermocouples in fish tanks to a desired set temperature and then calculated the amount of hot or cold water to add to tanks to reach or maintain the desired temperature. Intellifaucet?? three-way mixing valves controlled temperature of the input water and ensured that all fish tanks had the same turnover rate. The system was analyzed over a period of 50 days and was fully functional for 96% of that time. Six different temperature treatments were run simultaneously in 18, 72 L fish tanks and temperatures stayed within 0.5 ??C of set temperature. We used the system to determine the upper temperature tolerance of fishes, but it could be used in aquaculture, ecological studies, or other aquatic work where temperature control is required. ?? 2005 Elsevier B.V. All rights reserved.
Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)
NASA Technical Reports Server (NTRS)
Dillon-Townes, L. A.; Averill, R. D.
1984-01-01
A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.
EPA AND ERDA HIGH-TEMPERATURE/HIGH-PRESSURE PARTICULATE CONTROL PROGRAMS
The report describes and compares current projects sponsored by EPA and the U.S. Energy Research and Development Administration (ERDA), relating to the control of particulate matter in fuel gas streams at high temperatures (1000 to 2000F) and high pressures (5 atm and greater). T...
275 C Downhole Microcomputer System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chris Hutchens; Hooi Miin Soo
2008-08-31
An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessormore » ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry.« less
ERIC Educational Resources Information Center
Wiederholt, Erwin
1983-01-01
DTA is a technique in which the temperature difference between sample/reference is measured as a function of temperature, while both are subject to a controlled temperature program. Use of a simple DTA-apparatus in demonstrating catalytic effects of manganese dioxide and aluminum oxide on decomposition temperature of potassium chlorate is…
Development of high temperature liquid lubricants for low-heat rejection: Heavy duty diesel engines
NASA Technical Reports Server (NTRS)
Wiczynski, P. D.; Marolewski, T. A.
1993-01-01
The objective of this DOE program was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and sump temperatures approaching 250 C. The lubricants developed demonstrated at marginal increase in sump temperature capability, approximately 15 C, and an increase in top ring reversal temperature. A 15W-40 synthetic lubricant designated HTL-4 was the best lubricant developed in terms of stability, wear control, deposit control dispersancy, and particulate emissions.
A data acquisition and control program for axial-torsional fatigue testing
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Bonacuse, Peter J.
1989-01-01
A computer program was developed for data acquisition and control of axial-torsional fatigue experiments. The multitasked, interrupt-driven program was written in Pascal and Assembly. This program is capable of dual-channel control and six-channel data acquisition. It can be utilized to perform inphase and out-of-phase axial-torsional isothermal fatigue or deformation experiments. The program was successfully used to conduct inphase axial-torsional fatigue experiments on 304 stainless steel at room temperature and on Hastelloy X at 800 C. The details of the software and some of the results generated to date are presented.
Multicolor pyrometer for materials processing in space
NASA Technical Reports Server (NTRS)
Frish, M. B.; Frank, J.; Baker, J. E.; Foutter, R. R.; Beerman, H.; Allen, M. G.
1990-01-01
This report documents the work performed by Physical Sciences Inc. (PSI), under contract to NASA JPL, during a 2.5-year SBIR Phase 2 Program. The program goals were to design, construct, and program a prototype passive imaging pyrometer capable of measuring, as accurately as possible, and controlling the temperature distribution across the surface of a moving object suspended in space. These goals were achieved and the instrument was delivered to JPL in November 1989. The pyrometer utilizes an optical system which operates at short wavelengths compared to the peak of the black-body spectrum for the temperature range of interest, thus minimizing errors associated with a lack of knowledge about the heated sample's emissivity. To cover temperatures from 900 to 2500 K, six wavelengths are available. The preferred wavelength for measurement of a particular temperature decreases as the temperature increases. Images at all six wavelengths are projected onto a single CCD camera concurrently. The camera and optical system have been calibrated to relate the measured intensity at each pixel to the temperature of the heated object. The output of the camera is digitized by a frame grabber installed in a personal computer and analyzed automatically to yield temperature information. The data can be used in a feedback loop to alter the status of computer-activated switches and thereby control a heating system.
NASA Astrophysics Data System (ADS)
Haramoto, Ken-Ichi
In general, air conditioning control in a building is operated mainly by indoor air temperature control. Although the operators of the machine in the building accepted a claim for indoor air temperature presented by the building inhabitants, the indoor conditions have been often too cool or warm. Therefore, in an attempt to create better thermal environments, the author paid attention to the PMV that is a thermal comfort index. And then, the possibility of air conditioning control using the PMV directly as the set point was verified by employing actual equipment in an air conditioning testing room and an office building. Prior to the execution of this control, the operation program of the PMV was installed in a DDC controller for the air conditioning control. And information from indoor sensors and so on was inputted to the controller, and the computed PMV was used as the feedback variable.
EMPRESS: A European Project to Enhance Process Control Through Improved Temperature Measurement
NASA Astrophysics Data System (ADS)
Pearce, J. V.; Edler, F.; Elliott, C. J.; Rosso, L.; Sutton, G.; Andreu, A.; Machin, G.
2017-08-01
A new European project called EMPRESS, funded by the EURAMET program `European Metrology Program for Innovation and Research,' is described. The 3 year project, which started in the summer of 2015, is intended to substantially augment the efficiency of high-value manufacturing processes by improving temperature measurement techniques at the point of use. The project consortium has 18 partners and 5 external collaborators, from the metrology sector, high-value manufacturing, sensor manufacturing, and academia. Accurate control of temperature is key to ensuring process efficiency and product consistency and is often not achieved to the level required for modern processes. Enhanced efficiency of processes may take several forms including reduced product rejection/waste; improved energy efficiency; increased intervals between sensor recalibration/maintenance; and increased sensor reliability, i.e., reduced amount of operator intervention. Traceability of temperature measurements to the International Temperature Scale of 1990 (ITS-90) is a critical factor in establishing low measurement uncertainty and reproducible, consistent process control. Introducing such traceability in situ (i.e., within the industrial process) is a theme running through this project.
NASA Technical Reports Server (NTRS)
Buchele, D. R.
1977-01-01
A computer program to calculate the temperature profile of a flame or hot gas was presented in detail. Emphasis was on profiles found in jet engine or rocket engine exhaust streams containing H2O or CO2 radiating gases. The temperature profile was assumed axisymmetric with an assumed functional form controlled by two variable parameters. The parameters were calculated using measurements of gas radiation at two wavelengths in the infrared. The program also gave some information on the pressure profile. A method of selection of wavelengths was given that is likely to lead to an accurate determination of the parameters. The program is written in FORTRAN IV language and runs in less than 60 seconds on a Univac 1100 computer.
Temperature control simulation for a microwave transmitter cooling system. [deep space network
NASA Technical Reports Server (NTRS)
Yung, C. S.
1980-01-01
The thermal performance of a temperature control system for the antenna microwave transmitter (klystron tube) of the Deep Space Network antenna tracking system is discussed. In particular the mathematical model is presented along with the details of a computer program which is written for the system simulation and the performance parameterization. Analytical expressions are presented.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Kissock, Barbara I.; Bennett, William R.
2010-01-01
This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.
NASA Technical Reports Server (NTRS)
Ku, Jentung; Paiva, Kleber; Mantelli, Marcia
2011-01-01
The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly done by cold biasing the reservoir and using electrical heaters to provide the required control power. With this method, the loop operating temperature can be controlled within 0.5K or better. However, because the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if the LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP was carried out to investigate the effects on the LHP operation when the control temperature sensor was placed on the heat source instead of the reservoir. In these tests, the LHP reservoir was cold-biased and was heated by a control heater. Test results show that it was feasible to use the heat source temperature for feedback control of the LHP operation. In particular, when a thermoelectric converter was used as the reservoir control heater, the heat source temperature could be maintained within a tight range using a proportional-integral-derivative or on/off control algorithm. Moreover, because the TEC could provide both heating and cooling to the reservoir, temperature oscillations during fast transients such as loop startup could be eliminated or substantially reduced when compared to using an electrical heater as the control heater.
Advanced High Temperature Structural Seals
NASA Astrophysics Data System (ADS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark
2002-10-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.
Advanced High Temperature Structural Seals
NASA Technical Reports Server (NTRS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark
2002-01-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.
Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control
NASA Technical Reports Server (NTRS)
Ku, Jentung; Paiva, Kleber; Mantelli, Marcia
2011-01-01
The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly accomplished by cold biasing the reservoir and using electrical heaters to provide the required control power. Using this method, the loop operating temperature can be controlled within +/- 0.5K. However, because of the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP has been carried out to investigate the effects on the LHP operation when the control temperature sensor is placed on the heat source instead of the reservoir. In these tests, the LHP reservoir is cold-biased and is heated by a control heater. Tests results show that it is feasible to use the heat source temperature for feedback control of the LHP operation. Using this method, the heat source temperature can be maintained within a tight range for moderate and high powers. At low powers, however, temperature oscillations may occur due to interactions among the reservoir control heater power, the heat source mass, and the heat output from the heat source. In addition, the heat source temperature could temporarily deviate from its set point during fast thermal transients. The implication is that more sophisticated feedback control algorithms need to be implemented for LHP transient operation when the heat source temperature is used for feedback control.
A Low-Cost CMOS Programmable Temperature Switch
Li, Yunlong; Wu, Nanjian
2008-01-01
A novel uncalibrated CMOS programmable temperature switch with high temperature accuracy is presented. Its threshold temperature Tth can be programmed by adjusting the ratios of width and length of the transistors. The operating principles of the temperature switch circuit is theoretically explained. A floating gate neural MOS circuit is designed to compensate automatically the threshold temperature Tth variation that results form the process tolerance. The switch circuit is implemented in a standard 0.35 μm CMOS process. The temperature switch can be programmed to perform the switch operation at 16 different threshold temperature Tths from 45—120°C with a 5°C increment. The measurement shows a good consistency in the threshold temperatures. The chip core area is 0.04 mm2 and power consumption is 3.1 μA at 3.3V power supply. The advantages of the temperature switch are low power consumption, the programmable threshold temperature and the controllable hysteresis. PMID:27879871
STOVL Hot Gas Ingestion control technology
NASA Technical Reports Server (NTRS)
Amuedo, K. C.; Williams, B. R.; Flood, J. D.; Johns, A. L.
1991-01-01
A comprehensive wind tunnel test program was conducted to evaluate control of Hot Gas Ingestion (HGI) on a 9.2 percent scale model of the McDonnell Aircraft Company model 279-3C advanced Short Takeoff and Vertical Landing (STOVL) configuration. The test was conducted in the NASA-Lewis Research Center 9 ft by 15 ft Low Speed Wind Tunnel during the summer of 1987. Initial tests defined baseline HGI levels as determined by engine face temperature rise and temperature distortion. Subsequent testing was conducted to evaluate HGI control parametrically using Lift Improvement Devices (LIDs), forward nozzle splay angle, a combination of LIDs and forward nozzle splay angle, and main inlet blocking. The results from this test program demonstrate that HGI can be effectively controlled and that HGI is not a barrier to STOVL aircraft development.
Thomas, Ellen M; Chapman, Benjamin; Jaykus, Lee-Ann; Phister, Trevor
2014-09-01
Contaminated fresh produce has been increasingly identified as a cause of foodborne illnesses. Because of concerns about pathogen growth on these food items at retail, the 2009 U.S. Food and Drug Administration Food Code established that cut leafy greens (lettuce, spinach, spring mix, cabbage, arugula, and kale) must have time and temperature controls for safety and hence should be kept at refrigerated temperatures (5°C or lower). The purpose of this study was to determine the temperature profiles of cut leafy greens in single-serving clamshell containers provided as part of the North Carolina School Lunch Program and to compare the two policies that North Carolina has in place to control the temperature of these products (the 3-day rule and time in lieu of temperature). Temperatures were recorded with data loggers in 24 schools during a 3-day period. In all cases, substantial temperature variability was found for these products, including temperatures above 5°C for at least 1 h on each of the 3 days. In some cases, temperatures reached above 5°C for more than 3 h throughout the serving time. The results demonstrate the importance of developing a protocol for continuous temperature monitoring of leafy greens served in school lunch programs.
Stankovicha, Joseph J; Gritti, Fabrice; Beaver, Lois Ann; Stevensona, Paul G; Guiochon, Georges
2013-11-29
Five methods were used to implement fast gradient separations: constant flow rate, constant column-wall temperature, constant inlet pressure at moderate and high pressures (controlled by a pressure controller),and programmed flow constant pressure. For programmed flow constant pressure, the flow rates and gradient compositions are controlled using input into the method instead of the pressure controller. Minor fluctuations in the inlet pressure do not affect the mobile phase flow rate in programmed flow. There producibilities of the retention times, the response factors, and the eluted band width of six successive separations of the same sample (9 components) were measured with different equilibration times between 0 and 15 min. The influence of the length of the equilibration time on these reproducibilities is discussed. The results show that the average column temperature may increase from one separation to the next and that this contributes to fluctuation of the results.
Evaluation of COTS Electronic Parts for Extreme Temperature Use in NASA Missions
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
Electronic systems capable of extreme temperature operation are required for many future NASA space exploration missions where it is desirable to have smaller, lighter, and less expensive spacecraft and probes. Presently, spacecraft on-board electronics are maintained at about room temperature by use of thermal control systems. An Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on development of electronics suitable for space exploration missions. The effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments. An overview of this program along with selected data is presented.
NASA Technical Reports Server (NTRS)
1987-01-01
Skylab derived Heating System offers computerized control with an innovative voice synthesizer that literally allows the control unit to talk to the system user. It reports time of day, outside temperature and system temperature, and asks questions as to how the user wants the system programmed. Master Module collects energy from the Sun and either transfers it directly to the home water heater or stores it until needed.
Program Solicitation Number 86.1, Small Business Innovation Research Program.
1986-01-31
Temperature Heat Pipe Technology DESCRIPTION: Heat pipes have been shown to provide superior growth conditions for the growth of bulk semiconductor crystals... Heat pipes allow for the establishment of isothermal conditions over large areas. This thermal property controls the distribution of impurities, and...reliable high temperature heat pipes to operate at 1325 degrees C with inert overpressures of 60 atmospheres is required for the processing of III-V
Coutinho, Lincoln Figueira Marins; Nazario, Carlos Eduardo Domingues; Monteiro, Alessandra Maffei; Lanças, Fernando Mauro
2014-08-01
Analyses in chromatographic systems able to save mobile and stationary phases without reducing efficiency and resolution are of current interest. These advantages regarding savings have challenged us to develop a system dedicated to miniaturized liquid chromatography. This paper reports on the development of a high-pressure syringe-type pump, an oven able to perform isothermal and temperature programming and a software program to control these chromatographic devices. The experimental results show that the miniaturized system can generate reproducible and accurate temperature and flow rate. The system was applied to the separation of statins and tetracylines and showed excellent performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Temperature controlled formation of lead/acid batteries
NASA Astrophysics Data System (ADS)
Bungardt, M.
At present, standard formation programs have to accommodate the worst case. This is important, especially in respect of variations in climatic conditions. The standard must be set so that during the hottest weather periods the maximum electrolyte temperature is not exceeded. As this value is defined not only by the desired properties and the recipe of the active mass, but also by type and size of the separators and by the dimensions of the plates, general rules cannot be formulated. It is considered to be advantageous to introduce limiting data for the maximum temperature into a general formation program. The latter is defined so that under normal to good ambient conditions the shortest formation time is achieved. If required, the temperature control will reduce the currents employed in the different steps, according to need, and will extend the formation time accordingly. With computer-controlled formation, these parameters can be readily adjusted to suit each type of battery and can also be reset according to modifications in the preceding processing steps. Such a procedure ensures that: (i) the formation time is minimum under the given ambient conditions; (ii) in the event of malpractice ( e.g. actual program not fitting to size) the batteries will not be destroyed; (iii) the energy consumption is minimized (note, high electrolyte temperature leads to excess gassing). These features are incorporated in the BA/FOS-500 battery formation system developed by Digatron. The operational characteristics of this system are listed in Table 1.
Advanced vehicle emission reduction sensor program (FED-SAVER).
DOT National Transportation Integrated Search
2008-09-01
The FED-SAVER program refined and continued the development of an in-cylinder, high temperature pressure sensor by demonstrating that it can be successfully inserted into diesel engines for routine feedback control of each individual cylinder. There ...
Development of HIDEC adaptive engine control systems
NASA Technical Reports Server (NTRS)
Landy, R. J.; Yonke, W. A.; Stewart, J. F.
1986-01-01
The purpose of NASA's Highly Integrated Digital Electronic Control (HIDEC) flight research program is the development of integrated flight propulsion control modes, and the evaluation of their benefits aboard an F-15 test aircraft. HIDEC program phases are discussed, with attention to the Adaptive Engine Control System (ADECS I); this involves the upgrading of PW1128 engines for operation at higher engine pressure ratios and the production of greater thrust. ADECS II will involve the development of a constant thrust mode which will significantly reduce turbine operating temperatures.
Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks.
Yadav, Vivek; Padhi, Radhakant; Balakrishnan, S N
2007-07-01
An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A 1-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.
Fixture tests bellows reliability through repetitive pressure/temperature cycling
NASA Technical Reports Server (NTRS)
Levinson, C.
1967-01-01
Fixture explores the reliability of bellows used in precision in inertial systems. The fixture establishes the ability of the bellows to withstand repetitive over-stress pressure cycling at elevated temperatures. It is applicable in quality control and reliability programs.
Effects of temperature on the development of low permeability in concretes.
DOT National Transportation Integrated Search
1998-02-01
This study evaluated the effects of temperature on the strength and permeability of concretes containing pozzolans (fly ash and silica fume) and slag. Two test programs were conducted. In the first, one control and five experimental mixtures containi...
Temperature Control System for Mushroom Dryer
NASA Astrophysics Data System (ADS)
Wibowo, I. A.; Indah, Nur; Sebayang, D.; Adam, N. H.
2018-03-01
The main problem in mushroom cultivation is the handling after the harvest. Drying is one technique to preserve the mushrooms. Traditionally, mushrooms are dried by sunshine which depends on the weather. This affects the quality of the dried mushrooms. Therefore, this paper proposes a system to provide an artificial drying for mushrooms in order to maintain their quality. The objective of the system is to control the mushroom drying process to be faster compared to the natural drying at an accurate and right temperature. A model of the mushroom dryer has been designed, built, and tested. The system comprises a chamber, heater, blower, temperature sensor and electronic control circuit. A microcontroller is used as the controller which is programmed to implement a bang-bang control that regulates the temperature of the chamber. A desired temperature is inputted as a set point of the control system. Temperature of 45 °C is chosen as the operational drying temperature. Several tests have been carried out to examine the performance of the system including drying speed, the effects of ambient conditions, and the effects of mushroom size. The results show that the system can satisfy the objective.
Attitude Control Propulsion Components, Volume 2
NASA Technical Reports Server (NTRS)
1974-01-01
Attitude control propulsion components are described, including hydrazine thrusters, hydrazine thruster and cold gas jet valves, and pressure and temperature transducers. Component-ordered data are presented in tabular form; the manufacturer and specific space program are included.
ERIC Educational Resources Information Center
Collier, Herbert I.
1978-01-01
Energy conservation programs at Louisiana State University reduced energy use 23 percent. The programs involved computer controlled power management systems, adjustment of building temperatures and lighting levels to prescribed standards, consolidation of night classes, centralization of chilled water systems, and manual monitoring of heating and…
Parameter monitoring compensation system and method
Barkman, William E.; Babelay, Edwin F.; DeMint, Paul D.; Hebble, Thomas L.; Igou, Richard E.; Williams, Richard R.; Klages, Edward J.; Rasnick, William H.
1995-01-01
A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along preprogrammed path during a machining operation utilizes sensors for gathering information at a preselected stage of a machining operation relating to an actual condition. The controller compares the actual condition to a condition which the program presumes to exist at the preselected stage and alters the program in accordance with detected variations between the actual condition and the assumed condition. Such conditions may be related to process parameters, such as a position, dimension or shape of the cutting tool or workpiece or an environmental temperature associated with the machining operation, and such sensors may be a contact or a non-contact type of sensor or a temperature transducer.
Reliability Testing on the CTI-Cryogenic 1 Watt Integral Cooler (HD- 1033C/UA)
1989-09-01
SUBJECT TERMS (Continue on reverse if necessary and identify by block numbe) FIELD GROUP SUB- GROUP Cryocooler, Stirling Cycle, Cryogenics 19, ABSTRCT...the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers... controlled high/low temperature chamber. * A microprocessor which was programmed to automatically cycle the temperature in the chamber in accordance
NASA Astrophysics Data System (ADS)
Boyer, T.; Sun, L.; Locarnini, R. A.; Mishonov, A. V.; Hall, N.; Ouellet, M.
2016-02-01
The World Ocean Database (WOD) contains systematically quality controlled historical and recent ocean profile data (temperature, salinity, oxygen, nutrients, carbon cycle variables, biological variables) ranging from Captain Cooks second voyage (1773) to this year's Argo floats. The US National Centers for Environmental Information (NCEI) also hosts the Global Temperature and Salinity Profile Program (GTSPP) Continuously Managed Database (CMD) which provides quality controlled near-real time ocean profile data and higher level quality controlled temperature and salinity profiles from 1990 to present. Both databases are used extensively for ocean and climate studies. Synchronization of these two databases will allow easier access and use of comprehensive regional and global ocean profile data sets for ocean and climate studies. Synchronizing consists of two distinct phases: 1) a retrospective comparison of data in WOD and GTSPP to ensure that the most comprehensive and highest quality data set is available to researchers without the need to individually combine and contrast the two datasets and 2) web services to allow the constantly accruing near-real time data in the GTSPP CMD and the continuous addition and quality control of historical data in WOD to be made available to researchers together, seamlessly.
Silicon carbide, an emerging high temperature semiconductor
NASA Technical Reports Server (NTRS)
Matus, Lawrence G.; Powell, J. Anthony
1991-01-01
In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.
Nucleation and growth control in protein crystallization
NASA Technical Reports Server (NTRS)
Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.
1990-01-01
The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.
Development of magnetostrictive active members for control of space structures
NASA Technical Reports Server (NTRS)
Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.
1992-01-01
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.
Development of magnetostrictive active members for control of space structures
NASA Astrophysics Data System (ADS)
Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.
1992-08-01
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.
40 CFR 86.246-94 - Intermediate temperature testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.246-94 Intermediate...
NASA Astrophysics Data System (ADS)
Romanosky, Robert R.
2017-05-01
he National Energy Technology Laboratory (NETL) under the Department of Energy (DOE) Fossil Energy (FE) Program is leading the effort to not only develop near zero emission power generation systems, but to increaser the efficiency and availability of current power systems. The overarching goal of the program is to provide clean affordable power using domestic resources. Highly efficient, low emission power systems can have extreme conditions of high temperatures up to 1600 oC, high pressures up to 600 psi, high particulate loadings, and corrosive atmospheres that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Advancements in sensing using optical fibers are key efforts within NETL's sensor development program as these approaches offer the potential to survive and provide critical information about these processes. An overview of the sensor development supported by the National Energy Technology Laboratory (NETL) will be given, including research in the areas of sensor materials, designs, and measurement types. New approaches to intelligent sensing, sensor placement and process control using networked sensors will be discussed as will novel approaches to fiber device design concurrent with materials development research and development in modified and coated silica and sapphire fiber based sensors. The use of these sensors for both single point and distributed measurements of temperature, pressure, strain, and a select suite of gases will be addressed. Additional areas of research includes novel control architecture and communication frameworks, device integration for distributed sensing, and imaging and other novel approaches to monitoring and controlling advanced processes. The close coupling of the sensor program with process modeling and control will be discussed for the overarching goal of clean power production.
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.
1990-01-01
A 9.2 percent scale STOVL hot gas ingestion model was tested in the NASA Lewis 9 x 15-foot Low-Speed Wind Tunnel. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R and contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.
Development of a Temperature Sensor for Jet Engine and Space Mission Applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis
2008-01-01
Electronics for Distributed Turbine Engine Control and Space Exploration Missions are expected to encounter extreme temperatures and wide thermal swings. In particular, circuits deployed in a jet engine compartment are likely to be exposed to temperatures well exceeding 150 C. To meet this requirement, efforts exist at the NASA Glenn Research Center (GRC), in support of the Fundamental Aeronautics Program/Subsonic Fixed Wing Project, to develop temperature sensors geared for use in high temperature environments. The sensor and associated circuitry need to be located in the engine compartment under distributed control architecture to simplify system design, improve reliability, and ease signal multiplexing. Several circuits were designed using commercial-off-the-shelf as well as newly-developed components to perform temperature sensing at high temperatures. The temperature-sensing circuits will be described along with the results pertaining to their performance under extreme temperature.
Selection and Implementation of Single Building EMCS (Energy Monitoring and Control Systems).
1983-08-01
Setpoint Night Setback 161 Figure 20: Dual Setpoint Night Setback/up 162 Figure 21: Centrifugal Chiller Reset 166 Figure 22: Centrifugal Chiller Capacity...Program outputs. Hot water temperature. Application notes. A dedicated local loop controller may be implemented. Chiller optimization . The chiller ... optimization program can be implemented in chilled water plants with multiple chillers . Based on chiller operating data and the energy input requirements
Performance seeking control: Program overview and future directions
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Orme, John S.
1993-01-01
A flight test evaluation of the performance-seeking control (PSC) algorithm on the NASA F-15 highly integrated digital electronic control research aircraft was conducted for single-engine operation at subsonic and supersonic speeds. The model-based PSC system was developed with three optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, and maximum thrust at maximum dry and full afterburner throttle settings. Subsonic and supersonic flight testing were conducted at the NASA Dryden Flight Research Facility covering the three PSC optimization modes and over the full throttle range. Flight results show substantial benefits. In the maximum thrust mode, thrust increased up to 15 percent at subsonic and 10 percent at supersonic flight conditions. The minimum fan turbine inlet temperature mode reduced temperatures by more than 100 F at high altitudes. The minimum fuel flow mode results decreased fuel consumption up to 2 percent in the subsonic regime and almost 10 percent supersonically. These results demonstrate that PSC technology can benefit the next generation of fighter or transport aircraft. NASA Dryden is developing an adaptive aircraft performance technology system that is measurement based and uses feedback to ensure optimality. This program will address the technical weaknesses identified in the PSC program and will increase performance gains.
Parameter monitoring compensation system and method
Barkman, W.E.; Babelay, E.F.; DeMint, P.D.; Hebble, T.L.; Igou, R.E.; Williams, R.R.; Klages, E.J.; Rasnick, W.H.
1995-02-07
A compensation system is described for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation. It utilizes sensors for gathering information at a preselected stage of a machining operation relating to an actual condition. The controller compares the actual condition to a condition which the program presumes to exist at the preselected stage and alters the program in accordance with detected variations between the actual condition and the assumed condition. Such conditions may be related to process parameters, such as a position, dimension or shape of the cutting tool or workpiece or an environmental temperature associated with the machining operation, and such sensors may be a contact or a non-contact type of sensor or a temperature transducer. 7 figs.
Performance of Control System Using Microcontroller for Sea Water Circulation
NASA Astrophysics Data System (ADS)
Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.
2018-02-01
Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.
USDA-ARS?s Scientific Manuscript database
Whey protein concentrate (WPC) has been recommended for use in emergency aid programs, but it is often stored overseas without temperature and relative humidity (RH) control, which may cause it to be rejected because of yellowing, off-flavors, or clumping. Therefore, the volatile compounds present ...
Dualchannel Fuel Control Program.
1981-08-01
Generator 1 S Fluidic Speed Sensor and Power Turbine Wheels T = 0.1 s (speed) Recuperator 15 to 19 s Fluidic Temperature Sensor (temperature) T = 0.7 s...tradeoff between the highest sensitivity obtainable (as small a gap as possi- ble) and the noise or output variations due to disc runout . In
Evans, Robert J.; Chum, Helena L.
1994-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Evans, Robert J.; Chum, Helena L.
1994-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Evans, Robert J.; Chum, Helena L.
1993-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Investigation of medium and high temperature phase change materials
NASA Technical Reports Server (NTRS)
Heine, D.; Kraehling, H.
1979-01-01
A detailed description of the programs for acquisition and analysis of the test results is given. Basically it concerns three programs. The TEST program controls the recording of the test data. With the THELLI program it is possible to follow the temperature curve recorded for each individual thermoelement during the test. With the AUSW program the test data can be analyzed, to determine, for example, the melting point and the start of melting. The first results of the service life tests are discussed. From these it is attempted to draw inferences for the subsequent tests. An attempt is made to focus on the determination of the area-related mass loss, the reduction in thickness and the corrosion rate as well as optical and scanning electron microscope evaluation.
CONFERENCE NOTE: Sixth Symposium on Temperature Scheduled for March 1982
NASA Astrophysics Data System (ADS)
1981-07-01
The call for papers for the 6th Symposium on Temperature, Its Measurement and Control in Science and Industry has been issued. The Symposium is scheduled to take place in Washington, DC, USA during the week of March 14 18, 1982. Like its predecessors held in the years 1919, 1939, 1954, 1961, and 1971, the 6th Symposium will stress advances in the measurement of thermodynamic values of temperature, in temperature reference points, in temperature sensors and instruments for the control of temperature, and in the development and use of temperature scales. For the first time, an exhibit of thermometry will be a part of the Symposium. Manuscripts to be submitted for inclusion in the Symposium should be sent to the 6th Temperature Symposium Program Chairman, National Bureau of Standards, by September 15, 1981. Those papers accepted for the Symposium will be due in camera-ready form by February 15, 1982. Original papers on all of the topics listed above, as well as reviews of the past decade's progress in thermometry and temperature control, are solicited by the Symposium organizers. The Symposium arrangements and registration are in the care of the Instrument Society of America (represented on the Symposium General Committee by Mr C T Glazer, 67 Alexander Drive, PO Box 12277, Research Triangle Park, North Carolina, 27709, USA). Questions regarding the instrument exhibits should also be addressed to the ISA. The technical program for the Symposium is the responsibility of a committee headed by Dr J F Schooley, Room B-128 Physics Building, National Bureau of Standards, Washington, DC, 20234, USA. The Symposium proceedings will be published by the American Institute of Physics.
Thielmann, Anika; Viehmann, Anja; Weltermann, Birgitta M
2015-07-14
Immunization programs are among the most effective public health strategies worldwide. Adequate vaccine storage is a prerequisite to assure the vaccines' effectiveness and safety. In a questionnaire survey among a random sample of German primary care physicians, we discovered vaccine storage deficits: 16% of physicians had experience with cold chain breaches either as an error or near error, 49 % did not keep a temperature log, and 21 % did not use a separate refrigerator for vaccine storage. In a recent feasibility study of 21 practice refrigerators, we showed that these were outside the target range 10.2% of the total time with some single refrigerators being outside the target range as much as 66.3% of the time. These cooling-chain deficits are consistent with the international medical literature, yet an effective, easy to disseminate, practice-centered intervention to improve storage conditions is lacking. This randomized intervention trial will be conducted in a random sample of primary care practices. Based on continuous temperature recordings over 7 days, all practices with readings outside the target range for vaccine storage (+2 °C to +8 °C) will be randomly allocated to a web-based education program or a waiting list control group. The practice physicians and their teams constitute the target population. Participants will be educated about best practices in vaccine storage and will receive a manual including storage checklists and templates for temperature documentation. In all practices, temperatures of the vaccine refrigerators will be monitored continuously using a data logger with a glycol probe as a surrogate for vaccine vial temperature. The effectiveness of the web-based education program will be determined after 6 months in terms of the proportion of refrigerators with vaccine vial temperatures within the target range (+2 °C to +8 °C) during 7-day temperature logging. Secondary outcome parameters include temperature monitoring, no critically low temperatures (≤ -0.5 °C), compliance with storage recommendations, knowledge of good vaccine storage conditions, and assignment of personnel as vaccine storage manager and backup. Keep Cool will develop and evaluate a web-based education program to improve vaccine storage conditions in primary care and thereby ensure immunization safety and effectiveness. DRKS00006561 (date of registration: 20 February 2015).
1991-06-05
information would provide more precise control of the vehicle. To this extent, research has been ongoing at the Biological Acoustics Section of AAMRL... researching questions of neurobiology, particularly neurochemistry and neuroanatomy. Furthermore, I am strongly interested in the effects of ionizing and non ...administered to the animal intraperitoneally. Control animals received an injection of saline in an equivalent volume. When the colonic temperature returned to
NASA Astrophysics Data System (ADS)
Dudka, A. P.; Antipin, A. M.; Verin, I. A.
2017-09-01
Huber-5042 diffractometer with a closed-cycle Displex DE-202 helium cryostat is a unique scientific instrument for carrying out X-ray diffraction experiments when studying the single crystal structure in the temperature range of 20-300 K. To make the service life longer and develop new experimental techniques, the diffractometer control is transferred to a new hardware and software platform. To this end, a modern computer; a new detector reader unit; and new control interfaces for stepper motors, temperature controller, and cryostat vacuum pumping system are used. The system for cooling the X-ray tube, the high-voltage generator, and the helium compressor and pump for maintaining the desired vacuum in the cryostat are replaced. The system for controlling the primary beam shutter is upgraded. A biological shielding is installed. The new program tools, which use the Linux Ubuntu operating system and SPEC constructor, include a set of drivers for control units through the aforementioned interfaces. A program for searching reflections from a sample using fast continuous scanning and a priori information about crystal is written. Thus, the software package for carrying out the complete cycle of precise diffraction experiment (from determining the crystal unit cell to calculating the integral reflection intensities) is upgraded. High quality of the experimental data obtained on this equipment is confirmed in a number of studies in the temperature range from 20 to 300 K.
Evaluation and characterization of the methane-carbon dioxide decomposition reaction
NASA Technical Reports Server (NTRS)
Davenport, R. J.; Schubert, F. H.; Shumar, J. W.; Steenson, T. S.
1975-01-01
A program was conducted to evaluate and characterize the carbon dioxide-methane (CO2-CH4) decomposition reaction, i.e., CO2 + CH4 = 2C + 2H2O. The primary objective was to determine the feasibility of applying this reaction at low temperatures as a technique for recovering the oxygen (O2) remaining in the CO2 which exits mixed with CH4 from a Sabatier CO2 reduction subsystem (as part of an air revitalization system of a manned spacecraft). A test unit was designed, fabricated, and assembled for characterizing the performance of various catalysts for the reaction and ultraviolet activation of the CH4 and CO2. The reactor included in the test unit was designed to have sufficient capacity to evaluate catalyst charges of up to 76 g (0.17 lb). The test stand contained the necessary instrumentation and controls to obtain the data required to characterize the performance of the catalysts and sensitizers tested: flow control and measurement, temperature control and measurement, product and inlet gas analysis, and pressure measurement. A product assurance program was performed implementing the concepts of quality control and safety into the program effort.
Lee, Young-Mee
2011-02-01
The purpose of this study was to evaluate the effects of self-foot reflexology on stress (perceived stress, urine cortisol level, and serum cortisol level), fatigue, skin temperature and immune response in female undergraduate students. The research design was a nonequivalent control group pretest-post test design. Participants were 60 university students: 30 in the experiment group and 30 in the control group. The period of this study was from April to June 2010. The program was performed for 1 hr a session, three times a week for 6 weeks. The data were analyzed using the SPSS/WIN 17.0 program. The results showed that self-foot reflexology was effective in reducing perceived stress and fatigue, and raised skin temperature in female undergraduate students. But cortisol levels and immune response were not statistically significant different. The results of this study indicate that self-foot reflexology is an effective nursing intervention in reducing perceived stress and fatigue and, in improving skin temperature. Therefore, it is recommended that this be used in clinical practice as an effective nursing intervention for in female undergraduate students.
High temperature, harsh environment sensors for advanced power generation systems
NASA Astrophysics Data System (ADS)
Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.
2015-05-01
One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.
Chum, H.L.; Evans, R.J.
1992-08-04
A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.
Chum, Helena L.; Evans, Robert J.
1992-01-01
A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.
Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.
Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian
2017-08-03
The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.
Automatic cassette to cassette radiant impulse processor
NASA Astrophysics Data System (ADS)
Sheets, Ronald E.
1985-01-01
Single wafer rapid annealing using high temperature isothermal processing has become increasingly popular in recent years. In addition to annealing, this process is also being investigated for suicide formation, passivation, glass reflow and alloying. Regardless of the application, there is a strong necessity to automate in order to maintain process control, repeatability, cleanliness and throughput. These requirements have been carefully addressed during the design and development of the Model 180 Radiant Impulse Processor which is a totally automatic cassette to cassette wafer processing system. Process control and repeatability are maintained by a closed loop optical pyrometer system which maintains the wafer at the programmed temperature-time conditions. Programmed recipes containing up to 10 steps may be easily entered on the computer keyboard or loaded in from a recipe library stored on a standard 5 {1}/{4″} floppy disk. Cold wall heating chamber construction, controlled environment (N 2, A, forming gas) and quartz wafer carriers prevent contamination of the wafer during high temperature processing. Throughputs of 150-240 wafers per hour are achieved by quickly heating the wafer to temperature (450-1400°C) in 3-6 s with a high intensity, uniform (± 1%) radiant flux of 100 {W}/{cm 2}, parallel wafer handling system and a wafer cool down stage.
Performance of High-Speed PWM Control Chips at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard; Overton, Eric
2001-01-01
The operation of power electronic systems at cryogenic temperatures is anticipated in many NASA space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. As part of the NASA Glenn Low Temperature Electronics Program, several commercial high-speed Pulse Width Modulation (PWM) chips have been characterized in terms of their performance as a function of temperature in the range of 25 to -196 C (liquid nitrogen). These chips ranged in their electrical characteristics, modes of control, packaging options, and applications. The experimental procedures along with the experimental data obtained on the investigated chips are presented and discussed.
Electronic control circuits: A compilation
NASA Technical Reports Server (NTRS)
1973-01-01
A compilation of technical R and D information on circuits and modular subassemblies is presented as a part of a technology utilization program. Fundamental design principles and applications are given. Electronic control circuits discussed include: anti-noise circuit; ground protection device for bioinstrumentation; temperature compensation for operational amplifiers; hybrid gatling capacitor; automatic signal range control; integrated clock-switching control; and precision voltage tolerance detector.
Evans, R.J.; Chum, H.L.
1994-10-25
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.
Evans, Robert J.; Chum, Helena L.
1994-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Evans, R.J.; Chum, H.L.
1994-04-05
A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.
Evans, R.J.; Chum, H.L.
1994-10-25
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.
Evans, R.J.; Chum, H.L.
1994-06-14
A process is described using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents. 68 figs.
Evans, Robert J.; Chum, Helena L.
1994-01-01
A process of using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents.
Vanadium hydride deuterium-tritium generator
Christensen, Leslie D.
1982-01-01
A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.
Transistor step stress program for JANTX2N4150
NASA Technical Reports Server (NTRS)
1979-01-01
Reliability analysis of the transistor JANTX2N4150 manufactured by General Semiconductor and Transitron is reported. The discrete devices were subjected to power and temperature step stress tests and then to electrical tests after completing the power/temperature step stress point. Control sample units were maintained for verification of the electrical parametric testing. Results are presented.
Temperature Control with Two Parallel Small Loop Heat Pipes for GLM Program
NASA Technical Reports Server (NTRS)
Khrustalev, Dmitry; Stouffer, Chuck; Ku, Jentung; Hamilton, Jon; Anderson, Mark
2014-01-01
The concept of temperature control of an electronic component using a single Loop Heat Pipe (LHP) is well established for Aerospace applications. Using two LHPs is often desirable for redundancy/reliability reasons or for increasing the overall heat source-sink thermal conductance. This effort elaborates on temperature controlling operation of a thermal system that includes two small ammonia LHPs thermally coupled together at the evaporator end as well as at the condenser end and operating "in parallel". A transient model of the LHP system was developed on the Thermal Desktop (TradeMark) platform to understand some fundamental details of such parallel operation of the two LHPs. Extensive thermal-vacuum testing was conducted with two thermally coupled LHPs operating simultaneously as well as with only one LHP operating at a time. This paper outlines the temperature control procedures for two LHPs operating simultaneously with widely varying sink temperatures. The test data obtained during the thermal-vacuum testing, with both LHPs running simultaneously in comparison with only one LHP operating at a time, are presented with detailed explanations.
A dynamic model for plant growth: validation study under changing temperatures
NASA Technical Reports Server (NTRS)
Wann, M.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1984-01-01
A dynamic simulation model to describe vegetative growth of plants, for which some functions and parameter values have been estimated previously by optimization search techniques and numerical experimentation based on data from constant temperature experiments, is validated under conditions of changing temperatures. To test the predictive capacity of the model, dry matter accumulation in the leaves, stems, and roots of tobacco plants (Nicotiana tabacum L.) was measured at 2- or 3-day intervals during a 5-week period when temperatures in controlled-environment rooms were programmed for changes at weekly and daily intervals and in ascending or descending sequences within a range of 14 to 34 degrees C. Simulations of dry matter accumulation and distribution were carried out using the programmed changes for experimental temperatures and compared with the measured values. The agreement between measured and predicted values was close and indicates that the temperature-dependent functional forms derived from constant-temperature experiments are adequate for modelling plant growth responses to conditions of changing temperatures with switching intervals as short as 1 day.
Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M.; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad
2014-01-01
Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations. PMID:25972753
Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad
2015-05-01
Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations.
STS-1 environmental control and life support system. Consumables and thermal analysis
NASA Technical Reports Server (NTRS)
Steines, G.
1980-01-01
The Environmental Control and Life Support Systems (ECLSS)/thermal systems analysis for the Space Transportation System 1 Flight (STS-1) was performed using the shuttle environmental consumables usage requirements evaluation (SECURE) computer program. This program employs a nodal technique utilizing the Fortran Environmental Analysis Routines (FEAR). The output parameters evaluated were consumable quantities, fluid temperatures, heat transfer and rejection, and cabin atmospheric pressure. Analysis of these indicated that adequate margins exist for the nonpropulsive consumables and related thermal environment.
Malaria rapid diagnostic tests in tropical climates: the need for a cool chain.
Jorgensen, Pernille; Chanthap, Lon; Rebueno, Antero; Tsuyuoka, Reiko; Bell, David
2006-05-01
Malaria control programs in endemic countries increasingly rely on early case detection and treatment at village level. The rapid diagnostic tests (RDTs) and accompanying drugs on which the success of these programs depends deteriorate to varying degrees at high temperatures. To assess the ability of health systems to maintain RDTs within manufacturers' specifications, we monitored temperatures in the delivery chain from manufacturer through to the village health worker in Cambodia and the Philippines. In both countries, storage temperatures regularly exceeded those recommended for most RDTs intended for field use, whereas temperatures during transport greatly exceeded the lower and upper limits. These results emphasize the need for good logistical planning during the introduction of point-of-care tests in tropical countries and the importance of considering the stability of diagnostic tests during procurement.
Long life reliability thermal control systems study
NASA Technical Reports Server (NTRS)
Scollon, T. R., Jr.; Killen, R. E.
1972-01-01
The results of a program undertaken to conceptually design and evaluate a passive, high reliability, long life thermal control system for space station application are presented. The program consisted of four steps: (1) investigate and select potential thermal system elements; (2) conceive, evaluate and select a thermal control system using these elements; (3) conduct a verification test of a prototype segment of the selected system; and (4) evaluate the utilization of waste heat from the power supply. The result of this project is a conceptual thermal control system design which employs heat pipes as primary components, both for heat transport and temperature control. The system, its evaluation, and the test results are described.
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix...—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration (natural, Roots blown, supercharged.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1...
40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Pt. 85, App. VIII Appendix VIII.... Air Inlet System. 1. Temperature control system calibration. IV. Fuel System. 1. General. a. Engine idle speed. b. Engine idle mixture. 2. Carburetion. a. Air-fuel flow calibration. b. Transient...
40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Pt. 85, App. VIII Appendix VIII.... Air Inlet System. 1. Temperature control system calibration. IV. Fuel System. 1. General. a. Engine idle speed. b. Engine idle mixture. 2. Carburetion. a. Air-fuel flow calibration. b. Transient...
40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Pt. 85, App. VIII Appendix VIII.... Air Inlet System. 1. Temperature control system calibration. IV. Fuel System. 1. General. a. Engine idle speed. b. Engine idle mixture. 2. Carburetion. a. Air-fuel flow calibration. b. Transient...
Thermal control extravehicular life support system
NASA Technical Reports Server (NTRS)
1975-01-01
The results of a comprehensive study which defined an Extravehicular Life Support System Thermal Control System (TCS) are presented. The design of the prototype hardware and a detail summary of the prototype TCS fabrication and test effort are given. Several heat rejection subsystems, water management subsystems, humidity control subsystems, pressure control schemes and temperature control schemes were evaluated. Alternative integrated TCS systems were studied, and an optimum system was selected based on quantitative weighing of weight, volume, cost, complexity and other factors. The selected subsystem contains a sublimator for heat rejection, bubble expansion tank for water management, a slurper and rotary separator for humidity control, and a pump, a temperature control valve, a gas separator and a vehicle umbilical connector for water transport. The prototype hardware complied with program objectives.
Performance seeking control program overview
NASA Technical Reports Server (NTRS)
Orme, John S.
1995-01-01
The Performance Seeking Control (PSC) program evolved from a series of integrated propulsion-flight control research programs flown at NASA Dryden Flight Research Center (DFRC) on an F-15. The first of these was the Digital Electronic Engine Control (DEEC) program and provided digital engine controls suitable for integration. The DEEC and digital electronic flight control system of the NASA F-15 were ideally suited for integrated controls research. The Advanced Engine Control System (ADECS) program proved that integrated engine and aircraft control could improve overall system performance. The objective of the PSC program was to advance the technology for a fully integrated propulsion flight control system. Whereas ADECS provided single variable control for an average engine, PSC controlled multiple propulsion system variables while adapting to the measured engine performance. PSC was developed as a model-based, adaptive control algorithm and included four optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, maximum thrust, and minimum thrust. Subsonic and supersonic flight testing were conducted at NASA Dryden covering the four PSC optimization modes and over the full throttle range. Flight testing of the PSC algorithm, conducted in a series of five flight test phases, has been concluded at NASA Dryden covering all four of the PSC optimization modes. Over a three year period and five flight test phases 72 research flights were conducted. The primary objective of flight testing was to exercise each PSC optimization mode and quantify the resulting performance improvements.
A new microcontroller-based human brain hypothermia system.
Kapidere, Metin; Ahiska, Raşit; Güler, Inan
2005-10-01
Many studies show that artificial hypothermia of brain in conditions of anesthesia with the rectal temperature lowered down to 33 degrees C produces pronounced prophylactic effect protecting the brain from anoxia. Out of the methods employed now in clinical practice for reducing the oxygen consumption by the cerebral tissue, the most efficacious is craniocerebral hypothermia (CCH). It is finding even more extensive application in cardiovascular surgery, neurosurgery, neurorenimatology and many other fields of medical practice. In this study, a microcontroller-based designed human brain hypothermia system (HBHS) is designed and constructed. The system is intended for cooling and heating the brain. HBHS consists of a thermoelectric hypothermic helmet, a control and a power unit. Helmet temperature is controlled by 8-bit PIC16F877 microcontroller which is programmed using MPLAB editor. Temperature is converted to 10-bit digital and is controlled automatically by the preset values which have been already entered in the microcontroller. Calibration is controlled and the working range is tested. Temperature of helmet is controlled between -5 and +46 degrees C by microcontroller, with the accuracy of +/-0.5 degrees C.
1985-02-01
Deck - Cold Deck Reset Reheat Coil Reset Steam Boiler Optimization [lot Water Outside Air Reset Chiller Optimization Chiller Water Temperature Reset...with programming techniques for each type of installed DDC in order to effect changes in operating setpoints and application programs. *Communication...can be changed without recailbration of instrumentation devices. Changes to the application software, operating setpoints and parameters require the
Orbiter/payload contamination control assessment support
NASA Technical Reports Server (NTRS)
Rantanen, R. O.; Strange, D. A.; Hetrick, M. A.
1978-01-01
The development and integration of 16 payload bay liner filters into the existing shuttle/payload contamination evaluation (SPACE) computer program is discussed as well as an initial mission profile model. As part of the mission profile model, a thermal conversion program, a temperature cycling routine, a flexible plot routine and a mission simulation of orbital flight test 3 are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouaichaoui, Youcef; Berrahal, Abderezak; Halbaoui, Khaled
This paper describes the design of data acquisition system (DAQ) that is connected to a PC and development of a feedback control system that maintains the coolant temperature of the process at a desired set point using a digital controller system based on the graphical programming language. The paper will provide details about the data acquisition unit, shows the implementation of the controller, and present test results. (authors)
Vanadium hydride deuterium-tritium generator
Christensen, L.D.
1980-03-13
A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.
Large area sheet task: Advanced Dendritic Web Growth Development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.
1981-01-01
A melt level control system was implemented to provide stepless silicon feed rates from zero to rates exactly matching the silicon consumed during web growth. Bench tests of the unit were successfully completed and the system mounted in a web furnace for operational verification. Tests of long term temperature drift correction techniques were made; web width monitoring seems most appropriate for feedback purposes. A system to program the initiation of the web growth cycle was successfully tested. A low cost temperature controller was tested which functions as well as units four times as expensive.
Programmable Digital Controller
NASA Technical Reports Server (NTRS)
Wassick, Gregory J.
2012-01-01
An existing three-channel analog servo loop controller has been redesigned for piezoelectric-transducer-based (PZT-based) etalon control applications to a digital servo loop controller. This change offers several improvements over the previous analog controller, including software control over proportional-integral-derivative (PID) parameters, inclusion of other data of interest such as temperature and pressure in the control laws, improved ability to compensate for PZT hysteresis and mechanical mount fluctuations, ability to provide pre-programmed scanning and stepping routines, improved user interface, expanded data acquisition, and reduced size, weight, and power.
Intelligent Engine Systems: Thermal Management and Advanced Cooling
NASA Technical Reports Server (NTRS)
Bergholz, Robert
2008-01-01
The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.
NASA Technical Reports Server (NTRS)
Wieland, Paul; Miller, Lee; Ibarra, Tom
2003-01-01
As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To support prediction and troubleshooting, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW(Registered Trademark) programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and validated in 2003. The facility has been used to address flight issues with the ITCS, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant. Upon validation of the entire facility, it will be capable not only of checking procedures, but also of evaluating payload timelining, operational modifications, physical modifications, and other aspects affecting the thermal control system.
Gas-phase measurements of combustion interaction with materials for radiation-cooled chambers
NASA Technical Reports Server (NTRS)
Barlow, R. S.; Lucht, R. P.; Jassowski, D. M.; Rosenberg, S. D.
1991-01-01
Foil samples of Ir and Pt are exposed to combustion products in a controlled premixed environment at atmospheric pressure. Electrical heating of the foil samples is used to control the surface temperature and to elevate it above the radiative equilibrium temperature within the test apparatus. Profiles of temperature and OH concentration in the boundary layer adjacent to the specimen surface are measured by laser-induced fluorescence. Measured OH concentrations are significantly higher than equilibrium concentrations calculated for the known mixture ratio and the measured temperature profiles. This result indicates that superequilibrium concentrations of H-atoms and O-atoms are also present in the boundary layer, due to partial equilibrium of the rapid binary reactions of the H2/O2 chemical kinetic system. These experiments are conducted as part of a research program to investigate fundamental aspects of the interaction of combustion gases with advanced high-temperature materials for radiation-cooled thrusters.
Structural overview and learner control in hypermedia instructional programs
NASA Astrophysics Data System (ADS)
Burke, Patricia Anne
1998-09-01
This study examined the effects of a structural overview and learner control in a computer-based program on the achievement, attitudes, time in program and Linearity of path of fifth-grade students. Four versions of a computer-based instructional program about the Sun and planets were created in a 2 x 2 factorial design. The program consisted of ten sections, one for each planet and one for the Sun. Two structural overview conditions (structural overview, no structural overview) were crossed with two control conditions (learner control, program control). Subjects in the structural overview condition chose the order in which they would learn about the planets from among three options: ordered by distance from the Sun, ordered by size, or ordered by temperature. Subjects in the learner control condition were able to move freely among screens within a section and to choose their next section after finishing the previous one. In contrast, those in the program control condition advanced through the program in a prescribed linear manner. A 2 x 2 ANOVA yielded no significant differences in posttest scores for either independent variable or for their interaction. The structural overview was most likely not effective because subjects spent only a small percentage of their total time on the structural overview screens and they were not required to act upon the information in those screens. Learner control over content sequencing may not have been effective because most learner-control subjects chose the same overall sequence of instruction (i.e., distance from the Sun) prescribed for program-control subjects. Learner-control subjects chose to view an average of 40 more screens than the fixed number of 160 screens in the program-control version. However, program-control subjects spent significantly more time per screen than learner-control subjects, and the total time in program did not differ significantly between the two groups. Learner-control subjects receiving the structural overview deviated from the linear path significantly more often than subjects who did not have the structural overview, but deviation from the linear path was not associated with higher posttest scores.
Efremov, Mikhail Yu; Nealey, Paul F
2018-05-01
An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.
NASA Astrophysics Data System (ADS)
Efremov, Mikhail Yu.; Nealey, Paul F.
2018-05-01
An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.
Environmental Systems Test Stand
NASA Astrophysics Data System (ADS)
Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.
A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.
Electronics Demonstrated for Low- Temperature Operation
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammond, Ahmad; Gerber, Scott S.
2000-01-01
The operation of electronic systems at cryogenic temperatures is anticipated for many NASA spacecraft, such as planetary explorers and deep space probes. For example, an unheated interplanetary probe launched to explore the rings of Saturn would experience an average temperature near Saturn of about 183 C. Electronics capable of low-temperature operation in the harsh deep space environment also would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. An ongoing research and development program on low-temperature electronics at the NASA Glenn Research Center at Lewis Field is focusing on the design of efficient power systems that can survive and exploit the advantages of low-temperature environments. The targeted systems, which are mission driven, include converters, inverters, controls, digital circuits, and special-purpose circuits. Initial development efforts successfully demonstrated the low-temperature operation and cold-restart of several direct-current/direct-current (dc/dc) converters based on different types of circuit design, some with superconducting inductors. The table lists some of these dc/dc converters with their properties, and the photograph shows a high-voltage, high-power dc/dc converter designed for an ion propulsion system for low-temperature operation. The development efforts of advanced electronic systems and the supporting technologies for low-temperature operation are being carried out in-house and through collaboration with other Government agencies, industry, and academia. The Low Temperature Electronics Program supports missions and development programs at NASA s Jet Propulsion Laboratory and Goddard Space Flight Center. The developed technologies will be transferred to commercial end users for applications such as satellite infrared sensors and medical diagnostic equipment.
The Electronic Nose Training Automation Development
NASA Technical Reports Server (NTRS)
Schattke, Nathan
2002-01-01
The electronic nose is a method of using several sensors in conjunction to identify an unknown gas. Statistical analysis has shown that a large number of training exposures need to be performed in order to get a model that can be depended on. The number of training exposures needed is on the order of 1000. Data acquisition from the noses are generally automatic and built in. The gas generation equipment consists of a Miller-Nelson (MN) flow/temperature/humidity controller and a Kin-Tek (KT) trace gas generator. This equipment has been controlled in the past by an old data acquisition and control system. The new system will use new control boards and an easy graphical user interface. The programming for this is in the LabVIEW G programming language. A language easy for the user to make modifications to. This paper details some of the issues in selecting the components and programming the connections. It is not a primer on LabVIEW programming, a separate CD is being delivered with website files to teach that.
PLCs used in smart home control
NASA Astrophysics Data System (ADS)
Barz, C.; Deaconu, S. I.; Latinovic, T.; Berdie, A.; Pop-Vadean, A.; Horgos, M.
2016-02-01
This paper presents the realization of a smart home automation using Siemens PLCs. The smart home interface is realized using the HMI Weintek eMT3070a touchscreen, which shows the window for controlling and monitoring the lighting, room temperature, irrigation systems, swimming pool, etc. By using PLCs, the smart home can be controlled via Ethernet and it can be programmed to the needs of tenants.
Casanova, I; Diaz, A; Pinto, S; de Carvalho, M
2014-04-01
The technique of threshold tracking to test axonal excitability gives information about nodal and internodal ion channel function. We aimed to investigate variability of the motor excitability measurements in healthy controls, taking into account age, gender, body mass index (BMI) and small changes in skin temperature. We examined the left median nerve of 47 healthy controls using the automated threshold-tacking program, QTRAC. Statistical multiple regression analysis was applied to test relationship between nerve excitability measurements and subject variables. Comparisons between genders did not find any significant difference (P>0.2 for all comparisons). Multiple regression analysis showed that motor amplitude decreases with age and temperature, stimulus-response slope decreases with age and BMI, and that accommodation half-time decrease with age and temperature. The changes related to demographic features on TRONDE protocol parameters are small and less important than in conventional nerve conduction studies. Nonetheless, our results underscore the relevance of careful temperature control, and indicate that interpretation of stimulus-response slope and accommodation half-time should take into account age and BMI. In contrast, gender is not of major relevance to axonal threshold findings in motor nerves. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Assessment of the high temperature fission chamber technology for the French fast reactor program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jammes, C.; Filliatre, P.; Geslot, B.
2011-07-01
High temperature fission chambers are key instruments for the control and protection of the sodium-cooled fast reactor. First, the developments of those neutron detectors, which are carried out either in France or abroad are reviewed. Second, the French realizations are assessed with the use of the technology readiness levels in order to identify tracks of improvement. (authors)
A new microcontroller supervised thermoelectric renal hypothermia system.
Işik, Hakan
2005-10-01
In the present study, a thermoelectric system controlled by a microcontroller is developed to induce renal hypothermia. Temperature value was managed by 8-byte microcontroller, PIC16F877, and was programmed using microcontroller MPASM package. In order to ensure hypothermia in the kidney 1-4 modules and sensors perceiving temperature of the area can be selected. Temperature values are arranged proportionately for the selected area and the determined temperature values can be monitored from an Liquid Crystal Display (LCD) screen. The temperature range of the system is between -50 and +50 degrees C. Renal hypothermia system was tried under in vivo conditions on the kidney of a dog.
Thermal performance of MSFC hot air collectors under natural and simulated conditions
NASA Technical Reports Server (NTRS)
Shih, K., Sr.
1977-01-01
The procedures used and the results obtained from an evaluation test program conducted to determine the thermal performance and structural characteristics of selected MSFC--designed hot air collectors under both real and simulated environmental conditions are described. Five collectors were tested in the three phased program. A series of outdoor tests were conducted to determine stagnation temperatures on a typical bright day and to determine each collector's ability to withstand these temperatures. Two of the collectors experienced structural deformation sufficient to eliminate them from the remainder of the test program. A series of outdoor tests to evaluate the thermal performance of collector S/N 10 under certain test conditions were performed followed by a series of indoor tests to evaluate the thermal performance of the collector under closely controlled simulated conditions.
Experimental control of a fluidic pinball using genetic programming
NASA Astrophysics Data System (ADS)
Raibaudo, Cedric; Zhong, Peng; Noack, Bernd R.; Martinuzzi, Robert J.
2017-11-01
The wake stabilization of a triangular cluster of three rotating cylinders was investigated in the present study. Experiments were performed at Reynolds number Re 6000, and compared with URANS-2D simulations at same flow conditions. 2D2C PIV measurements and constant temperature anemometry were used to characterize the flow without and with actuation. Open-loop actuation was first considered for the identification of particular control strategies. Machine learning control was also implemented for the experimental study. Linear genetic programming has been used for the optimization of open-loop parameters and closed-loop controllers. Considering a cost function J based on the fluctuations of the velocity measured by the hot-wire sensor, significant performances were achieved using the machine learning approach. The present work is supported by the senior author's (R. J. Martinuzzi) NSERC discovery Grant. C. Raibaudo acknowledges the financial support of the University of Calgary Eyes-High PDF program.
Temperature measurement and control system for transtibial prostheses: Functional evaluation.
Ghoseiri, Kamiar; Zheng, Yong Ping; Leung, Aaron K L; Rahgozar, Mehdi; Aminian, Gholamreza; Lee, Tat Hing; Safari, Mohammad Reza
2018-01-01
The accumulation of heat inside the prosthetic socket increases skin temperature and fosters perspiration, which consequently leads to high tissue stress, friction blister, discomfort, unpleasant odor, and decreased prosthesis suspension and use. In the present study, the prototype of a temperature measurement and control (TM&C) system was designed, fabricated, and functionally evaluated in a phantom model of the transtibial prosthetic socket. The TM&C system was comprised of 12 thermistors divided equally into two groups that arranged internal and external to a prosthetic silicone liner. Its control system was programmed to select the required heating or cooling function of a thermal pump to provide thermal equilibrium based on the amount of temperature difference from a defined set temperature, or the amount of difference between the mean temperature recorded by inside and outside thermistors. A thin layer of aluminum was used for thermal conduction between the thermal pump and different sites around the silicone liner. The results showed functionality of the TM&C system for thermoregulation inside the prosthetic socket. However, enhancing the structure of this TM&C system, increasing its thermal power, and decreasing its weight and cost are main priorities before further development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
An Apple IIe microcomputer is being used to collect data and to control a pyrolysis system. Pyrolysis data for bitumen and kerogen are widely used to estimate source rock maturity. For a detailed analysis of kinetic parameters, however, data must be obtained more precisely than for routine pyrolysis. The authors discuss the program which controls the temperature ramp of the furnace that heats the sample, and collects data from a thermocouple in the furnace and from the flame ionization detector measuring evolved hydrocarbons. These data are stored on disk for later use by programs that display the results of themore » experiment or calculate kinetic parameters. The program is written in Applesoft BASIC with subroutines in Apple assembler for speed and efficiency.« less
Multi-shape active composites by 3D printing of digital shape memory polymers
NASA Astrophysics Data System (ADS)
Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry
2016-04-01
Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.
Multi-shape active composites by 3D printing of digital shape memory polymers.
Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry
2016-04-13
Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.
Multi-shape active composites by 3D printing of digital shape memory polymers
Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry
2016-01-01
Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543
Final Environmental Impact Statement (EIS) for the Space Nuclear Thermal Propulsion (SNTP) program
NASA Astrophysics Data System (ADS)
1991-09-01
A program has been proposed to develop the technology and demonstrate the feasibility of a high-temperature particle bed reactor (PBR) propulsion system to be used to power an advanced second stage nuclear rocket engine. The purpose of this Final Environmental Impact Statement (FEIS) is to assess the potential environmental impacts of component development and testing, construction of ground test facilities, and ground testing. Major issues and goals of the program include the achievement and control of predicted nuclear power levels; the development of materials that can withstand the extremely high operating temperatures and hydrogen flow environments; and the reliable control of cryogenic hydrogen and hot gaseous hydrogen propellant. The testing process is designed to minimize radiation exposure to the environment. Environmental impact and mitigation planning are included for the following areas of concern: (1) Population and economy; (2) Land use and infrastructure; (3) Noise; (4) Cultural resources; (5) Safety (non-nuclear); (6) Waste; (7) Topography; (8) Geology; (9) Seismic activity; (10) Water resources; (11) Meteorology/Air quality; (12) Biological resources; (13) Radiological normal operations; (14) Radiological accidents; (15) Soils; and (16) Wildlife habitats.
Measurement and Control System Based on Wireless Senor Network for Granary
NASA Astrophysics Data System (ADS)
Song, Jian
A wireless measurement and control system for granary is developed for the sake of overcoming the shortcoming of the wired measurement and control system such as complex wiring and low anti-interference capacity. In this system, Zigbee technology is applied with Zigbee protocol stack development platform by TI, and wireless senor network is used to collect and control the temperature and the humidity. It is composed of the upper PC, central control node based on CC2530, sensor nodes, sensor modules and the executive device. The wireless sensor node is programmed by C language in IAR Embedded Workbench for MCS-51 Evaluation environment. The upper PC control system software is developed based on Visual C++ 6.0 platform. It is shown by experiments that data transmission in the system is accurate and reliable and the error of the temperature and humidity is below 2%, meeting the functional requirements for the granary measurement and control system.
Community Geothermal Technology Program: Fruit drying with geothermal energy. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-03-14
Largest problem was lack of proper recording and controlling instrumentation. Agricultural products tested were green papaya powder, banana slices, and pineapple slices. Results show that a temperature of 120 F is a good drying temperature. Papaya should be mature green and not overly ripe; banana ripeness is also important; and pineapple slice thickness should be very uniform for even drying. Geothermal drying is feasible. Figs, tabs.
Aeropropulsion 1987. Session 4: Instrumentation and Controls Research
NASA Technical Reports Server (NTRS)
1987-01-01
The Lewis Research Center has had a long history of research directed toward advancing the national capability in the areas of propulsion research instrumentation and propulsion controls. Some of the major advances from this research that are currently in use are highlighted as well as some of the ongoing and planned research that will strongly impact the future capabilities. The presentations will cover the efforts on research instrumentation and controls as well as the research on high temperature electronics. This introductory section will focus on the major drivers or needs of the aeropropulsion industry that have shaped the instrumentation and controls research programs. Also covered will be the technological opportunities that have greatly impacted the program and that permitted break-throughs in several areas.
Control of dental prosthesis system with microcontroller.
Kapidere, M; Müldür, S; Güler, I
2000-04-01
In this study, a microcontroller-based electronic circuit was designed and implemented for dental prosthesis curing system. Heater, compressor and valve were controlled by 8-bit PIC16C64 microcontroller which is programmed using MPASM package. The temperature and time were controlled automatically by preset values which were inputted from keyboard while the pressure was kept constant. Calibration was controlled and the working range was tested. The test results showed that the system provided a good performance.
Diode step stress program, JANTX1N5614
NASA Technical Reports Server (NTRS)
1978-01-01
The reliability of switching diode JANTX1N5614 was tested. The effect of power/temperature step stress on the diode was determined. Control sample units were maintained for verification of the electrical parametric testing. Results are reported.
Testing of Compact Bolted Fasteners with Insulation and Friction-Enhanced Shims for NCSX
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. E. Dudek, J.H. Chrzanowski, G. Gettelfinger, P. Heitzenroeder, S. Jurczynski, M. Viola and K. Freudenberg
The fastening of the National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to the high magnetic forces, need to control induced currents, tight tolerances and restrictive space envelope. A fastening method using high strength studs, jack nuts, insulating spacers, bushings and alumina coated shims was developed which met the requirements. A test program was conducted to verify the design. The tests included measurements of flatness of the spacers, determination of contact area, torque vs. tension of the studs and jack nuts, friction coefficient tests on the alumina and G-10 insulators, electrical tests,more » and tension relaxation tests due to temperature excursions from room temperature to liquid nitrogen temperatures. This paper will describe the design and the results of the test program.« less
Automated control system for a mashing process
NASA Astrophysics Data System (ADS)
Teterin, E.; Rudnickiy, V.
2015-10-01
The goal of this paper is to describe a system for a mashing process, which is the first part of brewing beer. The mashing is a procedure where the fermentable (and some nonfermentable) sugars are extracted from malts. The program part based on LabVIEW, which is used to control NI CompactRIO. The main target of the project is to reach a predefined levels of the temperatures and maintain it during the pauses. When the necessary break time is ended the system is ready to go to the new value. The precise control of the temperatures during the breaks is one of the critical factors that define the texture and alcohol content of the beer. The system has two tanks with resistors PT'00 in both of them, heat exchanger (coil), heater and pump. The first tank has heating element in order to rise the temperature in the other one. This project has practical solution with all explanations and graphs which are proven working ability of this control system.
Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiao; Dong, Jin; Djouadi, Seddik M
2015-01-01
The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, wheremore » the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.« less
On-line data analysis and monitoring for H1 drift chambers
NASA Astrophysics Data System (ADS)
Düllmann, Dirk
1992-05-01
The on-line monitoring, slow control and calibration of the H1 central jet chamber uses a VME multiprocessor system to perform the analysis and a connected Macintosh computer as graphical interface to the operator on shift. Task of this system are: - analysis of event data including on-line track search, - on-line calibration from normal events and testpulse events, - control of the high voltage and monitoring of settings and currents, - monitoring of temperature, pressure and mixture of the chambergas. A program package is described which controls the dataflow between data aquisition, differnt VME CPUs and Macintosh. It allows to run off-line style programs for the different tasks.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges
2014-01-10
Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.
Arredondo, José; Ruiz, Lia; Montoya, Pablo; Díaz-Fleischer, Francisco
2018-04-02
The production of genetic sexing strains (GSS) of tephritid flies for sterile insect technique (SIT) programs convey the need to determine new conditions for packing and shipment since these flies are more susceptible to stressors than standard bisexual strains. We studied the effect of hypoxia, pupae size, and temperature on the new GSS Tapachula-7 of Anastrepha ludens flies (Diptera: Tephritidae). In one experiment, we tested the interaction size hypoxia using three pupae sizes, 6 (11.6 ± 1.1 mg), 7 (15.3 ± 1.5 mg), and 8 (17.9 ± 1.3 mg) (95% of produced pupae exhibit these categories of size), and four hypoxia periods, 12, 24, 36, 48 h and a control. In a second experiment, we tested two periods of hypoxia (24 and 48 h) and four temperatures: 15, 20, 25, and 30°C and a control (without hypoxia at laboratory temperature). Our results showed that the emergence and percent of fliers from the pupae exposed to hypoxia were adversely affected; however, emergence was higher in pupae of size 7. Treatment for 12 and 24 h hypoxia led to a higher number of fliers. In the case of the interaction of hypoxia and temperature, it was observed that those flies that emerged from the pupae exposed to hypoxia at 15 and 20°C exhibited quality control parameters similar to those that were not exposed to hypoxia. We discuss our results on the basis of the metabolic response to these factors and its application in the SIT programs.
Programmed temperature gasification study. Final report, October 1, 1979-November 30, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spoon, M.J.; Gardner, M.P.; Starkovich, J.A.
An experimental, modeling and conceptual engineering analysis study has been performed to assess the feasibility of TRW's Programmed Temperature Gasification (PTG) concept for carbonizing caking coals without severe agglomeration. The concept involves control of carbonizing heating rate to maintain metaplast concentration at a level equal to or slightly below that which causes agglomeration. The experimental studies required the contruction of a novel programmed temperature, elevated pressure, hot stage video microscope for observation of coal particle changes during heating. This system was used to develop a minimum-time heating schedule capable of carbonizing the coal at elevated pressures in the presence ofmore » hydrogen without severe agglomeration. Isothermal fixed heating rate data for a series of coals were subsequently used to calibrate and verify the mathematical model for the PTG process. These results showed good correlation between experimental data and mathematical predictions. Commercial application of the PTG concept to batch, moving bed and fluid bed processing schemes was then evaluated. Based on the calibrated model programmed temperature gasification of the coal without severe agglomeration could be carried out on a commercial batch reaction in 4 to 12 minutes. The next step in development of the PTG concept for commercial application would require testing on a bench scale (3-inch diameter) gasifier coupled with a full commercial assessment to determine size and cost of various gasification units.« less
Temperature-programmed deoxygenation of acetic acid on molybdenum carbide catalysts
Nash, Connor P.; Farberow, Carrie A.; Hensley, Jesse E.
2017-02-07
Temperature programmed reaction (TPRxn) is a simple yet powerful tool for screening solid catalyst performance at a variety of conditions. A TPRxn system includes a reactor, furnace, gas and vapor sources, flow control, instrumentation to quantify reaction products (e.g., gas chromatograph), and instrumentation to monitor the reaction in real time (e.g., mass spectrometer). Here, we apply the TPRxn methodology to study molybdenum carbide catalysts for the deoxygenation of acetic acid, an important reaction among many in the upgrading/stabilization of biomass pyrolysis vapors. TPRxn is used to evaluate catalyst activity and selectivity and to test hypothetical reaction pathways (e.g., decarbonylation, ketonization,more » and hydrogenation). Furthermore, the results of the TPRxn study of acetic acid deoxygenation show that molybdenum carbide is an active catalyst for this reaction at temperatures above ca. 300 °C and that the reaction favors deoxygenation (i.e., C-O bond-breaking) products at temperatures below ca. 400 °C and decarbonylation (i.e., C-C bond-breaking) products at temperatures above ca. 400 °C.« less
Thomson, Madeleine C; Ukawuba, Israel; Hershey, Christine L; Bennett, Adam; Ceccato, Pietro; Lyon, Bradfield; Dinku, Tufa
2017-09-01
Since 2010, the Roll Back Malaria (RBM) Partnership, including National Malaria Control Programs, donor agencies (e.g., President's Malaria Initiative and Global Fund), and other stakeholders have been evaluating the impact of scaling up malaria control interventions on all-cause under-five mortality in several countries in sub-Saharan Africa. The evaluation framework assesses whether the deployed interventions have had an impact on malaria morbidity and mortality and requires consideration of potential nonintervention influencers of transmission, such as drought/floods or higher temperatures. Herein, we assess the likely effect of climate on the assessment of the impact malaria interventions in 10 priority countries/regions in eastern, western, and southern Africa for the President's Malaria Initiative. We used newly available quality controlled Enhanced National Climate Services rainfall and temperature products as well as global climate products to investigate likely impacts of climate on malaria evaluations and test the assumption that changing the baseline period can significantly impact on the influence of climate in the assessment of interventions. Based on current baseline periods used in national malaria impact assessments, we identify three countries/regions where current evaluations may overestimate the impact of interventions (Tanzania, Zanzibar, Uganda) and three countries where current malaria evaluations may underestimate the impact of interventions (Mali, Senegal and Ethiopia). In four countries (Rwanda, Malawi, Mozambique, and Angola) there was no strong difference in climate suitability for malaria in the pre- and post-intervention period. In part, this may be due to data quality and analysis issues.
Seal material development test program
NASA Technical Reports Server (NTRS)
1971-01-01
A program designed to characterize an experimental fluoroelastomer material designated AF-E-124D, is examined. Tests conducted include liquid nitrogen load compression tests, flexure tests and valve seal tests, ambient and elevated temperature compression set tests, and cleaning and flushing fluid exposure tests. The results of these tests indicate the AF-E-124D is a good choice for a cryogenic seal, since it exhibits good low temperature sealing characteristics and resistance to permanent set. The status of this material as an experimental fluorelastomer is stressed and recommended. Activity includes definition and control of critical processing to ensure consistent material properties. Design, fabrication and test of this and other materials is recommended in valve and static seal applications.
NASA Technical Reports Server (NTRS)
Mclennan, W. D.
1975-01-01
The fabrication of thermistors was investigated for use as atmospheric temperature sensors in meteorological rocket soundings. The final configuration of the thin film thermistor is shown. The composition and primary functions of the six layers of the sensor are described. A digital controller for thin film deposition control is described which is capable of better than .1 A/sec rate control. The computer program modules for digital control of thin film deposition processing are included.
Diode step stress program for JANTX1N5615
NASA Technical Reports Server (NTRS)
1979-01-01
The effect of power/temperature step stress when applied to the switching diode JANTX1N5615 manufactured by Semtech and Micro semiconductor was examined. A total of 48 samples from each manufacturer were submitted to the process. In addition, two control sample units were maintained for verification of the electrical parametric testing. All test samples were subjected to the electrical tests after completing the prior power/temperature step stress point. Results are presented.
Analyte separation utilizing temperature programmed desorption of a preconcentrator mesh
Linker, Kevin L.; Bouchier, Frank A.; Theisen, Lisa; Arakaki, Lester H.
2007-11-27
A method and system for controllably releasing contaminants from a contaminated porous metallic mesh by thermally desorbing and releasing a selected subset of contaminants from a contaminated mesh by rapidly raising the mesh to a pre-determined temperature step or plateau that has been chosen beforehand to preferentially desorb a particular chemical specie of interest, but not others. By providing a sufficiently long delay or dwell period in-between heating pulses, and by selecting the optimum plateau temperatures, then different contaminant species can be controllably released in well-defined batches at different times to a chemical detector in gaseous communication with the mesh. For some detectors, such as an Ion Mobility Spectrometer (IMS), separating different species in time before they enter the IMS allows the detector to have an enhanced selectivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L.
Compositional feed limits have been established to ensure that a nuclear criticality event for the 2H and 3H Evaporators is not possible. The Enrichment Control Program (ECP) requires feed sampling to determine the equivalent enriched uranium content prior to transfer of waste other than recycle transfers (requires sampling to determine the equivalent enriched uranium at two locations in Tanks 38H and 43H every 26 weeks) The Corrosion Control Program (CCP) establishes concentration and temperature limits for key constituents and periodic sampling and analysis to confirm that waste supernate is within these limits. This report provides the results of analyses onmore » Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the ECP, the CCP, and the Salt Batch 10 Planning Program.« less
Jandera, Pavel; Vyňuchalová, Kateřina; Nečilová, Kateřina
2013-11-22
Combined effects of temperature and mobile-phase composition on retention and separation selectivity of phenolic acids and flavonoid compounds were studied in liquid chromatography on a polydentate Blaze C8 silica based column. The temperature effects on the retention can be described by van't Hoff equation. Good linearity of lnk versus 1/T graphs indicates that the retention is controlled by a single mechanism in the mobile phase and temperature range studied. Enthalpic and entropic contributions to the retention were calculated from the regression lines. Generally, enthalpic contributions control the retention at lower temperatures and in mobile phases with lower concentrations of methanol in water. Semi-empirical retention models describe the simultaneous effects of temperature and the volume fraction of the organic solvent in the mobile phase. Using the linear free energy-retention model, selective dipolarity/polarizability, hydrogen-bond donor, hydrogen-bond acceptor and molecular size contributions to retention were estimated at various mobile phase compositions and temperatures. In addition to mobile phase gradients, temperature programming can be used to reduce separation times. Copyright © 2013 Elsevier B.V. All rights reserved.
Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Orme, John S.
1992-01-01
The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael D. Durham
PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmentalmore » Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.« less
Development of high frequency low weight power magnetics for aerospace power systems
NASA Technical Reports Server (NTRS)
Schwarze, G. E.
1984-01-01
A dominant design consideration in the development of space type power mangetic devices is the application of reliable thermal control methods to prevent device failure which is due to excessive temperature rises and hot temperatures in critical areas. The resultant design must also yield low weight, high efficiency, high reliability and maintainability, and long life. The weight savings and high efficiency that results by going to high frequency and unique thermal control techniques is demonstrated by the development of a 25 kVA, 20 kHz space type transformer under the power magnetics technology program. Work in the area of power rotary transformer is also discussed.
Long-term stability of amorphous-silicon modules
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1986-01-01
The Jet Propulsion Laboratory (JPL) program of developing qualification tests necessary for amorphous silicon modules, including appropriate accelerated environmental tests reveal degradation due to illumination. Data were given which showed the results of temperature-controlled field tests and accelerated tests in an environmental chamber.
Design of an Incubator for Premature Infant Based on LabVIEW.
Zhang, Lina; Zhou, Runjing
2005-01-01
This paper introduces the system structure, hardware circuits, control algorithms, and software program of the incubator for premature infant based on LabVIEW. The main advantages of this device are that preheating is less time than others, the capability of meeting of emergency is provided, control track of temperature and humidity are visible, operation is easy to clinical practice, and maintainability is possessed.
Output power stability of a HCN laser using a stepping motor for the EAST interferometer system
NASA Astrophysics Data System (ADS)
Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.
2015-11-01
The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.
International Space Station Alpha trace contaminant control subassembly life test report
NASA Technical Reports Server (NTRS)
Tatara, J. D.; Perry, J. L.
1995-01-01
The Environmental Control and Life Support System (ECLSS) Life Test Program (ELTP) began with Trace Contaminant Control Subassembly (TCCS) Life Testing on November 9, 1992, at 0745. The purpose of the test, as stated in the NASA document 'Requirements for Trace Contaminant Control Subassembly High Temperature Catalytic Oxidizer Life Testing (Revision A)' was to 'provide for the long duration operation of the ECLSS TCCS HTCO (High Temperature Catalytic Oxidizer) at normal operating conditions... (and thus)... to determine the useful life of ECLSS hardware for use on long duration manned space missions.' Specifically, the test was designed to demonstrate thermal stability of the HTCO catalyst. The report details TCCS stability throughout the test. Graphs are included to aid in evaluating trends and subsystem anomalies. The report summarizes activities through the final day of testing, January 17, 1995 (test day 762).
Menu driven heat treatment control of thin walled bodies
Kothmann, Richard E.; Booth, Jr., Russell R.; Grimm, Noel P.; Batenburg, Abram; Thomas, Vaughn M.
1992-01-01
A process for controlling the heating of a thin-walled body according to a predetermined temperature program by means of electrically controllable heaters, comprising: disposing the heaters adjacent one surface of the body such that each heater is in facing relation with a respective zone of the surface; supplying heat-generating power to each heater and monitoring the temperature at each surface zone; and for each zone: deriving (16,18,20), on the basis of the temperature values obtained in the monitoring step, estimated temperature values of the surface at successive time intervals each having a first selected duration; generating (28), on the basis of the estimated temperature values derived in each time interval, representations of the temperature, THSIFUT, which each surface zone will have, based on the level of power presently supplied to each heater, at a future time which is separated from the present time interval by a second selected duration; determining (30) the difference between THSIFUT and the desired temperature, FUTREFTVZL, at the future time which is separated from the present time interval by the second selected duration; providing (52) a representation indicating the power level which sould be supplied to each heater in order to reduce the difference obtained in the determining step; and adjusting the power level supplied to each heater by the supplying step in response to the value of the representation provided in the providing step.
Transistor step stress testing program for JANTX2N2905A
NASA Technical Reports Server (NTRS)
1979-01-01
The effect of power/temperature step stress when applied to the transistor JANTX2N2905A manufactured by Texas Instruments and Motorola is reported. A total of 48 samples from each manufacturer was submitted to the process outlined. In addition, two control sample units were maintained for verification of the electrical parametric testing. All test samples were subjected to the electrical tests outlined in Table 2 after completing the prior power/temperature step stress point.
Modeling and control for closed environment plant production systems
NASA Technical Reports Server (NTRS)
Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)
2002-01-01
A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.
Instrument Control (iC) – An Open-Source Software to Automate Test Equipment
Pernstich, K. P.
2012-01-01
It has become common practice to automate data acquisition from programmable instrumentation, and a range of different software solutions fulfill this task. Many routine measurements require sequential processing of certain tasks, for instance to adjust the temperature of a sample stage, take a measurement, and repeat that cycle for other temperatures. This paper introduces an open-source Java program that processes a series of text-based commands that define the measurement sequence. These commands are in an intuitive format which provides great flexibility and allows quick and easy adaptation to various measurement needs. For each of these commands, the iC-framework calls a corresponding Java method that addresses the specified instrument to perform the desired task. The functionality of iC can be extended with minimal programming effort in Java or Python, and new measurement equipment can be addressed by defining new commands in a text file without any programming. PMID:26900522
Instrument Control (iC) - An Open-Source Software to Automate Test Equipment.
Pernstich, K P
2012-01-01
It has become common practice to automate data acquisition from programmable instrumentation, and a range of different software solutions fulfill this task. Many routine measurements require sequential processing of certain tasks, for instance to adjust the temperature of a sample stage, take a measurement, and repeat that cycle for other temperatures. This paper introduces an open-source Java program that processes a series of text-based commands that define the measurement sequence. These commands are in an intuitive format which provides great flexibility and allows quick and easy adaptation to various measurement needs. For each of these commands, the iC-framework calls a corresponding Java method that addresses the specified instrument to perform the desired task. The functionality of iC can be extended with minimal programming effort in Java or Python, and new measurement equipment can be addressed by defining new commands in a text file without any programming.
Hanh, Nguyen Hong; Jang, Kyungsoo; Yi, Junsin
2016-05-01
We directly deposited amorphous InGaZnO (a-IGZO) nonvolatile memory (NVM) devices with oxynitride-oxide-dioxide (OOO) stack structures on plastic substrate by a DC pulsed magnetron sputtering and inductively coupled plasma chemical vapor deposition (ICPCVD) system, using a low-temperature of 150 degrees C. The fabricated bottom gate a-IGZO NVM devices have a wide memory window with a low operating voltage during programming and erasing, due to an effective control of the gate dielectrics. In addition, after ten years, the memory device retains a memory window of over 73%, with a programming duration of only 1 ms. Moreover, the a-IGZO films show high optical transmittance of over 85%, and good uniformity with a root mean square (RMS) roughness of 0.26 nm. This film is a promising candidate to achieve flexible displays and transparency on plastic substrates because of the possibility of low-temperature deposition, and the high transparent properties of a-IGZO films. These results demonstrate that the a-IGZO NVM devices obtained at low-temperature have a suitable programming and erasing efficiency for data storage under low-voltage conditions, in combination with excellent charge retention characteristics, and thus show great potential application in flexible memory displays.
Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander
NASA Astrophysics Data System (ADS)
Joshi, D. M.; Patel, H. K.; Shah, D. K.
2015-04-01
Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the efficient performance of cryogenic turboexpander (Radial Inflow type) to ensure that the control systems meet the technical conditions and constraints more accurately and ensure the equipment safety.
Food Safety Practices Linked with Proper Refrigerator Temperatures in Retail Delis.
Brown, Laura G; Hoover, Edward Rickamer; Faw, Brenda V; Hedeen, Nicole K; Nicholas, David; Wong, Melissa R; Shepherd, Craig; Gallagher, Daniel L; Kause, Janell R
2018-05-01
Listeria monocytogenes (L. monocytogenes) causes the third highest number of foodborne illness deaths annually. L. monocytogenes contamination of sliced deli meats at the retail level is a significant contributing factor to L. monocytogenes illness. The Centers for Disease Control and Prevention's Environmental Health Specialists Network (EHS-Net) conducted a study to learn more about retail delis' practices concerning L. monocytogenes growth and cross-contamination prevention. This article presents data from this study on the frequency with which retail deli refrigerator temperatures exceed 41°F, the Food and Drug Administration (FDA)-recommended maximum temperature for ready-to-eat food requiring time and temperature control for safety (TCS) (such as retail deli meat). This provision was designed to control bacterial growth in TCS foods. This article also presents data on deli and staff characteristics related to the frequency with which retail delis refrigerator temperatures exceed 41°F. Data from observations of 445 refrigerators in 245 delis showed that in 17.1% of delis, at least one refrigerator was >41°F. We also found that refrigeration temperatures reported in this study were lower than those reported in a related 2007 study. Delis with more than one refrigerator, that lacked refrigerator temperature recording, and had a manager who had never been food safety certified had greater odds of having a refrigerator temperature >41°F. The data from this study suggest that retail temperature control is improving over time. They also identify a food safety gap: some delis have refrigerator temperatures that exceed 41°F. We also found that two food safety interventions were related to better refrigerated storage practices: kitchen manager certification and recording refrigerated storage temperatures. Regulatory food safety programs and the retail industry may wish to consider encouraging or requiring kitchen manager certification and recording refrigerated storage temperatures.
Microprocessor-controlled Nd:YAG laser for hyperthermia induction in the RIF-1 tumor.
Waldow, S M; Russell, G E; Wallner, P E
1992-01-01
Near-infrared radiation from a Nd:YAG laser at 1,064 nm was used interstitially or superficially to induce hyperthermia in RIF-1 tumors in C3H male mice. A single 600-microns quartz fiber with a 0.5-cm cylindrical diffusor or a weakly diverging microlens at its distal end was used to deliver laser energy to tumors in the hind leg (mean volume = 100 mm3). Two thermocouples were inserted into each tumor. One thermocouple controlled a microprocessor-driven hyperthermia program (maximum output of 3.5 Watts) to maintain the desired temperature. Tumors were exposed to various temperature-time combinations (42-45 degrees C/30 min). Our initial results indicated that excellent temperature control to within 0.2 degrees C of the desired temperature at the feedback thermocouple was achievable during both superficial and interstitial heat treatments. Temperatures at the second thermocouple, however, were found to be lower by as much as 2.3 degrees C (using the cylindrical diffusor) or higher by up to 4.6 degrees C (using the microlens) when compared to the feedback thermocouple temperature. Several correlations were seen between total dose, tumor growth delay, percent skin necrosis, and temperature at the second thermocouple after several superficial and interstitial treatments. Statistically significant improvements in tumor growth delay (at 42 and 45 degrees C) and increased percent skin necrosis at all temperatures were observed after superficial versus interstitial treatment.
How two types of fluctuating temperature affect the growth of Fusarium solani
Keith F. Jensen; Phillip E. Reynolds
1969-01-01
Growth of six isolates of Fusarium solani on potato dextrose agar was determined with (1) continually changing temperature programs, (2) programs consisting of two alternating constant temperatures, and (3) a constant temperature program. All programs had a mean of 70º F. Growth increased with an increase in temperature fluctuation of 10 or...
NASA Astrophysics Data System (ADS)
Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.
2017-09-01
Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.
1990-01-01
The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.
2003-01-01
Electronics designed for low temperature operation will result in more efficient systems than room temperature. This improvement is a result of better electronic, electrical, and thermal properties of materials at low temperatures. In particular, the performance of certain semiconductor devices improves with decreasing temperature down to ultra-low temperature (-273 'C). The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components and systems suitable for applications in deep space missions. Research is being conducted on devices and systems for use down to liquid helium temperatures (-273 'C). Some of the components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. The work performed this summer has focused on the evaluation of silicon-, silicon-germanium- and gallium-Arsenide-based (GaAs) bipolar, MOS and CMOS discrete components and integrated circuits (ICs), from room temperature (23 'C) down to ultra low temperatures (-263 'C).
Using Rainfall and Temperature Data in the Evaluation of National Malaria Control Programs in Africa
Thomson, Madeleine C.; Ukawuba, Israel; Hershey, Christine L.; Bennett, Adam; Ceccato, Pietro; Lyon, Bradfield; Dinku, Tufa
2017-01-01
Abstract. Since 2010, the Roll Back Malaria (RBM) Partnership, including National Malaria Control Programs, donor agencies (e.g., President's Malaria Initiative and Global Fund), and other stakeholders have been evaluating the impact of scaling up malaria control interventions on all-cause under-five mortality in several countries in sub-Saharan Africa. The evaluation framework assesses whether the deployed interventions have had an impact on malaria morbidity and mortality and requires consideration of potential nonintervention influencers of transmission, such as drought/floods or higher temperatures. Herein, we assess the likely effect of climate on the assessment of the impact malaria interventions in 10 priority countries/regions in eastern, western, and southern Africa for the President's Malaria Initiative. We used newly available quality controlled Enhanced National Climate Services rainfall and temperature products as well as global climate products to investigate likely impacts of climate on malaria evaluations and test the assumption that changing the baseline period can significantly impact on the influence of climate in the assessment of interventions. Based on current baseline periods used in national malaria impact assessments, we identify three countries/regions where current evaluations may overestimate the impact of interventions (Tanzania, Zanzibar, Uganda) and three countries where current malaria evaluations may underestimate the impact of interventions (Mali, Senegal and Ethiopia). In four countries (Rwanda, Malawi, Mozambique, and Angola) there was no strong difference in climate suitability for malaria in the pre- and post-intervention period. In part, this may be due to data quality and analysis issues. PMID:28990912
Energy Conservation: Implementing an Effective Campus Program.
ERIC Educational Resources Information Center
Marsee, Jeff
After reviewing the physical plant environment and temperature control equipment at Eastfield College (Texas), this paper explains how redirected efforts toward energy conservation can result in important cost/usage savings. Electricity billing rates are explained to provide a stronger usage strategy for cost effectiveness. Two methods of reducing…
Evaluation program for secondary spacecraft cells
NASA Technical Reports Server (NTRS)
Harkness, J. D.
1978-01-01
The results of life cycle tests of secondary spacecraft cells are summarized. Cells consisted of seven sample classifications ranging from 3.0 to 20 ampere-hours, 1326 nlc nickel cadmium, 183 silver cadmium, and 125 silver zinc sealed cells. Variables examined include load, charge control, and temperature conditions.
40 CFR 86.224-94 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon dioxide...
40 CFR 86.222-94 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon monoxide analyzer calibration... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.222-94 Carbon monoxide...
Clinical Investigation Program, RCS MED-300 (RI).
1984-10-01
temperature/dry. Technical Approach: 1) Experimental desion: a post-test only, equivalent - group experimental design will be used in this study. Random...5650 * It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Commander October 1984 Dwight David Eisenhower Army Medical Center 1s. NUMBEROFPAGES...Fort Gordon, Georgia 30905-5650 210 14. MONITORING AGENCY NAME I ADORESS(11 different from Controlling Offce) IS. SECURITY CLASS. (of tAle MP*H
A 10 cm Dual Frequency Doppler Weather Radar. Part I. The Radar System.
1982-10-25
Evaluation System ( RAMCES )". The step attenuator required for this calibration can be programmed remotely, has low power and temperature coefficients, and...Control and Evaluation System". The Quality Assurance/Fault Location Network makes use of fault location techniques at critical locations in the radar and...quasi-con- tinuous monitoring of radar performance. The Radar Monitor, Control and Evaluation System provides for automated system calibration and
United States Air Force Summer Faculty Research Program (1987). Program Technical Report. Volume 2.
1987-12-01
the area of statistical inference, distribution theory and stochastic * •processes. I have taught courses in random processes and sample % j .functions...controlled phase separation of isotropic, binary mixtures, the theory of spinodal decomposition has been developed by Cahn and Hilliard.5 ,6 This theory is...peak and its initial rate of growth at a given temperature are predicted by the spinodal theory . The angle of maximum intensity is then determined by
Universal programming interface with concurrent access
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alferov, Oleg
2004-10-07
There exist a number of devices with a positioning nature of operation, such as mechanical linear stages, temperature controllers, or filterwheels with discrete state, and most of them have different programming interfaces. The Universal Positioner software suggests the way to handle all of them is with a single approach, whereby a particular hardware driver is created from the template and by translating the actual commands used by the hardware to and from the universal programming interface. The software contains the universal API module itself, the demo simulation of hardware, and the front-end programs to help developers write their own softwaremore » drivers along with example drivers for actual hardware controllers. The software allows user application programs to call devices simultaneously without race conditions (multitasking and concurrent access). The template suggested in this package permits developers to integrate various devices easily into their applications using the same API. The drivers can be stacked; i.e., they can call each other via the same interface.« less
Satapathy, Sitakanta; Prabakaran, Palani; Prasad, Edamana
2018-04-20
Smart single-component materials with versatile functions require pre-programming of a higher order molecular assembly. An electroactive supergelator (c=0.07 wt %) triphenylamine core-appended poly(aryl ether) dendron (TPAPAE) is described, where substantial dendritic effects improve the order and crystallinity by switching the local minima from self-assembled molecular wires to thermodynamically favorable global minima of ordered crystals, ripened within the fibers. Controlled in situ phase change at room temperature ultimately stabilized the mixed valence states in the single-component supramolecular assembly with photoluminescence and photoinduced charge transport amplified by two orders of magnitude. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Battery charge control with temperature compensated voltage limit
NASA Technical Reports Server (NTRS)
Thierfelder, H. E.
1983-01-01
Battery charge control for orbiting spacecraft with mission durations from three to ten years, is a critical design feature that is discussed. Starting in 1974, the General Electric Space Systems Division designed, manufactured and tested battery systems for six different space programs. Three of these are geosynchronous missions, two are medium altitude missions and one is a near-earth mission. All six power subsystems contain nickel cadmium batteries which are charged using a temperature compensated voltage limit. This charging method was found to be successful in extending the life of nickel cadmium batteries in all three types of earth orbits. Test data and flight data are presented for each type of orbit.
Nonlinear Burn Control and Operating Point Optimization in ITER
NASA Astrophysics Data System (ADS)
Boyer, Mark; Schuster, Eugenio
2013-10-01
Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).
Argon Triple-Point Device for Calibration of SPRTs
NASA Astrophysics Data System (ADS)
Kołodziej, B.; Manuszkiewicz, H.; Szmyrka-Grzebyk, A.; Lipiński, L.; Kowal, A.; Steur, P. P. M.; Pavese, F.
2015-03-01
This paper presents an apparatus for the calibration of long-stem platinum resistance thermometers at the argon triple point , designed at the Institute of Low Temperature and Structural Research, Poland (INTiBS). A hermetically sealed cell filled at the Istituto Nazionale di Ricerca Metrologica, Italy with high purity gas (6N) is the main element of this apparatus. The cell is placed in a cryostat fully immersed in liquid nitrogen. A temperature-controlled shield ensures the quasi-adiabatic condition needed for proper realization of the phase transition. A system for correcting the temperature distribution along the thermometer well is also implemented. The cell cooling and argon solidification is carried out by filling the thermometer well with liquid nitrogen. A LabVIEW computer program written at INTiBS automatically controls the triple-point realization process. The duration of a melting plateau in the apparatus lasts for about 24 h. The melting width for between 20 % and 80 % was mK. The reproducibility of the plateau temperature is better than.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiche, H. M.; New Mexico State University, Las Cruces, New Mexico 88003; Vogel, S. C.
2012-05-15
A resistive furnace combined with a load frame was built that allows for in situ neutron diffraction studies of high temperature deformation, in particular, creep. A maximum force of 2700 N can be applied at temperatures up to 1000 deg. C. A load control mode permits studies of, e.g., creep or phase transformations under applied uni-axial stress. In position control, a range of high temperature deformation experiments can be achieved. The examined specimen can be rotated up to 80 deg. around the vertical compression axis allowing texture measurements in the neutron time-of-flight diffractometer HIPPO (High Pressure - Preferred Orientation). Wemore » present results from the successful commissioning, deforming a Zr-2.5 wt.% Nb cylinder at 975 deg. C. The device is now available for the user program of the HIPPO diffractometer at the LANSCE (Los Alamos Neutron Science Center) user facility.« less
Effects of elevated temperature on the viscoplastic modeling of graphite/polymeric composites
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1991-01-01
To support the development of new materials for the design of next generation supersonic transports, a research program is underway at NASA to assess the long term durability of advanced polymer matrix composites (PMC's). One of main objectives of the program was to explore the effects of elevated temperature (23 to 200 C) on the constitutive model's material parameters. To achieve this goal, test data on the observed nonlinear, stress-strain behavior of IM7/5260 and IM7/8320 composites under tension and compression loading were collected and correlated against temperature. These tests, conducted under isothermal conditions using variable strain rates, included such phenomena as stress relaxation and short term creep. The second major goal was the verification of the model by comparison of analytical predictions and test results for off axis and angle ply laminates. Correlation between test and predicted behavior was performed for specimens of both material systems over a range of temperatures. Results indicated that the model provided reasonable predictions of material behavior in load or strain controlled tests. Periods of loading, unloading, stress relaxation, and creep were accounted for.
High temperature composite analyzer (HITCAN) user's manual, version 1.0
NASA Technical Reports Server (NTRS)
Lackney, J. J.; Singhal, S. N.; Murthy, P. L. N.; Gotsis, P.
1993-01-01
This manual describes 'how-to-use' the computer code, HITCAN (HIgh Temperature Composite ANalyzer). HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. This code combines composite mechanics and laminate theory with an internal data base for material properties of the constituents (matrix, fiber and interphase). The thermo-mechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress and stress rate. The computation procedure for the analysis of the composite structures uses the finite element method. HITCAN is written in FORTRAN 77 computer language and at present has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. This manual describes HlTCAN's capabilities and limitations followed by input/execution/output descriptions and example problems. The input is described in detail including (1) geometry modeling, (2) types of finite elements, (3) types of analysis, (4) material data, (5) types of loading, (6) boundary conditions, (7) output control, (8) program options, and (9) data bank.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, B. D.; Diamond, S. C.; Bennett, G. A.
1977-10-01
A set of computer programs, called Cal-ERDA, is described that is capable of rapid and detailed analysis of energy consumption in buildings. A new user-oriented input language, named the Building Design Language (BDL), has been written to allow simplified manipulation of the many variables used to describe a building and its operation. This manual provides the user with information necessary to understand in detail the Cal-ERDA set of computer programs. The new computer programs described include: an EXECUTIVE Processor to create computer system control commands; a BDL Processor to analyze input instructions, execute computer system control commands, perform assignments andmore » data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; a LOADS analysis program that calculates peak (design) zone and hourly loads and the effect of the ambient weather conditions, the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; a Heating, Ventilating, and Air-Conditioning (HVAC) SYSTEMS analysis program capable of modeling the operation of HVAC components including fans, coils, economizers, humidifiers, etc.; 16 standard configurations and operated according to various temperature and humidity control schedules. A plant equipment program models the operation of boilers, chillers, electrical generation equipment (diesel or turbines), heat storage apparatus (chilled or heated water), and solar heating and/or cooling systems. An ECONOMIC analysis program calculates life-cycle costs. A REPORT program produces tables of user-selected variables and arranges them according to user-specified formats. A set of WEATHER ANALYSIS programs manipulates, summarizes and plots weather data. Libraries of weather data, schedule data, and building data were prepared.« less
Dynamic Modeling, Model-Based Control, and Optimization of Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Spivey, Benjamin James
2011-07-01
Solid oxide fuel cells are a promising option for distributed stationary power generation that offers efficiencies ranging from 50% in stand-alone applications to greater than 80% in cogeneration. To advance SOFC technology for widespread market penetration, the SOFC should demonstrate improved cell lifetime and load-following capability. This work seeks to improve lifetime through dynamic analysis of critical lifetime variables and advanced control algorithms that permit load-following while remaining in a safe operating zone based on stress analysis. Control algorithms typically have addressed SOFC lifetime operability objectives using unconstrained, single-input-single-output control algorithms that minimize thermal transients. Existing SOFC controls research has not considered maximum radial thermal gradients or limits on absolute temperatures in the SOFC. In particular, as stress analysis demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs. This dissertation presents a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop control simulations. A constrained, MIMO model predictive control algorithm is developed and applied to control the SOFC. Closed-loop control simulation results demonstrate effective load-following, constraint satisfaction for critical lifetime variables, and disturbance rejection. Nonlinear programming is applied to find the optimal SOFC size and steady-state operating conditions to minimize total system costs.
40 CFR 86.236-94 - Engine starting and restarting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Engine starting and restarting. 86.236... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.236-94 Engine starting and...
40 CFR 86.206-11 - Equipment required; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.206-11 Equipment required...
40 CFR 86.223-94 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.223-94 Oxides of...
40 CFR 86.204-94 - Section numbering; construction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.204-94 Section numbering...
40 CFR 86.222-94 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.222-94 Carbon monoxide...
40 CFR 86.224-94 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon dioxide...
40 CFR 86.215-94 - EPA urban dynamometer driving schedule.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.215-94 EPA urban dynamometer...
40 CFR 86.205-11 - Introduction; structure of this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.205-11 Introduction...
40 CFR 86.211-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.211-94 Exhaust gas...
40 CFR 86.237-94 - Dynamometer test run, gaseous emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.237-94 Dynamometer...
40 CFR 86.226-94 - Calibration of other equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.226-94 Calibration of other...
40 CFR 86.216-94 - Calibrations, frequency and overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.216-94 Calibrations...
40 CFR 86.244-94 - Calculations; exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.244-94 Calculations; exhaust...
40 CFR 86.205-94 - Introduction; structure of this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.205-94 Introduction...
40 CFR 86.236-94 - Engine starting and restarting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Engine starting and restarting. 86.236... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.236-94 Engine starting and...
40 CFR 86.236-94 - Engine starting and restarting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Engine starting and restarting. 86.236... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.236-94 Engine starting and...
40 CFR 86.236-94 - Engine starting and restarting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Engine starting and restarting. 86.236... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.236-94 Engine starting and...
Radiometer Calibrations: Saving Time by Automating the Gathering and Analysis Procedures
NASA Technical Reports Server (NTRS)
Sadino, Jeffrey L.
2005-01-01
Mr. Abtahi custom-designs radiometers for Mr. Hook's research group. Inherently, when the radiometers report the temperature of arbitrary surfaces, the results are affected by errors in accuracy. This problem can be reduced if the errors can be accounted for in a polynomial. This is achieved by pointing the radiometer at a constant-temperature surface. We have been using a Hartford Scientific WaterBath. The measurements from the radiometer are collected at many different temperatures and compared to the measurements made by a Hartford Chubb thermometer with a four-decimal point resolution. The data is analyzed and fit to a fifth-order polynomial. This formula is then uploaded into the radiometer software, enabling accurate data gathering. Traditionally, Mr. Abtahi has done this by hand, spending several hours of his time setting the temperature, waiting for stabilization, taking measurements, and then repeating for other temperatures. My program, written in the Python language, has enabled the data gathering and analysis process to be handed off to a less-senior member of the team. Simply by entering several initial settings, the program will simultaneously control all three instruments and organize the data suitable for computer analyses, thus giving the desired fifth-order polynomial. This will save time, allow for a more complete calibration data set, and allow for base calibrations to be developed. The program is expandable to simultaneously take any type of measurement from up to nine distinct instruments.
De Ron, Antonio M; Rodiño, Ana P; Santalla, Marta; González, Ana M; Lema, María J; Martín, Isaura; Kigel, Jaime
2016-01-01
Rapid and uniform seed germination and seedling emergence under diverse environmental conditions is a desirable characteristic for crops. Common bean genotypes (Phaseolus vulgaris L.) differ in their low temperature tolerance regarding growth and yield. Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consumers are needed for the success of the bean crop. The objectives of this study were (i) to screen the seedling emergence and the phenotypic response of bean germplasm under a range of temperatures in controlled chamber and field conditions to display stress-tolerant genotypes with good agronomic performances and yield potential, and (ii) to compare the emergence of bean seedlings under controlled environment and in open field conditions to assess the efficiency of genebanks standard germination tests for predicting the performance of the seeds in the field. Three trials were conducted with 28 dry bean genotypes in open field and in growth chamber under low, moderate, and warm temperature. Morpho-agronomic data were used to evaluate the phenotypic performance of the different genotypes. Cool temperatures resulted in a reduction of the rate of emergence in the bean genotypes, however, emergence and early growth of bean could be under different genetic control and these processes need further research to be suitably modeled. Nine groups arose from the Principal Component Analysis (PCA) representing variation in emergence time and proportion of emergence in the controlled chamber and in the open field indicating a trend to lower emergence in large and extra-large seeded genotypes. Screening of seedling emergence and phenotypic response of the bean germplasm under a range of temperatures in controlled growth chambers and under field conditions showed several genotypes, as landraces 272, 501, 593, and the cultivar Borlotto, with stress-tolerance at emergence, and high yield potential that could be valuable genetic material for breeding programs. Additionally, the potential genetic erosion in genebanks was assessed. Regarding bean commercial traits, under low temperature at sowing time seed reached larger size, and crop yield was higher compared to warmer temperatures at the sowing time. Therefore, early sowing of bean is strongly recommended.
De Ron, Antonio M.; Rodiño, Ana P.; Santalla, Marta; González, Ana M.; Lema, María J.; Martín, Isaura; Kigel, Jaime
2016-01-01
Rapid and uniform seed germination and seedling emergence under diverse environmental conditions is a desirable characteristic for crops. Common bean genotypes (Phaseolus vulgaris L.) differ in their low temperature tolerance regarding growth and yield. Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consumers are needed for the success of the bean crop. The objectives of this study were (i) to screen the seedling emergence and the phenotypic response of bean germplasm under a range of temperatures in controlled chamber and field conditions to display stress-tolerant genotypes with good agronomic performances and yield potential, and (ii) to compare the emergence of bean seedlings under controlled environment and in open field conditions to assess the efficiency of genebanks standard germination tests for predicting the performance of the seeds in the field. Three trials were conducted with 28 dry bean genotypes in open field and in growth chamber under low, moderate, and warm temperature. Morpho-agronomic data were used to evaluate the phenotypic performance of the different genotypes. Cool temperatures resulted in a reduction of the rate of emergence in the bean genotypes, however, emergence and early growth of bean could be under different genetic control and these processes need further research to be suitably modeled. Nine groups arose from the Principal Component Analysis (PCA) representing variation in emergence time and proportion of emergence in the controlled chamber and in the open field indicating a trend to lower emergence in large and extra-large seeded genotypes. Screening of seedling emergence and phenotypic response of the bean germplasm under a range of temperatures in controlled growth chambers and under field conditions showed several genotypes, as landraces 272, 501, 593, and the cultivar Borlotto, with stress-tolerance at emergence, and high yield potential that could be valuable genetic material for breeding programs. Additionally, the potential genetic erosion in genebanks was assessed. Regarding bean commercial traits, under low temperature at sowing time seed reached larger size, and crop yield was higher compared to warmer temperatures at the sowing time. Therefore, early sowing of bean is strongly recommended. PMID:27532005
Integrated thermal and energy management of plug-in hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Shams-Zahraei, Mojtaba; Kouzani, Abbas Z.; Kutter, Steffen; Bäker, Bernard
2012-10-01
In plug-in hybrid electric vehicles (PHEVs), the engine temperature declines due to reduced engine load and extended engine off period. It is proven that the engine efficiency and emissions depend on the engine temperature. Also, temperature influences the vehicle air-conditioner and the cabin heater loads. Particularly, while the engine is cold, the power demand of the cabin heater needs to be provided by the batteries instead of the waste heat of engine coolant. The existing energy management strategies (EMS) of PHEVs focus on the improvement of fuel efficiency based on hot engine characteristics neglecting the effect of temperature on the engine performance and the vehicle power demand. This paper presents a new EMS incorporating an engine thermal management method which derives the global optimal battery charge depletion trajectories. A dynamic programming-based algorithm is developed to enforce the charge depletion boundaries, while optimizing a fuel consumption cost function by controlling the engine power. The optimal control problem formulates the cost function based on two state variables: battery charge and engine internal temperature. Simulation results demonstrate that temperature and the cabin heater/air-conditioner power demand can significantly influence the optimal solution for the EMS, and accordingly fuel efficiency and emissions of PHEVs.
Thermal-mechanical fatigue behavior of nickel-base superalloys
NASA Technical Reports Server (NTRS)
Pelloux, R. M.; Marchand, N.
1986-01-01
The main achievements of a 36-month research program are presented. The main objective was to gain more insight into the problem of crack growth under thermal mechanical fatigue (TMF) conditions. This program was conducted at M.I.T. for the period of September 1982 to September 1985. The program was arranged into five technical tasks. Under Task I, the literature of TMF data was reviewed. The goal was to identify the crack propagation conditions in aircraft engines (hot section) and to assess the validity of conventional fracture mechanics parameters to address TMF crack growth. The second task defined the test facilities, test specimen and the testing conditions needed to establish the effectiveness of data correlation parameters identified in Task I. Three materials (Inconel X-750, Hastelloy-X, and B-1900) were chosen for the program. Task II was accomplished in collaboration with Pratt & Whitney Aircraft engineers. Under Task III, a computerized testing system to measure the TMF behavior (LCF and CG behaviors) of various alloys systems was built. The software used to run isothermal and TMF tests was also developed. Built around a conventional servohydraulic machine, the system is capable of push-pull tests under stress or strain and temperature controlled conditions in the temperature range of 25C to 1050C. A crack propagation test program was defined and conducted under Task IV. The test variables included strain range, strain rate (frequency) and temperature. Task V correlated and generalized the Task IV data for isothermal and variable temperature conditions so that several crack propagation parameters could be compared and evaluated. The structural damage (mode of cracking and dislocation substructure) under TMF cycling was identified and contrasted with the isothermal damage to achieve a sound fundamental mechanistic understanding of TMF.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.
1985-01-01
The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.; Batur, Celal; Bennett, Robert J.
1997-01-01
We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful for scientific and commercial applications for the determination of process parameters to optimize crystal growth conditions.
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
2015-01-01
Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.
Integrated analyses in plastics forming
NASA Astrophysics Data System (ADS)
Bo, Wang
This is the thesis which explains the progress made in the analysis, simulation and testing of plastics forming. This progress can be applied to injection and compression mould design. Three activities of plastics forming have been investigated, namely filling analysis, cooling analysis and ejecting analysis. The filling section of plastics forming has been analysed and calculated by using MOLDFLOW and FILLCALC V. software. A comparing of high speed compression moulding and injection moulding has been made. The cooling section of plastics forming has been analysed by using MOLDFLOW software and a finite difference computer program. The latter program can be used as a sample program to calculate the feasibility of cooling different materials to required target temperatures under controlled cooling conditions. The application of thermal imaging has been also introduced to determine the actual process temperatures. Thermal imaging can be used as a powerful tool to analyse mould surface temperatures and to verify the mathematical model. A buckling problem for ejecting section has been modelled and calculated by PATRAN/ABAQUS finite element analysis software and tested. These calculations and analysis are applied to the special case but can be use as an example for general analysis and calculation in the ejection section of plastics forming.
Advanced Key Technologies for Hot Control Surfaces in Space Re- Entry Vehicles
NASA Astrophysics Data System (ADS)
Dogigli, Michael; Pradier, Alain; Tumino, Giorgio
2002-01-01
(1)MAN Technologie AG, D- 86153 Augsburg, Germany (2,3) ESA, 2200 Noordwijk ZH, The Netherlands Current space re-entry vehicles (e.g. X-38 vehicle 201, the prototype of the International Space Station's Crew Return Vehicle (CRV)) require advanced control surfaces (so called body flaps). Such control surfaces allow the design of smaller and lighter vehicles as well as faster re-entries (compared to the US Shuttle). They are designed as light-weight structures that need no metallic parts, need no mass or volume consuming heat sinks to protect critical components (e.g. bearings) and that can be operated at temperatures of more than 1600 "C in air transferring high mechanical loads (dynamic 40 kN, static 70 kN) at the same time. Because there is a need for CRV and also for Reusable Launch Vehicles (RLV) in future, the European Space Agency (ESA) felt compelled to establish a "Future European Space Transportation and Investigation Program,, (FESTIP) and a "General Support for Technology Program,, (GSTP). One of the main goals of these programs was to develop and qualify key-technologies that are able to master the above mentioned challenging requirements for advanced hot control surfaces and that can be applied for different vehicles. In 1996 MAN Technologie has started the development of hot control surfaces for small lifting bodies in the national program "Heiü Strukturen,,. One of the main results of this program was that especially the following CMC (Ceramic Matrix Composite) key technologies need to be brought up to space flight standard: Complex CMC Structures, CMC Bearings, Metal-to-CMC Joining Technologies, CMC Fasteners, Oxidation Protection Systems and Static and Dynamic Seals. MAN Technologie was contracted by ESA to continue the development and qualification of these key technologies in the frame of the FESTIP and the GSTP program. Development and qualification have successfully been carried out. The key technologies have been applied for the X-38 vehicle 201 body flaps that have been designed, manufactured and qualified also by MAN Technologie in the frame of the national TETRA program ("Technologien fu zuku ftige Raum-Transportsysteme,,). A set of two body flaps will be delivered to NASA at the beginning of 2002 to be integrated into the vehicle 201. Based on development- and qualification tests, the paper describes main technical properties and features of these key technologies that at the same time represent the status of the art. In a qualification test (simultaneous application of thermal and mechanical loads with bearing movements in oxidising atmosphere) of a full scaled CMC bearing, five complete re-entries have been simulated successfully. The paper informs about applied mechanical load and temperature histories as well as about the number of intermittent bearing movements. The paper further informs about the complex CMC attachment structures (attachment of bearing into the body flap and load introduction) that have been qualified together with the CMC bearing. The attachment of the body flap to the vehicle's aft structure has also been qualified by tests in which also four re- entries have been simulated successfully. The attachment in principle is an interfacing structure between the "hot" (1600 "C) CMC body flap and the "cold,, (175 "C) metallic vehicle's aft structure that is able to transfer high me- chanical loads at high temperatures and minimise the heat flux through interfacing components in such way that the temperature difference of 1600 "C 175 "C = 1425 "C is brought down over a structure-length of only 200 mm. The paper informs about applied mechanical load and temperature histories and about the safety margins that have been demonstrated by rupture tests. Mechanical load carrying capacity and thermal resistance of ceramic fasteners have been demonstrated in several development tests which cover tension-, shear-, fatigue- and self locking-tests as well as tests with fastener assemblies representative for the body flaps. The reliability of these fasteners has also been demonstrated in the bearing and body flap qualification tests. In a comprehensive development test campaign, oxidation protection systems as well as repair methods have been developed and successfully applied for the body flap structure and components that reliably can be protected at least for four re-entries. The development of key technologies is continued in the national ASTRA program ("Basistechnologien fu keramische Hochtemperatur-Komponenten,,) and in international programs that among others focus on to improve the reusability of high temperature CMC components for RLVs.
Automated Electrostatics Environmental Chamber
NASA Technical Reports Server (NTRS)
Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri
2005-01-01
The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.
State of the art in crystal oscillators - Present and future
NASA Astrophysics Data System (ADS)
Rosati, V. J.; Filler, R. L.; Schodowski, S. S.; Vig, J. R.
It is pointed out that most military communication, navigation, surveillance and IFF systems which are currently under development require stable oscillators for frequency control and/or timing. Examples of such systems are the Single Channel Ground and Airborne Radio System (SINCGARS), MILSTAR, the Global Positioning System (GPS), the Combat Identification System (CIS), and several radar systems. In 1981, a survey and evaluation program was initiated with the aim to determine the state-of-the-art of both TCXOs (temperature compensated crystal oscillators) and OCXOs (oven controlled crystal oscillators). This program is continuing. The results obtained to date are considered because they can provide useful guidance to system users on the availability of stable oscillators.
Generalized Fluid System Simulation Program (GFSSP) - Version 6
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul
2015-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.
NASA Astrophysics Data System (ADS)
Chu, Zhe-Qi; Yuan, Jie; Stephen, Z. Pinter; Oliver, D. Kripfgans; Wang, Xue-Ding; Paul, L. Carson; Liu, Xiao-Jun
2015-10-01
Hyperthermia is a promising method to enhance chemo and radiation therapy of breast cancer. In the process of hyperthermia, temperature monitoring is of great importance to assure the effectiveness of treatment. The transmission speed of ultrasound in biomedical tissue changes with temperature. However, when mapping the speed of sound directly to temperature in each pixel as desired for using all speeds of ultrasound data, temperature bipolar edge enhancement artifacts occur near the boundary of two tissues with different speeds of ultrasound. After the analysis of the reasons for causing these artifacts, an optimized method is introduced to rebuild the temperature field image by using the continuity constraint as the judgment criterion. The significant smoothness of the rebuilding image in the transitional area shows that our proposed method can build a more precise temperature image for controlling the medical thermal treatment. Project supported in part by DoD/BCRP Idea Award, BC095397P1, the National Natural Science Foundation of China (Grant No. 61201425), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131280), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions, China, and the National Institutes of Health (NIH) of United States (Grant Nos. R01AR060350, R01CA91713, and R01AR055179).
A novel method of sensing temperatures of magnet coils of SINP-MaPLE plasma device
NASA Astrophysics Data System (ADS)
Pal, A. M.; Bhattacharya, S.; Biswas, S.; Basu, S.; Pal, R.
2014-03-01
A set of 36 magnet coils is used to produce a continuous, uniform magnetic field of about 0.35 Tesla inside the vacuum chamber of the MaPLE Device, a linear laboratory plasma device (3 m long and 0.30 m in diameter) built for studying basic magnetized plasma physics phenomena. To protect the water cooled-coils from serious damage due to overheating temperatures of all the coils are monitored electronically using low cost temperature sensor IC chips, a technique first being used in similar magnet system. Utilizing the Parallel Port of a Personal Computer a novel scheme is used to avoid deploying microprocessor that is associated with involved circuitry and low level programming to address and control the large number of sensors. The simple circuits and a program code to implement the idea are developed, tested and presently in operation. The whole arrangement comes out to be not only attractive, but also simple, economical and easy to install elsewhere.
Gilmore, Sarah A.; Voorhies, Mark; Gebhart, Dana; Sil, Anita
2015-01-01
Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5’ leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature. PMID:26177267
Gilmore, Sarah A; Voorhies, Mark; Gebhart, Dana; Sil, Anita
2015-07-01
Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5' leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature.
Direct coupling of microbore HPLC columns to MS systems
NASA Technical Reports Server (NTRS)
Mcnair, H. M.
1985-01-01
A detailed investigation using electron microscopy was conducted which examined the conditions of materials used in the construction of stable, high performance microbore liquid chromatography (LC) columns. Small details proved to be important. The effects of temperature on the elution of several homologous series used as probe compounds was examined in reverse phase systems. They showed that accessible temperature changes provide roughly half the increase in solvent strength that would be obtained going from a 100% aqueous to a 100% organic mobile phase, which is sufficient to warrant their use in many analyses requiring the use of gradients. Air circulation temperature control systems provide the easiest means of obtaining rapid, wide range changes in column temperature. However, slow heat transfer from the gas leads to thermal nonuniformity in the column and a decrease in resolution as the temperature program progresses.
Effect of heat waves on VOC emissions from vegetation and urban air quality
NASA Astrophysics Data System (ADS)
Churkina, G.; Kuik, F.; Lauer, A.; Bonn, B.; Butler, T. M.
2015-12-01
Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how heat waves affect emissions of VOC from urban vegetation and corresponding ground-level ozone. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the 2006 heat wave. VOC emissions from vegetation are simulated with MEGAN 2.0 coupled with WRF-CHEM. Our preliminary results indicate that contribution of VOCs from vegetation to ozone formation may increase by more than twofold during the heat wave period. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.
Heat Waves, Urban Vegetation, and Air Pollution
NASA Astrophysics Data System (ADS)
Churkina, G.; Grote, R.; Butler, T. M.
2014-12-01
Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori
2016-12-30
The present report summarizes and discusses the current results and on-going activity towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program.
40 CFR 86.238-94-86.239-94 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures §§ 86.238-94—86.239-94 [Reserved] ...
40 CFR 86.233-94-86.234-94 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures §§ 86.233-94—86.234-94 [Reserved] ...
Dynamic alterations of hepatocellular function by on-demand elasticity and roughness modulation.
Uto, K; Aoyagi, T; DeForest, C A; Ebara, M
2018-05-01
Temperature-responsive cell culture substrates reported here can be dynamically programmed to induce bulk softening and surface roughness changes in the presence of living cells. Alterations in hepatocellular function following temporally controlled substrate softening depend on the extent of stiff mechanical priming prior to user-induced material transition.
QTL Mapping of Low-Temperature Germination Ability in the Maize IBM Syn4 RIL Population
Hu, Shuaidong; Lübberstedt, Thomas; Zhao, Guangwu; Lee, Michael
2016-01-01
Low temperature is the primary factor to affect maize sowing in early spring. It is, therefore, vital for maize breeding programs to improve tolerance to low temperatures at seed germination stage. However, little is known about maize QTL involved in low-temperature germination ability. 243 lines of the intermated B73×Mo17 (IBM) Syn4 recombinant inbred line (RIL) population was used for QTL analysis of low-temperature germination ability. There were significant differences in germination-related traits under both conditions of low temperature (12°C/16h, 18°C/8h) and optimum temperature (28°C/24h) between the parental lines. Only three QTL were identified for controlling optimum-temperature germination rate. Six QTL controlling low-temperature germination rate were detected on chromosome 4, 5, 6, 7 and 9, and contribution rate of single QTL explained between 3.39%~11.29%. In addition, six QTL controlling low-temperature primary root length were detected in chromosome 4, 5, 6, and 9, and the contribution rate of single QTL explained between 3.96%~8.41%. Four pairs of QTL were located at the same chromosome position and together controlled germination rate and primary root length under low temperature condition. The nearest markers apart from the corresponding QTL (only 0.01 cM) were umc1303 (265.1 cM) on chromosome 4, umc1 (246.4 cM) on chromosome 5, umc62 (459.1 cM) on chromosome 6, bnl14.28a (477.4 cM) on chromosome 9, respectively. A total of 3155 candidate genes were extracted from nine separate intervals based on the Maize Genetics and Genomics Database (http://www.maizegdb.org). Five candidate genes were selected for analysis as candidates putatively affecting seed germination and seedling growth at low temperature. The results provided a basis for further fine mapping, molecular marker assisted breeding and functional study of cold-tolerance at the stage of seed germination in maize. PMID:27031623
Ueta, Cintia B; Olivares, Emerson L; Bianco, Antonio C
2011-09-01
Thyroid hormone accelerates energy expenditure (EE) and is critical for cold-induced thermogenesis. To define the metabolic role played by thyroid hormone in the dissipation of calories from diet, hypothyroid mice were studied for 60 d in a comprehensive lab animal monitoring system. Hypothyroidism decreased caloric intake and body fat while down-regulating genes in the skeletal muscle but not brown adipose tissue thermogenic programs, without affecting daily EE. Only at thermoneutrality (30 C) did hypothyroid mice exhibit slower rate of EE, indicating a metabolic response to hypothyroidism that depends on ambient temperature. A byproduct of this mechanism is that at room temperature (22 C), hypothyroid mice are protected against diet-induced obesity, i.e. only at thermoneutrality did hypothyroid mice become obese when placed on a high-fat diet (HFD). This is in contrast to euthyroid controls, which on a HFD gained more body weight and fat at any temperature while activating the brown adipose tissue and accelerating daily EE but not the skeletal muscle thermogenic program. In the liver of euthyroid controls, HFD caused an approximately 5-fold increase in triglyceride content and expression of key metabolic genes, whereas acclimatization to 30 C cut triglyceride content by half and normalized gene expression. However, in hypothyroid mice, HFD-induced changes in liver persisted at 30 C, resulting in marked liver steatosis. Acclimatization to thermoneutrality dramatically improves glucose homeostasis, but this was not affected by hypothyroidism. In conclusion, hypothyroid mice are metabolically sensitive to environmental temperature, constituting a mechanism that defines resistance to diet-induced obesity and hepatic lipid metabolism.
Ueta, Cintia B.; Olivares, Emerson L.
2011-01-01
Thyroid hormone accelerates energy expenditure (EE) and is critical for cold-induced thermogenesis. To define the metabolic role played by thyroid hormone in the dissipation of calories from diet, hypothyroid mice were studied for 60 d in a comprehensive lab animal monitoring system. Hypothyroidism decreased caloric intake and body fat while down-regulating genes in the skeletal muscle but not brown adipose tissue thermogenic programs, without affecting daily EE. Only at thermoneutrality (30 C) did hypothyroid mice exhibit slower rate of EE, indicating a metabolic response to hypothyroidism that depends on ambient temperature. A byproduct of this mechanism is that at room temperature (22 C), hypothyroid mice are protected against diet-induced obesity, i.e. only at thermoneutrality did hypothyroid mice become obese when placed on a high-fat diet (HFD). This is in contrast to euthyroid controls, which on a HFD gained more body weight and fat at any temperature while activating the brown adipose tissue and accelerating daily EE but not the skeletal muscle thermogenic program. In the liver of euthyroid controls, HFD caused an approximately 5-fold increase in triglyceride content and expression of key metabolic genes, whereas acclimatization to 30 C cut triglyceride content by half and normalized gene expression. However, in hypothyroid mice, HFD-induced changes in liver persisted at 30 C, resulting in marked liver steatosis. Acclimatization to thermoneutrality dramatically improves glucose homeostasis, but this was not affected by hypothyroidism. In conclusion, hypothyroid mice are metabolically sensitive to environmental temperature, constituting a mechanism that defines resistance to diet-induced obesity and hepatic lipid metabolism. PMID:21771890
High pressure/high temperature thermogravimetric apparatus. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calo, J.M.; Suuberg, E.M.
1999-12-01
The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C andmore » 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.« less
2014-03-01
not provide effective control. Most tropical fi sh commercially available to hobbyists have recommended temperature requirements > 20 oC (e.g...at 10-12 oC (RR-C). This suggests lower lethal temperatures of 12-14 oC, but laboratory studies by the Florida Fish and Wildlife Conservation...55(5): 58-60. Flecker, A.S. 1992. Fish trophic guilds and the structure of a tropical stream: Weak vs. strong indirect effects . Ecology 73
A model of heat transfer in immersed man
NASA Technical Reports Server (NTRS)
Montgomery, L. D.
1974-01-01
An equation representing man's thermal balance under water is considered. The equation states that the body thermal loading from metabolic heat production and artificial heat input must be offset by respiratory and environmental heat exchange to maintain a constant body temperature. Critical body regions are affected by cold-water thermal stress. A model of the thermoregulatory system may be divided into the physical-controlled system and the dynamic controlling system. The thermal model is simulated by computer programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, J. K. R.; Alderman, O. L. G.; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
2016-07-15
An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment wasmore » integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less
Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; ...
2016-07-01
We integrated an aerodynamic levitator with carbon dioxide laser beam heating with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. Furthermore, the chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The samplemore » environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. Our system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less
Sustained Low Temperature NOx Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zha, Yuhui
Increasing regulatory, environmental, and customer pressure in recent years led to substantial improvements in the fuel efficiency of diesel engines, including the remarkable breakthroughs demonstrated through the Super Truck program supported by the U.S. Department of Energy (DOE). On the other hand, these improvements have translated into a reduction of exhaust gas temperatures, thus further complicating the task of controlling NOx emissions, especially in low power duty cycles. The need for improved NOx conversion over these low temperature duty cycles is also observed as requirements tighten with in-use emissions testing. Sustained NOx reduction at low temperatures, especially in the 150-200oCmore » range, shares some similarities with the more commonly discussed cold-start challenge, however poses a number of additional and distinct technical problems. In this project we set a bold target of achieving and maintaining a 90% NOx conversion at the SCR catalyst inlet temperature of 150oC. The project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015. Through this collaboration, we are exploring catalyst formulations and catalyst architectures with enhanced catalytic activity at 150°C; opportunities to approach the desirable ratio of NO and NO2 in the SCR feed gas; options for robust low-temperature reductant delivery; and the requirements for overall system integration. The program is expected to deliver an on-engine demonstration of the technical solution and an assessment of its commercial potential. In the SAE meeting, we will share the initial performance data on engine to highlight the path to achieve 90% NOx conversion at the SCR inlet temperature of 150oC.« less
P91-1 ARGOS spacecraft thermal control
NASA Astrophysics Data System (ADS)
Sadunas, Jonas; Baginski, Ben; McCarthy, Daniel
1993-07-01
The P91-1, or ARGOS, is a Department of Defense funded (DOD) Space Test Program (STP) satellite managed by the Space and Missile Systems Center Space and Small Launch Vehicle Programs Office (SMC/CUL). Rockwell International Space Systems Division is the space vehicle prime contractor. The P91-1 mission is to fly a suite of eight experiments in a 450 nautical mile sun-synchronous orbit dedicated to three dimensional UV imaging of the ionosphere, X-ray source mapping, navigation, space debris characterization, performance characterization of high temperature super conductivity RF devices, and on orbit demonstration of an electrical propulsion system. The primary purpose of this paper is to acquaint the thermal control community, and potential future follow on mission users, with the thermal control characteristics of the spacecraft, experiment/SV thermal integration aspects, and test verification plans.
NASA Technical Reports Server (NTRS)
Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.
2014-01-01
The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities
NASA Astrophysics Data System (ADS)
Paik, Taejong; Hong, Sung-Hoon; Gordon, Thomas; Gaulding, Ashley; Kagan, Cherie; Murray, Christopher
2013-03-01
We report the fabrication of thermochromic VO2-based metamaterials using solution-processable colloidal nanocrystals. Vanadium-based nanoparticles are prepared through a non-hydrolytic reaction, resulting in stable colloidal dispersions in solution. Thermochromic nanocrystalline VO2 thin-films are prepared via rapid thermal annealing of colloidal nanoparticles coated on a variety of substrates. Nanostructured VO2 can be patterned over large areas by nanoimprint lithography. Precise control of tungsten (W) doping concentration in colloidal nanoparticles enables tuning of the phase transition temperature of the nanocrystalline VO2 thin-films. W-doped VO2 films display a sharp temperature dependent phase transition, similar to the undoped VO2 film, but at lower temperatures tunable with the doping level. By sequential coating of doped VO2 with different doping concentrations, we fabricate ?smart? multi-layered VO2 films displaying multiple phase transition temperatures within a single structure, allowing for dynamic modulation of the metal-dielectric layered structure. The optical properties programmed into the layered structure are switchable with temperature, which provides additional degrees of freedom to design tunable optical metamaterials. This work is supported by the US Office of Naval Research Multidisciplinary University Research Initiative (MURI) program grant number ONR-N00014-10-1-0942.
[Design of a HACCP plan for the industrial process of frozen sardines].
Rosas, Patricia; Reyes, Genara
2009-09-01
The Hazard Analysis and Critical Control Point (HACCP) is a system to identify, assess and control the hazards related with production, processing, distribution and consumption in order to get safe food. The aim of this study was to design a HACCP plan for implementing in processing line of frozen whole sardine (Sardinella aurita). The methodology was based in the evaluation of the accomplishment of the pre-requisite programs (GMP/SSOP in a previous study), the application of the principles of the HACCP and the sequence of stages settles down by the COVENIN Venezuelan standard No 3802. Time-temperature was recorded in each processing step. Histamine was determined by VERATOX NEOGEN. Results showed that some sardine batches arrived to the plant with high time-temperature records, finding up to 5 ppm of histamine due to the abuse of temperature during transportation. A HACCP plan is proposed with the scope, the selection of the team, the description of the product and the intended use, the flow diagram of the process, hazard analysis and identification of CCP, monitoring system, corrective actions and records. The potential hazards were identified as pathogen growth, presence of histamine and physical objects in the sardines. The control measures of PCC are referred as control of time-temperature during transportation and processing, monitoring of ice supplies and sanitary conditions in the process.
An Axial-Torsional, Thermomechanical Fatigue Testing Technique
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Bonacuse, Peter J.
1995-01-01
A technique for conducting strain-controlled, thermomechanical, axial-torsional fatigue tests on thin-walled tubular specimens was developed. Three waveforms of loading, namely, the axial strain waveform, the engineering shear strain waveform, and the temperature waveform were required in these tests. The phasing relationships between the mechanical strain waveforms and the temperature and axial strain waveforms were used to define a set of four axial-torsional, thermomechanical fatigue (AT-TMF) tests. Real-time test control (3 channels) and data acquisition (a minimum of 7 channels) were performed with a software program written in C language and executed on a personal computer. The AT-TMF testing technique was used to investigate the axial-torsional thermomechanical fatigue behavior of a cobalt-base superalloy, Haynes 188. The maximum and minimum temperatures selected for the AT-TMF tests were 760 and 316 C, respectively. Details of the testing system, calibration of the dynamic temperature profile of the thin-walled tubular specimen, thermal strain compensation technique, and test control and data acquisition schemes, are reported. The isothermal, axial, torsional, and in- and out-of-phase axial-torsional fatigue behaviors of Haynes 188 at 316 and 760 C were characterized in previous investigations. The cyclic deformation and fatigue behaviors of Haynes 188 in AT-TMF tests are compared to the previously reported isothermal axial-torsional behavior of this superalloy at the maximum and minimum temperatures.
Method for in-situ restoration of plantinum resistance thermometer calibration
Carroll, Radford M.
1989-01-01
A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or strain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's.
Method for in-situ restoration of platinum resistance thermometer calibration
Carroll, R.M.
1987-10-23
A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or stain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's. 1 fig.
Testing of the Geoscience Laser Altimeter System (GLAS) Prototype Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Douglas, Donya; Ku, Jentung; Kaya, Tarik
1998-01-01
This paper describes the testing of the prototype loop heat pipe (LHP) for the Geoscience Laser Altimeter System (GLAS). The primary objective of the test program was to verify the loop's heat transport and temperature control capabilities under conditions pertinent to GLAS applications. Specifically, the LHP had to demonstrate a heat transport capability of 100 W, with the operating temperature maintained within +/-2K while the condenser sink was subjected to a temperature change between 273K and 283K. Test results showed that this loop heat pipe was more than capable of transporting the required heat load and that the operating temperature could be maintained within +/-2K. However, this particular integrated evaporator-compensation chamber design resulted in an exchange of energy between the two that affected the overall operation of the system. One effect was the high temperature the LHP was required to reach before nucleation would begin due to inability to control liquid distribution during ground testing. Another effect was that the loop had a low power start-up limitation of approximately 25 W. These Issues may be a concern for other applications, although it is not expected that they will cause problems for GLAS under micro-gravity conditions.
Grygierek, Krzysztof; Ferdyn-Grygierek, Joanna
2018-01-01
An inappropriate indoor climate, mostly indoor temperature, may cause occupants’ discomfort. There are a great number of air conditioning systems that make it possible to maintain the required thermal comfort. Their installation, however, involves high investment costs and high energy demand. The study analyses the possibilities of limiting too high a temperature in residential buildings using passive cooling by means of ventilation with ambient cool air. A fuzzy logic controller whose aim is to control mechanical ventilation has been proposed and optimized. In order to optimize the controller, the modified Multiobjective Evolutionary Algorithm, based on the Strength Pareto Evolutionary Algorithm, has been adopted. The optimization algorithm has been implemented in MATLAB®, which is coupled by MLE+ with EnergyPlus for performing dynamic co-simulation between the programs. The example of a single detached building shows that the occupants’ thermal comfort in a transitional climate may improve significantly owing to mechanical ventilation controlled by the suggested fuzzy logic controller. When the system is connected to the traditional cooling system, it may further bring about a decrease in cooling demand. PMID:29642525
Burn Control in Fusion Reactors via Isotopic Fuel Tailoring
NASA Astrophysics Data System (ADS)
Boyer, Mark D.; Schuster, Eugenio
2011-10-01
The control of plasma density and temperature are among the most fundamental problems in fusion reactors and will be critical to the success of burning plasma experiments like ITER. Economic and technological constraints may require future commercial reactors to operate with low temperature, high-density plasma, for which the burn condition may be unstable. An active control system will be essential for stabilizing such operating points. In this work, a volume-averaged transport model for the energy and the densities of deuterium and tritium fuel ions, as well as the alpha particles, is used to synthesize a nonlinear feedback controller for stabilizing the burn condition. The controller makes use of ITER's planned isotopic fueling capability and controls the densities of these ions separately. The ability to modulate the DT fuel mix is exploited in order to reduce the fusion power during thermal excursions without the need for impurity injection. By moving the isotopic mix in the plasma away from the optimal 50:50 mix, the reaction rate is slowed and the alpha-particle heating is reduced to desired levels. Supported by the NSF CAREER award program (ECCS-0645086).
Lessons Learned from the Node 1 Temperature and Humidity Control Subsystem Design
NASA Technical Reports Server (NTRS)
Williams, David E.
2010-01-01
Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Temperature and Humidity Control (THC) subsystem and it will document some of the lessons that have been learned to date for this subsystem and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs. 1
Stabilization of Co{sup 2+} in layered double hydroxides (LDHs) by microwave-assisted ageing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrero, M.; Benito, P.; Labajos, F.M.
2007-03-15
Co-containing layered double hydroxides at different pH have been prepared, and aged following different routes. The solids prepared have been characterized by element chemical analysis, powder X-ray diffraction, thermogravimetric and differential thermal analyses (both in nitrogen and in oxygen), FT-IR and Vis-UV spectroscopies, temperature-programmed reduction and surface area assessment by nitrogen adsorption at -196 deg. C. The best conditions found to preserve the cobalt species in the divalent oxidation state are preparing the samples at controlled pH, and then submit them to ageing under microwave irradiation. - Graphical abstract: The use of microwave-hydrothermal treatment, controlling both temperature and ageing time,more » permits to synthesize well-crystallized nanomaterials with controlled surface properties. An enhancement in the crystallinity degree and an increase in the particle size are observed when the irradiation time is prolonged.« less
Using Temperature-Dependent Phenomena at Oxide Surfaces for Species Recognition in Chemical Sensing.
NASA Astrophysics Data System (ADS)
Semancik, Steve; Meier, Douglas; Evju, Jon; Benkstein, Kurt; Boger, Zvi; Montgomery, Chip
2006-03-01
Nanostructured films of SnO2 and TiO2 have been deposited on elements in MEMS arrays to fabricate solid state conductometric gas microsensors. The multilevel platforms within an array, called microhotplates, are individually addressable for localized temperature control and measurement of sensing film electrical conductance. Temperature variations of the microhotplates are employed in thermally-activated CVD oxide film growth, and for rapid temperature-programmed operation of the microsensors. Analytical information on environmental gas phase composition is produced temporally as purposeful thermal fluctuations provide energetic and kinetic control of surface reaction and adsorption/desorption phenomena. Resulting modulations of oxide adsorbate populations cause changing charge transfer behavior and measurable conductance responses. Rich data streams from different sensing films in the arrays have been analyzed by Artificial Neural Networks (ANN) to successfully recognize low concentration species in mixed gases. We illustrate capabilities of the approach and technology in the homeland security area, where dangerous chemicals (TICs, CWSs and CWAs) have been detected at 10-100 ppb levels in interference-spiked air backgrounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vohra, Yogesh, K.
The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductorsmore » under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.« less
Computer program for analysis of split-Stirling-cycle cryogenic coolers
NASA Technical Reports Server (NTRS)
Brown, M. T.; Russo, S. C.
1983-01-01
A computer program for predicting the detailed thermodynamic performance of split-Stirling-cycle refrigerators has been developed. The mathematical model includes the refrigerator cold head, free-displacer/regenerator, gas transfer line, and provision for modeling a mechanical or thermal compressor. To allow for dynamic processes (such as aerodynamic friction and heat transfer) temperature, pressure, and mass flow rate are varied by sub-dividing the refrigerator into an appropriate number of fluid and structural control volumes. Of special importance to modeling of cryogenic coolers is the inclusion of real gas properties, and allowance for variation of thermo-physical properties such as thermal conductivities, specific heats and viscosities, with temperature and/or pressure. The resulting model, therefore, comprehensively simulates the split-cycle cooler both spatially and temporally by reflecting the effects of dynamic processes and real material properties.
Strong Temperature Dependence in the Reactivity of H 2 on RuO 2 (110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.; Dahal, Arjun; Dohnálek, Zdenek
2016-08-04
The ability of hydrogen to facilitate many types of heterogeneous catalysis starts with its adsorption. As such, understanding the temperature-dependence sticking of H2 is critical toward controlling and optimizing catalytic conditions in those cases where adsorption is rate-limiting. In this work, we examine the temperature-dependent sticking of H2/D2 to the clean RuO2(110) surface using the King & Wells molecular beam approach, temperature programmed desorption (TPD) and scanning tunneling microscopy (STM). We show that the sticking probability (molecular or dissociative) of H2/D2 on this surface is highly temperature-dependent, decreasing from ~0.4-0.5 below 25 K to effectively zero above 200 K. Bothmore » STM and TPD reveal that OH/OD formation is severely limited for adsorption temperatures above ~150 K. Previous literature reports of extensive surface hydroxylation from H2/D2 exposures at room temperature were most likely the result of inadvertent contamination brought about from dosing by chamber backfilling.« less
High-Temperature Magnetic Bearings for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
1996-01-01
Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and coordination with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of the bearing times rpm) limit on engine speed and allow active vibration cancellation systems to be used--resulting in a more efficient, "more electric" engine. Finally, the Integrated High-Performance Turbine Engine Technology (IHPTET) Program, a joint Department of Defense/industry program, identified a need for a hightemperature (as high as 1200 F) magnetic bearing that could be demonstrated in a phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator are a series of electrical wire coils that form a series of electric magnets around the circumference. The magnets exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it in the center of the cavity. The engine rotor, bearings, and case form a flexible structure that contains a large number of modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system. Cobalt steel has a curie point greater than 1700 F, and copper wire has a melting point beyond that. Therefore, practical limitations associated with the maximum magnetic field strength in the cobalt steel and the stress in the rotating components limit the temperature to about 1200 F. The objective of this effort is to determine the limits in temperature and speed of a magnetic bearing operating in an engine. Our approach is to use our in-house experience in magnets, mechanical components, high-temperature materials, and surface lubrication to build and test a magnetic bearing in both a rig and an engine. Testing will be done at Lewis or through cooperative programs in industrial facilities.
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.
1990-01-01
A 9.2 percent scale Short Takeoff and Vertical Landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the Lewis Research Center 9 x 15 foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issure for advanced short takeoff and vertical landing aircraft. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The model support system had four degrees of freedom - pitch, roll, yaw, and vertical height variation. The model support system also provided heated high-pressure air for nozzle flow and a suction system exhaust for inlet flow. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Test and data analysis results from Phase 2 and flow visualization from both Phase 1 and 2 are documented. A description of the model and facility modifications is also provided. Headwind velocity was varied from 10 to 23 kn. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R. These results will contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.
NASA Technical Reports Server (NTRS)
Roberts, Floyd E., III
1994-01-01
Software provides for control and acquisition of data from optical pyrometer. There are six individual programs in PYROLASER package. Provides quick and easy way to set up, control, and program standard Pyrolaser. Temperature and emisivity measurements either collected as if Pyrolaser in manual operating mode or displayed on real-time strip charts and stored in standard spreadsheet format for posttest analysis. Shell supplied to allow macros, which are test-specific, added to system easily. Written using Labview software for use on Macintosh-series computers running System 6.0.3 or later, Sun Sparc-series computers running Open-Windows 3.0 or MIT's X Window System (X11R4 or X11R5), and IBM PC or compatible computers running Microsoft Windows 3.1 or later.
NASA Astrophysics Data System (ADS)
Yougoubare, Y. Quentin; Pang, Su-Seng
2014-02-01
In previous work, a biomimetic close-then-heal (CTH) healing mechanism was proposed and validated to repeatedly heal wide-open cracks in load carrying engineering structures by using constrained expansion of compression programmed thermoset shape memory polymers (SMPs). In this study, the effects on healing efficiencies of variation of temperature during both thermomechanical programming and shape recovery (healing) under three-dimensional (3D) confinement are evaluated. The polymer considered is a polystyrene shape memory polymer with 6% by volume of thermoplastic particle additives (copolyester) dispersed in the matrix. In addition to the programming and healing temperatures, some of the parameters investigated include the flexural strength, crack width and elemental composition at the crack interface. It is observed that while increase of the programming temperature is slightly beneficial to strength recovery, most of the strength recovered and damage repair are strongly dependent on the healing temperature. The best healing efficiency (63%) is achieved by a combination of a programming temperature above the glass transition temperature of the polymer and a healing temperature above the bonding point of the copolyester.
Monitoring and Control Interface Based on Virtual Sensors
Escobar, Ricardo F.; Adam-Medina, Manuel; García-Beltrán, Carlos D.; Olivares-Peregrino, Víctor H.; Juárez-Romero, David; Guerrero-Ramírez, Gerardo V.
2014-01-01
In this article, a toolbox based on a monitoring and control interface (MCI) is presented and applied in a heat exchanger. The MCI was programed in order to realize sensor fault detection and isolation and fault tolerance using virtual sensors. The virtual sensors were designed from model-based high-gain observers. To develop the control task, different kinds of control laws were included in the monitoring and control interface. These control laws are PID, MPC and a non-linear model-based control law. The MCI helps to maintain the heat exchanger under operation, even if a temperature outlet sensor fault occurs; in the case of outlet temperature sensor failure, the MCI will display an alarm. The monitoring and control interface is used as a practical tool to support electronic engineering students with heat transfer and control concepts to be applied in a double-pipe heat exchanger pilot plant. The method aims to teach the students through the observation and manipulation of the main variables of the process and by the interaction with the monitoring and control interface (MCI) developed in LabVIEW©. The MCI provides the electronic engineering students with the knowledge of heat exchanger behavior, since the interface is provided with a thermodynamic model that approximates the temperatures and the physical properties of the fluid (density and heat capacity). An advantage of the interface is the easy manipulation of the actuator for an automatic or manual operation. Another advantage of the monitoring and control interface is that all algorithms can be manipulated and modified by the users. PMID:25365462
Hot-Fire Testing of 100 LB(sub F) LOX/LCH4 Reaction Control Engine at Altitude Conditions
NASA Technical Reports Server (NTRS)
Marshall, William M.; Kleinhenz, Julie E.
2010-01-01
Liquid oxygen/liquid methane (LO2/LCH4 ) has recently been viewed as a potential green propulsion system for both the Altair ascent main engine (AME) and reaction control system (RCS). The Propulsion and Cryogenic Advanced Development Project (PCAD) has been tasked by NASA to develop these green propellant systems to enable safe and cost effective exploration missions. However, experience with LO2/LCH4 as a propellant combination is limited, so testing of these systems is critical to demonstrating reliable ignition and performance. A test program of a 100 lb f reaction control engine (RCE) is underway at the Altitude Combustion Stand (ACS) of the NASA Glenn Research Center, with a focus on conducting tests at altitude conditions. These tests include a unique propellant conditioning feed system (PCFS) which allows for the inlet conditions of the propellant to be varied to test warm to subcooled liquid propellant temperatures. Engine performance, including thrust, c* and vacuum specific impulse (I(sub sp,vac)) will be presented as a function of propellant temperature conditions. In general, the engine performed as expected, with higher performance at warmer propellant temperatures but better efficiency at lower propellant temperatures. Mixture ratio effects were inconclusive within the uncertainty bands of data, but qualitatively showed higher performance at lower ratios.
Advances in Electrically Driven Thermal Management
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2017-01-01
Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.
1993-01-01
external parameters such as airflow, temperature, pressure, etc, are measured. Turbine Engine testing generates massive volumes of data at very high...a form that describes the signal flow graph topology as well as specific parameters of the processing blocks in the diagram. On multiprocessor...provides an interface to the symbolic builder and control functions such that parameters may be set during the build operation that will affect the
NASA Technical Reports Server (NTRS)
1973-01-01
A computer programmer's manual for a digital computer which will permit rapid and accurate parametric analysis of current and advanced attitude control propulsion systems is presented. The concept is for a cold helium pressurized, subcritical cryogen fluid supplied, bipropellant gas-fed attitude control propulsion system. The cryogen fluids are stored as liquids under low pressure and temperature conditions. The mathematical model provides a generalized form for the procedural technique employed in setting up the analysis program.
Sustained Load Crack Growth in Inconel 718 Under Non-Isothermal Conditions.
1983-12-01
AD- R136 925 SUSTINED LOAD CRCK GROWTH IN INCONEL 7±8 UNDER / NON-ISOTHERM L ONDITIONS(U) IR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF...thermocouples. This unit provides pre-programmed independent control of the four heat- Iing lamps. It also turns the cooling system on and off at the appropri...relationship between them. The microcomputer controls temperature as a function of time. The system is capable of heating and cooling a specimen at a rate of 8C
NASA Technical Reports Server (NTRS)
Pettit, D. E.; Hoeppner, D. W.
1972-01-01
A program was conducted to determine the fatigue-crack propagation behavior of parent and welded 2219-T87 aluminum alloy sheet under controlled cyclic stress conditions in room temperature air and 300 F air. Specimens possessing an initial surface defect of controlled dimensions were cycled under constant load amplitude until the propagating fatigue crack penetrated the back surface of the specimen. A series of precracked specimens were prepared to determine optimum penetrant, X-ray, ultrasonic, and eddy current nondestructive inspection procedures.
Design and Construction of an Inexpensive Homemade Plant Growth Chamber
Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K.; Siegle, Megan; Mase, Keisuke
2015-01-01
Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140–250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber will tremendously increase research opportunities in experimental plant biology. PMID:25965420
Design and construction of an inexpensive homemade plant growth chamber.
Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke
2015-01-01
Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber will tremendously increase research opportunities in experimental plant biology.
NASA Astrophysics Data System (ADS)
Penniston-Dorland, S.; Stern, R. J.; Edwards, B. R.; Kincaid, C. R.
2014-12-01
The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate fundamental results from the MARGINS program into open-source college-level curriculum. Three Subduction Factory (SubFac) mini-lessons were developed as part of this project. These include hands-on examinations of data sets representing 3 key components of the subduction zone system: 1) Heat transfer in the subducted slab; 2) Metamorphic processes happening at the plate interface; and 3) Typical magmatic products of arc systems above subduction zones. Module 1: "Slab Temperatures Control Melting in Subduction Zones, What Controls Slab Temperature?" allows students to work in groups using beads rolling down slopes as an analog for the mathematics of heat flow. Using this hands-on, exploration-based approach, students develop an intuition for the mathematics of heatflow and learn about heat conduction and advection in the subduction zone environment. Module 2: "Subduction zone metamorphism" introduces students to the metamorphic rocks that form as the subducted slab descends and the mineral reactions that characterize subduction-related metamorphism. This module includes a suite of metamorphic rocks available for instructors to use in a lab, and exercises in which students compare pressure-temperature estimates obtained from metamorphic rocks to predictions from thermal models. Module 3: "Central American Arc Volcanoes, Petrology and Geochemistry" introduces students to basic concepts in igneous petrology using the Central American volcanic arc, a MARGINS Subduction Factory focus site, as an example. The module relates data from two different volcanoes - basaltic Cerro Negro (Nicaragua) and andesitic Ilopango (El Salvador) including hand sample observations and major element geochemistry - to explore processes of mantle and crustal melting and differentiation in arc volcanism.
Niwa, Miki; Katada, Naonobu
2013-10-01
In this review, a method for the temperature-programmed desorption (TPD) of ammonia experiment for the characterization of zeolite acidity and its improvement by simultaneous IR measurement and DFT calculation are described. First, various methods of ammonia TPD are explained, since the measurements have been conducted under the concepts of kinetics, equilibrium, or diffusion control. It is however emphasized that the ubiquitous TPD experiment is governed by the equilibrium between ammonia molecules in the gas phase and on the surface. Therefore, a method to measure quantitatively the strength of the acid site (∆H upon ammonia desorption) under equilibrium-controlled conditions is elucidated. Then, a quantitative relationship between ∆H and H0 function is proposed, based on which the acid strength ∆H can be converted into the H0 function. The identification of the desorption peaks and the quantitative measurement of the number of acid sites are then explained. In order to overcome a serious disadvantage of the method (i.e., no information is provided about the structure of acid sites), the simultaneous measurement of IR spectroscopy with ammonia TPD, named IRMS-TPD (infrared spectroscopy/mass spectrometry-temperature-programmed desorption), is proposed. Based on this improved measurement, Brønsted and Lewis acid sites were differentiated and the distribution of Brønsted OH was revealed. The acidity characterized by IRMS-TPD was further supported by the theoretical DFT calculation. Thus, the advanced study of zeolite acidity at the molecular level was made possible. Advantages and disadvantages of the ammonia TPD experiment are discussed, and understanding of the catalytic cracking activity based on the derived acidic profile is explained. Copyright © 2013 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Torghabeh, A. A.; Tousi, A. M.
2007-08-01
This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.
2005 NASA Seal/Secondary Air System Workshop, Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2006-01-01
The 2005 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of the NASA-sponsored Propulsion 21 Project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed tests completed for the shuttle main landing gear door seals.
NASA Astrophysics Data System (ADS)
Jia, Yun-Peng; Zhao, Bao; Yang, Fei; Wu, Yu; Zhou, Xuan; Li, Zhe; Tan, Jian
2015-12-01
The temperature dependences of forward voltage drop (VF) of the fast recovery diodes (FRDs) are remarkably influenced by different lifetime controlled treatments. In this paper the results of an experimental study are presented, which are the lifetime controls of platinum treatment, electron irradiation treatment, and the combined treatment of the above ones. Based on deep level transient spectroscopy (DLTS) measurements, a new level E6 (EC-0.376 eV) is found in the combined lifetime treated (CLT) sample, which is different from the levels of the individual platinum and electron irradiation ones. Comparing the tested VF results of CLT samples with the others, the level E6 is responsible for the degradation of temperature dependence of the forward voltage drop in the FRD. Project supported by the Doctoral Fund of Ministry of Education of China (Grant No. 20111103120016) and the State Grid Corporation of China Program of Science and Technology, China (Grant No. 5455DW140003).
Development and Characterization of a Low-Pressure Calibration System for Hypersonic Wind Tunnels
NASA Technical Reports Server (NTRS)
Green, Del L.; Everhart, Joel L.; Rhode, Matthew N.
2004-01-01
Minimization of uncertainty is essential for accurate ESP measurements at very low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources requires a well defined and controlled calibration method. A calibration system has been constructed and environmental control software developed to control experimentation to eliminate human induced error sources. The initial stability study of the calibration system shows a high degree of measurement accuracy and precision in temperature and pressure control. Control manometer drift and reference pressure instabilities induce uncertainty into the repeatability of voltage responses measured from the PSI System 8400 between calibrations. Methods of improving repeatability are possible through software programming and further experimentation.
Cramer, Elaine H; Blanton, Curtis J; Otto, Charles
2008-03-01
In the course of a successful collaboration between the Centers for Disease Control and Prevention (CDC) and the cruise ship industry on reducing common-source outbreaks, CDC's Vessel Sanitation Program (VSP) has expanded its training, education, and cruise ship inspection programs. The study reported here evaluated 15 years of ship sanitation inspection data from the National Center for Environmental Health and assessed performance in specific sanitation categories from 1996 to 2005. During the period 1990-2005, scores from cruise ship environmental sanitation inspections steadily improved. The percentage of inspections with violations decreased among five of nine categories. Those five categories were Washing Facilities, Contact Surfaces, Facility Maintenance, Food Handling, and Communicable Disease Practices. Inspection violations increased proportionally in the categories of Swimming Pools and Water System Protection/Chart Recording. Overall continued good performance in most sanitation categories is likely attributable to on-site training during inspections, improvements in ship construction, and a switch from hot-holding temperatures to time limits as a public health control for foods on display.
Unitized Regenerative Fuel Cell System Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2003-01-01
Unitized Regenerative Fuel Cells (URFC) have recently been developed by several fuel cell manufacturers. These manufacturers have concentrated their efforts on the development of the cell stack technology itself, and have not up to this point devoted much effort to the design and development of the balance of plant. A fuel cell technology program at the Glenn Research Center (GRC) that has as its goal the definition and feasibility testing of the URFC system balance of plant. Besides testing the feasibility, the program also intends to minimize the system weight, volume, and parasitic power as its goal. The design concept currently being developed uses no pumps to circulate coolant or reactants, and minimizes the ancillary components to only the oxygen and hydrogen gas storage tanks, a water storage tank, a loop heat pipe to control the temperature and two pressure control devices to control the cell stack pressures during operation. The information contained in this paper describes the design and operational concepts employed in this concept. The paper also describes the NASA Glenn research program to develop this concept and test its feasibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyun, J.J.; Majumdar, D.
The paper describes TEMPEST, a simple computer program for the temperature and pressure estimation of a boiling fuel-steel pool in an LMFBR core. The time scale of interest of this program is large, of the order of ten seconds. Further, the vigorous boiling in the pool will generate a large contact, and hence a large heat transfer between fuel and steel. The pool is assumed to be a uniform mixture of fuel and steel, and consequently vapor production is also assumed to be uniform throughout the pool. The pool is allowed to expand in volume if there is steel meltingmore » at the walls. In this program, the total mass of liquid and vapor fuel is always kept constant, but the total steel mass in the pool may change by steel wall melting. Because of a lack of clear understanding of the physical phenomena associated with the progression of a fuel-steel mixture at high temperature, various input options have been built-in to enable one to perform parametric studies. For example, the heat transfer from the pool to the surrounding steel structure may be controlled by input values for the heat transfer coefficients, or, the heat transfer may be calculated by a correlation obtained from the literature. Similarly, condensation of vapor on the top wall can be specified by input values of the condensation coefficient; the program can otherwise calculate condensation according to the non-equilibrium model predictions. Meltthrough rates of the surrounding steel walls can be specified by a fixed melt-rate or can be determined by a fraction of the heat loss that goes to steel-melting. The melted steel is raised to the pool temperature before it is joined with the pool material. Several applications of this program to various fuel-steel pools in the FFTF and the CRBR cores are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Amanda K; Wu, Zili; Calaza, Florencia
2014-01-01
CeO2 cubes with {100} facets, octahedra with {111} facets, and wires with highly defective structures were utilized to probe the structure-dependent reactivity of acetaldehyde. Using temperature-programmed desorption (TPD), temperature-programmed surface reactions (TPSR), and in situ infrared spectroscopy it was found that acetaldehyde desorbs unreacted or undergoes reduction, coupling, or C-C bond scission reactions depending on the surface structure of CeO2. Room temperature FTIR indicates that acetaldehyde binds primarily as 1-acetaldehyde on the octahedra, in a variety of conformations on the cubes, including coupling products and acetate and enolate species, and primarily as coupling products on the wires. The percent consumptionmore » of acetaldehyde follows the order of wires > cubes > octahedra. All the nanoshapes produce the coupling product crotonaldehyde; however, the selectivity to produce ethanol follows the order wires cubes >> octahedra. The selectivity and other differences can be attributed to the variation in the basicity of the surfaces, defects densities, coordination numbers of surface atoms, and the reducibility of the nanoshapes.« less
[Catalytic combustion of soot on combined oxide catalysts].
He, Xu-wen; Yu, Jun-jie; Kang, Shou-fang; Hao, Zheng-ping; Hu, Chun
2005-01-01
Combined oxide catalysts are prepared for catalytic combustion of soot and regeneration from diesel emissions. Thermo-gravimetric analysis(TGA) and temperature programmed oxidation(TPO)are used to evaluate the activity of catalysts under the influence of composition,atomic ration, H2O, calcinations temperature and mass ration between catalysts and soot. Results show that Cu-Mo-O had high activity among double metal oxide catalysts. Among multicomponent metal oxide catalysts, Cu-K-Mo-O had high activity when atomic ratio Cu: K: Mo = 1:1:2 and mass ration between catalysts and soot equals 5: 1. Under this condition, soot ignition temperature of Cu-K-Mo-O catalyst was 327 degrees C. H2O addition and calcinations temperature had little influence on it,which is one kind of compatible catalyst for soot control and catalytic regeneration from diesel emissions.
The Waukesha Turbocharger Control Module: A tool for improved engine efficiency and response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zurlo, J.R.; Reinbold, E.O.; Mueller, J.
1996-12-31
The Waukesha Turbocharger Control Module allows optimum control of turbochargers on lean burn gaseous fueled engines. The Turbocharger Control Module is user programmed to provide either maximum engine efficiency or best engine response to load changes. In addition, the Turbocharger Control Module prevents undesirable turbocharger surge. The Turbocharger Control Module consists of an electronic control box, engine speed, intake manifold pressure, ambient temperature sensors, and electric actuators driving compressor bypass and wastegate valves. The Turbocharger Control Module expands the steady state operational environment of the Waukesha AT27GL natural gas engine from sea level to 1,525 m altitude with one turbochargermore » match and improves the engine speed turn down by 80 RPM. Finally, the Turbocharger Control Module improves engine response to load changes.« less
Automated sample exchange and tracking system for neutron research at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Rix, J. E.; Weber, J. K. R.; Santodonato, L. J.; Hill, B.; Walker, L. M.; McPherson, R.; Wenzel, J.; Hammons, S. E.; Hodges, J.; Rennich, M.; Volin, K. J.
2007-01-01
An automated system for sample exchange and tracking in a cryogenic environment and under remote computer control was developed. Up to 24 sample "cans" per cycle can be inserted and retrieved in a programed sequence. A video camera acquires a unique identification marked on the sample can to provide a record of the sequence. All operations are coordinated via a LABVIEW™ program that can be operated locally or over a network. The samples are contained in vanadium cans of 6-10mm in diameter and equipped with a hermetically sealed lid that interfaces with the sample handler. The system uses a closed-cycle refrigerator (CCR) for cooling. The sample was delivered to a precooling location that was at a temperature of ˜25K, after several minutes, it was moved onto a "landing pad" at ˜10K that locates the sample in the probe beam. After the sample was released onto the landing pad, the sample handler was retracted. Reading the sample identification and the exchange operation takes approximately 2min. The time to cool the sample from ambient temperature to ˜10K was approximately 7min including precooling time. The cooling time increases to approximately 12min if precooling is not used. Small differences in cooling rate were observed between sample materials and for different sample can sizes. Filling the sample well and the sample can with low pressure helium is essential to provide heat transfer and to achieve useful cooling rates. A resistive heating coil can be used to offset the refrigeration so that temperatures up to ˜350K can be accessed and controlled using a proportional-integral-derivative control loop. The time for the landing pad to cool to ˜10K after it has been heated to ˜240K was approximately 20min.
Temperature-Centric Evaluation of Sensor Transients
NASA Astrophysics Data System (ADS)
Ayhan, Tuba; Muezzinoglu, Kerem; Vergara, Alexander; Yalcin, Mustak
2011-09-01
Controllable sensing conditions provide the means for diversifying sensor response and achieving better selectivity. Modulating the sensing layer temperature of metal-oxide sensors is a popular method for multiplexing the limited number of sensing elements that can be employed in a practical array. Time limitations in many applications, however, cannot tolerate an ad-hoc, one-size-fits-all modulation pattern. When the response pattern is itself non-stationary, as in the transient phase, a temperature program also becomes infeasible. We consider the problem of determining and tuning into a fixed optimum temperature in a sensor array. For this purpose, we present an empirical analysis of the temperature's role on the performance of a metal-oxide gas sensor array in the identification of odorants along the response transient. We show that the optimal temperature in this sense depends heavily on the selection of (i) the set of candidate analytes, (ii) the time-window of the analysis, (iii) the feature extracted from the sensor response, and (iv) the computational identification method used.
O'Donnell, Margaret A; Whitfield, Justin
The purpose of this study was to determine whether the temperature in medication storage compartments in air medical helicopters was within United States Pharmacopeia (USP)-defined limits for controlled room temperature. This was a prospective study using data obtained from a continuous temperature monitoring device. A total of 4 monitors were placed within 2 medication storage locations in 2 identical helicopters. The data collection period lasted 2 weeks during the summer and winter seasons. Data retrieved from monitors were compared against USP parameters for proper medication storage. Results documented temperatures outside the acceptable range a majority of the time with temperatures above the high limit during summer and below the low limit during winter. The study determined that compartments used for medication storage frequently fell outside of the range for USP-defined limits for medication storage. Flight programs should monitor storage areas, carefully taking actions to keep medication within defined ranges. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Wide-Temperature Electronics for Thermal Control of Nanosats
NASA Technical Reports Server (NTRS)
Dickman, John Ellis; Gerber, Scott
2000-01-01
This document represents a presentation which examines the wide and low-temperature electronics required for NanoSatellites. In the past, larger spacecraft used Radioisotope Heating Units (RHU's). The advantage of the use of these electronics is that they could eliminate or reduce the requirement for RHU's, reduce system weight and simplify spacecraft design by eliminating containment/support structures for RHU's. The Glenn Research Center's Wide/Low Temperature Power Electronics Program supports the development of power systems capable of reliable, efficient operation over wide and low temperature ranges. Included charts review the successes and failures of various electronic devices, the IRF541 HEXFET, The NE76118n-Channel GaAS MESFET, the Lithium Carbon Monofluoride Primary Battery, and a COTS DC-DC converter. The preliminary result of wide/low temperature testing of CTS and custom parts and power circuit indicate that through careful selection of components and technologies it is possible to design and build power circuits which operate from room temperature to near 100K.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.
1986-01-01
It is necessary to relate the processes that control crack growth in the immediate vicinity of the crack tip to parameters that can be calculated from remote quantities, such as forces, stresses, or displacements. The most likely parameters appear to be certain path-independent (PI) integrals, several of which have already been proposed for application to high temperature inelastic problems. The ability of currently available PI-integrals to correlate fatigue crack propagation under conditions that simulate the engine combustor liner environment was determined. The utility of advanced fracture mechanics measurements will also be evaluated and determined during the course of the program.
Equation-based languages – A new paradigm for building energy modeling, simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.
Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less
Equation-based languages – A new paradigm for building energy modeling, simulation and optimization
Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.
2016-04-01
Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less
Explosively Generated Plasmas: Measurement and Models of Shock Generation and Material Interactions
NASA Astrophysics Data System (ADS)
Emery, Samuel; Elert, Mark; Giannuzzi, Paul; Le, Ryan; McCarthy, Daniel; Schweigert, Igor
2017-06-01
Explosively generated plasmas (EGPs) are created by the focusing of a shock produced from an explosive driver via a conical waveguide. In the waveguide, the gases from the explosive along with the trapped air are accelerated and compressed (via Mach stemming) to such extent that plasma is produced. These EGPs have been measured in controlled experiments to achieve temperatures on the order of 1 eV and velocities as high as 25 km/s. We have conducted a combined modeling and measurement effort to increase the understanding for design purposes of the shock generation of EGPs and the interaction of EGP with explosive materials. Such efforts have led to improved measures of pressure and temperature, spatial structure of the plasma, and the decomposition/deflagration behavior of RDX upon exposure to an EGP. Funding provided by the Environmental Security Technology Certification Program (ESTCP) Munitions Response program area.
Experimental and theoretical studies of near-ground acoustic radiation propagation in the atmosphere
NASA Astrophysics Data System (ADS)
Belov, Vladimir V.; Burkatovskaya, Yuliya B.; Krasnenko, Nikolai P.; Rakov, Aleksandr S.; Rakov, Denis S.; Shamanaeva, Liudmila G.
2017-11-01
Results of experimental and theoretical studies of the process of near-ground propagation of monochromatic acoustic radiation on atmospheric paths from a source to a receiver taking into account the contribution of multiple scattering on fluctuations of atmospheric temperature and wind velocity, refraction of sound on the wind velocity and temperature gradients, and its reflection by the underlying surface for different models of the atmosphere depending the sound frequency, coefficient of reflection from the underlying surface, propagation distance, and source and receiver altitudes are presented. Calculations were performed by the Monte Carlo method using the local estimation algorithm by the computer program developed by the authors. Results of experimental investigations under controllable conditions are compared with theoretical estimates and results of analytical calculations for the Delany-Bazley impedance model. Satisfactory agreement of the data obtained confirms the correctness of the suggested computer program.
NASA Astrophysics Data System (ADS)
Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Wcisło, P.; Hill, C.; Wilzewski, J. S.
2016-07-01
The HITRAN Application Programming Interface (HAPI) is presented. HAPI is a free Python library, which extends the capabilities of the HITRANonline interface (www.hitran.org) and can be used to filter and process the structured spectroscopic data. HAPI incorporates a set of tools for spectra simulation accounting for the temperature, pressure, optical path length, and instrument properties. HAPI is aimed to facilitate the spectroscopic data analysis and the spectra simulation based on the line-by-line data, such as from the HITRAN database [JQSRT (2013) 130, 4-50], allowing the usage of the non-Voigt line profile parameters, custom temperature and pressure dependences, and partition sums. The HAPI functions allow the user to control the spectra simulation and data filtering process via a set of the function parameters. HAPI can be obtained at its homepage www.hitran.org/hapi.
Kuu, Wei Y; Nail, Steven L
2009-09-01
Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.
PYROLASER - PYROLASER OPTICAL PYROMETER OPERATING SYSTEM
NASA Technical Reports Server (NTRS)
Roberts, F. E.
1994-01-01
The PYROLASER package is an operating system for the Pyrometer Instrument Company's Pyrolaser. There are 6 individual programs in the PYROLASER package: two main programs, two lower level subprograms, and two programs which, although independent, function predominantly as macros. The package provides a quick and easy way to setup, control, and program a standard Pyrolaser. Temperature and emissivity measurements may be either collected as if the Pyrolaser were in the manual operations mode, or displayed on real time strip charts and stored in standard spreadsheet format for post-test analysis. A shell is supplied to allow macros, which are test-specific, to be easily added to the system. The Pyrolaser Simple Operation program provides full on-screen remote operation capabilities, thus allowing the user to operate the Pyrolaser from the computer just as it would be operated manually. The Pyrolaser Simple Operation program also allows the use of "quick starts". Quick starts provide an easy way to permit routines to be used as setup macros for specific applications or tests. The specific procedures required for a test may be ordered in a sequence structure and then the sequence structure can be started with a simple button in the cluster structure provided. One quick start macro is provided for continuous Pyrolaser operation. A subprogram, Display Continuous Pyr Data, is used to display and store the resulting data output. Using this macro, the system is set up for continuous operation and the subprogram is called to display the data in real time on strip charts. The data is simultaneously stored in a spreadsheet format. The resulting spreadsheet file can be opened in any one of a number of commercially available spreadsheet programs. The Read Continuous Pyrometer program is provided as a continuously run subprogram for incorporation of the Pyrolaser software into a process control or feedback control scheme in a multi-component system. The program requires the Pyrolaser to be set up using the Pyrometer String Transfer macro. It requires no inputs and provides temperature and emissivity as outputs. The Read Continuous Pyrometer program can be run continuously and the data can be sampled as often or as seldom as updates of temperature and emissivity are required. PYROLASER is written using the Labview software for use on Macintosh series computers running System 6.0.3 or later, Sun Sparc series computers running OpenWindows 3.0 or MIT's X Window System (X11R4 or X11R5), and IBM PC or compatibles running Microsoft Windows 3.1 or later. Labview requires a minimum of 5Mb of RAM on a Macintosh, 24Mb of RAM on a Sun, and 8Mb of RAM on an IBM PC or compatible. The Labview software is a product of National Instruments (Austin,TX; 800-433-3488), and is not included with this program. The standard distribution medium for PYROLASER is a 3.5 inch 800K Macintosh format diskette. It is also available on a 3.5 inch 720K MS-DOS format diskette, a 3.5 inch diskette in UNIX tar format, and a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh WordPerfect version 2.0.4 format is included on the distribution medium. Printed documentation is included in the price of the program. PYROLASER was developed in 1992.
Transistor step stress testing program for JANTX2N2484
NASA Technical Reports Server (NTRS)
1979-01-01
The effect of power/temperature step stress when applied to the transistor JANTX2N2484, manufactured by Raytheon and Teledyne was evaluated. Forty-eight samples from each manufacturer were divided equally (16 per group) into three groups and submitted to the processes outlined. In addition, two control sample units were maintained for verification of the electrical parametric testing.
de Fuentes-Vicente, José A; Gutiérrez-Cabrera, Ana E; Flores-Villegas, A Laura; Lowenberger, Carl; Benelli, Giovanni; Salazar-Schettino, Paz M; Córdoba-Aguilar, Alex
2018-07-01
The Chagas disease is caused by the parasite Trypanosoma cruzi, which infect blood-feeding triatomine bugs to finally reach mammal hosts. Chagas disease is endemic in Latin America, and is ranked among the 13 neglected tropical diseases worldwide. Currently, an estimate of 7 million people is infected by T. cruzi, leading to about 22 000 deaths per year throughout the Americas. As occurs with other vectors, a major question towards control programs is what makes a susceptible bug. In this review, we focus on findings linked to insect gut structure and microbiota, immunity, genetics, blood sources, abiotic factors (with special reference to ambient temperature and altitude) to understand the interactions occurring between T. cruzi and triatomine bugs, under a co-evolutionary scenario. These factors lead to varying fitness benefits and costs for bugs, explaining why infection in the insect takes place and how it varies in time and space. Our analysis highlights that major factors are gut components and microbiota, blood sources and temperature. Although their close interaction has never been clarified, knowledge reviewed here may help to boost the success of triatomine control programs, reducing the use of insecticides. Copyright © 2018 Elsevier B.V. All rights reserved.
Overview of C-2W Field-Reversed Configuration Experimental Program
NASA Astrophysics Data System (ADS)
Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Romero, J.; Smirnov, A.; Song, Y.; Thompson, M. C.; van Drie, A.; Yang, X.; Ivanov, A. A.; TAE Team
2017-10-01
Tri Alpha Energy's research has been devoted to producing a high temperature, stable, long-lived field-reversed configuration (FRC) plasma state by neutral-beam injection (NBI) and edge biasing/control. C-2U experiments have demonstrated drastic improvements in particle and energy confinement properties of FRC's, and the plasma performance obtained via 10 MW NBI has achieved plasma sustainment of up to 5 ms and plasma (diamagnetism) lifetimes of 10 + ms. The emerging confinement scaling, whereby electron energy confinement time is proportional to a positive power of the electron temperature, is very attractive for higher energy plasma confinement; accordingly, verification of the observed Te scaling law will be a key future research objective. The new experimental device, C-2W (now also called ``Norman''), has the following key subsystem upgrades from C-2U: (i) higher injected power, optimum energies, and extended pulse duration of the NBI system; (ii) installation of inner divertors with upgraded edge-biasing systems; (iii) fast external equilibrium/mirror-coil current ramp-up capability; and (iv) installation of trim/saddle coils for active feedback control of the FRC plasma. This paper will review highlights of the C-2W program.
Development of a simple, self-contained flight test data acquisition system
NASA Technical Reports Server (NTRS)
Renz, R. R. L.
1981-01-01
A low cost flight test data acquisition system, applicable to general aviation airplanes, was developed which meets criteria for doing longitudinal and lateral stability analysis. Th package consists of (1) a microprocessor controller and data acquisition module; (2) a transducer module; and (3) a power supply module. The system is easy to install and occupies space in the cabin or baggage compartment of the airplane. All transducers are contained in these modules except the total pressure tube, static pressure air temperature transducer, and control position transducers. The NASA-developed MMLE program was placed on a microcomputer on which all data reduction is done. The flight testing program undertaken proved both the flight testing hardware and the data reduction method to be applicable to the current field of general aviation airplanes.
Optimal Energy Consumption Analysis of Natural Gas Pipeline
Liu, Enbin; Li, Changjun; Yang, Yi
2014-01-01
There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410
Automated Test Systems for Toxic Vapor Detectors
NASA Technical Reports Server (NTRS)
Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.
1997-01-01
The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/ temperature / humidity (FTH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the Kennedy Space Center.
Automated Test Systems for Toxic Vapor Detectors
NASA Technical Reports Server (NTRS)
Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.
1997-01-01
The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/temperature/humidity (FIFH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the Kennedy Space Center.
Chiu, Rex S; Nahal, Hardeep; Provart, Nicholas J; Gazzarrini, Sonia
2012-01-27
Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is important since delaying germination has a protective role at high temperature. Transcriptomic analysis of seeds imbibed at supraoptimal temperature reveal that a complex program is in place, which involves not only the regulation of heat and dehydration response genes to adjust cellular functions, but also the activation of seed-specific programs and the inhibition of germination-promoting programs to delay germination. © 2011 Chiu et al; licensee BioMed Central Ltd.
2012-01-01
Background Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. Results In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. Conclusion In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is important since delaying germination has a protective role at high temperature. Transcriptomic analysis of seeds imbibed at supraoptimal temperature reveal that a complex program is in place, which involves not only the regulation of heat and dehydration response genes to adjust cellular functions, but also the activation of seed-specific programs and the inhibition of germination-promoting programs to delay germination. PMID:22279962
Electronic Components and Circuits for Extreme Temperature Environments
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott
2003-01-01
Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained through in-house component and circuit testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.
Early overfeed-induced obesity leads to brown adipose tissue hypoactivity in rats.
de Almeida, Douglas L; Fabrício, Gabriel S; Trombini, Amanda B; Pavanello, Audrei; Tófolo, Laize P; da Silva Ribeiro, Tatiane A; de Freitas Mathias, Paulo C; Palma-Rigo, Kesia
2013-01-01
Brown adipose tissue activation has been considered a potential anti-obesity mechanism because it is able to expend energy through thermogenesis. In contrast, white adipose tissue stores energy, contributing to obesity. We investigated whether the early programming of obesity by overfeeding during lactation changes structure of interscapular brown adipose tissue in adulthood and its effects on thermogenesis. Birth of litters was considered day 0. On day 2, litter size was adjusted to normal (9 pups) and small (3 pups) litters. On day 21, the litters were weaned. A temperature transponder was implanted underneath interscapular brown adipose tissue pads of 81-day-old animals; local temperature was measured during light and dark periods between days 87 and 90. The animals were euthanized, and tissue and blood samples were collected for further analysis. The vagus and retroperitoneal sympathetic nerve activity was recorded. Small litter rats presented significant lower interscapular brown adipose tissue temperature during the light (NL 37.6°C vs. SL 37.2°C) and dark (NL 38°C vs. SL 37.6°C) periods compared to controls. Morphology of small litter brown adipose tissue showed fewer lipid droplets in the tissue center and more and larger in the periphery. The activity of vagus nerve was 19,9% greater in the small litter than in control (p<0.01), and no difference was observed in the sympathetic nerve activity. In adulthood, the small litter rats were 11,7% heavier than the controls and presented higher glycemia 13,1%, insulinemia 70% and corticosteronemia 92,6%. Early overfeeding programming of obesity changes the interscapular brown adipose tissue structure in adulthood, leading to local thermogenesis hypoactivity, which may contribute to obesity in adults. © 2013 S. Karger AG, Basel.
Veri, Amanda O; Miao, Zhengqiang; Shapiro, Rebecca S; Tebbji, Faiza; O'Meara, Teresa R; Kim, Sang Hu; Colazo, Juan; Tan, Kaeling; Vyas, Valmik K; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E
2018-03-01
The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition.
Miao, Zhengqiang; Tan, Kaeling; Vyas, Valmik K.; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E.
2018-01-01
The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition. PMID:29590106
GPU accelerated population annealing algorithm
NASA Astrophysics Data System (ADS)
Barash, Lev Yu.; Weigel, Martin; Borovský, Michal; Janke, Wolfhard; Shchur, Lev N.
2017-11-01
Population annealing is a promising recent approach for Monte Carlo simulations in statistical physics, in particular for the simulation of systems with complex free-energy landscapes. It is a hybrid method, combining importance sampling through Markov chains with elements of sequential Monte Carlo in the form of population control. While it appears to provide algorithmic capabilities for the simulation of such systems that are roughly comparable to those of more established approaches such as parallel tempering, it is intrinsically much more suitable for massively parallel computing. Here, we tap into this structural advantage and present a highly optimized implementation of the population annealing algorithm on GPUs that promises speed-ups of several orders of magnitude as compared to a serial implementation on CPUs. While the sample code is for simulations of the 2D ferromagnetic Ising model, it should be easily adapted for simulations of other spin models, including disordered systems. Our code includes implementations of some advanced algorithmic features that have only recently been suggested, namely the automatic adaptation of temperature steps and a multi-histogram analysis of the data at different temperatures. Program Files doi:http://dx.doi.org/10.17632/sgzt4b7b3m.1 Licensing provisions: Creative Commons Attribution license (CC BY 4.0) Programming language: C, CUDA External routines/libraries: NVIDIA CUDA Toolkit 6.5 or newer Nature of problem: The program calculates the internal energy, specific heat, several magnetization moments, entropy and free energy of the 2D Ising model on square lattices of edge length L with periodic boundary conditions as a function of inverse temperature β. Solution method: The code uses population annealing, a hybrid method combining Markov chain updates with population control. The code is implemented for NVIDIA GPUs using the CUDA language and employs advanced techniques such as multi-spin coding, adaptive temperature steps and multi-histogram reweighting. Additional comments: Code repository at https://github.com/LevBarash/PAising. The system size and size of the population of replicas are limited depending on the memory of the GPU device used. For the default parameter values used in the sample programs, L = 64, θ = 100, β0 = 0, βf = 1, Δβ = 0 . 005, R = 20 000, a typical run time on an NVIDIA Tesla K80 GPU is 151 seconds for the single spin coded (SSC) and 17 seconds for the multi-spin coded (MSC) program (see Section 2 for a description of these parameters).
Waterman, Kenneth Craig
2011-09-01
An isoconversion paradigm, where times in different temperature and humidity-controlled stability chambers are set to provide a fixed degradant level, is shown to compensate for the complex, non-single order kinetics of solid drug products. A humidity-corrected Arrhenius equation provides reliable estimates for temperature and relative humidity effects on degradation rates. A statistical protocol is employed to determine best fits for chemical stability data, which in turn allows for accurate estimations of shelf life (with appropriate confidence intervals) at any storage condition including inside packaging (based on the moisture vapor transmission rate of the packaging and moisture sorption isotherms of the internal components). These methodologies provide both faster results and far better predictions of chemical stability limited shelf life (expiry) than previously possible. Precise shelf-life estimations are generally determined using a 2-week, product-specific protocol. Once the model for a product is developed, it can play a critical role in providing the product understanding necessary for a quality by design (QbD) filing for product approval and enable rational control strategies to assure product stability. Moreover, this Accelerated Stability Assessment Program (ASAP) enables the coupling of product attributes (e.g., moisture content, packaging options) to allow for flexibility in how control strategies are implemented to provide a balance of cost, speed, and other factors while maintaining adequate stability.
Multiyear Program Plan for the High Temperature Materials Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arvid E. Pasto
2000-03-17
Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly,more » the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.« less
NASA Astrophysics Data System (ADS)
Bhattarai, Santosh; Zhou, Yihong; Zhao, Chunju; Zhou, Huawei
2018-02-01
Thermal cracking on concrete dams depends upon the rate at which the concrete is cooled (temperature drop rate per day) within an initial cooling period during the construction phase. Thus, in order to control the thermal cracking of such structure, temperature development due to heat of hydration of cement should be dropped at suitable rate. In this study, an attempt have been made to formulate the relation between cooling rate of mass concrete with passage of time (age of concrete) and water cooling parameters: flow rate and inlet temperature of cooling water. Data measured at summer season (April-August from 2009 to 2012) from recently constructed high concrete dam were used to derive a prediction model with the help of Genetic Programming (GP) software “Eureqa”. Coefficient of Determination (R) and Mean Square Error (MSE) were used to evaluate the performance of the model. The value of R and MSE is 0.8855 and 0.002961 respectively. Sensitivity analysis was performed to evaluate the relative impact on the target parameter due to input parameters. Further, testing the proposed model with an independent dataset those not included during analysis, results obtained from the proposed GP model are close enough to the real field data.
Xu, W H; Sato, Y; Ikeda, M; Yamashita, O
1995-02-24
Embryonic diapause and sex pheromone biosynthesis in the silkworm, Bombyx mori, are, respectively, induced by diapause hormone (DH) and pheromone biosynthesis activating neuropeptide (PBAN), which are produced in the subesophageal ganglion from a common polyprotein precursor (DH-PBAN precursor) encoded by a single gene (DH-PBAN gene). Using DH-PBAN cDNA as a probe, we quantitatively measured DH-PBAN mRNA content throughout embryonic and postembryonic development and observed the effects of incubation temperature, which is a key factor for determination of diapause, on DH-PBAN gene expression. The silkworm, which is programmed to lay diapause eggs by being incubated at 25 degrees C, showed peaks of DH-PBAN mRNA content at five different stages throughout the life cycle: at the late embryonic stage, at the middle of the fourth and the fifth larval instars, and at early and late stages of pupal-adult development. In the non-diapause type silkworms programmed by a 15 degrees C incubation, only the last peak of DH-PBAN mRNA in pupal-adult development was found, and the other peaks were absent. Furthermore, interruption of the incubation period at 25 degrees C by incubation at 15 degrees C decreased both DH-PBAN mRNA content in mature embryos and in subesophageal ganglia of day 3 pupae and the incidence of diapause eggs. Thus, there were two types of regulatory mechanisms for DH-PBAN gene expression. One is a temperature-controlled expression that is responsible for diapause induction, and the other is a temperature-independent, stage-dependent expression related to pheromone production.
Study and development of a cryogenic heat exchanger for life support systems
NASA Technical Reports Server (NTRS)
Soliman, M. M.
1973-01-01
A prototype cryogenic heat exchanger for removal of waste heat from a spacecraft environmental control life support system was developed. The heat exchanger uses the heat sink capabilities of the cryogenic propellants and, hence, can operate over all mission phases from prelaunch to orbit, to post landing, with quiescent periods during orbit. A survey of candidate warm fluids resulted in the selection of E-2, a fluorocarbon compound, because of its low freezing point and high boiling point. The final design and testing of the heat exchanger was carried out, however, using Freon-21, which is similar to E-2 except for its low boiling point. This change was motivated by the desire for cost effectiveness of the experimental program. The transient performance of the heat exchanger was demonstrated by an analog simulation of the heat sink system. Under the realistic transient heat load conditions (20 sec ramp from minimum to maximum Freon-21 inlet temperature), the control system was able to maintain the warm fluid outlet temperature within + or - 3 F. For a 20-sec ramp from 0 F to -400 F in the hydrogen inlet temperature, at maximum heat load, the warm fluid outlet temperature was maintained within + or - 7 F.
NASA Technical Reports Server (NTRS)
Duvual, Walter M. B.; Batur, Celal; Bennett, Robert J.
1998-01-01
We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful in scientific and commercial applications for determining the optimized process parameters for crystal growth.
Kaneda, Shohei; Ono, Koichi; Fukuba, Tatsuhiro; Nojima, Takahiko; Yamamoto, Takatoki; Fujii, Teruo
2011-01-01
In this paper, a rapid and simple method to determine the optimal temperature conditions for denaturant electrophoresis using a temperature-controlled on-chip capillary electrophoresis (CE) device is presented. Since on-chip CE operations including sample loading, injection and separation are carried out just by switching the electric field, we can repeat consecutive run-to-run CE operations on a single on-chip CE device by programming the voltage sequences. By utilizing the high-speed separation and the repeatability of the on-chip CE, a series of electrophoretic operations with different running temperatures can be implemented. Using separations of reaction products of single-stranded DNA (ssDNA) with a peptide nucleic acid (PNA) oligomer, the effectiveness of the presented method to determine the optimal temperature conditions required to discriminate a single-base substitution (SBS) between two different ssDNAs is demonstrated. It is shown that a single run for one temperature condition can be executed within 4 min, and the optimal temperature to discriminate the SBS could be successfully found using the present method. PMID:21845077
Heat pipes for sodium-sulfur batteries
NASA Astrophysics Data System (ADS)
Hartenstine, John R.
1989-08-01
The objective of this program was to develop a variable conductance heat pipe (VCHP) for the thermal management of sodium-sulfur batteries. The VCHP maintains the sodium sulfur battery within a specified temperature rise limit (20 C) while the battery discharges a thermal load from 0 watts to 500 watts. A preliminary full scale thermal management design was developed for the sodium-sulfur battery, incorporating the VCHPs and supporting integration hardware. The feasibility of the VCHPs for this application was proved by test. The VCHP developed in Phase 1 utilized titanium as the heat pipe envelope material, and cesium as the heat pipe working fluid. The wick structure was axial grooves. Analysis and test indicate that the VCHP can provide the passive thermal control necessary for the sodium-sulfur battery. Test data show that with the heat input from Q = 0 watts to Q = 500 watts, the VCHP evaporator temperature increased from 350 C to 385 C. The temperature control range was higher than predicted due to working fluid vapor diffusion into the noncondensible gas and thermal axial conduction into the VCHP reservoir. Analysis has shown that by utilizing VCHPs for passive temperature control, the sodium-sulfur battery cells will have a lower axial delta-T during discharge than a current louver design. The VCHP thermal management package has the potential to be used in geosynchronous earth orbits (GEO) and low earth orbits (LEO).
High-Temperature Magnetic Bearings Being Developed for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Kascak, Albert F.
1998-01-01
Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and cooperation with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of bearing times the rpm) limit on engine speed and allow active vibration cancellation systems to be used, resulting in a more efficient, "more electric" engine. Finally, the Integrated High Performance Turbine Engine Technology (IHPTET) program, a joint Department of Defense/industry program, identified a need for a high-temperature (1200 F) magnetic bearing that could be demonstrated in their Phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator's circumference are a series of electrical wire coils which form a series of electric magnets that exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it centered in the cavity. The engine rotor, bearings, and casing form a flexible structure with many modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohles, F.H. Jr.
Studies by the Institute for Environmental Research, Kansas State University, show that in terms of comfort, health, and performance, humidity control is an important element of environmental control and should not be eliminated for the sake of energy conservation. A constant level of comfort can be maintained if the humidity is increased and the temperature is decreased and vice versa; school absenteeism due to upper respiratory infection is related to classroom humidifcation; and psychomotor performance is better under warm, dry conditions than under warm, moist conditions. Humidification may be valuable in thermostat-setback programs by making cooler conditions comfortable.
Development of experimental systems for material sciences under microgravity
NASA Technical Reports Server (NTRS)
Tanii, Jun; Obi, Shinzo; Kamimiyata, Yotsuo; Ajimine, Akio
1988-01-01
As part of the Space Experiment Program of the Society of Japanese Aerospace Companies, three experimental systems (G452, G453, G454) have been developed for materials science studies under microgravity by the NEC Corporation. These systems are to be flown as Get Away Special payloads for studying the feasibility of producing new materials. Together with the experimental modules carrying the hardware specific to the experiment, the three systems all comprise standard subsystems consisting of a power supply, sequence controller, temperature controller, data recorder, and video recorder.
Laboratory prototype flash evaporator
NASA Technical Reports Server (NTRS)
Gaddis, J. L.
1972-01-01
A laboratory prototype flash evaporator that is being developed as a candidate for the space shuttle environmental control system expendable heat sink is described. The single evaporator configuration uses water as an evaporant to accommodate reentry and on-orbit peak heat loads, and Freon 22 for terrestrial flight phases below 120,000 feet altitude. The design features, fabrication techniques used for the prototype unit, redundancy considerations, and the fluid temperature control arrangement are reported in detail. The results of an extensive test program to determine the evaporator operational characteristics under a wide variety of conditions are presented.
Roda, Amy; Nachman, Gösta; Weihman, Scott; Yong Cong, Mary; Zimmerman, Fredrick
2016-01-01
Giant African snail (Achatina fulica (Bowdich, 1822)), an important invasive snail, was recently found in South Florida, USA. An extensive eradication effort was initiated consisting of pesticide applications, debris removal and hand collections. We studied the reproduction capacity and population dynamics of snails collected from 22 populations for two years to help evaluate the likely success of the eradication program. A total of 23,890 snails, ranging from 25-131 mm, were measured, dissected and the number of eggs in each snail counted. Gravid snails ranged from 48-128 mm. Only 5% of snails had eggs, which were found year round. As the snails increased in size, they were more likely to include reproducing individuals. However, the percentage of gravid snails peaked when snails were approximately 90 mm. Although more prevalent, small (<65 mm) adults contributed fewer eggs to the population than the larger snails. We evaluated the effect of control measures on six populations having >1000 adult snails and used data from the two largest populations to investigate how environmental factors (temperature, humidity, and rainfall) interacted with population dynamics and control measures. More snails were collected in weeks with high humidity and more gravid snails were collected when the temperature was higher. The addition of metaldehyde pesticides had the greatest impact on population dynamics by reducing snail numbers. In populations with fewer snails, their numbers were already declining before the use of metaldehyde, although the new treatment accelerated the process. As a consequence of the eradication program, egg-producing snails were no longer collected from most populations by the end of the study. The aggressive and persistent control efforts apparently lead to reduced populations of egg producing snails, eventually resulting in local extinctions of this important pest.
2016-01-01
Giant African snail (Achatina fulica (Bowdich, 1822)), an important invasive snail, was recently found in South Florida, USA. An extensive eradication effort was initiated consisting of pesticide applications, debris removal and hand collections. We studied the reproduction capacity and population dynamics of snails collected from 22 populations for two years to help evaluate the likely success of the eradication program. A total of 23,890 snails, ranging from 25–131 mm, were measured, dissected and the number of eggs in each snail counted. Gravid snails ranged from 48–128 mm. Only 5% of snails had eggs, which were found year round. As the snails increased in size, they were more likely to include reproducing individuals. However, the percentage of gravid snails peaked when snails were approximately 90 mm. Although more prevalent, small (<65 mm) adults contributed fewer eggs to the population than the larger snails. We evaluated the effect of control measures on six populations having >1000 adult snails and used data from the two largest populations to investigate how environmental factors (temperature, humidity, and rainfall) interacted with population dynamics and control measures. More snails were collected in weeks with high humidity and more gravid snails were collected when the temperature was higher. The addition of metaldehyde pesticides had the greatest impact on population dynamics by reducing snail numbers. In populations with fewer snails, their numbers were already declining before the use of metaldehyde, although the new treatment accelerated the process. As a consequence of the eradication program, egg-producing snails were no longer collected from most populations by the end of the study. The aggressive and persistent control efforts apparently lead to reduced populations of egg producing snails, eventually resulting in local extinctions of this important pest. PMID:27861504
An Automated Technique for Estimating Daily Precipitation over the State of Virginia
NASA Technical Reports Server (NTRS)
Follansbee, W. A.; Chamberlain, L. W., III
1981-01-01
Digital IR and visible imagery obtained from a geostationary satellite located over the equator at 75 deg west latitude were provided by NASA and used to obtain a linear relationship between cloud top temperature and hourly precipitation. Two computer programs written in FORTRAN were used. The first program computes the satellite estimate field from the hourly digital IR imagery. The second program computes the final estimate for the entire state area by comparing five preliminary estimates of 24 hour precipitation with control raingage readings and determining which of the five methods gives the best estimate for the day. The final estimate is then produced by incorporating control gage readings into the winning method. In presenting reliable precipitation estimates for every cell in Virginia in near real time on a daily on going basis, the techniques require on the order of 125 to 150 daily gage readings by dependable, highly motivated observers distributed as uniformly as feasible across the state.
Improving calorimeter resolution using temperature compensation calculations
NASA Astrophysics Data System (ADS)
Smiga, Joseph; Purschke, Martin
2017-01-01
The sPHENIX experiment is an upgrade of the existing PHENIX apparatus at the Relativistic Heavy-Ion Collider (RHIC). The new detector improves upon measurements of various physical processes, such as jets of particles created during heavy-ion collisions. Prototypes of various calorimeter components were tested at the Fermilab Test Beam Facility (FTBF). This analysis tries to compensate the effects of temperature drifts in the silicon photomultipliers (SiPMs). Temperature data were used to calculate an appropriate compensation factor. This analysis will improve the achievable resolution and will also determine how accurately the temperature must be controlled in the final experiment. This will improve the performance of the calorimeters in the sPHENIX experiment. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).
Characterizing superconducting thin films using AC Magnetic Susceptibility
NASA Astrophysics Data System (ADS)
Mahoney, C. H.; Porzio, J.; Sullivan, M. C.
2014-03-01
We present our work on using ac magnetic susceptibility to determine the critical temperature of superconducting thin films. In ac magnetic susceptibility, the thin film is placed between two coils. One coil carries an ac signal, creating a varying external magnetic field. We measure the voltage induced in the pick-up coil on the opposite side of the sample and measure how the sample magnetization changes as the temperature changes. We will present our work to use ac susceptibility to determine critical temperature and superconducting volume fraction. Using our own analysis program, we are able to accurately locate the critical temperatures of the samples and determine the transition width. For the superconducting volume fraction, we etch samples in order to control the thicknesses of the sample and measure how much of the material grown on the surface is superconducting. Supported by NFS grant DMR-1305637.
Aircraft and Engine Development Testing
1986-09-01
Control in Flight * Integrated Inlet- engine * Power/weight Exceeds Unity F-lll * Advanced Engines * Augmented Turbofan * High Turbine Temperature...residence times). Also, fabrication of a small scale "hot" engine with rotating components such as compressors and turbines with cooled blades , is...capabil- ities are essential to meet the needs of current and projected aircraft and engine programs. The required free jet nozzles should be capable of
Noncontact temperature measurements in the microgravity fluids and transport phenomena discipline
NASA Technical Reports Server (NTRS)
Salzman, Jack
1988-01-01
The program of activities within the Microgravity Fluids and Transport Phenomena Discipline has been structured to enable the systematic pursuit of an increased understanding of low gravity fluid behavior/phenomena in a way which ensures that the results are appropriate to the widest range of applications. This structure is discussed and an overview of some of the activities which are underway is given. Of significance is the fact that in the majority of the current and planned activities, the measurement and, or control of the fluid temperature is a key experiment requirement. In addition, many of the experiments require that the temperature measurement be nonintrusive. A description of these requirements together with the current techniques which are being employed or under study to make these measurements is also discussed.
Apollo oxygen tank stratification analysis, volume 2
NASA Technical Reports Server (NTRS)
Barton, J. E.; Patterson, H. W.
1972-01-01
An analysis of flight performance of the Apollo 15 cryogenic oxygen tanks was conducted with the variable grid stratification math model developed earlier in the program. Flight conditions investigated were the CMP-EVA and one passive thermal control period which exhibited heater temperature characteristics not previously observed. Heater temperatures for these periods were simulated with the math model using flight acceleration data. Simulation results (heater temperature and tank pressure) compared favorably with the Apollo 15 flight data, and it was concluded that tank performance was nominal. Math model modifications were also made to improve the simulation accuracy. The modifications included the addition of the effects of the tank wall thermal mass and an improved system flow distribution model. The modifications improved the accuracy of simulated pressure response based on comparisons with flight data.
CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotas, J.F.; Stroh, K.R.
1983-01-01
The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident thatmore » simulates a control-rod withdrawal at full power.« less
VO 2 thin films synthesis for collaborators and various applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Raegan Lynn; Clem, Paul G.
2016-11-01
Vanadium dioxide (VO 2) is an attractive material for a variety of applications due to its metal-to-insulator transition (MIT) observed at modest temperatures. This transition takes VO 2 from its low temperature insulating monoclinic phase to a high temperature (above 68°C) metallic rutile phase. This transition gives rise to a change in resistivity up to 5 orders of magnitude and a change in complex refractive index (especially at IR wavelengths), which is of interest for radar circuit protection and tunable control of infrared signature. Recently, collaborations have been initiated between CINT scientists and external university programs. The Enhanced Surveillance fundsmore » help fund this work which enabled synthesis of VO 2 films for several collaborations with internal and external researchers.« less
Thermal effects of an ICL-based mid-infrared CH 4 sensor within a wide atmospheric temperature range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.
Here, thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH 4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ~ 25°C was measured for 5 hours and its Allan deviation was ~ 2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to control such effects. An environmental test chamber was employed to investigate thermal effects that occur in the sensor system with variation of the test chambermore » temperature between 10 and 30°C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH 4 standard gas sample. indoor/outdoor CH 4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.« less
NASA Technical Reports Server (NTRS)
Seng, Gary T.
1987-01-01
In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.
Thermal effects of an ICL-based mid-infrared CH 4 sensor within a wide atmospheric temperature range
Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; ...
2018-01-31
Here, thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH 4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ~ 25°C was measured for 5 hours and its Allan deviation was ~ 2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to control such effects. An environmental test chamber was employed to investigate thermal effects that occur in the sensor system with variation of the test chambermore » temperature between 10 and 30°C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH 4 standard gas sample. indoor/outdoor CH 4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.« less
2006 NASA Seal/Secondary Air System Workshop; Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce, M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert (Editor)
2007-01-01
The 2006 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of NASA s new fundamental aeronautics technology project; (iii) Overview of NASA Glenn Research Center s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakages as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed seal technologies employed by the Apollo command module that serve as an excellent basis for seals for NASA s new Crew Exploration Vehicle (CEV).
Program for an improved hypersonic temperature-sensing probe
NASA Technical Reports Server (NTRS)
Reilly, Richard J.
1993-01-01
Under a NASA Dryden-sponsored contract in the mid 1960s, temperatures of up to 2200 C were successfully measured using a fluid oscillator. The current program, although limited in scope, explores the problem areas which must be solved if this technique is to be extended to 10,000 R. The potential for measuring extremely high temperatures, using fluid oscillator techniques, stems from the fact that the measuring element is the fluid itself. The containing structure of the oscillator need not be brought to equilibrium temperature with with the fluid for temperature measurement, provided that a suitable calibration can be arranged. This program concentrated on review of high-temperature material developments since the original program was completed. Other areas of limited study included related pressure instrumentation requirements, dissociation, rarefied gas effects, and analysis of sensor time response.
Low-Cost Options for Moderate Levels of Mercury Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharon Sjostrom
2006-03-31
On March 15, 2005, EPA issued the Clean Air Mercury Rule, requiring phased-in reductions of mercury emissions from electric power generators. ADA-ES, Inc., with support from DOE/NETL and industry partners, is conducting evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. DOE/NETL targets for total mercury removal are {ge}55% (lignite), {ge}65% (subbituminous), and {ge}80% (bituminous). Based on work done to date at various scales, meeting the removal targets appears feasible. However, work needs to progressmore » to more thoroughly document and test these promising technologies at full scale. This is the final site report for tests conducted at MidAmerican's Louisa Station, one of three sites evaluated in this DOE/NETL program. The other two sites in the program are MidAmerican's Council Bluff Station and Entergy's Independence Station. MidAmerican's Louisa Station burns Powder River Basin (PRB) coal and employs hot-side electrostatic precipitators with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal.« less
BASIC Programming In Water And Wastewater Analysis
NASA Technical Reports Server (NTRS)
Dreschel, Thomas
1988-01-01
Collection of computer programs assembled for use in water-analysis laboratories. First program calculates quality-control parameters used in routine water analysis. Second calculates line of best fit for standard concentrations and absorbances entered. Third calculates specific conductance from conductivity measurement and temperature at which measurement taken. Fourth calculates any one of four types of residue measured in water. Fifth, sixth, and seventh calculate results of titrations commonly performed on water samples. Eighth converts measurements, to actual dissolved-oxygen concentration using oxygen-saturation values for fresh and salt water. Ninth and tenth perform calculations of two other common titrimetric analyses. Eleventh calculates oil and grease residue from water sample. Last two use spectro-photometric measurements of absorbance at different wavelengths and residue measurements. Programs included in collection written for Hewlett-Packard 2647F in H-P BASIC.
PLC based automatic control of pasteurize mix in ice cream production
NASA Astrophysics Data System (ADS)
Yao, Xudong; Liang, Kai
2013-03-01
This paper describes the automatic control device of pasteurized mix in the ice cream production process.We design a scheme of control system using FBD program language and develop the programmer in the STEP 7-Micro/WIN software, check for any bugs before downloading into PLC .These developed devices will able to provide flexibility and accuracy to control the step of pasteurized mix. The operator just Input the duration and temperature of pasteurized mix through control panel. All the steps will finish automatically without any intervention in a preprogrammed sequence stored in programmable logic controller (PLC). With the help of this equipment we not only can control the quality of ice cream for various conditions, but also can simplify the production process. This control system is inexpensive and can be widely used in ice cream production industry.
NASA Technical Reports Server (NTRS)
Garrett, J. W.; Glassford, A. P. M.; Steakley, J. M.
1994-01-01
The American Society for Testing and Materials has published a new standard test method for characterizing time and temperature-dependence of material outgassing kinetics and the deposition kinetics of outgassed species on surfaces at various temperatures. This new ASTM standard, E 1559(1), uses the quartz crystal microbalance (QCM) collection measurement approach. The test method was originally developed under a program sponsored by the United States Air Force Materials Laboratory (AFML) to create a standard test method for obtaining outgassing and deposition kinetics data for spacecraft materials. Standardization by ASTM recognizes that the method has applications beyond aerospace. In particular, the method will provide data of use to the electronics, semiconductor, and high vacuum industries. In ASTM E 1559 the material sample is held in vacuum in a temperature-controlled effusion cell, while its outgassing flux impinges on several QCM's which view the orifice of the effusion cell. Sample isothermal total mass loss (TML) is measured as a function of time from the mass collected on one of the QCM's which is cooled by liquid nitrogen, and the view factor from this QCM to the cell. The amount of outgassed volatile condensable material (VCM) on surfaces at higher temperatures is measured as a function of time during the isothermal outgassing test by controlling the temperatures of the remaining QCM's to selected values. The VCM on surfaces at temperatures in between those of the collector QCM's is determined at the end of the isothermal test by heating the QCM's at a controlled rate and measuring the mass loss from the end of the QCM's as a function of time and temperature. This reevaporation of the deposit collected on the QCM's is referred to as QCM thermogravimetric analysis. Isothermal outgassing and deposition rates can be determined by differentiating the isothermal TML and VCM data, respectively, while the evaporation rates of the species can be obtained as a function of temperature by differentiating the QCM thermogravimetric analysis data.
First Cryo-Vacuum Test of the JWST Integrated Science Instrument Module
NASA Astrophysics Data System (ADS)
Kimble, Randy A.; Antonille, S. R.; Balzano, V.; Comber, B. J.; Davila, P. S.; Drury, M. D.; Glasse, A.; Glazer, S. D.; Lundquist, R.; Mann, S. D.; McGuffey, D. B.; Novo-Gradac, K. J.; Penanen, K.; Ramey, D. D.; Sullivan, J.; Van Campen, J.; Vila, M. B.
2014-01-01
The integration and test program for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) calls for three cryo-vacuum tests of the ISIM hardware. The first is a risk-reduction test aimed at checking out the test hardware and procedures; this will be followed by two formal verification tests that will bracket other key aspects of the environmental test program (e.g. vibration and acoustics, EMI/EMC). The first of these cryo-vacuum tests, the risk-reduction test, was executed at NASA’s Goddard Space Flight Center starting in late August, 2013. Flight hardware under test included two (of the eventual four) flight instruments, the Mid-Infrared Instrument (MIRI) and the Fine Guidance Sensor/Near-Infrared Imager and Slitless Spectrograph (FGS/NIRISS), mounted to the ISIM structure, as well as the ISIM Electronics Compartment (IEC). The instruments were cooled to their flight operating temperatures 40K for FGS/NIRISS, ~6K for MIRI) and optically tested against a cryo-certified telescope simulator. Key goals for the risk reduction test included: 1) demonstration of controlled cooldown and warmup, stable control at operating temperature, and measurement of heat loads, 2) operation of the science instruments with ISIM electronics systems at temperature, 3) health trending of the science instruments against instrument-level test results, 4) measurement of the pupil positions and six degree of freedom alignment of the science instruments against the simulated telescope focal surface, 5) detailed optical characterization of the NIRISS instrument, 6) verification of the signal-to-noise performance of the MIRI, and 7) exercise of the Onboard Script System that will be used to operate the instruments in flight. In addition, the execution of the test is expected to yield invaluable logistical experience - development and execution of procedures, communications, analysis of results - that will greatly benefit the subsequent verification tests. At the time of this submission, the hardware had reached operating temperature and was partway through the cryo test program. We report here on the test configuration, the overall process, and the results that were ultimately obtained.
Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George H.; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.; Williams, Ben R.
1990-01-01
A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resilva, S.; Obra, G.; Zamora, N.
Quality control procedures for Bactrocera philippinensis Drew and Hancock 1994 (Diptera: Tephritidae) used in sterile insect technique (SIT) programs were established in the mass rearing facility at the Philippine Nuclear Research Institute. Basic studies on pupal irradiation, holding/packaging systems, shipping procedures, longevity, sterility studies, and pupal eye color determination in relation to physiological development at different temperature regimes were investigated. These studies will provide baseline data for the development of quality control protocols for an expansion of B. philippinensis field programs with an SIT component in the future. (author) [Spanish] Los procedimientos de control de calidad para Bactrocera philippinensis Drewmore » y Hancock 1994 (Diptera: Tephritidae) usados en programas de la tecnica de insecto esteril (TIE) fueron establecidos en la facilidad de cria en masa del Instituto Filipino de Investigacion Nuclear. Estudios basicos sobre la irradiacion de las pupas, sistemas de almacenaje/empaque, procedimientos del envio, longevidad, estudios de esterilidad y la determinacion del color de ojo de la pupa en relacion con el desarrollo fisiologico en regimenes diferentes de temperatura fueron investigados. Estos estudios proveeran una linea de informacion basica para el desarrollo de protocolos de control de calidad para una expansion de los programas de campo para B. philippinensis con un componente de TIS en el futuro. (author)« less
[Development of a predictive program for microbial growth under various temperature conditions].
Fujikawa, Hiroshi; Yano, Kazuyoshi; Morozumi, Satoshi; Kimura, Bon; Fujii, Tateo
2006-12-01
A predictive program for microbial growth under various temperature conditions was developed with a mathematical model. The model was a new logistic model recently developed by us. The program predicts Escherichia coli growth in broth, Staphylococcus aureus growth and its enterotoxin production in milk, and Vibrio parahaemolyticus growth in broth at various temperature patterns. The program, which was built with Microsoft Excel (Visual Basic Application), is user-friendly; users can easily input the temperature history of a test food and obtain the prediction instantly on the computer screen. The predicted growth and toxin production can be important indices to determine whether a food is microbiologically safe or not. This program should be a useful tool to confirm the microbial safety of commercial foods.
2004 NASA Seal/Secondary Air System Workshop, Volume 1
NASA Technical Reports Server (NTRS)
2005-01-01
The 2004 NASA Seal/Secondary Air System workshop covered the following topics: (1) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (2) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET) program; (3) Overview of NASA Glenn s seal program aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (4) Reviews of NASA prime contractor and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (5) Reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle, as part of NASA s new Exploration Initiative. Plans to develop the necessary mechanism and androgynous seal technologies were reviewed. Seal challenges posed by reusable re-entry space vehicles include high-temperature operation, resiliency at temperature to accommodate gap changes during operation, and durability to meet mission requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamez, J.P.; Rueter, C.O.; Beitler, C.M.
1995-12-01
lncreasing regulatory pressure has made emissions of benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) and total volatile organic compounds (VOC) from glycol dehydration units a major concern for the natural gas industry since there are over 40,000 of these units in operation. The Clean Air Act Amendments (CAAA) of 1990 have been the impetus for air toxics regulations, and the Maximum Achievable Control Technology (MACT) standards for the oil and gas industry will be proposed in June, 1995, and will include glycol dehydrators. In addition, several states are regulating or considering regulation of these units. The most commonmore » control systems that have been applied to glycol dehydrators are combustion or condensation systems. Combustion systems suffer from high operating costs since they do not recover the hydrocarbon for sale and require supplemental fuel. Many of the condensation systems may not achieve sufficiently low condenser temperatures to meet regulatory control limits. The R-BTEX{sup TM} process addresses this shortcoming by recovering the steam from the glycol dehydrator and converting it to cooling water; this allows R-BTEX to achieve the lowest condenser temperature possible without refrigeration. The Gas Research Institute (GRI) is conducting a field test program to demonstrate the process under a variety of conditions. Under this program, testing has been completed at one site in south Texas and at another site in western Colorado. Startup of a third unit at a Gulf Coast site in Texas should occur in late 1994. This paper presents the testing results for the first two sites and includes a side-by-side comparison of the R-BTEX process with other available control technologies.« less
Photoperiod- and temperature-mediated control of phenology in trees - a molecular perspective.
Singh, Rajesh Kumar; Svystun, Tetiana; AlDahmash, Badr; Jönsson, Anna Maria; Bhalerao, Rishikesh P
2017-01-01
Contents 511 I. 511 II. 512 III. 513 IV. 513 V. 517 VI. 517 VII. 521 VIII. 521 Acknowledgements 521 References 521 SUMMARY: Trees growing in boreal and temperate regions synchronize their growth with seasonal climatic changes in adaptive responses that are essential for their survival. These trees cease growth before the winter and establish a dormant state during which growth cessation is maintained by repression of responses to growth-promotive signals. Reactivation of growth in the spring follows the release from dormancy promoted by prolonged exposure to low temperature during the winter. The timing of the key events and regulation of the molecular programs associated with the key stages of the annual growth cycle are controlled by two main environmental cues: photoperiod and temperature. Recently, key components mediating photoperiodic control of growth cessation and bud set have been identified, and striking similarities have been observed in signaling pathways controlling growth cessation in trees and floral transition in Arabidopsis. Although less well understood, the regulation of bud dormancy and bud burst may involve cell-cell communication and chromatin remodeling. Here, we discuss current knowledge of the molecular-level regulation of the annual growth cycle of woody trees in temperate and boreal regions, and identify key questions that need to be addressed in the future. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Temperature-Controlled Clamping and Releasing Mechanism
NASA Technical Reports Server (NTRS)
Rosing, David; Ford, Virginia
2005-01-01
A report describes the development of a mechanism that automatically clamps upon warming and releases upon cooling between temperature limits of approx. =180 K and approx. =293 K. The mechanism satisfied a need specific to a program that involved repeated excursions of a spectrometer between a room-temperature atmospheric environment and a cryogenic vacuum testing environment. The mechanism was also to be utilized in the intended application of the spectrometer, in which the spectrometer would be clamped for protection during launch of a spacecraft and released in the cold of outer space to allow it to assume its nominal configuration for scientific observations. The mechanism is passive in the sense that its operation does not depend on a control system and does not require any power other than that incidental to heating and cooling. The clamping and releasing action is effected by bolt-preloaded stacks of shape-memory-alloy (SMA) cylinders. In designing this mechanism, as in designing other, similar SMA mechanisms, it was necessary to account for the complex interplay among thermal expansion, elastic and inelastic deformation under load, and SMA thermomechanical properties.
Predictive modeling of mosquito abundance and dengue transmission in Kenya
NASA Astrophysics Data System (ADS)
Caldwell, J.; Krystosik, A.; Mutuku, F.; Ndenga, B.; LaBeaud, D.; Mordecai, E.
2017-12-01
Approximately 390 million people are exposed to dengue virus every year, and with no widely available treatments or vaccines, predictive models of disease risk are valuable tools for vector control and disease prevention. The aim of this study was to modify and improve climate-driven predictive models of dengue vector abundance (Aedes spp. mosquitoes) and viral transmission to people in Kenya. We simulated disease transmission using a temperature-driven mechanistic model and compared model predictions with vector trap data for larvae, pupae, and adult mosquitoes collected between 2014 and 2017 at four sites across urban and rural villages in Kenya. We tested predictive capacity of our models using four temperature measurements (minimum, maximum, range, and anomalies) across daily, weekly, and monthly time scales. Our results indicate seasonal temperature variation is a key driving factor of Aedes mosquito abundance and disease transmission. These models can help vector control programs target specific locations and times when vectors are likely to be present, and can be modified for other Aedes-transmitted diseases and arboviral endemic regions around the world.
[Wireless Passive Body Sensor for Temperature Monitoring Using Near Field Communication Technology].
Shi, Bo; Zhang, Li; Zhang, Genxuan; Tsau, Young; Zhang, Sai; Li, Lei
2017-01-01
In this study, we designed a wireless body temperature sensor (WBTS) based on near field communication (NFC) technology. Just attaching the WBTS to a mobile phone with NFC function, the real-time body temperature of human subjects can be acquired by an application program without seperate power supply. The WBTS is mainly composed of a digital body temperature probe (d-BTP), a NFC unit and an antenna. The d-BTP acquires and processes body temperature data through a micro control er, and the NFC unit and antenna are used for wireless energy transmission and data communication between the mobile phone and WBTS. UART communication protocol is used in the communication between the d-BTP and NFC unit, and data compression technique is adopted for improving transmission efficiency and decreasing power loss. In tests, the error of WBTS is ±0.1 oC, in range of 32 oC to 42 oC. The WBTS has advantages of high accuracy, low power loss, strong anti-interference ability, dispensation with independent power supply etc., and it can be integrated into wearable apparatuses for temperature monitoring and health management.
Advancements in water vapor electrolysis technology. [for Space Station ECLSS
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin
1988-01-01
The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.
Laserthermia: a new computer-controlled contact Nd: YAG system for interstitial local hyperthermia.
Daikuzono, N; Suzuki, S; Tajiri, H; Tsunekawa, H; Ohyama, M; Joffe, S N
1988-01-01
Contact Nd:YAG laser surgery is assuming a greater importance in endoscopic and open surgery, allowing coagulation, cutting, and vaporization with greater precision and safety. A new contact probe allows a wider angle of irradiation and diffusion of low-power laser energy (less than 5 watts), using the interstitial technique for producing local hyperthermia. Temperature sensors that monitor continuously can be placed directly into the surrounding tissue or tumor. Using a computer program interfaced with the laser and sensors, a controlled and stable temperature (e.g., 42 degrees C) can be produced in a known volume of tissue over a prolonged period of time (e.g., 20-40 min). This new laserthermia system, using a single low-power Nd:YAG laser for interstitial local hyperthermia, may offer many new advantages in the experimental treatment and clinical management of carcinoma. A multiple system is now being developed.
A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software
NASA Astrophysics Data System (ADS)
Oh, S. H.; Kang, Y. W.; Byun, Y. I.
2007-12-01
We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512), KAF-1602E (15367times;1024), KAF-3200E (2184×1472) made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.
NASA Technical Reports Server (NTRS)
Padula, Santo, II; Bigelow, Glen; Noebe, Ronald; Gaydosh, Darrell; Garg, Anita
2006-01-01
Interest in high-temperature shape memory alloys (HTSMA) has been growing in the aerospace, automotive, process control, and energy industries. However, actual materials development has seriously lagged component design, with current commercial NiTi alloys severely limited in their temperature capability. Additions of Pd, Pt, Au, Hf, and Zr at levels greater than 10 at.% have been shown to increase the transformation temperature of NiTi alloys, but with few exceptions, the shape memory behavior (strain recovery) of these NiTiX systems has been determined only under stress free conditions. Given the limited amount of basic mechanical test data and general lack of information regarding the work attributes of these materials, a program to investigate the mechanical behavior of potential HTSMAs, with transformation temperatures between 100 and 500 C, was initiated. This paper summarizes the results of studies, focusing on both the practical temperature limitations for ternary TiNiPd and TiNiPt systems based on the work output of these alloys and the ability of these alloys to undergo repeated thermal cycling under load without significant permanent deformation or "walking". These issues are ultimately controlled by the detwinning stress of the martensite and resistance to dislocation slip of the individual martensite and austenite phases. Finally, general rules that govern the development of useful, high work output, next-generation HTSMA materials, based on the lessons learned in this work, will be provided
SPECIFIC HEAT DATA ANALYSIS PROGRAM FOR THE IBM 704 DIGITAL COMPUTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, P.R.
1962-01-01
A computer program was developed to calculate the specific heat of a substance in the temperature range from 0.3 to 4.2 deg K, given temperature calibration data for a carbon resistance thermometer, experimental temperature drift, and heating period data. The speciftc heats calculated from these data are then fitted by a curve by the methods of least squares and the specific heats are corrected for the effect of the curvature of the data. The method, operation, program details, and program stops are discussed. A program listing is included. (M.C.G.)
The Plant Research Unit: An International Space Station Habitat
NASA Technical Reports Server (NTRS)
Morrow, Robert; Reiss-Bubenheim, Debra; Schaefer, Ronald L.
2003-01-01
The Plant Research Unit (PRU) is one of six life science habitats being developed as part of the Space Station Biological Research Program. The PRU is designed for experiments in microgravity and will utilize the ISS Centrifuge Facility to provide gravity levels between microgravity and 29. The PRU will provide and control all aspects of a plant s needs in a nearly closed system. In other words, the shoot and root environments will not be open to the astronaut s environment except for experiment maintenance such as planting, harvesting and plant sampling. This also means that all lighting, temperature and humidity control, "watering," and air filtering and cleaning .must be done within strict limitations of volume, weight, power, and crew time while at the same time providing a very high level of reliability and a service life in excess of 10 years. The PRU will contain two plant chambers 31.5 cm tall, each with independent control of temperature, humidity, light level and photoperiod, CO2 level, nutrient and water delivery, and video and data acquisition. The PRU is currently in the preliminary design phase and a number of subsystem components have been prototyped for testing, including the temperature and humidity control systems, the plant chambers, the LED lighting system, the atmospheric control system and a variety of nutrient delivery systems. The LED prototype provides independent feedback control of 5 separate spectral bands and variable output between 0 and 1000 micro-mol sq m/sec. The water and nutrient delivery system (WNDS) prototypes have been used to test particulate based, thin film, and gel-based WNDS configurations.
Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat.
Liu, Samuel S; Arthur, Frank H; VanGundy, Douglas; Phillips, Thomas W
2016-06-17
A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner), the Indian meal moth Tribolium castaneum (Herbst), the red flour beetle, Cryptolestes ferrugineus (Stephens), the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel), the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L.), the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.
NASA Astrophysics Data System (ADS)
Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck
2014-12-01
Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.
The residual C concentration control for low temperature growth p-type GaN
NASA Astrophysics Data System (ADS)
Liu, Shuang-Tao; Zhao, De-Gang; Yang, Jing; Jiang, De-Sheng; Liang, Feng; Chen, Ping; Zhu, Jian-Jun; Liu, Zong-Shun; Li, Xiang; Liu, Wei; Xing, Yao; Zhang, Li-Qun
2017-09-01
Not Available Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0401801 and 2016YFB0400803), the National Natural Science Foundation of China (Grant Nos. 61674138, 61674139, 61604145, 61574135, 61574134, 61474142, 61474110, 61377020, and 61376089), the Science Challenge Project (Grant No. JCKY2016212A503), and Beijing Municipal Science and Technology Project (Grant No. Z161100002116037).
Military display performance parameters
NASA Astrophysics Data System (ADS)
Desjardins, Daniel D.; Meyer, Frederick
2012-06-01
The military display market is analyzed in terms of four of its segments: avionics, vetronics, dismounted soldier, and command and control. Requirements are summarized for a number of technology-driving parameters, to include luminance, night vision imaging system compatibility, gray levels, resolution, dimming range, viewing angle, video capability, altitude, temperature, shock and vibration, etc., for direct-view and virtual-view displays in cockpits and crew stations. Technical specifications are discussed for selected programs.
Naval Air Systems Command Mobile Facility Program
2009-11-03
Julie Trossbach 301-757-3073 Database Manager – Emi McCutcheon 301-757- 8347 BFM – Michelle Moorman 301-757-8328 Comptroller Analyst – Kathy...Jamie McDonald (757) 444-1428 NAVAIR Mobile Facilities MFTool/Database AIR 6.7.6.2 Emi McCutcheon (301) 757-8347 NAVAIR Mobile Facilities Logistics...requirement for mobile trailer -type vans for peculiar jet aircraft maintenance – Needed dust free, temperature & humidity-controlled maintenance
2013-05-22
responsible for conducting Reception , Staging, Onward movement, and Integration of personnel and equipment, the distribution management of supplies...temperature refrigerated containers or leased refrigerated containers on semi- trailers . Class III Distribution As the DoD executive agent, DLA is...quantitative approach involves the investigation of a human or social problem, and tests the theory based on the collection of variables, numerically
Transistor step stress program for JANTX2N2945A
NASA Technical Reports Server (NTRS)
1979-01-01
Data compiled for the purpose of evaluating the effect of power/temperature step stress when applied to the transistor JANTX2N2945A manufactured by Raytheon and Teledyne is presented. A total of 48 samples from each manufacturer was divided equally (16 per group) into three groups and submitted to the processes outlined. In addition, two control units were maintained for verification of the electrical parametric testing.
Temperature control of the Mariner Mars 1971 spacecraft
NASA Technical Reports Server (NTRS)
1972-01-01
The Mariner Mars 1971 orbiter mission was a part of the ongoing program of unmanned planetary exploration. The spacecraft design was based on that of Mariner Mars 1969, with changes as necessary to achieve mission objectives. The thermal design for Mariner Mars 1971 is described herein, with emphasis on those areas in which significant changes were implemented. Developmental tasks are summarized and discussed, and initial flight data are presented.
A Hydrogeomorphic Classification for Wetlands
1993-08-01
Research Program (WRP). The work was performed under Work Unit 32756, for which Mr. R. Daniel Smith was Principal Investigator . Mr. John Bellinger...34Laws of temperature control of the geographic distribution of terrestrial animals and plants," National Geographic Magazine 6, 229-238. Metzler, K. J...34Notes on the vegetation of Amazonia . III. The terminology of Amazonian forest types subject to inundation," Brittonia 31, 26-38. Prince, H. H., and
NASA Technical Reports Server (NTRS)
Yanosy, James L.
1988-01-01
This manual describes how to use the Emulation Simulation Computer Model (ESCM). Based on G189A, ESCM computes the transient performance of a Space Station atmospheric revitalization subsystem (ARS) with CO2 removal provided by a solid amine water desorbed subsystem called SAWD. Many performance parameters are computed some of which are cabin CO2 partial pressure, relative humidity, temperature, O2 partial pressure, and dew point. The program allows the user to simulate various possible combinations of man loading, metabolic profiles, cabin volumes and certain hypothesized failures that could occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slogar, G.A.; Holder, R.C.
1976-03-01
Full scale engine testswere conducted on a GTCP85-98CK Auxiliary Power Unit and a TPE331-5-251M Turboprop engine. The purpose of this program was to measure exhaust emission of HC, CO, CO/sub 2/, NO/sub x/, and smoke at controlled (temperature, humidity, and pressure) engine inlet conditions. This data along with other available data will provide the data base for the determination of the effects of ambient conditions on gas turbine engines. This volume contains the computer programs for volume 2 data. (GRA)
Materials technology for an advanced space power nuclear reactor concept: Program summary
NASA Technical Reports Server (NTRS)
Gluyas, R. E.; Watson, G. K.
1975-01-01
The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).
NASA Astrophysics Data System (ADS)
Best, Fred A.; Revercomb, Henry E.; Knuteson, Robert O.; Tobin, David C.; Ellington, Scott D.; Werner, Mark W.; Adler, Douglas P.; Garcia, Raymond K.; Taylor, Joseph K.; Ciganovich, Nick N.; Smith, William L., Sr.; Bingham, Gail E.; Elwell, John D.; Scott, Deron K.
2005-01-01
The NASA New Millennium Program's Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) instrument provides enormous advances in water vapor, wind, temperature, and trace gas profiling from geostationary orbit. The top-level instrument calibration requirement is to measure brightness temperature to better than 1 K (3 sigma) over a broad range of atmospheric brightness temperatures, with a reproducibility of +/-0.2 K. For in-flight radiometric calibration, GIFTS uses views of two on-board blackbody sources (290 K and 255 K) along with cold space, sequenced at regular programmable intervals. The blackbody references are cavities that follow the UW Atmospheric Emitted Radiance Interferometer (AERI) design, scaled to the GIFTS beam size. The cavity spectral emissivity is better than 0.998 with an absolute uncertainty of less than 0.001. Absolute blackbody temperature uncertainties are estimated at 0.07 K. This paper describes the detailed design of the GIFTS on-board calibration system that recently underwent its Critical Design Review. The blackbody cavities use ultra-stable thermistors to measure temperature, and are coated with high emissivity black paint. Monte Carlo modeling has been performed to calculate the cavity emissivity. Both absolute temperature and emissivity measurements are traceable to NIST, and detailed uncertainty budgets have been developed and used to show the overall system meets accuracy requirements. The blackbody controller is housed on a single electronics board and provides precise selectable set point temperature control, thermistor resistance measurement, and the digital interface to the GIFTS instrument. Plans for the NIST traceable ground calibration of the on-board blackbody system have also been developed and are presented in this paper.
Computer assisted thermal-vacuum testing
NASA Technical Reports Server (NTRS)
Petrie, W.; Mikk, G.
1977-01-01
In testing complex systems and components under dynamic thermal-vacuum environments, it is desirable to optimize the environment control sequence in order to reduce test duration and cost. This paper describes an approach where a computer is utilized as part of the test control operation. Real time test data is made available to the computer through time-sharing terminals at appropriate time intervals. A mathematical model of the test article and environmental control equipment is then operated on using the real time data to yield current thermal status, temperature analysis, trend prediction and recommended thermal control setting changes to arrive at the required thermal condition. The data acquisition interface and the time-sharing hook-up to an IBM-370 computer is described along with a typical control program and data demonstrating its use.
Evaluation of materials and design modifications for aircraft brakes
NASA Technical Reports Server (NTRS)
Ho, T. L.; Kennedy, F. E.; Peterson, M. B.
1975-01-01
A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.
NASA Astrophysics Data System (ADS)
Shaffer, James; Dunmire, Howard; Samuels, Raemon; Trively, Martin
1989-12-01
The U.S. Army CECOM Center for Night Vision and Electro-Optics (C2NVEO) is responsible for developing cryogenic coolers for all infrared imaging systems for the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers in fielded Army weapon systems such as: M60A3 and M1 Tanks, Bradley Fighting Vehicle (BFV) System, tube-launched, optically tracked, wire-guided (TOW) Missile System, and Army Attack Helicopters. Currently, there are over 30,000 coolers in fielded systems and several thousand more are added each year. C2NVEO conducts development programs and monitors contractor internal research and development efforts to improve cooler performance such as reliability, audio noise, power consumption, and output vibration. The HD-1045 1/4-Watt Split Stirling Cooler was originally designed and developed by the C2NVEO in the early 1970s as a replacement for the gas bottle/cryostat used on the Manportable Common Thermal Night Sights. To date, however, the HD-1045 cooler has been used in the field in the Integrated Sight Unit (ISU) of the BFV System and is currently being used in the Driver Thermal Viewer (DTV) full scale development program. This document describes and reports the results of reliability testing done on Hughes Temperature Controlled 1/4 Watt split Cycle Cryogenic Coolers (HD-1045 (V)/UA), referred to herein as the coolers.
Trace contaminant control simulation computer program, version 8.1
NASA Technical Reports Server (NTRS)
Perry, J. L.
1994-01-01
The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various process technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. Included in the simulation are chemical and physical adsorption by activated charcoal, chemical adsorption by lithium hydroxide, absorption by humidity condensate, and low- and high-temperature catalytic oxidation. Means are provided for simulating regenerable as well as nonregenerable systems. The program provides an overall mass balance of chemical contaminants in a spacecraft cabin given specified generation rates. Removal rates are based on device flow rates specified by the user and calculated removal efficiencies based on cabin concentration and removal technology experimental data. Versions 1.0 through 8.0 are documented in NASA TM-108409. TM-108409 also contains a source file listing for version 8.0. Changes to version 8.0 are documented in this technical memorandum and a source file listing for the modified version, version 8.1, is provided. Detailed descriptions for the computer program subprograms are extracted from TM-108409 and modified as necessary to reflect version 8.1. Version 8.1 supersedes version 8.0. Information on a separate user's guide is available from the author.
Evaluation of biochars by temperature programmed oxidation/mass spectroscopy
USDA-ARS?s Scientific Manuscript database
Biochar from the thermochemical conversion of biomass was evaluated by Temperature Programmed Oxidation (TPO) coupled with mass spectroscopy. This technique can be used to assess the oxidative reactivity of carbonaceous solids where higher temperature reactivity indicates greater structural order. ...
2000 NASA Seal/Secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2001-01-01
The 2000 NASA Seal/Secondary Air System Workshop covered four main areas: (1) overviews of NASA-sponsored Ultra-Efficient Engine Technology (UEET) and Access to Space Programs, with emphasis on program goals and seal needs; (2) review of turbine engine seal issues from the perspective of end users such as United Airlines; (3) reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (4) reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrates for the reader the importance of advanced technologies, including seals, in meeting future engine system efficiency and emission goals. GE, Pratt & Whitney, and Honeywell presented advanced seal development work being performed within their organizations. The NASA-funded GE/Stein Seal team has successfully demonstrated a large (3-ft. diam) aspirating seal that can withstand all anticipated pressures, speeds, and rotor runouts anticipated for a GE90 L.P. turbine balance piston location. GE/Stein Seal are fabricating a full-scale seal to be tested in a GE-90 ground test engine in early 2002. Pratt & Whitney and Stein Seal are investigating carbon seals to accommodate large radial movements anticipated in future geared-fan gearbox locations. Honeywell presented a finger seal design being considered for a high-temperature static combustor location incorporating ceramic finger elements. Successful demonstration of the braided carbon rope thermal barriers to extreme temperatures (5500 F) for short durations provide a new form of very high temperature thermal barrier for future Shuttle solid rocket motor nozzle joints. The X-37, X-38, and future highly reusable launch vehicles pose challenging control surface seal demands that require new seal concepts made from emerging high temperature ceramics and other materials.
Tensile and impact properties of General Atomics 832864 heat of V-4Cr-4Ti alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, H.; Nowicki, L.J.; Gazda, J.
A 1300-kg heat of V-4Cr-4Ti alloy was procured by General Atomics (GA) for the DIII-D radiative divertor program. To determine the mechanical properties of this alloy, tensile and Charpy tests were conducted on specimens prepared from pieces of 4.8-mm-thick as-rolled plates, a major product form for the DIII-D application. The tensile tests were conducted at three temperatures, 26, 280 and 380 C, the last two being the anticipated peak temperatures during DIII-D boronization and postvent bake-out, respectively. Results from these tests show that the tensile and impact properties of the 832864 heat are comparable to those of the other smallermore » V-(4-5)Cr-(4-5)Ti alloy heats previously developed by the US Fusion Materials Program and that scale-up of vanadium alloy production can be successfully achieved as long as reasonable process control is implemented.« less
NASA Technical Reports Server (NTRS)
Spring, Samuel D.
2006-01-01
This report documents the results of an experimental program conducted on two advanced metallic alloy systems (Rene' 142 directionally solidified alloy (DS) and Rene' N6 single crystal alloy) and the characterization of two distinct internal state variable inelastic constitutive models. The long term objective of the study was to develop a computational life prediction methodology that can integrate the obtained material data. A specialized test matrix for characterizing advanced unified viscoplastic models was specified and conducted. This matrix included strain controlled tensile tests with intermittent relaxtion test with 2 hr hold times, constant stress creep tests, stepped creep tests, mixed creep and plasticity tests, cyclic temperature creep tests and tests in which temperature overloads were present to simulate actual operation conditions for validation of the models. The selected internal state variable models where shown to be capable of representing the material behavior exhibited by the experimental results; however the program ended prior to final validation of the models.
Broad specification fuels combustion technology program
NASA Technical Reports Server (NTRS)
Dodds, W. J.; Ekstedt, E. E.
1984-01-01
Design and development efforts to evolve promising aircraft gas turbine combustor configurations for burning broadened-properties fuels were discussed. Design and experimental evaluations of three different combustor concepts in sector combustor rig tests was conducted. The combustor concepts were a state of the art single-annular combustor, a staged double-annular combustor, and a short single-annular combustor with variable geometry to control primary zone stoichiometry. A total of 25 different configurations of the three combustor concepts were evaluated. Testing was conducted over the full range of CF6-80A engine combustor inlet conditions, using four fuels containing between 12% and 14% hydrogen by weight. Good progress was made toward meeting specific program emissions and performance goals with each of the three combustor concepts. The effects of reduced fuel hydrogen content, including increased flame radiation, liner metal temperature, smoke, and NOx emissions were documented. The most significant effect on the baseline combustor was a projected 33% life reduction, for a reduction from 14% to 13% fuel hydrogen content, due to increased liner temperatures.
Stress-responsive microRNAs are involved in re-programming of metabolic functions in hibernators.
Arfat, Yasir; Chang, Hui; Gao, Yunfang
2018-04-01
Mammalian hibernation includes re-programing of metabolic capacities, partially, encouraged by microRNAs (miRNAs). Albeit much is known about the functions of miRNAs, we need learning on low temperature miRNAs target determination. As hibernators can withstand low body temperatures (TB) for a long time without anguish tissue damage, understanding the means and mechanisms that empower them to do as such are of restorative intrigue. Nonetheless, these mechanisms by which miRNAs and the hibernators react to stressful conditions are not much clear. It is evident from recent data that the gene expression and the translation of mRNA to protein are controlled by miRNAs. The miRNAs also influence regulation of major cellular processes. As the significance of miRNAs in stress conditions adaptation are getting clearer, this audit article abridges the key alterations in miRNA expression and the mechanism that facilitates stress survival. © 2017 Wiley Periodicals, Inc.
Monitoring corrosion and chemistry phenomena in supercritical aqueous systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macdonald, D.D.; Pang, J.; Liu, C.
1994-12-31
The in situ monitoring of the chemistry and electrochemistry of aqueous heat transport fluids in thermal (nuclear and fossil) power plants is now considered essential if adequate assessment and close control of corrosion and mass transfer phenomena are to be achieved. Because of the elevated temperatures and pressures involved. new sensor technologies are required that are able to measure key parameters under plant operating conditions for extended periods of time. In this paper, the authors outline a research and development program that is designed to develop practical sensors for use in thermal power plants. The current emphasis is on sensorsmore » for measuring corrosion potential, pH, the concentrations of oxygen and hydrogen, and the electrochemical noise generated by corrosion processes at temperatures ranging from {approximately}250 C to 500 C. The program is currently at the laboratory stage, but testing of prototype sensors in a coal-fired supercritical power plant in Spain will begin shortly.« less
Solder creep-fatigue interactions with flexible leaded parts
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.; Wen, L. C.; Mon, G. R.; Jetter, E.
1992-01-01
With flexible leaded parts, the solder-joint failure process involves a complex interplay of creep and fatigue mechanisms. To better understand the role of creep in typical multi-hour cyclic loading conditions, a specialized non-linear finite-element creep simulation computer program has been formulated. The numerical algorithm includes the complete part-lead-solder-PWB system, accounting for strain-rate dependence of creep on applied stress and temperature, and the role of the part-lead dimensions and flexibility that determine the total creep deflection (solder strain range) during stress relaxation. The computer program has been used to explore the effects of various solder creep-fatigue parameters such as lead height and stiffness, thermal-cycle test profile, and part/board differential thermal expansion properties. One of the most interesting findings is the strong presence of unidirectional creep-ratcheting that occurs during thermal cycling due to temperature dominated strain-rate effects. To corroborate the solder fatigue model predictions, a number of carefully controlled thermal-cycle tests have been conducted using special bimetallic test boards.
Cermet coating tribological behavior in high temperature helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
CACHON, Lionel; ALBALADEJO, Serge; TARAUD, Pascal
As the CEA is highly involved in the Generation IV Forum, a comprehensive research and development program has been conducted for several years, in order to establish the feasibility of Gas Cooled Reactor (GCR) technology projects using helium as a cooling fluid. Within this framework, a tribology program was launched in order to select and qualify coatings and materials, and to provide recommendations for the sliding components operating in GCRs. The purpose of this paper is to describe the CEA Helium tribology study on several GCR components (thermal barriers, control rod drive mechanisms, reactor internals, ..) requiring protection against wearmore » and bonding. Tests in helium atmosphere are necessary to be fully representative of tribological environments and to assess the material or coating candidates which can provide a reliable answer to these situations. This paper focuses on the tribology tests performed on CERMET (Cr{sub 3}C-2- NiCr) coatings within a temperature range of between 800 and 1000 deg C.« less
NASA Technical Reports Server (NTRS)
Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.
1998-01-01
As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.
LabVIEW-based control software for para-hydrogen induced polarization instrumentation.
Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn
2014-04-01
The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.
LabVIEW-based control software for para-hydrogen induced polarization instrumentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agraz, Jose, E-mail: joseagraz@ucla.edu; Grunfeld, Alexander; Li, Debiao
2014-04-15
The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ({sup 13}C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B{sub o}), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures.more » Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of {sup 13}C based endogenous contrast agents used in molecular imaging.« less
Delineation of soil temperature regimes from HCMM data
NASA Technical Reports Server (NTRS)
Day, R. L.; Petersen, G. W. (Principal Investigator)
1981-01-01
Supplementary data including photographs as well as topographic, geologic, and soil maps were obtained and evaluated for ground truth purposes and control point selection. A study area (approximately 450 by 450 pixels) was subset from LANDSAT scene No. 2477-17142. Geometric corrections and scaling were performed. Initial enhancement techniques were initiated to aid control point selection and soils interpretation. The SUBSET program was modified to read HCMM tapes and HCMM data were reformated so that they are compatible with the ORSER system. Initial NMAP products of geometrically corrected and scaled raw data tapes (unregistered) of the study were produced.
Accelerated stress testing of amorphous silicon solar cells
NASA Technical Reports Server (NTRS)
Stoddard, W. G.; Davis, C. W.; Lathrop, J. W.
1985-01-01
A technique for performing accelerated stress tests of large-area thin a-Si solar cells is presented. A computer-controlled short-interval test system employing low-cost ac-powered ELH illumination and a simulated a-Si reference cell (seven individually bandpass-filtered zero-biased crystalline PIN photodiodes) calibrated to the response of an a-Si control cell is described and illustrated with flow diagrams, drawings, and graphs. Preliminary results indicate that while most tests of a program developed for c-Si cells are applicable to a-Si cells, spurious degradation may appear in a-Si cells tested at temperatures above 130 C.
Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen
2014-09-08
A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT.
Energy efficient engine sector combustor rig test program
NASA Technical Reports Server (NTRS)
Dubiel, D. J.; Greene, W.; Sundt, C. V.; Tanrikut, S.; Zeisser, M. H.
1981-01-01
Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program.
Zero-G Thermodynamic Venting System (TVS) Performance Prediction Program
NASA Technical Reports Server (NTRS)
Nguyen, Han
1994-01-01
This report documents the Zero-g Thermodynamic Venting System (TVS) performance prediction computer program. The zero-g TVS is a device that destratifies and rejects environmentally induced zero-g thermal gradients in the LH2 storage transfer system. A recirculation pump and spray injection manifold recirculates liquid throughout the length of the tank thereby destratifying both the ullage gas and liquid bulk. Heat rejection is accomplished by the opening of the TVS control valve which allows a small flow rate to expand to a low pressure thereby producing a low temperature heat sink which is used to absorb heat from the recirculating liquid flow. The program was written in FORTRAN 77 language on the HP-9000 and IBM PC computers. It can be run on various platforms with a FORTRAN compiler.
In situ monitored in-pile creep testing of zirconium alloys
NASA Astrophysics Data System (ADS)
Kozar, R. W.; Jaworski, A. W.; Webb, T. W.; Smith, R. W.
2014-01-01
The experiments described herein were designed to investigate the detailed irradiation creep behavior of zirconium based alloys in the HALDEN Reactor spectrum. The HALDEN Test Reactor has the unique capability to control both applied stress and temperature independently and externally for each specimen while the specimen is in-reactor and under fast neutron flux. The ability to monitor in situ the creep rates following a stress and temperature change made possible the characterization of creep behavior over a wide stress-strain-rate-temperature design space for two model experimental heats, Zircaloy-2 and Zircaloy-2 + 1 wt%Nb, with only 12 test specimens in a 100-day in-pile creep test program. Zircaloy-2 specimens with and without 1 wt% Nb additions were tested at irradiation temperatures of 561 K and 616 K and stresses ranging from 69 MPa to 455 MPa. Various steady state creep models were evaluated against the experimental results. The irradiation creep model proposed by Nichols that separates creep behavior into low, intermediate, and high stress regimes was the best model for predicting steady-state creep rates. Dislocation-based primary creep, rather than diffusion-based transient irradiation creep, was identified as the mechanism controlling deformation during the transitional period of evolving creep rate following a step change to different test conditions.
Fiber Optic Control System Integration program: for optical flight control system development
NASA Astrophysics Data System (ADS)
Weaver, Thomas L.; Seal, Daniel W.
1994-10-01
Hardware and software were developed for optical feedback links in the flight control system of an F/A-18 aircraft. Developments included passive optical sensors and optoelectronics to operate the sensors. Sensors with different methods of operation were obtained from different manufacturers and integrated with common optoelectronics. The sensors were the following: Air Data Temperature; Air Data Pressure; and Leading Edge Flap, Nose Wheel Steering, Trailing Edge Flap, Pitch Stick, Rudder, Rudder Pedal, Stabilator, and Engine Power Lever Control Position. The sensors were built for a variety of aircraft locations and harsh environments. The sensors and optoelectronics were as similar as practical to a production system. The integrated system was installed by NASA for flight testing. Wavelength Division Multiplexing proved successful as a system design philosophy. Some sensors appeared to be better choices for aircraft applications than others, with digital sensors generally being better than analog sensors, and rotary sensors generally being better than linear sensors. The most successful sensor approaches were selected for use in a follow-on program in which the sensors will not just be flown on the aircraft and their performance recorded; but, the optical sensors will be used in closing flight control loops.
High Technology Centrifugal Compressor for Commercial Air Conditioning Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruckes, John
2006-04-15
R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration Themore » technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.« less
Advanced Control Surface Seal Development for Future Space Vehicles
NASA Technical Reports Server (NTRS)
DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.
2004-01-01
NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.
Mechanically Pumped Fluid Loop (MPFL) Technologies for Thermal Control of Future Mars Rovers
NASA Technical Reports Server (NTRS)
Birur, Gaj; Bhandari, Pradeep; Prina, Mauro; Bame, Dave; Yavrouian, Andre; Plett, Gary
2006-01-01
Mechanically pumped fluid loop has been the basis of thermal control architecture for the last two Mars lander and rover missions and is the key part of the MSL thermal architecture. Several MPFL technologies are being developed for the MSL rover include long-life pumps, thermal control valves, mechanical fittings for use with CFC-11 at elevated temperatures of approx.100 C. Over three years of life tests and chemical compatibility tests on these MPFL components show that MPFL technology is mature for use on MSL. The advances in MPFL technologies for MSL Rover will benefit any future MPFL applications on NASA s Moon, Mars and Beyond Program.
Biomass Production System (BPS) plant growth unit.
Morrow, R C; Crabb, T M
2000-01-01
The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses its own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive.
Biomass Production System (BPS) Plant Growth Unit
NASA Astrophysics Data System (ADS)
Morrow, R. C.; Crabb, T. M.
The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive
Effect of VOC emissions from vegetation on urban air quality during hot periods
NASA Astrophysics Data System (ADS)
Churkina, Galina; Kuik, Friderike; Bonn, Boris; Lauer, Axel; Grote, Ruediger; Butler, Tim
2016-04-01
Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase of carbon storage, storm water control, and recreational space, as well as at poverty alleviation. These urban greening programs, however, do not take into account how closely human and natural systems are coupled in urban areas. Compared with the surroundings of cities, elevated temperatures together with high anthropogenic emissions of air and water pollutants are quite typical in urban systems. Urban and sub-urban vegetation respond to changes in meteorology and air quality and can react to pollutants. Neglecting this coupling may lead to unforeseen negative effects on air quality resulting from urban greening programs. The potential of emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions of air pollutants to produce ozone has long been recognized. This ozone formation potential increases under rising temperatures. Here we investigate how emissions of VOC from urban vegetation affect corresponding ground-level ozone and PM10 concentrations in summer and especially during heat wave periods. We use the Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in the Berlin-Brandenburg region, Germany during the two summers of 2006 (heat wave) and 2014 (reference period). VOC emissions from vegetation are calculated by MEGAN 2.0 coupled online with WRF-CHEM. Our preliminary results indicate that the contribution of VOCs from vegetation to ozone formation may increase by more than twofold during heat wave periods. We highlight the importance of the vegetation for urban areas in the context of a changing climate and discuss potential tradeoffs of urban greening programs.
NASA Astrophysics Data System (ADS)
Barragán, Rosa María; Núñez, José; Arellano, Víctor Manuel; Nieva, David
2016-03-01
Exploration and exploitation of geothermal resources require the estimation of important physical characteristics of reservoirs including temperatures, pressures and in situ two-phase conditions, in order to evaluate possible uses and/or investigate changes due to exploitation. As at relatively high temperatures (>150 °C) reservoir fluids usually attain chemical equilibrium in contact with hot rocks, different models based on the chemistry of fluids have been developed that allow deep conditions to be estimated. Currently either in water-dominated or steam-dominated reservoirs the chemistry of steam has been useful for working out reservoir conditions. In this context, three methods based on the Fischer-Tropsch (FT) and combined H2S-H2 (HSH) mineral-gas reactions have been developed for estimating temperatures and the quality of the in situ two-phase mixture prevailing in the reservoir. For these methods the mineral buffers considered to be controlling H2S-H2 composition of fluids are as follows. The pyrite-magnetite buffer (FT-HSH1); the pyrite-hematite buffer (FT-HSH2) and the pyrite-pyrrhotite buffer (FT-HSH3). Currently from such models the estimations of both, temperature and steam fraction in the two-phase fluid are obtained graphically by using a blank diagram with a background theoretical solution as reference. Thus large errors are involved since the isotherms are highly nonlinear functions while reservoir steam fractions are taken from a logarithmic scale. In order to facilitate the use of the three FT-HSH methods and minimize visual interpolation errors, the EQUILGAS program that numerically solves the equations of the FT-HSH methods was developed. In this work the FT-HSH methods and the EQUILGAS program are described. Illustrative examples for Mexican fields are also given in order to help the users in deciding which method could be more suitable for every specific data set.
Vanhoenacker, Gerd; Sandra, Pat
2006-08-01
Temperature, as a powerful variable in conventional LC is discussed from a fundamental point of view and illustrated with applications from the author's laboratory. Emphasis is given to the influence of temperature on speed, selectivity, efficiency, detectability, and mobile phase composition (green chromatography). The problems accompanying the use of elevated temperature and temperature programming in LC are reviewed and solutions are described. The available stationary phases for high temperature operation are summarized and a brief overview of recent applications reported in the literature is given.
Advancements in oxygen generation and humidity control by water vapor electrolysis
NASA Technical Reports Server (NTRS)
Heppner, D. B.; Sudar, M.; Lee, M. C.
1988-01-01
Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.
System and method for heating ferrite magnet motors for low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang
A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly.more » The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.« less
System and method for heating ferrite magnet motors for low temperatures
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang
2017-07-04
A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly. The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.
Development of an Oceanographic Data Archiving and Service System for the Korean Researchers
NASA Astrophysics Data System (ADS)
Kim, Sung Dae; Park, Hyuk Min; Baek, Sang Ho
2014-05-01
Oceanographic Data and Information Center of Korea Institute of Ocean Science and Technology (KIOST) started to develop an oceanographic data archiving and service system in 2010 to support the Korean ocean researchers by providing quality controlled data continuously. Many physical oceanographic data available in the public domain and Korean domestic data were collected periodically, quality controlled, manipulated and provided to ocean modelers who need ocean data continuously and marine biologists who don't know well physical data but need it. The northern limit and the southern limit of the spatial coverage are 20°N and 55°N, and the western limit and the eastern limit are 110°E and 150°E, respectively. To archive TS (Temperature and Salinity) profile data, ARGO data were gathered from ARGO GDACs (France and USA) and many historical TS profile data observed by CTD, OSD and BT were retrieved from World Ocean Database 2009. The quality control software for TS profile data, which meets QC criteria suggested by the ARGO program and the GTSPP (Global Temperature-Salinity Profile Program), was programmed and applied to the collected data. By the end of 2013, the total number of vertical profile data from the ARGO GDACs was 59,642 and total number of station data from WOD 2009 was 1,604,422. We also collected the global satellite SST data produced by NCDC and global SSH data from AVISO every day. An automatic program was coded to collect satellite data, extract sub data sets of the North West Pacific area and produce distribution maps. The total number of collected satellite data sets was 3,613 by the end of 2013. We use 3 different data services to provide archived data to the Korean experts. A FTP service was prepared to allow data users to download data in the original format. We developed TS database system using Oracle RDBMS to contain all collected temperature salinity data and support SQL data retrieval with various conditions. The KIOST ocean data portal was used as the data retrieving service of TS DB, which uses GIS interface made by open source GIS software. We also installed Live Access Service developed by US PMEL for service of the satellite netCDF data files, which support on-the-fly visualization and OPeNDAP (Open-source Project for a Network Data Access Protocol) service for remote connection and sub-setting of large data set
Computer simulation of the coffee leaf miner using sexual Penna aging model
NASA Astrophysics Data System (ADS)
de Oliveira, A. C. S.; Martins, S. G. F.; Zacarias, M. S.
2008-01-01
Forecast models based on climatic conditions are of great interest in Integrated Pest Management (IPM) programs. The success of these models depends, among other factors, on the knowledge of the temperature effect on the pests’ population dynamics. In this direction, a computer simulation was made for the population dynamics of the coffee leaf miner, L. coffeella, at different temperatures, considering experimental data relative to the pest. The age structure was inserted into the dynamics through sexual Penna Model. The results obtained, such as life expectancy, growth rate and annual generations’ number, in agreement to those in laboratory and field conditions, show that the simulation can be used as a forecast model for controlling L. coffeella.
High capacity demonstration of honeycomb panel heat pipes
NASA Technical Reports Server (NTRS)
Tanzer, H. J.
1989-01-01
The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.
Reliable Breakdown Obtained in Silicon Carbide Rectifiers
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
1997-01-01
The High Temperature Integrated Electronics and Sensor (HTIES) Program at the NASA Lewis Research Center is currently developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high-power, and/or high-radiation conditions will enable significant improvements to a far-ranging variety of applications and systems. These range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensor and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.
Experimental plasma research project summaries
NASA Astrophysics Data System (ADS)
1992-06-01
This is the latest in a series of Project Summary books that date back to 1976. It is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories, and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma. Additionally, innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into the three categories of plasma physics, diagnostic development, and atomic physics.
Kajla, Mithilesh; Bhattacharya, Kurchi; Gupta, Kuldeep; Banerjee, Ujjwal; Kakani, Parik; Gupta, Lalita; Kumar, Sanjeev
2016-01-01
Synthetic insecticides are generally employed to control the mosquito population. However, their injudicious over usage and non-biodegradability are associated with many adverse effects on the environment and mosquitoes. The application of environment-friendly mosquitocidals might be an alternate to overcome these issues. In this study, we found that organic or aqueous extracts of Agave angustifolia leaves exhibited a strong larvicidal activity (LD50 28.27 μg/ml) against Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi larvae within a short exposure of 12 h. The larvicidal activity of A. angustifolia is inherited and independent of the plants vegetative growth. Interestingly, the plant larvicidal activity was observed exclusively during the summer season (April–August, when outside temperature is between 30 and 50°C) and it was significantly reduced during winter season (December–February, when the outside temperature falls to ~4°C or lower). Thus, we hypothesized that the larvicidal components of A. angustifolia might be induced by the manipulation of environmental temperature and should be resistant to the hot conditions. We found that the larvicidal activity of A. angustifolia was induced when plants were maintained at 37°C in a semi-natural environment against the controls that were growing outside in cold weather. Pre-incubation of A. angustifolia extract at 100°C for 1 h killed 60% larvae in 12 h, which gradually increased to 100% mortality after 24 h. In addition, the dry powder formulation of A. angustifolia, also displayed a strong larvicidal activity after a long shelf life. Together, these findings revealed that A. angustifolia is an excellent source of temperature induced bioactive metabolites that may assist the preparedness for vector control programs competently. PMID:26793700
Durable fiber optic sensor for gas temperature measurement in the hot section of turbine engines
NASA Astrophysics Data System (ADS)
Tregay, George W.; Calabrese, Paul R.; Finney, Mark J.; Stukey, K. B.
1994-10-01
An optical sensor system extends gas temperature measurement capability in turbine engines beyond the present generation of thermocouple technology. The sensing element which consists of a thermally emissive insert embedded inside a sapphire lightguide is capable of operating above the melting point of nickel-based super alloys. The emissive insert generates an optical signal as a function of temperature. Continued development has led to an optically averaged system by combining the optical signals from four individual sensing elements at a single detector assembly. The size of the signal processor module has been reduced to overall dimensions of 2 X 4 X 0.7 inches. The durability of the optical probe design has been evaluated in an electric-utility operated gas turbine under the sponsorship of the Electric Power Research Institute. The temperature probe was installed between the first stage rotor and second stage nozzle on a General Electric MS7001B turbine. The combined length of the ceramic support tube and sensing element reached 1.5 inches into the hot gas stream. A total of over 2000 hours has been accumulated at probe operation temperatures near 1600 degree(s)F. An optically averaged sensor system was designed to replace the existing four thermocouple probes on the upper half of a GE F404 aircraft turbine engine. The system was ground tested for 250 hours as part of GE Aircraft Engines IR&D Optical Engine Program. Subsequently, two flight sensor systems were shipped for use on the FOCSI (Fiber Optic Control System Integration) Program. The optical harnesses, each with four optical probes, measure the exhaust gas temperature in a GE F404 engine.
Evaluation of thermal network correction program using test temperature data
NASA Technical Reports Server (NTRS)
Ishimoto, T.; Fink, L. C.
1972-01-01
An evaluation process to determine the accuracy of a computer program for thermal network correction is discussed. The evaluation is required since factors such as inaccuracies of temperatures, insufficient number of temperature points over a specified time period, lack of one-to-one correlation between temperature sensor and nodal locations, and incomplete temperature measurements are not present in the computer-generated information. The mathematical models used in the evaluation are those that describe a physical system composed of both a conventional and a heat pipe platform. A description of the models used, the results of the evaluation of the thermal network correction, and input instructions for the thermal network correction program are presented.
Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks
NASA Technical Reports Server (NTRS)
Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.; Heyadat, Ali
2007-01-01
A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in normal gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-31) software. Quantitative model validation is ,provided by engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage_ Technology Demonstrator (STUSTD) program. The engineering checkout tests provide cryogenic tank self-pressurization test data at various heat leaks and tank fill levels. The predicted self-pressurization rates, ullage and liquid temperatures at discrete locations within the STUSTD tank are in good agreement with test data. The work presented here advances current CFD modeling capabilities for cryogenic pressure control and helps develop a low cost CFD-based design process for space hardware.
Technical accomplishments of the NASA Lewis Research Center, 1989
NASA Technical Reports Server (NTRS)
1990-01-01
Topics addressed include: high-temperature composite materials; structural mechanics; fatigue life prediction for composite materials; internal computational fluid mechanics; instrumentation and controls; electronics; stirling engines; aeropropulsion and space propulsion programs, including a study of slush hydrogen; space power for use in the space station, in the Mars rover, and other applications; thermal management; plasma and radiation; cryogenic fluid management in space; microgravity physics; combustion in reduced gravity; test facilities and resources.
Demonstration Program for Low-Cost, High-Energy-Saving Dynamic Windows
2014-09-01
Design The scope of this project was to demonstrate the impact of dynamic windows via energy savings and HVAC peak-load reduction; to validate the...temperature and glare. While the installed dynamic window system does not directly control the HVAC or lighting of the facility, those systems are designed ...optimize energy efficiency and HVAC load management. The conversion to inoperable windows caused an unforeseen reluctance to accept the design and
Compliant Metal Enhanced Convection Cooled Reverse-Flow Annular Combustor
NASA Technical Reports Server (NTRS)
Paskin, Marc D.; Acosta, Waldo A.
1994-01-01
A joint Army/NASA program was conducted to design, fabricate, and test an advanced, reverse-flow, small gas turbine combustor using a compliant metal enhanced (CME) convection wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CME cooling technique and tben demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F (1922 K) burner outlet temperature (BOT). The CME concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefit of improved efficiency, reduced emissions, and smoke levels. Rig test results demonstrated the benefits and viability of the CME concept meeting or exceeding the aerothermal performance and liner wall temperature characteristics of similar lower temperature-rise combustors, achieving 0.15 pattern factor at 3000 F (1922 K) BOT, while utilizing approximately 80 percent less cooling air than conventional, film-cooled combustion systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Connor P.; Farberow, Carrie A.; Hensley, Jesse E.
Temperature programmed reaction (TPRxn) is a simple yet powerful tool for screening solid catalyst performance at a variety of conditions. A TPRxn system includes a reactor, furnace, gas and vapor sources, flow control, instrumentation to quantify reaction products (e.g., gas chromatograph), and instrumentation to monitor the reaction in real time (e.g., mass spectrometer). Here, we apply the TPRxn methodology to study molybdenum carbide catalysts for the deoxygenation of acetic acid, an important reaction among many in the upgrading/stabilization of biomass pyrolysis vapors. TPRxn is used to evaluate catalyst activity and selectivity and to test hypothetical reaction pathways (e.g., decarbonylation, ketonization,more » and hydrogenation). Furthermore, the results of the TPRxn study of acetic acid deoxygenation show that molybdenum carbide is an active catalyst for this reaction at temperatures above ca. 300 °C and that the reaction favors deoxygenation (i.e., C-O bond-breaking) products at temperatures below ca. 400 °C and decarbonylation (i.e., C-C bond-breaking) products at temperatures above ca. 400 °C.« less
Non-Contact Temperature Requirements (NCTM) for drop and bubble physics
NASA Technical Reports Server (NTRS)
Hmelo, Anthony B.; Wang, Taylor G.
1989-01-01
Many of the materials research experiments to be conducted in the Space Processing program require a non-contaminating method of manipulating and controlling weightless molten materials. In these experiments, the melt is positioned and formed within a container without physically contacting the container's wall. An acoustic method, which was developed by Professor Taylor G. Wang before coming to Vanderbilt University from the Jet Propulsion Laboratory, has demonstrated the capability of positioning and manipulating room temperature samples. This was accomplished in an earth-based laboratory with a zero-gravity environment of short duration. However, many important facets of high temperature containerless processing technology have not been established yet, nor can they be established from the room temperature studies, because the details of the interaction between an acoustic field an a molten sample are largely unknown. Drop dynamics, bubble dynamics, coalescence behavior of drops and bubbles, electromagnetic and acoustic levitation methods applied to molten metals, and thermal streaming are among the topics discussed.
Kuan, Shu-Chien; Chen, Kuei-Min; Wang, Chi
2012-04-01
Institutional wheelchair-bound older adults often do not get regular exercise and are prone to health problems. The aim of this study was to test the effects of a 12-week qigong exercise program on the physiological and psychological health of wheelchair-bound older adults in long-term care facilities. Study design was quasi-experimental, pre-post test, nonequivalent control group. Participants comprised a convenience sample of 72 wheelchair-bound older adults (qigong = 34; control = 38). The qigong group exercised 35 min/day, 5 days/week for 12 weeks. Measures for physical health (blood pressure, heart rate variability, and distal skin temperature) and psychological health (Brief Symptom Rating Scale-5) were collected before and during study Weeks 4, 8, and 12. The qigong group participants' blood pressure, distal skin temperature, and psychological health were significantly improved (all p < .001). These findings suggest that qigong exercise is a suitable daily activity for elderly residents in long-term care facilities and may help in the control of blood pressure among older adults.
NASA Technical Reports Server (NTRS)
Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.
1996-01-01
A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.
A thermal control approach for a solar electric propulsion thrust subsystem
NASA Technical Reports Server (NTRS)
Maloy, J. E.; Oglebay, J. C.
1979-01-01
A thrust subsystem thermal control design is defined for a Solar Electric Propulsion System (SEPS) proposed for the comet Halley Flyby/comet Tempel 2 rendezvous mission. A 114 node analytic model, developed and coded on the systems improved numerical differencing analyzer program, was employed. A description of the resulting thrust subsystem thermal design is presented as well as a description of the analytic model and comparisons of the predicted temperature profiles for various SEPS thermal configurations that were generated using this model. It was concluded that: (1) a BIMOD engine system thermal design can be autonomous; (2) an independent thrust subsystem thermal design is feasible; (3) the interface module electronics temperatures can be controlled by a passive radiator and supplementary heaters; (4) maintaining heat pipes above the freezing point would require an additional 322 watts of supplementary heating power for the situation where no thrusters are operating; (5) insulation is required around the power processors, and between the interface module and the avionics module, as well as in those areas which may be subjected to solar heating; and (6) insulation behind the heat pipe radiators is not necessary.
NASA Astrophysics Data System (ADS)
Stevons, C. E.; Jenke, P.; Briggs, M. S.
2016-12-01
Terrestrial Gamma-ray Flashes (TGFs) are sub-millisecond gamma-ray flashes that are correlated with lightning have been observed with numerous satellites since their discovery in the early 1990s. Although substantial research has been conducted on TGFs, puzzling questions regarding their origin are still left unanswered. Consequently, the Terrestrial RaYs Analysis and Detection (TRYAD) mission is designed to solve many issues about TGFs by measuring the beam profile and orientation of TGFs in low Earth orbit. This project consists of sending two CubeSats into low-Earth orbit where they will independently sample TGF beams. Both of the TRYAD CubeSats will contain a gamma-ray detector composed of lead doped plastic scintillator coupled to silicon photomultiplier (SiPM) arrays. The gain readings of the SiPMs vary with temperature and the bias voltage must be corrected to compensate. Using an Arduino micro-controller, circuitry and software was developed to control the gain in response to the resistance of a thermistor. I will present the difficulties involved with this project along with our solutions.
Evaluation of biochars by temperature programmed oxidation/mass spectrometry
Michael Jackson; Thomas Eberhardt; Akwasi Boateng; Charles Mullen; Les Groom
2013-01-01
Biochars produced from thermochemical conversions of biomass were evaluated by temperature programmed oxidation (TPO). This technique, used to characterize carbon deposits on petroleum cracking catalysts, provides information on the oxidative stability of carbonaceous solids, where higher temperature reactivity indicates greater structural order, an important property...
NASA Astrophysics Data System (ADS)
Paloma, Cynthia S.
The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.
Nonconvex model predictive control for commercial refrigeration
NASA Astrophysics Data System (ADS)
Gybel Hovgaard, Tobias; Boyd, Stephen; Larsen, Lars F. S.; Bagterp Jørgensen, John
2013-08-01
We consider the control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms. In each time period we choose cooling capacity to each unit and a common evaporation temperature. The goal is to minimise the total energy cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a variation on model predictive control to achieve this goal. When the right variables are used, the dynamics of the system are linear, and the constraints are convex. The cost function, however, is nonconvex due to the temperature dependence of thermodynamic efficiency. To handle this nonconvexity we propose a sequential convex optimisation method, which typically converges in fewer than 5 or so iterations. We employ a fast convex quadratic programming solver to carry out the iterations, which is more than fast enough to run in real time. We demonstrate our method on a realistic model, with a full year simulation and 15-minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost savings, on the order of 30%, compared to a standard thermostat-based control system. Perhaps more important, we see that the method exhibits sophisticated response to real-time variations in electricity prices. This demand response is critical to help balance real-time uncertainties in generation capacity associated with large penetration of intermittent renewable energy sources in a future smart grid.
Health monitoring of Binzhou Yellow River highway bridge using fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Ou, Jinping; Zhao, Xuefeng; Li, Hui; Zhou, Zhi; Zhang, Zhichun; Wang, Chuan
2005-05-01
Binzhou yellow river Highway Bridge with 300 meter span and 768 meter length is located in the Shandong province of China and is the first cable stayed bridge with three towers along the yellow river, one of the biggest rivers in China. In order to monitoring the strain and temperature of the bridge and evaluate the health condition, one fiber Bragg grating sensing network consists of about one hundred and thirty FBG sensors mounted in 31 monitoring sections respectively, had been built during three years time. Signal cables of sensors were led to central control room located near the main tower. One four-channel FBG interrogator was used to read the wavelengths from all the sensors, associated with four computer-controlled optic switches connected to each channel. One program was written to control the interrogator and optic switches simultaneously, and ensure signal input precisely. The progress of the monitoring can be controlled through the internet. The sensors embedded were mainly used to monitor the strain and temperature of the steel cable and reinforced concrete beam. PE jacket opening embedding technique of steel cable had been developed to embed FBG sensors safely, and ensure the reliability of the steel cable opened at the same time. Data obtained during the load test can show the strain and temperature status of elements were in good condition. The data obtained via internet since the bridge's opening to traffic shown the bridge under various load such as traffic load, wind load were in good condition.
Diurnal Soil Temperature Effects within the Globe[R] Program Dataset
ERIC Educational Resources Information Center
Witter, Jason D.; Spongberg, Alison L.; Czajkowski, Kevin P.
2007-01-01
Long-term collection of soil temperature with depth is important when studying climate change. The international program GLOBE[R] provides an excellent opportunity to collect such data, although currently endorsed temperature collection protocols need to be refined. To enhance data quality, protocol-based methodology and automated data logging,…
Temperature lowering program for homogeneous doping in flux growth
NASA Astrophysics Data System (ADS)
Qiwei, Wang; Shouquan, Jia
1989-10-01
Based on the mass conservation law and the Burton-Prim-Slichter equation, the temperature program for homogeneous doping in flux growth by slow cooling was derived. The effect of various factors, such as initial supersaturation, solution volume, growth kinetic coefficient and degree of mixing in the solution on growth rate, crystal size and temperature program is discussed in detail. Theoretical analysis shows that there is a critical crystal size above which homogeneous doping is impossible.
The association between diurnal temperature range and childhood bacillary dysentery
NASA Astrophysics Data System (ADS)
Wen, Li-ying; Zhao, Ke-fu; Cheng, Jian; Wang, Xu; Yang, Hui-hui; Li, Ke-sheng; Xu, Zhi-wei; Su, Hong
2016-02-01
Previous studies have found that mean, maximum, and minimum temperatures were associated with bacillary dysentery (BD). However, little is known about whether the within-day variation of temperature has any impact on bacillary dysentery. The current study aimed to identify the relationship between diurnal temperature range (DTR) and BD in Hefei, China. Daily data on BD counts among children aged 0-14 years from 1 January 2006 to 31 December 2012 were retrieved from Hefei Center for Disease Control and Prevention. Daily data on ambient temperature and relative humidity covering the same period were collected from the Hefei Bureau of Meteorology. A Poisson generalized linear regression model combined with a distributed lag non-linear model (DLNM) was used in the analysis after controlling the effects of season, long-term trends, mean temperature, and relative humidity. The results showed that there existed a statistically significant relationship between DTR and childhood BD. The DTR effect on childhood bacillary dysentery increased when DTR was over 8 °C. And it was greatest at 1-day lag, with an 8 % (95 % CI = 2.9-13.4 %) increase of BD cases per 5 °C increment of DTR. Male children and children aged 0-5 years appeared to be more vulnerable to the DTR effect. The data indicate that large DTR may increase the incidence of childhood BD. Caregivers and health practitioners should be made aware of the potential threat posed by large DTR. Therefore, DTR should be taken into consideration when making targeted health policies and programs to protect children from being harmed by climate impacts.
The association between diurnal temperature range and childhood bacillary dysentery.
Wen, Li-ying; Zhao, Ke-fu; Cheng, Jian; Wang, Xu; Yang, Hui-hui; Li, Ke-sheng; Xu, Zhi-wei; Su, Hong
2016-02-01
Previous studies have found that mean, maximum, and minimum temperatures were associated with bacillary dysentery (BD). However, little is known about whether the within-day variation of temperature has any impact on bacillary dysentery. The current study aimed to identify the relationship between diurnal temperature range (DTR) and BD in Hefei, China. Daily data on BD counts among children aged 0-14 years from 1 January 2006 to 31 December 2012 were retrieved from Hefei Center for Disease Control and Prevention. Daily data on ambient temperature and relative humidity covering the same period were collected from the Hefei Bureau of Meteorology. A Poisson generalized linear regression model combined with a distributed lag non-linear model (DLNM) was used in the analysis after controlling the effects of season, long-term trends, mean temperature, and relative humidity. The results showed that there existed a statistically significant relationship between DTR and childhood BD. The DTR effect on childhood bacillary dysentery increased when DTR was over 8 °C. And it was greatest at 1-day lag, with an 8% (95% CI = 2.9-13.4%) increase of BD cases per 5 °C increment of DTR. Male children and children aged 0-5 years appeared to be more vulnerable to the DTR effect. The data indicate that large DTR may increase the incidence of childhood BD. Caregivers and health practitioners should be made aware of the potential threat posed by large DTR. Therefore, DTR should be taken into consideration when making targeted health policies and programs to protect children from being harmed by climate impacts.
Loar, James M; Stewart, Arthur J; Smith, John G
2011-06-01
In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.
NASA Astrophysics Data System (ADS)
Loar, James M.; Stewart, Arthur J.; Smith, John G.
2011-06-01
In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.
Properties of meso-Erythritol; phase state, accommodation coefficient and saturation vapour pressure
NASA Astrophysics Data System (ADS)
Emanuelsson, Eva; Tschiskale, Morten; Bilde, Merete
2016-04-01
Introduction Saturation vapour pressure and the associated temperature dependence (enthalpy ΔH), are key parameters for improving predictive atmospheric models. Generally, the atmospheric aerosol community lack experimentally determined values of these properties for relevant organic aerosol compounds (Bilde et al., 2015). In this work we have studied the organic aerosol component meso-Erythritol. Methods Sub-micron airborne particles of meso-Erythritol were generated by nebulization from aqueous solution, dried, and a mono disperse fraction of the aerosol was selected using a differential mobility analyser. The particles were then allowed to evaporate in the ARAGORN (AaRhus Atmospheric Gas phase OR Nano particle) flow tube. It is a temperature controlled 3.5 m long stainless steel tube with an internal diameter of 0.026 m (Bilde et al., 2003, Zardini et al., 2010). Changes in particle size as function of evaporation time were determined using a scanning mobility particle sizer system. Physical properties like air flow, temperature, humidity and pressure were controlled and monitored on several places in the setup. The saturation vapour pressures were then inferred from the experimental results in the MATLAB® program AU_VaPCaP (Aarhus University_Vapour Pressure Calculation Program). Results Following evaporation, meso-Erythriol under some conditions showed a bimodal particle size distribution indicating the formation of particles of two different phase states. The issue of physical phase state, along with critical assumptions e.g. the accommodation coefficient in the calculations of saturation vapour pressures of atmospheric relevant compounds, will be discussed. Saturation vapour pressures from the organic compound meso-Erythritol will be presented at temperatures between 278 and 308 K, and results will be discussed in the context of atmospheric chemistry. References Bilde, M. et al., (2015), Chemical Reviews, 115 (10), 4115-4156. Bilde, M. et. al., (2003), Environmental Science and Technology 37(7), 1371-1378. Zardini, A. A. et al., (2010), Journal of Aerosol Science, 41, 760-770.
Temperature offset control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, M.
1987-07-28
This patent describes a temperature offset control system for controlling the operation of both heating and air conditioning systems simultaneously contained within the same premises each of which is set by local thermostats to operate at an appropriate temperature, the offset control system comprising: a central control station having means for presetting an offset temperature range, means for sensing the temperature at a central location, means for comparing the sensed temperature with the offset temperature range, means responsive to the comparison for producing a control signal indicative of whether the sensed temperature is within the offset temperature range or beyondmore » the offset temperature range, and means for transmitting the control signal onto the standard energy lines servicing the premises; and a receiving station respectively associated with each heating and air conditioning system, the receiving stations each comprising means for receiving the same transmitted control signal from the energy lines, and switch means for controlling the energization of the respective system in response to the received control signal. The heating systems and associated local thermostat are disabled by the control signal when the control signal originates from a sensed temperature above the lower end of the offset temperature range. The air conditioning systems and associated thermostats are disabled by the same control signal when the control signal originates from a sensed temperature below the upper end of the offset temperature range.« less
NASA Astrophysics Data System (ADS)
Ruan, Jiaping
2017-04-01
A variety of biomarkers were examined from Ocean Drilling Program (ODP) core 1202B to reconstruct temperature and phytoplankton community structures in the southern Okinawa Trough for the past ca. 20000 years. Two molecular temperature proxies (Uk37 and TEX86) show 5-6 ℃ warming during the glacial/interglacial transition. Prior to the Holocene, the Uk37-derived temperature was generally 1-4 ℃ higher than TEX86-derived temperature. This difference, however, was reduced to <1 ℃ in the Holocene when the Kuroshio Current was intensified. Correspondingly, the phytoplankton biomarkers (e.g., C37:2 alkenone, brassicasterol, C30 1,15-diols and dinosterol) suggest a shift of planktonic community assemblages with coccolithophorids becoming more abundant in the Holocene at the expense of diatoms/dinoflagellates. Such a shift is related to the variability of nutrient, temperature and salinity in the Okinawa Trough, controlled by the sea level and the intensity of Kuroshio Current. The phytoplankton community change may have profound implications on atmospheric CO2 fluctuations during glacial/interglacial cycles since diatoms and dinoflagellates have a higher efficiency of biological pump than coccolithophorids.
Comprehensive Evaluation of Power Supplies at Cryogenic Temperatures for Deep Space Applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Gerber, Scott; Hammoud, Ahmad; Elbuluk, Malik E.; Lyons, Valerie (Technical Monitor)
2002-01-01
The operation of power electronic systems at cryogenic temperatures is anticipated in many future space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environments, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. DC/DC converters are widely used in space power systems in the areas of power management, conditioning, and control. As part of the on-going Low Temperature Electronics Program at NASA, several commercial-off-the-shelf (COTS) DC/DC converters, with specifications that might fit the requirements of specific future space missions have been selected for investigation at cryogenic temperatures. The converters have been characterized in terms of their performance as a function of temperature in the range of 20 C to - 180 C. These converters ranged in electrical power from 8 W to 13 W, input voltage from 9 V to 72 V and an output voltage of 3.3 V. The experimental set-up and procedures along with the results obtained on the converters' steady state and dynamic characteristics are presented and discussed.
NASA Technical Reports Server (NTRS)
Horn, W. J.; Carlson, L. A.
1983-01-01
A FORTRAN computer program called THERMTRAJ is presented which can be used to compute the trajectory of high altitude scientific zero pressure balloons from launch through all subsequent phases of the balloon flight. In addition, balloon gas and film temperatures can be computed at every point of the flight. The program has the ability to account for ballasting, changes in cloud cover, variable atmospheric temperature profiles, and both unconditional valving and scheduled valving of the balloon gas. The program was verified for an extensive range of balloon sizes (from 0.5 to 41.47 million cubic feet). Instructions on program usage, listing of the program source deck, input data and printed and plotted output for a verification case are included.
Wang, Shen-Ling; Qi, Hong; Ren, Ya-Tao; Chen, Qin; Ruan, Li-Ming
2018-05-01
Thermal therapy is a very promising method for cancer treatment, which can be combined with chemotherapy, radiotherapy and other programs for enhanced cancer treatment. In order to get a better effect of thermal therapy in clinical applications, optimal internal temperature distribution of the tissue embedded with gold nanoparticles (GNPs) for enhanced thermal therapy was investigated in present research. The Monte Carlo method was applied to calculate the heat generation of the tissue embedded with GNPs irradiated by continuous laser. To have a better insight into the physical problem of heat transfer in tissues, the two-energy equation was employed to calculate the temperature distribution of the tissue in the process of GNPs enhanced therapy. The Arrhenius equation was applied to evaluate the degree of permanent thermal damage. A parametric study was performed to investigate the influence factors on the tissue internal temperature distribution, such as incident light intensity, the GNPs volume fraction, the periodic heating and cooling time, and the incident light position. It was found that period heating and cooling strategy can effectively avoid overheating of skin surface and heat damage of healthy tissue. Lower GNPs volume fraction will be better for the heat source distribution. Furthermore, the ring heating strategy is superior to the central heating strategy in the treatment effect. All the analysis provides theoretical guidance for optimal temperature control of tissue embedded with GNP for enhanced thermal therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Calorimetric thermal-vacuum performance characterization of the BAe 80 K space cryocooler
NASA Technical Reports Server (NTRS)
Kotsubo, V. Y.; Johnson, D. L.; Ross, R. G., Jr.
1992-01-01
A comprehensive characterization program is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80 K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precise individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heatsink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stroke, drive frequency, and piston-displacer dc offset.
Aluminum Target Dissolution in Support of the Pu-238 Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarlane, Joanna; Benker, Dennis; DePaoli, David W
2014-09-01
Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These datamore » have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less
NASA Technical Reports Server (NTRS)
Okojie, Robert S.
2001-01-01
The NASA aerospace program, in particular, requires breakthrough instrumentation inside the combustion chambers of engines for the purpose of, among other things, improving computational fluid dynamics code validation and active engine behavioral control (combustion, flow, stall, and noise). This environment can be as high as 600 degrees Celsius, which is beyond the capability of silicon and gallium arsenide devices. Silicon-carbide- (SiC-) based devices appear to be the most technologically mature among wide-bandgap semiconductors with the proven capability to function at temperatures above 500 degrees Celsius. However, the contact metalization of SiC degrades severely beyond this temperature because of factors such as the interdiffusion between layers, oxidation of the contact, and compositional and microstructural changes at the metal/semiconductor interface. These mechanisms have been proven to be device killers. Very costly and weight-adding packaging schemes that include vacuum sealing are sometimes adopted as a solution.
Orion Post-Landing Crew Thermal Control Modeling and Analysis Results
NASA Technical Reports Server (NTRS)
Cross, Cynthia D.; Bue, Grant; Rains, George E.
2009-01-01
In a vehicle constrained by mass and power, it is necessary to ensure that during the process of reducing hardware mass and power that the health and well being of the crew is not compromised in the design process. To that end, it is necessary to ensure that in the final phase of flight - recovery, that the crew core body temperature remains below the crew cognitive deficit set by the Constellation program. This paper will describe the models used to calculate the thermal environment of the spacecraft after splashdown as well as the human thermal model used to calculate core body temperature. Then the results of these models will be examined to understand the key drivers for core body temperature. Finally, the analysis results will be used to show that additional cooling capability must be added to the vehicle to ensure crew member health post landing.
NASA Technical Reports Server (NTRS)
Dezern, James F. (Technical Monitor); Chang, Alice C.
1999-01-01
As part of a program to develop structural adhesives for high performance aerospace applications, research continued on the development of modified phenylethynyl containing imides, LaRC(trademark)MPEIs. In previous reports, the polymer properties were controlled by varying the molecular weight, the amount of branching, and the phenylethynyl content and by blending with low molecular weight materials. This research involves changing the flexibility in the copolyimide backbone of the branched, phenylethynyl terminated adhesives. These adhesives exhibit excellent processability at pressures as low as 15 psi and temperatures as low as 288 C. The Ti/Ti lap shear specimens are processable in an autoclave or a temperature programmable oven under a vacuum bag at 288-300 C without external pressure. The cured polymers exhibit high mechanical properties and excellent solvent resistance. The chemistry and properties of these adhesives are presented.
A mosaic infrared sensor for space astronomy, phase 3
NASA Technical Reports Server (NTRS)
Sood, A. K.
1985-01-01
Short wavelength (1 to 3 micron) HgCdTe mosaic detector arrays for space astronomy purposes were fabricated and studied. Honeywell will test and analyze these arrays at moderate temperatures (300-130K). Low temperature testing will be performed at the University of Hawaii. Short wavelength mosaic arrays were fabricated on three wafers and one array from each wafer was tested and analyzed. The p-type base carrier concentration on these wafers was an order of magnitude lower than typically used so far on this program (10 to the 14/cc as compared to 10 to the 15/cc). Tunneling currents are expected to decrease with this decrease in carrier concentration, resulting in improved performance at very low temperatures. The risk with such a low carrier concentration is that fixed charge in the surface passivating layer must be carefully controlled to prevent surface inversion layers.
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
1997-01-01
NASA Lewis Research Center's On-Board Propulsion program (OBP) is developing low-thrust chemical propulsion technologies for both satellite and vehicle reaction control applications. There is a vigorous international competition to develop new, highperformance bipropellant engines. High-leverage bipropellant systems are critical to both commercial competitiveness in the international communications market and to cost-effective mission design in government sectors. To significantly improve bipropellant engine performance, we must increase the thermal margin of the chamber materials. Iridium-coated rhenium (Ir/Re) engines, developed and demonstrated under OBP programs, can operate at temperatures well above the constraints of state-of-practice systems, providing a sufficient margin to maximize performance with the hypergolic propellants used in most satellite propulsion systems.
Advanced ETC/LSS computerized analytical models, CO2 concentration. Volume 1: Summary document
NASA Technical Reports Server (NTRS)
Taylor, B. N.; Loscutoff, A. V.
1972-01-01
Computer simulations have been prepared for the concepts of C02 concentration which have the potential for maintaining a C02 partial pressure of 3.0 mmHg, or less, in a spacecraft environment. The simulations were performed using the G-189A Generalized Environmental Control computer program. In preparing the simulations, new subroutines to model the principal functional components for each concept were prepared and integrated into the existing program. Sample problems were run to demonstrate the methods of simulation and performance characteristics of the individual concepts. Comparison runs for each concept can be made for parametric values of cabin pressure, crew size, cabin air dry and wet bulb temperatures, and mission duration.
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Mathematical models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are appended. These programs enable the performance of heat pipes with wrapped-screen, rectangular-groove or screen-covered rectangular-groove wick to be predicted.
NASA Technical Reports Server (NTRS)
Zerlaut, Gene A.; Gilligan, J. E.; Harada, Y.
1965-01-01
In a previous research program for the Jet Propulsion- Laboratory, extensive studies led to the development and specifications of three zinc oxide-pigmented thermal-control coatings. The principal objectives of this program are: improvement of the three paints (as engineering materials), determination of the validity of our accelerated space-simulation testing, and continuation of the zinc oxide photolysis studies begun in the preceding program. Specific tasks that are discussed include: improvement of potassium silicate coatings as engineering materials and elucidation of their storage and handling problems; improvement of methyl silicone coatings as engineering materials; studies of zinc oxide photolysis to establish reasons for the observed stability of zinc oxide; and determination of space-simulation parameters such as long-term stability (to 8000 ESH), effect of coating surface temperature on the rate of degradation, and validity of accelerated testing (by reciprocity and wavelength dependency studies).
Assessment of two-temperature kinetic model for dissociating and weakly-ionizing nitrogen
NASA Technical Reports Server (NTRS)
Park, C.
1986-01-01
The validity of the author's two-temperature, chemical/kinetic model which the author has recently improved is assessed by comparing the calculated results with the existing experimental data for nitrogen in the dissociating and weakly ionizing regime produced behind a normal shock wave. The computer program Shock Tube Radiation Program (STRAP) based on the two-temperature model is used in calculating the flow properties behind the shock wave and the Nonequilibrium Air Radiation (NEQAIR) program, in determining the radiative characteristics of the flow. Both programs were developed earlier. Comparison is made between the calculated and the existing shock tube data on (1) spectra in the equilibrium region, (2) rotational temperature of the N2(+) B state, (3) vibrational temperature of the N2(+) B state, (4) electronic excitation temperature of the N2 B state, (5) the shape of time-variation of radiation intensities, (6) the times to reach the peak in radiation intensity and equilibrium, and (7) the ratio of nonequilibrium to equilibrium radiative heat fluxes. Good agreement is seen between the experimental data and the present calculation except for the vibrational temperature. A possible reason for the discrepancy is given.
Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josh A. Salmond
2009-08-07
The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and lowmore » residual stresses. The products fabricated are used on multiple programs.« less
Stream network and stream segment temperature models software
Bartholow, John
2010-01-01
This set of programs simulates steady-state stream temperatures throughout a dendritic stream network handling multiple time periods per year. The software requires a math co-processor and 384K RAM. Also included is a program (SSTEMP) designed to predict the steady state stream temperature within a single stream segment for a single time period.
Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Lumpkin, Forrest E., III; Gati, Frank; Yuko, James R.; Motil, Brian J.
2009-01-01
The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module was performed using MSC Patran/Pthermal. The obtained temperature results showed that thermal protection is necessary because of significant heating from the plume.
On computational experiments in some inverse problems of heat and mass transfer
NASA Astrophysics Data System (ADS)
Bilchenko, G. G.; Bilchenko, N. G.
2016-11-01
The results of mathematical modeling of effective heat and mass transfer on hypersonic aircraft permeable surfaces are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated. Some algorithms of control restoration are suggested for the interpolation and approximation statements of heat and mass transfer inverse problems. The differences between the methods applied for the problem solutions search for these statements are discussed. Both the algorithms are realized as programs. Many computational experiments were accomplished with the use of these programs. The parameters of boundary layer obtained by means of the A.A.Dorodnicyn's generalized integral relations method from solving the direct problems have been used to obtain the inverse problems solutions. Two types of blowing laws restoration for the inverse problem in interpolation statement are presented as the examples. The influence of the temperature factor on the blowing restoration is investigated. The different character of sensitivity of controllable parameters (the local heat flow and local tangent friction) respectively to step (discrete) changing of control (the blowing) and the switching point position is studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
Major accomplishments during the second quarter of 1984 were completion of the Diaphragm Separation Seal clear liquid testing, and initiation of Phase III Field Testing. Diaphragm operational testing was conducted on a clear water test loop. The test goals were to ensure; mechanical reliability of the Diaphragm Seal, safe operation with simulated component failure, and proper operation of the Diaphragm Buffer Volume Control System. This latter system is essential in controlling the phasing of the diaphragm with its driving plunger. These tests were completed successfully. All operational problems were solved. However, it must be emphasized that the Diaphragm Seal wouldmore » be damaged by allowing the pump to operate in a cavitating condition for an extended period of time. A change in the Field Test phase of the program was made regarding choice of field test site. There is no operating Syn-Fuel pilot plant capable of inexpensively producing the slurry stream required for the reciprocating pump testing. The Field Tests will now be conducted by first testing the prototype pump and separation seals in an ambient temperature sand water slurry. This will determine resistence to abrasive wear and determine any operation problems at pressure over a lengthy period of time. After successful conclusion of these tests the pump and seals will be operated with a high temperature oil, but without solids, to identify any problems associated with thermal gradients, thermal shock and differential growth. After successful completion of the high temperature clean oil tests the pump will be deemed ready for in-line installation at a designated Syn-Fuel pilot plant. The above approach avoids the expense and complications of a separate hot slurry test loop. It also reduces risk of operational problems while in-line at the pilot plant. 5 figs.« less
Russell, Richard C; Currie, Bart J; Lindsay, Michael D; Mackenzie, John S; Ritchie, Scott A; Whelan, Peter I
2009-03-02
Dengue transmission in Australia is currently restricted to Queensland, where the vector mosquito Aedes aegypti is established. Locally acquired infections have been reported only from urban areas in the north-east of the state, where the vector is most abundant. Considerable attention has been drawn to the potential impact of climate change on dengue distribution within Australia, with projections for substantial rises in incidence and distribution associated with increasing temperatures. However, historical data show that much of Australia has previously sustained both the vector mosquito and dengue viruses. Although current vector distribution is restricted to Queensland, the area inhabited by A. aegypti is larger than the disease-transmission areas, and is not restricted by temperature (or vector-control programs); thus, it is unlikely that rising temperatures alone will bring increased vector or virus distribution. Factors likely to be important to dengue and vector distribution in the future include increased dengue activity in Asian and Pacific nations that would raise rates of virus importation by travellers, importation of vectors via international ports to regions without A. aegypti, higher rates of domestic collection and storage of water that would provide habitat in urban areas, and growing human populations in northern Australia. Past and recent successful control initiatives in Australia lend support to the idea that well resourced and functioning surveillance programs, and effective public health intervention capabilities, are essential to counter threats from dengue and other mosquito-borne diseases. Models projecting future activity of dengue (or other vector-borne disease) with climate change should carefully consider the local historical and contemporary data on the ecology and distribution of the vector and local virus transmission.
1993-09-01
plants, longer exposure times, and consider- tive species. ation of seasonal/phenological cycles. Design features and operating characteristics of the In...attached to the stem near the apex. temperature when pupation and active feeding The case is a useful diagnostic feature for starts. Overwintering...larvae were located on identification. Other morphological features milfoil shoots in an inactive state throughout Proceedngs, 27th Annual Meeting, APCRP
2014-10-31
Interactions Konstantinos Kontis University of Manchester Research Office Oxford Road Manchester M13 9PL UNITED KINGDOM EOARD Grant 12... GRANT NUMBER Grant 12-2007 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Konstantinos Kontis 5d. PROJECT NUMBER 5d. TASK NUMBER...New York: Wiley, 1989. [70] G. Cardone , A. Ianiro, G. d. Ioio, and A. Passaro, “Temperature maps measurements on 3d surfaces with infrared thermography
2012-03-14
Institute. The proposed effort offers a multidisciplinary research program to achieve the topic goals by coupling thermal- acoustic - mechanical flight...optional optical pyrometer . Single port for standard (mechanical vacuum pump) and high vacuum system. POWER SUPPLY 10,000 amp, 10 VDC pulsed...Amperage TEMPERATURE CONTROL SYSTEM Ten (10) Type K and five (5) Type C thermocouples with protective flexible sheaths. Optical Pyrometer
NASA Technical Reports Server (NTRS)
2006-01-01
T-Shaped Emitter Metal Structures for HBTs Rigorous Estimation of SNR of a PSK Communication Link Advanced Ka-Band Transceiver With Monopulse Tracking EMI Filters for Low-Temperature Applications Lightweight Electronic Camera for Research on Clouds Pilot Weather Advisor System Waveguide Power-Amplifier Module for 80 to 150 GHz Better Back Contacts for Solar Cells on Flexible Substrates Topics covered include:Tunable, Highly Stable Lasers for Coherent Lidar; Improved Photon-Emission-Microscope System; Program Synthesizes UML Sequence Diagrams; Aspect-Oriented Subprogram Synthesizes UML Sequence Diagrams; Updated Computational Model of Cosmic Rays Near Earth; Software for Alignment of Segments of a Telescope Mirror; Simulation of Dropping of Cargo With Parachutes; DAVE-ML Utility Program; Robust Control for the Mercury Laser Altimeter; Thermally Stable Piezoelectric and Pyroelectric Polymers; Combustion Synthesis of Ca3(PO4)2 Net-Shape Surgical Implants; Stochastic Representation of Chaos Using Terminal Attractors; Two High-Temperature Foil Journal Bearings; Using Plates To Represent Fillets in Finite-Element Modeling; Repairing Chipped Silicide Coatings on Refractory Metal Substrates; Simplified Fabrication of Helical Copper Antennas; Graded-Index "Whispering-Gallery" Optical Microresonators; Optical Profilometers Using Adaptive Signal Processing; Manufacture of Sparse-Spectrum Optical Microresonators; Exact Tuning of High-Q Optical Microresonators by Use of UV; Automation for "Direct-to" Clearances in Air-Traffic Control; Improved Traps for Removing Gases From Coolant Liquids; and Lunar Constellation of Frozen Elliptical Inclined Orbits.
NASA Astrophysics Data System (ADS)
Patten, C. G. C.; Pitcairn, I. K.; Teagle, D. A. H.; Harris, M.
2016-11-01
Fluxes of metals during the hydrothermal alteration of the oceanic crust have far reaching effects including buffering of the compositions of the ocean and lithosphere, supporting microbial life and the formation of sulphide ore deposits. The mechanisms responsible for metal mobilisation during the evolution of the oceanic crust are complex and are neither fully constrained nor quantified. Investigations into the mineral reactions that release metals, such as sulphide leaching, would generate better understanding of the controls on metal mobility in the oceanic crust. We investigate the sulphide and oxide mineral paragenesis and the extent to which these minerals control the metal budget in samples from Ocean Drilling Program (ODP) Hole 1256D. The ODP Hole 1256D drill core provides a unique sample suite representative of a complete section of a fast-spreading oceanic crust from the volcanic section down to the plutonic complex. The sulphide population at Hole 1256D is divided into five groups based on mineralogical assemblage, lithological location and texture: the magmatic, metasomatised, high temperature hydrothermal, low temperature and patchy sulphides. The initiation of hydrothermal alteration by downward flow of moderate temperature (250-350 °C) hydrothermal fluids under oxidising conditions leads to metasomatism of the magmatic sulphides in the sheeted dyke and plutonic complexes. Subsequent increase in the degree of hydrothermal alteration at temperatures >350 °C under reducing conditions then leads to the leaching of the metasomatised sulphides by rising hydrothermal fluids. Mass balance calculations show that the mobility of Cu, Se and Au occurs through sulphide leaching during high temperature hydrothermal alteration and that the mobility of Zn, As, Sb and Pb is controlled by silicate rather than sulphide alteration. Sulphide leaching is not complete at Hole 1256D and more advanced alteration would mobilise greater masses of metals. Alteration of oxide minerals does not release significant quantities of metal into the hydrothermal fluid at Hole 1256D. Mixing of rising high temperature fluids with low temperature fluids, either in the upper sheeted dyke section or in the transitional zone, triggers local high temperature hydrothermal sulphide precipitation and trapping of Co, Ni, Cu, Zn, As, Ag, Sb, Se, Te, Au, Hg and Pb. In the volcanic section, low temperature fluid circulation (<150 °C) leads to low temperature sulphide precipitation in the form of pyrite fronts that have high As concentrations due to uptake from the circulating fluids. Deep late low temperature circulation in the sheeted dyke and the plutonic complexes results in local precipitation of patchy sulphides and local metal remobilisation. Control of sulphides over Au, Se and Cu throughout fast-spreading mid-oceanic crust history implies that the generation of hydrothermal fluids enriched in these metals, which can eventually form VMS deposits, is strongly controlled by sulphide leaching.
The LANL P14 temperature control electronics for the waveshaping filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nahman, N.S.
1993-12-17
The Pulse Waveform Standard is designed to be operated in a laboratory environment in which the temperature is controlled and maintained at 22 C. The temperature controller of the Pulse Waveform Standard must be set to operate at 30 C. This report gives information for calibrating and maintaining the temperature control electronics. Temperature controller circuit diagrams and temperature controller circuit board layouts are included.
Methods for accurate cold-chain temperature monitoring using digital data-logger thermometers
NASA Astrophysics Data System (ADS)
Chojnacky, M. J.; Miller, W. M.; Strouse, G. F.
2013-09-01
Complete and accurate records of vaccine temperature history are vital to preserving drug potency and patient safety. However, previously published vaccine storage and handling guidelines have failed to indicate a need for continuous temperature monitoring in vaccine storage refrigerators. We evaluated the performance of seven digital data logger models as candidates for continuous temperature monitoring of refrigerated vaccines, based on the following criteria: out-of-box performance and compliance with manufacturer accuracy specifications over the range of use; measurement stability over extended, continuous use; proper setup in a vaccine storage refrigerator so that measurements reflect liquid vaccine temperatures; and practical methods for end-user validation and establishing metrological traceability. Data loggers were tested using ice melting point checks and by comparison to calibrated thermocouples to characterize performance over 0 °C to 10 °C. We also monitored logger performance in a study designed to replicate the range of vaccine storage and environmental conditions encountered at provider offices. Based on the results of this study, the Centers for Disease Control released new guidelines on proper methods for storage, handling, and temperature monitoring of vaccines for participants in its federally-funded Vaccines for Children Program. Improved temperature monitoring practices will ultimately decrease waste from damaged vaccines, improve consumer confidence, and increase effective inoculation rates.
Urban remote sensing applications: TIMS observations of the City of Scottsdale
NASA Technical Reports Server (NTRS)
Christensen, Philip R.; Melendrez, David E.; Anderson, Donald L.; Hamilton, Victoria E.; Wenrich, Melissa L.; Howard, Douglas
1995-01-01
A research program has been initiated between Arizona State University and the City of Scottsdale, Arizona to study the potential applications of TIMS (Thermal Infrared Multispectral Scanner) data for urban scene classification, desert environmental assessment, and change detection. This program is part of a long-term effort to integrate remote sensing observations into state and local planning activities to improve decision making and future planning. Specific test sites include a section of the downtown Scottsdale region that has been mapped in very high detail as part of a pilot program to develop an extensive GIS database. This area thus provides excellent time history of the evolution of the city infrastructure, such as the timing and composition of street repavement. A second area of study includes the McDowell intensive study by state and local agencies to assess potential sites for urban development as well as preservation. These activities are of particular relevance as the Phoenix metropolitan area undergoes major expansion into the surrounding desert areas. The objectives of this study in urban areas are aimed at determining potential applications of TIMS data for classifying and assessing land use and surface temperatures. Land use centers on surface impermeability studies for storm runoff assessment and pollution control. These studies focus on determining the areal abundance of urban vegetation and undeveloped soil. Highly experimental applications include assessment and monitoring of pavement condition. Temperature studies focus on determining swimming pool area and temperature for use in monitoring evaporating and urban water consumption. These activities are of particular relevance as the Phoenix metropolitan area undergoes major expansion into the surrounding desert area.
Parkhurst, David L.; Appelo, C.A.J.
1999-01-01
PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.
An Automated Thermocouple Calibration System
NASA Technical Reports Server (NTRS)
Bethea, Mark D.; Rosenthal, Bruce N.
1992-01-01
An Automated Thermocouple Calibration System (ATCS) was developed for the unattended calibration of type K thermocouples. This system operates from room temperature to 650 C and has been used for calibration of thermocouples in an eight-zone furnace system which may employ as many as 60 thermocouples simultaneously. It is highly efficient, allowing for the calibration of large numbers of thermocouples in significantly less time than required for manual calibrations. The system consists of a personal computer, a data acquisition/control unit, and a laboratory calibration furnace. The calibration furnace is a microprocessor-controlled multipurpose temperature calibrator with an accuracy of +/- 0.7 C. The accuracy of the calibration furnace is traceable to the National Institute of Standards and Technology (NIST). The computer software is menu-based to give the user flexibility and ease of use. The user needs no programming experience to operate the systems. This system was specifically developed for use in the Microgravity Materials Science Laboratory (MMSL) at the NASA LeRC.
Spacecraft thermal balance testing using infrared sources
NASA Technical Reports Server (NTRS)
Tan, G. B. T.; Walker, J. B.
1982-01-01
A thermal balance test (controlled flux intensity) on a simple black dummy spacecraft using IR lamps was performed and evaluated, the latter being aimed specifically at thermal mathematical model (TMM) verification. For reference purposes the model was also subjected to a solar simulation test (SST). The results show that the temperature distributions measured during IR testing for two different model attitudes under steady state conditions are reproducible with a TMM. The TMM test data correlation is not as accurate for IRT as for SST. Using the standard deviation of the temperature difference distribution (analysis minus test) the SST data correlation is better by a factor of 1.8 to 2.5. The lower figure applies to the measured and the higher to the computer-generated IR flux intensity distribution. Techniques of lamp power control are presented. A continuing work program is described which is aimed at quantifying the differences between solar simulation and infrared techniques for a model representing the thermal radiating surfaces of a large communications spacecraft.
NASA Technical Reports Server (NTRS)
1982-01-01
The improvement of growth rates using radiation shielding and investigation of the crucible melt interaction for improved yields were emphasized. Growth runs were performed from both 15 and 16 inch diameter crucibles, producing 30 and 37 kg ingots respectively. Efforts to increase the growth rate of 150 mm diameter ingots were limited by temperature instabilities believed to be caused by undesirable thermal convections in the larger melts. The radiation shield improved the growth rate somewhat, but the thermal instability was still evident, leading to nonround ingots and loss of dislocation-free structure. A 38 kg crystal was grown to demonstrate the feasibility of producing 150 kg with four growth cycles. After the grower construction phase, the Hamco microprocessor control system was interfaced to the growth facility, including the sensor for automatic control of seeding temperature, and the sensor for automatic shouldering. Efforts focused upon optimization of the seeding, necking, and shoulder growth automation programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloy, Stuart Andrew; Pestovich, Kimberly Shay; Anderoglu, Osman
The Fuel Cycle Research and Development program is investigating methods of transmuting minor actinides in various fuel cycle options. To achieve this goal, new fuels and cladding materials must be developed and tested to high burnup levels (e.g. >20%) requiring cladding to withstand very high doses (greater than 200 dpa) while in contact with the coolant and the fuel. To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Recent results from testing numerous ferritic/martensitic steels at low temperatures suggest that improvements inmore » low temperature radiation tolerance can be achieved through carefully controlling the nitrogen content in these alloys. Thus, four new heats of HT-9 were produced with controlled nitrogen content: two by Metalwerks and two by Sophisticated Alloys. Initial results on these new alloys are presented including microstructural analysis and hardness testing. Future testing will include irradiation testing with ions and in reactor.« less
The design of high precision temperature control system for InGaAs short-wave infrared detector
NASA Astrophysics Data System (ADS)
Wang, Zheng-yun; Hu, Yadong; Ni, Chen; Huang, Lin; Zhang, Aiwen; Sun, Xiao-bing; Hong, Jin
2018-02-01
The InGaAs Short-wave infrared detector is a temperature-sensitive device. Accurate temperature control can effectively reduce the background signal and improve detection accuracy, detection sensitivity, and the SNR of the detection system. Firstly, the relationship between temperature and detection background, NEP is analyzed, the principle of TEC and formula between cooling power, cooling current and hot-cold interface temperature difference are introduced. Then, the high precision constant current drive circuit based on triode voltage control current, and an incremental algorithm model based on deviation tracking compensation and PID control are proposed, which effectively suppresses the temperature overshoot, overcomes the temperature inertia, and has strong robustness. Finally, the detector and temperature control system are tested. Results show that: the lower of detector temperature, the smaller the temperature fluctuation, the higher the detection accuracy and the detection sensitivity. The temperature control system achieves the high temperature control with the temperature control rate is 7 8°C/min and the temperature fluctuation is better than +/-0. 04°C.
Composite Matrix Cooling Scheme for Small Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Paskin, Marc D.; Ross, Phillip T.; Mongia, Hukam C.; Acosta, Waldo A.
1990-01-01
The design, manufacture, and testing of a compliant metal/ceramic (CMC) wall cooling concept-implementing combustor for small gas turbine engines has been undertaken by a joint U.S. Army/NASA technology development program. CMC in principle promises greater wall cooling effectiveness than conventional designs and materials, thereby facilitating a substantial reduction in combustor cooling air requirements and furnishing greater airflow for the control of burner outlet temperature patterns as well as improving thermodynamic efficiency and reducing pollutant emissions and smoke levels. Rig test results have confirmed the projected benefits of the CMC concept at combustor outlet temperatures of the order of 2460 F, at which approximately 80 percent less cooling air than conventionally required was being employed by the CMC combustor.
Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion
NASA Technical Reports Server (NTRS)
Hanley, David; Carella, John
1999-01-01
This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.
Design of Water Temperature Control System Based on Single Chip Microcomputer
NASA Astrophysics Data System (ADS)
Tan, Hanhong; Yan, Qiyan
2017-12-01
In this paper, we mainly introduce a multi-function water temperature controller designed with 51 single-chip microcomputer. This controller has automatic and manual water, set the water temperature, real-time display of water and temperature and alarm function, and has a simple structure, high reliability, low cost. The current water temperature controller on the market basically use bimetal temperature control, temperature control accuracy is low, poor reliability, a single function. With the development of microelectronics technology, monolithic microprocessor function is increasing, the price is low, in all aspects of widely used. In the water temperature controller in the application of single-chip, with a simple design, high reliability, easy to expand the advantages of the function. Is based on the appeal background, so this paper focuses on the temperature controller in the intelligent control of the discussion.
Impact and Collisional Processes in the Solar System
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2001-01-01
In the past year, we have successfully developed the techniques necessary to conduct impact experiments on ice at very low temperatures. We employ the method of embedding gauges within a target to measure the shock wave and material properties. This means that our data are not model dependent; we directly measure the essential parameters needed for numerical simulations of impact cratering. Since then we have developed a new method for temperature control of icy targets that ensures temperature equilibrium throughout a porous target. Graduate student, Sarah Stewart-Mukhopadhyay, is leading the work on ices and porous materials as the main thrust of her thesis research. Our previous work has focused on icy materials with no porosity, and we propose to extend our research to include porous ice and porous ice-silicate mixtures. There is little shockwave data for porous ice, and none of the data was acquired under conditions applicable to the outer solar system. The solid ice Hugoniot is only defined for initial temperatures above -20 C. Our program uniquely measures the properties of ice at temperatures directly applicable to the solar system. Previous experiments were conducted at ambient temperatures soon after removing the target from a cold environment, usually just below freezing, or in a room just below freezing. Since ice has an extremely complicated phase diagram, it is important to conduct experiments at lower temperatures to determine the true outcome of impacts in the outer solar system. This research is complementary to other programs on icy materials. Our work focuses on the inherent material properties by measuring the shock wave directly; this complements the macroscopic observations and immediately provides the parameters necessary to extend this research to the gravity regime. Our numerical simulations of impacts in porous ice under very low gravity conditions, such as found on comets, show that the final crater size and shape is very dependent on the dynamic strength of the material.
1983-03-01
economizer and enthalpy cycles, scheduled temperature reset, chiller control and chilled water reset, boiler control and hot water temperature reset...temperature reset, chiller control and chilled water reset, boiler control and hot water temperature reset, and condenser water temperature reset. Recent...day-night setback. Day-night setback is the strategy of reducing the heating space temperature setpoint or raising the cooling space temperature
Formation of nanocarbon spheres by thermal treatment of woody char from fast pyrolysis process
Qiangu Yan; Hossein Toghiani; Zhiyong Cai; Jilei Zhang
2014-01-01
Influences of thermal treatment conditions of temperature, reaction cycle and time, and purge gas type on nanocarbon formation over bio-chars from fast pyrolysis and effects of thermal reaction cycle and purge gas type on bio-char surface functional groups were investigated by temperature-programmed desorption (TPD) and temperature programmed reduction methods....
21 CFR 870.4250 - Cardiopulmonary bypass temperature controller.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass temperature controller. 870... Cardiopulmonary bypass temperature controller. (a) Identification. A cardiopulmonary bypass temperature controller is a device used to control the temperature of the fluid entering and leaving a heat exchanger. (b...
21 CFR 870.4250 - Cardiopulmonary bypass temperature controller.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass temperature controller. 870... Cardiopulmonary bypass temperature controller. (a) Identification. A cardiopulmonary bypass temperature controller is a device used to control the temperature of the fluid entering and leaving a heat exchanger. (b...
21 CFR 870.4250 - Cardiopulmonary bypass temperature controller.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass temperature controller. 870... Cardiopulmonary bypass temperature controller. (a) Identification. A cardiopulmonary bypass temperature controller is a device used to control the temperature of the fluid entering and leaving a heat exchanger. (b...
TERRA Battery Thermal Control Anomaly - Simulation and Corrective Actions
NASA Technical Reports Server (NTRS)
Grob, Eric W.
2010-01-01
The TERRA spacecraft was launched in December 1999 from Vandenberg Air Force Base, becoming the flagship of NASA's Earth Observing System program to gather data on how the planet's processes create climate. Originally planned as a 5 year mission, it still provides valuable science data after nearly 10 years on orbit. On October 13th, 2009 at 16:23z following a routine inclination maneuver, TERRA experienced a battery cell failure and a simultaneous failure of several battery heater control circuits used to maintain cell temperatures and gradients within the battery. With several cells nearing the minimum survival temperature, preventing the electrolyte from freezing was the first priority. After several reset attempts and power cycling of the control electronics failed to reestablish control authority on the primary side of the controller, it was switched to the redundant side, but anomalous performance again prevented full heater control of the battery cells. As the investigation into the cause of the anomaly and corrective action continued, a battery thermal model was developed to be used in determining the control ability remaining and to simulate and assess corrective actions. Although no thermal model or detailed reference data of the battery was available, sufficient information was found to allow a simplified model to be constructed, correlated against pre-anomaly telemetry, and used to simulate the thermal behavior at several points after the anomaly. It was then used to simulate subsequent corrective actions to assess their impact on cell temperatures. This paper describes the rapid development of this thermal model, including correlation to flight data before and after the anomaly., along with a comparative assessment of the analysis results used to interpret the telemetry to determine the extent of damage to the thermal control hardware, with near-term corrective actions and long-term operations plan to overcome the anomaly.
Control-structure-thermal interactions in analysis of lunar telescopes
NASA Technical Reports Server (NTRS)
Thompson, Roger C.
1992-01-01
The lunar telescope project was an excellent model for the CSTI study because a telescope is a very sensitive instrument, and thermal expansion or mechanical vibration of the mirror assemblies will rapidly degrade the resolution of the device. Consequently, the interactions are strongly coupled. The lunar surface experiences very large temperature variations that range from approximately -180 C to over 100 C. Although the optical assemblies of the telescopes will be well insulated, the temperature of the mirrors will inevitably fluctuate in a similar cycle, but of much smaller magnitude. In order to obtain images of high quality and clarity, allowable thermal deformations of any point on a mirror must be less than 1 micron. Initial estimates indicate that this corresponds to a temperature variation of much less than 1 deg through the thickness of the mirror. Therefore, a lunar telescope design will most probably include active thermal control, a means of controlling the shape of the mirrors, or a combination of both systems. Historically, the design of a complex vehicle was primarily a sequential process in which the basic structure was defined without concurrent detailed analyses or other subsystems. The basic configuration was then passed to the different teams responsible for each subsystem, and their task was to produce a workable solution without requiring major alterations to any principal components or subsystems. Consequently, the final design of the vehicle was not always the most efficient, owing to the fact that each subsystem design was partially constrained by the previous work. This procedure was necessary at the time because the analysis process was extremely time-consuming and had to be started over with each significant alteration of the vehicle. With recent advances in the power and capacity of small computers, and the parallel development of powerful software in structural, thermal, and control system analysis, it is now possible to produce very detailed analyses of intermediate designs in a much shorter period of time. The subsystems can thus be designed concurrently, and alterations in the overall design can be quickly adopted into each analysis; the design becomes an iterative process in which it is much easier to experiment with new ideas, configurations, and components. Concurrent engineering has the potential to produce efficient, highly capable designs because the effect of one subystem on another can be assessed in much more detail at a very early point in the program. The research program consisted of several tasks: scale a prototype telescope assembly to a 1 m aperture, develop a model of the telescope assembly by using finite element (FEM) codes that are available on site, determine structural deflections of the mirror surfaces due to the temperature variations, develop a prototype control system to maintain the proper shape of the optical elements, and most important of all, demonstrate the concurrent engineering approach with this example. In addition, the software used for the finite element models and thermal analysis was relatively new within the Program Development Office and had yet to be applied to systems this large or complex; understanding the software and modifying it for use with this project was also required. The I-DEAS software by Structural Dynamics Research Corporation (SDRC) was used to build the finite element models, and TMG developed by Maya Heat Transfer Technologies, Ltd. (which runs as an I-DEAS module) was used for the thermal model calculations. All control system development was accomplished with MATRIX(sub X) by Integrated Systems, Inc.
Sub-to super-ambient temperature programmable microfabricated gas chromatography column
Robinson, Alex L.; Anderson, Lawrence F.
2004-03-16
A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.
Design and Operating Characteristics of High-Speed, Small-Bore Cylindrical-Roller Bearings
NASA Technical Reports Server (NTRS)
Pinel, Stanley, I.; Signer, Hans R.; Zaretsky, Erwin V.
2000-01-01
The computer program SHABERTH was used to analyze 35-mm-bore cylindrical roller bearings designed and manufactured for high-speed turbomachinery applications. Parametric tests of the bearings were conducted on a high-speed, high-temperature bearing tester and the results were compared with the computer predictions. Bearings with a channeled inner ring were lubricated through the inner ring, while bearings with a channeled outer ring were lubricated with oil jets. Tests were run with and without outer-ring cooling. The predicted bearing life decreased with increasing speed because of increased contact stresses caused by centrifugal load. Lower temperatures, less roller skidding, and lower power losses were obtained with channeled inner rings. Power losses calculated by the SHABERTH computer program correlated reasonably well with the test results. The Parker formula for XCAV (used in SHABERTH as a measure of oil volume in the bearing cavity) needed to be adjusted to reflect the prevailing operating conditions. The XCAV formula will need to be further refined to reflect roller bearing lubrication, ring design, cage design, and location of the cage-controlling land.
Development of Tailorable Electrically Conductive Thermal Control Material Systems
NASA Technical Reports Server (NTRS)
Deshpande, M. S.; Harada, Y.
1998-01-01
The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has already added to the existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The object of this program was to develop two types of passive electrically conductive TCMS.
Dedication of emergency diesel generators` control air subsystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, M.; Myers, G.; Palumbo, M.
1994-12-31
In the spring of 1993, the need to upgrade Seabrook Station`s emergency diesel generators` (EDGs`) control air system from nonsafety related to safety related was identified. This need was identified as a result of questions raised by the US Nuclear Regulatory Commission, which was conducting an Electrical Distribution Safety Functional Inspection at Seabrook at that time. The specific reason for the reassignment of safety classification was recognition that failure of the control air supply to the EDGs` jacket cooling water temperature control valves could cause overcooling of the EDGs, which potentially could result in EDG failure during long-term operation. Thismore » paper addresses how the installed control air system was upgraded to safety related using Seabrook`s Commercial Grade Dedication (CGD) Program and how, by using the dedication skills obtained over the past few years, it was done at minimal cost.« less
NASA Astrophysics Data System (ADS)
Masternak, Tadeusz J.
This research determines temperature-constrained optimal trajectories for a scramjet-based hypersonic reconnaissance vehicle by developing an optimal control formulation and solving it using a variable order Gauss-Radau quadrature collocation method with a Non-Linear Programming (NLP) solver. The vehicle is assumed to be an air-breathing reconnaissance aircraft that has specified takeoff/landing locations, airborne refueling constraints, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom scramjet aircraft model is adapted from previous work and includes flight dynamics, aerodynamics, and thermal constraints. Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and coverage of high-value targets. To solve the optimal control formulation, a MATLAB-based package called General Pseudospectral Optimal Control Software (GPOPS-II) is used, which transcribes continuous time optimal control problems into an NLP problem. In addition, since a mission profile can have varying vehicle dynamics and en-route imposed constraints, the optimal control problem formulation can be broken up into several "phases" with differing dynamics and/or varying initial/final constraints. Optimal trajectories are developed using several different performance costs in the optimal control formulation: minimum time, minimum time with control penalties, and maximum range. The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for larger-scale operational and campaign planning and execution.
Cao, Xiaohuang; Zhang, Min; Qian, He; Mujumdar, Arun S
2017-06-01
An online temperature-detection-assisted control system of microwave-assisted pulse-spouted vacuum drying was newly developed. By using this system, temperature control can be automatically and continuously adjusted based on the detection of drying temperature and preset temperature. Various strategies for constant temperature control, linear temperature control and three-step temperature control were applied to drying carrot cubes. Drying kinetics and the quality of various temperature-controlled strategies online are evaluated for the new drying technology as well as its suitability as an alternative drying method. Drying time in 70 °C mode 1 had the shortest drying time and lowest energy consumption in all modes. A suitable colour, highest re-hydration ratio and fracture-hardness, and longest drying time occurred in 30-40-50 °C mode 3. The number of hot spots was reduced in 40-50-60 °C mode 3. Acceptable carrot snacks were obtained in 50-60-70 °C mode 3 and 70 °C mode 2. All temperature curves showed that the actual temperatures followed the preset temperatures appropriately. With this system, a linear temperature-controlled strategy and a three-step temperature-controlled strategy can improve product quality and heating non-uniformity compared to constant temperature control, but need greater energy consumption and longer drying time. A temperature-detection-assisted control system was developed for providing various drying strategies as a suitable alternative in making a snack product. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Variable temperature seat climate control system
Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.
1997-05-06
A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.
An integrated database with system optimization and design features
NASA Technical Reports Server (NTRS)
Arabyan, A.; Nikravesh, P. E.; Vincent, T. L.
1992-01-01
A customized, mission-specific relational database package was developed to allow researchers working on the Mars oxygen manufacturing plant to enter physical description, engineering, and connectivity data through a uniform, graphical interface and to store the data in formats compatible with other software also developed as part of the project. These latter components include an optimization program to maximize or minimize various criteria as the system evolves into its final design; programs to simulate the behavior of various parts of the plant in Martian conditions; an animation program which, in different modes, provides visual feedback to designers and researchers about the location of and temperature distribution among components as well as heat, mass, and data flow through the plant as it operates in different scenarios; and a control program to investigate the stability and response of the system under different disturbance conditions. All components of the system are interconnected so that changes entered through one component are reflected in the others.
Extravehicular mobility unit thermal simulator
NASA Technical Reports Server (NTRS)
Hixon, C. W.; Phillips, M. A.
1973-01-01
The analytical methods, thermal model, and user's instructions for the SIM bay extravehicular mobility unit (EMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the crewman performing a command module extravehicular activity during transearth coast. It accounts for conductive, convective, and radiative heat transfer as well as fluid flow and associated flow control components. The program is a derivative of the Apollo lunar surface EMU digital simulator. It has the operational flexibility to accept card or magnetic tape for both the input data and program logic. Output can be tabular and/or plotted and the mission simulation can be stopped and restarted at the discretion of the user. The program was developed for the NASA-JSC Univac 1108 computer system and several of the capabilities represent utilization of unique features of that system. Analytical methods used in the computer routine are based on finite difference approximations to differential heat and mass balance equations which account for temperature or time dependent thermo-physical properties.
NASA Astrophysics Data System (ADS)
Losseau, Romain
The ongoing energy transition is about to entail important changes in the way we use and manage energy. In this view, smart grids are expected to play a significant part through the use of intelligent storage techniques. Initiated in 2014, the SmartDesc project follows this trend to create an innovative load management program by exploiting the thermal storage associated with electric water heaters existing in residential households. The device control algorithms rely on the recent theory of mean field games to achieve a decentralized control of the water heaters temperatures producing an aggregate optimal trajectory, designed to smooth the electric demand of a neighborhood. Currently, this theory does not include power and temperature constraints due to the tank heating system or necessary for the user's safety and comfort. Therefore, a trajectory violating these constraints would not be feasible and would not induce the forecast load smoothing. This master's thesis presents a method to detect the non-feasability, of a target trajectory based on the Kolmogorov equations associated with the controlled electric water heaters and suggests a way to correct it so as to make it achievable under constraints. First, a partial differential equations based model of the water heaters under temperature constraints is presented. Subsequently, a numerical scheme is developed to simulate it, and applied to the mean field control. The results of the mean field control with and without constraints are compared, and non-feasabilities of the target trajectory are highlighted upon violations. The last part of the thesis is dedicated to developing an accelerated version of the mean field and a method of correcting the target trajectory so as to enlarge as much as possible the set of achievable profiles.
Liu, Yan-Hong; Jia, Dong; Yuan, Xiao-Fang; Wang, Yuan-Xin; Chi, Hsin; Ridsdill-Smith, Thomas James; Ma, Rui-Yan
2018-05-08
The alligator weed flea beetle, Agasicles hygrophila Selman & Vogt (Coleoptera: Chrysomelidae) has been used very successfully for the biological control of the widely-distributed invasive weed Alternanthera philoxeroides (Mart.) Griseb (Caryophyllales: Amaranthaceae). In order to extend the 'shelf life' of natural enemies released in biological control programs, cold storage has proven to be a valuable commercial procedure. To determine a suitable low temperature for storage of A. hygrophila, we conducted short-term cold storage treatments of eggs (4°C for 0.5, 1, 2, 5 d, and 7.5, 10, 15°C for 5 d and a control of 25°C; all eggs were returned to 25°C after the treatments). We evaluated the effects of these treatments on the subsequent fitness of the populations based on a demographic analysis using group-reared age-stage two-sex life tables. For 5 d storage, temperatures below 10°C had lethal effects, which were also observed at 4°C for 2 d storage. Storage at 4°C for 0.5 d did not affect the fitness of A. hygrophila, but it did not prolong the developmental time. Storage at 10°C for 5 d significantly decreased rates of population increase compared with 25°C. A. hygrophila stored at 15°C for 5 d had similar age-(stage) specific survival rates, rates of population increase, increased longevity and reproductive capability to the controls at 25°C. It is concluded that there were no significant fitness costs after 5 d storage at 15°C, which is therefore potentially a suitable storage temperature for A. hygrophila eggs.
NASA Astrophysics Data System (ADS)
Gallas, G.; Dontsova, K.; Chorover, J.; Hunt, E.; Ravi, S.
2010-12-01
During this past summer, the National Science Foundation funded a 10-week Research Experience for Undergraduates (REU) program “Environmental and Earth Systems Research at Biosphere 2”. This program provides undergraduates with an opportunity to conduct guided research in environmental and Earth systems science and has resulted in this work. Biosphere 2 allows for the exploration of complex questions in Earth sciences because of its large scale and the precise control allowed over many experimental elements. The goal of this study was to observe plant-mediated weathering of granular basalt under two temperature conditions. Two grass species were studied, one native to Arizona: Tanglehead, Heteropogan contortus, and one exotic to Arizona: Buffelgrass, Pennisetum ciliar. The grasses were grown in pots located in the Desert and the Savannah Biomes in the Biosphere 2 to take advantage of a 4° C temperature difference. Understanding differences in how native and invasive grasses weather soil and take up nutrients may explain the mechanism behind current invasion of Sonoran Desert by exotic species and help predict response of native and invasive vegetation to expected increase in temperatures. Each biome also contained three replicate “control” pots without vegetation, and mixtures of the two grass species to observe possible competition between the species. Three factors were compared in this study: 1. Temperature: the same species of grass under two different temperature conditions 2. Species: Native Arizonan species vs. a species exotic to Arizona 3. Temporal: How the grasses use resources differently as they grow Leachate samples were collected and analyzed for pH, electrical conductivity, total organic carbon, total nitrogen, inorganic carbon by high temperature combustion coupled with infrared gas analysis; F-, Cl-, Br-, NO3-, NO2-, SO42-, and PO43- by ion chromatography; and cations and metals by ICP-MS. The data trends indicate that plants enhanced basalt weathering. All of the leachate samples showed higher pH than the input water, and the pH was elevated in treatments that contained grass. This indicated that in the presence of vegetation there was more proton absorption. The trends in total nitrogen concentrations indicate a dependence on temperature; the same can be said of anion concentrations. Anion leaching is lower at higher temperatures possibly due to greater plant uptake. Both organic and inorganic carbon concentrations were found to be higher in grass treatments than in control treatments. Because both dissolved CO2 and soluble organic exudates encourage mineral dissolution, this could be causative of the weathering enhancements observed. Denudation of nutrient elements differed between plant species and between temperatures, possibly relating to plant uptake and secondary mineral formation. This study gives unique insight into plant-mineral interactions as a function of plant species and temperature that is essential for understanding Earth systems under changing climate.
Highly Efficient Multilayer Thermoelectric Devices
NASA Technical Reports Server (NTRS)
Boufelfel, Ali
2006-01-01
Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron-acceptor (p)-doped and electron-donor (n)-doped, nanometer- thick semiconductor layers.
Abadlia, L; Gasser, F; Khalouk, K; Mayoufi, M; Gasser, J G
2014-09-01
In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abadlia, L.; Mayoufi, M.; Gasser, F.
2014-09-15
In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in thismore » paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.« less