Sample records for progressive facies variation

  1. Hierarchy of facies of pyroclastic flow deposits generated by Laacher See type eruptions

    NASA Astrophysics Data System (ADS)

    Freundt, A.; Schmincke, H.-U.

    1985-04-01

    The upper Quaternary pyroclastic flow deposits of Laacher See volcano show compositional and structural facies variations on four different scales: (1) eruptive units of pyroclastic flows, composed of many flow units; (2) depositional cycles of as many as five flow units; flow units containing (3) regional intraflow-unit facies; and (4) local intraflow-unit subfacies. These facies can be explained by successively overlapping processes beginning in the magma column and ending with final deposition. The pyroclastic flow deposits thus reflect major aspects of the eruptive history of Laacher See volcano: (a) drastic changes in eruptive mechanism due to increasing access of water to the magma chamber and (b) change in chemical composition and crystal and gas content as evacuation of a compositionally zoned magma column progressed. The four scales of facies result from four successive sets of processes: (1) differentiation in the magma column and external factors governing the mechanism of eruption; (2) temporal variations of factors inducing eruption column collapse; (3) physical conditions in the eruption column and the way in which its collapse proceeds; and (4) interplay of flow-inherent and morphology-induced transport mechanics.

  2. Sequence stratigraphic principles applied to the Miocene Hawthorn Group, west-central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, V.L.; Randazzo, A.F.

    1993-03-01

    Sequence boundaries for the Miocene Hawthorn Group in the ROMP 20 drill core from Osprey, Sarasota County, FL were generally delineated by lithologic variations recognized from core slabs, thin section analysis, and geophysical logs. At least six depositional sequences representing third order sea level fluctuations were identified. Depositional environments were determined on the basis of the characteristic lithologic constituents including rip-up clasts, pellets, fossils, laminations, burrow, degree of induration, and grain sorting. The sequence boundaries appear to have formed when the rate of the eustatic fall exceeded basin subsidence rates producing a relative sea level fall at a depositional shorelinemore » break. As a result of the basinward facies shift associated with this sequence type, peritidal facies may directly overlie deeper water facies. Subaerial exposure and erosion can be expected. The sequence of facies representing progressively deeper water depositional environments, followed by a progressive shallowing, were present between bounding surfaces. Among the six sequences recognized, four were clearly delineated as representative of regression, subaerial exposure, and subsequent transgression. Two sequences were less clearly defined and probably represent transitional facies which had exposure surfaces developed. Comparison of the petrologically established sequence stratigraphy with published sea level curves resulted in a strong correlation between the number of sequences recognized and the number of coastal on-lap/off-lap cycles depicted for the early to middle Miocene. This correlation suggests that petrologic examination of core slabs, with supplemental thin section data, can provide useful information regarding the recognition of stratigraphic sequences and relative sea level fluctuations, particularly, in situations where seismic data may not be available.« less

  3. The effect of paleotopography on lithic distribution and facies associations of small volume ignimbrites: the WTT Cupa (Roccamonfina volcano, Italy)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido

    1998-12-01

    The distribution of lithic clasts within two trachytic, small volume, pumiceous ignimbrites are described from the Quaternary `White Trachytic Tuff Cupa' formation of Roccamonfina volcano, Italy. The ignimbrites show a downslope grading of lithics, with a maximum size where there is a major break in the volcano's slope, rather than at proximal locations. This is also the location where ignimbrites are thickest and most massive. The break in slope is interpreted to have reduced flow capacity and velocity, increasing the sedimentation rate, so that massive ignimbrite formed by hindered settling sedimentation. Ignimbrite Cc, exhibits no vertical grading of lithics, though it does show downslope grading with maximum size at the major break in slope and a rapid decrease further downslope. Ignimbrite Cc thins away from the break in slope, and shows an upward fining of the grain size within the topmost few decimeters of the unit. The ignimbrite is stratified proximally, and grades to massive facies at the break in slope, and distally to stratified facies with numerous inverse-graded beds. The simplest mechanism accounting for these downslope variations is progressive aggradation from a quasi-steady, nonuniform pyroclastic density current. The changes in deposit thickness and facies are interpreted to record downcurrent changes in sedimentation rate. The upward fining reflects waning flow. Inversely graded, bedded depositional facies in distal areas is interpreted to reflect flow unsteadiness and a decrease in suspended sediment load. Ignimbrite Cd shows vertical, as well as downslope grading of lithics. This characteristic, coupled with the widespread massive facies of the deposit and the tabular unit geometry are features that can be reconciled with both the debris flow/plug analogy for pyroclastic flows ( Sparks, 1976) and the progressive aggradation model ( Branney and Kokelaar, 1992). However, none of them appears to satisfy completely the field evidences, implying that when dealing with massive ignimbrites, other evidence than lithic grading needs to be presented to better understand the related transport and depositional processes.

  4. Sedimentary environment and diagenesis of the Lower Cretaceous Chaswood Formation, southeastern Canada: The origin of kaolin-rich mudstones

    NASA Astrophysics Data System (ADS)

    Pe-Piper, Georgia; Dolansky, Lila; Piper, David J. W.

    2005-07-01

    The Lower Cretaceous fluvial sandstone-mudstone succession of the Chaswood Formation is the proximal equivalent of offshore deltaic rocks of the Scotian Basin that are reservoirs for producing gas fields. This study interprets the mineralogical consequences of Cretaceous weathering and early diagenesis in a 130-m core from the Chaswood Formation in order to better understand detrital and diagenetic minerals in equivalent rocks offshore. Mineralogy was determined by X-ray diffraction, electron microprobe analysis and scanning electron microscopy. The rocks can be divided into five facies associations: light gray mudstone, dark gray mudstone, silty mudstone and muddy sandstone, sorted sandstone and conglomerate, and paleosols. Facies transitions in coarser facies are related to deposition in and near fluvial channels. In the mudstones, they indicate an evolutionary progression from the dark gray mudstone facies association (swamps and floodplain soils) to mottled paleosols (well-drained oxisols and ultisols following syntectonic uplift). Facies transitions and regional distribution indicate that the light gray mudstone facies association formed from early diagenetic oxidation and alteration of the dark gray mudstone facies association, probably by meteoric water. Principal minerals in mudstones are illite/muscovite, kaolinite, vermiculite and quartz. Illite/muscovite is of detrital origin, but variations in abundance show that it has altered to kaolinite in the light gray mudstone facies association and in oxisols. Vermiculite developed from the weathering of biotite and is present in ultisols. The earliest phase of sandstone cementation in reducing conditions in swamps and ponds produced siderite nodules and framboidal pyrite, which were corroded and oxidized during subsequent development of paleosols. Kaolinite is an early cement, coating quartz grains and as well-crystallized, pore-filling booklets that was probably synchronous with the formation of the light gray mudstone facies association. Later illite and barite cement indicate a source of abundant K and Ba from formation water. This late diagenesis of sandstone took place when the Chaswood Formation was in continuity with the main Scotian Basin, prior to Oligocene uplift of the eastern Scotian Shelf. Findings of this study are applicable to other mid-latitude Cretaceous weathering and early diagenetic environments.

  5. Facies analysis and depositional environments of upper part of Richmond group (upper Ordovician), Richmond, Indiana, to Xenia, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betz, C.E.; Martin, W.D.

    Rock sections of the Drakes, Elkhorn, and Whitewater Formations were studied along an east-west-trending line in order to distinguish facies changes in a slope direction across the paleodepositional basin. The Richmond limestones, shales, and dolostones formed from fine-grained, terrigenous and carbonate sediments deposited on a shallow marine ramp within the humid, tropical, low latitudes of the Southern Hemisphere. Depositional environments on the ramp are represented by five main facies type. The five Richmond facies form a subtidal to supratidal shallowing-upward sequence. This progressive shallowing during the Late Ordovician resulted from the westward regional progradation of Queenston deltaic facies.

  6. Facies in stratigraphy: from 'terrains' to 'terranes'.

    USGS Publications Warehouse

    Nelson, C.M.

    1985-01-01

    Concepts of lateral variation in sedimentary rocks and fossil assemblages developed in France from the 1760s; the definitive definition of facies was provided in 1838 by the Swiss geologist Amanz Gressly (1814-65) in his detailed field study of the eastern Jura. His maps and cross-sections of variations in Jurassic and Triassic rocks are illustrated. He believed that variations reflected environmental conditions, as in modern seas, and would eventually permit former depths to be reconstructed. Gressly studied at Strasbourg under Voltz and Thurmann: he collaborated with L.Agassiz, E.Desor and C.Vogt. His work influenced German and French geologists and provided a basis for interpretations of the Alps. But the facies concept was not deeply rooted in American geology until around 1884 (H.S.Williams) and in Britain and Russia until around 1900. I.S.Evans

  7. Areal distribution of sedimentary facies determined from seismic facies analysis and models of modern depositional systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seramur, K.C.; Powell, R.D.; Carpenter, P.J.

    1988-01-01

    Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet.« less

  8. The changing seascape of Galway Bay, Western Ireland

    NASA Astrophysics Data System (ADS)

    Mc Cullagh, D.; Benetti, S.; Plets, R. M. K.; Edwards, R.

    2016-12-01

    During the late Quaternary significant environmental and relative sea-level variations have contributed to shaping present day coastlines. This is particularly evident along formerly glaciated continental margins. Strong evidence of these changes are recorded in Galway Bay, Western Ireland. This research uses a multidisciplinary approach. Seismic and multibeam data, sedimentological, micropaleontological, geochemical analysis and 15 radiocarbon dates of sediment cores from the bay provide post last glacial maximum (LGM) sea level and environmental reconstructions for the region. The acoustic stratigraphy of the bay includes 3 seismic units: the deepest unit represents the acoustic basement, composed of limestone and granite bedrock; the middle unit is composed of the oldest preserved sediments, deposited during and after the LGM, and interpreted to be glacial till. The uppermost unit represents deposition and reworking after glacial retreat. The erosive action of the ice sheet that extended off the Irish coast is thought to be responsible for the removal and reworking of all sediments older that the LGM. In the sediment cores, three main lithofacies were identified: 1) a sandy silt and clay facies, 2) a distinct shell hash interlayer and, 3) a fine silty sand facies. These 3 facies are found within the uppermost seismic unit, and initial radiocarbon dating of shells in 4 cores, constrain these sediments and the uppermost seismic unit to the Holocene. Preliminary qualitative analysis on foraminifera from several cores shows a general trend of progression from estuarine to open marine conditions, inferred from indicator species. This trend is supported by X-ray fluorescence (XRF) analysis which shows increased ratios of Cl/Fe in younger deposits. Constraining dates on sea level variations in the region will be added to the sea level database for Ireland and possibly used to adjust the existing relative sea level models. These are important for understating past sea level variations and modelling future trends.

  9. Stratigraphy and depositional environments of the Lower Mississippian Joana Limestone in southern White Pine and northern Lincoln Counties, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, T.J.

    1990-04-01

    The Lower Mississippian Joana Limestone in the southern Schell Creek and Egan ranges of east-central Nevada is composed of three depositional facies: the unbedded wackestone with grainstone/packstone facies or Facies 1; the bedded wackestone with mudstone facies or Facies 2; and the restricted wackestone, mudstone/shale facies, or Facies 3. Facies 1 is characterized by Waulsortian-type carbonate buildups with massive unbedded wackestone cores, grainstone flanking beds and grainstone/packstone capping units. Facies 2 is characterized by an upward progression of sedimentary bedding types from thinly laminated to large scale trough cross-bedding that indicates a shoaling upward of this facies. Facies 3 ismore » characterized by sparse wackestones, mudstones, and shale which show a decrease in both faunal types and diversity and an increase in fine clastics. The restricted wackestone, mudstone/shale facies grades upward into the Mississippian Chainman Shale. The age of the Joana Limestone is confirmed as late Kinderhookian to early Osagean based primarily on conodonts and foraminifera. In the middle beds of the Joana Limestone, the previously unreported upper Siphonodella crenulata conodont zone occurs which helps correlate the Joana Limestone with regional transgressive/regressive sea level events. Color alteration indices of these conodonts are 1.5 to 2, and occur in the oil generation window. Additionally, oil staining was observed in numerous samples located primarily in the lower half of the formation, represented by Facies 3, the unbedded wackestone with grainstone/packstone facies.« less

  10. Areal distribution of sedimentary facies determined from seismic facies analysis and models of modern depositional systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seramur, K.C.; Powell, R.D.; Carpenter, P.J.

    1988-02-01

    Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet. The areal distribution of sedimentary facies within the basins is interpreted using the seismic facies architecture and inferences from known sediment characteristics proximal to present glacier termini.« less

  11. Facies transition and depositional architecture of the Late Eocene tide-dominated delta in northern coast of Birket Qarun, Fayum, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Zaki A.

    2016-07-01

    Late Eocene successions in the Fayum Depression display notable facies transition from open-marine to brackish-marine realms. Stratigraphic and sedimentologic characteristics of the depositional facies are integrated with ichnological data for the recognition of four facies associations (FA1 to FA4). The transition from open-marine sandstones (FA1) to the brackish-marine deposits (FA2) heralds a transgressive - regressive dislocation. The shallowing- and coarsening-upward progradation from the basal prodelta mudstone-dominated facies (FA2a) to deltafront heterolithics (FA2b) and sandstone facies (FA2c) are overlain by finning-upward delta plain deposits which are expressed by the delta plain mudstone (FA2d) and erosive-based distributary channel fills (FA4). Prodelta/deltfront deposits of FA2 are arranged in thinning- and coarsening-upward parasequences which are stacked in a shallowing-upward progressive cycle. Shallow-marine fossiliferous sandstones (FA3) mark the basal part of each parasequence. Stratigraphic and depositional architectures reflect a tide-dominated delta rather than an estuarine and incised valley (IV) model. This can be evinced by the progressive facies architecture, absence of basal regional incision or a subaerial unconformity and the stratigraphic position above a maximum flooding surface (MFS), in addition to the presence of multiple tidally-influenced distributary channels. Stratigraphic and depositional characteristics of the suggested model resemble those of modern tide-dominated deltaic systems. Accordingly, this model contributes to our understanding of the depositional models for analogous brackish-marine environments, particularly tide-dominated deltas in the rock record.

  12. Sedimentological, biogeochemical and mineralogical facies of Northern and Central Western Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Spagnoli, Federico; Dinelli, Enrico; Giordano, Patrizia; Marcaccio, Marco; Zaffagnini, Fabio; Frascari, Franca

    2014-11-01

    The aim of this work was to identify sedimentary facies, i.e. facies having similar biogeochemical, mineralogical and sedimentological properties, in present and recent fine sediments of the Northern and Central Adriatic Sea with their spatial and temporal variations. Further aims were to identify the transportation, dispersion and sedimentation processes and provenance areas of sediments belonging to the facies. A Q-mode factor analysis of mineralogical, granulometric, geochemical (major and trace elements) and biochemical (organic carbon and total nitrogen) properties of surficial and sub-surficial sediments sampled in the PRISMA 1 Project has been used to identify the sedimentary facies. On the whole, four facies were identified: 1) Padanic Facies, made up of fine siliciclastic sediments which reach the Adriatic Sea mainly from the Po River and are distributed by the Adriatic hydrodynamic in a parallel belt off the Italian coast. Southward, this facies gradually mixes with sediments from the Apennine rivers and with biogenic autochthonous particulate; 2) Dolomitic Facies, made up of dolomitic sediments coming from the eastern Alps. This facies is predominant north of the Po River outfalls and it mixes with Padanic Facies sediments in front of the Po River delta; 3) Mn-carbonate Facies, made up of very fine sediments, rich in coccolithophores and secondary Mn-oxy-hydroxides resulting from the reworking of surficial fine sediments in shallow areas and subsequent deposition in deeper areas; 4) Residual Facies, made up of coarse siliciclastic sediments and heavy minerals resulting from the action of waves and coastal currents; this facies is present mainly in inshore areas. The zoning of the facies, resulting from this study, will make possible the identification, through further investigation, on a greater scale, of more accurate facies borders and the recognition of sub-facies, resulting from secondary or weaker biogeochemical processes.

  13. Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporite basin of the Carpathian Foredeep, southern Poland

    NASA Astrophysics Data System (ADS)

    Kasprzyk, Alicja

    2003-05-01

    Anhydrite deposits are widely distributed in the Middle Miocene Badenian evaporite basin of Poland, including the marginal sulphate platform and adjacent salt depocenter. Particular sedimentological, petrographic and geochemical characteristics of these anhydrite deposits and especially common pseudomorphic features, inherited from the precursor gypsum deposits, allow the interpretation of the original sedimentary facies. The observed facies distribution and succession (lower and upper members) reveal three distinct facies associations that record a range of depositional environments from nearshore to deeper basinal settings. Platform sulphates were deposited in subaerial and shallow-marine environments (shoreline and inner platform-lagoon system) mainly as autochthonous selenitic gypsum. This was reworked and redistributed into deeper waters (outer platform-lagoon, slope and the proximal basin floor system) to form resedimented facies composed mostly of allochthonous clastic gypsum and minor anhydrite. The general variation in petrographic and geochemical compositions of anhydrite lithofacies of the lower and upper members reflects the brine evolution, as the result of interactions between seawater, meteoric runoff and highly saline, residual pore fluids. The results indicate the importance of synsedimentary and diagenetic anhydritisation processes in formation of the Badenian anhydrite lithofacies, all of which preserve the original depositional features of the former gypsum. This also applies to the basinal anhydrite previously interpreted to have a depositional genesis. Two different genetic patterns of anhydrite have been reinforced by this study: (1) synsedimentary anhydritisation of gypsum deposits by highly concentrated brines or elevated temperatures in surficial to shallow-burial environments (lower member), and (2) successive phases (syndepositional de novo growth, early diagenetic to late diagenetic replacement of former gypsum) of anhydrite formation during progressive burial (upper member).

  14. Reservoir compartmentalization of deep-water Intra Qua Iboe sand (Pliocene), Edop field, offshore Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermance, W.E.; Olaifa, J.O.; Shanmugam, G.

    An integration of 3-D seismic and sedimentological information provides a basis for recognizing and mapping individual flow units within the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Core examination show the following depositional facies: A-Sandy slump/mass flow, B-Muddy slump/mass flow, C. Bottom current reworking. D-Non-channelized turbidity currents, E. Channelized (coalesced) turbidity currents. F-Channelized (isolated) turbidity currents, G-Pelagic/hemipelagic, H-Levee, I-Reworked slope, J-Wave dominated, and K-Tide dominated facies. With the exception of facies J and K, all these facies are of deep-water affinity. The IQI was deposited on an upper slope environment in close proximity to the shelf edge.more » Through time, as the shelf edge migrated scaward, deposition began with a channel dominated deep-water system (IQI 1 and 2) and progressed through a slump/debris flow dominated deep-water system (IQI 3, the principle reservoir) to a tide and wave dominated shallow-water system (IQI 4). Compositional and textural similarities between the deep-water facies result in similar log motifs. Furthermore, these depositional facies are not readily apparent as distinct seismic facies. Deep-water facies A, D, E, and F are reservoir facies, whereas facies B, C, G, H, and I are non-reservoir facies. However, Facies G is useful as a seismically mappable event throughout the study area. Mapping of these non-reservoir events provides the framework for understanding gross reservoir architecture. This study has resulted in seven defined reservoir units within the IQI, which serves as the architectural framework for ongoing reservoir characterization.« less

  15. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegen, James C.; Konopka, Allan; McKinely, Jim

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, diversity, and community composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial diversity—the number ofmore » microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.« less

  16. Valley-fill sequences and onlap geometries, Lower Cretaceous Muddy Sandstone, Kitty Field, Powder River basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, M.H.; Gustason, E.R.

    1987-05-01

    The Muddy Sandstone at Kitty field is a valley-fill sequence that records a late Albian sea level rise and accompanying transgression. The valley was cut during a preceding sea level lowstand. Stratal geometries and facies successions within the valley fill demonstrate the history of transgression was not gradual and progressive. Rather, the valley fill comprises a series of discrete, time-bounded, depositional units which onlap the erosional surface. Five time-bounded depositional units were defined by facies successions and were used to define onlap geometries. Facies successions within individual units record progressive shoaling. Capping each succession, there may be a planar disconformity,more » a thin bioturbated interval, or the deepest water facies of the next depositional event. Thus, the termination of each depositional event is marked by an episode of rapid deepening. At a single geographic location, stratal successions within older depositional units represent more landward facies than those within younger units. Therefore, the onlap geometry of the valley-fill sequence consists of a landward-stepping arrangement of depositional units. The primary reservoirs within the valley-fill sequence, at Kitty field, are laterally coalesced, channel-belt sandstones at the base and barrier island sandstones at the top. Reservoir sandstones of lesser quality occur within the intermediate estuarine facies. The stacking pattern, developed by onlap of the units, results in multiple pay zones within mid-valley reaches. The boundaries of each depositional unit define a high-resolution, chronostratigraphic correlation of valley-fill strata, a correlation corroborated by bentonites. This correlation method gives an accurate description of the internal geometry of valley-fill strata and, therefore, provides a basis for understanding the process of transgressive onlap.« less

  17. Tectonic implications of facies patterns, Lower Permian Dry Mountain trough, east-central Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, D.M.; Snyder, W.S.; Spinosa, C.

    1991-02-01

    Paleozoic tectonism is indicated by a study of a west-east facies analysis transect across the northern portion of the Lower Permian Dry Mountain trough (DMT). In an attempt to characterize the Early Permian basin-filling sequences, three broadly recognizable facies packages have been identified across the DMT: the western margin facies and the central basin facies of the DMT and an eastern shelf facies. In the western margin facies of the basin, pulses of tectonic activity are recorded at McCloud Spring in the Sulphur Springs Range. Here, shallow open-marine carbonate overlies eroded Vinini Formation and, in turn, is unconformably overlain bymore » basinal marine carbonate. An unconformity also marks the contact with the overriding prograding coarse clastic facies. These abrupt transitions suggest the sediments were deposited in a tectonically active area where they preservation of Waltherian sequences is unlikely to occur. Similarly abrupt transitions are evident in the western part of the central basin facies. At Portuguese Springs n the Diamond Range, a thin basal marine conglomerate delineates Lower Permian sedimentation over the Pennsylvanian Ely Formation. Coarsening-upward basinal carbonate strata of pelagic, hemipelagic, and turbidite components overlie the basal conglomerate. this progression of sediments is unconformably overlain by a subaerial sequence of coarse clastic deposits. Within the eastern part of the central basin facies in the Maverick Spring Range, the Lower Permian sediments are open-marine siltstone, wackestone, packstone, and grainstone. The sediments are assigned to a gradually sloping ramp, indicating the effects of tectonism on this margin of the basin were subdued.« less

  18. Depositional framework and sequence stratigraphic aspects of the Coniacian Santonian mixed siliciclastic/carbonate Matulla sediments in Nezzazat and Ekma blocks, Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    El-Azabi, M. H.; El-Araby, A.

    2007-04-01

    Superb outcrops of mixed siliciclastic/carbonate rocks mark the Coniacian-Santonian Matulla Formation exposed in Nezzazat and Ekma blocks, west central Sinai. They are built up of various lithofacies that reflect minor fluctuations in relative sea-level from lower intertidal to slightly deep subtidal settings. Relying on the facies characteristics and stratal geometries, the siliciclastic rocks are divided into seven depositional facies, including beach foreshore laminated sands, upper shoreface cross-bedded sandstone, lower shoreface massive bioturbated and wave-rippled sandstones, shallow subtidal siltstone and deep subtidal shale/claystone. The carbonate rocks comprise lower intertidal lime-mudstone, floatstone and dolostone, shallow subtidal skeletal shoal of oyster rudstone/bioclastic grainstone, and shoal margin packstone. Oolitic grain-ironstone and ferribands are partially intervened the facies types. Deposition has taken place under varied conditions of restricted, partly open marine circulation, low to high wave energy and normal to raised salinity during alternating periods of abundant and ceased clastic supply. The facies types are arranged into asymmetric upward-shallowing cycles that record multiple small-scale transgressive-regressive events. Lime-mudstone and sandstone normally terminate the regressive events. Four sequence boundaries marking regional relative sea-level falls divide the Matulla Formation into three stratigraphic units. These boundaries are Turonian/Coniacian, intra-Coniacian, Coniacian/Santonian and Santonian/Campanian. They do not fit with those sequence boundaries proposed in Haq et al.'s global eustatic curves (1988) except for the sea-level fall associated with the intra-Coniacian boundary. Other sequence boundaries have resulted from regional tectonic impact of the Syrian Arc Fold System that has been initiated in north Egypt during the Latest Turonian-Coniacian. These boundaries enclose three well-defined 3rd order depositional sequences; their enclosing shallowing-upward cycles (i.e. parasequences) record the 4th order relative sea-level fluctuations. 34 and 20 parasequence sets, in the order of a few meters to tens of meters thick, mark the Matulla sequences in Nezzazat and Ekma blocks respectively. Each sequence shows an initial phase of rapid sea-level rise with retrogradational sets, followed by lowering sea-level and progradation/aggradation of the parasequence sets. The transgressive deposits display predominance of deep subtidal lagoonal facies, while highstand deposits show an increase in siliciclastic and carbonate facies with the progressive decrease of lagoonal facies. The sedimentary patterns and environments suggest that the regional, partly eustatic sea-level (i.e. intra-Coniacian) changes controlled the overall architecture of the sequence distribution, whereas changes in the clastic input controlled the variations in facies associations within each depositional sequence.

  19. Variational Bayesian Inversion of Quasi-Localized Seismic Attributes for the Spatial Distribution of Geological Facies

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad Atif; Curtis, Andrew

    2018-04-01

    We introduce a new Bayesian inversion method that estimates the spatial distribution of geological facies from attributes of seismic data, by showing how the usual probabilistic inverse problem can be solved using an optimization framework still providing full probabilistic results. Our mathematical model consists of seismic attributes as observed data, which are assumed to have been generated by the geological facies. The method infers the post-inversion (posterior) probability density of the facies plus some other unknown model parameters, from the seismic attributes and geological prior information. Most previous research in this domain is based on the localized likelihoods assumption, whereby the seismic attributes at a location are assumed to depend on the facies only at that location. Such an assumption is unrealistic because of imperfect seismic data acquisition and processing, and fundamental limitations of seismic imaging methods. In this paper, we relax this assumption: we allow probabilistic dependence between seismic attributes at a location and the facies in any neighbourhood of that location through a spatial filter. We term such likelihoods quasi-localized.

  20. Controls on the deposition and preservation of the Cretaceous Mowry Shale and Frontier Formation and equivalents, Rocky Mountain region, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Mercier, Tracey J.

    2013-01-01

    Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present. This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography. The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin. In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones that were deposited at or near sea level lowstand and were reworked landward by ravinement and longshore currents by storms creating stratigraphic or combination traps enclosed with marine shale seals. Paleogeographic reconstructions are used to show exploration fairways of the different play types present in the Laramide-modified, Cretaceous foreland basin. Existing oil and gas fields from these plays show a relatively consistent volume of hydrocarbons, which results from the partitioning of facies within the different parts of the foreland basin.

  1. Facies heterogeneity, pay continuity, and infill potential in barrier-island, fluvial, and submarine fan reservoirs: examples from the Texas Gulf Coast and Midland basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, W.A.; Tyler, N.

    1989-03-01

    Three reservoirs representing different depositional environments - barrier island (West Ranch field, south-central Texas), fluvial (La Gloria field, south Texas), and submarine fan (Spraberry trend, Midland basin) - illustrate variations in reservoir continuity. Pay continuity methods based on facies geometry and variations in permeability and thickness between wells can quantify reservoir heterogeneity in each of these examples. Although barrier-island reservoirs are relatively homogeneous, West Ranch field contains wide (1000-5000 ft or 300-1500 m) dip-parallel belts of lenticular inlet-fill facies that disrupt reservoir continuity in the main barrier-core facies. Other reservoir compartments in West Ranch field are in flood-tidal delta depositsmore » partly encased in lagoonal mudstones updip of the barrier core. Fluvial reservoirs have a higher degree of internal complexity than barrier-island reservoirs. In La Gloria field, reservoirs exhibit significant heterogeneity in the form of numerous sandstone stringers bounded vertically and laterally by thin mudstone layers. Successful infill wells in La Gloria field contact partly drained reservoir compartments in splay deposits that pinch out laterally into flood-plain mudstones. Recompletions in vertically isolated sandstone stringers in La Gloria field contact other reservoir compartments. Submarine fan deposits are extremely heterogeneous and may have the greatest potential for infill drilling to tap isolated compartments in clastic reservoirs. The Spraberry trend contains thin discontinuous reservoir sandstones deposited in complex mid-fan channels. Although facies relationships in Spraberry reservoirs are similar to those in fluvial reservoirs in La Gloria field, individual pay stringers are thinner and more completely encased in low-permeability mudstone facies.« less

  2. Depositional and erosional architectures of gravelly braid bar formed by a flood in the Abe River, central Japan, inferred from a three-dimensional ground-penetrating radar analysis

    NASA Astrophysics Data System (ADS)

    Okazaki, Hiroko; Kwak, Youngjoo; Tamura, Toru

    2015-07-01

    We conducted a ground-penetrating radar (GPR) survey of gravelly braid bars in the Abe River, central Japan, to clarify the three-dimensional (3D) variations in their depositional facies under various geomorphologic conditions. In September 2011, a ten-year return-period flood in the study area reworked and deposited braid bars. After the flood, we surveyed three bars with different geomorphologies using a GPR system with a 250-MHz antenna and identified seven fundamental radar depositional facies: Inclined reflections (facies Ia and Ib), horizontal to subhorizontal reflections (facies IIa and IIb), discontinuous reflections (facies IIIa and IIIb), and facies assemblage with a large-scale channel-shaped lower boundary (facies IV). Combinations of these facies indicate bar formation processes: channel filling, lateral aggradation, and lateral and downstream accretion. In the Abe River, aerial photographs and airborne laser scanning data were obtained before and after the flood. The observed changes of the surface topography are consistent with the subsurface results seen in the GPR sections. This study demonstrated that the erosional and depositional architecture observed among bars with different channel styles was related to river width and represented depositional processes for high-sediment discharge. The quantitative characterizations of the sedimentary architecture will be useful for interpreting gravelly fluvial deposits in the rock record.

  3. Sedimentology of the Essaouira Basin (Meskala Field) in context of regional sediment distribution patterns during upper Triassic pluvial events

    NASA Astrophysics Data System (ADS)

    Mader, Nadine K.; Redfern, Jonathan; El Ouataoui, Majid

    2017-06-01

    Upper Triassic continental clastics (TAGI: Trias Argilo-Greseux Inferieur) in the Essaouira Basin are largely restricted to the subsurface, which has limited analysis of the depositional environments and led to speculation on potential provenance of the fluvial systems. Facies analysis of core from the Meskala Field onshore Essaouira Basin is compared with tentatively time-equivalent deposits exposed in extensive outcrops in the Argana Valley, to propose a process orientated model for local versus regional sediment distribution patterns in the continuously evolving Moroccan Atlantic rift during Carnian to Norian times. The study aims to unravel the climatic overprint and improve the understanding of paleo-climatic variations along the Moroccan Atlantic margin to previously recognised Upper Triassic pluvial events. In the Essaouira Basin, four facies associations representing a progressive evolution from proximal to distal facies belts in a continental rift were established. Early ephemeral braided river systems are succeeded by a wet aeolian sandflat environment with a strong arid climatic overprint (FA1). This is followed by the onset of perennial fluvial deposits with extensive floodplain fines (FA2), accompanied by a distinct shift in fluvial style, suggesting increase in discharge and related humidity, either locally or in the catchment area. The fluvial facies transitions to a shallow lacustrine or playa lake delta environment (FA3), which exhibits cyclical abandonment. The delta is progressively overlain by a terminal playa with extensive, mottled mudstones (FA4), interpreted to present a return from cyclical humid-arid conditions to prevailing aridity in the basin. In terms of regional distribution and sediment source provenance, paleocurrent data from Carnian to Norian deposits (T5 to T8 member) in the Argana Valley suggest paleoflow focused towards the S and SW, not directed towards the Meskala area in the NW as previously suggested. A major depo-centre for fluvial sediments is instead located in the southern Argana Valley, possibly the Souss Basin. To effectively source the reservoir sandstones found in the Meskala Field, a more local provenance area has hence to be envisaged. Despite this, the direct comparison of the genetic evolution of sedimentary sequences in the Argana Valley and Essaouira Basin shows a similar progression from dominantly arid ephemeral depositional environments to humid perennial sedimentation, returning to prominent arid conditions. This suggests climatic control in both regions, where an enhanced humid signal drives perennial fluvial flow in otherwise arid dominated sequences. On a regional scale, this is suggested to record the impact of strong Triassic pluvial events previously recognised in other basins along the Central Atlantic margin during the Carnian to Norian periods.

  4. Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California

    USGS Publications Warehouse

    Schiffman, P.; Williams, A.E.; Evarts, R.C.

    1984-01-01

    The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock ??18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4??? (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member. Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock ??18O can be best explained by isotopic exchange with discharging 18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500??C. 18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center. ?? 1984.

  5. Identification of Detrital Carbonate in East Cepu High

    NASA Astrophysics Data System (ADS)

    Sari, R.; Andika, I. K.; Haris, A.; Miftah, A.

    2018-03-01

    East Cepu High is a part of horst – graben series which formed by extensional tectonic processes during Paleogene in North East Java Basin. Due to excellent paleogeography position, the carbonate build-up was growth very well and as the main reservoir in East Cepu High. Sea level change have important factor to provide variation of facies in each carbonate buildup, one of emerging facies is detrital carbonate. Detrital carbonate indicated by onlap horizon featured with carbonate build up body. Based on paleogeography, fluctuation of sea level change and sediment source, detrital carbonate formed in leeward area in lowstand or highstand phases. Distinguish between detrital carbonate facies with other facies, advanced seismic processing performed by using continuous wavelet transform (CWT) and seismic inversion. CWT is one method of spectral decomposition used to find the frequency that represent a facies. The result from seismic inversion will support the interpretation for facies distribution. As the result, seismic data which have interval frequency 10 – 45 Hz and Acoustic Impedance (AI) value above 35000 (from cross plot between acoustic impedance and gamma ray) can be interpreted as detrital carbonate. Based on seismic interpretation, detrital carbonate facies distributed along leeward area with geometrical spreading. The lateral facies change from detrital carbonate to shale was identified which causing this facies become potential as hydrocarbon reservoir with stratigraphic trap. Based on the earlier studies, North East Java Basin have a strong hydrocarbon migration to fill the reservoir, therefore the detrital carbonate have high chance to be a new hydrocarbon prospect in this area.

  6. Late Pleistocene and Holocene sedimentary facies on the Ebro continental shelf

    USGS Publications Warehouse

    Diaz, J.; Nelson, C.H.; Barber, J.H.; Giro, S.

    1990-01-01

    Late Pleistocene-Holocene history of the Ebro continental shelf of northeastern Spain is recorded in two main sedimentary units: (1) a lower, transgressive unit that covers the shelf and is exposed on the outer shelf south of 40??40???N, and (2) an upper, progradational, prodeltaic unit that borders the Ebro Delta and extends southward along the inner shelf. The lower transgressive unit includes a large linear shoal found at a water depth of 90 m and hardground mounds at water depths of 70-80 m. Some patches of earlier Pleistocene prodelta mud remain also, exposed or covered by a thin veneer of transgressive sand on the northern outer shelf. This relict sand sheet is 2-3 m thick and contains 9000-12,500 yr old oyster and other shells at water depths of 78-88 m. The upper prodelta unit covers most of the inner shelf from water depths of 20-80 m and extends from the present Ebro River Delta to an area to the southwest where the unit progressively thins and narrows. Interpretation of high-resolution seismic reflection data shows the following facies occurring progressively offshore: (1) a thick stratified facies with thin progradational "foresets beds", (2) a faintly laminated facies with sparse reflectors of low continuity, and (3) a thin transparent bottomset facies underlain by a prominent flat-lying reflector. Deposition in the northern half of the prodelta began as soon as the shoreline transgressed over the mid-shelf, but progradation of the southern half did not begin until about 1000-3000 yrs after the transgression. A classic deltaic progradational sequence is shown in the Ebro prodelta mud by (1) gradation of seismic facies away from the delta, (2) coarsening-upward sequences near the delta and fining-upward sequences in the distal mud belt deposits, and (3) thin storm-sand layers and shell lags in the nearshore stratified facies. The boundaries of the prodeltaic unit are controlled by increased current speeds on the outer shelf (where the shelf narrows) and by development of the shoreface sand body resulting from shoaling waves on the inner shelf. ?? 1990.

  7. Antecedent rivers and early rifting: a case study from the Plio-Pleistocene Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Hemelsdaël, Romain; Ford, Mary; Malartre, Fabrice

    2016-04-01

    Models of early rifting present syn-rift sedimentation as the direct response to the development of normal fault systems where footwall-derived drainage supplies alluvial to lacustrine sediments into hangingwall depocentres. These models often include antecedent rivers, diverted into active depocentres and with little impact on facies distributions. However, antecedent rivers can supply a high volume of sediment from the onset of rifting. What are the interactions between major antecedent rivers and a growing normal fault system? What are the implications for alluvial stratigraphy and facies distributions in early rifts? These questions are investigated by studying a Plio-Pleistocene fluvial succession on the southern margin of the Corinth rift (Greece). In the northern Peloponnese, early syn-rift deposits are preserved in a series of uplifted E-W normal fault blocks (10-15 km long, 3-7 km wide). Detailed sedimentary logging and high resolution mapping of the syn-rift succession (400 to 1300 m thick) define the architecture of the early rift alluvial system. Magnetostratigraphy and biostratigraphic markers are used to date and correlate the fluvial succession within and between fault blocks. The age of the succession is between 4.0 and 1.8 Ma. We present a new tectonostratigraphic model for early rift basins based on our reconstructions. The early rift depositional system was established across a series of narrow normal fault blocks. Palaeocurrent data show that the alluvial basin was supplied by one major sediment entry point. A low sinuosity braided river system flowed over 15 to 30 km to the NE. Facies evolved downstream from coarse conglomerates to fined-grained fluvial deposits. Other minor sediment entry points supply linked and isolated depocentres. The main river system terminated eastward where it built stacked small deltas into a shallow lake (5 to 15 m deep) that occupied the central Corinth rift. The main fluvial axis remained constant and controlled facies distribution throughout the early rift evolution. We show that the length scale of fluvial facies transitions is greater than and therefore not related to fault spacing. First order facies variations instead occur at the scale of the full antecedent fluvial system. Strike-parallel subsidence variations in individual fault blocks represent a second order controlling factor on stratigraphic architecture. As depocentres enlarged through time, sediments progressively filled palaeorelief, and formed a continuous alluvial plain above active faults. There was limited creation of footwall relief and thus no significant consequent drainage system developed. Here, instead of being diverted toward subsiding zones, the drainage system overfilled the whole rift from the onset of faulting. Moreover, the zones of maximum subsidence on individual faults are aligned across strike parallel to the persistent fluvial axis. This implies that long-term sediment loading influenced the growth of normal faults. We conclude that a major antecedent drainage system inherited from the Hellenide mountain belt supplied high volumes of coarse sediment from the onset of faulting in the western Corinth rift (around 4 Ma). These observations demonstrate that antecedent drainage systems can be important in the tectono-sedimentary evolution of rift basins.

  8. Shoreline deposits and diagenesis resulting from two Late Pleistocene highstands near +5 and +6 metres, Durban, South Africa

    USGS Publications Warehouse

    Cooper, J.A.G.; Flores, R.M.

    1991-01-01

    In exposures of Pleistocene rocks on the east coast of South Africa, eight sedimentary facies were distinguished on the basis of petrology, grain size, internal structures and field relationships. These are interpreted as deposits of surf zone, breaker zone, swash zone, backbeach, boulder beach and dune environments. Three phases of deposition and diagenesis are recognized. As a result of the stabilising effect of pre-existing coastal facies, the deposits from successive sea level stands are stacked vertically in a narrow coast-normal strip. Early cementation prevented erosion of the deposits during subsequent transgressions. Deposition of subsequent facies took place on an existing coastal dune (Facies 1). A terrace was cut into this dune at a sea level 4.5 to 5 m above present. At this sea level, clastic shoreline sediments were deposited which make up the main sedimentary sequence exposed (Facies 2-7). The steep swash zone, coarse grain size, and comparison with modern conditions in the study area indicate clastic deposition on a high-energy, wave-dominated, microtidal coastline. Vertical stacking of progressively shallower water facies indicates progradation associated with slightly regressive conditions, prior to stranding of the succession above sea level. During a subsequent transgression to 5.5 or 6 m above present sea level, a second terrace was cut across the existing facies, which by then were partly lithified. A boulder beach (Facies 8) deposited on this terrace is indicative of high wave energy and a rocky coastline, formed by existing cemented coastal facies. Comparison with dated deposits from other parts of the South African coast suggest a Late Pleistocene age for Facies 2-8. Deposition was terminated by subsequent regression and continuing low sea levels during the remainder of the Pleistocene. Cementation of the facies took place almost entirely by carbonate precipitation. The presence of isopachous fibrous cements suggests early cementation of Facies 1, 2, 3 and 4 under marine conditions, initially as aragonite which has since inverted to calcite. Facies 5, 6 and 7 are cemented only by equant calcite spar, evidence of cementation in the meteoric phreatic and vadose zones. Lowering of the water table during regression caused the remaining pore space in Facies 1, 2, 3 and 4 to be filled with equant calcite spar. Decementation in a 130 cm wide zone is attributed to water table shifts associated with the later transgression which deposited Facies 8. The vertical stacking of the two depositional sequences may be attributed to rapid cementation of Facies 2, 3, 4, 5, 6 and 7 under humid, subtropical conditions. This lithified sequence then acted as a focus for deposition of coarse-grained shoreline facies (Facies 8) during the subsequent transgression. ?? 1991.

  9. Reaction softening by dissolution–precipitation creep in a retrograde greenschist facies ductile shear zone, New Hampshire, USA

    USGS Publications Warehouse

    McAleer, Ryan J.; Bish, David L.; Kunk, Michael J.; Sicard, Karri R.; Valley, Peter M.; Walsh, Gregory J.; Wathen, Bryan A.; Wintsch, R.P.

    2016-01-01

    We describe strain localization by a mixed process of reaction and microstructural softening in a lower greenschist facies ductile fault zone that transposes and replaces middle to upper amphibolite facies fabrics and mineral assemblages in the host schist of the Littleton Formation near Claremont, New Hampshire. Here, Na-poor muscovite and chlorite progressively replace first staurolite, then garnet, and finally biotite porphyroblasts as the core of the fault zone is approached. Across the transect, higher grade fabric-forming Na-rich muscovite is also progressively replaced by fabric-forming Na-poor muscovite. The mineralogy of the new phyllonitic fault-rock produced is dominated by Na-poor muscovite and chlorite together with late albite porphyroblasts. The replacement of the amphibolite facies porphyroblasts by muscovite and chlorite is pseudomorphic in some samples and shows that the chemical metastability of the porphyroblasts is sufficient to drive replacement. In contrast, element mapping shows that fabric-forming Na-rich muscovite is selectively replaced at high-strain microstructural sites, indicating that strain energy played an important role in activating the dissolution of the compositionally metastable muscovite. The replacement of strong, high-grade porphyroblasts by weaker Na-poor muscovite and chlorite constitutes reaction softening. The crystallization of parallel and contiguous mica in the retrograde foliation at the expense of the earlier and locally crenulated Na-rich muscovite-defined foliation destroys not only the metastable high-grade mineralogy, but also its stronger geometry. This process constitutes both reaction and microstructural softening. The deformation mechanism here was thus one of dissolution–precipitation creep, activated at considerably lower stresses than might be predicted in quartzofeldspathic rocks at the same lower greenschist facies conditions.

  10. Facies Modeling of of Dam and Hofuf Formations: Outcrop Analog of Mixed Carbonate and Siliciclastic (Miocene-Pliocene) Succession, Eastern Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abdullatif, O.; Yassin, M.

    2012-04-01

    1KFUPM This study investigates the lithofacies types distribution of the carbonate and siliciclastic rocks of Dam and Hofuf Formations in eastern Saudi Arabia. The shallow burial of these formations and limited post depositional changes allowed significant preservation of porosity at outcrop scale. The mixed carbonate-siliciclastic succession represents important reservoirs in the Mesozoic and Tertiary stratigraphic succession in the Arabian Plate.This study integrates field work sedimentological and stratigraphical and lithofacies data to model the spatial distribution of facies of this shallow marine and fluvial depositional setting. The Dam Formation is characterized by very high percentage of grain- dominated textures representing high to low energy intertidal deposits a mixed of carbonate and siliciclastic succession. The middle Miocene Dam section is dominated by intra-clasts, ooids and peloids grainstones. The Hofuf Formation represents fluvial channel and overank facies which is characterized by mudclast abd gravel-rich erosive bases overlain by pebbly conglomerates which passes upward into medium to very coarse grained massive, horizontally stratified and trough cross-stratifed sandstone facies. Lithological stratigraphic sections data distributed over the Al-lidam escarpment were correlated on the basis of facies types and sequences. This allow mapping and building a framework for modeling the spatial distribution of the carbonate and siliciclastic facies in the area. The geological model shows variations in the facies distribution patterns which mainly reflect both dynamic and static depositional controls on facies types distribution. The geological model may act as a guide for facies types distribution, and provide better understanding and prediction of reservoir quality and architecture of stratigraphically equivalent carbonate-siliciclastic successions in the subsurface.

  11. Timing of strain localization in high-pressure low-temperature shear zones: The argon isotopic record

    NASA Astrophysics Data System (ADS)

    Laurent, Valentin; Scaillet, Stéphane; Jolivet, Laurent; Augier, Romain

    2017-04-01

    The complex interplay between rheology, temperature and deformation profoundly influences how crustal-scale shear zones form and then evolve across a deforming lithosphere. Understanding early exhumation processes in subduction zones requires quantitative age constraints on the timing of strain localization within high-pressure shear zones. Using both the in situ laser ablation and conventional step-heating 40Ar/39Ar dating (on phengite single grains and populations) methods, this study aims at quantifying the duration of ductile deformation and the timing of strain localization within HP-LT shear zones of the Cycladic Blueschist Unit (CBU, Greece). The rate of this progressive strain localization is unknown, and in general, poorly known in similar geological contexts. Critical to retrieve realistic estimates of rates of strain localization during exhumation, dense 40Ar/39Ar age transects were sampled along shear zones recently identified on Syros and Sifnos islands. There, field observations suggest that deformation progressively localized downward in the CBU during exhumation. In parallel, these shear zones are characterized by different degrees of retrogression from blueschist-facies to greenschist-facies P-T conditions overprinting eclogite-facies record throughout the CBU. Results show straightforward correlations between the degree of retrogression, the finite strain intensity and 40Ar/39Ar ages; the most ductilely deformed and retrograded rocks yielded the youngest 40Ar/39Ar ages. The possible effects of strain localization during exhumation on the record of the argon isotopic system in HP-LT shear zones are addressed. Our results show that strain has localized in shear zones over a 30 Ma long period and that individual shear zones evolve during 7-15 Ma. We also discuss these results at small-scale to see whether deformation and fluid circulations, channelled within shear bands, can homogenize chemical compositions and reset the 40Ar/39Ar isotopic record. This study brings new perspective on the process of strain localization through the dating of structures along strain gradients, especially on possible variation of rates of localisation through the entire exhumation history.

  12. UAV, DGPS, and Laser Transit Mapping of Microbial Mat Ecosystems on Little Ambergris Cay, B.W.I.

    NASA Astrophysics Data System (ADS)

    Stein, N.; Quinn, D. P.; Grotzinger, J. P.; Fischer, W. W.; Knoll, A. H.; Cantine, M.; Gomes, M. L.; Grotzinger, H. M.; Lingappa, U.; Metcalfe, K.; O'Reilly, S. S.; Orzechowski, E. A.; Riedman, L. A.; Strauss, J. V.; Trower, L.

    2016-12-01

    Little Ambergris Cay is a 6 km long, 1.6 km wide uninhabited island on the Caicos platform in the Turks and Caicos. Little Ambergris provides an analog for the study of microbial mat development in the sedimentary record. Recent field mapping during July of 2016 used UAV- and satellite-based images, differential GPS (DGPS), and total station theodolite (TST) measurements to characterize sedimentology and biofacies across the entirety of Little Ambergris Cay. Nine facies were identified in-situ during DGPS island transects including oolitic grainstone bedrock, sand flats, cutbank and mat-filled channels, hardground-lined bays with EPS-rich mat particles, mangroves, EPS mats, polygonal mats, and mats with blistered surface texture. These facies were mapped onto a 15 cm/pixel visible light orthomosaic of the island generated from more than 1500 nadir images taken by a UAV at 350 m standoff distance. A corresponding stereogrammetric digital elevation map was generated from drone images and 910 DGPS measurements acquired during several island transects. More than 1000 TST measurements provide additional facies elevation constraints, control points for satellite-based water depth calculations, and means to cross-calibrate and reconstruct the topographic profile of bedrock exposed at the beach. Additionally, the thickness of the underlying Holocene sediment fill was estimated over several island transects using a depth probe. Sub-cm resolution drone-based orthophotos of microbial mats were used to quantify polygonal mat size and textures. The mapping results highlight that sedimentary and bio-facies (including mat morphology and fabrics) correlate strongly with elevation. Notably, mat morphology was observed to be highly sensitive to cm-scale variations in topography and water depth. The productivity metric NDVI was computed for mat and vegetation facies using nadir images from a UAV-mounted two-band red-NIR camera. In combination with in situ facies mapping, these measurements provided ground truth for reduction of multispectral Landsat and Worldview-2 satellite images to evaluate mat distribution and diversity across a range of spatial and spectral facies variations.

  13. Sedimentology and paleoenvironments of the Las Chacritas carbonate paleolake, Cañadón Asfalto Formation (Jurassic), Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Cabaleri, Nora G.; Benavente, Cecilia A.

    2013-02-01

    The Las Chacritas Member is the lower part of the Cañadón Asfalto Formation (Jurassic). The unit is a completely continental limestone succession with volcanic contributions that were deposited during the development of the Cañadón Asfalto Rift Basin (Chubut province, Patagonia, Argentina). A detailed sedimentological analysis was performed in the Fossati depocenter to determine the paleoenvironments that developed in the context of this rift. The Las Chacritas Member represents a carbonate paleolake system with ramp-shaped margins associated with wetlands that were eventually affected by subaerial exposure and pedogenesis. This process is represented by three main subenvironments: a) a lacustrine setting sensu stricto (lacustrine limestone facies association), represented by Mudstones/Wackestones containing porifera spicules (F1), Intraclastic packstones (F6) and Tabular stromatolites (F10) in which deposition and diagenesis were entirely subaqueous; b) a palustrine setting (palustrine limestone facies association) containing Microbial Mudstones (F2), Intraclastic sandy packstone with ostracode remains (F3), Oncolitic packstone (F5), Brecciated limestone (F7) and Nodular-Mottled limestone (F8) representing shallow marginal areas affected by groundwater fluctuations and minor subaerial exposure; and c) a pedogenic paleoenvironment (pedogenic limestone facies association) including Intraclastic limestone (F4) and Packstones containing Microcodium (F9) facies displaying the major features of subaerial exposure, pedogenic diagenesis and the development of paleosols. The fluvial-palustrine-lacustrine succession shows a general shallow upward trend in which contraction-expansion cycles are represented (delimited by exposure and surface erosion). The variations in the successive formations reflect the responses to fluctuations in a combination of two major controls, the tectonic and local climatic variables. The predominance of the palustrine facies associations was determined by its accommodation space as well as the local climate conditions. The variations in the lacustrine limestone facies associations reflect differential patterns of subsidence within the sub-basin. The diagnostic features of the palustrine limestone facies associations (organic matter (OM) content, microinvertebrate fauna, abundant mud cracks, brecciation, presence of evaporitic minerals) frame the sub-basin in a climatic context intermediate between arid and subhumid conditions.

  14. Response of Late Cretaceous migrating deltaic facies systems to sea level, tectonics, and sediment supply changes, New Jersey Coastal Plain, U.S.A.

    USGS Publications Warehouse

    Kulpecz, A.A.; Miller, K.G.; Sugarman, P.J.; Browning, J.V.

    2008-01-01

    Paleogeographic, isopach, and deltaic lithofacies mapping of thirteen depositional sequences establish a 35 myr high resolution (> 1 Myr) record of Late Cretaceous wave- and tide-influenced deltaic sedimentation. We integrate sequences defined on the basis of lithologic, biostratigraphic, and Sr-isotope stratigraphy from cores with geophysical log data from 28 wells to further develop and extend methods and calibrations of well-log recognition of sequences and facies variations. This study reveals the northeastward migration of depocenters from the Cenomanian (ca. 98 Ma) through the earliest Danian (ca. 64 Ma) and documents five primary phases of paleodeltaic evolution in response to long-term eustatic changes, variations in sediment supply, the location of two long-lived fluvial axes, and thermoflexural basement subsidence: (1) Cenomanian-early Turonian deltaic facies exhibit marine and nonmarine facies and are concentrated in the central coastal plain; (2) high sediment rates, low sea level, and high accommodation rates in the northern coastal plain resulted in thick, marginal to nonmarine mixed-influenced deltaic facies during the Turonign-Coniacian; (3) comparatively low sediment rates and high long-term sea level in the Santonian resulted in a sediment-starved margin with low deltaic influence; (4) well-developed Campanian deltaic sequences expand to the north and exhibit wave reworking and longshore transport of sands, and (5) low sedimentation rates and high long-term sea level during the Maastrichtian resulted in the deposition of a sediment-starved glauconitic shelf. Our study illustrates the widely known variability of mixed-influence deltaic systems, but also documents the relative stability of deltaic facies systems on the 106-107 yr scale, with long periods of cyclically repeating systems tracts controlled by eustasy. Results from the Late Cretaceous further show that although eustasy provides the template for sequences globally, regional tectonics (rates of subsidence and accommodation), changes in sediment supply, proximity to sediment input, and flexural subsidence from depocenter loading determines the regional to local preservation and facies expression of sequences. Copyright ?? 2008, SEPM (Society for Sedimentary Geology).

  15. Tectono-sedimentary constraints to the Oligocene-to-Miocene evolution of the Peloritani thrust belt (NE Sicily)

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Nigro, F.

    1999-12-01

    The Peloritani thrust belt belongs to the southern sector of the Calabrian Arc and is formed by a set of south-verging tectonic units, including crystalline basement and sedimentary cover (from the top: Aspromonte U.; Mela U.; Mandanici U.; Fondachelli U.; Longi-Taormina U.), piled up starting from Late Oligocene. At least two main terrigenous clastic formations lie with complicated relationships on top of the previous units: the Frazzanò Fm (Oligocene) and the Stilo-Capo d'Orlando Fm (Late Oligocene?-Early Miocene), as syn-to-post-tectonic deposits. These clastic deposits have different characteristics, in space and time, representing or flysch-like sequences involved in several thrust events (Frazzanò Fm) or molassic-like sequences (Stilo-Capo d'Orlando Fm), which unconformably overlie the tectonic units. In the present paper we describe a kinematic model of the progressive foreland migration of the Peloritani thrust belt, starting from Oligocene, carrying piggy-back basins and incorporating foredeep deposits, recognised in the Frazzanò-Stilo-Capo d'Orlando terrigenous successions. In general, the facies and structural observations on the overall Oligo-Miocene clastic sequences, outcropping in the Western Peloritani Mts, indicate: (a) the distal character of the Frazzanò Fm; (b) a complex group of terrigenous facies of the Stilo-Capo d'Orlando Fm, with lateral-to-vertical organisation, characterised by a distal-to-proximal-to-distal facies trend; (c) facies analogies of the basal portions of the Stilo-Capo d'Orlando Fm with the Frazzanò Fm; (d) the involvement of the Frazzanò Fm in lowermost and more external thrusting, and of the basal (Late Oligocene?) distal Stilo-Capo d'Orlando facies in the higher and inner thrusting during the early stages of deformation; (e) the involvement of the proximal Stilo-Capo d'Orlando facies in the tectonic edifice during the Early Miocene deformation; (f) the generally unconformable stratigraphical contacts of the higher proximal-to-distal (Early Miocene) Stilo-Capo d'Orlando facies on the constructing mobile belt; and (g) the presence of various thrust-faults, distinguished in a sequential order. The collected data allow us to hypothesise that the Oligo-Miocene tectono-sedimentary history was characterised by a foredeep with a deforming internal flank, probably lying in onlap on the constructing tectonic edifice (Frazzanò-lower Stilo-Capo d'Orlando Fms), and then deformed and covered by a piggy-back like sequence (middle-upper Stilo-Capo d'Orlando Fm), which was subsequently also deformed. The tectono-sedimentary evolution of the Peloritani belt has been probably developed through a progressive migration towards the foreland of a foredeep-compressional front couple and the chain body. The thrust stack progressively incorporates terrigenous foredeep deposits and in turn carried piggy-back basins.

  16. Slump dominated upper slope reservoir facies, Intra Qua Iboe (Pliocene), Edop Field, offshore Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugam, G.; Hermance, W.E.; Olaifa, J.O.

    An integration of sedimentologic and 3D seismic data provides a basis for unraveling complex depositional processes and sand distribution of the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Nearly 3,000 feet of conventional core was examined in interpreting slump/slide/debris flow, bottom current, turbidity current, pelagic/hemipelagic, wave and tide dominated facies. The IQI was deposited on an upper slope in close proximity to the shelf edge. Through time, as the shelf edge migrated seaward, deposition began with a turbidite channel dominated slope system (IQI 1 and 2) and progressed through a slump/debris flow dominated slope system (IQI 3,more » the principal reservoir) to a tide and wave dominated, collapsed shelf-edge deltaic system (IQI 4). Using seismic time slices and corresponding depositional facies in the core, a sandy {open_quotes}fairway{open_quotes} has been delineated in the IQI 3. Because of differences in stacking patterns of sandy and muddy slump intervals, seismic facies show: (1) both sheet-like and mounded external forms (geometries), and (2) parallel/continuous as well as chaotic/hummocky internal reflections. In wireline logs, slump facies exhibits blocky, coarsening-up, fining-up, and serrated motifs. In the absence of conventional core, slump facies may be misinterpreted and even miscorrelated because seismic facies and log motifs of slumps and debris flows tend to mimic properties of turbidite fan deposits. The slump dominated reservoir facies is composed of unconsolidated fine-grained sand. Thickness of individual units varies from 1 to 34 feet, but amalgamated intervals reach a thickness of up to 70 feet and apparently form connected sand bodies. Porosity commonly ranges from 20 to 35%. Horizontal permeability commonly ranges from 1,000 to 3,000 md.« less

  17. Adaptive Conditioning of Multiple-Point Geostatistical Facies Simulation to Flow Data with Facies Probability Maps

    NASA Astrophysics Data System (ADS)

    Khodabakhshi, M.; Jafarpour, B.

    2013-12-01

    Characterization of complex geologic patterns that create preferential flow paths in certain reservoir systems requires higher-order geostatistical modeling techniques. Multipoint statistics (MPS) provides a flexible grid-based approach for simulating such complex geologic patterns from a conceptual prior model known as a training image (TI). In this approach, a stationary TI that encodes the higher-order spatial statistics of the expected geologic patterns is used to represent the shape and connectivity of the underlying lithofacies. While MPS is quite powerful for describing complex geologic facies connectivity, the nonlinear and complex relation between the flow data and facies distribution makes flow data conditioning quite challenging. We propose an adaptive technique for conditioning facies simulation from a prior TI to nonlinear flow data. Non-adaptive strategies for conditioning facies simulation to flow data can involves many forward flow model solutions that can be computationally very demanding. To improve the conditioning efficiency, we develop an adaptive sampling approach through a data feedback mechanism based on the sampling history. In this approach, after a short period of sampling burn-in time where unconditional samples are generated and passed through an acceptance/rejection test, an ensemble of accepted samples is identified and used to generate a facies probability map. This facies probability map contains the common features of the accepted samples and provides conditioning information about facies occurrence in each grid block, which is used to guide the conditional facies simulation process. As the sampling progresses, the initial probability map is updated according to the collective information about the facies distribution in the chain of accepted samples to increase the acceptance rate and efficiency of the conditioning. This conditioning process can be viewed as an optimization approach where each new sample is proposed based on the sampling history to improve the data mismatch objective function. We extend the application of this adaptive conditioning approach to the case where multiple training images are proposed to describe the geologic scenario in a given formation. We discuss the advantages and limitations of the proposed adaptive conditioning scheme and use numerical experiments from fluvial channel formations to demonstrate its applicability and performance compared to non-adaptive conditioning techniques.

  18. Facies dimensions within carbonate reservoirs - guidelines from satellite images of modern analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, P.M.; Kowalik, W.S.

    1995-08-01

    Modern analogs illustrate the distribution of carbonate facies within an overall depositional setting and can be an integral part of a subsurface geologic model in indicating the dimensions, trend, and interrelationships of facies that might be related to reservoir and non-reservoir distribution. Satellite images from several modern carbonate areas depict the geologic characteristics that can be expected in ancient shallow-water settings. Isolated carbonate platforms- the Bahamas, Caicos Platform in the British West Indies, Chinchorro Bank offshore of Yucatan, and portions of the Belize area; Ramp-style shelf-to-basin transitions - Abu Dhabi and northern Yucatan; Rimmed shelf margins - South Florida, portionsmore » of Belize, and the Great Barrier Reef of Australia; Broad, deep shelf lagoons - the Great Barrier Reef and Belize; Reef variability - South Florida, the Bahamas, Caicos, Northern Yucatan, and Abu Dhabi; Shallow lagoon/tidal flat settings - South Florida, the Bahamas, Caicos, Northern Yucatan, Shark Bay in Western Australia, Abu Dhabi; Mixed carbonate and siliciclastic depostion - South Florida, Belize, the Great Barrier Reef, Shark Bay and Abu Dhabi. The geologic framework as illustrated by these areas is important at the development scale where lateral variation of porosity and permeability, i.e. reservoir quality, is commonly tied to facies changes and facies dimensions are required as input to reservoir models. The geologic framework is essential at the exploration scale for reservoir facies prediction and stratigraphic play concepts which are related directly to depositional facies patterns.« less

  19. The variation of polar firn subject to percolation - characterizing processes and glacier mass budget uncertainty using high-resolution instruments

    NASA Astrophysics Data System (ADS)

    Demuth, M. N.; Marshall, H.; Morris, E. M.; Burgess, D. O.; Gray, L.

    2009-12-01

    As the Earth's glaciers and ice sheets are subjected to the effects of recent and predicted warming, the distribution of their glaciological facies zones will alter. Percolation and wet snow facies zones will, in general, move upwards; encroaching upon, for some glacier configurations, regions of dry snow facies. Meltwater percolation and internal accumulation processes that characterize these highly variable facies may confound reliable estimates of surface mass budgets based on traditional point measurements alone. If the extents of these zones are indeed increasing, as has been documented through recent analysis of QuickScat data for the ice caps of the Canadian Arctic, then the certainty of glacier mass budget estimates using traditional techniques may be degraded to an as yet un-quantified degree. Indeed, the application of remote sensing, in particular that utilizing repeat altimetry to retrieve surface mass budget estimates, is also subject to the complexity of glacier facies from the standpoint of their near-surface stratigraphy, density variations and rates of compaction. We first review the problem of measuring glacier mass budgets in the context of nested scales of variability, where auto-correlation structure varies with the scale of observation. We then consider specifically firn subject to percolation and describe the application of high-resolution instruments to characterize variability at the field-scale. The data collected include measurements of micro-topography, snow hardness, and snow density and texture; retrieved using airborne scanning lidar, a snow micro-penetrometer, neutron probe and ground-penetrating radars. The analysis suggests corresponding scales of correlation as it concerns the influence of antecedent conditions (surface roughness and hardness, and stratigraphic variability) and post-depositional processes (percolation and refreezing of surface melt water).

  20. Prevalence of Aspartylglycosaminuria in Sweden

    ERIC Educational Resources Information Center

    Ockerman, P. A.; Hultberg, B.

    1972-01-01

    Urine samples of 668 Swedish children with progressive psycho-motor retardation, coarse facies, and, in some cases, skeletal changes and vacuolated lymphocytes, were examined by means of high voltage paper electrophoresis. (DB)

  1. Influence of relative sea-level variations on the genesis of palaeoplacers, the examples of Sarrabus (Sardinia, Italy) and the Armorican Massif (western France)

    NASA Astrophysics Data System (ADS)

    Pistis, Marco; Loi, Alfredo; Dabard, Marie-Pierre

    2016-02-01

    The aim of this work is to analyse the role of allocyclic processes in the genesis of marine Ordovician palaeoplacers laid down on a terrigenous shelf dominated by storm waves. Sedimentological (facies, sequence stratigraphy) and petrographic analyses combined with natural radioactivity measurement (gamma ray) are carried out. Two facies containing heavy minerals are identified: a shoreface facies and a proximal upper offshore facies. Heavy minerals (mainly titaniferous minerals, zircon and monazite) are concentrated in laminae that can amalgamate to form placers that are several decimetres thick. Their occurrence is highlighted by an increase in the total radioactivity (up to 140,000 cpm) and in the U and Th contents (up to 130 ppm and 800 ppm, respectively). The palaeoplacers are the result of a combination of autocyclic and allocyclic factors. In the stratigraphic record, the palaeoplacers are located in the retrogradation phases and express condensation processes in the nearshore environments.

  2. Study of carbonate concretions using imaging spectroscopy in the Frontier Formation, Wyoming

    NASA Astrophysics Data System (ADS)

    de Linaje, Virginia Alonso; Khan, Shuhab D.; Bhattacharya, Janok

    2018-04-01

    Imaging spectroscopy is applied to study diagenetic processes of the Wall Creek Member of the Cretaceous Frontier Formation, Wyoming. Visible Near-Infrared and Shortwave-Infrared hyperspectral cameras were used to scan near vertical and well-exposed outcrop walls to analyze lateral and vertical geochemical variations. Reflectance spectra were analyzed and compared with high-resolution laboratory spectral and hyperspectral imaging data. Spectral Angle Mapper (SAM) and Mixture Tuned Matched Filtering (MTMF) classification algorithms were applied to quantify facies and mineral abundances in the Frontier Formation. MTMF is the most effective and reliable technique when studying spectrally similar materials. Classification results show that calcite cement in concretions associated with the channel facies is homogeneously distributed, whereas the bar facies was shown to be interbedded with layers of non-calcite-cemented sandstone.

  3. Variation of illite/muscovite 40Ar/39Ar age spectra during progressive low-grade metamorphism: an example from the US Cordillera

    NASA Astrophysics Data System (ADS)

    Verdel, Charles; van der Pluijm, Ben A.; Niemi, Nathan

    2012-09-01

    40Ar/39Ar step-heating data were collected from micron to submicron grain-sizes of correlative illite- and muscovite-rich Cambrian pelitic rocks from the western United States that range in metamorphic grade from the shallow diagenetic zone (zeolite facies) to the epizone (greenschist facies). With increasing metamorphic grade, maximum ages from 40Ar/39Ar release spectra decrease, as do total gas ages and retention ages. Previous studies have explained similar results as arising dominantly or entirely from the dissolution of detrital muscovite and precipitation/recrystallization of neo-formed illite. While recognizing the importance of these processes in evaluating our results, we suggest that the inverse correlation between apparent age and metamorphic grade is controlled, primarily, by thermally activated volume diffusion, analogous to the decrease in apparent ages with depth observed for many thermochronometers in borehole experiments. Our results suggest that complete resetting of the illite/muscovite Ar thermochronometer occurs between the high anchizone and epizone, or at roughly 300 °C. This empirical result is in agreement with previous calculations based on muscovite diffusion parameters, which indicate that muscovite grains with radii of 0.05-2 μm should have closure temperatures between 250 and 350 °C. At high anchizone conditions, we observe a reversal in the age/grain-size relationship (the finest grain-size produces the oldest apparent age), which may mark the stage in prograde subgreenschist facies metamorphism of pelitic rocks at which neo-formed illite/muscovite crystallites typically surpass the size of detrital muscovite grains. It is also approximately the stage at which neo-formed illite/muscovite crystallites develop sufficient Ar retentivity to produce geologically meaningful 40Ar/39Ar ages. Results from our sampling transect of Cambrian strata establish a framework for interpreting illite/muscovite 40Ar/39Ar age spectra at different stages of low-grade metamorphism and also illuminate the transformation of illite to muscovite. At Frenchman Mtn., NV, where the Cambrian Bright Angel Formation is at zeolite facies conditions, illite/muscovite 40Ar/39Ar data suggest a detrital muscovite component with an apparent age ≥967 Ma. The correlative Carrara Fm. is at anchizone conditions in the Panamint and Resting Spring Ranges of eastern California, and in these locations, illite/muscovite 40Ar/39Ar data suggest an early Permian episode of subgreenschist facies metamorphism. The same type of data from equivalent strata at epizone conditions (greenschist facies) in the footwall of the Bullfrog/Fluorspar Canyon detachment in southern Nevada reveals a period of slow-to-moderate Late Cretaceous cooling.

  4. Barrier island facies models and recognition criteria

    NASA Astrophysics Data System (ADS)

    Mulhern, J.; Johnson, C. L.

    2017-12-01

    Barrier island outcrops record transgressive shoreline motion at geologic timescales, providing integral clues to understanding how coastlines respond to rising sea levels. However, barrier island deposits are difficult to recognize. While significant progress has been made in understanding the modern coastal morphodynamics, this insight is not fully leveraged in existing barrier island facies models. Excellent outcrop exposures of the paralic Upper Cretaceous Straight Cliffs Formation of southern Utah provide an opportunity to revise facies models and recognition criteria for barrier island deposits. Preserved barrier islands are composed of three main architectural elements (shorefaces, tidal inlets, and tidal channels) which occur independently or in combination to create larger-scale barrier island deposits. Barrier island shorefaces record progradation, while barrier island tidal inlets record lateral migration, and barrier island tidal channels record aggradation within the tidal inlet. Four facies associations are used to describe and characterize these barrier island architectural elements. Barrier islands occur in association with backarrier fill and internally contain lower and upper shoreface, high-energy upper shoreface, and tidal channel facies. Barrier islands bound lagoons or estuaries, and are distinguished from other shoreface deposits by their internal facies and geometry, association with backbarrier facies, and position within transgressive successions. Tidal processes, in particular tidal inlet migration and reworking of the upper shoreface, also distinguish barrier island deposits. Existing barrier island models highlight the short term heterogeneous and dynamic nature of barrier island systems, yet overlook processes tied to geologic time scales, such as multi-directional motion, erosion, and reworking, and their expressions in preserved barrier island strata. This study uses characteristic outcrop expressions of barrier island successions to exemplify how modern morphodynamic concepts can be combined with geologic time-scale processes to update understanding of ancient barrier island motion and preservation.

  5. Seismic facies analysis of shallowly buried channels, New Jersey continental shelf: understanding late Quaternary paleoenvironments during the last transgression

    NASA Astrophysics Data System (ADS)

    Nordfjord, S.; Goff, J. A.; Austin, J. A.; Gulick, S. P.; Sommerfield, C.; Alexander, C.; Schock, S.

    2004-12-01

    We are investigating the late Quaternary sedimentary record of the New Jersey mid-outer continental shelf using deep-towed chirp sonar (1-4 kHz and 1-15 kHz) profiles, coupled with lithologic and chronostratigraphic control from long sediment cores collected using the DOSECC AHC-800 drilling system. We have seismically mapped extensive, shallowly buried, dendritic drainage systems. Observed seismic facies distributions suggest the complex nature of channel fills, and synthetic seismograms derived from MST logs enable us to correlate the chirp data to changes in lithology and physical properties of the cored samples, including channel fills, confirming that fine-grained material is transparent seismically, while interbedded sand and mud produce laminated reflections. We suggest that these channels probably formed during shelfal exposure coincident with the last glacial lowstand along this margin. Observed seismic facies superposition within valley fills is in part consistent with a tripartite zonation derived from wave-dominated estuary models. We have mapped four main facies within these dendritic incised valleys: (1) The lower facies, SF1, consists of a high-amplitude chaotic configuration. We interpret this facies as lowstand fluvial fill; (2) Overlying facies SF2 is generally a thin layer (<1-2m) of stratified, high amplitude reflectors in valley axes. This facies is characterized by small wedges along channel flanks, with a generally transparent acoustic response, but occasionally also by internal clinoforms. This facies could have been deposited as transgression began, by backfilling of valleys (bayhead delta? aggradational alluvial deposits?); (3) SF3 is generally transparent; subtle horizontal and parallel reflectors onlap channel flanks. We interpret this facies as representing central basin/bay deposits, a low-energy zones during the transgression, perhaps related to turbidity maxima; (4) SF4 is observed only in the seaward end of the valley. This facies is more variable in amplitude and configuration, and includes a laminated acoustic response, small erosional surfaces, and some wavy reflections. We think the complexity of this facies likely reflects deposition of an estuary mouth complex in a dynamic environment, including frequent lateral variations in sedimentary facies from tidal inlets, washovers, tidal-deltas and barriers. A seismic transition upward from chaotic to flat-lying reflections and a more transparent acoustic response indicates less depositional energy, suggesting replacement of fluvial systems by tidal/estuarine environments. This has been confirmed by vibra-coring of one channel. Our paleo-flow reconstructions also yield velocities in the range of 0.5-1.5 m/s, which are reasonable estimates for flows in estuarine environments.

  6. Late Pleistocene sediments and fossils near the mouth of Mad River, Humboldt County, California: Facies analysis, sequence development, and possible age correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, E.W.

    Study of late Pleistocene-age sediments near the mouth of the Mad River revealed a sequence of nearshore marine and shallow bay deposits. This sequence, bounded by unconformities, is informally named the Mouth of Mad unit. The Mouth of mad unit can be divided into four distinct depositional facies at the study site. The lowest facies are the Nearshore Sand and Estuarine Mud, which lie unconformably on a paleosol. The sand facies grades upward into a high-energy, interbedded Nearshore Sand and Gravel facies containing storm and rip-channel deposits. Above the sand and gravel is a Strand-Plain Sand facies. This sand ismore » overlain by a laterally variable sequence of shell-rich Bay facies. The bay deposits can be further divided into five subfacies: (1) a Bioturbated Sand; (2) a Lower Tidal Flat Mud; (3) a Mixed Sand and Mud; (4) an oyster-rich Bay Mud; and (5) an Upper Tidal Flat Mud. The bay sequence is overlain unconformably by younger late Pleistocene-age marine terrace deposits. The depositional environments represented by these facies progress from a shoreline estuary to nearshore deposits, above storm wave base, and slowly back to shoreline and finally shallow bay conditions. The Mouth of Mad unit represents a transgressive-regressive sequence, involving the development of a protective spit. The uppermost mud within the Mouth of Mad unit has been dated, using thermoluminescence age estimation, at 176 [+-] 33 ka, placing it in the late Pleistocene. The Mouth of Mad unit appears to be younger than the fossiliferous deposits at Elk Head, Crannell Junction, Trinidad Head, Moonstone Beach, and the Falor Formation near Maple Creek, and possibly time equivalent with gravel deposits exposed at the western end of School Road in McKinleyville.« less

  7. Assessing the Control of Preservational Environment on Taphonomic and Ecological Patterns in an Oligocene Mammal Fauna from Badlands National Park, South Dakota.

    PubMed

    Wilson, Paige K; Moore, Jason R

    2016-01-01

    Comparisons of paleofaunas from different facies are often hampered by the uncertainty in the variation of taphonomic processes biasing the paleoecological parameters of interest. By examining the taphonomic patterns exhibited by different facies in the same stratigraphic interval and area, it is possible to quantify this variation, and assess inter-facies comparability. The fossil assemblages preserved in Badlands National Park (BNP), South Dakota, have long been a rich source for mammalian faunas of the White River Group. To investigate the influence of the variation of taphonomic bias with lithology whilst controlling for the influence of changes in patterns of taphonomic modification with time, taphonomic and paleoecological data were collected from four mammal-dominated fossil assemblages (two siltstone hosted and two sandstone hosted) from a narrow stratigraphic interval within the Oligocene Poleslide Member of the Brule Formation, in the Palmer Creek Unit of BNP. Previous work in the region confirmed that the two major lithologies represent primarily aeolian- and primarily fluvial-dominated depositional environments, respectively. A suite of quantifiable taphonomic and ecological variables was recorded for each of the more than 800 vertebrate specimens studied here (857 specimens were studied in the field, 9 specimens were collected and are reposited at BNP). Distinctly different patterns of taphonomic biasing were observed between the aeolian and fluvial samples, albeit with some variability between all four sites. Fluvial samples were more heavily weathered and abraded, but also contained fewer large taxa and fewer tooth-bearing elements. No quantifiable paleofaunal differences in generic richness or evenness were observed between the respective facies. This suggests that while large vertebrate taxonomic composition in the region did vary with paleodepositional environment, there is no evidence of confounding variation in faunal structure, and therefore differences between the assemblages are attributed to differing preservational environments producing a taphonomic overprint on the assemblages. The lack of apparent taphonomic bias on paleofaunal structure suggests that such paleoecological data can be compared throughout the Poleslide Member, irrespective of lithology.

  8. Changes in Depositional Setting Reflect Rising Sealevel in Latest Holocene Sediments of the Hudson River

    NASA Astrophysics Data System (ADS)

    Slagle, A.; Carbotte, S. M.; Ryan, W. B.; Bell, R.; Nitsche, F. O.; McHugh, C. M.

    2002-12-01

    An extensive database of geophysical and sampling data in the Hudson River has been obtained in ten study areas between the New York Harbor and the Troy Dam. These data include bathymetry, bank-to-bank coverage of side-looking sonar imagery, subbottom reflection profiles, sediment cores and grabs. Geophysical properties, including gamma density, magnetic susceptibility and P-wave velocity, have been measured in a 9.3 m Vibracore (SD-30) from the near-channel tidal flats of the Tappan Zee area. Three distinct sedimentary facies have been identified, based on changes in physical properties, lithology and seismic reflections. Facies 1 is an oyster-rich unit with unstratified sediments and high sound velocities, and is found in the upper 1.5 m of core SD-30. Chirp subbottom data, which provide reflectors down to approximately 4 m depth, show a distinct horizon at 1.5 m, supporting the change seen in physical property data and lithology at this depth. A unit characterized by laminated sediments, interbedded with homogeneous layers and coquina layers, is identified as Facies 2 and is found between 1.5 and 6.1 m. This facies has high magnetic susceptibility and the appearance of discrete density cycles. The oldest unit, Facies 3, extends from 6.1 m to the base of the core at 9.3 m. It is made up of oyster-rich, unbedded sediments and thick coquina layers, and is characterized by low magnetic susceptibility. Radiocarbon dating of oysters and bivalves indicates that the different facies in SD-30 correspond to different sedimentation rates, with highest values occurring during deposition of Facies 2. The facies changes and variations in sedimentation rates are attributed to an evolving depositional environment in the tidal flats of the Tappan Zee area due to rising sealevel. Extrapolating from nearby cores that penetrate deeper into the sedimentary record, Facies 3 sits above post-glacial fluvial sands and represents the transition from a fresh to more brackish environment, suitable for development of oyster beds. The laminated sediments of Facies 2 are attributed to infilling of the tidal flats during a rapid rise in sealevel. The lack of laminated sediments and low sedimentation rates of Facies 1 are attributed to the modern wave-base dominated depositional setting in the Tappan Zee area.

  9. Possible physicochemical facies of wehrlitization of ultramafic rocks in the mantle wedge under volcanoes of the Kuril-Kamchatka frontal zone

    NASA Astrophysics Data System (ADS)

    Sharapov, V. N.; Kuznetsov, G. V.; Chudnenko, K. V.

    2016-04-01

    A quantitative model describing the dynamics of the process of metasomatic wehrlitization of ultramafics is put forward. It is elaborated for the process taking place in permeable fault zones over a time span of 50 kyr with fluid source depths in the range of 150-50 km at initial temperatures of 1000-1200°C. The possibility of existence of two physical-chemical facies of this process has been demonstrated: one occurs at the level of garnet and the other is at the level of spinel depth facies. Their realization is related to the dependence of the activity of Mg-Ca-Si metasomatism against variation in the composition of low-molecular hydrocarbons in a fluid under conditions of changing T and P in a system.

  10. Early rifting deposition: examples from carbonate sequences of Sardinia (Cambrian) and Tuscany (Triassic-Jurassic), Italy: an analogous tectono-sedimentary and climatic context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocozza, T.; Gandin, A.

    Lower Cambrian Ceroide Limestone (Sardinia) and Lower Jurassic Massiccio Limestone (Tuscany) belong to sequences deposited in analogous tectono-sedimentary context: the former linked to the Caledonian Sardic Phase, the latter to the Alpine Orogeny. Both units consist of massive pure limestone characterized by marginal and lagoonal sequences repeatedly interfingering in the same geological structure. This distribution indicates a morphology of the platforms composed of banks (marginal facies) and shallow basins (lagoonal facies) comparable with a Bahamian complex. Dolomitization affects patchily the massive limestone bodies, and karstic features, breccias, and sedimentary dikes occur at their upper boundary. Both units overlie early dolomitemore » and evaporites (sabkha facies) containing siliciclastic intercalations in their lower and/or upper part and are unconformably covered by open-shelf red (hematitic), nodular limestone Ammonitico Rosso facies). The sedimentary evolution of the two sequences appears to have been controlled by synsedimentary tectonics whose major effects are the end of the terrigenous input, the bank-and-basin morphology of the platform, the irregular distribution of the dolomitization, and the nodular fabric of the overlying facies. The end of the Bahamian-type system is marked by the karstification of the emerged blocks and is followed by their differential sinking and burial under red-nodular facies. From a geodynamic viewpoint, sequences composed of Bahamian-like platform carbonates followed by Ammonitico Rosso facies imply deposition along continental margins subjected to block-faulting during an extensional regime connected with the beginning of continental rifting. Moreover, the variation from sabkha to Bahamian conditions suggests the drifting of the continent from arid to humid, tropical areas.« less

  11. Kimberlites of the Man craton, West Africa

    NASA Astrophysics Data System (ADS)

    Skinner, E. M. W.; Apter, D. B.; Morelli, C.; Smithson, N. K.

    2004-09-01

    The Man craton in West Africa is an Archaean craton formerly joined to the Guyana craton (South America) that was rifted apart in the Mesozoic. Kimberlites of the Man craton include three Jurassic-aged clusters in Guinea, two Jurassic-aged clusters in Sierra Leone, and in Liberia two clusters of unknown age and one Neoproterozoic cluster recently dated at ∼800 Ma. All of the kimberlites irrespective of age occur as small pipes and prolific dykes. Some of the Banankoro cluster pipes in Guinea, the Koidu pipes in Sierra Leone and small pipes in the Weasua cluster in Liberia contain hypabyssal-facies kimberlite and remnants of the so-called transitional-facies and diatreme-facies kimberlite. Most of the Man craton kimberlites are mineralogically classified as phlogopite kimberlites, although potassium contents are relatively low. They are chemically similar to mica-poor Group 1A Southern African examples. The Jurassic kimberlites are considered to represent one province of kimberlites that track from older bodies in Guinea (Droujba 153 Ma) to progressively younger kimberlites in Sierra Leone (Koidu, 146 Ma and Tongo, 140 Ma). The scarcity of diatreme-facies kimberlites relative to hypabyssal-facies kimberlites and the presence of the so-called transitional-facies indicate that the pipes have been eroded down to the interface between the root and diatreme zones. From this observation, it is concluded that extensive erosion (1-2 km) has occurred since the Jurassic. In addition to erosion, the presence of abundant early crystallizing phlogopite is considered to have had an effect on the relatively small sizes of the Man craton kimberlites.

  12. Lateral Variability of Lava flow Morphologies in the Deccan Traps Large Igneous Province (India)

    NASA Astrophysics Data System (ADS)

    Vanderkluysen, L.; Rader, E. L.; Self, S.; Clarke, A. B.; Sheth, H.; Moyer, D. K.

    2016-12-01

    In continental flood basalt provinces (CFBs), lava flow morphologies have traditionally been classified in two distinct groups recognizable in the field, expressing two different modes of lava flow emplacement mechanisms: (a) compound lava flow fields dominated by meter-sized pāhoehoe toes and lobes; and (b) inflated sheet lobes tens to hundreds of meters in width and meters to tens of meters in height. Temporal transitions between these two emplacement styles have been recognized in many mafic large igneous provinces worldwide and seem to be a fundamental feature of CFBs. However, lateral variations in these morphologies remain poorly studied and understood. In the Deccan CFB of India, two principal hypotheses have been proposed to account for possible lateral variations in lava flow facies: that smaller toes and lobes occur in distal regions of flow fields, representing breakouts at the edges of larger inflated lavas; or on the contrary that smaller toes and lobes represent proximal facies. We conducted a field study focusing on two of the Deccan's formations, the Khandala and the Poladpur, located in the middle and upper sections of the province's defined chemostratigraphy. We studied nine sections along a 600 km long E-W transect, with the easternmost sections representing the most distal outcrops, ≥ 500 km away from inferred vents. The Khandala Formation is traditionally described as a sequence of three thick inflated sheet lobes in the well-exposed sections of the western Deccan. However, in the central Deccan, we find the Khandala to be much thicker overall, with half of its thickness dominated by small, meter-sized toes and lobes. Inflated sheet lobes of the Khandala are thinner on average in the central Deccan than further to the east or west. We document this transition as occurring progressively in outcrops only 80 km apart. In the Poladpur, the average thickness of inflated sheet lobes increases in distal outcrops of the eastern Deccan. We interpret these results as an indication that smaller, meter-sized toes and lobes are indicative of proximal facies, whereas the thickest (> 10 m) inflated sheet lobes are the most likely to reach the far edges of the province. Analogue experiments are currently under way to test the relative importance of eruption parameters in the development of these morphologies.

  13. Facies architecture of a Triassic rift-related Silicic Volcano-Sedimentary succession in the Tethyan realm, Peonias subzone, Vardar (Axios) Zone, northern Greece; Regional implications

    NASA Astrophysics Data System (ADS)

    Asvesta, Argyro; Dimitriadis, Sarantis

    2010-06-01

    In northern Greece, along the western edge of the Paleozoic Vertiscos terrane (Serbomacedonian massif) and within the Peonias subzone - the eastern part of the Vardar (Axios) Zone - a Silicic Volcano-Sedimentary (SVS) succession of Permo(?)-Skythian to Mid Triassic age records the development of a faulted continental margin and the formation of rhyolitic volcanoes along a continental shelf fringed by neritic carbonate accumulations. It represents the early rifting extensional stages that eventually led to the opening of the main oceanic basin in the western part of the Vardar (Axios) Zone (the Almopias Oceanic Basin). Even though the SVS succession is deformed, altered, extensively silicified and metamorphosed in the low greenschist facies, primary textures, original contacts and facies relationships are recognized in some places allowing clues for the facies architecture and the depositional environment. Volcanic and sedimentary facies analysis has been carried out at Nea Santa and Kolchida rhyolitic volcanic centres. Pyroclastic facies, mostly composed of gas-supported lapilli tuffs and locally intercalated accretionary lapilli tuffs, built the early cones which were then overridden by rhyolitic aphyric and minor K-feldspar-phyric lava flows. The characteristics of facies, especially the presence of accretionary lapilli, imply subaerial to coastal emplacement at this early stage. The mature and final stages of volcanism are mostly represented by quartz-feldspar porphyry intrusions that probably occupied the vents. At Nea Santa area, the presence of resedimented hyaloclastite facies indicates subaqueous emplacement of rhyolitic lavas and/or lobes. Moreover, quartz-feldspar-phyric sills and a partly extrusive dome featuring peperites at their margins are inferred to have intruded unconsolidated, wet carbonate sediments of the overlying Triassic Neritic Carbonate Formation, in a shallow submarine environment. The dome had probably reached above wave-base as is indicated by the presence of reworked rhyolitic clasts in the younger mixed rhyolite-carbonate epiclastic sedimentary facies. This facies is interpreted as mass- and debris-flow of mixed provenance, deposited below wave-base. The facies architecture of the SVS succession records a change in volcanic activity from explosive to effusive and then to intrusive. The depositional environment changed from subaerial-coastal to shallow submarine as the silicic volcanism evolved and carbonate sedimentation was progressively taking over, probably compensating for the gradual subsidence of the corresponding basin. Silicic magmatism and carbonate sedimentation were contemporaneous and spatially related. The timing of the rifting, the continental crustal elements involved and the accompanying tectonic, magmatic and sedimentary processes are features of the spatially and temporally evolving western peri-Tethyan region.

  14. Recent hydrological variability and extreme precipitation events in Moroccan Middle-Atlas mountains: micro-scale analyses of lacustrine sediments

    NASA Astrophysics Data System (ADS)

    Jouve, Guillaume; Vidal, Laurence; Adallal, Rachid; Bard, Edouard; Benkaddour, Abdel; Chapron, Emmanuel; Courp, Thierry; Dezileau, Laurent; Hébert, Bertil; Rhoujjati, Ali; Simonneau, Anaelle; Sonzogni, Corinne; Sylvestre, Florence; Tachikawa, Kazuyo; Viry, Elisabeth

    2016-04-01

    Since the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114.

  15. Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran

    NASA Astrophysics Data System (ADS)

    Alizadeh, Bahram; Najjari, Saeid; Kadkhodaie-Ilkhchi, Ali

    2012-08-01

    Intelligent and statistical techniques were used to extract the hidden organic facies from well log responses in the Giant South Pars Gas Field, Persian Gulf, Iran. Kazhdomi Formation of Mid-Cretaceous and Kangan-Dalan Formations of Permo-Triassic Data were used for this purpose. Initially GR, SGR, CGR, THOR, POTA, NPHI and DT logs were applied to model the relationship between wireline logs and Total Organic Carbon (TOC) content using Artificial Neural Networks (ANN). The correlation coefficient (R2) between the measured and ANN predicted TOC equals to 89%. The performance of the model is measured by the Mean Squared Error function, which does not exceed 0.0073. Using Cluster Analysis technique and creating a binary hierarchical cluster tree the constructed TOC column of each formation was clustered into 5 organic facies according to their geochemical similarity. Later a second model with the accuracy of 84% was created by ANN to determine the specified clusters (facies) directly from well logs for quick cluster recognition in other wells of the studied field. Each created facies was correlated to its appropriate burial history curve. Hence each and every facies of a formation could be scrutinized separately and directly from its well logs, demonstrating the time and depth of oil or gas generation. Therefore potential production zone of Kazhdomi probable source rock and Kangan- Dalan reservoir formation could be identified while well logging operations (especially in LWD cases) were in progress. This could reduce uncertainty and save plenty of time and cost for oil industries and aid in the successful implementation of exploration and exploitation plans.

  16. In defence of moral imperialism: four equal and universal prima facie principles.

    PubMed

    Dawson, A; Garrard, E

    2006-04-01

    Raanan Gillon is a noted defender of the four principles approach to healthcare ethics. His general position has always been that these principles are to be considered to be both universal and prima facie in nature. In recent work, however, he has made two claims that seem to present difficulties for this view. His first claim is that one of these four principles, respect for autonomy, has a special position in relation to the others: he holds that it is first among equals. We argue that this claim makes little sense if the principles are to retain their prima facie nature. His second claim is that cultural variation can play an independent normative role in the construction of our moral judgments. This, he argues, enables us to occupy a middle ground between what he sees as the twin pitfalls of moral relativism and (what he calls) moral imperialism. We argue that there is no such middle ground, and while Gillon ultimately seems committed to relativism, it is some form of moral imperialism (in the form of moral objectivism) that will provide the only satisfactory construal of the four principles as prima facie universal moral principles.

  17. In defence of moral imperialism: four equal and universal prima facie principles

    PubMed Central

    Dawson, A; Garrard, E

    2006-01-01

    Raanan Gillon is a noted defender of the four principles approach to healthcare ethics. His general position has always been that these principles are to be considered to be both universal and prima facie in nature. In recent work, however, he has made two claims that seem to present difficulties for this view. His first claim is that one of these four principles, respect for autonomy, has a special position in relation to the others: he holds that it is first among equals. We argue that this claim makes little sense if the principles are to retain their prima facie nature. His second claim is that cultural variation can play an independent normative role in the construction of our moral judgments. This, he argues, enables us to occupy a middle ground between what he sees as the twin pitfalls of moral relativism and (what he calls) moral imperialism. We argue that there is no such middle ground, and while Gillon ultimately seems committed to relativism, it is some form of moral imperialism (in the form of moral objectivism) that will provide the only satisfactory construal of the four principles as prima facie universal moral principles. PMID:16574872

  18. Geochemistry of Eagle Ford group source rocks and oils from the first shot field area, Texas

    USGS Publications Warehouse

    Edman, Janell D.; Pitman, Janet K.; Hammes, Ursula

    2010-01-01

    Total organic carbon, Rock-Eval pyrolysis, and vitrinite reflectance analyses performed on Eagle Ford Group core and cuttings samples from the First Shot field area, Texas demonstrate these samples have sufficient quantity, quality, and maturity of organic matter to have generated oil. Furthermore, gas chromatography and biomarker analyses performed on Eagle Ford Group oils and source rock extracts as well as weight percent sulfur analyses on the oils indicate the source rock facies for most of the oils are fairly similar. Specifically, these source rock facies vary in lithology from shales to marls, contain elevated levels of sulfur, and were deposited in a marine environment under anoxic conditions. It is these First Shot Eagle Ford source facies that have generated the oils in the First Shot Field. However, in contrast to the generally similar source rock facies and organic matter, maturity varies from early oil window to late oil window in the study area, and these maturity variations have a pronounced effect on both the source rock and oil characteristics. Finally, most of the oils appear to have been generated locally and have not experienced long distance migration. 

  19. Measuring and predicting reservoir heterogeneity in complex deposystems: The fluvial-deltaic Big Injun sandstone in West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchen, D.G.; Hohn, M.E.; Aminian, K.

    1993-04-01

    The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less

  20. Measuring and predicting reservoir heterogeneity in complex deposystems: The fluvial-deltaic Big Injun sandstone in West Virginia. Annual report, September 20, 1991--September 20, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchen, D.G.; Hohn, M.E.; Aminian, K.

    1993-04-01

    The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less

  1. Record of continental to marine transition from the Mesoproterozoic Ampani basin, Central India: An exercise of process-based sedimentology in a structurally deformed basin

    NASA Astrophysics Data System (ADS)

    Chakraborty, Partha Pratim; Saha, Subhojit; Das, Kaushik

    2017-08-01

    The Mesoproterozoic Ampani Group of rocks, a structurally deformed sedimentary package hosted within the Bastar Craton in central India, was studied for process-based facies and paleoenvironmental analyses. Outcrop mapping on 1:1500 scale, deconvolution of deformation pattern, and process-based facies analyses have led to the identification of fifteen facies types, clubbed under four facies associations. A range of paleoenvironmental settings varying from continental fluvial to distal marine shelf is inferred. Deductive paleohydrology revealed poorly-efficient 'dirty river' character for the Ampani River system with low water discharge. However, at times of catastrophic sheet floods release of sediments trapped at the river mouth in form of hyperpycnal underflows triggered formation of river mouth delta. Reworking of delta front sediment in wave-dominated coastline resulted development of beach-foreshore and shoreface (proximal to distal). Variation in the relative proportion of bar and interbar products within the shoreface successions exposed at different studied sections is interpreted as signature of relative bathymetric variation. The pro-deltaic Ampani shelf was storm infested. Tectonic perturbance in the basin hinterland in course of Ampani sedimentation is inferred from occurrence of a disparately thick lobate high-density flow deposit towards the top of shoreface succession and increase in feldspar content upward within the shoreface succession. Addition of detritus from a ∼1600 Ma Mesoproterozoic provenance in upper part of shoreface also strengthen the contention. Deconvolution of deformation pattern and delineation of environmental products ranging between continental and deep marine allowed us to infer the Ampani sediment package as fining-upward in character evolved in a transgressive mode.

  2. Study of Diagenetic Features in Rudist Buildups of Cretaceous Edwards Formation Using Ground Based Hyperspectral Scanning and Terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Krupnik, D.; Khan, S.; Okyay, U.; Hartzell, P. J.; Biber, K.

    2015-12-01

    Ground based remote sensing is a novel technique for development of digital outcrop models which can be instrumental in performing detailed qualitative and quantitative sedimentological analysis for the study of depositional environment, diagenetic processes, and hydrocarbon reservoir characterization. For this investigation, ground-based hyperspectral data collection is combined with terrestrial LiDAR to study outcrops of Late Albian rudist buildups of the Edwards formation in the Lake Georgetown Spillway in Williamson County, Texas. The Edwards formation consists of shallow water deposits of reef and associated inter-reef facies, including rudist bioherms and biostromes. It is a significant aquifer and was investigated as a hydrocarbon play in south central Texas. Hyperspectral data were used to map compositional variation in the outcrop by distinguishing spectral properties unique to each material. Lithological variation was mapped in detail to investigate the structure and composition of rudist buildups. Hyperspectral imagery was registered to a 3D model produced from the LiDAR point cloud with an accuracy of up to one pixel. Flat-topped toucasid-rich bioherm facies were distinguished from overlying toucasid-rich biostrome facies containing chert nodules, overlying sucrosic dolostones, and uppermost peloid wackestones and packstones of back-reef facies. Ground truth was established by petrographic study of samples from this area and has validated classification products of remote sensing data. Several types of porosity were observed and have been associated with increased dolomitization. This ongoing research involves integration of remotely sensed datasets to analyze geometrical and compositional properties of this carbonate formation at a finer scale than traditional methods have achieved and seeks to develop a workflow for quick and efficient ground based remote sensing-assisted outcrop studies.

  3. Relation between grain size and modal composition in deep-sea gravity-flow deposits. Example from the Voirons Flysch (Gurnigel nappe, Chablais Prealps, France)

    NASA Astrophysics Data System (ADS)

    Ragusa, Jérémy; Kindler, Pascal

    2016-04-01

    A coupled analysis of modal composition, grain size and sedimentary features of gravity-flow deposits in the Gurnigel nappe shows that the transition from coarse proximal to fine distal deposits is accompanied by a change in composition from siliciclastic to calcareous. Such compositional variation should be taken into account when interpretating deep-sea deposits if sampling is restricted to a single part of the fan. The Chablais Prealps (Haute-Savoie, France) represent a well-preserved accretionary wedge in the Western Alps. They comprise a stack of northward-thrusted sedimentary cover nappes originating from the Ultrahelvetic realm (distal part of the European margin) to the southern part of the Piemont Ocean. The present study focuses on the Voirons Flysch, belonging to the Gurnigel nappe, which includes four formations consisting of gravity-flow deposits (from bottom to top): (1) the Voirons Sandstone Fm., composed of channel to lobe deposits; (2) the Vouan Conglomerate Fm., represented by the proximal part of a channel system; (3) the Boëge Marls Fm., constituted by distal lobe deposits; finally, (4) the Bruant Sandstone Fm., which consists in channel to lobe deposits. Recent biostratigraphic results using planktonic foraminifers attributed a Middle to Late Eocene age to the Voirons Flysch, which was formerly believed to range from the Paleocene to the Middle Eocene (based on calcareous nannofossils). A total of 270 thin sections with stained feldspars were prepared, representing the four formations of the Voirons Flysch. Circa 300 extrabasinal grains were counted per thin section using the classic Indiana method. In addition, the quantity of intrabasinal grains (i.e. bioclasts, glauconite), cement and porosity was analysed. Cement was stained with alizarine and potassium ferrocyanide. 200 grain-size measurements on ca. 100 samples were performed using 3D conversion and statistical moment analysis. Sedimentary observations for each sampled bed were categorized following Mutti's turbiditic facies scheme. Cluster analysis on the composition of major grains discriminated 10 clusters which are merged into seven petrofacies (P1 - P7) following optical observations under the microscope: P1: poorly cemented porous arenite; P2: all porosity are filled by calcitic cement; P3: well-cemented volcano-clastic arenite; P4: red algae-rich highly cemented arenite to calcarenite; P5: highly cemented arenite; P6: globigerina-rich laminated calcarenite and P7: glauconitic quartzarenite. Grain-size distribution is grouped following the petrofacies. They provide a homogeneous distribution within each petrofacies with a gradual fining and progressively increasing sorting from P1 to P7. Moreover, Mutti's facies distribution indicates a progressive change towards more distal environments: from channel facies (F2 to F5) in P1-P3 to lobe facies (F8 to F9) in P4-P6. The washed composition of the P7 petrofacies is interpreted as distal turbidites that were reworked by bottom currents. The results presented here reveal a link between sand composition, grain size and gravity-flow facies. They highlight that composition of gravity flows is modified during their basinward transport. Consequently, coarse proximal deposits are more siliciclastic with limited filling of voids due to low carbonate contents. On the contrary, carbonate content increases significantly in the fine-grained calcarenites of the distal petrofacies. In distal settings, the segregation of light and porous foraminifera from the heavier siliciclastic fraction occurs under the increasing importance of traction currents.

  4. Detailed facies analysis of the Upper Cretaceous Tununk Shale Member, Henry Mountains Region, Utah: Implications for mudstone depositional models in epicontinental seas

    NASA Astrophysics Data System (ADS)

    Li, Zhiyang; Schieber, Juergen

    2018-02-01

    Lower-Middle Turonian strata of the Tununk Shale Member of the greater Mancos Shale were deposited along the western margin of the Cretaceous Western Interior Seaway during the Greenhorn second-order sea level cycle. In order to examine depositional controls on facies development in this mudstone-rich succession, this study delineates temporal and spatial relationships in a process-sedimentologic-based approach. The 3-dimensional expression of mudstone facies associations and their stratal architecture is assessed through a fully integrative physical and biologic characterization as exposed in outcrops in south-central Utah. Sedimentologic characteristics from the millimeter- to kilometer-scale are documented in order to fully address the complex nature of sediment transport mechanisms observed in this shelf muddy environment. The resulting facies model developed from this characterization consists of a stack of four lithofacies packages including: 1) carbonate-bearing, silty and sandy mudstone (CSSM), 2) silt-bearing, calcareous mudstone (SCM), 3) carbonate-bearing, silty mudstone to muddy siltstone (CMS), and 4) non-calcareous, silty and sandy mudstone (SSM). Spatial and temporal variations in lithofacies type and sedimentary facies characteristics indicate that the depositional environments of the Tununk Shale shifted in response to the 2nd-order Greenhorn transgressive-regressive sea-level cycle. During this eustatic event, the Tununk shows a characteristic vertical shift from distal middle shelf to outer shelf (CSSM to SCM facies), then from outer shelf to inner shelf environment (SCM to CMS, and to SSM facies). Shifting depositional environments, as well as changes in dominant paleocurrent direction throughout this succession, indicate multiple source areas and transport mechanisms (i.e. longshore currents, offshore-directed underflows, storm reworking). This study provides a rare documentation of the Greenhorn cycle as exposed across the entire shelf setting. High-resolution mapping of genetically-related packages facilitate the development of process-based depositional models that can be utilized for lateral correlations into the equivalent foredeep strata of the Cretaceous Interior.

  5. Mapping Depositional Facies on Great Bahama Bank: An Integration of Groundtruthing and Remote Sensing Methods

    NASA Astrophysics Data System (ADS)

    Hariss, M.; Purkis, S.; Ellis, J. M.; Swart, P. K.; Reijmer, J.

    2013-12-01

    Great Bahama Bank (GBB) has been used in many models to illustrate depositional facies variation across flat-topped, isolated carbonate platforms. Such models have served as subsurface analogs at a variety of scales. In this presentation we have integrated Landsat TM imagery, a refined bathymetric digital elevation model, and seafloor sample data compiled into ArcGIS and analyzed with eCognition to develop a depositional facies map that is more robust than previous versions. For the portion of the GBB lying to the west of Andros Island, the facies map was generated by pairing an extensive set of GPS-constrained field observations and samples (n=275) (Reijmer et al., 2009, IAS Spec Pub 41) with computer and manual interpretation of the Landsat imagery. For the remainder of the platform, which lacked such rigorous ground-control, the Landsat imagery was segmented into lithotopes - interpreted to be distinct bodies of uniform sediment - using a combination of edge detection, spectral and textural analysis, and manual editing. A map was then developed by assigning lithotopes to facies classes on the basis of lessons derived from the portion of the platform for which we had rigorous conditioning. The new analysis reveals that GBB is essentially a very grainy platform with muddier accumulations only in the lee of substantial island barriers; in this regard Andros Island, which is the largest island on GBB, exerts a direct control over the muddiest portion of GBB. Mudstones, wackestones, and mud-rich packstones cover 7%, 6%, and 15%, respectively, of the GBB platform top. By contrast, mud-poor packstones, grainstones, and rudstones account for 19%, 44%, and 3%, respectively. Of the 44% of the platform-top classified as grainstone, only 4% is composed of 'high-energy' deposits characterized by the development of sandbar complexes. The diversity and size of facies bodies is broadly the same on the eastern and western limb of the GBB platform, though the narrower eastern limb, the New Providence Platform, hosts a higher prevalence of high energy grainstones. The most abrupt lateral facies changes are observed leeward of islands, areas which also hold the highest diversity in facies type.

  6. Diagenetic Iron Cycling in Ancient Alkaline Saline Lacustrine Sedimentary Rocks: A Case Study on the Jurassic Brushy Basin Member of the Morrison Formation, Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Potter-McIntyre, S. L.; Chan, M. A.; McPherson, B. J. O. L.

    2014-12-01

    The upper part of the Brushy Basin Member in the Four Corners region of the U.S. was deposited in an ephemeral alkaline saline lake system with copious input of volcanic ash. The variegated shale formation provides a setting for the study of early diagenetic iron cycling that records the action of alkaline saline fluid chemistries reacting with volcaniclastic sediments in the presence of microbes. A bull's-eye pattern of authigenic minerals with increasing alteration towards the basinal center similar to modern alkaline saline lakes provides evidence for an extreme paleoenvironmental interpretation. The purpose of this research is to document specific factors, such as reactive sediments, microbial influences, and grain size that affect concretion formation and iron cycling in an ancient extreme environment. Three broad diagenetic facies are interpreted by color and associated bioturbation features: red, green and intermediate. Diagenetic facies reflect meter-scale paleotopography: red facies represent shallow water to subaerial, oxidizing conditions; green facies reflect saturated conditions and reducing pore water chemistry shortly after deposition, and intermediate facies represent a combination of the previous two conditions. Evidence of biotic influence is abundant and trace fossils exhibit patterns associated with the diagenetic facies. Red diagenetic facies typically contain burrows and root traces and green diagenetic facies exhibit restricted biotic diversity typically limited to algal molds (vugs). Microbial fossils are well-preserved and are in close proximity to specific iron mineral textures suggesting biotic influence on the crystal morphology. Three categories of concretions are characterized based on mineralogy: carbonate, iron (oxyhydr)oxide and phosphate concretions. Concretion mineralogy and size vary within an outcrop and even within a stratigraphic horizon such that more than one main category is typically present in an outcrop. Variation in concretion mineralogy and morphology within the Brushy Basin Member suggests that alkaline saline fluid chemistries in concert with microbial interaction created diagenetic microenvironments within a larger lake system to influence iron cycling and these reactions can be spatially variable even on 10s of cm scales.

  7. Cement Distribution and Diagenetic Pathway of the Miocene Sediments on Kardiva Platform, Maldives.

    NASA Astrophysics Data System (ADS)

    Laya, J. C.; Prince, K.; Betzler, C.; Eberli, G. P.; Blättler, C. L.; Swart, P. K.; Reolid, J.; Alvarez Zarikian, C. A.; Reijmer, J.

    2017-12-01

    The Maldives archipelago is an ideal example for understanding the dynamics of isolated carbonate platforms. While previous sedimentological studies have focused on oceanographic and climatic controls on deposition, there have been limited studies on the diagenetic evolution of the Maldives archipelago. This project seeks to establish a relationship between the facies, cement distribution, and diagenetic evolution of the Kardiva Platform and associated diagenetic fluids. Samples from cores of IODP Expedition 359 at Sites U1645, U1469, and U1470 were analyzed for stable isotope geochemistry and detailed petrography including SEM, confocal and CL microscopy to investigate variations in facies, cements, porosity and diagenetic products. The facies analyzed consist mainly of planktonic and benthic foraminifers, red coralline algae, echinoderm, coral and skeletal fragments. The main facies include foraminifera grain/packstone, red algae rich grain/packstone, algal floatstone and coral floatstone. Those facies present a cyclic and general shallowing upwards trend. These facies are interpreted as shallow platform deposits on proximal areas to the margin associated with the oligophotic zone. Cement volume varies between 5% and 48%, and they have been classified as isopachous, bladed to fibrous (dog tooth), drusy and equant. Equant and drusy show recognizable growth bands with CL and confocal. Evidence of intense dissolution is shown by extensive moldic porosity within phreatic and limited vadose zones. In addition, dolomite appears as a replacement phase associated with red-algae-rich horizons and as cement on pore walls and voids. These deposits experienced a variety of diagenetic processes driven by the evolution of diagenetic fluid chemistry and by the nature of the skeletal components. Those processes can be tied to external controls such as climate (monsoonal effects), sea-level and currents.

  8. Multiple Basinal Fluid Events in the Lower Belt Supergroup, Montana: Constraints From CHIME Ages and REE Patterns of Monazites

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alvarez, I.; Kusiak, M. A.

    2004-05-01

    Chemical dates (CHIME) on 105 spots and REE patterns of monazites were obtained from coarse sandstones and siltstones in the Mesoproterozoic siliciclastic Appekunny and Grinnell formations, lower Belt Supergroup, Montana, by EMPA. At least three post-depositional events induced by basinal fluids can be recognized: (a) red coloration accompanied by a major K-addition; (b) a green overprint of red siltstones; and (c) dolomitization. Fluid advection in the unmineralized lower Belt is pervasive and may have been alkaline and oxidizing. These three events progressively modified the primary geochemical characteristics of the siliciclastic rocks. Calculated ages show similar ranges in the fine and coarse-grained facies. For siltstones there are two age clusters: (1) at 1,801 ± 21 to 1,968 ± 26 Ma, as well as (2) at 854 ± 7 to 962 ± 13 Ma. Coarse sandstones show similar age clusters (3) at 1,831 ± 14 to 1,982 ± 12 Ma, and (4) at 803 ± 6 to 944 ± 9 Ma. A wide range of dates plots between the clusters for both facies. Clusters (1) and (3) are interpreted as the result of detrital monazites from a source area ~1.8 to 1.9 Ga old. Mineralogical variations and trace element systematic reveal basinal brines, which mobilized MREE and HREE, locally generating secondary monazites, influencing large domains of the lower Belt. The lower Belt Supergroup is estimated to have been deposited between 1.47 Ga and 1.45 Ga; consequently, the second age cluster for sandstones and siltstones is viewed as constraining the timeframe of a major basinal fluid event at ~0.80 to 0.96 Ga. That event is clearly distinct from the hydrothermal system associated with the Sullivan sedex base metal deposit at the base of the Belt. Ages between the clusters are interpreted either as secondary, formed during additional basinal fluid events or as reset of detrital monazites. Accordingly, the Belt basin was intermittently an open system to fluids from ~1.47 to ~0.80 Ga. Chondrite-normalized REE patterns for both facies display three unusual features: (A) on a linear scale for both facies for clusters (1) and (3) monazites reveal a straight line from La to Sm. For clusters (2) and (4) the profiles between La and Sm are concave or convex; concave profiles are produced mainly because of the Ce values. All reset monazites have convex or concave La-Sm profiles; (B) LREE/HREE and La/Y ratios average values for both facies in clusters (1) and (3) exhibit distinctively lower values than in clusters (2) and (4); (C) on log scale, charts show an unusually heterogeneous MREE and HREE profile for all monazites.

  9. Traces in the dark: sedimentary processes and facies gradients in the upper shale member of the Upper Devonian-Lower Mississippian Bakken Formation, Williston Basin, North Dakota, U.S.A.

    USGS Publications Warehouse

    Egenhoff, Sven O.; Fishman, Neil S.

    2013-01-01

    Black, organic-rich rocks of the upper shale member of the Upper Devonian–Lower Mississippian Bakken Formation, a world-class petroleum source rock in the Williston Basin of the United States and Canada, contain a diverse suite of mudstone lithofacies that were deposited in distinct facies belts. The succession consists of three discrete facies associations (FAs). These comprise: 1) siliceous mudstones; 2) quartz- and carbonate-bearing, laminated mudstones; and 3) macrofossil-debris-bearing massive mudstones. These FAs were deposited in three facies belts that reflect proximal to distal relationships in this mudstone system. The macrofossil-debris-bearing massive mudstones (FA 3) occur in the proximal facies belt and contain erosion surfaces, some with overlying conodont and phosphate–lithoclast lag deposits, mudstones with abundant millimeter-scale siltstone laminae showing irregular lateral thickness changes, and shell debris. In the medial facies belt, quartz- and carbonate-bearing, laminated mudstones dominate, exhibiting sub-millimeter-thick siltstone layers with variable lateral thicknesses and localized mudstone ripples. In the distal siliceous mudstone facies belt, radiolarites, radiolarian-bearing mudstones, and quartz- and carbonate-bearing, laminated mudstones dominate. Overall, total organic carbon (TOC) contents range between about 3 and 10 wt %, with a general proximal to distal decrease in TOC content. Abundant evidence of bioturbation exists in all FAs, and the lithological and TOC variations are paralleled by changes in burrowing style and trace-fossil abundance. While two horizontal traces and two types of fecal strings are recognized in the proximal facies belt, only a single horizontal trace fossil and one type of fecal string characterize mudstones in the distal facies belt. Radiolarites intercalated into the most distal mudstones are devoid of traces and fecal strings. Bedload transport processes, likely caused by storm-induced turbidity currents, were active across all facies belts. Suspended sediment settling from near the ocean surface, however, most likely played a role in the deposition of some of the mudstones, and was probably responsible for deposition of the radiolarites. The distribution pattern of high-TOC sediments in proximal and lower-TOC deposits in some distal facies is interpreted as a function of higher accumulation rates during radiolarian depositional events leading to a decrease in suspension-derived organic carbon in radiolarite laminae. The presence of burrows in all FAs and nearly all facies in the upper Bakken shale member indicates that dysoxic conditions prevailed during its deposition. This study shows that in intracratonic high-TOC mudstone successions such as the upper Bakken shale member bed-load processes most likely dominated sedimentation, and conditions promoted a thriving infaunal benthic community. As such, deposition of the upper Bakken shale member through dynamic processes in an overall dysoxic environment represents an alternative to conventional anoxic depositional models for world-class source rocks.

  10. Decoupling biogeochemical records, extinction, and environmental change during the Cambrian SPICE event

    PubMed Central

    Schiffbauer, James D.; Huntley, John Warren; Fike, David A.; Jeffrey, Matthew Jarrell; Gregg, Jay M.; Shelton, Kevin L.

    2017-01-01

    Several positive carbon isotope excursions in Lower Paleozoic rocks, including the prominent Upper Cambrian Steptoean Positive Carbon Isotope Excursion (SPICE), are thought to reflect intermittent perturbations in the hydrosphere-biosphere system. Models explaining these secular changes are abundant, but the synchronicity and regional variation of the isotope signals are not well understood. Examination of cores across a paleodepth gradient in the Upper Cambrian central Missouri intrashelf basin (United States) reveals a time-transgressive, facies-dependent nature of the SPICE. Although the SPICE event may be a global signal, the manner in which it is recorded in rocks should and does vary as a function of facies and carbonate platform geometry. We call for a paradigm shift to better constrain facies, stratigraphic, and biostratigraphic architecture and to apply these observations to the variability in magnitude, stratigraphic extent, and timing of the SPICE signal, as well as other biogeochemical perturbations, to elucidate the complex processes driving the ocean-carbonate system. PMID:28275734

  11. Adaptive phase k-means algorithm for waveform classification

    NASA Astrophysics Data System (ADS)

    Song, Chengyun; Liu, Zhining; Wang, Yaojun; Xu, Feng; Li, Xingming; Hu, Guangmin

    2018-01-01

    Waveform classification is a powerful technique for seismic facies analysis that describes the heterogeneity and compartments within a reservoir. Horizon interpretation is a critical step in waveform classification. However, the horizon often produces inconsistent waveform phase, and thus results in an unsatisfied classification. To alleviate this problem, an adaptive phase waveform classification method called the adaptive phase k-means is introduced in this paper. Our method improves the traditional k-means algorithm using an adaptive phase distance for waveform similarity measure. The proposed distance is a measure with variable phases as it moves from sample to sample along the traces. Model traces are also updated with the best phase interference in the iterative process. Therefore, our method is robust to phase variations caused by the interpretation horizon. We tested the effectiveness of our algorithm by applying it to synthetic and real data. The satisfactory results reveal that the proposed method tolerates certain waveform phase variation and is a good tool for seismic facies analysis.

  12. Tectonic and climatic controls on continental depositional facies in the Karoo Basin of northern Natal, South Africa

    NASA Astrophysics Data System (ADS)

    Turner, Brian R.

    1986-02-01

    The eastern Karoo Basin, South Africa, contains a thick sequence of terrigenous clastic sediments comprising a meanderbelt facies, braided channel facies divided into coarse and fine subfacies, fluviolacustrine facies and aeolian facies. Depositional trends and changes in fluvial style reflect a progressive increase in aridity of the climate under stable tectonic conditions, interrupted by two phases of source area tectonism and the development of fine and coarse clastic wedges of the braided channel subfacies; the latter signifying a short interlude of cool, wet conditions. The fine braided channel subfacies occurs in the upper part of the meanderbelt facies, which was deposited by ephemeral, meandering mixed-load streams of variable discharge and sinuosity, under dry, semi-arid climatic conditions. These deposited complex, internally discordant channel sands and well-developed levee deposits. Following deposition of the coarse braided channel subfacies semi-arid conditions returned and fluvial deposition was dominated by ephemeral, straight to slightly sinuous mixed load streams characterised by simple channel sand bodies. As the aridity of the climate increased, the streams became more localised and carried an increasing proportion of fines. Interbedded with and overlying the fluvial deposits is a mudstone-dominated lacustrine sequence grading up into aeolian sands suggesting a playa lake-type situation. The general absence of evaporites from these sediments is attributed to the fresh nature of the lake waters, as evidenced by the freshwater aquatic organisms and clay-mineral suite, the lack of adequate inflow for solute accumulation and the removal of dust impregnated by salts from the surface of the dry lake bed during the dry season by superheated, upward-spiralling columns of air. Broadly similar environments to the fluvio-lacustrine and aeolian facies sequence are to be found in the Lake Eyre Basin of central Australia and the Okavango "delta" of northern Botswana. The Okavango "delta" model has an important bearing on patterns of fluvial sedimentation in arid regions since it shows many characteristics of temperate, well-vegetated anastomosed fluvial systems despite its location in the Kalahari Desert.

  13. Modelling of the petroleum formation in the Mahakam sediments (Indonesia): Organic geochemical controls of the results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosse, E.; Burris, J.; Ouidin, J.L.

    1990-06-01

    Since the Miocene, the delta of the Mahakam River has accumulated thousands of meters of sediments in the eastern part of the Kutei Basin (Kalimantan, Indonesia). Source-rock candidates are the coals of the deltaic plain and several types of shales, mainly the delta front/prodelta area. Organic matter basically derives from higher plants, but each source facies presents important intrinsic variations of petroleum potential. These variations are overprinted by subsequent maturation trends. Geochemical and petrographical data are integrated on the general framework provided by a new synthetic interpretation of the sedimentary sequences, relying upon the concepts of seismic stratigraphy. From coremore » samples at a given level of maturation, the variations of several organic parameters are discussed in relation to the depositional paleoenvironment and to the possible precursors. 1D and 2D numerical routines are used to reconstruct the maturation history of source rocks. These tools are based upon a kinetic modeling of kerogen cracking. Model outputs are compared with observed maturation trends. The understanding of the initial organic facies distribution provides precise constraints in the selection of a homogenous samples set for this comparison purpose.« less

  14. Mesozoic lacustrine system in the Parnaíba Basin, northeastern Brazil: Paleogeographic implications for west Gondwana

    NASA Astrophysics Data System (ADS)

    Cardoso, Alexandre Ribeiro; Nogueira, Afonso César Rodrigues; Abrantes, Francisco Romério; Rabelo, Cleber Eduardo Neri

    2017-03-01

    The fragmentation of the West Gondwana during Early Triassic to Cretaceous was marked by intense climatic changes, concomitant with the establishment of extensive desertic/lacustrine systems. These deposits succeeded the emplacement and extrusion of lava flows, related to the pre-rift phase and initial opening of the Equatorial Atlantic Ocean. The thermal phase is recorded in the Upper Jurassic-Lower Cretaceous Pastos Bons Formation, exposed mainly in southeast parts of the Parnaíba Basin, Northeastern Brazil. The sedimentary facies of this unit were grouped in two facies associations (FA), representative of a shallow lacustrine system, influenced by episodic hyperpycnal and oscillatory flows. Central lake facies association (FA1) is composed by laminated mudstone (Ml), sandstone/mudstone rhythmite (S/Mr) and sandstone with even-parallel lamination (Sel). Flysch-like delta front (FA2) consists in sandstones with wave structures (Sw), sandstones with even-parallel stratification (Ses), massive sandstones (Sm), sandstones with soft-sediment deformation structures (Sd) and laminated mudstones (Ml). FA1 was deposited in the deepest portions of the lake, characterized by low energy, episodically disturbed by siliciclastic influx. FA2 presents sandy deposits generated by unconfined flow, probably fed by ephemeral stream flows that generated thickening upward of tabular sandstone beds. The progressive filling of the lake resulted in recurrent shoaling up of the water level and reworking by wave action. The installation of Pastos Bons lakes was controlled by thermal subsidence, mainly in restricted depocenters. The siliciclastic fluvial inflow can be related to the adjacent humid desertic facies, formed under climatic attenuation, typical of post-Triassic period, with reduced biological activity. Smectite and abundant feldspars, in lacustrine facies, corroborate an arid climate, with incipient chemical weathering. The new facies and stratigraphic data present in this paper provide an explanation about the implantation of a huge lacustrine system in the southern of Parnaiba Basin, with strong paleogeographic implications for the West-Central Gondwana during Late Jurassic to Early Cretaceous.

  15. Salt tectonics and sequence-stratigraphic history of minibasins near the Sigsbee Escarpment, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Montoya, Patricia

    The focus of this research is to understand the stratigraphic and structural evolution of lower-slope minibasins in the Gulf of Mexico by examining the influence of salt tectonics on sediment transport systems and deep-water facies architecture. Results showed that gravitational subsidence and shortening can cause variations in the relief of salt massifs on opposing sides of a minibasin. These bathymetric variations, combined with changes in sedimentation rates through time, affected not only the distribution of deep-water facies inside the minibasins, but also influenced the evolution of sediment transport systems between minibasins. In order to understand the evolution of salt massifs, this dissertation presents a new approach to evaluate qualitatively the rate of relative massif uplift based on depoaxis shifts and channel geometries identified in minibasins surrounded by mobile salt. From these results it was established that compression was long-lived, and that extension only dominated during late intervals. Stratigraphic analyses showed that there is a strong cyclicity in deep-water facies stacking patterns within lower-slope minibasins, related primarily to cyclical changes in sedimentation rates. A typical sequence starts with a period of slow sedimentation associated with drape facies above each sequence boundary. Then, towards the middle and final stages of the sequence, sedimentation rates increase and turbidity flows fill the minibasin. Previous studies describe processes of fill-and-spill for two adjacent minibasins in the upper and middle slope. However, these models fail to adequately explain fill-and-spill processes in lower slope minibasins surrounded by mobile salt. In particular, they do not consider the effect of variations in bathymetric relief of the intervening massif, nor do they examine multidirectional connections between proximal and distal minibasins. A new dynamic-salt fill-and-spill model is proposed in this dissertation in order to understand the origin and distribution of sediment pathways and variations in connection styles. In this model, connection styles are controlled by changes in salt massifs relief and sedimentation rates through time. Four connection styles exist between minibasins: no connection, wide connection, narrow connection and bypass connection. Low sedimentation rates tend to shut down connection between minibasins, whereas high sedimentation rates favor development of pathways that connect minibasins. In summary, the most important contribution from this research is that variations in salt-massif relief, combined with changes in sedimentation rates through time, can yield different filling histories and connection styles for nearby minibasins. So by understanding the influence of these factors, the complicated task of identifying sediment pathways in salt-controlled environments can be attempted in a more effective way.

  16. Sedimentology, sequence-stratigraphy, and geochemical variations in the Mesoproterozoic Nonesuch Formation, northern Wisconsin, USA

    USGS Publications Warehouse

    Kingsbury Stewart, Esther; Mauk, Jeffrey L.

    2017-01-01

    We use core descriptions and portable X-ray fluorescence analyses to identify lithofacies and stratigraphic surfaces for the Mesoproterozoic Nonesuch Formation within the Ashland syncline, Wisconsin. We group lithofacies into facies associations and construct a sequence stratigraphic framework based on lithofacies stacking and stratigraphic surfaces. The fluvial-alluvial facies association (upper Copper Harbor Conglomerate) is overlain across a transgressive surface by the fluctuating-profundal facies association (lower Nonesuch Formation). The fluctuating-profundal facies association comprises a retrogradational sequence set overlain across a maximum flooding surface by an aggradational-progradational sequence set comprising fluctuating-profundal, fluvial-lacustrine, and fluvial-alluvial facies associations (middle Nonesuch through lower Freda Formations). Lithogeochemistry supports sedimentologic and stratigraphic interpretations. Fe/S molar ratios reflect the oxidation state of the lithofacies; values are most depleted above the maximum flooding surface where lithofacies are chemically reduced and are greatest in the chemically oxidized lithofacies. Si/Al and Zr/Al molar ratios reflect the relative abundance of detrital heavy minerals vs. clay minerals; greater values correlate with larger grain size. Vertical facies association stacking records depositional environments that evolved from fluvial and alluvial, to balanced-fill lake, to overfilled lake, and returning to fluvial and alluvial. Elsewhere in the basin, where accommodation was greatest, some volume of fluvial-lacustrine facies is likely present below the transgressive stratigraphic surface. This succession of continental and lake-basin types indicates a predominant tectonic driver of basin evolution. Lithofacies distribution and geochemistry indicate deposition within an asymmetric half-graben bounded on the east by a west-dipping growth fault. While facies assemblages are lacustrine and continental, periodic marine incursions are probable, especially across maximum transgressive surfaces.We demonstrate a sequence-stratigraphic approach may be applied to fine-grained Precambrian sediments using traditional rock description and supporting lithogeochemistry. Identification of a characteristic lithofacies succession in Mesoproterozoic sediments demonstrates fundamental controls commonly interpreted for Phanerozoic lake systems may be extended into the Precambrian. These controls result in a predictable association of lithofacies, with distinct physical, biological, and geochemical properties. This has regional significance for carbon sequestration and the distribution of mineral and hydrocarbon resources and broader significance for addressing Mesoproterozoic paleogeographic reconstructions and questions related to the evolution of terrestrial life.

  17. The Lower Triassic Sorkh Shale Formation of the Tabas Block, east central Iran: Succesion of a failed-rift basin at the Paleotethys margin

    USGS Publications Warehouse

    Lasemi, Y.; Ghomashi, M.; Amin-Rasouli, H.; Kheradmand, A.

    2008-01-01

    The Lower Triassic Sorkh Shale Formation is a dominantly red colored marginal marine succession deposited in the north-south trending Tabas Basin of east central Iran. It is correlated with the unconformity-bounded lower limestone member of the Elika Formation of the Alborz Mountains of northern Iran. The Sorkh Shale is bounded by the pre-Triassic and post-Lower Triassic interregional unconformities and consists mainly of carbonates, sandstones, and evaporites with shale being a minor constituent. Detailed facies analysis of the Sorkh Shale Formation resulted in recognition of several genetically linked peritidal facies that are grouped into restricted subtidal, carbonate tidal flat, siliciclastic tidal flat, coastal plain and continental evaporite facies associations. These were deposited in a low energy, storm-dominated inner-ramp setting with a very gentle slope that fringed the Tabas Block of east central Iran and passed northward (present-day coordinates) into deeper water facies of the Paleotethys passive margin of northern Cimmerian Continent. Numerous carbonate storm beds containing well-rounded intraclasts, ooids and bioclasts of mixed fauna are present in the Sorkh Shale Formation of the northern Tabas Basin. The constituents of the storm beds are absent in the fair weather peritidal facies of the Sorkh Shale Formation, but are present throughout the lower limestone member of the Elika Formation. The Tabas Block, a part of the Cimmerian continent in east central Iran, is a rift basin that developed during Early Ordovician-Silurian Paleotethys rifting. Facies and sequence stratigraphic analyses of the Sorkh Shale Formation has revealed additional evidence supporting the Tabas Block as a failed rift basin related to the Paleotethys passive margin. Absence of constituents of the storm beds in the fair weather peritidal facies of the Sorkh Shale Formation, presence of the constituents of the storm beds in the fair weather facies of the Elika Formation (the Sorkh Shale equivalent in the Alborz Paleotethys margin) and southward paleocurrent directions of carbonate storm beds suggest that the low topographic gradient of the ramp in the Tabas failed rift basin was facing the Paleotethys Ocean, where the storms were generated. In addition, northward paleocurrent directions of the fair weather facies and northward increase in carbonate content of the Sorkh Shale sequence further indicate that the Tabas Basin was tectonically a part of the Paleotethys passive margin. It is apparent that relative sea level, basin geometry and tectonic movements along the bounding faults played significant roles during deposition of the Sorkh Shale Formation by controlling accommodation space and facies variations along the Tabas failed rift basin.

  18. Nugget-Navaho-Aztec sandstone: interaction of eolian sand sea with Andean-type volcanic arc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzolf, J.E.

    1986-05-01

    The Nugget-Navaho-Aztec sand sea was deposited east of an Andean-type volcanic arc. During the early stage of eolian deposition, fluvially transported sand was concentrated in the marine littoral zone and returned inland by onshore winds from the northwest. With progressive development of the arc, the sea withdrew. Wind direction changed from northwest to northeast. Previously deposited eolian sand was transported southwestward into the volcanic arc. Proximity of the arc can be detected with great difficulty by examining eolian and underlying red-bed facies. In southern Nevada, the volcanic arc is undetectable in eolian facies, but thin sandstone beds containing volcanic clastsmore » or weathered feldspar in the finer grained red-bed facies indicate arc volcanism; volcanic clasts are distinct in a basal conglomerate. Westward into California, the sub-Aztec Sandstone contains volcanic pebbles. The upper part of the Aztec Sandstone contains a 1 to 2-m thick volcaniclastic siltstone. Farther west, the Aztec Sandstone is interbedded with volcanic flows, ash flows, and flow breccias. These rocks might easily be mistaken for red beds in well cores or cuttings. Sand in sets of large-scale cross-beds remain virtually identical in composition and texture to sand in eolian facies of the Colorado Plateau. Where sets of eolian cross-beds lie on volcanics, the quartzose sandstone contains pebble to cobble-size volcanic clasts. Locally, cross-bed sets of yellowish-white, quartzose sandstone alternate with purplish-gray cross-bed sets containing numerous pebble to cobble-size volcanic clasts. The ability to recognize volcanic indicators within Nugget-Navaho-Aztec eolian facies is important in delineating the western margin of the back-arc eolian basin.« less

  19. Stratigraphy, sedimentology and eruptive mechanism of the El Golfo phreatomagmatic edifice (Lanzarote, Canary Islands)

    NASA Astrophysics Data System (ADS)

    Pedrazzi, D.; Marti, J.; Geyer, A.

    2012-04-01

    The El Golfo tuff cone is an example of phreatomagmatic edifice, developed in the western coast of Lanzarote (Canary Islands). El Golfo, together with other edifices of the same age, is aligned along a fracture oriented NEE-SWW coinciding with the main lineation of the historic volcanism in this part of the island. In this contribution we present a detailed stratigraphic study of the succession of deposits and we interpret them in terms of depositional processes and eruptive dynamics. The eruptive sequence is exclusively represented by a succession of pyroclastic deposits, and we infer it according to variations in flow regime and the magma-water interaction. Several pyroclastic units were identified according to facies variations based on sedimentary discontinuities, grain size, components, variations in primary laminations and bedforms following the facies model proposed by Chough and Sohn (1990). The growth of the El Golfo tuff cone involved several stages based on variations in depositional processes. The edifice was constructed very rapidly around the vent controlling the amount of water that got access to the eruption conduit. Although the invariable phreatomagmatic character of most of the pyroclastic sequence, it is possible to deduce variations in the explosive energy, with a general increment upwards, according to the increase in the degree of fragmentation of pyroclasts, The absence of hyaloclastites, the nature of the palagonite alteration and the observed sedimentary structures, demonstrate the subaereal character of most of the deposits

  20. Variations in fluvial deposition on an alluvial plain: an example from the Tongue River Member of the Fort Union Formation (Paleocene), southeastern Powder River Basin, Wyoming, U.S.A.

    USGS Publications Warehouse

    Johnson, E.A.; Pierce, F.W.

    1990-01-01

    The Tongue River Member of the Paleocene Fort Union Formation is an important coal-bearing sedimentary unit in the Powder River Basin of Wyoming and Montana. We studied the depositional environments of a portion of this member at three sites 20 km apart in the southeastern part of the basin. Six lithofacies are recognized that we assign to five depositional facies categorized as either channel or interchannel-wetlands environments. (1) Type A sandstone is cross stratified and occurs as lenticular bodies with concave-upward basal surfaces; these bodies are assigned to the channel facies interpreted to be the product of low-sinuosity streams. (2) Type B sandstone occurs in parallel-bedded units containing mudrock partings and fossil plant debris; these units constitute the levee facies. (3) Type C sandstone typically lacks internal structure and occurs as tabular bodies separating finer grained deposits; these bodies represent the crevasse-splay facies. (4) Gray mudrock is generally nonlaminated and contains ironstone concretions; these deposits constitute the floodplain facies. (5) Carbonaceous shale and coal are assigned to the swamp facies. We recognize two styles of stream deposition in our study area. Laterally continuous complexes of single and multistoried channel bodies occur at our middle study site and we interpret these to be the deposits of sandy braided stream systems. In the two adjacent study sites, single and multistoried channel bodies are isolated in a matrix of finer-grained interchannel sediment suggesting deposition by anastomosed streams. A depositional model for our study area contains northwest-trending braided stream systems. Avulsions of these systems created anastomosed streams that flowed into adjacent interchannel areas. We propose that during late Paleocene a broad alluvial plain existed on the southeastern flank of the Powder River Basin. The braided streams that crossed this surface were tributaries to a northward-flowing, basin-axis trunk stream that existed to the west. ?? 1990.

  1. Revised hydrogeologic framework of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    USGS Publications Warehouse

    Williams, Lester J.; Kuniansky, Eve L.

    2015-04-08

    The hydrogeologic framework for the Floridan aquifer system has been revised throughout its extent in Florida and parts of Georgia, Alabama, and South Carolina. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s, except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual higher and contrasting lower permeability zones within these aquifers. The system behaves as one aquifer over much of its extent; although subdivided vertically into two aquifer units, the Upper and Lower Floridan aquifers. In the previous framework, discontinuous numbered middle confining units (MCUI–VII) were used to subdivide the system. In areas where less-permeable rocks do not occur within the middle part of the system, the system was previously considered one aquifer and named the Upper Floridan aquifer. In intervening years, more detailed data have been collected in local areas, resulting in some of the same lithostratigraphic units in the Floridan aquifer system being assigned to the Upper or Lower Floridan aquifer in different parts of the State of Florida. Additionally, some of the numbered middle confining units are found to have hydraulic properties within the same order of magnitude as the aquifers. A new term “composite unit” is introduced for lithostratigraphic units that cannot be defined as either a confining or aquifer unit over their entire extent. This naming convention is a departure from the previous framework, in that stratigraphy is used to consistently subdivide the aquifer system into upper and lower aquifers across the State of Florida. This lithostratigraphic mapping approach does not change the concept of flow within the system. The revised boundaries of the Floridan aquifer system were mapped by considering results from local studies and regional correlations of lithostratigraphic and hydrogeologic units or zones. Additional zones within the aquifers have been incorporated into the framework to allow finer delineation of permeability variations within the aquifer system. These additional zones can be used to progressively divide the system for assessing groundwater and surface-water interaction, saltwater intrusion, and offshore movement of groundwater at greater detail if necessary. The lateral extent of the updip boundary of the Floridan aquifer system is modified from previous work based on newer data and inclusion of parts of the updip clastic facies. The carbonate and clastic facies form a gradational sequence, generally characterized by limestone of successively younger units that extend progressively farther updip. Because of the gradational nature of the carbonate-clastic sequence, some of the updip clastic aquifers have been included in the Floridan aquifer system, the Southeastern Coastal Plain aquifer system, or both. Thus, the revised updip limit includes some of these clastic facies. Additionally, the updip limit of the most productive part of the Floridan aquifer system was revised and indicates the approximate updip limit of the carbonate facies. The extent and altitude of the freshwater-saltwater interface in the aquifer system has been mapped to define the freshwater part of the flow system.

  2. Calibration of Seismic Attributes for Reservoir Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron

    2002-01-29

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures,more » to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.« less

  3. Miocene reef carbonates of Mariana Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegrist, H.G. Jr.

    1988-01-01

    Miocene carbonates in the southern Mariana Islands are impressive for their lithologic diversity, thicknesses (over 250 m), and geographic extend (>20% combined outcrop coverage over four major high islands: Guam, Rota, Tinian and Saipan). Sections are dominated either by lagoonal algal-foraminiferal wackestones and mudstones with locally abundant high-energy shelly-skeletal facies, or by rubbly to muddy, fore-reef-to-bank deposits of packstones and grainstones with highly diverse and variable biogenic clasts. Fresh to deeply weathered volcaniclastic material may comprise at least 80% of some high-energy fore-reef facies, whereas lagoonal and bank deposits usually contain less than 0.5% terrigenous material. Surprisingly, the Miocene inmore » the Marianas lacks almost completely any reef-core facies. Several poorly developed coral-rich mounds on Saipan and localized laminated red algal buildups on Guam appear to constitute the extant reef-wall facies in the Miocene. The lack of buildups may be a matter of differential survival; it may result from headland erosion and benching associated with emergency of narrow reef tracts as has been postulated by others for south Guam. Radiometric age dating of these reef carbonates has proven unsuccessful because pervasive diagenesis has transformed the entire Miocene section into low-magnesium calcite with minor and occasional dolomite. Freshwater phreatic diagenesis accounts for the principal porosity variation and trace element distribution.« less

  4. The sequence stratigraphy, sedimentology, and economic importance of evaporite carbonate transitions: a review

    NASA Astrophysics Data System (ADS)

    Sarg, J. F.

    2001-04-01

    World-class hydrocarbon accumulations occur in many ancient evaporite-related basins. Seals and traps of such accumulations are, in many cases, controlled by the stratigraphic distribution of carbonate-evaporite facies transitions. Evaporites may occur in each of the systems tracts within depositional sequences. Thick evaporite successions are best developed during sea level lowstands due to evaporative drawdown. Type 1 lowstand evaporite systems are characterized by thick wedges that fill basin centers, and onlap basin margins. Very thick successions (i.e. saline giants) represent 2nd-order supersequence set (20-50 m.y.) lowstand systems that cap basin fills, and provide the ultimate top seals for the hydrocarbons contained within such basins. Where slope carbonate buildups occur, lowstand evaporites that onlap and overlap these buildups show a lateral facies mosaic directly related to the paleo-relief of the buildups. This facies mosaic, as exemplified in the Silurian of the Michigan basin, ranges from nodular mosaic anhydrite of supratidal sabkha origin deposited over the crests of the buildups, to downslope subaqueous facies of bedded massive/mosaic anhydrite and allochthonous dolomite-anhydrite breccias. Facies transitions near the updip onlap edges of evaporite wedges can provide lateral seals to hydrocarbons. Porous dolomites at the updip edges of lowstand evaporites will trap hydrocarbons where they onlap nonporous platform slope deposits. The Desert Creek Member of the Paradox Formation illustrates this transition. On the margins of the giant Aneth oil field in southeastern Utah, separate downdip oil pools have accumulated where dolomudstones and dolowackestones with microcrystalline porosity onlap the underlying highstand platform slope. Where lowstand carbonate units exist in arid basins, the updip facies change from carbonates to evaporite-rich facies can also provide traps for hydrocarbons. The change from porous dolomites composed of high-energy, shallow water grainstones and packstones to nonporous evaporitic lagoonal dolomite and sabkha anhydrite occurs in the Upper Permian San Andres/Grayburg sequences of the Permian basin. This facies change provides the trap for secondary oil pools on the basinward flanks of fields that are productive from highstand facies identical to the lowstand dolograinstones. Type 2 lowstand systems, like the Smackover Limestone of the Gulf of Mexico, show a similar relationship. Commonly, these evaporite systems are a facies mosaic of salina and sabkha evaporites admixed with wadi siliciclastics. They overlie and seal highstand carbonate platforms containing reservoir facies of shoalwater nonskeletal and skeletal grainstones. Further basinward these evaporites change facies into similar porous platform facies, and contain separate hydrocarbon traps. Transgressions in arid settings over underfilled platforms (e.g. Zechstein (Permian) of Europe; Ferry Lake Anhydrite (Cretaceous), Gulf of Mexico) can result in deposition of alternating cyclic carbonates and evaporites in broad, shallow subaqueous hypersaline environments. Evaporites include bedded and palmate gypsum layers. Mudstones and wackestones are deposited in mesosaline, shallow subtidal to low intertidal environments during periodic flooding of the platform interior. Highstand systems tracts are characterized by thick successions of m-scale, brining upward parasequences in platform interior settings. The Seven Rivers Formation (Guadalupian) of the Permian basin typifies this transition. An intertonguing of carbonate and sulfates is interpreted to occur in a broad, shallow subaqueous hypersaline shelf lagoon behind the main restricting shelf-edge carbonate complex. Underlying paleodepositional highs appear to control the position of the initial facies transition. Periodic flooding of the shelf interior results in widespread carbonate deposition comprised of mesosaline, skeletal-poor peloid dolowackestones/mudstones. Progressive restriction due to active carbonate deposition and/or an environment of net evaporation causes brining upward and deposition of lagoonal gypsum. Condensed sections of organic-rich black lime mudstones occur in basinal areas seaward of the transgressive and highstand carbonate platforms and have sourced significant quantities of hydrocarbons.

  5. Build-and-fill sequences: How subtle paleotopography affects 3-D heterogeneity of potential reservoir facies

    USGS Publications Warehouse

    McKirahan, J.R.; Goldstein, R.H.; Franseen, E.K.

    2005-01-01

    This study analyzes the three-dimensional variability of a 20-meter-thick section of Pennsylvanian (Missourian) strata over a 600 km2 area of northeastern Kansas, USA. It hypothesizes that sea-level changes interact with subtle variations in paleotopography to influence the heterogeneity of potential reservoir systems in mixed carbonate-silidclastic systems, commonly produdng build-and-fill sequences. For this analysis, ten lithofacies were identified: (1) phylloid algal boundstone-packstone, (2) skeletal wackestone-packstone, (3) peloidal, skeletal packstone, (4) sandy, skeletal grainstone-packstone, (5) oolite grainstone-packstone, (6) Osagia-brachiopod packstone, (7) fossiliferous siltstone, (8) lenticular bedded-laminated siltstone and fine sandstone, (9) organic-rich mudstone and coal, and (10) massive mudstone. Each facies can be related to depositional environment and base-level changes to develop a sequence stratigraphy consisting of three sequence boundaries and two flooding surfaces. Within this framework, eighteen localities are used to develop a threedimensional framework of the stratigraphy and paleotopography. The studied strata illustrate the model of "build-and-fill". In this example, phylloid algal mounds produce initial relief, and many of the later carbonate and silidclastic deposits are focused into subtle paleotopographic lows, responding to factors related to energy, source, and accommodation, eventually filling the paleotopography. After initial buildup of the phylloid algal mounds, marine and nonmarine siliciclastics, with characteristics of both deltaic lobes and valley fills, were focused into low areas between mounds. After a sea-level rise, oolitic carbonates formed on highs and phylloid algal facies accumulated in lows. A shift in the source direction of siliciclastics resulted from flooding or filling of preexisting paleotopographic lows. Fine-grained silidclastics were concentrated in paleotopographic low areas and resulted in clay-rich phylloid algal carbonates that would have made poor reservoirs. In areas more distant from silidclastic influx, phylloid algal facies with better reservoir potential formed in topographic lows. After another relative fall in sea level, marine carbonates and silidclastics were concentrated in paleotopographic low areas. After the next relative rise in sea level, there is little thickness or fades variation in phylloid algal limestone throughout the study area because: (1) substrate paleotopography had been subdued by filling, and (2) no silidclastics were deposited in the area. Widespread subaerial exposure and erosion during a final relative fall in sea level resulted in redevelopment of variable paleotopography. Build-and-fill sequences, such as these, are well known in other surface and subsurface examples. Initial relief is built by folding or faulting, differential compaction, erosion, or deposition of relief-building facies, such as phylloid algal and carbonate grainstone reservoir fades, or silidclastic wedges. Relief is filled through deposition of reservoir-fades siliciclastics, phylloid algal fades, and grainy carbonates, as well as nonreservoir facies, resulting in complex heterogeneity.

  6. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Xingxing; Sun, Youbin; Vandenberghe, Jef; Li, Ying; An, Zhisheng

    2018-06-01

    Sedimentary sequences that developed on river terraces have been widely investigated to reconstruct high-resolution palaeoclimatic changes since the last deglaciation. However, frequent changes in sedimentary facies make palaeoenvironmental interpretation of grain-size variations relatively complicated. In this paper, we employed multiple grain-size parameters to discriminate the sedimentary characteristics of aeolian and fluvial facies in the Dadiwan (DDW) section on the western Chinese Loess Plateau. We found that wind and fluvial dynamics have quite different impacts on the grain-size compositions, with distinctive imprints on the distribution pattern. By using a lognormal distribution fitting approach, two major grain-size components sensitive to aeolian and fluvial processes, respectively, were distinguished from the grain-size compositions of the DDW terrace deposits. The fine grain-size component (GSC2) represents mixing of long-distance aeolian and short-distance fluvial inputs, whilst the coarse grain-size component (GSC3) is mainly transported by wind from short-distance sources. Thus GSC3 can be used to infer the wind intensity. Grain-size variations reveal that the wind intensity experienced a stepwise shift from large-amplitude variations during the last deglaciation to small-amplitude oscillations in the Holocene, corresponding well to climate changes from regional to global context.

  7. Role of fluid in the mechanism of formation of volcaniclastic and coherent kimberlite facies: a diamond perspective

    NASA Astrophysics Data System (ADS)

    Fedortchouk, Yana; Chinn, Ingrid

    2016-04-01

    Dissolution features on diamonds recovered from kimberlites vary depending on the dissolution conditions and can be used as a reliable proxy for volatiles and their role in kimberlite emplacement. Volatiles determine the mechanism of magma emplacement; variation in volatile content and CO2/CO2+H2O ratio may affect the geology of kimberlite bodies and formation of coherent vs. volcaniclastic kimberlite facies. Here we examine the evolution of a kimberlite system during ascent using the resorption morphology of its diamond population. We use 655 macro-diamonds from a complex kimberlite pipe in the Orapa kimberlite field (Botswana) to examine the role of volatiles in the formation of the three facies comprising this pipe: two coherent kimberlite facies (CKA and CKB) and one massive volcaniclastic facies (MVK). The diamonds come from three drillholes through each of the studied kimberlite facies. Separate diamond samples derived from 2 - 13 m intervals were combined into 40 m depth intervals for statistical purposes. Four independent morphological methods allowed us to reliably discriminate products of resorption in kimberlite magma from resorption in the mantle, and use the former in our study. We found that the proportion of diamonds with kimberlitic resorption is the lowest in CKA - 22%, medium in MVK - 50%, and highest in CKB - 73%, and it increases with depth in each of the drillholes. Each kimberlite facies shows its own style of kimberlite-induced resorption on rounded tetrahexahedron (THH) diamonds: glossy surfaces in MVK, rough corroded surfaces in CKB, and combination of glossy surfaces with chains of circular pits in CKA, where these pits represent the initial stages of development of corrosive features observed on CKB diamonds. Based on the results of our previous experimental studies we propose that resorption of MVK diamonds is a product of interaction with COH fluid, resorption of CKB diamonds is a product of interaction with a volatile-undersaturated melt (possibly carbonatitic), and CKA diamonds show an overprint of melt-controlled resorption over a fluid-controlled resorption. We propose an early separation of the fluid phase during the ascent of this kimberlite magma, segregation of this fluid and rise towards the top of the magma column. Over-pressurisation caused by the expansion of this fluid worked as a driving force for the magma ascent acceleration. The magma column has separated into two parts: (1) the bubble-rich magma towards the top, explosive emplacement of which formed the MVK facies, followed by the "tailing" bubble-poor magma quietly arriving to form the CKA facies, and (2) magma that lost volatiles to the upwardly escaping bubbles, in which a slower ascent caused more intensive diamond resorption and delayed emplacement, forming the CKB facie. It is possible that formation, buoyancy, and growth of fluid bubbles controls the ascent of the kimberlite magma, where emplacement of bubble-rich magma forms volcaniclastic kimberlite facies, while fast rise of the bubbles through the magma column separates the fluid-rich phase that moves up preparing the conduit in the surrounding rocks and forms an explosive pipe at the surface, from a volatile-depleted magma, which slowly rises and fills the pipe with CK kimberlite facies.

  8. Mediterranean undercurrent sandy contourites, Gulf of Cadiz, Spain

    USGS Publications Warehouse

    Hans, Nelson C.; Baraza, J.; Maldonado, A.

    1993-01-01

    The Pliocene-Quaternary pattern of contourite deposits on the eastern Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are perpendicular to slope contours and the Mediterranean undercurrent that has flowed northwestward parallel to the slope contours and down valleys between the ridges since the late Miocene opening of the Strait of Gibraltar. Coincident with the northwestward decrease in undercurrent speeds from the Strait there is the following northwestward gradation of sediment facies associations: (1) upper slope facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. Compared to this, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Further northwestward, sediment drift grades to biogenous silt near the Faro Drift at the Portuguese border. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean undercurrent, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. The bottom-current deposits of valleys and the contourites of the Cadiz slope intervalley areas are distinct from turbidite systems. The valley sequences are not aggradational like turbidite channel-levee complexes, but typically exhibit bedrock walls against ridges, extensive scour and fill into adjacent contourites, transverse bedform fields and bioclastic lag deposits. Both valley and contourite deposits exhibit reverse graded bedding and sharp upper bed contacts in coarse-grained layers, low deposition rates, and a regional pattern of bedform zones, textural variation, and compositional gradation. The surface sandy contourite layer of 0.2-1.2 m thickness that covers the Gulf of Cadiz slope has formed during the present Holocene high sea level because high sea level results in maximum water depth over the Gibraltar sill and full development of the Mediterranean undercurrent. The late Pleistocene age of the mud underlying the surface sand sheet correlates with the age of the last sea-level lowstand and apparent weak Mediterranean undercurrent development. Thus, the cyclic deposition of sand or mud layers and contourite or drape sequences appear to be related to late Pliocene and Quaternary sea-level changes and Mediterranean water circulation patterns. Since its Pliocene origin, the contourite sequence has had low deposition rates of < 5 cm/1000y on the upper slope and < 13 cm/1000y in the middle slope sediment drift. ?? 1993.

  9. Variation of oil composition in vicinity of Arbuckle Mountains, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemmels, I.; Walters, C.C.

    1987-08-01

    Fifteen oils in an 8-county area in the vicinity of the Arbuckle Mountains were classified into 6 oil types: stable platform type, Mill Creek syncline type, Joiner City field type, Gloeocapsamorpha type, Hoover field A-type; and Fitts field type. The stable platform, Mill Creek syncline, and Joiner City field types have a common element (diminished C/sub 32/ hopane) and are thought to be derived from distinctly different facies of the Woodford Formation. The Viola Limestone oil is typical of oil generated from Ordovician rocks. The Hoover field A-type has an element of Ordovician composition and is thought to have beenmore » derived from an Arbuckle Group shale. The Fitts field oil has a unique composition and has not been assigned to a source. The variation of oil composition in the vicinity of the Arbuckle Mountains is attributed to (1) the large number of potential source rocks, (2) the variety of facies going from the stable platform into the southern Oklahoma aulacogen, and (3) biodegradation of oils in shallow reservoirs.« less

  10. Use of synthetic sonic logs derived from seismic data in interpretation of stratigraphic variation in cretaceous carbonates of North field area, Qatar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aves, H.S.; Tappmeyer, D.M.

    This study uses geologic and synthetic sonic sections to evaluate the hydrocarbon potential of the Lower and middle Cretaceous Thamama Group carbonates of the Mishrif, Nahr, Umr, Shuaiba, and Kharaib Formations in the North Field, Qatar. The North field area, a regional high throughout Lower and middle Cretaceous time, is document by depositional thinning and by higher energy carbonate facies development. Oil and gas accumulations are found on the crestal portions of this paleohigh in structural/stratigraphic traps. Three factors affect the interval velocities on both a regional and local basis. These are (1) variation of carbonate facies-higher energy wackestone/packstone andmore » possibly grainstones flanked by predominantly mudstones, (2) secondary porosity developed near the top of unconformity surfaces, and (3) the existence of hydrocarbons in the reservoir. Many local lateral and vertical variations in interval velocities were noted on the synthetic sonic sections that would have otherwise been undetected, such as areas of tight or porous reservoir development, permeability barriers, and subtle faulting. In these studied formations, there are many examples of low interval velocity zones that are known to contain hydrocarbons whereas equivalent higher interval velocity zones on the seismic sections at other well site locations do not contain hydrocarbons. In many places, these variations are of sufficient magnitude to be mapped as intraformational permeability barriers. These variations were useful in explaining the occurrence of different oil-water and gas-water contacts within the same formation that could not be explained solely on structural criteria.« less

  11. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps)

    NASA Astrophysics Data System (ADS)

    Vavra, Gerhard; Schmid, Rolf; Gebauer, Dieter

    Several types of growth morphologies and alteration mechanisms of zircon crystals in the high-grade metamorphic Ivrea Zone (IZ) are distinguished and attributed to magmatic, metamorphic and fluid-related events. Anatexis of pelitic metasediments in the IZ produced prograde zircon overgrowths on detrital cores in the restites and new crystallization of magmatic zircons in the associated leucosomes. The primary morphology and Th-U chemistry of the zircon overgrowth in the restites show a systematic variation apparently corresponding to the metamorphic grade: prismatic (prism-blocked) low-Th/U types in the upper amphibolite facies, stubby (fir-tree zoned) medium-Th/U types in the transitional facies and isometric (roundly zoned) high-Th/U types in the granulite facies. The primary crystallization ages of prograde zircons in the restites and magmatic zircons in the leucosomes cannot be resolved from each other, indicating that anatexis in large parts of the IZ was a single and short lived event at 299+/-5Ma (95% c. l.). Identical U/Pb ages of magmatic zircons from a metagabbro (293+/-6Ma) and a metaperidotite (300+/-6Ma) from the Mafic Formation confirm the genetic context of magmatic underplating and granulite facies anatexis in the IZ. The U-Pb age of 299+/-5Ma from prograde zircon overgrowths in the metasediments also shows that high-grade metamorphic (anatectic) conditions in the IZ did not start earlier than 20Ma after the Variscan amphibolite facies metamorphism in the adjacent Strona-Ceneri Zone (SCZ). This makes it clear that the SCZ cannot represent the middle to upper crustal continuation of the IZ. Most parts of zircon crystals that have grown during the granulite facies metamorphism became affected by alteration and Pb-loss. Two types of alteration and Pb-loss mechanisms can be distinguished by cathodoluminescence imaging: zoning-controlled alteration (ZCA) and surface-controlled alteration (SCA). The ZCA is attributed to thermal and/or decompression pulses during extensional unroofing in the Permian, at or earlier than 249+/-7Ma. The SCA is attributed to the ingression of fluids at 210+/-12Ma, related to hydrothermal activity during the breakup of the Pangaea supercontinent in the Upper Triassic/Lower Jurassic.

  12. Trace-element record in zircons during exhumation from UHP conditions, North-East Greenland Caledonides

    USGS Publications Warehouse

    McClelland, W.C.; Gilotti, J.A.; Mazdab, F.K.; Wooden, J.L.

    2009-01-01

    Coesite-bearing zircon formed at ultrahigh-pressure (UHP) conditions share general characteristics of eclogite-facies zircon with trace-element signatures characterized by depleted heavy rare earth elements (HREE), lack of an Eu anomaly, and low Th/ U ratios. Trace-element signatures of zircons from the Caledonian UHP terrane in North-East Greenland were used to examine the possible changes in signature with age during exhumation. Collection and interpretation of age and trace-element analyses of zircon from three samples of quartzofeldspathic gneiss and two leucocratic intrusions were guided by core vs. rim zoning patterns as imaged by cathodoluminesence. Change from igneous to eclogite-facies metamorphic trace-element signature in protolith zircon is characterized by gradual depletion of HREE, whereas newly formed metamorphic rims have flat HREE patterns and REE concentrations that are distinct from the recrystallized inherited cores. The signature associated with eclogite-facies metamorphic zircon is observed in coesite-bearing zircon formed at 358 ?? 4 Ma, metamorphic rims formed at 348 ?? 5 Ma during the initial stages of exhumation, and metamorphic rims formed at 337 ?? 5 Ma. Zircons from a garnet-bearing granite emplaced in the neck of an eclogite boudin and a leucocratic dike that cross-cuts amphibolite-facies structural fabrics have steeply sloping HREE patterns, variably developed negative Eu anomalies, and low Th/U ratios. The granite records initial decompression melting and exhumation at 347 ?? 2 Ma and later zircon rim growth at 329 ?? 5. The leucocratic dike was likely emplaced at amphibolite-facies conditions at 330 ?? 2 Ma, but records additional growth of compositionally similar zircon at 321 ??2 Ma. The difference between the trace-element signature of metamorphic zircon in the gneisses and in part coeval leucocratic intrusions indicates that the zircon signature varies as a function of lithology and context, thus enhancing its ability to aid in the interpretation of U-Pb data and track the exhumation history of UHP terranes. The differences may reflect variation in elemental availability through breakdown reactions in quartzofeldpathic gneiss vs. availability during melt production and/or crystallization. UHP rocks in North-East Greenland began exhumation by 347 ?? 2 Ma, were still at HP eclogite-facies conditions at 337 ?? 5 Ma and were at amphibolite-facies conditions by 330 ?? 2 Ma. ?? 2009 E. Schweizerbart'sche Verlagsbuchhandlung.

  13. Le Silurien de la région d'Oulad Abbou (Meseta occidentale, Maroc) : une sédimentation péritidale sous contrôle tectonique

    NASA Astrophysics Data System (ADS)

    Attou, Ahmed; Hamoumi, Naima

    2004-07-01

    In the Oulad Abbou syncline, western coastal Meseta, the Silurian deposits exhibit siliciclastic or mixed siliciclastic/carbonate tidal facies that recorded alkaline basalt flows and syn-sedimentary deformations. These facies are staked into peritidal shallowing upward sequences reflecting the evolution from an infratidal to a supratidal environment. These sequences recorded low-amplitude and high-frequency sea-level variations. The built-up of these rhythmic sequences is related to distensive tectonic that allowed the development of isolated platform from extensive siliciclastic influx. This tectonic event is well recorded in the palaeogeographic evolution of the northern Gondwana platform during the Lower Palaeozoic time. To cite this article: A. Attou, N. Hamoumi, C. R. Geoscience 336 (2004).

  14. Patentability aspects of computational cancer models

    NASA Astrophysics Data System (ADS)

    Lishchuk, Iryna

    2017-07-01

    Multiscale cancer models, implemented in silico, simulate tumor progression at various spatial and temporal scales. Having the innovative substance and possessing the potential of being applied as decision support tools in clinical practice, patenting and obtaining patent rights in cancer models seems prima facie possible. What legal hurdles the cancer models need to overcome for being patented we inquire from this paper.

  15. Miocene reef carbonates of Mariana Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegrist, H.G. Jr.

    1988-02-01

    Miocene carbonates in the southern Mariana Islands are impressive for their lithologic diversity, thicknesses (over 250 m), and geographic extent (> 20% combined outcrop coverage over four major high islands: Guam, Rota, Tinian and Saipan). Sections are dominated either by lagoonal algal-foraminiferal wackestones and mudstones with locally abundant high-energy shelly-skeletal facies, or by rubbly to muddy, fore-reef-to-bank deposits of packstones and grainstones with highly diverse and variable biogenic clasts. Fresh to deeply weathered volcaniclastic material may comprise at least 80% of some high-energy fore-reef facies, whereas lagoonal and bank deposits usually contain less than 0.5% terrigenous material. Surprisingly, the Miocenemore » in the Marianas lacks almost completely any reef-core facies. Several poorly developed coral-rich mounds on Saipan and localized laminated red algal buildups on Guam appear to constitute the extant reef-wall facies in the Miocene. The lack of buildups may be a matter of differential survival; it may result from headland erosion and benching associated with emergence of narrow reef tracts as has been postulated by others for south Guam. Alternatively, the authors are proposing that Miocene bathymetry and the volume of terrigenous influx militated against significant reef core formation. Radiometric age dating of these reef carbonates has proven unsuccessful because pervasive diagenesis has transformed the entire Miocene section into low-magnesium calcite with minor and occasional dolomite. Freshwater phreatic diagenesis accounts for the principal porosity variation and trace element distribution.« less

  16. Shoreface to estuarine sedimentation in the late Paleocene Matanomadh Formation, Kachchh, western India

    NASA Astrophysics Data System (ADS)

    Srivastava, V. K.; Singh, B. P.

    2017-04-01

    Late Paleocene sedimentation in the pericratonic Kachchh Basin marks the initial marine transgression during the Cenozoic era. A 17 m thick sandstone-dominated succession, known as the clastic member (CM) of the Matanomadh Formation (MF), is exposed sporadically in the basin. Three facies associations are reconstructed in the succession in three different sections. Facies association-1 contains matrix-supported pebbly conglomerate facies, horizontally-laminated sandstone-mudstone alternation facies, hummocky- and swaley cross-bedded sandstone facies, wave-rippled sandstone facies and climbing ripple cross-laminated sandstone facies. This facies association developed between shoreface and foreshore zone under the influence of storms on a barrier ridge. Facies association-2 contains sigmoidal cross-bedded sandstone facies, sandstone-mudstone alternation facies, flaser-bedded sandstone facies, herringbone cross-bedded sandstone facies and tangential cross-bedded sandstone facies. This facies association possessing tidal bundles and herringbone cross-beds developed on a tidal flat with strong tidal influence. Facies association-3 comprises pebbly sandstone facies, horizontally-bedded sandstone facies, tangential cross-bedded sandstone facies exhibiting reactivation surfaces and tabular cross-bedded sandstone facies. This facies association represents sedimentation in a river-dominated estuary and reactivation surfaces and herringbone cross-beds indicating tidal influence. The bipolar paleocurrent pattern changes to unipolar up-section because of the change in the depositional currents from tidal to fluvial. The sedimentation took place in an open coast similar to the Korean coast. The presence of neap-spring tidal rhythmites further suggests that a semidiurnal system similar to the modern day Indian Ocean was responsible for the sedimentation. Here, the overall sequence developed during the transgressive phase where barrier ridge succession is succeeded by the tidal flat succession and the latter, in turn, is succeeded by the estuarine succession. This study resolves the most debated issue of initial marine transgression in the Kachchh Basin during the Cenozoic.

  17. Dealing with spatial heterogeneity

    NASA Astrophysics Data System (ADS)

    Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.

    2005-03-01

    Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faciès fins de barrières de perméabilité, qui ont une influence importante sur les écoulement, et, plus encore, sur le transport. Les modè les génétiques récemment apparus ont la capacité de mieux incorporer dans les modèles de faciès les observations géologiques, chose courante dans l'industrie pétrolière, mais insuffisamment développée en hydrogéologie. On conclut que les travaux de recherche ultérieurs devraient s'attacher à développer les modèles de faciès, à les comparer entre eux, et à mettre au point de nouvelles méthodes d'essais in situ, comprenant les méthodes géophysiques, capables de reconnaître la géométrie et les propriétés des faciès. La constitution d'un catalogue mondial de la géométrie et des propriétés des faciès aquifères, ainsi que des méthodes de reconnaissance utilisées pour arriver à la détermination de ces systèmes, serait d'une grande importance pratique pour les applications. La heterogeneidad se puede manejar por medio de la definición de características homogéneas equivalentes, conocidas como promediar o tratando de describir la variabilidad espacial de las características de las rocas a partir de observaciones geológicas y medidas locales. Las técnicas disponibles para estas descripciones son generalmente modelos geoestadísticos continuos o modelos de facies discontinuos como los modelos Boolean, de Indicador o de umbral de Gaussian y el modelo de cadena de Markow. Estos modelos de facies son mas adecuados para tratar la conectvidad de estratos geológicos (por ejemplo canales de alta permeabilidad enterrados o barreras de baja permeabilidad que tienen efectos importantes sobre el flujo y especialmente sobre el transporte en los acuíferos. Los modelos genéticos ofrecen nuevas formas de incorporar más geología en las descripciones de facies, un enfoque que está bien desarollado en la industria petrolera, pero insuficientemente en la hidrogeología. Se concluye que los trabajos futuros deberían estar más enfocados en mejorar los modelos de facies, en establecer comparaciones y en diseñar nuevos procedimientos para pruebas in-situ (incuyendo la geofísica) que pueden ayudar a identificar la geometría de las facies y sus propiedades. Un catálogo global de la geometría de las facies de los acuíferos y sus características, que podría combinar la génesis de los sitios y descripciones de los métodos utilizados para evaluar el sistema, sería de gran valor para las aplicaciones prácticas.

  18. Cyclostratigraphy across a Mississippian carbonate ramp in the Esfahan-Sirjan Basin, Iran: implications for the amplitudes and frequencies of sea-level fluctuations along the southern margin of the Paleotethys

    NASA Astrophysics Data System (ADS)

    Bayet-Goll, Aram; Esfahani, Fariba Shirezadeh; Daraei, Mehdi; Monaco, Paolo; Sharafi, Mahmoud; Mohammadi, Amir Akbari

    2018-03-01

    The Tournaisian-Visean carbonate successions of the Esfahan-Sirjan Basin (ESB) from Sanandaj-Sirjan Zone, Iran, have been used to generate a sequence stratigraphic model that enhances facies characterization and improves paleoenvironmental interpretation of shallow marine successions deposited along the southern margin of the Paleotethys. Detailed facies analysis allowed to differentiate seven facies, which, in order of decreasing abundance, are: (1) shaly and marly, F1; (2) peloidal mudstones/wackestones, F2; (3) peloidal/bioclastic packstones, F3; (4) intraclastic/bioclastic packstones/grainstones, F4; (5) oolitic/bioclastic packstone/grainstone, F5; (6) sandy intraclastic/bioclastic grainstones, F6; (7) sandy oolitic/bioclastic grainstones, F7. The different facies can be grouped into three facies associations that correspond to different environments of a carbonate platform with ramp geometry (homoclinal), from outer ramp (F1 and F2), mid-ramp (F3, F4 and F6) to inner ramp areas (F5 and F7). Meter-scale cycles are the basic building blocks of shallow marine carbonate successions of the Tournaisian-Viséan ramp of the ESB. Small-scale cycles are stacked into medium-scale cycles that in turn are building blocks of large-scale cycles. According to the recognized facies and the stacking pattern of high-frequency cycles across the ramp, five large-scale cycles in the southeastern outcrops (Tournaisian-Viséan) and three large-scale cycles in the northwest outcrops (Viséan) related to eustatic sea-level changes can be recognized. The overall retrogradational nature of the carbonate ramp, illustrated by both vertical facies relationships and the stacking patterns of high-frequency cycles within the third-order cycles, implies that the deposition of the Tournaisian-Viséan successions mainly took place under a long-term transgressive sea-level trend. The stratigraphic architectural style of the sequences, characterized by the lack of lowstand deposits and exposure surfaces, associated with the evidence of progressive increase in the proportion of backstepping of facies belts across bounding surfaces and predominant subtidal characteristics, is in accordance with the long-term transgressive sea-level trend and greenhouse conditions during the Tournaisian-Viséan. The continued transgression on this broad shelfal platform could lead to the shutdown of the shallow water carbonate factory, reduction in sediment supply or sediment transport towards the offshore setting and the development of give-up sequences. The association of transgressive events with the deposition of thick open-marine marls/shales is a common feature in Tournaisian to Viséan times of the southern margin of the Paleotethys.

  19. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    USGS Publications Warehouse

    Larson, P.B.; Cunningham, C.G.; Naeser, C.W.

    1994-01-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar albite components that reacted evolved to 0.92 as the reaction progressed. Much of the alkali feldspar albite component in the proximal facies reacted while the, primary plagioclase was still unreacted, but the ratio for these assemblages increased to 1.51 when the plagioclase entered the reaction paragenesis. Plagioclase reaction during distal propylitic alteration resulted in pseudomorphic albite mixed with illite and a loss of Na2O. CaO is lost in the distal facies as hornblende reacts to chlorite, although some calcium may be fixed in calcite. CaO is added to the proximal facies as the quantity of chlorite replacing hornblende increases and epidote and calcite are produced. ?? 1994 Springer-Verlag.

  20. The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China.

    PubMed

    Liu, Fei; Song, Xianfang; Yang, Lihu; Han, Dongmei; Zhang, Yinghua; Ma, Ying; Bu, Hongmei

    2015-12-15

    Groundwater resources are increasingly exploited for industrial and agricultural purposes in many arid regions globally, it is urgent to gain the impact of the enhanced anthropogenic pressure on the groundwater chemistry. The aim of this study was to acquire a comprehensive understanding of the evolution of groundwater chemistry and to identify the impact of natural and anthropogenic factors on the groundwater chemistry in the Subei Lake basin, Northwestern China. A total of 153 groundwater samples were collected and major ions were measured during the three campaigns (August and December 2013, May 2014). At present, the major hydrochemical facies in unconfined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Na-HCO3, Ca-Mg-SO4 and Na-SO4-Cl types, while the main hydrochemical facies in confined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Ca-HCO3 and Na-HCO3 types. Relatively greater seasonal variation can be observed in the chemical constituents of confined groundwater than that of unconfined groundwater. Rock weathering predominates the evolution of groundwater chemistry in conjunction with the cation exchange, and the dissolution/precipitation of gypsum, halite, feldspar, calcite and dolomite are responsible for the chemical constituents of groundwater. Anthropogenic activities can be classified as: (1) groundwater overexploitation; (2) excessive application of fertilizers in agricultural areas. Due to intensive groundwater pumping, the accelerated groundwater mineralization resulted in the local changes in hydrochemical facies of unconfined groundwater, while the strong mixture, especially a large influx of downward leakage from the unconfined aquifer into the confined aquifer, played a vital role in the fundamental variation of hydrochemical facies in confined aquifer. The nitrate contamination is mainly controlled by the local hydrogeological settings coupled with the traditional flood irrigation. The deeper insight into geochemical evolution of groundwater obtained from this study can be beneficial to improving groundwater management for sustainable development in the rapidly industrialized areas. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Constraining the thermal and tectonic evolution of a greenschist facies shear zone on Syros, Greece by using stable isotopes and mineral chemistry.

    NASA Astrophysics Data System (ADS)

    Cisneros, M.; Barnes, J.; Behr, W. M.

    2016-12-01

    Retrograde metamorphic rocks are key to understanding the exhumation history of high-pressure/low-temperature terranes. The Cycladic Blueschist Unit of Syros, Greece experienced peak metamorphic conditions of 15 kbar and 500 °C at 50 Ma and was subsequently exhumed to the shallow-crust ( 1-3 km) by 15 Ma; however, the processes associated with exhumation from mantle depths to the mid-crust remain poorly understood. We present structural, microstructural, and geochemical analyses of greenschist facies metamafic rocks exposed on Lotos beach in Syros that help to constrain the early exhumation history of these rocks. The outcrop preserves two main fabrics: 1) an early transposition foliation (Ss) defined by tight, isoclinal folds with shallow hingelines, and 2) upright open folds with a steep axial-planar cleavage (Sc). Ss is associated with viscous deformation and alignment of both amphibole and epidote into the foliation plane, whereas Sc is associated with semi-brittle deformation, amphibole overgrowths, and boudinage in elongate epidote (ep). Amphiboles display a progressive evolution from Na-to-Ca-rich end-members and exhibit continuous crystallization throughout Ss and Sc, as evidenced by new amphibole growth and overgrowths oriented parallel to foliation. Cal-qtz precipitates in ep boudin necks and chl + cal pseudomorphs after actinolite represent the last stage of lower greenschist facies metamorphism. These results indicate that foliation-forming deformation initiated prior-to or during blueschist facies and continued through lowermost greenschist facies. Oxygen isotope thermometry indicates that qtz-cal pairs equilibrated at 187 °C. Carbon and oxygen isotope values of fluids in equilibrium with qtz-cal pairs (δ18O and δ13C ≈ 0 ‰) indicate a seawater-derived fluid source. Preliminary results suggest this shear zone experienced cooling during decompression, followed by interaction with fluids transferred along a low-angle detachment.

  2. Central Atlantic Break-up: A competition between CAMP Hotspot and thinning rate.

    NASA Astrophysics Data System (ADS)

    Sapin, F.; Maurin, T.

    2017-12-01

    The break-up of the Central Atlantic is known to have ended at about 190Myrs while the CAMP (Central Atlantic Magmatic Province) was still active. Several seismic lines, acquired recently in the deep offshore Senegal and Mauritanian domain, provide detailed images of continent-ocean transition and the oceanic crust architecture. Their interpretation is the opportunity to describe the progressive interaction between the hot spot activity, the architecture and timing of break up and the oceanic crust production. In the North, seismic data and gravity/magnetic inversions suggest an extremely thinned continental crust with possible mantle exhumation. In the South, the continental crust is thick and the transition to oceanic crust is sharp. In addition, three oceanic crust facies were described along the margin in an extremely slow spreading ridge setting ( 0.8cm/yr during the first 20Myrs): facies (1) with a poorly imaged Moho and a strongly faulted thin oceanic crust or exhumed mantle; facies (2) with an extensively faulted 6km thick oceanic crust; facies (3) with abnormally thick (9km) oceanic crust marked by SDR-type reflections. They are diachronous from North to South and the two first one disappear southwards and (facies 3) being younger toward the North. Only a single very thick oceanic crust (12-14km) remains in front of the Guinea Plateau. We concluded that, in the South, the break-up had been forced through a thick or thickened continental crust due to the remnant activity of the CAMP Hotspot. In the North, the magmatic pulse arrived far after the break-up during the spreading and the thinning of the continental crust could lead to hyper extension. This evolution emphasizes that the architecture, and thus processes leading to the break-up can vary a lot considering the influence of thermal vertical forces (mantle dynamics/hotspot/magmatism) and mechanical horizontal forces (plate movement/faulting/spreading), both of them being necessary for a rift to succeed.

  3. Regional chronostratigraphic and depositional hydrocarbon trends in offshore Louisiana State waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John, C.J.; Jones, B.J.; Harder, B.J.

    1996-09-01

    Successful exploration for hydrocarbons in the Northern Gulf of Mexico basin requires a systematic understanding of hydrocarbon producing trends, sand body geometries and the geologic, engineering and reservoir parameters of the producing sands. This study forms part of the Offshore Atlas project in progress at the University of Texas at Austin, Bureau of Economic Geology, Texas, in co-operation with the U.S. Department of Interior, Minerals Management Service, and the Geological Survey of Alabama, and is aimed at achieving this goal. In this study, 26 chronozones were grouped into 12 sub-groups. The chronozones were defined on the basis of the benthicmore » foraminiferal biostratigraphic zones and were correlated across the Gulf using well log and seismic data and were projected from the Federal offshore into the State waters. The chronozones on each well log in the 22 cross sections constructed from West Cameron area eastward to the Chandeleur, Breton Sound and Main Pass areas, were subdivided as applicable into four depositional groups consisting of aggradational, progradational, transgressive and submarine fan facies based primarily on SP log shapes. In the Louisiana State waters there are 86 fields containing 679 reservoirs. This includes 212 oil, 344 gas, 33 condensate and 90 combination type reservoirs. Total combined cumulative production (1975-1995) is 454,335,217 barrels of oil, 114,327,696 barrels of condensate and 5,436,623,888 thousand cubic feet of gas. Total assigned production shows the progradational facies to be most productive yielding 51.69% oil 93.84% condensate, and 77.47% gas. The aggradational facies sands produced 46.96% oil, 1.70% condensate and 17.78%. gas. The submarine fan facies yielded 1.21% oil, 4.45% condensate, and 6.74% gas. Production from the transgressive facies sands was less than 0.2% of the total assigned production of oil, gas and condensate.« less

  4. Facies architecture and high resolution sequence stratigraphy of an aeolian, fluvial and shallow marine system in the Pennsylvanian Piauí Formation, Parnaíba Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Vieira, Lucas Valadares; Scherer, Claiton Marlon dos Santos

    2017-07-01

    The Pennsylvanian Piauí Formation records the deposition of aeolian, fluvial and shallow marine systems accumulated in the cratonic sag Parnaíba basin. Characterization of the facies associations and sequence stratigraphic framework was done by detailed description and logging of outcrops. Six facies associations were recognized: aeolian dunes and interdunes, aeolian sandsheets, fluvial channels, tidally-influenced fluvial channels, shoreface and shoreface-shelf transition. Through correlation of stratigraphic surfaces, the facies associations were organized in system tracts, which formed eight high frequency depositional sequences, bounded by subaerial unconformities. These sequences are composed of a lowstand system tract (LST), that is aeolian-dominated or fluvial-dominated, a transgressive system tract (TST) that is formed by tidally-influenced fluvial channels and/or shoreface and shoreface-shelf transition deposits with retrogradational stacking, and a highstand system tract (HST), which is formed by shoreface-shelf transition and shoreface deposits with progradational stacking. Two low frequency cycles were determined by observing the stacking of the high frequency cycles. The Lower Sequence is characterized by aeolian deposits of the LST and an aggradational base followed by a progressive transgression, defining a general TST. The Upper Sequence is characterized by fluvial deposits and interfluve pedogenesis concurring with the aeolian deposits of the LST and records a subtle regression followed by transgression. The main control on sedimentation in the Piauí Formation was glacioeustasy, which was responsible for the changes in relative sea level. Even though, climate changes were associated with glacioeustatic phases and influenced the aeolian and fluvial deposition.

  5. Empirical test of an illite/muscovite 40Ar/39Ar thermochronometer

    NASA Astrophysics Data System (ADS)

    Verdel, C.; van der Pluijm, B. A.; Niemi, N. A.; Hall, C. M.

    2010-12-01

    Minerals which both preserve age information and indicate metamorphic conditions are particularly useful in thermochronology. Variations in sub-greenschist facies metamorphism have traditionally been quantified in terms of the illite to muscovite transition, a transformation which involves the growth of crystallites of increasing thickness at higher metamorphic temperatures. Thickness variations may influence Ar retention within these K-rich minerals, both in nature and during neutron irradiation. Along a transect in the southwestern US from the Grand Canyon to Death Valley, metamorphic conditions of a stratigraphic interval (the Middle Cambrian Bright Angel Shale and laterally equivalent Carrara Fm.) range from zeolite facies in the east to greenschist facies in the west, as determined by estimating illite crystallite thickness with X-ray diffraction. 40Ar/39Ar step-heating experiments were conducted on illite/muscovite-rich, micron to submicron grain sizes of these shales that were encapsulated in quartz tubes prior to irradiation. The proportion of 39Ar expelled during irradiation decreases in these samples as both crystallite thickness and grain size increases. Spectra from the least metamorphosed samples (diagenetic zone) are staircase-shaped and reach maximum ages that appear to reflect the age of detrital muscovite. Spectra from the highest grade samples (epizone) display partial plateaus and yield much younger maximum ages. Based on these findings we conclude that Ar can escape from illite via two processes: loss from low retention sites on crystallite edges and c-axis perpendicular volume diffusion. Based on our empirical data, the closure temperature of illite appears to lie at or near the anchizone-epizone bounday, or roughly 200-300 °C. Illite/muscovite thickness and 40Ar/39Ar data may therefore be useful for studies of detrital muscovite geochronology in very low grade shales and as a thermochronometer for higher grade pelites.

  6. Distribution of Ejecta in Analog Tephra Rings from Discrete Single and Multiple Subsurface Explosions

    NASA Astrophysics Data System (ADS)

    Graettinger, A. H.; Valentine, G. A.; Sonder, I.; Ross, P. S.; White, J. D. L.

    2015-12-01

    Buried-explosion experiments were used to investigate the spatial and volumetric distribution of extra-crater ejecta resulting from a range of explosion configurations with and without a crater present. Explosion configuration is defined in terms of scaled depth, the relationship between depth of burial and the cube root of explosion energy, where an optimal scaled depth explosion produces the largest crater diameter for a given energy. The multiple explosion experiments provide an analog for the formation of maar-diatreme ejecta deposits and the deposits of discrete explosions through existing conduits and hydrothermal systems. Experiments produced meter-sized craters with ejecta distributed between three major facies based on morphology and distance from the crater center. The proximal deposits form a constructional steep-sided ring that extends no more than two-times the crater radius away from center. The medial deposits form a low-angle continuous blanket that transitions with distance into the isolated clasts of the distal ejecta. Single explosion experiments produce a trend of increasing volume proportion of proximal ejecta as scaled depth increases (from 20-90% vol.). Multiple explosion experiments are dominated by proximal deposits (>90% vol.) for all but optimal scaled depth conditions (40-70% vol.). In addition to scaled depth, the presence of a crater influences jet shape and how the jet collapses, resulting in two end-member depositional mechanisms that produce distinctive facies. The experiments use one well-constrained explosion mechanism and, consequently, the variations in depositional facies and distribution are the result of conditions independent of that mechanism. Previous interpretations have invoked variations in fragmentation as the cause of this variability, but these experiments should help with a more complete reconstruction of the configuration and number of explosions that produce a tephra ring.

  7. Late Quaternary deglacial history across the Larsen B embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Jeong, Ara; Lee, Jae Il; Seong, Yeong Bae; Balco, Greg; Yoo, Kyu-Cheul; Yoon, Ho Il; Domack, Eugene; Rhee, Hyun Hee; Yu, Byung Yong

    2018-06-01

    We measured meteoric 10Be variation throughout a marine sediment core from the Larsen B embayment (LBE) of the Antarctic Peninsula, and collected in situ 10Be and 14C exposure ages on terrestrial glacial deposits from the northern and southern margins of the LBE. We use these data to reconstruct Last Glacial Maximum (LGM) to present deglaciation and ice shelf change in the LBE. Core sedimentary facies and meteoric 10Be data show a monotonic progression from subglacial deposits to sub-ice-shelf deposits to open-marine conditions, indicating that its collapse in 2002 was unprecedented since the LGM. Exposure-age data from the southern LBE indicate 40 m of ice surface lowering between 14 and 6 ka, then little change between 6 ka and the 2002 collapse. Exposure-age data from the northern LBE show a bimodal distribution in which clusters of apparent exposure ages in the ranges 4.9-5.1 ka and 1.0-2.0 ka coexist near 50 m elevation. Based on these results, other published terrestrial and marine deglaciation ages, and a compilation of sea bed imagery, we suggest a north-to-south progression of deglaciation in the northeast Antarctic Peninsula in response to Holocene atmospheric and oceanic warming. We argue that local topography and ice configuration inherited from the LGM, in addition to climate change, are important in controlling the deglaciation history in this region.

  8. Intrafamilial variation in Cohen syndrome.

    PubMed Central

    Young, I D; Moore, J R

    1987-01-01

    Three sibs with Cohen syndrome are presented. Abnormalities present in all three children include mental retardation, hypotonia, and short philtrum with open mouth and prominent lips. The older two sibs have a similar facies and an engaging personality. The youngest child shows a different facial appearance and marked behavioural problems, thereby illustrating the intrafamilial variability which may occur in this disorder. Images PMID:3656371

  9. Shallow stratification prevailed for ∼1700 to ∼1300 Ma ocean: Evidence from organic carbon isotopes in the North China Craton

    NASA Astrophysics Data System (ADS)

    Luo, Genming; Junium, Christopher K.; Kump, Lee R.; Huang, Junhua; Li, Chao; Feng, Qinglai; Shi, Xiaoying; Bai, Xiao; Xie, Shucheng

    2014-08-01

    The Late Paleoproterozoic to Early Mesoproterozoic (from ∼1700 Ma to ∼1300 Ma) was highlighted by the assembly of the Nuna supercontinent, expansion of euxinic marine environments and apparent stasis in the diversity of eukaryotes. The isotopic composition of carbonate carbon (δ13Ccarb) was surprisingly constant during this interval, but little is known about the secular variation in the organic carbon isotopic composition (δ13Corg). Here we report δ13Corg data from the latest Paleoproterozoic (>1650 Ma) to Early Mesoproterozoic (∼1300 Ma) succession in North China. The δ13Corg values range from -25‰ to -34‰, and are dependent on sedimentary facies. In subtidal and deeper environments δ13Corg values are low and constant, ca. -32‰, but relatively enriched and more variable in shallower intertidal and supratidal environments. We attribute the facies-dependent variation in δ13Corg to the presence of a shallow chemocline. A probable result of a shallow chemocline is that it supported significant contributions of organic matter produced by chemoautotrophic and/or anaerobic photoautotrophic microbes in relatively deep environments from the latest Paleoproterozoic to Early Mesoproterozoic continental shelf of North China.

  10. Plio-Pleistocene facies environments from the KBS Member, Koobi Fora Formation: implications for climate controls on the development of lake-margin hominin habitats in the northeast Turkana Basin (northwest Kenya).

    PubMed

    Lepre, Christopher J; Quinn, Rhonda L; Joordens, Josephine C A; Swisher, Carl C; Feibel, Craig S

    2007-11-01

    Climate change is hypothesized as a cause of major events of Plio-Pleistocene East African hominin evolution, but the vertically discontinuous and laterally confined nature of the relevant geological records has led to difficulties with assessing probable links between the two. High-resolution sedimentary sequences from lacustrine settings can provide comprehensive data of environmental changes and detailed correlations with well-established orbital and marine records of climate. Hominin-bearing deposits from Koobi Fora Ridge localities in the northeast Turkana Basin of Kenya are an archive of Plio-Pleistocene lake-margin sedimentation though significant developmental junctures of northern African climates, East African environments, and hominin evolution. This study examines alluvial channel and floodplain, nearshore lacustrine, and offshore lacustrine facies environments for the approximately 136-m-thick KBS Member (Koobi Fora Formation) exposed at the Koobi Fora Ridge. Aspects of the facies environments record information on the changing hydrosedimentary dynamics of the lake margin and give insights into potential climatic controls. Seasonal/yearly climate changes are represented by the varve-like laminations in offshore mudstones and the slickensides, dish-shaped fractures, and other paleosol features overprinted on floodplain strata. Vertical shifts between facies environments, however, are interpreted to indicate lake-level fluctuations deriving from longer-term, dry-wet periods in monsoonal rainfall. Recurrence periods for the inferred lake-level changes range from about 10,000 to 50,000 years, and several are consistent with the average estimated timescales of orbital precession ( approximately 20,000 years) and obliquity ( approximately 40,000 years). KBS Member facies environments from the Koobi Fora Ridge document the development of lake-margin hominin habitats in the northeast Turkana Basin. Environmental changes in these habitats may be a result of monsoonal rainfall variations that derive from orbital insolation and/or glacial forcing.

  11. 3D Seismic Reflection Amplitude and Instantaneous Frequency Attributes in Mapping Thin Hydrocarbon Reservoir Lithofacies: Morrison NE Field and Morrison Field, Clark County, KS

    NASA Astrophysics Data System (ADS)

    Raef, Abdelmoneam; Totten, Matthew; Vohs, Andrew; Linares, Aria

    2017-12-01

    Thin hydrocarbon reservoir facies pose resolution challenges and waveform-signature opportunities in seismic reservoir characterization and prospect identification. In this study, we present a case study, where instantaneous frequency variation in response to a thin hydrocarbon pay zone is analyzed and integrated with other independent information to explain drilling results and optimize future drilling decisions. In Morrison NE Field, some wells with poor economics have resulted from well-placement incognizant of reservoir heterogeneities. The study area in Clark County, Kanas, USA, has been covered by a surface 3D seismic reflection survey in 2010. The target horizon is the Viola limestone, which continues to produce from 7 of the 12 wells drilled within the survey area. Seismic attributes extraction and analyses were conducted with emphasis on instantaneous attributes and amplitude anomalies to better understand and predict reservoir heterogeneities and their control on hydrocarbon entrapment settings. We have identified a higher instantaneous frequency, lower amplitude seismic facies that is in good agreement with distinct lithofacies that exhibit better (higher porosity) reservoir properties, as inferred from well-log analysis and petrographic inspection of well cuttings. This study presents a pre-drilling, data-driven approach of identifying sub-resolution reservoir seismic facies in a carbonate formation. This workflow will assist in placing new development wells in other locations within the area. Our low amplitude high instantaneous frequency seismic reservoir facies have been corroborated by findings based on well logs, petrographic analysis data, and drilling results.

  12. Influence of pre-tectonic carbonate facies architecture on deformation patterns of syntectonic turbidites, an example from the central Mexican fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Vásquez Serrano, Alberto; Tolson, Gustavo; Fitz Diaz, Elisa; Chávez Cabello, Gabriel

    2018-04-01

    The Mexican fold-thrust belt in central México excellently exposes relatively well preserved syntectonic deposits that overlay rocks with lateral lithostratigraphic changes across the belt. We consider the deformational effects of these changes by investigating the geometry, kinematics and strain distribution within syntectonic turbidites, which are deposited on top of Albian-Cenomanian shallow and deep water carbonate layers. Field observations and detailed structural analysis at different stratigraphic and structural levels of the Late Cretaceous syntectonic formation are compared with the deformation as a function of lithological and structural variations in the underlying carbonate units, to better understand the effect of these lithostratigraphic variations on deformation, kinematics, strain distribution and propagation of deformation. From our kinematic analyses, we conclude that the syntectonic strata are pervasively affected by folding in all areas and that deformation partitioning localized shear zones at the boundaries of this unit, particularly along the contact with massive carbonates. At the boundaries with massive platformal carbonates, the turbidites are strongly deformed by isoclinal folding with a pervasive sub-horizontal axial plane cleavage and 70-60% shortening. In contrast, contacts with thinly-bedded carbonate layers (basinal facies), do not show strain localization, and have horizontal shortening of 50-40% that is accommodated by buckle folds with a less pervasive, steeply dipping cleavage. The mechanical properties variations in the underlying pre-tectonic units as a function of changes in lithostratigraphy fundamentally control the deformation in the overlying syntectonic strata, which is an effect that could be expected to occur in any deformed sedimentary sequence with such variations.

  13. Dynamics of surges generated by hydrothermal blasts during the 6 August 2012 Te Maari eruption, Mt. Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Lube, Gert; Breard, Eric C. P.; Cronin, Shane J.; Procter, Jonathan N.; Brenna, Marco; Moebis, Anja; Pardo, Natalia; Stewart, Robert B.; Jolly, Arthur; Fournier, Nicolas

    2014-10-01

    The 6 August 2012 Te Maari eruption produced violent and widespread "cold" Pyroclastic Density Currents (PDCs) following unroofing of the pressurized hydrothermal system. Despite an erupted volume of only ~ 5 × 105 m3, and lacking any juvenile component, the 340,000 m3 of PDCs spread over an area of 6.1 km2 and had mobilities that were on the order of volcanic blasts or blast-like PDCs. This great mobility was due to strong lateral focussing of explosion energy, producing jets with initial velocities > 100 m/s. We present a type-stratigraphy for these hydrothermal-derived low-temperature PDCs that show a tripartite deposit sequence. Each of the deposit units dominates respectively three outward-gradational sedimentary facies, reflecting transitions in the propagating PDC transport and depositional mechanisms. The largest PDCs, directed west and east of the Upper Te Maari area were generated from outer-cone breccias and tuffs that were mostly highly hydrothermally altered. Landsliding and the geometry of the hydrothermal area led to the directed jetting. Initial particle-laden jets laid sheets, grading into lobes of proximal massive sand to gravel-rich facies dominated by unit A and extending up to 1 km from the vents. As the jets were collapsing, a vertically and longitudinally stratified PDC developed within the first few hundred metres from source. Exponential thinning and coarse-tail grading-dominated fining with radial distance of massive unit A resulted from fast deposition and progressive depletion of the most concentrated flow region behind the PDC head. Markedly slower tractional sedimentation from the passing PDC body and tail deposited the highly stratified and ripple-bedded fine-coarse ash of unit B. This formed distinctive dune fields of the medial dune-bedded ash-rich facies. Upwards in depositional sequences the waning of the current can be seen, by replacement of higher-energy bedforms to progressively lower ones. Downstream progressive waning and further depletion are characterised by the development of the distal wavy to planar-bedded ash-rich facies. This is increasingly dominated by the uppermost deposition unit C of laminated fine-med ash deposited by gently turbulent, dilute phoenix clouds. These high energy PDCs, sourced from flank hydrothermal systems should be regarded as a serious threat in any multihazard assessment of a stratovolcano, even though they may not be one of the major magmatic vent sites. In addition, further detailed studies of these hydrothermal jetting events and their deposits should be pursued in order to better understand large-volume volcanic blasts, which appear to be a larger scale sibling phenomenon.

  14. Organic geochemistry in Pennsylvanian tidally influenced sediments from SW Indiana

    USGS Publications Warehouse

    Mastalerz, Maria; Kvale, E.P.; Stankiewicz, B.A.; Portle, K.

    1999-01-01

    Tidal rhythmites are vertically stacked small-scale sedimentary structures that record daily variations in tidal current energy and are known to overlie some low-sulfur coals in the Illinois Basin. Tidal rhythmites from the Pennsylvanian Brazil Formation in Indiana have been analyzed sedimentologically, petrographically, and geochemically in order to understand the character and distribution of organic matter (OM) preserved in an environment of daily interactions between marine and fresh waters. The concentration of organic matter (TOC) ranges from traces to 6.9% and sulfur rarely exceeds 0.1% in individual laminae. Angular vitrinite is the major organic matter type, accounting for 50-90% of total OM. The C/S ratio decreases as the verfical distance from the underlying coal increases. A decreasing C/S ratio coupled with decreases in Pr/Ph, Pr/n-C17, Ph/n-C18 ratios and a shift of carbon isotopic composition towards less negative values suggest an increase in salinity from freshwater in the mudflat tidal rhythmite facies close to the coal to brackish/marine in the sandflat tidal rhythmite facies further above from the coal. Within an interval spanning one year of deposition, TOC and S values show monthly variability. On a daily scale, TOC and S oscillations are still detectable but they are of lower magnitude than on a monthly scale. These small-scale variations are believed to reflect oscillations in water salinity related to tidal cycles.Tidal rhythmites are vertically stacked small-scale sedimentary structures that record daily variations in tidal current energy and are known to overlie some low-sulfur coals in the Illinois Basin. Tidal rhythmites from the Pennsylvanian Brazil Formation in Indiana have been analyzed sedimentologically, petrographically, and geochemically in order to understand the character and distribution of organic matter (OM) preserved in an environment of daily interactions between marine and fresh waters. The concentration of organic matter (TOC) ranges from traces to 6.9% and sulfur rarely exceeds 0.1% in individual laminae. Angular vitrinite is the major organic matter type, accounting for 50-90% of total OM. The C/S ratio decreases as the vertical distance from the underlying coal increases. A decreasing C/S ratio coupled with decreases in Pr/Ph, Pr/n-C17, Ph/n-C18 ratios and a shift of carbon isotopic composition towards less negative values suggest an increase in salinity from freshwater in the mudflat tidal rhythmite facies close to the coal to brackish/marine in the sandflat tidal rhythmite facies further above from the coal. Within an interval spanning one year of deposition, TOC and S values show monthly variability. On a daily scale, TOC and S oscillations are still detectable but they are of lower magnitude than on a monthly scale. These small-scale variations are believed to reflect oscillations in water salinity related to tidal cycles.

  15. Genesis of a zoned granite stock, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Hudson, Travis

    1977-01-01

    A composite epizonal stock of biotite granite has intruded a diverse assemblage of metamorphic rocks in the Serpentine Hot Springs area of north-central Seward Peninsula, Alaska. The metamorphic rocks include amphibolite-facies orthogneiss and paragneiss, greenschist-facies fine-grained siliceous and graphitic metasediments, and a variety of carbonate rocks. Lithologic units within the metamorphic terrane trend generally north-northeast and dip moderately toward the southeast. Thrust faults locally juxtapose lithologic units in the metamorphic assemblage, and normal faults displace both the metamorphic rocks and some parts of the granite stock. The gneisses and graphitic metasediments are believed to be late Precambrian in age, but the carbonate rocks are in part Paleozoic. Dating by the potassium-argon method indicates that the granite stock is Late Cretaceous. The stock has sharp discordant contacts, beyond which is a well-developed thermal aureole with rocks of hornblende hornfels facies. The average mode of the granite is 29 percent plagioclase, 31 percent quartz, 36 percent K-feldspar, and 4 percent biotite. Accessory minerals include apatite, magnetite, sphene, allanite, and zircon. Late-stage or deuteric minerals include muscovite, fluorite, tourmaline, quartz, and albite. The stock is a zoned complex containing rocks with several textural facies that are present in four partly concentric zones. Zone 1 is a discontinuous border unit, containing fine- to coarse-grained biotite granite, that grades inward into zone 2. Zone 2 consists of porphyritic biotite granite with oriented phenocrysts of pinkish-gray microcline in a coarse-grained equigranular groundmass of plagioclase, quartz, and biotite. It is in sharp, concordant to discordant contact with rocks of zone 3. Zone 3 consists of seriate-textured biotite granite that has been intruded by bodies of porphyritic biotite granite containing phenocrysts of plagioclase, K-feldspar, quartz, and biotite in an aplitic groundmass. Flow structures, pegmatite and aplite segregations, and miarolitic cavities are common in the seriate-textured granite. Zone 4, which forms the central part of the complex, consists of fine- to medium-grained biotite granite and locally developed leucogranite. Small miarolitic cavities are common within it. Eight textural facies have been defined within the complex, and mineralogic, petrographic, modal, and chemical variations are broadly systematic within the facies sequence. Study of these variations shows that the gradational facies of zones l and 2 systematically shift toward more mafic compositions inward within the complex. Seriate-textured rocks of zone 3 are similar in composition to those of zone 2, but porphyritic rocks of zone 3 and rocks of zone 4 mark shifts to more felsic compositions. These late-crystallizing felsic rocks are products of an interior residual magma system. This system was enriched in water and certain trace elements including tin, lithium, niobium, lead, and zinc. The complex as a whole has higher concentrations of these elements than many other granites. The nature of this geochemical specialization is particularly well demonstrated by the trace-element composition of biotite. The crystallization history of the pluton was complex. The available data suggest that this history could have included: (1) chilling and metasomatic alteration adjacent to the contact, (2) in-situ crystallization in several marginal facies accompanied by some transfer of residual constituents toward interior parts of the pluton, (3) slight upward displacement of magma that was subjacent to the crystallized walls, accompanied by disequilibrium crystallization and local vapor saturation, (4) upward displacement of part of the residual water-rich interior magma, accompanied by rapid loss of a separated vapor phase, and (5) displacement of the margins of the pluton by normal faults, accompanied by loss of an exsolved vapor phase from th

  16. Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting

    NASA Astrophysics Data System (ADS)

    Fogg, Graham E.; Noyes, Charles D.; Carle, Steven F.

    Information on sediment texture and spatial continuity are inherent to sedimentary depositional facies descriptions, which are therefore potentially good predictors of spatially varying hydraulic conductivity (K). Analysis of complex alluvial heterogeneity in Livermore Valley, California, USA, using relatively abundant core descriptions and field pumping-test data, demonstrates a depositional-facies approach to characterization of subsurface heterogeneity. Conventional textural classifications of the core show a poor correlation with K; however, further refinement of the textural classifications into channel, levee, debris-flow, and flood-plain depositional facies reveals a systematic framework for spatial modeling of K. This geologic framework shows that most of the system is composed of very low-K flood-plain materials, and that the K measurements predominantly represent the other, higher-K facies. Joint interpretation of both the K and geologic data shows that spatial distribution of K in this system could not be adequately modeled without geologic data and analysis. Furthermore, it appears that K should not be assumed to be log-normally distributed, except perhaps within each facies. Markov chain modeling of transition probability, representing spatial correlation within and among the facies, captures the relevant geologic features while highlighting a new approach for statistical characterization of hydrofacies spatial variability. The presence of fining-upward facies sequences, cross correlation between facies, as well as other geologic attributes captured by the Markov chains provoke questions about the suitability of conventional geostatistical approaches based on variograms or covariances for modeling geologic heterogeneity. Résumé Les informations sur la texture des sédiments et leur continuité spatiale font partie des descriptions de faciès sédimentaires de dépôt. Par conséquent, ces descriptions sont d'excellents prédicteurs potentiels des variations spatiales de la conductivité hydraulique (K). L'analyse de l'hétérogénéité des alluvions complexes de la vallée de Livermore (Californie, États-Unis), sur la base de descriptions de carottes relativement nombreuses et de données d'essais de pompage, montre que l'hétérogénéité souterraine peut être caractérisée par une approche des faciès de dépôt. Des classifications conventionnelles de la texture de la carotte montrent une corrélation médiocre avec K; toutefois, une amélioration ultérieure des classifications de texture en faciès de dépôt de chenal, de levée d'inondation, de coulée boueuse et de plaine d'inondation a fourni un cadre systématique pour une modélisation spatiale de K. Ce cadre géologique montre que le système est composé pour l'essentiel par des matériaux d'inondation à très faible perméabilité ceci laisse envisager qu'on ne peut pas supposer que K suit une distribution log-normal, sauf peut-être à l'intérieur de chaque faciès. Une modélisation par chaîne de Markov de la probabilité de passage, représentant la corrélation spatiale dans les faciès et entre eux, prend en compte les faits géologiques intéressants tout en fournissant une approche nouvelle pour une caractérisation statistique de la variabilité spatiale des faciès. La présence de séquences à faciès tronqués vers le haut, d'une corrélation croisée entre faciès, ainsi que d'autres caractères géologiques pris en compte par les chaînes de Markov conduisent à se poser des questions sur l'adéquation des approches géostatistiques conventionnelles utilisant les variogrammes ou les covariances pour modéliser l'hétérogénéité géologique. Resumen La información respecto a la textura de los sedimentos y la continuidad espacial es inherente a las descripciones de las facies deposicionales sedimentarias. De este modo, estas descripciones se convierten en excelentes predictores potenciales de las variaciones espaciales de la conductividad hidráulica (K). El análisis de la heterogeneidad en un aluvial en el Valle de Livermore (California, EEUU), a partir de las relativamente abundantes descripciones de testigos y de datos de ensayos de bombeo es una muestra del método de la facies deposicional para caracterizar la heterogeneidad subsuperficial. Las clasificaciones texturales convencionales de los testigos muestran una correlación pobre con K; sin embargo, el posterior refinamiento de la clasificación en canales, diques, flujo de derrubios y llanura de inundación revela un marco sistemático para la modelización espacial de K. Este marco geológico muestra que la mayor parte del sistema está compuesto por materiales de la llanura de inundación, de muy baja permeabilidad, y sugiere que no debe asumirse que K tiene una distribución log-normal, excepto quizás para cada facies por separado. Un modelo de cadena de Markov, tanto para representar la correlación espacial en cada facies como la relación entre las distintas facies, capta las características geológicas más importantes, a la vez que presenta un nuevo método para la caracterización estadística de la variabilidad espacial de las hidrofacies. La presencia de secuencias de facies más finas hacia la superficie, la correlación cruzada entre facies y otros atributos captados por las cadenas de Markov cuestionan lo adecuado de los métodos geoestadísticos convencionales basados en variogramas y covarianzas para modelar la heterogeneidad.

  17. Distribution and tectonic implications of Cretaceous-Quaternary sedimentary facies in Solomon Islands

    NASA Astrophysics Data System (ADS)

    Turner, C. C.; Hughes, G. W.

    1982-08-01

    Sedimentary rocks of the Solomon Islands-Bougainville Arc are described in terms of nine widespread facies. Four facies associations are recognised by grouping facies which developed in broadly similar sedimentary environments. A marine pelagic association of Early Cretaceous to Miocene rocks comprises three facies. Facies Al: Early Cretaceous siliceous mudstone, found only on Malaita, is interpreted as deep marine siliceous ooze. Facies A2: Early Cretaceous to Eocene limestone with chert, overlies the siliceous mudstone facies, and is widespread in the central and eastern Solomons. It represents lithified calcareous ooze. Facies A3: Oligocene to Miocene calcisiltite with thin tuffaceous beds, overlies Facies A2 in most areas, and also occurs in the western Solomons. This represents similar, but less lithified calcareous ooze, and the deposits of periodic andesitic volcanism. An open marine detrital association of Oligocene to Recent age occurs throughout the Solomons. This comprises two facies. Facies B1 is variably calcareous siltstone, of hemipelagic origin; and Facies B2 consists of volcanogenic clastic deposits, laid down from submarine mass flows. A third association, of shallow marine carbonates, ranges in age from Late Oligocene to Recent. Facies C1 is biohermal limestone, and Facies C2 is biostromal calcarenite. The fourth association comprises areally restricted Pliocene to Recent paralic detrital deposits. Facies D1 includes nearshore clastic sediments, and Facies D2 comprises alluvial sands and gravels. Pre-Oligocene pelagic sediments were deposited contemporaneously with, and subsequent to, the extrusion of oceanic tholeiite. Island arc volcanism commenced along the length of the Solomons during the Oligocene, and greatly influenced sedimentation. Thick volcaniclastic sequences were deposited from submarine mass flows, and shallow marine carbonates accumulated locally. Fine grained graded tuffaceous beds within the marine pelagic association are interpreted as products of this volcanism, suggesting that the Santa Isabel-Malaita-Ulawa area, where these beds are prevalent, was relatively close to the main Solomons chain at this time. A subduction zone may have dipped towards the northeast beneath this volcanic chain. Pliocene to Pleistocene calcalkaline volcanism and tectonism resulted in the emergence of all large islands and led to deposition of clastic and carbonate facies in paralic, shallow and deep marine environments.

  18. Sedimentary response to halfgraben dipslope faults evolution -Billefjorden Trough, Svalbard.

    NASA Astrophysics Data System (ADS)

    Smyrak-Sikora, Aleksandra; Kristensen, Jakob B.; Braathen, Alvar; Johannessen, Erik P.; Olaussen, Snorre; Sandal, Geir; Stemmerik, Lars

    2017-04-01

    Fault growth and linkage into larger segments has profound effect on the sedimentary architecture of rift basins. The uplifted Billefjorden Through located in central Spitsbergen is an excellent example of half-graben basin development. Detailed sedimentological and structural investigations supported by helicopter and ground base lidar scans along with photogrammetry analysis have been used to improve our understanding of the sedimentary response to faulting and along strike variations in footwall uplift and hanging wall subsidence. The early syn-rift basin fill, the Serpukhovian to Bashkirian Hultberget Formation and the Bashkirian Ebbaelven Member consists of fluvial to deltaic sandstones with minor marine incursions. During this early stage tens to hundred- meters-scale syn-tectonic faults disrupted the dipslope, and created local hanging wall depocentres where sediments were arrested. Changes in fluvial drainage pattern, development of small lacustrine basins along the faults, and the sharp based boundaries of some facies associations are interpreted as response to activity along these, mostly antithetic faults. The basin fill of the late syn-rift stage is composed of shallow marine to tidal mixed evaporite -carbonate facies in the hanging wall i.e. the Bashkirian Trikolorfjellet Member and the Moscovian Minkenfjellet Formation. These sediments interfinger with thick alluvial fan deposits outpouring from relay ramps on the master fault i.e. drainage from the footwall. The carbonate-evaporite cycles deposited on the hanging wall responded to both the eustatic sea level variations and tectonic movements in the rift basin. Intra-basinal footwall uplift of the dipslope controlled development of an internal unconformity and resulted in dissolution of the gypsum to produce stratiform breccia. In contrast thick gypsum-rich subbasins are preserved locally in hanging wall positions where they were protected from the erosion. The syn rift basin fill is capped by post rift carbonate ramp deposit of the Kasimovian to Asselian Wordiekammen Formation. This unit marks the final fill (and drowning) of the rift basin and covers both the hanging wall and footwall. In this presentation our focus will be on details of the sedimentary architecture related to internal and local dipslope activity within the rift basin, particularly thickness and facies variations, and transport directions.

  19. High but balanced sedimentation and subsidence rates (Moodies Group, Barberton Greenstone Belt), followed by basin collapse: Implication for Archaean tectonics

    NASA Astrophysics Data System (ADS)

    Heubeck, Christoph; Lowe, Donald R.; Byerly, Gary R.

    2010-05-01

    Archaean tectonophysical models distinguish between thick, rigid and thin, mobile crust; from these the major mechanisms and rates for continental growth are derived. Archaean sedimentary rocks, preserved in metamorphosed and highly deformed greenstone belts, can contribute to constrain these models by estimating subsidence rates, derived from the combination of facies changes and precise age dates. Largely siliciclastic strata of the Moodies Group form the topmost unit of the Barberton Supergroup of the Barberton Greenstone Belt (BGB), South Africa, represent one of the world's oldest unmetamorphosed quartz-rich sedimentary sequences, and reach ca. 3500m thick (Lowe and Byerly, 2007). Large parts of the Moodies Group were deposited in apparent sedimentary continuity in alluvial, fluvial, shoreline and shallow-marine environments (e.g., Eriksson, 1979; Heubeck and Lowe, 1994). Distinctive sources and variations in facies indicate that Moodies deposition occurred at times in several basins. In several now tectonically separated regions, a regional basaltic lava (unit MdL of Anhaeusser, 1968) separates a lower unit (ca. 2000m thick and possibly representing an extensional setting) from an upper unit (ca. 1500m thick and characterized by progressive unconformities, rapidly changing facies, thicknesses, and sandstone petrographic composition). Single zircons separated from a felsic air-fall tuff of the middle Moodies Group and immediately overlying the basaltic lava in the Saddleback Syncline were dated on the Stanford-USGS SHRIMP RG. Out of 24 dated grains, two near-concordant groups have mean ages of 3230,6+-6,1Ma (2σ; n=9) and 3519+-7 Ma (2σ; n=9), respectively. We interpret the former age as representing the depositional age of the tuff, the latter as representing inherited zircons from underlying Onverwacht-age basement. The interpreted depositional age of the Moodies tuff is indistinguishable from numerous similar ages from felsic and dacitic volcanics at the top of the underlying Fig Tree Group (Schoongezicht Fm.; Byerly et al., 1996), implying that ca. 2000m of Moodies sandstones and subordinate siltstones and conglomerates were deposited in not more than a few (0-6) Ma. Their comparatively low degree of facies variation and lithological change implies a balance between rates of sediment supply and of subsidence, creating thick stacked units. Ferruginous shales and thin BIFs of the upper Moodies Group suggest that background 'Fig-Tree-style' sedimentation continued during Moodies time but was mostly overwhelmed by the apparently brief but massive influx of medium- to coarse-grained quartzose sediment. Because two progressive unconformities, marking Moodies basin uplift and onset of renewed overall BGB shortening, occur only 50 m above this dated unit, they are likely of a similar age and imply that dominant NW-SE-directed shortening in the BGB began shortly after 3230+-6 Ma. The combination of these new data with published information thus suggest that the Moodies Basin formed after 3225+-6 Ma (i.e., at the earliest at 3231) but was already largely filled and began to be deformed by 3231+-6 (i.e., at the latest by 3225). Moodies deposition thus happened geologically nearly instantaneously following the end of Fig Tree volcanism, took very little time and deposited large volumes of sediments on a rapidly subsiding basement just prior to large-scale BGB deformation. REFERENCES Byerly, G.R., Kroner, A., Lowe, D.R., Todt W., Walsh, M.M., 1996, Prolonged magmatism and time constraints for sediment deposition in the early Archean Barberton greenstone belt: Evidence from the Upper Onverwacht and Fig Tree groups: Precambrian Research, 78, p. 125-138. Eriksson, K.A., 1979, Marginal marine depositional processes from the Archaean Moodies Group, Barberton Mountain Land, South Africa: Evidence and significance: Precambrian Res., 8, p. 153-182. Heubeck, C. and Lowe, D.R., 1994, Depositional and tectonic setting of the Archaean Moodies Group, Barberton Greenstone Belt, South Africa: Precambrian Res., 68, p. 257-290. Lowe, D.R., and Byerly, G.R., 2007, An overview of the geology of the Barberton Greenstone Belt and vicinity: Implications for early crustal development; in: M.J. von Kranendonk, R.H. Smithies and V.C. Bennett, eds., Earth's Oldest Rocks. - Elsevier (Developments in Precambrian Geology), vol. 15, p. 481-526.

  20. GPR-derived architecture of a lahar-generated fan at Cotopaxi volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Ettinger, Susanne; Manville, Vern; Kruse, Sarah; Paris, Raphaël

    2014-05-01

    The internal geometry of volcaniclastic fans produced by aggradation during lahar events is difficult to examine in modern settings because of the frequent lack of three-dimensional exposures. This makes it challenging to (i) reconstruct the spatial and temporal evolution of such fans; and (ii) interpret observed facies stratigraphy in the context of lahar flow dynamics from proximal to distal fan reaches. This research therefore presents the results of a ground penetrating radar (GPR) survey of the Rumipamba fan at the mouth of the Burrohuaycu quebrada on the southwestern flank of Cotopaxi volcano. A survey grid consisting of 50 individual GPR profiles representing a total length of 19.4 km was constructed covering most of the 4-km2 large fan surface. All GPR profiles were collected using a PulseEKKO 100 with a 400 V transmitter. Fan sediments consist of sandy and gravelly lahar deposits, alternating with volcanic fallout including ash and pumice lapilli, at times reworked by fluvial processes. Deposits could be ground-truthed to a depth of ~3 m, whereas GPR penetration depth reaches 15 m. Data interpretation was based on classification into 15 distinct radar facies characterized by the nature of their bounding surfaces and/or internal features, cross-referenced where possible with shallow exposures. Three main facies were identified: parallel, irregular, and clinoform. Erosional contacts were distinguished from aggradational ones (vertical, channel fill, and lateral accretion). Flow parallel versus flow transverse and proximal-distal variations in deposit architecture were featured. The results of this study confirm the existence of two major channel systems in the northern and southern extremities of the fan and the more recent formation of a smaller central fan channel system. Deposit architecture is complex and facies chronologies illustrate that lahars have affected the entire survey area.

  1. The nummulithoclast event within the Lower Eocene in the Southern Tethyan margin: Mechanisms involved, analogy with the filament event and climate implication (Kairouan, Central Tunisia)

    NASA Astrophysics Data System (ADS)

    Mardassi, Besma

    2017-10-01

    Early Eocene deposits in Tunisia are marked by clear variations in terms of facies and thickness. Each facies corresponds to an appropriate depositional environment. Shallow water deposits pass gradually offshore into deeper carbonates along a homoclinal ramp. In Central Tunisia, detailed investigation of carbonate facies under transmitted light shows a particular richness of the middle part of Early Eocene deposits in nummulithoclasts. These facies are often frequent within corrugated banks. They are overlaying Globigerina rich well-bedded limestones and overlain by nummulites and Discocyclina rich massively-bedded carbonates. Nummulithoclasts occurrence is recorded on field by an abrupt vertical change from autochthonous thinly-bedded limestones to massively-bedded fossiliferous carbonates. Change concerns structures, textures and limestones' composition. Nummulithoclasts are associated either to planktonic micro-organisms or to benthic fauna and phosphates grains. The middle and the upper parts of the Early Eocene deposits, particularly, fossilize hummocky cross-stratifications and megaripples. Their presence advocates the role of energetic currents in sweeping nummulites from lower circatidal to upper bathyal environments. The absence of a slope break helped the settling of reworked nummulites within deeper environments. The abrupt change, nummulithoclast associations and current structures arouse reflection and make them not reliable to characterize depositional environments. However, their preferential occurrence within the middle part of Early Eocene deposits and the tight linkage with storm activity lead them to be considered as event. The large scale hummocks recorded on field suggests that nummulite fragmentation was triggered by tropical cyclones rather than humble storms. The frequent occurrence of cyclones which correspond to low pressure atmospheric systems seems in relation with a global warming enhancing the sea surface temperature.

  2. U. S. Naval Forces, Vietnam Monthly Historical Supplement for April 1967

    DTIC Science & Technology

    1967-07-03

    and permanent faci- lities at GAME WARDEN and MARKET TIME support bases continued to progress satisfactorily. At Nha Be, a helicopter landing...of boats for MARKET TIME and GAME WARDEN continued to be generally excellent, ranging from 91 per cent for PCFs to 96 per cent for PBRs, The...ministered to the needs of personnel stationed at various GAME KARDEN and MARKET TIME support bases. The following tabulation is a statistical

  3. Reservoir development in bryozoan bafflestone facies of the Ullin (Warsaw) Limestone (Middle Mississippian) in the Illinois basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasemi, Z.; Treworgy, J.D.; Norby, R.D.

    1994-08-01

    Recent drilling in Enfield South and Johnsonville fields in southern Illinois has encountered prolific petroleum-producing zones within the Ullin (Warsaw) Limestone. This and large cumulative production from a number of older wells in the Illinois basin indicate that the Ullin has greater reservoir potential than previously recognized. The Ullin reservoir facies is mainly a fenestrate bryozoan-dominated bafflestone developed on the flanks of Waulsortian-type mud mounds or on transported skeletal sand buildups. Subsurface geology and petrography reveal such porous bryozoan bafflestone facies (some with shows of oil) at various horizons within the Ullin. However, in part because of water problems inmore » some areas, only the upper part of the Ullin has been tested thus far and, as a result, significant reservoirs in the deeper part of the unit may have been missed. Preliminary data indicate several facies in the Ullin that vary in their aerial distribution in the basin. These facies include (1) skeletal sand-wave facies and/or bryozoan bafflestone in the upper Ullin, (2) bryozoan bafflestone with a dense Waulsortian mud mound core, (3) thick bryozoan bafflestone over a skeletal grainstone facies, and (4) thick mud mound-dominated facies with thin porous flanking bafflestone/grainstone facies. Areas with facies type 1 and 2 have the highest potential for commercial reservoir development. Facies type 3, although quite porous, is commonly wet, and the porous facies type 4 may be localized and not extensive enough to be commercial. Petrographic examination shows excellent preservation of primary intra- and interparticle porosities within the bryozoan bafflestone facies. The generally stable original mineralogy prevented extensive dissolution-reprecipitation and occlusion of porosity. Further, the stable mineralogy and minor early marine cementation prevented later compaction and burial diagenesis.« less

  4. Carbonate apron models: Alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration

    USGS Publications Warehouse

    Mullins, H.T.; Cook, H.E.

    1986-01-01

    Sediment gravity flow deposition along the deep-water flanks of carbonate platforms typically does not produce submarine fans. Rather, wedge-shaped carbonate aprons develop parallel to the adjacent shelf/slope break. The major difference between submarine fans and carbonate aprons is a point source with channelized sedimentation on fans, versus a line source with sheet-flow sedimentation on aprons. Two types of carbonate aprons may develop. Along relatively gentle (< 4??) platform-margin slopes, aprons form immediately adjacent to the shallow-water platform and are referred to as carbonate slope aprons. Along relatively steep (4-15??) platform margin slopes, redeposited limestones accumulate in a base-of-slope setting, by-passing an upper slope via a multitude of small submarine canyons, and are referred to as carbonate base-of-slope aprons. Both apron types are further subdivided into inner and outer facies belts. Inner apron sediments consist of thick, mud-supported conglomerates and megabreccias (Facies F) as well as thick, coarse-grained turbidites (Facies A) interbedded with subordinate amounts of fine-grained, peri-platform ooze (Facies G). Outer apron sediments consist of thinner, grain-supported conglomerates and turbidites (Facies A) as well as classical turbidites (Facies C) with recognizable Bouma divisions, interbedded with approximately equal proportions of peri-platform ooze (Facies G). Seaward, aprons grade laterally into basinal facies of thin, base-cut-out carbonate turbidites (Facies D) that are subordinate to peri-platform oozes (Facies G). Carbonate base-of-slope aprons grade shelfward into an upper slope facies of fine-grained peri-platform ooze (Facies G) cut by numerous small canyons that are filled with coarse debris, as well as intraformational truncation surfaces which result from submarine sliding. In contrast, slope aprons grade shelfward immediately into shoal-water, platform-margin facies without an intervening by-pass slope. The two carbonate apron models presented here offer alternatives to the submarine-fan model for paleoenvironmental analysis and hydrocarbon exploration for mass-transported carbonate facies. ?? 1986.

  5. Post-peak metamorphic evolution of the Sumdo eclogite from the Lhasa terrane of southeast Tibet

    NASA Astrophysics Data System (ADS)

    Cao, Dadi; Cheng, Hao; Zhang, Lingmin; Wang, Ke

    2017-08-01

    A reconstruction of the pressure-temperature-time (P-T-t) path of high-pressure eclogite-facies rocks in subduction zones may reveal important information about the tectono-metamorphic processes that occur at great depths along the plate interface. The majority of studies have focused on prograde to peak metamorphism of these rocks, whereas after-peak metamorphism has received less attention. Herein, we present a detailed petrological, pseudosection modeling and radiometric dating study of a retrograded eclogite sample from the Sumdo ultrahigh pressure belt of the Lhasa terrane, Tibet. Mineral chemical variations, textural discontinuities and thermodynamic modeling suggest that the eclogite underwent an exhumation-heating period. Petrographic observations and phase equilibria modeling suggest that the garnet cores formed at the pressure peak (∼2.5 GPa and ∼520 °C) within the lawsonite eclogite-facies and garnet rims (∼1.5 GPa and <650 °C) grew during post-peak amphibole eclogite-facies metamorphism. The metamorphic evolution of the Sumdo eclogite is characterized by a clockwise P-T path with a heating stage during early exhumation, a finding that conflicts with previously reported heating-compression P-T paths for the Sumdo eclogite. A garnet-whole rock Lu-Hf age of 266.6 ± 0.7 Ma, which is consistent with the loosely constrained zircon U-Pb age of 261 ± 15 Ma within uncertainty, was obtained for the sample. The peak metamorphic temperature of the sample is lower than the Lu-Hf closure temperature of garnet, which combined with the general core-to-rim decrease in the Mn and Lu concentrations and the occurrence of a second maximum Lu peak in the inner rim, is consistent with the Lu-Hf system skewing to the age of the garnet inner rim. Thus the Lu-Hf age likely reflects late eclogite-facies metamorphism. The new U-Pb and Lu-Hf ages, together with previously published radiometric dating results, suggest that the overall growth of garnet spans an interval of ∼7 million years, which is a minimum estimate of the duration of the eclogite-facies metamorphism of the Sumdo eclogite.

  6. Limestones: the love of my life - sun, sea and cycles (Jean Baptiste Lamarck Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Tucker, M. E.

    2009-04-01

    In studies of sedimentary rocks we are striving to understand the short and long-term controls on deposition that lead to the variety of facies we see in the geological record. With the development and application of sequence stratigraphy has come the realisation that in most cases the stratigraphic record is not random, but there are patterns and trends in the nature (composition, facies, diagenesis) and thickness of sedimentary units. In addition, sedimentary cycles are widely, if not ubiquitously, developed through stratigraphic successions, and do themselves vary in thickness and facies through a formation and through time. In many cases, orbital forcing is clearly a major control, in addition to longer term tectonic and tectono-eustatic processes. Understanding the major controls on the stratigraphic record and the processes involved in deposition enables us to develop a degree of prediction for the occurrence of particular facies and rock-types. This is especially significant in terms of hydrocarbon potential in frontier basins, notably in the search for source and reservoir rocks. In the case of carbonate and carbonate-evaporite successions, recent work is showing that even at the higher-frequency scale of individual beds and bed-sets, there are regular patterns and changes in thickness. These show that controls on deposition are not random but well organised. Studies of Carboniferous shelf/mid-ramp bioclastic limestones and Jurassic shallow-marine oolites from England reveal systematic variations in bed thickness, as well as oxygen isotopes, Sr and org C values. Permian lower slope carbonates from NE England show thinning-thickening-upward patterns in turbidite bed thickness on several orders of scale. Turbidity current frequency of 1 per ~200 years can be deduced from thicknesses of interbedded laminated facies, which provide the timescale. Beds in ancient shelf and slope carbonates of many geological periods are on a millennial-scale and their features and patterns clearly indicate that millennial-scale changes in climate, most likely driven by fluctuations in solar output, analogous to the D-O cycles of the Quaternary, were responsible, and that these were then modulated by orbital forcing. Solar forcing rules in carbonates, even at the highest frequency.

  7. Silurian deltaic progradation, Tassili n'Ajjer plateau, south-eastern Algeria: Sedimentology, ichnology and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Djouder, Hocine; Lüning, Sebastian; Da Silva, Anne-Christine; Abdallah, Hussein; Boulvain, Frédéric

    2018-06-01

    The economic potential for unconventional shale oil and gas production in the Silurian of the Berkine - Ghadames and Illizi basins (BGI) in south-eastern Algeria has been recently confirmed through exploration drilling. The aim of the present paper attempts a better understanding of the Intra-Tassilian depression within the entire Silurian of the Tassili n'Ajjer plateau. The continuous deposits of the Silurian are exposed at the southern margin of the prolific BGI basins, in the Tassili n'Ajjer plateau, offering the chance to understand the sedimentology, ichnology, and to present a detailed sequence stratigraphy framework for the region. The 410 m-thick clastic Silurian sedimentary strata are subdivided into three formations in the context of sequence stratigraphy, namely: (i) the Oued Imihrou Fm. (Llandoverian) overlain by (ii) the Atafaïtafa Fm. (late Llandoverian to Wenlockian), and (iii) the Oued Tifernine Fm. (late Wenlockian to Pridolian). These can be also distinguished across the entire investigated area and laterally traceable over kilometers. Clear cyclic stacking patterns are identified within the four studied sections showing progressively a general trend of thickening- and coarsening-upward, over a complete 2nd-order megasequence (SIL-1 MS). This transgressive-regressive succession suggests deltaic progradation, shallowing and basin infilling as evidenced by numerous diagnostic sedimentary features and trace fossils, largely from eastern-to western-Tassili plateau. Indeed, the wealth of outcrop data in the Silurian siliciclastic succession enables us to distinct thirteen facies (facies A-M), ranging from shallow-to marginal-marine facies, and in turn, grouped into six facies associations (FA1-FA6). The lowermost part of the succession, which is the most prolific sources of hydrocarbons in North Africa, consists of thick organic-rich graptolite-yielding black 'hot' shales and 'lean' shales with sparse bioturbation with small Thalassinoides belonging to the distal Cruziana ichnofacies. In contrast, the uppermost part of the Silurian deposits becomes progressively coarser and fluvial in response to the progradation of the North African Akakus deltaic system, during regional sea level fall and uplifting of the region. These progradational deposits exhibit well-preserved trace fossils with moderate to high degree of bioturbation, such as Skolithos or the so-called "Tigillites" pipe-rock, Cruziana isp., Rusophycus isp., Monocraterion isp., and Syringomorpha. The SIL-1 MS is bounded by a post-glacial latest Hirnantian unconformity on the basal (SB1), as confirmed by the moderately diverse early Silurian graptolite faunas, and by the Caledonian unconformity on the top (SB7). Each of the three formations of SIL-1 MS reveals two major 3rd-order progradational sequences, commonly delineated by discontinuity surfaces (in ascending order, SB1 to SB7), and in turn, these six sequences (i.e. Si-1 to Si-6) are subdivided into at least ten shorter-term cycles. The regional extent of each unconformity is directly linked to significant facies changes and to inflection points on the global sea level curve.

  8. Forward Analyses of Dehydration Reactions in Mafic Rocks Along the P-T Trajectories of the Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Kuwatani, T.; Okamoto, A.; Toriumi, M.

    2005-12-01

    Fluids in the subduction zone play an important role in magmatism, metamorphism, and mechanical processes involving seismic activity. Additionally, recent geophysical researches found low-frequency tremors which may be related to the movement of fluid (Obara, 2002) and a zone of high Poisson_fs ratio which reflects high pore fluid pressure (Kodaira et al.,2004) in the Southwest Japan fore-arc. It is widely accepted that these fluids are supplied by the dehydration of hydrous metamorphic minerals in the subducting oceanic plate. Although many previous studies attempted to estimate the water content of the subducting oceanic crust experimentally and theoretically (e.g., Schmidt and Poli, 1998; Hacker et al., 2003), there have been no studies which quantify the continuous dehydration reactions in detail. The aim of this study is to quantify the progress of the continuous dehydration reactions of mafic rocks in the condition of greenschist facies, corresponding to low-intermediate depth (10-50km) of warm subduction zone. We use the differential thermodynamics (Spear 1993) which include mass balance to predict the continuous metamorphic reaction history of mafic rocks along the P-T trajectory of the subducting slab. With fixed bulk chemical composition the thermodynamic system is divariant, as specified in Duhem_fs theorem. In differential thermodynamics, applying a series of changes in pressure and temperature (ΔP and ΔT, respectively) from initial conditions (P0, T0, X0s, M0s), we can trace ΔXs and ΔMs, that is, the progress (history) of the metamorphic reactions along the arbitrary P-T trajectory (Thermodynamic forward modeling). According to Okamoto and Toriumi, 2001, we modeled the greenschist/ blueschist/ (epidote -) amphibolite assemblage of mafic rocks, which consist of the following phases: Amphibole ± Epidote ± Chlorite + Plagioclase + Quartz + Fluid (H2O), in the system of Na2O - CaO - MgO - FeO - Fe2O3 - Al2O3 - SiO2 - H2O. The reference compositions and modes of minerals were assumed according to the natural sample of greenschist which has MORB-like bulk composition (Hacker et al. 2003). The reference temperature and pressure were set to be 300°C, 0.3GPa. Calculations were performed along the P-T paths of the Southwest Japan (4MPa/°C) and the Cape Mendocino (the North California, 2MPa/°C) predicted by Yamasaki and Seno, 2003. As a result, the water production rates have the peak depths at the boundary between the greenschist facies and the epidote-amphibolite facies in the Southwest Japan, and at the boundary between the greenschist facies and the amphibolite facies in the Cape Mendocino, respectively. Chlorite decomposition is the main dehydration reaction. These peak depths correspond to the zone of low frequency tremors, high Poisson_fs ratio and active seismicity (30-50km) in the Southwest Japan, and active seismicity (10-20km) in the Cape Mendocino, respectively.

  9. Recent Developments in Facies Models for Siliciclastic Sediments.

    ERIC Educational Resources Information Center

    Miall, Andrew D.

    1982-01-01

    Discusses theory of facies models (attempts to synthesize/generalize information about depositional environments), strengths/weaknesses of facies modelling, recent advances in facies models for siliciclastic sediments (focusing on fluvial, lacustrine, eolian and glacial environments, clastic shorelines and continental shelves, and clastic…

  10. Assessment of the quality of water by hierarchical cluster and variance analyses of the Koudiat Medouar Watershed, East Algeria

    NASA Astrophysics Data System (ADS)

    Tiri, Ammar; Lahbari, Noureddine; Boudoukha, Abderrahmane

    2017-12-01

    The assessment of surface water in Koudiat Medouar watershed is very important especially when it comes to pollution of the dam waters by discharges of wastewater from neighboring towns in Oued Timgad, who poured into the basin of the dam, and agricultural lands located along the Oued Reboa. To this end, the multivariable method was used to evaluate the spatial and temporal variation of the water surface quality of the Koudiat Medouar dam, eastern Algeria. The stiff diagram has identified two main hydrochemical facies. The first facies Mg-HCO3 is reflected in the first sampling station (Oued Reboa) and in the second one (Oued Timgad), while the second facies Mg-SO4 is reflected in the third station (Basin Dam). The results obtained by the analysis of variance show that in the three stations all parameters are significant, except for Na, K and HCO3 in the first station (Oued Reboa) and the EC in the second station (Oued Timgad) and at the end NO3 and pH in the third station (Basin Dam). Q-mode hierarchical cluster analysis showed that two main groups in each sampling station. The chemistry of major ions (Mg, Ca, HCO3 and SO4) within the three stations results from anthropogenic impacts and water-rock interaction sources.

  11. Magnetic susceptibility of the South African Agouron scientific drillcores quantifies iron and sulfur alteration relevant to geochemical oxygenation proxies

    NASA Astrophysics Data System (ADS)

    Raub, T. D.; Nayak, P. M.; Tikoo, S. M.; Johnson, J. E.; Peek, S.; Fischer, W. W.; Kirschvink, J. L.

    2010-12-01

    Various geochemical characteristics of sedimentary iron- and sulfur-bearing minerals motivate early- to late-oxygenation hypotheses from South African and Australian scientific drillcores. Most intervals of these drillcores appear to be remagnetized (in some cases multiple times); and ~2.0 Ga magnetic sulfide crystallization is particularly pervasive in carbonaceous siltstones of the ca. 2.7-2.2 Ga Griqualand margin of Kaapvaal craton. Robust interpretation of trace element abundances suggesting “whiffs” to “pervasive” levels of late Archean oxygen depends upon systematics of presumed depositional iron speciation; so multiple iron- and sulfur-mineral-altering events affecting existing drillcore records call straightforward interpretations into question. We report ca. 10,000 magnetic susceptibility measurements and associated detailed rock-magnetic results from all lithologies of Archean basinal and slope facies in drillcores GKP and GKF and relatively younger and shallower facies in Paleoproterozoic drillcores GEC and GTF. Specific carbonaceous siltstone and carbonate intervals are less-altered as revealed by coherent and relatively low magnetic susceptibilities: geochemical and biomarker interpretations based upon data from these intervals should be preferred to those from others. Magnetic susceptibility tracks subtle facies variation in drillcore GTF diamictite and suggests highly-structured Paleoproterozoic glacioeustatic sequence architecture consistent with assignment of Makganyene glaciation and its associated geochemical signature to a ca. 2.2 Ga “Snowball Earth” ice age.

  12. Facies Analysis of the Tandoǧdu Travertines, Van, Eastern Anatolia, Turkey: implications for the active tectonic deformation behind the formation and evolution of the travertines

    NASA Astrophysics Data System (ADS)

    Yesilova, Cetin; Yesilova, Pelin; Aclan, Mustafa; Gülyüz, Nilay

    2017-04-01

    In this study, stratigraphic and sedimentologic characteristics of Tandoǧdu travertines exposing at the 13 km southwest of Başkale, Van were examined. In this respect, we shed light on their formation conditions and depositional environment by determining their morphological characteristics and analyzing their facies distribution. In addition, kinematic studies were conducted by collecting structural data from the structures hosting the travertines. Tandoǧdu travertines having bed type and ridge type travertines have 5 distinct lithofacies based on the studies conducted. These are: (1) crystalline crust facies, (2) coated bubble facies, (3) paper-thin raft type facies, (4) lithoclast - breccia facies and (5) paleosoil facies. According to the examination of their morphologies and lithofacies; lithofacies were developed depending on the temperature of fluids forming the travertines. Distal from the source field of the hydrothermal fluids, paper-thin raft type facies were developed in shallow pools. Proximal to the source field of the hydrothermal fluids, crystalline crust facies and coated bubble facies were deposited. Existence of breccia facies indicates the effects of active tectonism during the formation of travertines. Hot hydrothermal pools on the ridge type travertines prove the still active tectonic activities. On-going studies aim to date growth of the travertines by U-Th dating method which will also shed some light on the tectonic scenario behind the evolution of the travertines.

  13. Staff - Trystan M. Herriott | Alaska Division of Geological & Geophysical

    Science.gov Websites

    sandstone interval in outcrop of the Tonnie Siltstone Member, Chinitna Formation, lower Cook Inlet, south Paveloff Siltstone Member of the Chinitna Formation: Exploring the potential role of facies variations in member of the Upper Jurassic Naknek Formation, northern Chinitna Bay, Alaska, in Wartes, M.A., ed

  14. Stratigraphic framework of sediment-starved sand ridges on a mixed siliciclastic/carbonate inner shelf; west-central Florida

    USGS Publications Warehouse

    Edwards, J.H.; Harrison, S.E.; Locker, S.D.; Hine, A.C.; Twichell, D.C.

    2003-01-01

    Seismic reflection profiles and vibracores have revealed that an inner shelf, sand-ridge field has developed over the past few thousand years situated on an elevated, broad bedrock terrace. This terrace extends seaward of a major headland associated with the modern barrier-island coastline of west-central Florida. The overall geologic setting is a low-energy, sediment-starved, mixed siliciclastic/carbonate inner continental shelf supporting a thin sedimentary veneer. This veneer is arranged in a series of subparallel, shore-oblique, and to a minor extent, shore-parallel sand ridges. Seven major facies are present beneath the ridges, including a basal Neogene limestone gravel facies and a blue-green clay facies indicative of dominantly authigenic sedimentation. A major sequence boundary separates these older units from Holocene age, organic-rich mud facies (marsh), which grades upward into a muddy sand facies (lagoon or shallow open shelf/seagrass meadows). Cores reveal that the muddy shelf facies is either in sharp contact or grades upward into a shelly sand facies (ravinement or sudden termination of seagrass meadows). The shelly sand facies grades upward to a mixed siliciclastic/carbonate facies, which forms the sand ridges themselves. This mixed siliciclastic/carbonate facies differs from the sediment on the beach and shoreface, suggesting insignificant sediment exchange between the offshore ridges and the modern coastline. Additionally, the lack of early Holocene, pre-ridge facies in the troughs between the ridges suggests that the ridges themselves do not migrate laterally extensively. Radiocarbon dating has indicated that these sand ridges can form relatively quickly (???1.3 ka) on relatively low-energy inner shelves once open-marine conditions are available, and that frequent, high-energy, storm-dominated conditions are not necessarily required. We suggest that the two inner shelf depositional models presented (open-shelf vs. migrating barrier-island) may have co-existed spatially and/or temporally to explain the distribution of facies and vertical facies contacts. ?? 2003 Elsevier B.V. All rights reserved.

  15. Joint inversion of geophysical data using petrophysical clustering and facies deformation wth the level set technique

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2015-12-01

    Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of gravity and galvanometric resistivity data. For this 2D synthetic example, we note that the position of the facies are well-recovered except far from the ground surfce where the sensitivity is too low. The figure shows the evolution of the shape of the facies during the inversion itertion by iteration.

  16. Sedimentary Petrography and Facies Analysis at the Shaler Outcrop, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Edgar, L. A.; Gupta, S.; Rubin, D. M.; Lewis, K. W.; Kocurek, G.; Anderson, R. B.; Bell, J. F.; Dromart, G.; Edgett, K. S.; Grotzinger, J. P.; Hardgrove, C. J.; Kah, L. C.; Leveille, R. J.; Malin, M.; Mangold, N.; Milliken, R.; Minitti, M. E.; Rice, M. S.; Rowland, S. K.; Schieber, J.; Stack, K.; Sumner, D. Y.; Team, M.

    2013-12-01

    The Mars Science Laboratory Curiosity rover has recently completed an investigation of a large fluvial deposit known informally as the Shaler outcrop (~1 m thick). Curiosity acquired data at the Shaler outcrop during sols 120-121 and 309-324. The Shaler outcrop is comprised of cross-bedded coarse-grained sandstones and recessive finer-grained intervals. Shaler is distinguished from the surrounding units by the presence of resistant beds exhibiting decimeter scale trough cross-bedding. Observations using the Mast Cameras, Mars Hand Lens Imager (MAHLI) and ChemCam Remote Micro Imager (RMI) enable the recognition of several distinct facies. MAHLI images were acquired on five distinct rock targets, and RMI images were acquired at 33 different locations. On the basis of grain size, erosional resistance, color, and sedimentary structures, we identify four facies: 1) resistant cross-stratified facies, 2) smooth, fine-grained cross-stratified facies, 3) dark gray, pitted facies, and 4) recessive, vertically fractured facies. Panoramic Mastcam observations reveal facies distributions and associations, and show cross-bedded facies that are similar to those observed at the Rocknest and Bathurst_Inlet locations. MAHLI and RMI images are used to determine the grain size, sorting, rounding and sedimentary fabric of the different facies. High-resolution images also reveal small-scale diagenetic features and sedimentary structures that are used to reconstruct the depositional and diagenetic history.

  17. Seismic architecture and lithofacies of turbidites in Lake Mead (Arizona and Nevada, U.S.A.), an analogue for topographically complex basins

    USGS Publications Warehouse

    Twichell, D.C.; Cross, V.A.; Hanson, A.D.; Buck, B.J.; Zybala, J.G.; Rudin, M.J.

    2005-01-01

    Turbidites, which have accumulated in Lake Mead since completion of the Hoover Dam in 1935, have been mapped using high-resolution seismic and coring techniques. This lake is an exceptional natural laboratory for studying fine-grained turbidite systems in complex topographic settings. The lake comprises four relatively broad basins separated by narrow canyons, and turbidity currents run the full length of the lake. The mean grain size of turbidites is mostly coarse silt, and the sand content decreases from 11-30% in beds in the easternmost basin nearest the source to 3-14% in the central basins to 1-2% in the most distal basin. Regionally, the seismic amplitude mimics the core results and decreases away from the source. The facies and morphology of the sediment surface varies between basins and suggests a regional progression from higher-energy and possibly channelized flows in the easternmost basin to unchannelized flows in the central two basins to unchannelized flows that are ponded by the Hoover Dam in the westernmost basin. At the local scale, turbidites are nearly flat-lying in the central two basins, but here the morphology of the basin walls strongly affects the distribution of facies. One of the two basins is relatively narrow, and in sinuous sections reflection amplitude increases toward the outsides of meanders. Where a narrow canyon debouches into a broad basin, reflection amplitude decreases radially away from the canyon mouth and forms a fan-like deposit. The fine-grained nature of the turbidites in the most distal basin and the fact that reflections drape the underlying pre-impoundment surface suggest ponding here. The progression from ponding in the most distal basin to possibly channelized flows in the most proximal basin shows in plan view a progression similar to the stratigraphic progression documented in several minibasins in the Gulf of Mexico. Copyright ?? 2005, SEPM (Society for Sedimentary Geology).

  18. Multiseasonal and geobotanical approach in remote detection of greisenization areas in the Serra da Pedra Branca Granite, Goias State, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Almeidafilho, R.

    1983-01-01

    Multiseasonal analysis of LANDSAT multispectral images in CCT format permitted the mapping of lithologic facies in the Pedra Branca Granite, using geobotanical associations, which occur in the form of variations in the density of cerrado vegetation, as well as the predominance of certain distinctive vegetation species. Dry season images did not show very good results in lithological differentiation due to anomalous illumination conditions related to the low solar elevation and the homogeneity in the vegetation cover, specially the grasses that become dry during this season. Rainy season image, on the other hand, allowed the separation of the lithological types, a fact that can be attributed to a greater differentiation among the geobotanical associations. As a result of this study, the muscovite-granite facies with greisenization zones, which are lithological indicators of important tin mineralization within the Serra da Pedra Branca Granite, were mapped. This methodology can be sucessfully applied to similar known granite bodies elsewhere in the Tin Province of Goias.

  19. Geologic interpretation of gravity data from the Date Creek basin and adjacent areas, west-central Arizona

    USGS Publications Warehouse

    Otton, James K.; Wynn, Jeffrey C.

    1978-01-01

    A gravity survey of the Date Creek Basin and adjacent areas was conducted in June 1977 to provide information for the interpretation of basin geology. A comparison of facies relations in the locally uraniferous Chapin Wash Formation and the position of the Anderson mine gravity anomaly in the Date Creek Basin suggested that a relationship between gravity lows and the development of thick lacustrine sections in the region might exist. A second-order residual gravity map derived from the complete Bouguer gravity map for the survey area (derived from survey data and pre-existing U.S. Department of Defense data) shows an excellent correspondence between gravity lows and sediment-filled basins and suggests considerable variation in basin-fill thickness. Using the Anderson mine anomaly as a model, gravity data and facies relations suggest that the southeastern flank of the Aguila Valley gravity low and the gravity low at the western end of the Hassayampa Plain are likely areas for finding thick sections of tuffaceous lacustrine rocks.

  20. Multitemporal and geobotanical approach in the remote detection of Greisenization areas in the Serra da Pedra Branca Granite, Goias State, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Filho, R. A.

    1982-01-01

    A multiseasonal analysis of LANDSAT multispectral images in CCT format permitted the mapping of lithologic facies in the Pedra Branca Granite, using geobotanical associations, which occur in the form of variations in the density of the cerrado vegetation, as well as the predominance of certain distinct vegetation species. Dry season images did not show very good results in lithological differentiation due to anomalous illumination conditions related to the low solar elevation and the homogeneity in the vegetation cover, specially the grass that becomes dry during this season. Rainy season images, on the other hand, allowed the separation of the lithological types, a fact that can be attributed to a greater differentiation among the geobotanical associations. The muscovite-granite facies with greisenization zones within the Serra da Pedra Branca were mapped. This methodology can be successfully applied to similar known granite bodies elsewhere in the Tin Province of Goias.

  1. Supercritical flows and their control on the architecture and facies of small-radius sand-rich fan lobes

    NASA Astrophysics Data System (ADS)

    Postma, George; Kleverlaan, Kick

    2018-02-01

    New insights into flow characteristics of supercritical, high-density turbidity currents initiated renewed interest in a sand-rich lobe complex near the hamlet of Mizala in the Sorbas Basin (Tortonian, SE Spain). The field study was done using drone-made images taken along bed strike in combination with physical tracing of bounding surfaces and section logging. The studied lobe systems show a consistent built-up of lobe elements of 1.5-2.0 m thick, which form the building 'blocks' of the lobe system. The stacking of lobe elements shows lateral shift and compensational relief infill. The new model outlined in this paper highlights three stages of fan lobe development: I. an early aggradational stage with lobe elements characterized by antidune and traction-carpet bedforms and burrowed mud intervals (here called 'distal fan' deposits); II. a progradational stage, where the distal fan deposits are truncated by lobe elements of amalgamated sandy to gravelly units characterized by cyclic step bedform facies (designated as 'supra fan' deposits). The supra fan is much more channelized and scoured and of higher flow energy than the distal-fan. Aggradation of the supra-fan is terminated by a 'pappy' pebbly sandstone and by substrate liquefaction, 'pappy' referring to a typical, porridge-like texture indicating rapid deposition under conditions of little-to-no shear. The facies-bounded termination of the supra-fan is here related to its maximum elevation, causing the lobe-feeding supercritical flow to choke and to expand upwards by a strong hydraulic jump at the channel outlet; III. a backfilling stage, characterized by backfilling of the remaining relief with progressively thinning and fining of turbidite beds and eventually with mud. The three-stage development for fan-lobe building is deducted from reoccurring architectural and facies characteristics in three successive fan-lobes. The validity of using experimental, supercritical-flow fan studies for understanding the intrinsic mechanisms in sand-rich-fan lobe development is discussed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handford, C.R.

    Rather spotty but excellent exposures of the Cretaceous-age Turkana Grits occur near the western shore of Lake Turkana, northern Kenya. These very coarse to pebbly arkosic sandstones and sandy conglomerates were derived from and rest unconformably upon Precambrian metamorphic basement; they are overlain by late Tertiary basaltic flows that comprise much of the volcanics in the East African Rift Zone. The formation ranges up to 2000 ft thick in the Laburr Range. Several outcrops contain sauropod, crocodile, and tortoise remains as well as abundant trunks of petrified wood (Dryoxylon). Five major facies make up the Turkana Grits and record amore » major episode of continental fluvial deposition in basins flanked by Precambrian basement. Facies 1 is crudely stratified, cobble and boulder conglomerate (clast-supported); Facies 2 is crudely stratified pebble-cobble conglomerate and pebbly sandstone; Facies 3 is trough cross-bedded, very coarse sandstones containing fossils wood and vertebrate remains; Facies 4 is crudely stratified to massive sandstones with ironstone nodules; and Facies 5 is red, purple, and gray mudstone and mud shale with carbonate nodules. Facies 1 through 3 record deposition in proximal to medial braided-stream channel, longitudinal bar and dune complexes. Facies 4 is a lowland, hydromorphic paleosol, and Facies 5 represents overbank and abandoned channel-fill sedimentation in an alluvial plain.« less

  3. New interpretation of the Gran Dolina-TD6 bearing Homo antecessor deposits through sedimentological analysis

    PubMed Central

    Campaña, I.; Pérez-González, A.; Benito-Calvo, A.; Rosell, J.; Blasco, R.; de Castro, J. M. Bermúdez; Carbonell, E.; Arsuaga, J. L.

    2016-01-01

    Gran Dolina is a cavity infilled by at least 25 m of Pleistocene sediments. This sequence contains the TD6 stratigraphic unit, whose records include around 170 hominin bones that have allowed the definition of a new species, Homo antecessor. This fossil accumulation was studied as a single assemblage and interpreted as a succession of several human home bases. We propose a complete stratigraphic context and sedimentological interpretation for TD6, analyzing the relationships between the sedimentary facies, the clasts and archaeo-palaeontological remains. The TD6 unit has been divided into three sub-units and 13 layers. Nine sedimentary facies have been defined. Hominin remains appear related to three different sedimentary facies: debris flow facies, channel facies and floodplain facies. They show three kinds of distribution: first a group of scattered fossils, then a group with layers of fossils in fluvial facies, and third a group with a layer of fossils in mixed fluvial and gravity flow facies. The results of this work suggest that some of these hominin remains accumulated in the cave by geological processes, coming from the adjacent slope above the cave or the cave entry, as the palaeogeography and sedimentary characteristics of these allochthonous facies suggest. PMID:27713562

  4. Delineating Facies Spatial Distribution by Integrating Ensemble Data Assimilation and Indicator Geostatistics with Level Set Transformation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Song, Xuehang; Ye, Ming

    A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. Themore » spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.« less

  5. Petrology, sedimentology and stratigraphic implications of Black Dragon Member of the Triassic Moenkopi Formation, San Rafael Swell, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, M.A.; Ochs, S.

    1990-01-01

    Deposition was partly controlled by paleotopographic relief of underlying Permian strata. Triassic Black Dragon sediments filled lowlands on an erosion surface (unconformity) cut into the Permian White Rim Sandstone and Kaibab Limestone. The Black Dragon Member consists of four distinct facies containing a wide variety of sedimentary structures that characterize both fluvial and tidal environments. The facies are: (1) a Chert Pebble Conglomerate (CPC) facies, characterized by calcite-cemented channel-fills of nodular and banded chert pebbles; (2) an Interbedded Sandstone, Siltstone, and Shale (SSS) facies, containing oscillation ripples and flaser bedding; (3) a large-scale Trough Cross-Stratified Sandstone (TXS) facies, consisting ofmore » 6.6-13.1 ft (2-4 m) thick sets of fine- to medium-grained sandstone; and (4) an Oolitic and Algal Limestone (OAL) facies, with cross-stratified oolitic beds, fenestral fabric, and laminated algal rip-up clasts. The CPC facies and the TXS facies were deposited by braided streams when the shoreline lay west of the San Rafael Swell. Rivers drained off and eroded localized Permian highlands, located most likely within a 62 mi (100 km) distance to the south and southeast of the study area. The SSS facies which constitutes the bulk of the Black Dragon Member, and the OAL facies are inter- and supratidal deposits formed during relative sea level highstands, when the shoreline lay within or east of the San Rafael Swell. A decrease in continent-derived sand supply and a corresponding increase in carbonate production within the OAL facies characterizes the end of Black Dragon deposition and the gradation into the overlying Sinbad Limestone Member.« less

  6. Patch reef modeling: a comparison of Devonian and recent examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Precht, W.F.

    In reef research, models have been developed to define variations in the lithic and biotic development of facies. Walker and Alberstadt, and Hoffman and Narkiewicz developed models for growth of ancient reef communities. Although these models form a solid foundation by which patch reefs can be classed and zoned, they are neither complete nor accurate for all reef types. A comparison was made of Lower Devonian patch reefs from the Appalachian basin of New York, New Jersey, and Pennsylvania, and Holocene examples from the Bahamas and Florida Keys to identify the structure, orientation, community variability, and succession of the reefmore » biofacies. The complexion and genesis of the carbonate lithofacies were also studied. Results show similarities; these include the size, areal distribution, 3-D geometry, wave-resistance potential, lateral sequences of facies, sedimentary textures and structures, vertical zonation explained by growth from low-energy to high-energy regimes, biotic diversity, growth habit and form, and postmortem alteration. Thus, when used in conjunction with the traditional models, the recent can serve as the basis for a general model which include most patch reef types. However, these models should not be used as explicit analogs for all Phanerozoic reefs. Knowing and understanding the limitations of these comparative studies are essential to a fuller comprehension of the potential for variations which exist within and between the traditional models.« less

  7. Untold muddy tales: Paleoenvironmental dynamics of a ``barren'' mudrock succession from a shallow Permian epeiric sea

    NASA Astrophysics Data System (ADS)

    Simões, M. G.; Matos, S. A.; Warren, L. V.; Assine, M. L.; Riccomini, C.; Bondioli, J. G.

    2016-11-01

    During the late Paleozoic, the intracratonic Paraná Basin, Brazil, in central Gondwanaland, was covered by a huge (>1.600.000 km2), shallow and isolated epeiric sea. Within the Permian succession, oxygen-deficient facies are commonly recorded in the Mesosaurus-bearing Irati Formation (Cisuralian, Artinskian/Kungurian) and the overlaying Serra Alta Formation (Guadalupian, Wordian/Capitanian). Barren, dark-grey mudstones are the main facies preserved in this last unit, which has usually discouraged extensive and detailed stratigraphical and paleontological investigations. However, exhaustive sedimentological, taphonomic and paleontological surveys in those deposits reveal a dynamic and complex depositonal history. Based on sedimentary fabric, autochthonous to parautochthonous occurrences of shelly benthic invertebrates (bivalves) and the presence/absence of concretion-bearing and phosphate-rich layers, we report variations in the oxygen levels of bottom and pore waters, in bathymetry, sedimentation rates, and changes in benthic colonization. Our data indicate that the deposition of this "apparently barren" mudstone-dominated succession was driven by a complex interplay of variations in sedimentation rate and oxygen pulses tied to tectonic and climate changes. Three distinct populations or invertebrate paleocommunities were recorded, which were adapted to (a) normal background low-oxygen (dysoxic) conditions (i.e., minute infaunal suspension-feeding bivalves associated with the trace fossil Planolites), (b) chemically toxic (anoxic/extreme dysoxic) substrates, including gigantic burrowing bivalves (probable chemosymbiotic taxa), and (c) oxic/dysoxic substrates following short-term bottom disruptions.

  8. Felsic granulite with layers of eclogite facies rocks in the Bohemian Massif; did they share a common metamorphic history?

    NASA Astrophysics Data System (ADS)

    Jedlicka, Radim; Faryad, Shah Wali

    2017-08-01

    High pressure granulite and granulite gneiss from the Rychleby Mountains in the East Sudetes form an approximately 7 km long and 0.8 km wide body, which is enclosed by amphibolite facies orthogneiss with a steep foliation. Well preserved felsic granulite is located in the central part of the body, where several small bodies of mafic granulite are also present. In comparison to other high pressure granulites in the Bohemian Massif, which show strong mineral and textural re-equilibration under granulite facies conditions, the mafic granulite samples preserve eclogite facies minerals (garnet, omphacite, kyanite, rutile and phengite) and their field and textural relations indicate that both mafic and felsic granulites shared common metamorphic history during prograde eclogite facies and subsequent granulite facies events. Garnet from both granulite varieties shows prograde compositional zoning and contains inclusions of phengite. Yttrium and REEs in garnet show typical bell-shaped distributions with no annular peaks near the grain rims. Investigation of major and trace elements zoning, including REEs distribution in garnet, was combined with thermodynamic modelling to constrain the early eclogite facies metamorphism and to estimate pressure-temperature conditions of the subsequent granulite facies overprint. The first (U)HP metamorphism occurred along a low geothermal gradient in a subduction-related environment from its initial stage at 0.8 GPa/460 °C and reached pressures up to 2.5 GPa at 550 °C. The subsequent granulite facies overprint (1.6-1.8 GPa/800-880 °C) affected the rocks only partially; by replacement of omphacite into diopside + plagioclase symplectite and by compositional modification of garnet rims. The mineral textures and the preservation of the eclogite facies prograde compositional zoning in garnet cores confirm that the granulite facies overprint was either too short or too faint to cause recrystallisation and homogenisation of the eclogite facies mineral assemblage. The results of this study are compared with other granulite massifs in the Moldanubian Zone. In addition, a possible scenario for the Variscan eclogite and subsequent granulite facies metamorphism in the Bohemian Massif is discussed.

  9. Application of medical X-ray computed tomography in the study of cold-water carbonate mounds

    NASA Astrophysics Data System (ADS)

    de Mol, L.; Pirlet, H.; van Rooij, D.; Blamart, D.; Cnudde, V.; Duyck, P.; Houbrechts, H.; Jacobs, P.; Henriet, J.-P.; Dufresne 169 Shipboard Party, The Marion

    2009-04-01

    During the R/V Marion Dufresne 169 'MiCROSYSTEMS' cruise (July 2008) to the El Arraiche mud volcano field in the Gulf of Cadiz cold-water coral mounds were targeted. Four on-mound gravity cores, with a total length of 17.5 m, were obtained for sedimentological and palaeoceanographic analyses in order to unveil the history of the uppermost meters of these cold-water coral build-ups. In parallel, four on-mound cores were taken on approximately the same location for microbiological and biogeochemical analyses. By comparing and correlating both results, more information can be revealed about the processes acting in the dead coral rubble fields which cover these mounds. Computed X-ray tomography (CT) was used for the identification and quantification of the corals inside the gravity cores. Furthermore, this technique is also useful for the investigation of sedimentological features, i.e. bioturbation, porosity, laminations... In this study, cores were scanned using a medical CT scanner on a relative high resolution which allows the three-dimensional visualization of the corals and sedimentological features. Slices were taken every 3 mm with an overlap of 1 mm. Based on these data it was possible to delineate different "CT" facies within the cores. On one hand there are intervals with a high amount of corals and on the other hand zones with a very low amount of corals or even no corals at all. In the first case two different facies can be distinguished: one facies with clearly recognizable, well preserved corals, and the second facies with crushed coral fragments. In both facies the corals are embedded in a homogenous matrix. Different facies could also be defined in the intervals containing little or no corals. For example, a homogenous facies with bioturbations and/or cracks. Also an important observation is the presence of pyrite which appears in all cores at a certain depth. Sometimes the pyrite could be observed in bioturbations or inside the corals. Besides that also the percentage of corals in these gravity cores were quantified using the "Morpho+" software, which was developed at the UGCT (Centre for X-ray Tomography, Ghent University, Belgium). Based on these results, a clear difference can be noticed between the four mounds. On Conger cliff, corals were only observed in the upper 34 cm while in the other locations corals can be found throughout the entire core with significant variations in the amount of corals. Finally, it was possible to identify different species of cold-water corals, namely Lophelia pertusa, Madrepora oculata, Desmophyllum cristagalli and Dendrophyllia. In conjunction with dating and palaeoenvironmental analyses of the corals and the sediment matrix, this can yield valuable information about the build-up of these cold-water coral mounds in the El Arraiche mud volcano field and the palaeoenvironmental characteristics at the time the corals were living.

  10. Facies analysis, depositional environments and paleoclimate of the Cretaceous Bima Formation in the Gongola Sub - Basin, Northern Benue Trough, NE Nigeria

    NASA Astrophysics Data System (ADS)

    Shettima, B.; Abubakar, M. B.; Kuku, A.; Haruna, A. I.

    2018-01-01

    Facies analysis of the Cretaceous Bima Formation in the Gongola Sub -basin of the Northern Benue Trough northeastern Nigeria indicated that the Lower Bima Member is composed of alluvial fan and braided river facies associations. The alluvial fan depositional environment dominantly consists of debris flow facies that commonly occur as matrix supported conglomerate. This facies is locally associated with grain supported conglomerate and mudstone facies, representing sieve channel and mud flow deposits respectively, and these deposits may account for the proximal alluvial fan region of the Lower Bima Member. The distal fan facies were represented by gravel-bed braided river system of probably Scot - type model. This grade into sandy braided river systems with well developed floodplains facies, forming probably at the lowermost portion of the alluvial fan depositional gradient, where it inter-fingers with basinal facies. In the Middle Bima Member, the facies architecture is dominantly suggestive of deep perennial sand-bed braided river system with thickly developed amalgamated trough crossbedded sandstone facies fining to mudstone. Couplets of shallow channels are also locally common, attesting to the varying topography of the basin. The Upper Bima Member is characterized by shallow perennial sand-bed braided river system composed of successive succession of planar and trough crossbedded sandstone facies associations, and shallower channels of the flashy ephemeral sheetflood sand - bed river systems defined by interbedded succession of small scale trough crossbedded sandstone facies and parallel laminated sandstone facies. The overall stacking pattern of the facies succession of the Bima Formation in the Gongola Sub - basin is generally thinning and fining upwards cycles, indicating scarp retreat and deposition in a relatively passive margin setting. Dominance of kaolinite in the clay mineral fraction of the Bima Formation points to predominance of humid sub - tropical to tropical climatic conditions. This favors pedogenic activities which are manifested in the several occurrences of paleosols. Pronounced periods of arid climatic conditions are also notable from the subordinate smectite mineralization. Chlorite mineralization at some localities is indicative of elevation of the provenance area, and this is synonymous with deposition of the Bima Formation, because of its syn - depositional tectonics. The absences of lacustrine shales in the syn - rift stratigraphic architecture of the Bima Formation indicates that the lower Cretaceous petroleum system that are common in the West and Central African Rift basins are generally barren in the Gongola Sub - basin of the Northern Benue Trough.

  11. Influence of the Atlantic inflow and Mediterranean outflow currents on late Quaternary sedimentary facies of the Gulf of Cadiz continental margin

    USGS Publications Warehouse

    Nelson, C.H.; Baraza, J.; Maldonado, A.; Rodero, J.; Escutia, C.; Barber, J.H.

    1999-01-01

    The late Quaternary pattern of sedimentary facies on the Spanish Gulf of Cadiz continental shelf results from an interaction between a number of controlling factors that are dominated by the Atlantic inflow currents flowing southeastward across the Cadiz shelf toward the Strait of Gibraltar. An inner shelf shoreface sand facies formed by shoaling waves is modified by the inflow currents to form a belt of sand dunes at 10-20 m that extends deeper and obliquely down paleo-valleys as a result of southward down-valley flow. A mid-shelf Holocene mud facies progrades offshore from river mouth sources, but Atlantic inflow currents cause extensive progradation along shelf toward the southeast. Increased inflow current speeds near the Strait of Gibraltar and the strong Mediterranean outflow currents there result in lack of mud deposition and development of a reworked transgressive sand dune facies across the entire southernmost shelf. At the outer shelf edge and underlying the mid-shelf mud and inner shelf sand facies is a late Pleistocene to Holocene transgressive sand sheet formed by the eustatic shoreline advance. The late Quaternary pattern of contourite deposits on the Spanish Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are oblique to slope contours and the Mediterranean outflow current flowing northwestward parallel to the slope contours and down valleys between the ridges. Coincident with the northwestward decrease in outflow current speeds from the Strait there is the following northwestward gradation of contourite sediment facies: (1) upper slope sand to silt bed facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. By comparison, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean outflow current, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. Radiocarbon ages verify that the inner shelf shoreface sand facies (sedimentation rate 7.1 cm/kyr), mid-shelf mud facies (maximum rate 234 cm/kyr) and surface sandy contourite layer of 0.2-1.2 m thickness on the Cadiz slope (1-12 cm/kyr) have deposited during Holocene time when high sea level results in maximum water depth over the Gibraltar sill and full development of the Atlantic inflow and Mediterranean outflow currents. The transgressive sand sheet of the shelf, and the mud layer underlying the surface contourite sand sheet of the slope, correlate, respectively, with the late Pleistocene sea level lowstand and apparent weak Mediterranean outflow current.

  12. How important are dual economy effects for aggregate productivity?

    PubMed Central

    Vollrath, Dietrich

    2013-01-01

    This paper brings together development accounting techniques and the dual economy model to address the role that factor markets have in creating variation in aggregate total factor productivity (TFP). Development accounting research has shown that much of the variation in income across countries can be attributed to differences in TFP. The dual economy model suggests that aggregate productivity is depressed by having too many factors allocated to low productivity work in agriculture. Data show large differences in marginal products of similar factors within many developing countries, offering prima facie evidence of this misallocation. Using a simple two-sector decomposition of the economy, this article estimates the role of these misallocations in accounting for the cross-country income distribution. A key contribution is the ability to bring sector-specific data on human and physical capital stocks to the analysis. Variation across countries in the degree of misallocation is shown to account for 30–40% of the variation in income per capita, and up to 80% of the variation in aggregate TFP. PMID:23946553

  13. A model of tephra dispersal from an early Palaeogene shallow submarine Surtseyan-style eruption(s), the Red Bluff Tuff Formation, Chatham Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Sorrentino, Leonor; Stilwell, Jeffrey D.; Mays, Chris

    2014-03-01

    The Red Bluff Tuff Formation, an early Palaeogene volcano-sedimentary shallow marine succession from the Chatham Islands (New Zealand), provides a unique framework, in eastern 'Zealandia', to explore tephra dispersal processes associated with ancient small phreatomagmatic explosions (i.e. Surtseyan-style eruptions). Detailed sedimentological mapping, logging and sampling integrated with the results of extensive laboratory analyses (i.e. grain-size, componentry and applied palaeontological methods) elucidated the complex mechanisms of transport and deposition of nine identified resedimented fossiliferous volcaniclastic facies. These facies record the subaqueous reworking and deposition of tephra from the erosion and degradation of a proximal, entirely submerged ancient Surtseyan volcanic edifice (Cone II). South of this volcanic cone, the lowermost distal facies provides significant evidence of deposition as water-supported volcanic- or storm-driven mass flows (e.g. turbidity currents and mud/debris flows) of volcaniclastic and bioclastic debris, whereas the uppermost distal facies exhibit features of tractional sedimentary processes caused by shallow subaqueous currents. Further north, within the proximity of the volcanic edifice, the uppermost facies are represented by an abundant, diverse, large, and well preserved in situ fauna of shallow marine sessile invertebrates (e.g. corals and sponges) that reflect the protracted biotic stabiliszation and rebound following pulsed volcanic events. Over a period of time, these stable and wave-eroded volcanic platforms were inhabited by a flourishing and diversifying marine community of benthic and sessile pioneers (corals, bryozoans, molluscs, brachiopods, barnacles, sponges, foraminifera, etc.). This succession exhibits a vertical progression of sedimentary structures (i.e. density, cohesive and mass flows, and cross-bedding) and our interpretations indicate a shallowing upwards succession. This study reports for the first time mechanisms of degradation of a Surtseyan volcano on Chatham Islands and contributes to a better understanding of complex ancient volcano-sedimentary subaqueous terrains. This model of deposition (i.e. onlapping/overlapping features onto the remains of volcanic edifice(s), a vertical transition of structures from deeper- to shallower-marine environments, disaster faunas and subsequent preferential colonisation of diverse biota, including large in situ sessile invertebrates, on the summit), characterises an extraordinary example to be applied to other ancient subaqueous volcanic environments.

  14. The role of discharge variability in the formation and preservation of alluvial sediment bodies

    NASA Astrophysics Data System (ADS)

    Fielding, Christopher R.; Alexander, Jan; Allen, Jonathan P.

    2018-03-01

    Extant, planform-based facies models for alluvial deposits are not fully fit for purpose, because they over-emphasise plan form whereas there is little in the alluvial rock record that is distinctive of any particular planform, and because the planform of individual rivers vary in both time and space. Accordingly, existing facies models have limited predictive capability. In this paper, we explore the role of inter-annual peak discharge variability as a possible control on the character of the preserved alluvial record. Data from a suite of modern rivers, for which long-term gauging records are available, and for which there are published descriptions of subsurface sedimentary architecture, are analysed. The selected rivers are categorized according to their variance in peak discharge or the coefficient of variation (CVQp = standard deviation of the annual peak flood discharge over the mean annual peak flood discharge). This parameter ranges over the rivers studied between 0.18 and 1.22, allowing classification of rivers as having very low (< 0.20), low (0.20-0.40), moderate (0.40-0.60), high (0.60-0.90), or very high (> 0.90) annual peak discharge variance. Deposits of rivers with very low and low peak discharge variability are dominated by cross-bedding on various scales and preserve macroform bedding structure, allowing the interpretation of bar construction processes. Rivers with moderate values preserve mostly cross-bedding, but records of macroform processes are in places muted and considerably modified by reworking. Rivers with high and very high values of annual peak discharge variability show a wide range of bedding structures commonly including critical and supercritical flow structures, abundant in situ trees and transported large, woody debris, and their deposits contain pedogenically modified mud partings and generally lack macroform structure. Such a facies assemblage is distinctively different from the conventional fluvial style recorded in published facies models but is widely developed both in modern and ancient alluvial deposits. This high-peak-variance style is also distinctive of rivers that are undergoing contraction in discharge over time because of the gradual annexation of the channel belt by the establishment of woody vegetation. We propose that discharge variability, both inter-annual peak variation and "flashiness" may be a more reliable basis for classifying the alluvial rock record than planform, and we provide some examples of three classes of alluvial sediment bodies (representing low, intermediate, and high/very high discharge variability) from the rock record that illustrate this point.

  15. Volcano-sedimentary characteristics in the Abu Treifiya Basin, Cairo-Suez District, Egypt: Example of dynamics and fluidization over sedimentary and volcaniclastic beds by emplacement of syn-volcanic basaltic rocks

    NASA Astrophysics Data System (ADS)

    Khalaf, E. A.; Abdel Motelib, A.; Hammed, M. S.; El Manawi, A. H.

    2015-12-01

    This paper describes the Neogene lava-sediment mingling from the Abu Treifiya Basin, Cairo-Suez district, Egypt. The lava-sediment interactions as peperites have been identified for the first time at the study area and can be used as paleoenvironmental indicators. The identification of peperite reflects contemporaneous time relationship between volcanism and sedimentation and this finding is of primary importance to address the evolutional reconstruction of the Abu Treifiya Basin. Characterization of the facies architecture and textural framework of peperites was carried out through detailed description and interpretation of their outcrops. The peperites and sedimentary rocks are up to 350 m thick and form a distinct stratigraphic framework of diverse lithology that is widespread over several kilometers at the study area. Lateral and vertical facies of the peperites vary from sediment intercalated with the extrusive/intrusive basaltic rocks forming peperitic breccias to lava-sediment contacts at a large to small scales, respectively. Peperites encompass five main facies types ascribed to: (i) carbonate sediments-hosted fluidal and blocky peperites, (ii) lava flow-hosted blocky peperites, (iii) volcaniclastics-hosted fluidal and blocky peperites, (iv) sandstone/siltstone rocks-hosted blocky peperites, and (iv) debris-flows-hosted blocky peperites. Soft sediment deformation structures, vesiculated sediments, sediments filled-vesicles, and fractures in lava flows indicate that lava flows mingled with unconsolidated wet sediments. All the peperites in this study could be described as blocky or fluidal, but mixtures of different clast shapes occur regardless of the host sediment. The presence of fluidal and blocky juvenile clasts elucidates different eruptive styles, reflecting a ductile and brittle fragmentation. The gradual variation from fluidal to blocky peperite texture, producing the vertical grading is affected by influencing factors, e.g., the viscosity, magma temperature, confining pressure, sediment fluidization, and vapor film at the magma-sediment interactions. Peperites in the study area record deposition within a shallow marine and fluvio-lacustrine environment accumulated in a rift-related basin developed during pre- to syn-rift phase, respectively. The facies transitions (peperites) in this area resulted from the explosive and sediment depositional processes, which were mingled separately by volcanism under contrast geological conditions. The development of such contrast in the depositional sequences reflects variation in the accommodation to sediment supply in the same accumulation space inside the depocenters during the rifting of the Abu Treifiya Basin. Hydrothermal mineralizations comprising quartz and carbonate are restricted to peperites and lava flows.

  16. Generation of sedimentary fabrics and facies by repetitive excavation and storm infilling of burrow networks Holocene of south Florida and Caicos Platform, B. W. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedesco, L.P.; Wanless, H.R.

    Excavation of deep, open burrow networks and subsequent infilling with sediment from the surface produces an entirely new sedimentary deposit and results in obliteration to severe diagenetic transformation of precursor depositional facies. Repetitive excavation and infilling is responsible for creating the preserved depositional facies of many marine deposits. Excavating burrowers occur from intertidal to abyssal depths, and are important throughout the Phanerozoic. The repetitive coupling of deep, open burrow excavation with subsequent storm sediment infilling of open burrow networks is a gradual process that ultimately results in the loss of the original deposit and the generation of new lithologies, fabricsmore » and facies. The new lithologies are produced in the subsurface and possess fabrics, textures and skeletal assemblages that are not a direct reflection of either precursor facies or the surficial depositional conditions. Sedimentary facies generated by repetitive burrow excavation and infilling commonly are massively bedded and generally are mottled skeletal packstones. Skeletal grains usually are well-preserved and coarser components are concentrated in burrow networks, pockets and patches. The coarse skeletal components of burrow-generated facies are a mixture of coarse bioclasts from the precursor facies and both the coarse and fine skeletal material introduced from the sediment surface. Many so-called bioturbated or massive facies may, in fact, be primary depositional facies generated in the subsurface and represent severe diagenetic transformation of originally deposited sequences. In addition, mudstones and wackestones mottled with packstone patches may record storm sedimentation.« less

  17. Kinematic and rheological model of exhumation of high pressure granulites in the Variscan orogenic root: example of the Blanský les granulite, Bohemian Massif, Czech Republic

    NASA Astrophysics Data System (ADS)

    Franěk, J.; Schulmann, K.; Lexa, O.

    2006-03-01

    A large-scale relict domain of granulite facies deformation fabrics has been identified within the Blanský les granulite body. The granulite facies mylonitic fabric is discordant to the dominant amphibolite facies structures of the surrounding retrograde granulite. The complex geometry of retrograde amphibolite facies fabric indicates a large-scale fold-like structure, which is interpreted to be a result of either crustal-scale buckling of an already exhumed granulite sheet or active rotation of a rigid granulite facies ellipsoidal domain in kinematic continuity with the regional amphibolite facies deformation. We argue that both concepts allow similar restoration of the original granulite facies fabrics prior to the amphibolite facies deformation and “folding”. The geometry of the granulite facies foliations coincides with the earliest fabrics in the nearby mid-crustal units suggesting complete mechanical coupling between the deep lower crust and the mid-crustal levels during the vertical movements of crustal materials. Microstructures indicate grain-size sensitive flow enhanced by the presence of silicate melts at deep crustal levels and a beginning of an exhumation process of low viscosity granulites through a vertical channel. The amphibolite facies fabrics developed at middle crustal levels and their microstructures indicate significant hardening of feldspar-made rigid skeleton of the retrograde granulite. Increase in the strength of the granulite allowed an active buckling or a rigid body rotation of the granulite sheet, which acted as a strong layer inside the weaker metasediments.

  18. Dolomites and Early Mississippian bioherms, Leadville Formation, Molas Lake, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, L.M.

    Two dolomite facies that exhibit little petrographic evidence of their original textures are interpreted to be integral parts of two bioherms. A core facies of rugose corals (Vesiculophylum), pelmatozoans, cephalopods, and brachiopods in a peloid wackestone-packstone matrix forms two mounds 50 x 40 m and 110 x 75 m in diameter and 7 and 20 m high, resting on a basal unit of foraminiferal (endothyrid) ooid, coated-grain grainstone. These mounds are surrounded and onlapped by a bedded flank facies with relic cross-bedding that forms a halo 15-40 m wide around each mound. The facies consists of very coarsely to coarselymore » crystalline dolomite, but field evidence shows that it was originally detrital and is coeval with the core facies. It grades laterally away from the core into a distal flank-intermound facies of dolomudstone interbedded with millimeter-thick laminae of dolomite peloid packstone. This facies occurs up to 100 m from the mounds. Corals in the core facies have been replaced and cemented by nonferroan, nonluminescent sparry calcite at temperatures of at least 200/sup 0/C. The matrix of micrite and skeletal grains is composed of nonferroan, red-orange luminescent calcite. Diagenetic changes have been modest. In contrast, the two flank facies show obliteration of original textures and replacement by inclusion-rich, nonferroan, red-luminescent, anhedral to subhedral dolomite at temperatures of a least 165/sup 0/C. Other than appealing to differences in original porosity and susceptibility to subsurface fluids, it is difficult to explain why these closely associated facies have followed such divergent diagenetic paths.« less

  19. Model complexity in carbon sequestration:A design of experiment and response surface uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, S.

    2014-12-01

    Geologic carbon sequestration (GCS) is proposed for the Nugget Sandstone in Moxa Arch, a regional saline aquifer with a large storage potential. For a proposed storage site, this study builds a suite of increasingly complex conceptual "geologic" model families, using subsets of the site characterization data: a homogeneous model family, a stationary petrophysical model family, a stationary facies model family with sub-facies petrophysical variability, and a non-stationary facies model family (with sub-facies variability) conditioned to soft data. These families, representing alternative conceptual site models built with increasing data, were simulated with the same CO2 injection test (50 years at 1/10 Mt per year), followed by 2950 years of monitoring. Using the Design of Experiment, an efficient sensitivity analysis (SA) is conducted for all families, systematically varying uncertain input parameters. Results are compared among the families to identify parameters that have 1st order impact on predicting the CO2 storage ratio (SR) at both end of injection and end of monitoring. At this site, geologic modeling factors do not significantly influence the short-term prediction of the storage ratio, although they become important over monitoring time, but only for those families where such factors are accounted for. Based on the SA, a response surface analysis is conducted to generate prediction envelopes of the storage ratio, which are compared among the families at both times. Results suggest a large uncertainty in the predicted storage ratio given the uncertainties in model parameters and modeling choices: SR varies from 5-60% (end of injection) to 18-100% (end of monitoring), although its variation among the model families is relatively minor. Moreover, long-term leakage risk is considered small at the proposed site. In the lowest-SR scenarios, all families predict gravity-stable supercritical CO2 migrating toward the bottom of the aquifer. In the highest-SR scenarios, supercritical CO2 footprints are relatively insignificant by the end of monitoring.

  20. Shallow marine event sedimentation in a volcanic arc-related setting: The Ordovician Suri Formation, Famatina range, northwest Argentina

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.

    1996-01-01

    The Loma del Kilome??tro Member of the Lower Ordovician Suri Formation records arc-related shelf sedimentation in the Famatina Basin of northwest Argentina. Nine facies, grouped into three facies assemblages, are recognized. Facies assemblage 1 [massive and parallel-laminated mudstones (facies A) locally punctuated by normally graded or parallel-laminated silty sandstones (facies B] records deposition from suspension fall-out and episodic storm-induced turbidity currents in an outer shelf setting. Facies assemblage 2 [massive and parallel-laminated mudstones (facies A) interbedded with rippled-top very fine-grained sandstones (facies D)] is interpreted as the product of background sedimentation alternating with distal storm events in a middle shelf environment. Facies assemblage 3 [normally graded coarse to fine-grained sandstones (facies C); parallel-laminated to low angle cross-stratified sandstones (facies E); hummocky cross-stratified sandstones and siltstones (facies F); interstratified fine-grained sandstones and mudstones (facies G); massive muddy siltstones and sandstones (facies H); tuffaceous sandstones (facies I); and interbedded thin units of massive and parallel-laminated mudstones (facies A)] is thought to represent volcaniclastic mass flow and storm deposition coupled with subordinated suspension fall-out in an inner-shelf to lower-shoreface setting. The Loma del Kilo??metro Member records regressive-transgressive sedimentation in a storm- and mass flow-dominated high-gradient shelf. Volcano-tectonic activity was the important control on shelf morphology, while relative sea-level change influenced sedimentation. The lower part of the succession is attributed to mud blanketing during high stand and volcanic quiescence. Progradation of the inner shelf to lower shoreface facies assemblage in the middle part represents an abrupt basinward shoreline migration. An erosive-based, non-volcaniclastic, turbidite unit at the base of this package suggests a sea level fall. Pyroclastic detritus, andesites, and a non-volcanic terrain were eroded and their detritus was transported basinward and redeposited by sediment gravity flows during the low stand. The local coexistence of juvenile pyroclastic detritus and fossils suggests reworking of rare ash-falls. The upper part of the Loma del Kilo??metre Member records a transgression with no evidence of contemporaneous volcanism. Biostratinomic, paleoecologic, and ichnologic analyses support this paleoenvironmental interpretations and provide independent evidence for the dominance of episodic sedimentation in an arc-related shallow marine setting. Fossil concentrations were mainly formed by event processes, such as storms and volcaniclastic mass flows. High depositional rates inhibited formation of sediment-starved biogenic concentrations. Collectively, trace fossils belong to the Cruziana ichnofacies. Low diversity, scarcity, and presence of relatively simple forms indicate benthic activity under stressful conditions, most probably linked to high sedimentation rates. Contrasting sedimentary dynamics between 'normal shelves' and their volcaniclastic counterparts produce distinct and particular signatures in the stratigraphic record. Arc-related shelves are typified by event deposition with significant participation of sediment gravity flows, relatively high sedimentation rates, textural and mineralogical immaturity of sediments, scarcity and low diversity of trace fossils, and dominance of transported and reworked faunal assemblages genetically related to episodic processes.

  1. Geochemical and Microbial Community Attributes in Relation to Hyporheic Zone Geological Facies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhangshuan; Nelson, William C.; Stegen, James C.

    The hyporheic zone (HZ) is the active ecotone between the surface stream and groundwater, where exchanges of water, nutrients, and organic matter occur in response to variations in discharge and riverbed properties. Within this region, a confluence of surface-derived organic carbon and subsurface nitrogen (in the form of nitrate) has been shown to stimulate microbial activity and transformations of carbon and nitrogen species. For example, production of gases such as CO 2, N 2 and N 2O indicate hyporheic zones might have a significant effect on energy and nutrient flows between the atmosphere and the subsurface. Managed and seasonal rivermore » stage changes and geomorphology-controlled sediment texture drive water flow within the HZ of the Columbia River. To examine the relationship between sediment texture, biogeochemistry, and biological activity in the HZ, the grain size distributions for sediment samples taken across 320 m of shoreline were characterized to define geological facies, and the relationships among physical properties of the facies, physicochemical attributes of the local environment, and the structure and activity of associated microbial communities were examined. Mud and sand content and the presence of carbon and nitrogen oxidizers were found to explain the variability in many biogeochemical attributes. Microbial community analysis revealed a high relative abundance of putative ammonia-oxidizing Thaumarchaeota and nitrite-oxidizing Nitrospirae, together comprising ~20% of the total community across all samples, but scant ammonia-oxidizing Bacteria. Network analysis of operational taxonomic units and the measured geophysical, chemical, and functional parameters showed negative relationships between abundance-based modules of organisms and sand and mud contents, and positive relationships with total organic carbon. The relationships identified in this work indicate grain size distribution is a good predictor of biogeochemical properties, and that subsets of the overall microbial community respond to different sediment texture. Some member populations of these sub-communities appear to respond directly to environmental conditions, while others may be dependent on the function of the first group. For example, nitrification is a strong primary response to the observed conditions, and this activity appears to support a larger heterotrophic community. Relationships between facies and hydrobiogeochemical properties enables facies-based conditional simulation/mapping of these properties to inform multiscale modeling of hyporheic exchange and biogeochemical processes.« less

  2. Sediment Facies on a Steep Shoreface, Tairua/Pauanui Embayment, New Zealand

    NASA Astrophysics Data System (ADS)

    Trembanis, A. C.; Hume, T. M.; Gammisch, R. A.; Wright, L. D.; Green, M. O.

    2001-05-01

    Tairua/Pauanui embayment is a small headland-bound system on the Coromandel Peninsula on the east coast of the North Island of New Zealand. The shoreface in this area is steep ( ~0.85) and concave; however, where the profile is steepest, between 10-15-m water depth, the profile is slightly convex. A sedimentological study of the shoreface was conducted to provide baseline information for a sediment-dynamics study. Detailed swath mapping of the seabed sediment from the beach out to a water depth of ~50 m was conducted using side-scan sonar. Over 200 km of side-scan sonar data were collected by separate surveys in September 2000 and again in February 2001. Ground-truthing of side-scan sonar data was carried out by SCUBA, grab sampling ( ~100 samples) and drop-camera video. A digital terrain model (DTM) of the area was constructed using newly collected bathymetric data along with data from digitized nautical charts. The DTM exposes changes in bathymetry and variation in slope throughout the study area. The acoustic and sedimentologic data were used to identify and map 8 individual facies units. Shoreface facies distribution was found to be patchy and complex. Large-scale ( ~200-m wide x 1600-m long), slightly depressed, mega-rippled coarse-sand/shell-hash units were abruptly truncated by contacts with fine, featureless, continuous sand-cover units. The repeat survey in February indicated stability of the overall shape and location of large-scale facies units, while diver observations indicated that bedforms within units actively migrate. Bedform roughness is highly variable, including patchy reefs/rubble, sand-dollar fields mega-rippled coarse-gravel/sands, ripple scour depressions, and fields of dense tubeworms. The distribution of coarse shell-hash units is consistent with diabathic sediment transport. Three tripods supporting a range of instruments for measuring waves, currents, boundary-layer flows and sediment resuspension and settling were deployed on the shoreface during February 2001, for up to 3 months. Each tripod was situated on a different facies with a view to resolving spatial variability in sediment dynamics and establishing a link between spatially variable bed roughness, sediment mobility and sedimentation patterns. Our ultimate goal is to understand the interactions between substrate and driving flows in this spatially complex setting and how these interactions sculpt the shoreface and possibly control sediment transfers between the inner shelf and beach.

  3. Geochemical and Microbial Community Attributes in Relation to Hyporheic Zone Geological Facies

    DOE PAGES

    Hou, Zhangshuan; Nelson, William C.; Stegen, James C.; ...

    2017-09-20

    The hyporheic zone (HZ) is the active ecotone between the surface stream and groundwater, where exchanges of water, nutrients, and organic matter occur in response to variations in discharge and riverbed properties. Within this region, a confluence of surface-derived organic carbon and subsurface nitrogen (in the form of nitrate) has been shown to stimulate microbial activity and transformations of carbon and nitrogen species. For example, production of gases such as CO 2, N 2 and N 2O indicate hyporheic zones might have a significant effect on energy and nutrient flows between the atmosphere and the subsurface. Managed and seasonal rivermore » stage changes and geomorphology-controlled sediment texture drive water flow within the HZ of the Columbia River. To examine the relationship between sediment texture, biogeochemistry, and biological activity in the HZ, the grain size distributions for sediment samples taken across 320 m of shoreline were characterized to define geological facies, and the relationships among physical properties of the facies, physicochemical attributes of the local environment, and the structure and activity of associated microbial communities were examined. Mud and sand content and the presence of carbon and nitrogen oxidizers were found to explain the variability in many biogeochemical attributes. Microbial community analysis revealed a high relative abundance of putative ammonia-oxidizing Thaumarchaeota and nitrite-oxidizing Nitrospirae, together comprising ~20% of the total community across all samples, but scant ammonia-oxidizing Bacteria. Network analysis of operational taxonomic units and the measured geophysical, chemical, and functional parameters showed negative relationships between abundance-based modules of organisms and sand and mud contents, and positive relationships with total organic carbon. The relationships identified in this work indicate grain size distribution is a good predictor of biogeochemical properties, and that subsets of the overall microbial community respond to different sediment texture. Some member populations of these sub-communities appear to respond directly to environmental conditions, while others may be dependent on the function of the first group. For example, nitrification is a strong primary response to the observed conditions, and this activity appears to support a larger heterotrophic community. Relationships between facies and hydrobiogeochemical properties enables facies-based conditional simulation/mapping of these properties to inform multiscale modeling of hyporheic exchange and biogeochemical processes.« less

  4. Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Harter, Thomas; Sivakumar, Bellie

    2006-06-01

    Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range examined, the third moment of the traveltime pdf varies from negatively skewed to strongly positively skewed. We also show that the Markov chain approach may give significantly different traveltime distributions when compared to the more commonly used Gaussian random field approach, even when the first- and second-order moments in the geostatistical distribution of the lnK field are identical. The choice of the appropriate geostatistical model is therefore critical in the assessment of nonpoint source transport, and uncertainty about that choice must be considered in evaluating the results.

  5. Constraints on crustal hydration below the Colorado plateau from Vp measurements on crustal xenoliths

    NASA Astrophysics Data System (ADS)

    Padovani, Elaine R.; Hall, Jeremy; Simmons, Gene

    1982-04-01

    Seismic velocities have been measured as a function of confining pressure to 8 kbar for crustal xenoliths from the Moses Rock Dike and Mule Ear Diatreme, two kimberlite pipes on the Colorado Plateau. Rock types measured include rhyolite, granite, diorite, metasedimentary schists and gneisses, mafic amphibolites and granulites. Many of our samples have been hydrothermally altered to greenschist facies mineral assemblages during transport to the earth's surface. The velocity of compressional waves measured on altered amphibolites and granulites are too low by 0.1-0.3 km/s for such rock types to be characteristic of deep crustal levels. A direct correlation exists between progressive alteration and the presence of microcracks extending into the xenoliths from the kimberlitic host rock. Velocities of pristine samples are compatible with existing velocity profiles for the Colorado Plateau and we conclude that the crust at depths greater than 15 km has probably not undergone a greenschist facies metamorphic event. The xenolith suite reflects a crustal profile similar to that exposed in the Ivrea-Verbano and Strona-Ceneri zones in northern Italy.

  6. Structural evolution of the Sarandí del Yí Shear Zone, Uruguay: kinematics, deformation conditions and tectonic significance

    NASA Astrophysics Data System (ADS)

    Oriolo, S.; Oyhantçabal, P.; Heidelbach, F.; Wemmer, K.; Siegesmund, S.

    2015-10-01

    The Sarandí del Yí Shear Zone is a crustal-scale shear zone that separates the Piedra Alta Terrane from the Nico Pérez Terrane and the Dom Feliciano Belt in southern Uruguay. It represents the eastern margin of the Río de la Plata Craton and, consequently, one of the main structural features of the Precambrian basement of Western Gondwana. This shear zone first underwent dextral shearing under upper to middle amphibolite facies conditions, giving rise to the reactivation of pre-existing crustal fabrics in the easternmost Piedra Alta Terrane. Afterwards, pure-shear-dominated sinistral shearing with contemporaneous magmatism took place under lower amphibolite to upper greenschist facies conditions. The mylonites resulting from this event were then locally reactivated by a cataclastic deformation. This evolution points to strain localization under progressively retrograde conditions with time, indicating that the Sarandí del Yí Shear Zone represents an example of a thinning shear zone related to the collisional to post-collisional evolution of the Dom Feliciano Belt that occurred between the Meso- to Neoproterozoic (>600 Ma) and late Ediacaran-lower Cambrian times.

  7. Geochemical and Sr isotopic variations in groundwaters of the Edwards aquifer, central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oetting, G.C.; Banner, J.L.; Sharp, J.M. Jr.

    1992-01-01

    The regionally-extensive Edwards aquifer of central Texas lies on the northwestern edge of the Gulf of Mexico Basin. The aquifer system is composed primarily of lower Cretaceous marine limestones and dolostones with minor evaporitic and siliciclastic confining units of the Edwards Group and associated formations. The eastern and southern boundaries of the freshwater aquifer are defined by an abrupt change in groundwater salinity that is known as the badwater line. Variation in the isotopic composition and concentration of Sr in the mineral phases and waters in this aquifer system provide means to examine groundwater evolution processes. Models of simultaneous variationsmore » in Sr isotopes and major and trace ions are used to constrain processes of groundwater-rock interaction and groundwater mixing. Geochemical variations were examined in Edwards carbonate host rocks and groundwaters in Williamson and Bell Counties. Groundwaters were sampled along and across the badwater line, and range in salinity from 320--2,630 mg/l total dissolved solids. Major ion distributions in the water samples demonstrate a hydrochemical facies transition from Ca-HCO[sub 3] freshwaters to Na-Cl-SO[sub 4]-HCO[sub 3] badwaters. Both water types show a wide range of [sup 87]Sr/[sup 86]Sr values: Ca-HCO[sub 3] waters range from values of 0.7078--0.7093, and Na-Cl-SO[sub 4]-HCO[sub 3] waters range from values of 0.7087--0.7097. The Sr isotope compositions for both water groups are significantly greater than their host marine carbonates ([approximately]0.7075). The high Sr isotopic compositions indicate an extraformational source of Sr in both hydrochemical facies. Fluid mixing processes involving a freshwater and at least two badwater endmembers are required to account for variations in elemental and isotopic compositions in the groundwaters. Mineral-solution reactions may operate during and/or subsequent to mixing to produce the compositional variability observed in some intermediate waters.« less

  8. Late Quaternary stratigraphy of the eastern Gulf of Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchus, T.S.; Belknap, D.F.

    1993-03-01

    Five distinct seismic facies describe the glacial, glacial-marine and postglacial sediments in the eastern Gulf of Maine. Regional cross-sections clearly document differences in the glacial-marine and postglacial stratigraphy between basins south of Truxton Swell, and Jordan basin to its north. Till occurs throughout the region as a thin veneer within basins, but thickens significantly over the ridges and swells separating basins. The ubiquitous presence of till suggests grounded ice occupied this area some time in the recent past. Ice-proximal glacial-marine (PGM) facies sediments of varying thickness mantle the entire area, occurring as a draped unit over pre-existing topography. Transitional glacial-marinemore » (TGM) facies also occur as a draped unit, but they show onlap onto basin margins. Sediments of the TGM facies are restricted to areas south of Truxton Swell. Ice-distal glacial-marine (DGM) facies sediments also mantle the entire area, but they occur primarily as a ponded, infilling unit. The nature and distribution of these glacial-marine facies within the eastern Gulf of Maine documents changes in the environment of deposition during deglaciation. In the authors model PGM facies sediments are considered to represent settling through the water column of coarse material from the base of an ice shelf. TGM facies sediments indicate retreat of this ice margin coupled with calving of large icebergs with significant amounts of coarse debris, DGM facies sediments indicate further retreat of the ice margin and a lessening of the influence of icebergs. Stepwise ice-margin retreat from south to north through a series of grounding lines and associated pinning points is evident by these time transgressive sedimentary facies that can be correlated across the region.« less

  9. Ramp sedimentation in the Dinantian limestones of the Shannon Trough, Co. Limerick, Ireland

    NASA Astrophysics Data System (ADS)

    Somerville, Ian D.; Strogen, Peter

    1992-08-01

    During the late Chadian and Arundian (Lower Carboniferous), an extensive carbonate ramp (Limerick Ramp) developed over County Limerick, southwest Ireland, dipping northwestwards. Three distinct facies can be recognised corresponding to position on this ramp: inner, mid- and outer ramp. The inner ramp facies of oolitic and crinoidal grainstones (Herbertstown Limestone Formation) in east Limerick formed a major shoal behind which peritidal limestones were deposited. The mid-ramp facies of muddy bioclastic limestones and shales (Cooperhill facies) in north Limerick formed between fairweather and storm wave bases. The outer ramp (basinal) facies of mudstones and thin graded resedimented limestones (Rathkeale Beds) in west Limerick developed below storm wave base when fine terrigenous input was high. Later in the Arundian there was progradation of the nearshore oolitic and crinoidal grainstones over the mid-ramp facies. By the Holkerian, the deep-water basinal facies in west Limerick was buried beneath mid-ramp facies (Durnish Limestone). The initiation of the Limerick Ramp is closely related to the formation of the Shannon Trough. In the late Courceyan, accelerated subsidence in the Shannon area during deposition of Waulsortian facies marked the onset of a sag phase. Following a quiescent period in early Chadian, subsidence was renewed in the late Chadian and Arundian, when major facies changes occurred on the ramp. Comparison of the Shannon Trough with the Dublin Basin shows that in the latter, tectonic events in the Chadian and Arundian, particularly syn-sedimentary faulting, created a sharp division between platform and basinal sedimentation. Such tectonic influence is not recognised in the Shannon Trough. Here differential subsidence and eustatic sea-level changes led to more permanent ramp existence, modified only by westwards progradation.

  10. Facies associations, depositional environments and stratigraphic framework of the Early Miocene-Pleistocene successions of the Mukah-Balingian Area, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Murtaza, Muhammad; Rahman, Abdul Hadi Abdul; Sum, Chow Weng; Konjing, Zainey

    2018-02-01

    Thirty-five stratigraphic section exposed along the Mukah-Selangau road in the Mukah-Balingian area have been studied. Sedimentological and palynological data have been integrated to gain a better insight into the depositional architecture of the area. Broadly, the Mukah-Balingian area is dominated by fluvial, floodplain and estuarine related coal-bearing deposits. The Balingian, Begrih and Liang formations have been described and interpreted in terms of seven facies association. These are: FA1 - Fluvial-dominated channel facies association; FA2 - Tide-influenced channel facies association; FA3 - Tide-dominated channel facies association; FA4 - Floodplain facies association; FA5 - Estuarine central basin-mud flats facies association; FA6 - Tidal flat facies association and FA7 - Coastal swamps and marshes facies association. The Balingian Formation is characterised by the transgressive phase in the base, followed by a regressive phase in the upper part. On the basis of the occurrence of Florscheutzia trilobata with Florscheutzia levipoli, the Early to Middle Miocene age has been assigned to the Balingian Formation. The distinct facies pattern and foraminifera species found from the samples taken from the Begrih outcrop imply deposition in the intertidal flats having pronounced fluvio-tidal interactions along the paleo-margin. Foraminiferal data combined with the pronounced occurrence of Stenochlaena laurifolia suggest at least the Late Miocene age for the Begrih Formation. The internal stratigraphic architecture of the Liang Formation is a function of a combination of sea level, stable tectonic and autogenic control. Based on stratigraphic position, the Middle Pliocene to Pleistocene age for the Liang Formation is probable. The Balingian, Begrih and Liang formations display deposits of multiple regressive-transgressive cycles while the sediments were derived from the uplifted Penian high and Rajang group.

  11. Facies Modeling Using 3D Pre-Stack Simultaneous Seismic Inversion and Multi-Attribute Probability Neural Network Transform in the Wattenberg Field, Colorado

    NASA Astrophysics Data System (ADS)

    Harryandi, Sheila

    The Niobrara/Codell unconventional tight reservoir play at Wattenberg Field, Colorado has potentially two billion barrels of oil equivalent requiring hundreds of wells to access this resource. The Reservoir Characterization Project (RCP), in conjunction with Anadarko Petroleum Corporation (APC), began reservoir characterization research to determine how to increase reservoir recovery while maximizing operational efficiency. Past research results indicate that targeting the highest rock quality within the reservoir section for hydraulic fracturing is optimal for improving horizontal well stimulation through multi-stage hydraulic fracturing. The reservoir is highly heterogeneous, consisting of alternating chalks and marls. Modeling the facies within the reservoir is very important to be able to capture the heterogeneity at the well-bore scale; this heterogeneity is then upscaled from the borehole scale to the seismic scale to distribute the heterogeneity in the inter-well space. I performed facies clustering analysis to create several facies defining the reservoir interval in the RCP Wattenberg Field study area. Each facies can be expressed in terms of a range of rock property values from wells obtained by cluster analysis. I used the facies classification from the wells to guide the pre-stack seismic inversion and multi-attribute transform. The seismic data extended the facies information and rock quality information from the wells. By obtaining this information from the 3D facies model, I generated a facies volume capturing the reservoir heterogeneity throughout a ten square mile study-area within the field area. Recommendations are made based on the facies modeling, which include the location for future hydraulic fracturing/re-fracturing treatments to improve recovery from the reservoir, and potential deeper intervals for future exploration drilling targets.

  12. Sedimentary environment and facies of St Lucia Estuary Mouth, Zululand, South Africa

    NASA Astrophysics Data System (ADS)

    Wright, C. I.; Mason, T. R.

    The St. Lucia Estuary is situated on the subtropical, predominantly microtidal Zululand coast. Modern sedimentary environments within the estuary fall into three categories: (1) barrier environments; (2) abandoned channel environments; and (3) estuarine/lagoonal environments. The barrier-associated environment includes tidal inlet channel, inlet beach face, flood-tidal delta, ebb-tidal delta, spit, backspit and aeolian dune facies. The abandoned channel environment comprises washover fan, tidal creek tidal creek delta and back-barrier lagoon facies. The estuarine/lagoonal environment includes subtidal estuarine channel, side-attached bar, channel margin, mangrove fringe and channel island facies. Each sedimentary facies is characterised by sedimentary and biogenic structures, grain-size and sedimentary processes. Vertical facies sequences produced by inlet channel migration and lagoonal infilling are sufficiently distinct to be recognized in the geological record and are typical of a prograding shoreline.

  13. Identification of hydrochemical facies in the Roswell Artesian Basin, New Mexico (USA), using graphical and statistical methods

    NASA Astrophysics Data System (ADS)

    Newman, Brent D.; Havenor, Kay C.; Longmire, Patrick

    2016-06-01

    Analysis of groundwater chemistry can yield important insights about subsurface conditions, and provide an alternative and complementary method for characterizing basin hydrogeology, especially in areas where hydraulic data are limited. More specifically, hydrochemical facies have been used for decades to help understand basin flow and transport, and a set of facies were developed for the Roswell Artesian Basin (RAB) in a semi-arid part of New Mexico, USA. The RAB is an important agricultural water source, and is an excellent example of a rechargeable artesian system. However, substantial uncertainties about the RAB hydrogeology and groundwater chemistry exist. The RAB was a great opportunity to explore hydrochemcial facies definition. A set of facies, derived from fingerprint diagrams (graphical approach), existed as a basis for testing and for comparison to principal components, factor analysis, and cluster analyses (statistical approaches). Geochemical data from over 300 RAB wells in the central basin were examined. The statistical testing of fingerprint-diagram-based facies was useful in terms of quantitatively evaluating differences between facies, and for understanding potential controls on basin groundwater chemistry. This study suggests the presence of three hydrochemical facies in the shallower part of the RAB (mostly unconfined conditions) and three in the deeper artesian system of the RAB. These facies reflect significant spatial differences in chemistry in the basin that are associated with specific stratigraphic intervals as well as structural features. Substantial chemical variability across faults and within fault blocks was also observed.

  14. Pilot points method for conditioning multiple-point statistical facies simulation on flow data

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Jafarpour, Behnam

    2018-05-01

    We propose a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and then are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) is adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at selected locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.

  15. Assimilating Flow Data into Complex Multiple-Point Statistical Facies Models Using Pilot Points Method

    NASA Astrophysics Data System (ADS)

    Ma, W.; Jafarpour, B.

    2017-12-01

    We develop a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information:: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) and its multiple data assimilation variant (ES-MDA) are adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at select locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.

  16. Effect of footwall structures on kinematic evolution of dominant thrusts from hinterland of an orogenic wedge: Insights from Sikkim Himalayan FTB

    NASA Astrophysics Data System (ADS)

    Ghosh, Pritam; Bhattacharyya, Kathakali

    2017-04-01

    Deformation profile of a thrust sheet is generally characterized by a dominance of simple-shear toward the base and pure-shear higher up. In this study, we attempt to examine the effect of underlying footwall structure on the evolution of such a deformation profile with time. We focus on two dominant thrusts of the Sikkim Himalayan FTB, the northern most Main Central thrust (MCT) and its major footwall thrust, the Pelling thrust (PT). The MCT and the PT sheets are folded in an E-W trending antiform-synform pair by the growth of the underlying Lesser Himalayan duplex. The PT acts as the roof thrust of the duplex. The coarse-grained, quartzo-feldspathic gneissic protoliths transform into quartz-mica mylonite forming ˜1170m thick amphibolite facies MCT zone and ˜938m thick greenschist facies PT zone. Due to the forelandward progression of deformation front, the overlying MCT foliation is superposed by the underlying PT foliation. Within both the fault zones, quartz has undergone grain-size reduction dominantly by dislocation creep, and feldspar by fracturing mechanism. Interestingly, microfracturing is more dominant in MCT zone than in the PT zone. Additionally, pressure solution is significantly higher in the PT zone than in the MCT. Thus, there is a spatial variation in deformation mechanisms within the MCT and PT zones. Based on recrystallized quartz grain-sizes, we estimate deformation temperatures of ˜430˚ C-510˚ C and ˜400˚ C-430˚ C within the MCT and the PT, respectively. Both quartz and feldspar grains record a higher flattening strain in the MCT zone than in the PT zone. We infer fracturing and pressure solution accommodated a significant amount of strain, thereby under-representing the viscoplastic strain. Estimation of kinematic vorticity from two different incremental strain markers, namely oblique-fabric and subgrains, indicate both the MCT and the PT zones record a progressively higher pure-shear dominated deformation with time. The PT zone records a higher pure-shear than the MCT zone. Therefore, integration of structural geometry, microstructure and kinematic data suggest that the PT fault zone records the effect of footwall duplex more prominently than the MCT fault zone. We attribute the temporal evolution toward a pure-shear dominated deformation within the PT zone due to the growth of the underlying Lesser Himalayan duplex.

  17. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    USGS Publications Warehouse

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the south where coal beds are preserved, and more arid in the north where evaporites and eolian deposits are common. Fluctuations in paleoclimate that caused lake levels to rise and fall in hydrologically closed basins are preserved as lacustrine cycles of various scales, including major shifts in the Late Triassic from a wet Carnian to an arid Norian. In contrast, fluvial deposits were mainly formed in response to the tectonic evolution of the basins, but to some extent also reflect climatic changes. The Newark Supergroup illustrates the complexity of rift-basin sedimentation and the problems that may arise from using a single modern analog for sedimentary deposition spanning millions of years. It also shows that a tremendous wealth of depositional, climatic, and tectonic information is preserved in ancient rift-basin deposits which can be recovered if the depositional processes of modern rift-basin deposits are understood. ?? 1991.

  18. Relationships Between Magnetic Susceptibility and Sedimentary Facies Along AL Qahmah, Southern Red Sea Coast

    NASA Astrophysics Data System (ADS)

    Nabhan, A. I.; Yang, W.

    2016-12-01

    Facies and magnetic parameters of an arid siliciclastic coast were investigated in Al Qahmah, Saudi Arabia. The purpose of the survey was to map and understand the distribution of magnetic minerals in the different sedimentary facies in a 20-km2 area. Four NW-SE profiles parallel to shoreline and thirty-nine roughly perpendicular NE-SW profiles were measured. Petrographic study of sediment composition and texture of 152 samples was conducted. The coast sediments contain six lithofacies: beach, washover fan, tidal channel, eolian dune, sabkha, and wadi. The high concentration of heavy minerals in beach and dune facies causes high magnetic of susceptibility. Mineral composition of the total fraction in these facies confirms the presence of magnetite and ilmenite. The high values of susceptibility in beach and dune facies are attributed to strong winnowing and wave processes that control the pattern of transport, sorting of magnetic minerals in the beach facies. These minerals are picked up and moved by wind at low tide to form extensive low dune fields near the beach. The results showed that magnetic measurements are a sensitive and fast method, which can be used for studying the distribution of magnetic minerals in the sedimentary facies and help interpret various controlling processes.

  19. Non-seagrass meadow sedimentary facies of the Pontinian Islands, Tyrrhenian Sea: A modern example of mixed carbonate siliciclastic sedimentation

    NASA Astrophysics Data System (ADS)

    Brandano, Marco; Civitelli, Giacomo

    2007-10-01

    The soft bottom of the Mediterranean continental shelf is characterized by a heterozoan skeletal assemblage ( sensu [James, N.P., 1997. The cool-water carbonate depositional realm. In: James, N.P., Clarke, J. (Eds), Cool-water Carbonates. Spec. Publ. Soc. Sediment. Geol., vol. 56, pp.1-20.]). Although the contemporary presence of terrigenous and skeletal carbonate sediments has been well established [Tortora, P., 1996. Depositional and erosional coastal processes during the last postglacial sea-level rise: an example from the Central Tyrrhenian continental shelf (Italy). J. Sed. Res. 66, 391-405.; Fornós, J.J., Ahr, W.M., 1997. Temperate carbonates on a modern, low-energy, isolated ramp: the Balearic Platform, Spain. Journal of Sedimentary Research , 67, 364-373.; Fornós, J.J., Ahr, W.M., 2006. Present-day temperate carbonate sedimentation on the Balearic Platform, western Mediterranean: compositional and textural variation along a low-energy isolated ramp. In: Pedley, H.M., Carannante, G. (Eds.) 2006, Cool-water Carbonates: Depositional Systems and Palaeoenvironmental Controls. Geological Society, London, Special Publications, 255, pp. 121-135], the interactions between carbonate and terrigenous-siliciclastic sedimentation has not been documented well enough. A total of 33 surface sediment samples from the Pontinian shelf (Tyrrhenian Sea, central Mediterranean) have been analysed. Sampling stations range from 15 to 250 mwd (meter water depth) and are located along five transects (PonzaW, PonzaNW, Ponza NE, Ponza E, Zannone), plus four samples collected around Palmarola Island. Sectors colonized by seagrass meadows have not been sampled. A total of 6 sedimentary facies (F) and 10 microfacies (mf) have been recognized by using component analyses, grain size percentage, sorting, carbonate content and authigenic mineralization rate. These facies and microfacies represent the Pontian Islands shelf sedimentation, in the interval between the upper infralittoral and the epibathyal zones that represent shelf-break and upper slope sedimentation. The Maerl facies (F4a,b; mf4a,b) and the skeletal sands (F2a,b; mf2a1, mf2a2, mf2b) fall within the circalittoral zone. The circalittoral zone in the water depth interval between 82 m and 112 m display relict facies (F6, mf6). Finally facies F5 (Siliciclastic sands) includes subfacies F5b (mf5b), located in the circalittoral zone at depths of 49 to 101 mwd and restricted to the western and eastern sectors of Ponza, and subfacies F5a in the upper infralittoral zone (15 mwd/25 mwd) where erosional processes prevail. Carbonate content analyses indicate that maximum carbonate production on the Pontinian shelf took place in the 60-80 mwd interval. Facies F4 (Maerl) represents the environment characterized by the highest carbonate production rates. In the Pontian area siliciclastic-carbonate mixing took place in the infralittoral zone and in the lower circalittoral zone. In the infralittoral zone erosional processes on the rocky shoreline produced lithoclasts and vulcanoclastic deposits that were reworked by wave-induced near-shore currents. In the lower circalittoral zone the prolific production by photic biota (red algae) ends, while skeletal remains of the aphotic environment mixes with planktonic sediments characterized by low carbonate values. Sand (63 μm-2 mm) is the dominant grain size class, however gravel-dominated facies (F4 Maerl) are present in water depths (50 to 112 mwd) which are significantly below the storm wave base. Glauconite mineralization appears on the Pontinian shelf from 50 mwd and increases in abundance along the deeper bathymetries. The compositional characteristics of relict facies F6 shows the concurrence of biota assemblages of the infralittoral and circalittoral zones, likely representing the record of the last Holocene transgressive event (18 ky) and expressed by the overlapping of components of different environments.

  20. The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow

    USGS Publications Warehouse

    Vallance, J.W.; Scott, K.M.

    1997-01-01

    The 3.8 km3 Osceola Mudflow began as a water-saturated avalanche during phreatomagmatic eruptions at the summit of Mount Rainier about 5600 years ago. It filled valleys of the White River system north and northeast of Mount Rainier to depths of more than 100 m, flowed northward and westward more than 120 km, covered more than 200 km2 of the Puget Sound lowland, and extended into Puget Sound. The lahar had a velocity of ???19 m/s and peak discharge of ???2.5 ?? 106 m3/s, 40 to 50 km downstream, and was hydraulically dammed behind a constriction. It was coeval with the Paradise lahar, which flowed down the south side of Mount Rainier, and was probably related to it genetically. Osceola Mudflow deposits comprise three facies. The axial facies forms normally graded deposits 1.5 to 25 m thick in lowlands and valley bottoms and thinner ungraded deposits in lowlands; the valley-side facies forms ungraded deposits 0.3 to 2 m thick that drape valley slopes; and the hummocky facies, interpreted before as a separate (Greenwater) lahar, forms 2-10-m-thick deposits dotted with numerous hummocks up to 20 m high and 60 m in plan. Deposits show progressive downstream improvement in sorting, increase in sand and gravel, and decrease in clay. These downstream progressions are caused by incorporation (bulking) of better sorted gravel and sand. Normally graded axial deposits show similar trends from top to bottom because of bulking. The coarse-grained basal deposits in valley bottoms are similar to deposits near inundation limits. Normal grading in deposits is best explained by incremental aggradation of a flow wave, coarser grained at its front than at its tail. The Osceola Mudflow transformed completely from debris avalanche to clay-rich (cohesive) lahar within 2 km of its source because of the presence within the preavalanche mass of large volumes of pore water and abundant weak hydrothermally altered rock. A survey of cohesive lahars suggests that the amount of hydrothermally altered rock in the preavalanche mass determines whether a debris avalanche will transform into a cohesive debris flow or remain a largely unsaturated debris avalanche. The distinction among cohesive lahar, noncohesive lahar, and debris avalanche is important in hazard assessment because cohesive lahars spread much more widely than noncohesive lahars that travel similar distances, and travel farther and spread more widely than debris avalanches of similar volume. The Osceola Mudflow is documented here as an example of a cohesive debris flow of huge size that can be used as a model for hazard analysis of similar flows.

  1. Did volcanic activity of the Emeishan large igneous province expand in Wuchiapingian times?

    NASA Astrophysics Data System (ADS)

    Bagherpour, Borhan; Bucher, Hugo; Yuan, Dong-Xun; Shen, Shu-zhong; Leu, Marc; Zhang, Chao

    2017-04-01

    Emplacement of the Emeishan Large Igneous Province (ELIP) in the Capitanian (Middle Permian) is associated with several environmental changes (e.g. facies change, carbon cycle perturbation and temperature rise) across the Guadalupian-Lopingian (G-L) interval in South China. However, most of the reported changes are within the Capitanian stage or close to the G-L boundary. Here, we report an episode of drastic environmental changes from the Pingtang syncline (S. Guizhou) that is similar with the previously known ones but which is significantly younger. The studied section represents a protracted and stepwise facies change from a benthos rich, thick-bedded and light grey shallow water limestone (Unit A) to a 30 m-thick unit with thin-bedded dark (OM-rich) radiolarian-spiculitic facies (Unit B). The latter is overlain by an 8 m-thick unit of volcaniclastic sandstone and silts defining a succession of decimetric, cyclic and thinning upward layers (Unit C). The base of the overlying medium-bedded limestone unit (Unit D) contain radiolarian and sponge spicules whose abundance progressively decrease up section with a progressive replacement by abundant benthic faunas concomitant with the transition to thick bedded limestone. A total of five conodont index species (assigned to Clarkina) of early Wuchiapingian age were recognized from Unit A and Unit B. The observed facies transition from Unit A to Unit B indicates a drastic drowning event. Unit C represents a distal turbiditic succession and the overlying Unit D shows an upward shallowing trend back to the initial shallow marine condition. Compilation of sedimentary records across G-L in South China reveals that such drowning events tend to cluster within three discrete time intervals. The drowning events may or may not end with deposition of either volcanics or volcaniclastics. Two first clusters display drowning events overlain by ELIP volcanic rocks or volcaniclastics of ELIP origin and are of Capitanian age. Only the first drowning event has been related to subsidence phase prior to the ELIP volcanism (e.g. Sun et al., 2010). The strikingly similar architecture of the Pingtang event with that of earlier Capitanian examples suggests a similar driving mechanism for these three phases of drowning/eruptive events. These results open up the possibility that ELIP volcanism extended into early Wuchiapingian times and further tests are currently under way. -Sun, Y., Lai, X., Wignall, P.B., Widdowson, M., Ali, J.R., Jiang, H., Wang, W., Yan, C., Bond, D.P.G., Védrine, S., 2010. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models. Lithos 119, 20-33.

  2. Grain-scale Sr isotope heterogeneity in amphibolite (retrograded UHP eclogite, Dabie terrane): Implications for the origin and flow behavior of retrograde fluids during slab exhumation

    NASA Astrophysics Data System (ADS)

    Guo, Shun; Yang, Yueheng; Chen, Yi; Su, Bin; Gao, Yijie; Zhang, Lingmin; Liu, Jingbo; Mao, Qian

    2016-12-01

    To constrain the origin and flow behavior of amphibolite-facies retrograde fluids during slab exhumation, we investigate the textures, trace element contents, and in situ strontium (Sr) isotopic compositions (using LA-MC-ICP-MS) of multiple types of epidote and apatite in the UHP eclogite and amphibolites from the Hualiangting area (Dabie terrane, China). The UHP epidote porphyroblasts in the eclogite (Ep-E), which formed at 28-30 kbar and 660-720 °C, contain high amounts of Sr, Pb, Th, Ba, and light rare earth elements (LREEs) and have a narrow range of initial 87Sr/86Sr ratios (0.70431 ± 0.00012 to 0.70454 ± 0.00010). Two types of amphibolite-facies epidote were recognized in the amphibolites. The first type of epidote (Ep-AI) developed in all the amphibolites and has slightly lower trace element contents than Ep-E. The Ep-AI has a same initial 87Sr/86Sr ratio range as the Ep-E and represents the primary amphibolite-facies retrograde product that is associated with an internally buffered fluid at 8.0-10.3 kbar and 646-674 °C. The other type of epidote (Ep-AII) occurs as irregular fragments, veins/veinlets, or reaction rims on the Ep-AI in certain amphibolites. Elemental X-ray maps reveal the presence of Ep-AI relics in the Ep-AII domains (appearing as a patchy texture), which indicates that Ep-AII most likely formed by the partial replacement of the Ep-AI in the presence of an infiltrating fluid. The distinctly lower trace element contents of Ep-AII are ascribed to element scavenging by a mechanism of dissolution-transport-precipitation during replacement. The Ep-AII in an individual amphibolite exhibits large intra- and inter-grain variations in the initial 87Sr/86Sr ratios (0.70493 ± 0.00030 to 0.70907 ± 0.00022), which are between those of the Ep-AI and granitic gneisses (wall rock of the amphibolites, 0.7097-0.7108). These results verify that the infiltrating fluid was externally derived from granitic gneisses. The matrix apatite in the amphibolites has the same initial 87Sr/86Sr ratio range as the Ep-AI, indicating that the amphibolite-facies fluid involved in the apatite crystallization was also internally derived. We propose that at least two separate stages of fluids were accounted for the amphibolite-facies retrogression of the Hualiangting eclogite. The fluid responsible for the growth of most of the amphibolite minerals was locally derived and behaved in a pervasive manner, whereas the influx of gneiss-derived fluid was transient, episodic, and highly channelized with a longer transport distance (> 60 m). The disparate origins and flow behavior of these fluids significantly influence the water budget and element transfer in exhumed HP-UHP slabs. This study also indicates that examining grain-scale Sr isotopic variations provides key information regarding the isotopic (dis)equilibrium, fluid origins, and fluid-flow regimes in metamorphic or metasomatic rocks that form in subduction-zone environments.

  3. Application of TIMS data in stratigraphic analysis

    NASA Technical Reports Server (NTRS)

    Lang, H. R.

    1986-01-01

    An in-progress study demonstrates the utility of Thermal Infrared Multispectral Scanner (TIMS) data for unraveling the stratigraphic sequence of a western interior, North American foreland basin. The TIMS data can be used to determine the stratigraphic distribution of minerals that are diagnostic of specific depositional distribution. The thematic mapper (TM) and TIMS data were acquired in the Wind River/Bighorn area of central Wyoming in November 1982, and July 1983, respectively. Combined image processing, photogeologic, and spectral analysis methods were used to: map strata; construct stratigraphic columns; correlate data; and identify mineralogical facies.

  4. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results.

    PubMed

    Christensen, Philip R; Bandfield, Joshua L; Bell, James F; Gorelick, Noel; Hamilton, Victoria E; Ivanov, Anton; Jakosky, Bruce M; Kieffer, Hugh H; Lane, Melissa D; Malin, Michael C; McConnochie, Timothy; McEwen, Alfred S; McSween, Harry Y; Mehall, Greg L; Moersch, Jeffery E; Nealson, Kenneth H; Rice, James W; Richardson, Mark I; Ruff, Steven W; Smith, Michael D; Titus, Timothy N; Wyatt, Michael B

    2003-06-27

    The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.

  5. Functionality of bismuth sulfide quantum dots/wires-glass nanocomposite as an optical current sensor with enhanced Verdet constant

    NASA Astrophysics Data System (ADS)

    Panmand, Rajendra P.; Kumar, Ganapathy; Mahajan, Satish M.; Kulkarni, Milind V.; Amalnerkar, D. P.; Kale, Bharat B.; Gosavi, Suresh. W.

    2011-02-01

    We report optical studies with magneto-optic properties of Bi2S3 quantum dot/wires-glass nanocomposite. The size of the Q-dot was observed to be in the range 3-15 nm along with 11 nm Q-wires. Optical study clearly demonstrated the size quantization effect with drastic band gap variation with size. Faraday rotation tests on the glass nanocomposites show variation in Verdet constant with Q-dot size. Bi2S3 Q-dot/wires glass nanocomposite demonstrated 190 times enhanced Verdet constant compared to the host glass. Prima facie observations exemplify the significant enhancement in Verdet constant of Q-dot glass nanocomposites and will have potential application in magneto-optical devices.

  6. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results

    USGS Publications Warehouse

    Christensen, P.R.; Bandfield, J.L.; Bell, J.F.; Gorelick, N.; Hamilton, V.E.; Ivanov, A.; Jakosky, B.M.; Kieffer, H.H.; Lane, M.D.; Malin, M.C.; McConnochie, T.; McEwen, A.S.; McSween, H.Y.; Mehall, G.L.; Moersch, J.E.; Nealson, K.H.; Rice, J. W.; Richardson, M.I.; Ruff, S.W.; Smith, M.D.; Titus, T.N.; Wyatt, M.B.

    2003-01-01

    The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.

  7. Sedimentology of rocky shorelines: 1. A review of the problem, with analytical methods, and insights gained from the Hulopoe Gravel and the modern rocky shoreline of Lanai, Hawaii

    NASA Astrophysics Data System (ADS)

    Felton, E. Anne

    2002-10-01

    Hypotheses advanced concerning the origin of the Pleistocene Hulopoe Gravel on Lanai include mega-tsunami, abandoned beach, 'multiple event,' rocky shoreline, and for parts of the deposit, Native Hawaiian constructions and degraded lava flow fronts. Uplift of Lanai shorelines has been suggested for deposits occurring up to at least 190 m. These conflicting hypotheses highlight problems with the interpretation of coarse gravel deposits containing marine biotic remains. The geological records of the processes implied by these hypotheses should look very different. Discrimination among these or any other hypotheses for the origins of the Hulopoe Gravel will require careful study of vertical and lateral variations in litho- and biofacies, facies architecture, contact relationships and stratal geometries of this deposit. Observations of modern rocky shorelines, particularly on Lanai adjacent to Hulopoe Gravel outcrops, have shown that distinctive coarse gravel facies are present, several of which occur in specific geomorphic settings. Tectonic, isostatic and eustatic changes which cause rapid shoreline translations on steep slopes favour preservation of former rocky shorelines and associated sedimentary deposits both above and below sea level. The sedimentary record of those shorelines is likely to be complex. The modern rocky shoreline sedimentary environment is a hostile one, largely neglected by sedimentologists. A range of high-energy processes characterize these shorelines. Long-period swell, tsunami and storm waves can erode hard bedrock and generate coarse gravel. They also erode older deposits, depositing fresh ones containing mixtures of materials of different ages. Additional gravelly material may be contributed by rivers draining steep hinterlands. To fully evaluate rocky shoreline deposition in the broadest sense, for both the Hulopoe Gravel and other deposits, sedimentary facies models are needed for rocky shorelines occurring in a range of settings. Recognition and description of rocky shoreline deposits are crucial for correctly interpreting the geological history of oceanic and volcanic arc islands, for distinguishing between ancient tsunami and storm deposits, and for interpreting coarse-grained deposits preserved on high energy coasts of continents. Problems include not only the absence of appropriate sedimentary facies models linking rocky shoreline deposits and environments but also, until recently, lack of a systematic descriptive scheme applicable to coarse gravel deposits generally. Two complementary methods serve to integrate the wide range of bed and clast attributes and parameters which characterize complex coarse gravel deposits. The composition and fabric (CAF) method has a materials focus, providing detailed description of attributes of the constituent clasts, petrology, the proportions of gravel, sand and mud, and the ways in which these materials are organized. The sedimentary facies model building (FMB) method emphasizes the organization of a deposit on a bed-by-bed basis to identify facies and infer depositional processes. The systematic use of a comprehensive gravel fabric and petrography log (GFPL), in conjunction with detailed vertical profiles, provides visual representations of a range of deposit characteristics. Criteria useful for distinguishing sedimentary facies in the Hulopoe Gravel are: grain-size modes, amount of matrix, bed geometry, sedimentary structures, bed fabric and clast roundness.

  8. Ifhasa aljaynum albshry: Dirasat faqhiat tatbiqia (mrkz Qatar lilwirathat anmwdhjaan)

    NASA Astrophysics Data System (ADS)

    Dawood, Zainab Abdulqader

    This field case study focuses on Upper Jurassic (Oxfordian) Smackover hydrocarbon reservoir characterization, modeling and evaluation at Fishpond Field, Escambia County, Alabama, eastern Gulf Coastal Plain of North America. The field is located in the Conecuh Embayment area, south of the Little Cedar Creek Field in Conecuh County and east of Appleton Field in Escambia County. In the Conecuh Embayment, Smackover microbial buildups commonly developed on Paleozoic basement paleohighs in an inner to middle carbonate ramp setting. The microbial and associated facies identified in Fishpond Field are: (F-1) peloidal wackestone, (F-2) peloidal packstone, (F-3) peloidal grainstone, (F-4) peloidal grainstone/packstone, (F-5) microbially-influenced wackestone, (F-6) microbially-influenced packstone, (F-7) microbial boundstone, (F-8) oolitic grainstone, (F-9) shale, and (F-10) dolomitized wackestone/packstone. The Smackover section consists of an alternation of carbonate facies, including F-1 through F-8. The repetitive vertical trend in facies indicates variations in depositional conditions in the area as a result of changes in water depth, energy conditions, salinity, and/or water chemistry due to temporal variations or changes in relative sea level. Accommodation for sediment accumulation also was produced by a change in base level due to differential movement of basement rocks as a result of faulting and/or subsidence due to burial compaction and extension. These changes in base level contributed to the development of a microbial buildup that ranges between 130-165 ft in thickness. The Fishpond Field carbonate reservoir includes a lower microbial buildup interval, a middle grainstone/packstone interval and an upper microbial buildup interval. The Fishpond Field has sedimentary and petroleum system characteristics similar to the neighboring Appleton and Little Cedar Creek Fields, but also has distinct differences from these Smackover fields. The characteristics of the petroleum trap and reservoir at Fishpond Field requires modification of the exploration strategy presently in use to identify Smackover reservoirs productive of hydrocarbons in the Conecuh Embayment area. The complexity of the geologic history of the petroleum trap and reservoir development at Fishpond Field distinguishes this field from the Appleton basement paleohigh and related microbial buildup and the Little Cedar Creek stratigraphic trap and associated inner ramp microbial buildups.

  9. La Peligrosa caldera (47° 15‧S, 71° 40‧W): A key event during the Jurassic ignimbrite flare-up in Southern Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Sruoga, P.; Japas, M. S.; Salani, F. M.; Kleiman, L. E.

    2014-01-01

    Pyroclastic and lava vent-facies, from the Late Jurassic El Quemado Complex, are described at the southern Lake Ghío, in the Cordillera Patagónica Austral. Based on the comprehensive study of lithology and structures, the reconstruction of the volcanic architecture has been carried out. Four ignimbrites and one rhyolitic lava unit, affected by oblique-slip normal faults have been recognized. The evolution of La Peligrosa Caldera has been modeled in three different stages:1) initial collapse, consisting of a precursory downsag subsidence, related to a dilatational zone, which controlled the location of the caldera, 2) main collapse, with the emplacement of large volume crystal-rich ignimbrites and megabreccias, under a progressive subsidence controlled by a pull-apart structure related to a transtensional regime and 3) post-collapse, in which lava flows and associated domes were emplaced under an oblique-extensional regime. The caldera records a remarkable change from transtension to oblique extension, which may represent an important variation in regional deformation conditions during Jurassic times. La Peligrosa Caldera may be considered a key event to understand the eruptive mechanisms of the flare-up volcanism in the Chon Aike Silicic Province.

  10. Landscape dynamics assessment of dry climatic zones on the Baikal-Gobi transect from NDVI time series and field investigations data

    NASA Astrophysics Data System (ADS)

    Sayapina, D. O.; Zharnikova, M. A.; Tsydypov, B. Z.; Sodnomov, B. V.; Garmaev, E. Zh

    2016-11-01

    Starting in the eighties of the 20th century, the scientists of the Baikal Institute of Nature Management (BINM SB RAS) have been conducting field observations of the Transbaikalia geosystems transformation due to the change of climate and nature management. An utmost importance is placed on the study of a negative response of the land geosystems. This is shown through their deterioration, degradation, and desertification in particular. Through the years of research (1985-2015) in dry areas of the north of Central Asia, the scientists of the BINM SB RAS established a network of key sites for contact monitoring of the status and dynamics of the geosystems and the negative natural-anthropogenic processes along the Baikal-Gobi meridional transect (51-44° N, 105-107° E). The monitoring of the status and dynamics of the vegetation cover of some key sites is conducted by processing and analysis of multitemporal and multispectral Landsat and MODIS Terra imagery. An automatic analysis of the time variation of NDVI and a comparison with the progress of the index in the previous seasons are performed. The landscape indication of the key sites is made on the basis of satellite imagery and complete geobotanical descriptions. Landscape profiles and facies maps with natural boundaries are created.

  11. Polymetamorphic evolution of the granulite-facies Paleoproterozoic basement of the Kabul Block, Afghanistan

    NASA Astrophysics Data System (ADS)

    Collett, Stephen; Faryad, Shah Wali; Mosazai, Amir Mohammad

    2015-08-01

    The Kabul Block is an elongate crustal fragment which cuts across the Afghan Central Blocks, adjoining the Indian and Eurasian continents. Bounded by major strike slip faults and ophiolitic material thrust onto either side, the block contains a strongly metamorphosed basement consisting of some of the only quantifiably Proterozoic rocks south of the Herat-Panjshir Suture Zone. The basement rocks crop-out extensively in the vicinity of Kabul City and consist predominantly of migmatites, gneisses, schists and small amounts of higher-grade granulite-facies rocks. Granulite-facies assemblages were identified in felsic and mafic siliceous rocks as well as impure carbonates. Granulite-facies conditions are recorded by the presence of orthopyroxene overgrowing biotite in felsic rocks; by orthopyroxene overgrowing amphibole in mafic rocks and by the presence of olivine and clinohumite in the marbles. The granulite-facies assemblages are overprinted by a younger amphibolite-facies event that is characterized by the growth of garnet at the expense of the granulite-facies phases. Pressure-temperature (P-T) conditions for the granulite-facies event of around 850 °C and up to 7 kbar were calculated through conventional thermobarometry and phase equilibria modeling. The younger, amphibolite-facies event shows moderately higher pressures of up to 8.5 kbar at around 600 °C. This metamorphism likely corresponds to the dominant metamorphic event within the basement of the Kabul Block. The results of this work are combined with the litho-stratigraphic relations and recent geochronological dating to analyze envisaged Paleoproterozoic and Neoproterozoic metamorphic events in the Kabul Block.

  12. Fluvial depositional environment evolving into deltaic setting with marine influences in the buntsandstein of northern vosges (France)

    NASA Astrophysics Data System (ADS)

    Gall, Jean-Claude

    The Buntsandstein in the Northern Vosges (France) originates mainly in an inland braidplain fluvial environment which passes in the upper part of the sequence into deltaic milieu in the coastal plain along the border of the sea, with the continental environment finally being drowned with the transgression of the shallow sea. The fluvial sedimentation is characterized by the presence of two facies throughout the Buntsandstein : channel facies and overbank plain facies. The channel facies comprises sandy and conglomeratic deposits forming within active streams by strong currents, whereas the overbank plain facies is built up of silty-clayey sandstones or silt/clay originating in stagnant water in abandoned watercourses, ponds, pools and puddles. The significance of particularly the floodplain sediments is subjected to considerable changes throughout the Buntsandstein sequence. There are all stages of transition between overbank plain deposits being only preserved in ghost-like facies as reworked clasts due to effective secondary removal of primarily occasionally formed suspension fines, and an abundance of autochthonous floodplain sediments in the depositional record resulting from favourable conditions of primary origin and secondary preservation. Reworked ventifacts within fluvial channel sediments testify to subordinate aeolian influences in the alluvial plain, with reasonable reworking, however, having removed all in situ traces of wind activity. Declining aridity of palaeoclimate towards the top is indicated by the appearance of violet horizon palaeosols in the Zone-Limite-Violette and the Couches intermédiaires being accompanied by Bröckelbank carbonate breccias originating from concentration of reworked fragments of pedogenic carbonate nodules. Biogenic traces are in the lower part of the sequence mainly present as Planolites burrows in the finer-grained sediments. Palaeosalinities as revealed from boron contents indicate progressively increasing supersaturation of stagnant waters with time. The fluvial environment persists up to the lower part of the Grès à Voltzia where the progression of the sea towards the west gives rise to a close intertonguing of fluvial and marine influences in a deltaic setting. Lenticular sandstone bodies are laid down as stream mouth bars at the end of the distributary channels and as river bars in the watercourses during both normal and flood discharge. Silty-clayey sediments settle out in stagnant water in restricted ponds, pools and puddles as well as in extensive veneers of shallow water in the overbank plain between the streams. Carbonate-bearing deposits originate in the coastal littoral mud flat, marsh seam, beach belt and tidal flat. The Grès à Voltzia has the greatest palaeoenvironmental and palaeoecological significance in the Buntsandstein of the Northern Vosges due to the occurrence of a wealth of extraordinarily well-preserved plant and animal fossils (having been recovered by Louis Grauvogel during almost 50 years and since abt. 25 years by Jean-Claude Gall). The rich suite of faunal and floral elements includes aquatic invertebrates, terrestrial animals and continental plants. The aquatic invertebrate fauna lives in fresh lakes and brackish ponds in the overbank plain and in brackish lagoons in the coastal seam as well as in hypersaline and euhaline marginal marine waters. The terrestrial plants colonize both dry and wet substrates, and the continental fauna consists of mainly arthropods, amphibians and reptiles inhabiting the levee zones of standing and flowing waters and strolling across the desiccated flats. The marine euryhaline association of invertebrates is with time replaced by a stenohaline community, and the deltaic plain of the Grès à Voltzia is finally inundated by a pellicular transgression representing the first stage of the Muschelkalk sea setting an end to Buntsandstein continental deposition.

  13. Nonpoint Source Solute Transport Normal to Aquifer Bedding in Heterogeneous, Markov Chain Random Fields

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Harter, T.; Sivakumar, B.

    2005-12-01

    Facies-based geostatistical models have become important tools for the stochastic analysis of flow and transport processes in heterogeneous aquifers. However, little is known about the dependency of these processes on the parameters of facies- based geostatistical models. This study examines the nonpoint source solute transport normal to the major bedding plane in the presence of interconnected high conductivity (coarse- textured) facies in the aquifer medium and the dependence of the transport behavior upon the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute travel time probability distribution functions (pdfs) for solute flux from the water table to the bottom boundary (production horizon) of the aquifer. The cases examined include, two-, three-, and four-facies models with horizontal to vertical facies mean length anisotropy ratios, ek, from 25:1 to 300:1, and with a wide range of facies volume proportions (e.g, from 5% to 95% coarse textured facies). Predictions of travel time pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer, the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and - to a lesser degree - the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, travel time pdfs are not log- normally distributed as is often assumed. Also, macrodispersive behavior (variance of the travel time pdf) was found to not be a unique function of the conductivity variance. The skewness of the travel time pdf varied from negatively skewed to strongly positively skewed within the parameter range examined. We also show that the Markov chain approach may give significantly different travel time pdfs when compared to the more commonly used Gaussian random field approach even though the first and second order moments in the geostatistical distribution of the lnK field are identical. The choice of the appropriate geostatistical model is therefore critical in the assessment of nonpoint source transport.

  14. Integrated Ground-based Hyperspectral Imaging and Geochemical Study of the Eagle Ford Group in West Texas

    NASA Astrophysics Data System (ADS)

    Sun, L.; Khan, S.; Godet, A.

    2017-12-01

    This study used ground-based hyperspectral imaging to map an outcrop of the Eagle Ford Group in west Texas. The Eagle Ford Group consists of alternating layers of mudstone - wackestone, grainstone - packstone facies and volcanic ash deposits with high total organic carbon content deposited during the Late Cenomanian - Turonian time period. It is one of the few unconventional source rock and reservoirs that have surface representations. Ground-based hyperspectral imaging scanned an outcrop and hand samples at close ranges with very fine spatial resolution (centimeter to sub-millimeter). Spectral absorption modeling of clay minerals and calcite with the modified Gaussian model (MGM) allowed quantification of variations of mineral abundances. Petrographic analysis confirmed mineral identifications and shed light on sedimentary textures. Major element geochemistry confirmed the mineral quantification. Enrichment of molybdenum (Mo) and uranium (U) indicated "unrestricted marine" paleo-hydrogeology and anoxic to euxinic paleo-redox bottom water conditions. Mineral quantification resulted in mapping of mudstone - wackestone, grainstone - packstone facies and claystones (volcanic ash beds). The lack of spatial associations between the grainstones and claystones on the outcrop calls into question the hypothesis that the primary productivity is controlled by iron availability from volcanic ash beds. Hyperspectral remote sensing data also helped in creating a virtual outcrop model with detailed mineralogical compositions, and provided reservoir analog to extract compositional and geo-mechanical characteristics and variations. The utilization of these new techniques in geo-statistical analysis provides a workflow for employing remote sensing in resource exploration and exploitation.

  15. Integrated ground-based hyperspectral imaging and geochemical study of the Eagle Ford Group in West Texas

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Khan, Shuhab; Godet, Alexis

    2018-01-01

    This study used ground-based hyperspectral imaging to map an outcrop of the Eagle Ford Group in west Texas. The Eagle Ford Group consists of alternating layers of mudstone - wackestone, grainstone - packstone facies and volcanic ash deposits with high total organic content deposited during the Cenomanian - Turonian time period. It is one of the few unconventional source rock and reservoirs that have surface representations. Ground-based hyperspectral imaging scanned an outcrop and hand samples at close ranges with very fine spatial resolution (centimeter to sub-millimeter). Spectral absorption modeling of clay minerals and calcite with the modified Gaussian model (MGM) allowed quantification of variations of mineral abundances. Petrographic analysis confirmed mineral identifications and shed light on sedimentary textures, and major element geochemistry supported the mineral quantification. Mineral quantification resulted in mapping of mudstone - wackestone, grainstone - packstone facies and bentonites (volcanic ash beds). The lack of spatial associations between the grainstones and bentonites on the outcrop calls into question the hypothesis that the primary productivity is controlled by iron availability from volcanic ash beds. Enrichment of molybdenum (Mo) and uranium (U) indicated "unrestricted marine" paleo-hydrogeology and anoxic to euxinic paleo-redox bottom water conditions. Hyperspectral remote sensing data also helped in creating a virtual outcrop model with detailed mineralogical compositions, and provided reservoir analog to extract compositional and geo-mechanical characteristics and variations. The utilization of these new techniques in geo-statistical analysis provides a workflow for employing remote sensing in resource exploration and exploitation.

  16. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    USGS Publications Warehouse

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, U.; Stein, R.

    A 290-m-thick middle Cretaceous black shale sequence in the upper Magdalena Valley, a present-day intramontane basin located between the Central and Eastern cordilleras of Colombia, was investigated with organic-geochemical and microscopic analyses. As a result of the investigation, we were able to (1) differentiate four organic facies types, (2) estimate their source rock potential, and (3) integrated these facies into a sequence stratigraphic framework. The four organic facies types were type C, BC, B, and D. Type C contains a district terrigenous organic matter component in lowstand or highstand deposits. Organic facies type BC is characterized by an increase andmore » a better preservation of marine organic matter. BC belongs to the lower part of the transgressive systems tract. Sediments of organic facies type B have the highest amount of marine organic matter due to excellent preservation under anoxic conditions. The absence of bioturbation and the enrichment of trace metals are further implications for deposition under anoxic conditions. Facies type B is found in the upper part of the transgressive systems tract and contains the best petroleum source rock potential. Facies B occurrence coincides with sea level highstand and correlates especially with a maximum flooding in northern South America during the Turonian. Organic facies type D is also related to highstand deposits, but shows a high rate of reworking and degradation of organic matter.« less

  18. ChemCam results from the Shaler outcrop in Gale crater, Mars

    USGS Publications Warehouse

    Anderson, Ryan B.; Bridges, J.C.; Williams, A.; Edgar, L.; Ollila, A.; Williams, J.; Nachon, Marion; Mangold, N.; Fisk, M.; Schieber, J.; Gupta, S.; Dromart, G.; Wiens, R.; Le Mouélic, Stéphane; Forni, O.; Lanza, N.; Mezzacappa, Alissa; Sautter, V.; Blaney, D.; Clark, B.; Clegg, S.; Gasnault, O.; Lasue, J.; Léveillé, Richard; Lewin, E.; Lewis, K.W.; Maurice, S.; Newsom, H.; Schwenzer, S.P.; Vaniman, D.

    2015-01-01

    The ChemCam campaign at the fluvial sedimentary outcrop “Shaler” resulted in observations of 28 non-soil targets, 26 of which included active laser induced breakdown spectroscopy (LIBS), and all of which included Remote Micro-Imager (RMI) images. The Shaler outcrop can be divided into seven facies based on grain size, texture, color, resistance to erosion, and sedimentary structures. The ChemCam observations cover Facies 3 through 7. For all targets, the majority of the grains were below the limit of the RMI resolution, but many targets had a portion of resolvable grains coarser than ∼0.5 mm. The Shaler facies show significant scatter in LIBS spectra and compositions from point to point, but several key compositional trends are apparent, most notably in the average K2O content of the observed facies. Facies 3 is lower in K2O than the other facies and is similar in composition to the “snake,” a clastic dike that occurs lower in the Yellowknife Bay stratigraphic section. Facies 7 is enriched in K2O relative to the other facies and shows some compositional and textural similarities to float rocks near Yellowknife Bay. The remaining facies (4, 5, and 6) are similar in composition to the Sheepbed and Gillespie Lake members, although the Shaler facies have slightly elevated K2O and FeOT. Several analysis points within Shaler suggest the presence of feldspars, though these points have excess FeOT which suggests the presence of Fe oxide cement or inclusions. The majority of LIBS analyses have compositions which indicate that they are mixtures of pyroxene and feldspar. The Shaler feldspathic compositions are more alkaline than typical feldspars from shergottites, suggesting an alkaline basaltic source region, particularly for the K2O-enriched Facies 7. Apart from possible iron-oxide cement, there is little evidence for chemical alteration at Shaler, although calcium-sulfate veins comparable to those observed lower in the stratigraphic section are present. The differing compositions, and inferred provenances at Shaler, suggest compositionally heterogeneous terrain in the Gale crater rim and surroundings, and intermittent periods of deposition.

  19. Fine-Grained Turbidites: Facies, Attributes and Process Implications

    NASA Astrophysics Data System (ADS)

    Stow, Dorrik; Omoniyi, Bayonle

    2016-04-01

    Within turbidite systems, fine-grained sediments are still the poor relation and sport several contrasting facies models linked to process of deposition. These are volumetrically the dominant facies in deepwater and, from a resource perspective, they form important marginal and tight reservoirs, and have great potential for unconventional shale gas, source rocks and seals. They are also significant hosts of metals and rare earth elements. Based on a large number of studies of modern, ancient and subsurface systems, including 1000s of metres of section logging, we define the principal genetic elements of fine-grained deepwater facies, present a new synthesis of facies models and their sedimentary attributes. The principal architectural elements include: non-channelised slope-aprons, channel-fill, channel levee and overbank, turbidite lobes, mass-transport deposits, contourite drifts, basin sheets and drapes. These comprise a variable intercalation of fine-grained facies - thin-bedded and very thin-bedded turbidites, contourites, hemipelagites and pelagites - and associated coarse-grained facies. Characteristic attributes used to discriminate between these different elements are: facies and facies associations; sand-shale ratio, sand and shale geometry and dimensions, sand connectivity; sediment texture and small-scale sedimentary structures; sediment fabric and microfabric; and small-scale vertical sequences of bed thickness. To some extent, we can relate facies and attribute characteristics to different depositional environments. We identify four distinct facies models: (a) silt-laminated mud turbidites, (b) siliciclastic mud turbidites, (c) carbonate mud turbidites, (d) disorganized silty-mud turbidites, and (e) hemiturbidites. Within the grainsize-velocity matrix turbidite plot, these all fall within the region of mean size < 0.063mm, maximum grainsize (one percentile) <0.2mm, and depositional velocity 0.1-0.5 m/s. Silt-laminated turbidites and many mud turbidites reflect uniform, steady flow characteristics and a depositional sorting mechanism for silt-clay separation; whereas disorganized turbidites reflect an unsteady flow type, either as a short-lived surge or as a mud-contaminated mid-flow. Fine-grained carbonate turbidites show certain distinctive characteristics linked to the different dynamic behaviour of fine carbonate material. Hemiturbidites are the result of long-distance transport and an upward buoyancy mechanism during deposition.

  20. Carbonate facies changes in the Upper Ordovician (Late Katian) of the Cincinnati Arch region: Implications for paleoclimate

    NASA Astrophysics Data System (ADS)

    Schwalbach, C. E.; Brett, C. E.; Aucoin, C. D.; Dattilo, B. F.

    2015-12-01

    The Upper Ordovician Rowland Member (Drakes Formation) exposed in the Cincinnati Arch region displays a suite of unusual facies that appear to record an environmental transition during the Late Ordovician. The Rowland displays four well-defined lithofacies, each containing a distinct biofacies. Proximal facies consist of green to gray shaly lime mudstones (often dolomitized), with ripples and desiccation cracks; these facies are sparsely fossiliferous, but show an abundance of infaunal filter feeders indicated by glauconite-filled burrows. These facies pass downramp into pale medium-bedded argillaceous micritic limestones, which are also sparsely fossiliferous but locally contain abundant deposit feeding organisms including brachiopods, small bryozoans, mollusks, and non-calcified algae. Select horizons yield rugosan and large colonial corals. These micritic beds often interfinger with a series of thick skeletal grainstone lenses that represent tidally influenced high-energy shoals and are exceptionally rich in well-preserved gastropods. To the north, these grainstones pass abruptly into offshore gray shaly packstone facies more typical of the Cincinnatian and contain a higher diversity of epifaunal brachiopods and ramose bryozoans. Compared to upramp facies of older Cincinnatian cycles, those of the Rowland show a greater thickness, relatively more micrite and glauconite, and higher abundance of corals and gastropods. These changes appear to be associated with a strong transgression underlain by a regional (and possibly global) lowstand erosional surface, as well as the Waynesville carbon isotope excursion. Additionally, these facies are correlative with similar transgressive facies in other regions, which also overlie regional lowstand unconformities. Increased micrite production instead of skeletal carbonates and the abundance of herbivorous? gastropods rather than echinoderms and bryozoans may indicate large-scale eutrophication and algal production. Ecologically, these events may signify a change in overall taxonomic composition and replacement of incumbent taxa that post-dates the Richmondian invasion. Together, the lithologic and biologic facies patterns of the Rowland may be associated with a rapid rise in base level and the Boda global warming event.

  1. Sedimentary facies and Holocene depositional processes of Laura Island, Majuro Atoll

    NASA Astrophysics Data System (ADS)

    Yasukochi, Toru; Kayanne, Hajime; Yamaguchi, Toru; Yamano, Hiroya

    2014-10-01

    The depositional processes that formed Laura Island, Majuro Atoll, Marshall Islands, were reconstructed based on a facies analysis of island sediments and spine ratios, and radiocarbon ages of foraminifera. Sedimentary facies were analyzed from trenches and drill cores excavated on the island and its adjacent reef flat. Depositional ages were obtained using benthic foraminifera (Calcarina) whose spines had not been abraded. The facies were classified into two types: gravelly and sandy. The initial sediments of these sites consisted of gravelly facies in the lower horizon and sandy facies in the upper horizon. Their ages were approximately 2000 cal BP and coincident with the onset of a 1.1-m decline in regional relative sea level, which enabled deposition of the gravelly facies. Half of the sand fraction of the sediment was composed of larger benthic foraminifera. The spine ratio showed that their supply source on the reef flat was located oceanside of the island. The supply source appears to have been caused by the relative sea-level fall. This indicates that the studied island was formed by a relative reduction in wave energy and enhanced foraminiferal supply, both of which were triggered by the late Holocene relative sea-level fall.

  2. Consolidation of geologic studies of geopressured-geothermal resources in Texas: Barrier-bar tidal-channel reservoir facies architecture, Jackson Group, Prado field, South Texas; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seni, S.J.; Choh, S.J.

    1994-01-01

    Sandstone reservoirs in the Jackson barrier/strandplain play are characterized by low recovery efficiencies and thus contain a large hydrocarbon resource target potentially amenable to advanced recovery techniques. Prado field, Jim Hogg County, South Texas, has produced over 23 million bbl of oil and over 32 million mcf gas from combination structural-stratigraphic traps in the Eocene lower Jackson Group. Hydrocarbon entrapment at Prado field is a result of anticlinal nosing by differential compaction and updip pinch-out of barrier bar sandstone. Relative base-level lowering resulted in forced regression that established lower Jackson shoreline sandstones in a relatively distal location in central Jimmore » Hogg County. Reservoir sand bodies at Prado field comprise complex assemblages of barrier-bar, tidal-inlet fill, back-barrier bar, and shoreface environments. Subsequent progradation built the barrier-bar system seaward 1 to 2 mi. Within the barrier-bar system, favorable targets for hydrocarbon reexploration are concentrated in tidal-inlet facies because they possess the greatest degree of depositional heterogeneity. The purpose of this report is (1) to describe and analyze the sand-body architecture, depositional facies variations, and structure of Prado field, (2) to determine controls on distribution of hydrocarbons pertinent to reexploration for bypassed hydrocarbons, (3) to describe reservoir models at Prado field, and (4) to develop new data affecting the suitability of Jackson oil fields as possible candidates for thermally enhanced recovery of medium to heavy oil.« less

  3. Crustal uplifting rate associated with late-Holocene glacial-isostatic rebound at Skallen and Skarvsnes, Lützow-Holm Bay, East Antarctica: evidence of a synchrony in sedimentary and biological facies on geological setting

    NASA Astrophysics Data System (ADS)

    Takano, Y.; Yokoyama, Y.; Tyler, J. J.; Kojima, H.; Fukui, M.; Sato, T.; Ogawa, N. O.; Suzuki, N.; Kitazato, H.; Ohkouchi, N.

    2010-06-01

    We determined the mean crustal uplifting rate during the late Holocene along the Soya Coast, Lützow-Holm Bay, East Antarctica, by dating a marine-lacustrine transition recorded in lake sediments. We focused on temporal variations in the chemical composition of sediments recovered from Lake Skallen Oike at Skallen and Lake Oyako at Skarvsnes. Both sets of lake sediments record environmental changes associated with a transition from marine to lacustrine (fresh water) settings, as indicated by analyses of sedimentary facies for carbon and nitrogen contents, nitrogen isotopic compositions (15N/14N), and major element concentrations. Changes in the dominant primary producers during the marine-lacustrine transition were also clearly revealed by biogenic Opal-A, diatom assemblages, and gradient gel electrophoresis (DGGE) with 16S rRNA gene analysis. Geochronology based on radiocarbon dating of acid-insoluble organic carbon suggested that the environmental transition from saline to fresh water occurred at 2940±100 cal yr BP at L. Skallen and 1060±90 cal yr BP at L. Oyako. Based on these data and a linear approximation model, we estimated a mean crustal uplifting rate of 3.6 mm yr-1 for the period since the marine-lacustrine transition via brackish condition; this uplift is attributed to glacial-isostatic rebound along the Soya Coast. The geological setting was the primary factor in controlling the emergence event and the occurrence of simultaneous changes in sedimentary and biological facies along the zone of crustal uplift.

  4. Sedimentology of the Upper Triassic-Lower Jurassic (?) Mosolotsane Formation (Karoo Supergroup), Kalahari Karoo Basin, Botswana

    NASA Astrophysics Data System (ADS)

    Bordy, Emese M.; Segwabe, Tebogo; Makuke, Bonno

    2010-08-01

    The Mosolotsane Formation (Lebung Group, Karoo Supergroup) in the Kalahari Karoo Basin of Botswana is a scantly exposed, terrestrial red bed succession which is lithologically correlated with the Late Triassic to Early Jurassic Molteno and Elliot Formations (Karoo Supergroup) in South Africa. New evidence derived from field observations and borehole data via sedimentary facies analysis allowed the assessment of the facies characteristics, distribution and thickness variation as well as palaeo-current directions and sediment composition, and resulted in the palaeo-environmental reconstruction of this poorly known unit. Our results show that the Mosolotsane Formation was deposited in a relatively low-sinuosity meandering river system that drained in a possibly semi-arid environment. Sandstone petrography revealed mainly quartz-rich arenites that were derived from a continental block provenance dominated by metamorphic and/or igneous rocks. Palaeo-flow measurements indicate reasonably strong, unidirectional current patterns with mean flow directions from southeast and east-southeast to northwest and west-northwest. Regional thickness and facies distributions as well as palaeo-drainage indicators suggest that the main depocenter of the Mosolotsane Formation was in the central part of the Kalahari Karoo Basin. Separated from this main depocenter by a west-northwest - east-southeast trending elevated area, an additional depocenter was situated in the north-northeast part of the basin and probably formed part of the Mid-Zambezi Karoo Basin. In addition, data also suggests that further northeast-southwest trending uplands probably existed in the northwest and east, the latter separating the main Kalahari Karoo depocenter from the Tuli Basin.

  5. Magnetism at Depth: A View from an Ancient Continental Subduction and Collision Zone

    NASA Astrophysics Data System (ADS)

    McEnroe, Suzanne A.; Robinson, Peter; Church, Nathan; Purucker, Michael

    2018-04-01

    Recent sophisticated global data compilations and magnetic surveys have been used to investigate the nature of magnetization in the lower crust and upper mantle. Two approaches to constraining magnetizations are developed, providing minimum (0.01 SI) and maximum (0.04 SI) susceptibility estimates, given some assumed thickness (15+ km here). These values are higher than are found in many continental rocks. Are there rocks deeper in the crust or upper mantle that are more magnetic than expected, or are the model assumptions incomplete? What is the magnetic behavior of deep-crustal and upper mantle rocks, when slightly cooler than the Curie or Néel temperatures of their magnetic minerals, after being exhumed from locations of high-grade metamorphism at greater depth? Different sets of equilibrium metamorphic minerals can be considered that would form under different conditions. Results on 1,501 samples from the Western Gneiss Region (WGR) Norway, mainly from mafic and ultramafic bodies subducted to depths of 60-200 km and temperatures of 750 up to 950°C at the very highest pressures, show that rocks did not fully equilibrate to the dominant metamorphic-facies conditions. There is a large variation in petrophysical properties, oxide minerals, and mineral assemblages in WGR samples, though they cannot explain the broad high-amplitude (deep-seated) anomalies measured in this region. The presence of magnetite, and exsolved titanohematite and hemoilmenite in samples, shows those magnetic phases are preserved even at eclogite-facies conditions, in part because complete eclogite-facies equilibrium was rarely achieved.

  6. Facies analysis, diagenesis and sequence stratigraphy of the carbonate-evaporite succession of the Upper Jurassic Surmeh Formation: Impacts on reservoir quality (Salman Oil Field, Persian Gulf, Iran)

    NASA Astrophysics Data System (ADS)

    Beigi, Maryam; Jafarian, Arman; Javanbakht, Mohammad; Wanas, H. A.; Mattern, Frank; Tabatabaei, Amin

    2017-05-01

    This study aims to determine the depositional facies, diagenetic processes and sequence stratigraphic elements of the subsurface carbonate-evaporite succession of the Upper Jurassic (Kimmeridgian-Tithonian) Surmeh Formation of the Salman Oil Field (the Persian Gulf, Iran), in an attempt to explore their impacts on reservoir quality. The Surmeh Formation consists mainly of carbonate rocks, intercalated with evaporite layers. Petrographically, the Surmeh Formation consists of nine microfacies (MF1-MF9). These microfacies are grouped into three facies associations related to three depositional environments (peritidal flat, lagoon and high-energy shoal) sited on the inner part of a homoclinal carbonate ramp. The recorded diagenetic processes include dolomitization, anhydritization, compaction, micritization, neomorphism, dissolution and cementation. Vertical stacking patterns of the studied facies reveal the presence of three third-order depositional sequences, each of which consists of transgressive systems tract (TST) and highstand systems tract (HST). The TSTs comprise intertidal and lagoon facies whereas the HSTs include supratidal and shoal facies. In terms of their impacts on reservoir quality, the shoal facies represent the best reservoir quality, whereas the peritidal and lagoonal facies exhibit moderate to lowest reservoir quality. Also, poikilotopic anhydrite cement played the most significant role in declining the reservoir quality, whereas the widespread dissolution of labile grains and formation of moldic and vuggy pores contributed in enhancing the reservoir quality. In addition, the HSTs have a better reservoir quality than the TSTs. This study represents an approach to use the depositional facies, diagenetic alterations and sequence stratigraphic framework of carbonate -evaporite succession for a more successful reservoir characterization.

  7. Facies analysis, palaeoenvironmental reconstruction and stratigraphic development of the Early Cretaceous sediments (Lower Bima Member) in the Yola Sub-basin, Northern Benue Trough, NE Nigeria

    NASA Astrophysics Data System (ADS)

    Sarki Yandoka, Babangida M.; Abubakar, M. B.; Abdullah, Wan Hasiah; Amir Hassan, M. H.; Adamu, Bappah U.; Jitong, John S.; Aliyu, Abdulkarim H.; Adegoke, Adebanji Kayode

    2014-08-01

    The Benue Trough of Nigeria is a major rift basin formed from the tension generated by the separation of African and South American plates in the Early Cretaceous. It is geographically sub-divided into Southern, Central and Northern Benue portions. The Northern Benue Trough comprises two sub-basins; the N-S trending Gongola Sub-basin and the E-W trending Yola Sub-basin. The Bima Formation is the oldest lithogenetic unit occupying the base of the Cretaceous successions in the Northern Benue Trough. It is differentiated into three members; the Lower Bima (B1), the Middle Bima (B2) and the Upper Bima (B3). Facies and their stratigraphical distribution analyses were conducted on the Lower Bima Member exposed mainly at the core of the NE-SW axially trending Lamurde Anticline in the Yola Sub-basin, with an objective to interpret the paleodepositional environments, and to reconstruct the depositional model and the stratigraphical architecture. Ten (10) lithofacies were identified on the basis of lithology, grain size, sedimentary structures and paleocurrent analysis. The facies constitute three (3) major facies associations; the gravelly dominated, the sandy dominated and the fine grain dominated. These facies and facies associations were interpreted and three facies successions were recognized; the alluvial-proximal braided river, the braided river and the lacustrine-marginal lacustrine. The stratigraphic architecture indicates a rifted (?pull-apart) origin as the facies distribution shows a progradational succession from a shallow lacustrine/marginal lacustrine (at the axial part of the basin) to alluvial fan (sediment gravity flow)-proximal braided river (gravel bed braided river) and braided river (channel and overbank) depositional systems. The facies stacking patterns depict sedimentation mainly controlled by allogenic factors of climate and tectonism.

  8. Structural development of an Archean Orogen, Western Point Lake, Northwest Territories

    NASA Astrophysics Data System (ADS)

    Kusky, Timothy M.

    1991-08-01

    The Point Lake orogen in the central Archean Slave Province of northwestern Canada preserves more than 10 km of structural relief through an eroded antiformal thrust stack and deeper anastomosing midcrustal mylonites. Fault restoration along a 25 km long transect requires a minimum of 69 km slip and 53 km horizontal shortening. In the western part of the orogen the basal decollement places mafic plutonic/volcanic rocks over an ancient tonalitic gneiss complex. Ten kilometers to the east in the Keskarrah Bay area, slices of gneiss unroofed on brittle thrusts shed molasse into several submerged basins. Conglomerates and associated thinly bedded sedimentary rocks are interpreted as channel, levee, and overbank facies of this thrust-related sedimentary fan system. The synorogenic erosion surface at the base of the conglomerate truncates premetamorphic or early metamorphic thrust faults formed during foreland propagation, while other thrusts related to hinterland-progressing imbrication displace this unconformity. Tightening of synorogenic depositional troughs resulted in the conglomerates' present localization in synclines to the west of associated thrust faults and steepening of structural dips. Eastern parts of the orogen consist of isoclinally folded graywackes composed largely of Mutti and Ricci-Lucchi turbidite facies B, C, and D, interpreted as submarine fan deposits eroded from a distant volcanic arc. Thrust faults in the metasedimentary terrane include highly disrupted slate horizons with meter-scale duplex structures, and recrystallized calcmylonites exhibiting sheath folds and boudin trains with very large interboudin distances. The sequence of fabric development and the overall geometry of this metasedimentary terrane strongly resembles younger forearc accretionary prisms. Conditions of deformation along the thrusts parallel the regional metamorphic zonation: amphibolite facies in the basal decollement through greenschist facies shear zones to cataclastic crush zones in the region of emergent thrusts in Keskarrah Bay. Depth differences can account for only half of the metamorphic gradient; thermal profiles which increased downwards in obducted greenstone belts and synthrusting plutonism explains other high metamorphic gradients. A tectonic model involving the collision of an accretionary prism with a continental margin best explains the structural and sedimentological evolution of the orogen.

  9. Stratigraphy of the Mississippi-Alabama shelf and the Mobile River incised-valley system

    USGS Publications Warehouse

    Kindinger, Jack G.; Balson, Peter S.; Flocks, James G.; Dalrymple, Robert W.; Boyd, Ron; Zaitlin, Brian A.

    1994-01-01

    The Holocene incised-valley fill (estuarine facies) underlying Mobile Buy fit well into the conceptual facies model of a microtidal wave-dominated estuary. The model does not fit as well, however, with the rapidly transgressed shelf portion of the incised valley. The down dip section does not contain a clearly identifiable (from seismic profiles) estuarine facies; the valley fill is primarily fluvial and is overlain by marine shoals. In the Mobile River incised valley, the distal portion of the valley was rapidly drowned, allowing the thin estuarine facies to be reworked. The proximal portion was drowned more slowly, leaving the estuarine facies intact. Thus, the single incised valley contains two very different types of fill.

  10. Lateral variations of carbonate platform facies and cycles: The Dachstein Limestone (Late Triassic, Northern Calcareous Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Samankassou, Elias; Enos, Paul

    2017-04-01

    The driving mechanisms of cyclic patterns in shallow-water platform carbonates remain controversial. The focus of the present paper is to quantify lateral facies variations for a long stratigraphic record in an extensive, continuous, well-exposed cliff of the Dachstein platform that is composed, as many other Phanerozoic carbonate platforms, of peritidal deposits. We noted the lateral continuity of the beds to the degree permitted by the outcrop, generally a few tens or hundreds of meters; exceptionally up to 1.7 km. The study demonstrates the importance of quantification to evaluate origins of sedimentary cycles. The upper 885 m of the Triassic Dachstein platform limestone at Steinernes Meer, Saalfelden, Austria, includes 241 peritidal cycles overlain by 275 m of subtidal, non-cyclic and weakly cyclic limestone. Of 558 subtidal and intertidal beds measured, 121 (21.7%) disappear laterally. An additional 74 beds (13.3%) show significant (>10%) lateral variations in thickness. Mean thickness variation is 50%. Both lateral variations and discontinuities appear to lack a spatial vector. Disappearances toward the inferred platform interior (west), total 10.4% of the beds. East toward the inferred platform margin 11.3% of the beds disappear. Thickness changes occur in 6.6% of beds in each direction. The lack of lateral continuity of beds is consistent with a non-eustatic component to stratification. Erosion of intertidal intervals is the process that can be most readily documented. Erosion, transport, and non-uniform distribution of sediments, superposed on stratigraphic sequences driven by eustacy, are the likely processes which produced the complex, randomly recorded cycle patterns. Cycle duration may not be exclusively determined by Milankovitch processes, as suggested by the discrepancies in the cycle duration and interpretation among stratigraphers of the Dachstein, as well as other Phanerozoic carbonate platforms. Signals deduced from linearly measured sections likely represent composite inherent and extrabasinal factors; they should not be automatically interpreted as exclusive records of eustatic orbital forcing. Lateral discontinuities and thickness variations could also present problems in spectral analysis of thickness patterns, typically conducted in search of "Milankovich frequencies", as well as in construction of "Fischer plots," to analyze long-period oscillations in relative sea level. Any section subjected to cycle analysis should be examined for lateral changes, to the extent permitted by the exposures, in order to produce the most complete (composite) section possible.

  11. Facies development and paleoenvironment of the Hajajah Limestone Member, Aruma Formation, central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Sorogy, Abdelbaset S.; Ismail, Abdelmoneim; Youssef, Mohamed; Nour, Hamdy

    2016-12-01

    The Campanian Hajajah Limestone Member of the Aruma Formation was formed during two regressive episodes. Each of them formed of three depositional facies, from base to top: 1) intra-shelf basin facies, made up of fossiliferous green shale and mudstone with ostracods and badly preserved foraminifers. 2) fore-reef facies, consists of hard, massive, marly coralline limestone. The upper part is rich with low divers, badly to moderate preserved, solitary and colonial corals, and, 3) back reef and near-shore facies, consists of fossiliferous sandy dolomitized, bioturbated limestone with abundant reworked corals, bivalves, gastropods, and aggregate grains. On the basis of field observations, micro-and macrofossils and microfacies analysis, the Hajajah Limestone Member was deposited in distal marine settings below storm wave base in a low-energy environment changed upward to fore-reef framework in an open marine environment with moderate to high energy conditions and terminated with shallow marine facies with accumulation of skeletal grains by storms during regression.

  12. Geochemistry of the Serifos calc-alkaline granodiorite pluton, Greece: constraining the crust and mantle contributions to I-type granitoids

    NASA Astrophysics Data System (ADS)

    Stouraiti, C.; Baziotis, I.; Asimow, P. D.; Downes, H.

    2017-11-01

    The Late Miocene (11.6-9.5 Ma) granitoid intrusion on the island of Serifos (Western Cyclades, Aegean Sea) is composed of syn- to post-tectonic granodiorite with quartz monzodiorite enclaves, cut by dacitic and aplitic dikes. The granitoid, a typical I-type metaluminous calcic amphibole-bearing calc-alkaline pluton, intruded the Cycladic Blueschists during thinning of the Aegean plate. Combining field, textural, geochemical and new Sr-Nd-O isotope data presented in this paper, we postulate that the Serifos intrusion is a single-zoned pluton. The central facies has initial 87Sr/86Sr = 0.70906 to 0.7106, ɛNd(t) = - 5.9 to - 7.5 and δ18Οqtz = + 10 to + 10.6‰, whereas the marginal zone (or border facies) has higher initial 87Sr/86Sr = 0.711 to 0.7112, lower ɛ Nd(t) = - 7.3 to - 8.3, and higher δ18Οqtz = + 10.6 to + 11.9‰. The small range in initial Sr and Nd isotopic values throughout the pluton is paired with a remarkable uniformity in trace element patterns, despite a large range in silica contents (58.8 to 72 wt% SiO2). Assimilation of a crustally derived partial melt into the mafic parental magma would progressively add incompatible trace elements and SiO2 to the evolving mafic starting liquid, but the opposite trend, of trace element depletion during magma evolution, is observed in the Serifos granodiorites. Thermodynamic modeling of whole-rock compositions during simple fractional crystallization (FC) or assimilation-fractional crystallization (AFC) processes of major rock-forming minerals—at a variety of pressure, oxidation state, and water activity conditions—fails to reproduce simultaneously the major element and trace element variations among the Serifos granitoids, implying a critical role for minor phases in controlling trace element fractionation. Both saturation of accessory phases such as allanite and titanite (at SiO2 ≥ 71 wt%)(to satisfy trace element constraints) and assimilation of partial melts from a metasedimentary component (to match isotopic data) must have accompanied fractional crystallization of the major phases.

  13. Integrated sedimentological and ichnological characteristics of a wave-dominated, macrotidal coast: a case study from the intertidal shoreface of the Dongho coast, southwest Korea

    NASA Astrophysics Data System (ADS)

    Yang, Byong Cheon; Chang, Tae Soo

    2018-04-01

    Generalized coastal facies models invariably assume that tidal flats and intertidally exposed shorefaces along macrotidal coasts are tide-dominated. Recent advances in coastal sedimentology, however, have revealed that wave-dominated macrotidal flats also occur in a wide range of coastal settings, in particular where tidal modulation forces the lateral translation of the wave-affected zone across the tidally exposed shoreface with the rising tide. Despite tidal modulation, the depositional character in the latter case (abundant storm deposits) exhibits a high degree of similarity with conventional subtidal shorefaces, implying that it is inherently difficult to distinguish between the two coastal systems in the rock record. In the present study, integrated sedimentological and ichnological data from the Dongho coast, which is located along the southwest coast of Korea, provide valuable information for the establishment of facies criteria that can assist in the recognition of such coastal deposits. In fact, the sedimentary character of the study area, which is dominated by an abundance of wave-formed structures, resembles that generally associated with subtidal shorefaces. In addition, the depositional processes responsible for sediment accumulation are, in the present case, also strongly influenced by pronounced seasonal variations in wave energy. In this context, the study has revealed a number of major features that appear to be characteristic of wave-dominated intertidal flats and shorefaces: (1) firmground muds may be encountered on the beach face, where intense swash-backwash motions are dominant; (2) the thickness of storm deposits decreases landward, reflecting the progressive decrease in wave energy; (3) ichnologically, there is an offshore shift in the dominance of trace fossils from the Skolithos ichnofacies, including Ophiomorpha, Thalassinoides and Psilonichnus, to a proximal expression of the Cruziana ichnofacies, which includes Siphonichnus and Asterosoma; (4) compared with subtidal shorefaces, the overall ichnological suite is represented by a substantial reduction in diversity and less uniformly distributed burrows. Although these findings have not yet been applied to the rock record, they should nevertheless assist in the distinction between corresponding coastal deposits.

  14. 76 FR 52561 - Timely Mailing Treated as Timely Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... to the only ways to establish prima facie evidence of delivery of documents that have a filing... (PDS) designated under criteria established by the IRS, will constitute prima facie evidence of... taxpayers to be able to establish the postmark date and prima facie evidence of delivery when using...

  15. Integrated loessite-paleokarst depositional system, early Pennsylvanian Molas Formation, Paradox Basin, southwestern Colorado, U.S.A.

    NASA Astrophysics Data System (ADS)

    Evans, James E.; Reed, Jason M.

    2007-03-01

    Mississippian paleokarst served as a dust trap for the oldest known Paleozoic loessite in North America. The early Pennsylvanian Molas Formation consists of loessite facies (sorted, angular, coarse-grained quartz siltstone), infiltration facies (loess redeposited as cave sediments within paleokarst features of the underlying Mississippian Leadville Limestone), colluvium facies (loess infiltrated into colluvium surrounding paleokarst towers) and fluvial facies (siltstone-rich, fluvial channel and floodplain deposits with paleosols). The depositional system evolved from an initial phase of infiltration and colluvium facies that were spatially and temporally related to the paleokarst surface, to loessite facies that mantled the paleotopography, and to fluvial facies that were intercalated with marine-deltaic rocks of the overlying Pennsylvanian Hermosa Formation. This sequence is interpreted as a response to the modification of the dust-trapping ability of the paleokarst surface. Loess was initially eroded from the surface, transported and redeposited in the subsurface by the karst paleohydrologic system, maintaining the dust-trapping ability of the paleotopographic surface. Later, the paleotopographic surface was buried when loess accumulation rates exceeded the transport capacity of the karst paleohydrologic system. These changes could have occurred because of (1) increased dust input rates in western Pangaea, (2) rising base levels and/or (3) porosity loss due to deposition within paleokarst passageways.

  16. Critical Dynamics of Gravito-Convective Mixing in Geological Carbon Sequestration

    PubMed Central

    Soltanian, Mohamad Reza; Amooie, Mohammad Amin; Dai, Zhenxue; Cole, David; Moortgat, Joachim

    2016-01-01

    When CO2 is injected in saline aquifers, dissolution causes a local increase in brine density that can cause Rayleigh-Taylor-type gravitational instabilities. Depending on the Rayleigh number, density-driven flow may mix dissolved CO2 throughout the aquifer at fast advective time-scales through convective mixing. Heterogeneity can impact density-driven flow to different degrees. Zones with low effective vertical permeability may suppress fingering and reduce vertical spreading, while potentially increasing transverse mixing. In more complex heterogeneity, arising from the spatial organization of sedimentary facies, finger propagation is reduced in low permeability facies, but may be enhanced through more permeable facies. The connectivity of facies is critical in determining the large-scale transport of CO2-rich brine. We perform high-resolution finite element simulations of advection-diffusion transport of CO2 with a focus on facies-based bimodal heterogeneity. Permeability fields are generated by a Markov Chain approach, which represent facies architecture by commonly observed characteristics such as volume fractions. CO2 dissolution and phase behavior are modeled with the cubic-plus-association equation-of-state. Our results show that the organization of high-permeability facies and their connectivity control the dynamics of gravitationally unstable flow. We discover new flow regimes in both homogeneous and heterogeneous media and present quantitative scaling relations for their temporal evolution. PMID:27808178

  17. The origin and evolution of saline formation water, Lower Cretaceous carbonates, south-central Texas, U.S.A.

    NASA Astrophysics Data System (ADS)

    Land, Lynton S.; Prezbindowski, Dennis R.

    1981-12-01

    Systematic chemical variation exists in formation water collected from a dip section through Lower Cretaceous rocks of south-central Texas. Chemical variation can be explained by an interactive water-rock diagenetic model. The cyclic Lower Cretaceous shelf carbonates of the Edwards Group dip into the Gulf of Mexico Coast "geosyncline", and can be considered, to a first approximation, as part of a complex aquifer contained by Paleozoic basement beneath, and by relatively impermeable Upper Cretaceous clay and chalk above. The hydrodynamic character of this carbonate system is strongly controlled by major fault systems. Major fault systems serve as pathways for vertical movement of basinal brines into the Lower Cretaceous section. Formation water movement in this sytem has strong upfault and updip components. The "parent" Na/1bCa/1bCl brine originates deep in the Gulf of Mexico basin, at temperatures between 200 and 250°C, by the reaction: halite + detrital plagioclase + quartz + water → albite + brine Other dissolved components originate by reaction of the fluid with the sedimentary phases, K-feldspar, calcite, dolomite, anhydrite, celestite, barite and fluorite. Significant quantities of Pb, Zn and Fe have been mobilized as well. As the brine moves updip out of the overpressured deep Gulf of Mexico basin, and encounters limestones of the Stuart City Reef Trend (the buried platform margin), small amounts of galena precipitate in late fractures. Continuing to rise upfault and updip, the brine becomes progressively diluted. On encountering significant quantities of dolomite in the backreef facies, the Ca-rich brine causes dedolomitization. Although thermochemical consideration suggests that small amounts of several authigenic phases should precipitate, most have yet to be found. Minor amounts of several kinds of calcite spar are present, however. As the brine evolves by dilution and by cooling, no systematic changes in any cation/Cl ratio occur, except for regular updip gain in Mg as a result of progressive dedolomitization. The formation water, highly diluted by meteoric water, eventually discharges along faults as hot mineral water.

  18. Contourites associated with pelagic mudrocks and distal delta-fed turbidites in the Lower Proterozoic Timeball Hill Formation epeiric basin (Transvaal Supergroup), South Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, Patrick G.; Reczko, Boris F. F.

    1998-09-01

    Five genetic facies associations/architectural elements are recognised for the epeiric sea deposits preserved in the Early Proterozoic Timeball Hill Formation, South Africa. Basal carbonaceous mudrocks, interpreted as anoxic suspension deposits, grade up into sheet-like, laminated, graded mudrocks and succeeding sheets of laminated and cross-laminated siltstones and fine-grained sandstones. The latter two architectural elements are compatible with the Te, Td and Tc subdivisions of low-density turbidity current systems. Thin interbeds of stromatolitic carbonate within these first three facies associations support photic water depths up to about 100 m. Laterally extensive sheets of mature, cross-bedded sandstone disconformably overlie the turbidite deposits, and are ascribed to lower tidal flat processes. Interbedded lenticular, immature sandstones and mudrocks comprise the fifth architectural element, and are interpreted as medial to upper tidal flat sediments. Small lenses of coarse siltstone-very fine-grained sandstone, analogous to modern continental rise contourite deposits, occur within the suspension and distal turbidite sediments, and also form local wedges of inferred contourites at the transition from suspension to lowermost turbidite deposits. Blanketing and progressive shallowing of the floor of the Timeball Hill basin by basal suspension deposits greatly reduced wave action, thereby promoting preservation of low-density turbidity current deposits across the basin under stillstand or highstand conditions. A lowstand tidal flat facies tract laid down widespread sandy deposits of the medial Klapperkop Member within the formation. Salinity gradients and contemporaneous cold periglacial water masses were probably responsible for formation of the inferred contourites. The combination of the depositional systems interpreted for the Timeball Hill Formation may provide a provisional model for Early Proterozoic epeiric basin settings.

  19. Glacial-marine sediments record ice-shelf retreat during the late Holocene in Beascochea Bay on the western margin of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Hardin, L. A.; Wellner, J. S.

    2010-12-01

    Beascochea Bay has an overall rapid rate of sedimentation due to retreating fast-flowing ice, and thus contains high-resolution records of Antarctica’s glacial and climate history. Beascochea Bay is a 16 km long by 8 km wide bay located on the western margin of the Antarctica Peninsula, centered between Anvers Island and Renaud Island, but open to the Bellingshausen Sea. Currently, three tidewater glaciers draining the Bruce Plateau of Graham Land enter into the fjords of Beascochea Bay, releasing terrigenous sediments which have left a record of the fluctuations of the Antarctic Peninsula Ice Cap since the grounded ice decoupled from the seafloor after the last glacial maximum. These three glaciers have played a significant role in providing sediment to the main basin, allowing a detailed sediment facies analysis to be conducted from eight sediment cores which were collected during the austral summer of 2007. Pebbly silty clay sediment cores, along with 3.5 kHz seismic data and multibeam swath bathymetry data, are integrated to reconstruct a glacial retreat timeline for the middle to late Holocene, which can be compared to the recent retreat rates over the last century. Paleoenvironment of deposition is determined by mapping lateral facies changes from the side fjords (proximal) to the outer basin (distal), as each region records the transition from glacial-marine sediments to open-marine sediments. As the ice retreated from the outer basin to the inner basin, and most recently leaving the side fjords, each facies deposited can be age-constrained by radiocarbon, 210Pb, and 137Cs dating methods. A distinct 137Cs signal is readily seen in two kasten cores from a side fjord and the inner basin of Beascochea Bay. This dating method revealed an average sedimentation rate of 2.7 mm per year for approximately the last century, which is comparable to 210Pb rates obtained in other studies. Lithology variations in each sediment core record indications of ice-shelf influence in Beascochea Bay throughout the Holocene deglaciation. The distinctively laminated sub-ice shelf facies can be clearly seen in the x-rays of these cores, and can be easily distinguished from the poorly sorted glacial-marine facies and the greenish finer-grained facies deposited in open-marine conditions. A 14 m long sediment core taken from the outer basin of Beascochea Bay recovered the greatest length of sediment and dates back to the middle Holocene. X-rays of this core show a possible mid-Holocene retreat of the ice shelf followed by intermittent advance and retreat that precedes the most recent retreat. The inner basin of Beascochea Bay has been without an ice shelf for the last 200 years, based on the sedimentation rates of the last century projected downcore.

  20. Sedimentology and ichnology of two Lower Triassic sections in South China: Implications for the biotic recovery following the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Luo, Mao; George, Annette D.; Chen, Zhong-Qiang

    2016-09-01

    Biotic recovery following the end-Permian mass extinction was investigated using trace fossil and facies analysis of two Lower-Middle Triassic sections in South China. The Susong section (Lower Yangtze Sedimentary Province) comprises a range of carbonate and mudstone facies that record overall shallowing from offshore to intertidal settings. The Tianshengqiao section (Upper Yangtze Sedimentary Province) consists of mixed carbonate and siliciclastic facies deposited in shallow marine to offshore settings. Griesbachian to Dienerian ichnological records in both sections are characterized by low ichnodiversity, low ichnofabric indices (1-2) and low bedding plane bioturbation indices (1-2). Higher ichnofabric indices (3 and 4), corresponding to a dense population of diminutive ichnotaxon, in the Tianshengqiao section suggest opportunistic infaunal biotic activity during the earliest Triassic. Ichnological data from the Susong section show an increase in ichnodiversity during the late Smithian with 11 ichnogenera identified and increased ichnofabric indices of 4-5 and bedding plane bioturbation indices of 3-5. Although complex traces such as Rhizocorallium are present in Spathian-aged strata in this section, low ichnodiversity and ichnofabric indices and diminutive Planolites suggest a decline in recovery. In the Tianshengqiao section, ichnofabric indices are moderate to high (3-5) although only six ichnogenera are present and Planolites burrows are consistently small in Smithian and Spathian strata. Complex traces, such as large Rhizocorallium and Thalassinoides, and large Planolites, did not appear until the Anisian. Ichnological results from both sections record the response of organisms to unfavourable environmental conditions although the Susong section shows earlier recovery during the Smithian prior to latest Smithian-Spathian decline. This decline may have resulted from a resurgence of euxinic to anoxic marine environment in various regions of South China. Ichnological data from the Tianshengqiao section indicate protracted recovery throughout the Early Triassic as previously found elsewhere in South China. Comparison of the South China trace fossil records with global ichnological data show a diachronous pattern of recovery of trace makers and highlights the heterogeneous development of oxic facies on the marked variation in recovery rate.

  1. Lithofacies and seismic-reflection interpretation of temperate glacimarine sedimentation in Tarr Inlet, Glacier Bay, Alaska

    USGS Publications Warehouse

    Cai, J.; Powell, R.D.; Cowan, E.A.; Carlson, P.R.

    1997-01-01

    High-resolution seismic-reflection profiles of sediment fill within Tart Inlet of Glacier Bay, Alaska, show seismic facies changes with increasing distance from the glacial termini. Five types of seismic facies are recognized from analysis of Huntec and minisparker records, and seven lithofacies are determined from detailed sedimentologic study of gravity-, vibro- and box-cores, and bottom grab samples. Lithofacies and seismic facies associations, and fjord-floor morphology allow us to divide the fjord into three sedimentary environments: ice-proximal, iceberg-zone and ice-distal. The ice-proximal environment, characterized by a morainal-bank depositional system, can be subdivided into bank-back, bank-core and bank-front subenvironments, each of which is characterized by a different depositional subsystem. A bank-back subsystem shows chaotic seismic facies with a mounded surface, which we infer consists mainly of unsorted diamicton and poorly sorted coarse-grained sediments. A bank-core depositional subsystem is a mixture of diamicton, rubble, gravel, sand and mud. Seismic-reflection records of this subsystem are characterized by chaotic seismic facies with abundant hyperbolic diffractions and a hummocky surface. A bank-front depositional subsystem consists of mainly stratified and massive sand, and is characterized by internal hummocky facies on seismic-reflection records with significant surface relief and sediment gravity flow channels. The depositional system formed in the iceberg-zone environment consists of rhythmically laminated mud interbedded with thin beds of weakly stratified diamicton and stratified or massive sand and silt. On seismic-reflection profiles, this depositional system is characterized by discontinuously stratified facies with multiple channels on the surface in the proximal zone and a single channel on the largely flat sediment surface in the distal zone. The depositional system formed in the ice-distal environment consists of interbedded homogeneous or laminated mud and massive or stratified sand and coarse silt. This depositional system shows continuously stratified seismic facies with smooth and flat surfaces on minisparker records, and continuously stratified seismic facies which are interlayered with thin weakly stratified facies on Huntec records.

  2. Pattern recognition analysis and classification modeling of selenium-producing areas

    USGS Publications Warehouse

    Naftz, D.L.

    1996-01-01

    Established chemometric and geochemical techniques were applied to water quality data from 23 National Irrigation Water Quality Program (NIWQP) study areas in the Western United States. These techniques were applied to the NIWQP data set to identify common geochemical processes responsible for mobilization of selenium and to develop a classification model that uses major-ion concentrations to identify areas that contain elevated selenium concentrations in water that could pose a hazard to water fowl. Pattern recognition modeling of the simple-salt data computed with the SNORM geochemical program indicate three principal components that explain 95% of the total variance. A three-dimensional plot of PC 1, 2 and 3 scores shows three distinct clusters that correspond to distinct hydrochemical facies denoted as facies 1, 2 and 3. Facies 1 samples are distinguished by water samples without the CaCO3 simple salt and elevated concentrations of NaCl, CaSO4, MgSO4 and Na2SO4 simple salts relative to water samples in facies 2 and 3. Water samples in facies 2 are distinguished from facies 1 by the absence of the MgSO4 simple salt and the presence of the CaCO3 simple salt. Water samples in facies 3 are similar to samples in facies 2, with the absence of both MgSO4 and CaSO4 simple salts. Water samples in facies 1 have the largest selenium concentration (10 ??gl-1), compared to a median concentration of 2.0 ??gl-1 and less than 1.0 ??gl-1 for samples in facies 2 and 3. A classification model using the soft independent modeling by class analogy (SIMCA) algorithm was constructed with data from the NIWQP study areas. The classification model was successful in identifying water samples with a selenium concentration that is hazardous to some species of water-fowl from a test data set comprised of 2,060 water samples from throughout Utah and Wyoming. Application of chemometric and geochemical techniques during data synthesis analysis of multivariate environmental databases from other national-scale environmental programs such as the NIWQP could also provide useful insights for addressing 'real world' environmental problems.

  3. Nuées ardentes of 22 November 1994 at Merapi volcano, Java, Indonesia

    USGS Publications Warehouse

    Abdurachman, E.K.; Bourdier, J.-L.; Voight, B.

    2000-01-01

    Nuées ardentes associated with dome collapse on 22 November 1994, at Merapi volcano traveled to the south–southwest as far as 6.5 km, and collectively accumulated roughly 2.5–3 million cubic meters of deposits. The damaged area comprises 9.5 km2 and is covered by two nuée ardente facies, a conventional “Merapi-type”, valley-fill block-and-ash flow facies and a pyroclastic surge facies. The proximal deposits reflect the accumulation of dozens of nuées ardentes, with many subsidiary flow units. The distal deposits are more simply organized, as only a few individual events reached to distances >3.5 km. The stratigraphic relationships north of Turgo hill indicate that the surge deposits are a facies of particularly mobile nuées ardentes that also deposited channeled block-and-ash flow facies. They further suggest that the surge facies beyond the channel margins correlate laterally with a finer-grained sublayer locally developed at the base of the block-and-ash flow facies. Eyewitness reports suggest that the emplacement of the block-and-ash flow facies in the distal part of the Boyong river may have followed, by a short time interval, the destruction and deposition of the surge facies at Turgo village. The stratigraphy is in accord with the eyewitness reports. The surge facies was emplaced by a dilute surge current, detached from the same dome-collapse nuée ardente that, as a separate flow unit, subsequently emplaced the distal block-and-ash deposit in the Boyong valley. The detachment occurred at higher elevations, likely at or above the slope break at about 2000 m elevation. This flow separation enabled the surge current to shortcut over the landscape and to emplace its deposit even as the block-and-ash flow continued its tortuous southward movement in the Boyong channel. Dome-collapse nuée ardente activity formed the bulk of the eruption, which was accompanied by virtually no significant vertical summit explosive activity.

  4. Discrete Regularization for Calibration of Geologic Facies Against Dynamic Flow Data

    NASA Astrophysics Data System (ADS)

    Khaninezhad, Mohammad-Reza; Golmohammadi, Azarang; Jafarpour, Behnam

    2018-04-01

    Subsurface flow model calibration involves many more unknowns than measurements, leading to ill-posed problems with nonunique solutions. To alleviate nonuniqueness, the problem is regularized by constraining the solution space using prior knowledge. In certain sedimentary environments, such as fluvial systems, the contrast in hydraulic properties of different facies types tends to dominate the flow and transport behavior, making the effect of within facies heterogeneity less significant. Hence, flow model calibration in those formations reduces to delineating the spatial structure and connectivity of different lithofacies types and their boundaries. A major difficulty in calibrating such models is honoring the discrete, or piecewise constant, nature of facies distribution. The problem becomes more challenging when complex spatial connectivity patterns with higher-order statistics are involved. This paper introduces a novel formulation for calibration of complex geologic facies by imposing appropriate constraints to recover plausible solutions that honor the spatial connectivity and discreteness of facies models. To incorporate prior connectivity patterns, plausible geologic features are learned from available training models. This is achieved by learning spatial patterns from training data, e.g., k-SVD sparse learning or the traditional Principal Component Analysis. Discrete regularization is introduced as a penalty functions to impose solution discreteness while minimizing the mismatch between observed and predicted data. An efficient gradient-based alternating directions algorithm is combined with variable splitting to minimize the resulting regularized nonlinear least squares objective function. Numerical results show that imposing learned facies connectivity and discreteness as regularization functions leads to geologically consistent solutions that improve facies calibration quality.

  5. Remote Stratigraphic Analysis: Combined TM and AIS Results in the Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Paylor, E. D.; Adams, S.

    1985-01-01

    An in-progress study demonstrates the utility of airborne imaging spectrometer (AIS) data for unraveling the stratigraphic evolution of a North American, western interior foreland basin. AIS data are used to determine the stratigraphic distribution of mineralogical facies that are diagnostic of specific depositional environments. After wavelength and amplitude calibration using natural ground targets with known spectral characteristics, AIS data identify calcite, dolomite, gypsum and montmorillonite-bearing strata in the Permian-Cretaceous sequence. Combined AIS and TM results illustrate the feasibility of spectral stratigraphy, remote analysis of stratigraphic sequences.

  6. Genesis of the Hengling magmatic belt in the North China Craton: Implications for Paleoproterozoic tectonics

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Guo, Jinghui; Zhai, Mingguo; Windley, Brian F.; Li, Tiesheng; Liu, Fu

    2012-09-01

    The 2200-1880 Ma igneous rocks in the central and eastern parts of the North China Craton (NCC) constitute a new Hengling magmatic belt (HMB), which includes the ~ 2147 Ma Hengling mafic sill/dyke swarm, the ~ 2060 Ma Yixingzhai mafic dyke swarm, and the ~ 1973 Ma Xiwangshan mafic dyke swarm. The three swarms are contiguous and have experienced variable degrees of metamorphism from greenschist to low amphibolite facies (Hengling), medium granulite facies (Yixingzhai), and medium/high-pressure granulite facies (Xiwangshan). They are all tholeiitic in composition typically with 47-52 wt.% SiO2 and 4-10 wt.% MgO, and all show light rare earth element enrichments and Nb- and Ta-depletion. Their Nd TDM ages are in the range of 2.5-3.0 Ga. Specifically, the Hengling and Yixingzhai dykes/sills are depleted in Th, U, Zr, Hf and Ti, whereas the Xiwangshan dykes are enriched in U and weakly depleted in other elements. Variable Sr-anomalies indicate significant feldspar accumulation (positive anomalies) or fractionation. The ɛNd(t) values of the three swarms are: - 3.2-+3.0 (Hengling), - 1.7-+ 1.8 (Yixingzhai) and - 1.4-+ 1.0 (Xiwangshan). These mafic representatives of the HMB originated from the > 2.5 Ga sub-continental lithospheric mantle of the NCC, and with A-type granites and other igneous associations in this belt they likely evolved in an intra-continental rift. The progressive changing compositions of the three swarms are interpreted in terms of their source regions at different depths, i.e., shallower and shallower through time. And the decrease in scale and size of the intrusions and their magma volumes indicate the progressive weakening of magmatism in this rift. The rocks in this belt are different chronologically, petrologically and chemically from those in the Xuwujia magmatic belt (XMB). We propose that the two magmatic belts represent two different magmatic systems in different blocks of the NCC, i.e., an eastern block (with the HMB) and a western block (with the XMB). Terminal collision was possibly a result of ridge subduction between the two blocks, which led to exhumation of the igneous rocks in the two belts from different crustal levels, distinguishable by their different grades of metamorphism.

  7. Statistics and Title VII Proof: Prima Facie Case and Rebuttal.

    ERIC Educational Resources Information Center

    Whitten, David

    1978-01-01

    The method and means by which statistics can raise a prima facie case of Title VII violation are analyzed. A standard is identified that can be applied to determine whether a statistical disparity is sufficient to shift the burden to the employer to rebut a prima facie case of discrimination. (LBH)

  8. 39 CFR 952.7 - Notice of answer and hearing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... supporting information and determine whether a prima facie showing has been made that Respondent is engaged... civil penalties authorized by 39 U.S.C. 3012. Where he concludes that a prima facie showing has not been made he shall dismiss the complaint. Where he concludes that a prima facie showing has been made, he...

  9. 43 CFR 4.1366 - Burdens of proof.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... review, OSMRE shall have the burden of going forward to establish a prima facie case as to failure to... person is seeking review, that person shall have the burden of going forward to establish a prima facie... ordered by OSMRE, OSMRE shall have the burden of going forward to establish a prima facie case that the...

  10. High-pressure crystallization vs. recrystallization origin of garnet pyroxenite-eclogite within subduction related lithologies

    NASA Astrophysics Data System (ADS)

    Faryad, S. W.; Jedlicka, R.; Hauzenberger, C.; Racek, M.

    2018-03-01

    Mafic layers displaying transition between clinopyroxenite and eclogite within peridotite from felsic granulite in the Bohemian Massif (Lower Austria) have been investigated. The mafic-ultramafic bodies shared a common granulite facies metamorphism with its hosting felsic rocks, but they still preserve evidence of eclogite facies metamorphism. The selected mafic layer for this study is represented by garnet with omphacite in the core of coarse-grained clinopyroxene, while fine-grained clinopyroxene in the matrix is diopside. In addition, garnet contains inclusions of omphacite, alkali feldspars, hydrous and other phases with halogens and/or CO2. Textural relations along with compositional zoning in garnet from the clinopyroxenite-eclogite layers favour solid-state recrystallization of the precursor minerals in the inclusions and formation of garnet and omphacite during subduction. Textures and major and trace element distribution in garnet indicate two stages of garnet growth that record eclogite facies and subsequent granulite facies overprint. The possible model explaining the textural and compositional changes of minerals is that the granulite facies overprint occurred after formation and exhumation of the eclogite facies rocks.

  11. New morphological mapping and interpretation of ejecta deposits from Orientale Basin on the Moon

    NASA Astrophysics Data System (ADS)

    Morse, Zachary R.; Osinski, Gordon R.; Tornabene, Livio L.

    2018-01-01

    Orientale Basin is one of the youngest and best-preserved multi-ring impact basins in the Solar System. The structure is ∼950 km across and is located on the western edge of the nearside of the Moon. The interior of the basin, which possesses three distinct rings and a post-impact mare fill, has been studied extensively using modern high-resolution datasets. Exterior to these rings, Orientale has an extensive ejecta blanket that extends out radially for at least 800 km from the basin rim in all directions and covers portions of both the nearside and farside of the Moon. These deposits, known as the Hevelius Formation, were first mapped using photographic data from the Lunar Orbiter IV probe. In this study, we map in detail the morphology of each distinct facies observed within the Orientale ejecta blanket using high resolution Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) images and Lunar Orbiter Laser Altimeter (LOLA) elevation data. We identified 5 unique facies within the ejecta blanket. Facies A is identified as a region of hummocky plains located in a low-lying topographic region between the Outer Rook and Cordillera rings. This facies is interpreted to be a mix of crater-derived impact melt and km-scale blocks of ballistic ejecta and host rock broken up during the modification stage and formation of the Cordillera ring. Facies B is an inner facies marked by radial grooves extending outward from the direction of the basin center. This facies is interpreted as the continuous ballistic ejecta blanket. Facies C consists of inner and outer groupings of flat smooth-surfaced deposits isolated in local topographic lows. Facies D displays characteristic sinuous ridges and lobate extensions. Facies C and D are interpreted to be impact melt-rich materials, which manifest as flows and ponds. Our observations suggest that these facies were emplaced subsequent to the ballistic ejecta blanket - most likely during the modification stage of crater formation - and flowed and ponded in topographically low-lying regions. Facies E consists of distinct crater chains emanating radially from the basin center and extending from ∼700 to ∼1000 km from the center of Orientale. This facies is considered to be chains of secondary craters formed from large blocks of ballistic ejecta. Our mapping effort shows that the individual ejecta facies were influenced and controlled to varying degrees by pre-existing slopes and topography. At the basin scale, the overall downslope direction toward the lunar lowlands to the east and southeast of the basin center resulted in large impact melt flows 100's of kilometers in length, while the regional upslope trends in the west and northwest inhibited the development of extensive impact melt flows. On a smaller scale it can be observed that ground-hugging ejecta collected behind and flowed around high topographic obstacles while diverting into topographic low regions (e.g., around uplifted pre-existing crater rims, but down into pre-existing crater floors). The dispersion of the various ejecta facies mapped here also indicates both a direction and an angle for the impact event that formed Orientale Basin. The bilateral distribution of both ballistic and impact melt-rich ejecta deposits across a line running northeast - southwest suggests the impact occurred from the northeast toward the southwest. Careful mapping of the secondary impact crater chains (Facies E) shows the development of a ;forbidden zone; lacking these impacts to the northeast as well as a concentration of the longest secondary crater chains to the northwest and southeast, perpendicular to the aforementioned line of bilateral ejecta distribution. This distribution of secondary impact craters contrasts with the circularity of the basin and suggests that Orientale Basin was formed by ∼ 25-45° impact from the northeast.

  12. Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain

    USGS Publications Warehouse

    Back, William

    1966-01-01

    Flow patterns of fresh ground water shown on maps and in cross sections have been deduced from available water-level data. These patterns are controlled by the distribution of the higher landmasses and by the depth to either bedrock or to the salt-water interface. The mapping of hydrochemical facies shows that at shallow depths within the Coastal Plain (less than about 200 ft) the calcium-magnesium cation facies generally predominates. The bicarbonate anion facies occurs within more of the shallow Coastal Plain sediments than does the sulfate or the chloride facies. In deeper formations, the sodium chloride character predominates. The lower dissolved-solids content of the ground water in New Jersey indicates less upward vertical leakage than in Maryland and Virginia, where the shallow formations contain solutions of higher concentration.

  13. Depositional settings and evolution of a fjord system during the carboniferous glaciation in Northwest Argentina

    NASA Astrophysics Data System (ADS)

    Alonso-Muruaga, Pablo J.; Limarino, Carlos O.; Spalletti, Luis A.; Colombo Piñol, Ferrán

    2018-07-01

    Fjord systems, represented by glacial diamictites and postglacial transgressive shales, formed in the basins of western Argentina during the late Carboniferous Gondwana glaciation. Well exposed fjord deposits of the Guandacol Formation were studied in the Loma de Los Piojos region (Protoprecordillera), where they fill a 2.9 km wide paleovalley with steep side walls and a relatively flat floor. The valley cross-cuts Lower Devonian sandstones and Mississippian mudstones and sandstones, and provides evidence of glacial abrasion, including striated pavements and glacial microtopography (grooves, ridges, and striae). Based on the analysis of seven sedimentary logs, eight sedimentary facies in the valley fill were recognized: (A) Massive diamictites; (B) Laminated mudstones with dropstones; (C) Stratified diamictites; (D) Clast-supported conglomerates and sandstones; (E) Deformed diamictites, conglomerates and sandstones; (F) Folded diamictites; (G) Mudstones interbedded with sandstones, and (H) Stacked and amalgamated sandstones. These sedimentary facies are grouped into two principal facies assemblages that represent different stages of the paleovalley fill. Assemblage 1 is composed of diamictites (Facies A, C and F), laminated mudstones with dropstones (Facies B), and conglomerates (Facies D and E), which represent glacially influenced sedimentation in the paleovalley. Assemblage 2 represents the paleovalley fill when glacial influence ceased, and comprises laminated mudstones interbedded with sandstones (facies G) and stacked sandstone beds (facies H) that mostly record deltaic sedimentation. Stratigraphic relationships, plant fossils found in the paleovalley walls and palynological assemblages recovered in mudstones of facies D help to establish an early Pennsylvanian age for both the incision and the filling of the paleovalley. The studied paleovalley records an exceptional example of the western Gondwanan glacial to postglacial transition. Due to the continuous stratigraphic succession within the paleovalley as well as palynological, megafloristic and radiometric data, this example provides a complete framework of the late Carboniferous postglacial evolution in western Gondwana.

  14. Compared sub-bottom profile interpretation in fjords of King George Island and Danco Coast, Antarctica

    NASA Astrophysics Data System (ADS)

    Rodrigo, C.; Vilches, L.; Vallejos, C.; Fernandez, R.; Molares, R.

    2015-12-01

    The fjords of the South Shetland Islands (Antarctica) and Danco Coast (Antarctic Peninsula) represent climatic transitional areas (subpolar to polar). The analysis of the distribution of sub-bottom facies helps to understand the prevailing sedimentary and climatic processes. This work seeks to characterize and compare the fjord seismic facies, of the indicated areas, to determine the main sedimentary processes in these regions. Compressed High-Intensity Radiated Pulse (CHIRP) records from 3.5 kHz sub-bottom profiler were obtained from the cruise: NBP0703 (2007); and pinger 3.5 kHz sub-bottom profiler records from the cruises: ECA-50 INACH (2014), and First Colombian Expedition (2015). Several seismic facies were recognized in all studied areas with some variability on their thickness and extent, and indicate the occurrence of similar sedimentary processes. These are: SSD facies (strong to weak intensity, stratified, draped sheet external shape), is interpreted as sedimentary deposits originated from suspended sediments from glaciar plumes and/or ice-rafting. This facies, in general, is thicker in the fjords of King George Island than in the larger fjords of the Danco Coast; on the other hand, within the Danco Coast area, this facies is thinner and more scarce in the smaller fjords and bays. MCM facies (moderate intensity, chaotic and with mounds) is associated with moraine deposits and/or basement. This is present in all areas, being most abundant in the Danco Coast area. WIC facies (weak intensity and chaotic) is interpreted as debris flows, which are present in both regions, but is most common in small fjords or bays in the Danco Coast, perhaps due to higher slopes of the seabed. In this work we discuss the influence of local climate, sediment plumes from the glaciers and other sedimentary processes on the distribution and geometry of the identified seismic facies.

  15. Metamorphic P-T evolution of the Gotsu blueschists from the Suo metamorphic belt in SW Japan: Implications for tectonic correlation with the Heilongjiang Complex, NE China

    NASA Astrophysics Data System (ADS)

    Kabir, Md. Fazle; Takasu, Akira; Li, Weimin

    2018-05-01

    In the Gotsu area of the c. 200 Ma high-P/T Suo metamorphic belt in the Inner Zone of southwest Japan, blueschists occur as lenses or layers within pelitic schists. Prograde, peak, and retrograde stages are distinguished in the blueschists, and the prograde and the peak metamorphic conditions are determined using pseudosection modelling in the NCKFMASHO system. The prograde metamorphic stage is defined by inclusions in porphyroblastic epidote and glaucophane, such as phengite, chlorite, albite, epidote and glaucophane/winchite, and the estimated metamorphic conditions are <325 °C and < 4-5 kbar at the boundary between the glaucophane schist facies and the greenschist facies. The peak metamorphic stage is well-defined by the schistosity-forming minerals, i.e. epidote, glaucophanic amphibole, phengite, and chlorite, suggesting the glaucophane schist facies conditions of 475-500 °C and 14-16 kbar. Actinolite/magnesiohornblende, chlorite, and albite replacing the peak stage minerals suggest the retrograde metamorphism into the greenschist facies. The metamorphic facies series of the Suo belt is defined by pumpellyite-actinolite facies to epidote-blueschist facies, and it has a relatively lower-P/T compared with the c. 300 Ma Renge belt in the Inner Zone of southwest Japan, which is defined by a sequence of lawsonite-blueschist facies to glaucophane-eclogite facies. The P- {M}_{{H}_2O} pseudosection and water isopleth show that the rocks were dehydrated during the initial stage of the exhumation and remained in water-saturated conditions. Similarities of the detrital zircon and peak metamorphic ages of the blueschists from the Suo metamorphic belt in southwest Japan and the Heilongjiang Complex in northeast China suggest that both metamorphic belts were probably formed in the same Paleo-Pacific subduction system in the Late Triassic to Jurassic period.

  16. Critical dynamics of gravito-convective mixing in geological carbon sequestration

    DOE PAGES

    Soltanian, Mohamad Reza; Amooie, Mohammad Amin; Dai, Zhenxue; ...

    2016-11-03

    When CO 2 is injected in saline aquifers, dissolution causes a local increase in brine density that can cause Rayleigh-Taylor-type gravitational instabilities. Depending on the Rayleigh number, density-driven flow may mix dissolved CO 2 throughout the aquifer at fast advective time-scales through convective mixing. Heterogeneity can impact density-driven flow to different degrees. Zones with low effective vertical permeability may suppress fingering and reduce vertical spreading, while potentially increasing transverse mixing. In more complex heterogeneity, arising from the spatial organization of sedimentary facies, finger propagation is reduced in low permeability facies, but may be enhanced through more permeable facies. The connectivitymore » of facies is critical in determining the large-scale transport of CO 2-rich brine. We perform high-resolution finite element simulations of advection-diffusion transport of CO 2 with a focus on facies-based bimodal heterogeneity. Permeability fields are generated by a Markov Chain approach, which represent facies architecture by commonly observed characteristics such as volume fractions. CO 2 dissolution and phase behavior are modeled with the cubic-plus-association equation-of-state. Our results show that the organization of high-permeability facies and their connectivity control the dynamics of gravitationally unstable flow. Lastly, we discover new flow regimes in both homogeneous and heterogeneous media and present quantitative scaling relations for their temporal evolution.« less

  17. 17 CFR 270.3a-1 - Certain prima facie investment companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Certain prima facie investment companies. 270.3a-1 Section 270.3a-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.3a-1 Certain prima facie investment...

  18. Sedimentary record of erg migration

    NASA Astrophysics Data System (ADS)

    Porter, M. L.

    1986-06-01

    The sedimentary record of erg (eolian sand sea) migration consists of an idealized threefold division of sand-sea facies sequences. The basal division, here termed the fore-erg, is composed of a hierarchy of eolian sand bodies contained within sediments of the flanking depositional environment. These sand bodies consist of eolian strata deposited by small dune complexes, zibars, and sand sheets. The fore-erg represents the downwind, leading edge of the erg and records the onset of eolian sedimentation. Basin subsidence coupled with erg migration places the medial division, termed the central erg, over the fore-erg strata. The central erg, represented by a thick accumulation of large-scale, cross-stratified sandstone, is the product of large draa complexes. Eolian influence on regional sedimentation patterns is greatest in the central erg, and most of the sand transported and deposited in the erg is contained within this region. Reduction in sand supply and continued erg migration will cover the central-erg deposits with a veneer of back-erg deposits. This upper division of the erg facies sequence resembles closely the fore-erg region. Similar types of eolian strata are present and organized in sand bodies encased in sediments of the upwind flanking depositional environment(s). Back-erg deposits may be thin due to limited eolian influence on sedimentation or incomplete erg migration, or they may be completely absent because of great susceptibility to postdepositional erosion. Tectonic, climatic, and eustatic influences on sand-sea deposition will produce distinctive variations or modifications of the idealized erg facies sequence. The resulting variants in the sedimentary record of erg migration are illustrated with ancient examples from western North America, Europe, southern Africa, and South America.

  19. Sedimentology, eruptive mechanism and facies architecture of basaltic scoria cones from the Auckland Volcanic Field (New Zealand)

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Németh, Károly

    2016-09-01

    Scoria cones are a common type of basaltic to andesitic small-volume volcanoes (e.g. 10- 1-10- 5 km3) that results from gas-bubble driven explosive eruptive styles. Although they are small in volume, they can produce complex eruptions, involving multiple eruptive styles. Eight scoria cones from the Quaternary Auckland Volcanic Field in New Zealand were selected to define the eruptive style variability from their volcanic facies architecture. The reconstruction of their eruptive and pyroclastic transport mechanisms was established on the basis of study of their volcanic sedimentology, stratigraphy, and measurement of their pyroclast density, porosity, Scanning Electron Microscopy, 2D particle morphology analysis and Visible and Near Visible Infrared Spectroscopy. Collection of these data allowed defining three end-member types of scoria cones inferred to be constructed from lava-fountaining, transitional fountaining and Strombolian type, and explosive Strombolian type. Using the physical and field-based characteristics of scoriaceous samples a simple generalised facies model of basaltic scoria cones for the AVF is developed that can be extended to other scoria cones elsewhere. The typical AVF scoria cone has an initial phreatomagmatic phases that might reduce the volume of magma available for subsequent scoria cone forming eruptions. This inferred to have the main reason to have decreased cone volumes recognised from Auckland in comparison to other volcanic fields evolved dominantly in dry eruptive condition (e.g. no external water influence). It suggests that such subtle eruptive style variations through a scoria cone evolution need to be integrated into the hazard assessment of a potentially active volcanic field such as that in Auckland.

  20. ­Oligo-Miocene Monazite Ages in the Lesser Himalaya Sequence, Arunachal Pradesh, India; Geological Content of Age Variations

    NASA Astrophysics Data System (ADS)

    Clarke, G. L.; Bhowmik, S. K.; Ireland, T. R.; Aitchison, J. C.; Chapman, S. L.; Kent, L.

    2016-12-01

    A telescoped and inverted greenschist-upper amphibolite facies sequence in the in the Siyom Valley of eastern Arunachal Pradesh is tectonically overlain by an upright (grade decreasing upward) granulite to lower amphibolite facies sequence. Such grade relationships would normally attribute the boundary to a Main Central Thrust (MCT) structure, and predict a change from underlying Lesser Himalaya Sequence (LHS) to Greater Himalaya Sequence rocks across the boundary. However, all pelitic and psammitic samples have similar detrital zircon age spectra, involving c. 2500, 1750-1500, 1200 and 1000 Ma Gondwanan populations correlated with the LHS. Isograds are broadly parallel to a penetrative NW-dipping S2 foliation, developed contemporaneously with the inversion. Garnet growth in garnet, staurolite and kyanite zone schists beneath the thrust commenced at P>8 kbar and T≈550°C, before syn- to post-S2 heating of staurolite and kyanite zone rocks to T≈640°C at P≈8.5 kbar, most probably at c. 18.5 Ma. Kyanite-rutile-garnet migmatite immediately above the thrust records peak conditions of P≈10 kbar and T≈750°C and c. 21.5 Ma monazite ages. Complexity in c. 21-1000 Ma monazite ages in overlying amphibolite facies schists reflects the patchy recrystallization of detrital grains, intra-grain complexity being dependent on whole rock composition, metamorphic grade and evolition. Slip on a SE-propagating thrust was likely contemporaneous with early Miocene metamorphism, based on the distribution of structure, metamorphic textures, and overlap of age relationships. It is inferred to have initially controlled the uplift of granulite to mid-crustal levels between 22 and 19 Ma, thermal relaxation within a disrupted LHS metamorphic profile inducing a post-S2 thermal peak in lower grade footwall rocks.

  1. Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi river basin, Karnataka state, India

    NASA Astrophysics Data System (ADS)

    Ravikumar, P.; Somashekar, R. K.

    2017-05-01

    The present study envisages the importance of graphical representations like Piper trilinear diagram and Chadha's plot, respectively to determine variation in hydrochemical facies and understand the evolution of hydrochemical processes in the Varahi river basin. The analytical values obtained from the groundwater samples when plotted on Piper's and Chadha's plots revealed that the alkaline earth metals (Ca2+, Mg2+) are significantly dominant over the alkalis (Na+, K+), and the strong acidic anions (Cl-, SO4 2-) dominant over the weak acidic anions (CO3 2-, HCO3 -). Further, Piper trilinear diagram classified 93.48 % of the samples from the study area under Ca2+-Mg2+-Cl--SO4 2- type and only 6.52 % samples under Ca2+-Mg2+-HCO3 - type. Interestingly, Chadha's plot also demonstrated the dominance of reverse ion exchange water having permanent hardness (viz., Ca-Mg-Cl type) in majority of the samples over recharging water with temporary hardness (i.e., Ca-Mg-HCO3 type). Thus, evaluation of hydrochemical facies from both the plots highlighted the contribution from the reverse ion exchange processes in controlling geochemistry of groundwater in the study area. Further, PCA analysis yielded four principal components (PC1, PC2, PC3 and PC4) with higher eigen values of 1.0 or more, accounting for 65.55, 10.17, 6.88 and 6.52 % of the total variance, respectively. Consequently, majority of the physico-chemical parameters (87.5 %) loaded under PC1 and PC2 were having strong positive loading (>0.75) and these are mainly responsible for regulating the hydrochemistry of groundwater in the study area.

  2. Slope-apron deposition in an ordovician arc-related setting: The Vuelta de Las Tolas Member (Suri Formation), Famatina Basin, northwest Argentina

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.

    1997-01-01

    The Ordovician Suri Formation is part of the infill of the Famatina Basin of northwest Argentina, which formed in an active setting along the western margin of early Paleozoic Gondwana. The lower part of this formation, the Vuelta de Las Tolas Member, records sedimentation on a slope apron formed in an intra-arc basin situated on a flooded continental arc platform. The coincidence of a thick Arenig-Llanvirn sedimentary succession and volcanic-plutonic arc rocks suggests an extensional or transtensional arc setting, and is consistent with evidence of an extensional regime within the volcanic arc in the northern Puna region. The studied stratigraphic sections consist of volcanic rocks and six sedimentary facies. The facies can be clustered into four facies associations. Association 1, composed of facies A (laminated siltstones and mudstones) and B (massive mudstones and siltstones), is interpreted to have accumulated from silty-muddy high-and low-density turbidity currents and highly fluid, silty debris flows, with subsequent reworking by bottom currents, and to a lesser extent, hemipelagic suspension in an open-slope setting. Facies association 2 is dominated by facies C (current-rippled siltstones) strata. These deposits are interpreted to record overbank sedimentation from fine-grained turbidity currents. Facies E (matrix-supported volcanic breccias) interbedded with andesitic lava units comprises facies association 3. Deposition was contemporaneous with subaqueous volcanic activity, and accumulated from cohesive debris flows in a coarse-grained wedge at the base of slope. Facies association 4 is typified by facies D (vitric fine-grained sandstones and siltstones) and F (channelized and graded volcanic conglomerates and breccias) deposits. These strata commonly display thinning-and fining-upward trends, indicating sedimentation from highly-concentrated volcaniclastic turbidity currents in a channelized system. The general characteristics of these deposits of fresh pyroclastic detritus suggest that their accumulation was contemporaneous with, or post-dated shallow-water or subaereal explosive volcanism. The Vuelta de Las Tolas Member tends to show an overall random facies patterns reflecting the strong influence of non-cyclical episodic processes related to arc volcanism and slope sedimentation. The scarcity of resident ichnofaunas and the presence of thick packages of uniform mudstones suggest deposition under oxygen-depleted conditions in a topographically confined, ponded sub-basin. Interbasinal correlations favor comparison with Middle Arenig slope-apron successions formed in the northern Puna Basin and suggest a southward prolongation of the Arenig volcanic arc.

  3. Submarine fan facies of Upper Cretaceous Strata, Southern San Rafael Mountains, Santa Barbara County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyne, C.D.

    1986-04-01

    A 2900-m thick Campanian-Maestrichtian(.) turbidite sequence in Upper Mono Creek Canyon is interpreted to be a progradational submarine fan complex comprised of outer fan, middle fan, inner fan, and slope facies. The basal 600 m of the section consists of thinly bedded, laterally continuous fine sandstones, siltstones, and mudstones (mainly Mutti and Ricci Lucci facies D), interpreted to be outer fan interlobe and lobe-fringe deposits. These are punctuated by infrequent medium to very thickly bedded, flat-based, fine to coarse sandstones (facies C and B), which commonly coarsen and thicken upward, and are interpreted to be depositional lobes. Overlying these depositsmore » are approximately 1400 m of middle fan deposits composed of frequent lenticular, commonly channelized and amalgamated, thickly bedded, fine to very coarse sandstones (facies C and B) organized in fining- and thinning-upward sequences, interpreted to be braided-channel deposits. These alternate with less common nonchannelized coarsening- and thickening-upward sequences suggestive of lobe-apical cycles. These multistory sand deposits are nested within thick intervals of fine sandstones, siltstones, and mudstones (facies C and D), interpreted to be levee, crevasse-splay, and interchannel deposits. Interfingered with and overlying these deposits are approximately 500 m of fining- and thinning-upward or noncyclic, erosionally based, commonly amalgamated, very thickly bedded, medium to very coarse sandstones, pebbly sandstones, and conglomerates (facies A and B), interpreted to be inner fan deposits. Intercalated within this facies, infrequent, laterally discontinuous, thin to thickly bedded, fine to coarse sandstones, siltstones, and mudstones exist, interpreted to be interchannel, levee, and possibly channel-fill deposits.« less

  4. Piedramuelle Limestone in the building heritage of Oviedo, Spain, and adjacent towns.

    NASA Astrophysics Data System (ADS)

    Cardenes Van den Eynde, Victor; Mateos, Felix Javier; Valdeon, Luis; Rojo, Araceli

    2017-04-01

    The Piedramuelle limestone has a very important representation in the building heritage of Oviedo, historical capital of Asturias (Spain) and surrounding towns. This argillaceous limestone has been quarried since the High Middle Ages until the beginning of the XX century. The main mineralogical components are carbonates (mainly calcite and sometimes ankerite, 70-90%), quartz (5-15%), terrigenous minerals (6-15%) and iron oxides (<5%). Two different facies, with different constructive uses, can be clearly distinguished depending on the grain size: fine-grained facies and coarse-grained facies. The fine-grained facies has color ranging from red to yellow, slightly higher content in carbonates, higher terrigenous components and a micro crystalline texture. The coarse-grained facies is mainly yellow, with detrital clastic texture. The open porosity is higher for the coarse-grained facies (16-20%), while for the fine-grained facies it ranges between 5 and 15%. The fine-grained facies is more vulnerable to weathering than the coarse-grained one, and it is used in the building heritage mainly for ornamental details, while the coarse-grained one is found in the bigger blocks and ashlars of the buildings. Some of the buildings constructed with Piedramuelle limestone are the Cathedral, the Old University and the Palaces from the XVII and XVIII centuries. The ambiance and historical architecture of Oviedo and adjacent towns is closely linked with the textures and colors of this stone. Nowadays, the Piedramuelle limestone is not exploited anymore, being the quarries exhausted. This represents an issue from a conservation point of view, since there is not a suitable stone for replacement. In order to preserve and maintain the building heritage of these towns, it is very important to prospect and protect the remaining outcrops still able to supply this characteristic stone.

  5. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, Western China

    USGS Publications Warehouse

    Mattinson, C.G.; Wooden, J.L.; Liou, J.G.; Bird, D.K.; Wu, C.L.

    2006-01-01

    Amphibolite-facies para-and orthogneisses near Dulan, at the southeast end of the North Qaidam terrane, enclose minor eclogite and peridotite which record ultra-high pressure (UHP) metamorphism associated with the Early Paleozoic continental collision of the Qilian and Qaidam microplates. Field relations and coesite inclusions in zircons from paragneiss suggest that felsic, mafic, and ultramafic rocks all experienced UHP metamorphism and a common amphibolite-facies retrogression. SHRIMP-RG U-Pb and REE analyses of zircons from four eclogites yield weighted mean ages of 449 to 422 Ma, and REE patterns (flat HREE, no Eu anomaly) and inclusions of garnet, omphacite, and rutile indicate these ages record eclogite-facies metamorphism. The coherent field relations of these samples, and the similar range of individual ages in each sample suggests that the ???25 m.y. age range reflects the duration of eclogite-facies conditions in the studied samples. Analyses from zircon cores in one sample yield scattered 433 to 474 Ma ages, reflecting partial overlap on rims, and constrain the minimum age of eclogite protolith crystallization. Inclusions of Th + REE-rich epidote, and zircon REE patterns are consistent with prograde metamorphic growth. In the Lu??liang Shan, approximately 350 km northwest in the North Qaidam terrane, ages interpreted to record eclogite-facies metamorphism of eclogite and garnet peridotite are as old as 495 Ma and as young as 414 Ma, which suggests that processes responsible for extended high-pressure residence are not restricted to the Dulan region. Evidence of prolonged eclogite-facies metamorphism in HP/UHP localities in the Northeast Greenland eclogite province, the Western Gneiss Region of Norway, and the western Alps suggests that long eclogite-facies residence may be globally significant in continental subduction/collision zones.

  6. Attribute classification for generating GPR facies models

    NASA Astrophysics Data System (ADS)

    Tronicke, Jens; Allroggen, Niklas

    2017-04-01

    Ground-penetrating radar (GPR) is an established geophysical tool to explore near-surface sedimentary environments. It has been successfully used, for example, to reconstruct past depositional environments, to investigate sedimentary processes, to aid hydrogeological investigations, and to assist in hydrocarbon reservoir analog studies. Interpreting such 2D/3D GPR data, usually relies on concepts known as GPR facies analysis, in which GPR facies are defined as units composed of characteristic reflection patterns (in terms of reflection amplitude, continuity, geometry, and internal configuration). The resulting facies models are then interpreted in terms of depositional processes, sedimentary environments, litho-, and hydrofacies. Typically, such GPR facies analyses are implemented in a manual workflow being laborious and rather inefficient especially for 3D data sets. In addition, such a subjective strategy bears the potential of inconsistency because the outcome depends on the expertise and experience of the interpreter. In this presentation, we investigate the feasibility of delineating GPR facies in an objective and largely automated manner. Our proposed workflow relies on a three-step procedure. First, we calculate a variety of geometrical and physical attributes from processed 2D and 3D GPR data sets. Then, we analyze and evaluate this attribute data base (e.g., using statistical tools such as principal component analysis) to reduce its dimensionality and to avoid redundant information, respectively. Finally, we integrate the reduced data base using tools such as composite imaging, cluster analysis, and neural networks. Using field examples that have been acquired across different depositional environments, we demonstrate that the resulting 2D/3D facies models ease and improve the interpretation of GPR data. We conclude that our interpretation strategy allows to generate GPR facies models in a consistent and largely automated manner and might be helpful in variety near-surface applications.

  7. Evaluation of the airborne visible-infrared imaging spectrometer for mapping subtle lithological variation

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.

    1990-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), flown aboard the NASA ER-2 aircraft in 1987 and 1989, used four linear arrays and four individual spectrometers to collect data simultaneously from the 224 bands in a scanned 614 pixel-wide swath perpendicular to the aircraft direction. The research had two goals. One was to evaluate the AVIRIS data. The other was to look at the subtle lithological variation at the two test sites to develop a better understanding of the regional geology and surficial processes. The geometric characteristics of the data, adequacy of the spatial resolution, and adequacy of the spectral sampling interval are evaluated. Geologic differences at the test sites were mapped. They included lithological variation caused by primary sedimentary layering, facies variation, and weathering; and subtle mineralogical differences caused by hydrothermal alterations of igneous and sedimentary rocks. The investigation used laboratory, field, and aircraft spectral measurements; known properties of geological materials; digital image processing and spectrum processing techniques; and field geologic data to evaluate the selected characteristics of the AVIRIS data.

  8. Mechanisms for Magnesium Isotopic Variation in Low-grade Metamorphosed Mudrocks from the British Caledonides

    NASA Astrophysics Data System (ADS)

    Wang, S.; Teng, F.; Rudnick, R. L.; Li, S.

    2013-12-01

    We report Mg isotope ratios for low-grade metamorphosed mudrocks from three lower Paleozoic basins (northern Lake District, southern Lake District and Southern Uplands) in the British Caledonides, previously analyzed for Li, Sr and Nd isotopes (Qiu et al., 2009, GCA), with the aim of understanding the behavior of Mg isotopes during subgreenschist-facies metamorphism, and the processes responsible for Mg isotopic variations in mudrocks. The δ26Mg of mudrocks varies greatly from -0.754 to 0.251, and displays no correlation with metamorphic grade, which ranges from diagenesis to subgreenschist-facies. Thus, low-grade metamorphism has no apparent influence on Mg isotopes. The variations instead likely reflect their provenance and mineralogical components. Samples from the northern Lake District, previously interpreted to derive from ancient, heavily weathered crust have δ26Mg (-0.06 × 0.11 on average) significantly heavier than that of average upper continental crust (~ -0.22), which is consistent with this interpretation. By contrast, mudrocks from the southern Lake District are characterized by low δ26Mg values (from -0.754 to -0.093) that require the presences of an unusually light component. The previously inferred provenance for these rocks of upper continental crust and arc volcanic detritus cannot explain such light isotopic compositions. Rather, such values may reflect the presence of carbonate in these samples and uptake of sea water Mg. Samples from the Southern Uplands, which contain the heaviest Li isotopes and ɛNd, and contain volcanic arc detritus, display Mg isotopic compositions divergent from a 'normal' mantle value (-0.25) towards both high and low δ26Mg values (from -0.742 to -0.079). Therefore, these mudrocks must contain a minimum of three end-members: mature felsic upper continental crust, arc lavas and carbonate. Given that limited Mg isotope fractionation occurs during low-grade metamorphism, Mg isotopes could be a potential tracer of provenance as well as carbonate involvement for fine-grained terrigenous sediments.

  9. Facies architecture and stratigraphic evolution of aeolian dune and interdune deposits, Permian Caldeirão Member (Santa Brígida Formation), Brazil

    NASA Astrophysics Data System (ADS)

    Jones, Fábio Herbert; Scherer, Claiton Marlon dos Santos; Kuchle, Juliano

    2016-05-01

    The Permian Caldeirão Member (Santa Brígida Formation), located in the Tucano Central Basin, northeast region of Brazil, is characterized by a sandstone succession of aeolian origin that comprises the preserved deposits of dunes and interdunes. Grainflow and translatent wind-ripple strata, and frequent presence of reactivation surface, compose the cross-bedding of crescent aeolian dune deposits. The aeolian cross-strata show a mean dip toward the ENE. In places, interlayered with dune cross-beds, occur interdune units composed of facies indicative of dry, damp and wet condition of the substrate, suggesting spatial and/or temporal variations in the moisture content of the interdune accumulation surface. The presence of NNW current ripple cross-lamination in wet interdune areas indicates streamflows confined to interdune corridors and oriented perpendicular to aeolian transport direction. Lenses of damp and wet interdune strata exhibit mainly interdigitated and transitional relationships with the toe-sets of overlying aeolian dune units in sections parallel to aeolian transport, indicating that dune migration was contemporaneous with accumulation in adjacent interdunes. Lateral variations in the preserved thickness of the interdune units and the associated rare occurrence of abrupt and erosive contacts between interdune and overlying dune sets, suggest temporal variations in the angle of dune and interdune climb that may be related to high-frequency changes in water table position. Four stratigraphic intervals in the Caldeirão Member can be identified, two intervals showing cross-bedding of aeolian dunes without wet interdune areas and two intervals exhibiting aeolian dunes separated by wet interdune areas, marking the transition between dry aeolian systems (Intervals I and III) and wet aeolian systems (Intervals II and IV). The temporal alternations between dry and wet aeolian systems reflect changes in the availability of dry sand and/or the rate in the water table rise, possibly controlled by orbitally-driven climatic fluctuations.

  10. Sedimentary Facies of the West Crocker Formation North Kota Kinabalu-Tuaran Area, Sabah, Malaysia

    NASA Astrophysics Data System (ADS)

    Mohamed, Azfar; Hadi Abd Rahman, Abdul; Suhaili Ismail, Mohd

    2016-02-01

    Newly outcrops exposed in the West Crocker Formation have led to the detail sedimentolgical analysis of the formation. Eight sedimentary facies have been recognised in which it was divided into three main groups: (1) sand-dominated facies (F1-F2), (2) poorly- sorted unit mixed sand and mud-dominated facies (F3), and (3) mud-dominated facies (F4-F5). These are: F1- graded sandstone (massive to planar laminated), F2-ripple-cross laminated, wavy and convolute lamination sandstone, F3-chaotic beds of mixed sandstone and mudstone blocks and clasts, F4-lenticular bedded of sandstone, and F5-shale. The studies of the formation has come out that it was deposited in a sand-rich submarine fan with specific location located at (1) inner fan channel-levee complex; (2) mid-fan channelised lobes, and (3) outer fan.

  11. Facies Distribution and Petrophysical Properties of Shoreface-Offshore Transition Environment in Sandakan Formation, NE Sabah Basin

    NASA Astrophysics Data System (ADS)

    Majid, M. Firdaus A.; Suhaili Ismail, M.; Rahman, A. Hadi A.; Azfar Mohamed, M.

    2017-10-01

    Newly exposed outcrop of Miocene shallow marine sandstone in Sandakan Formation, allows characterization of the facies distribution and petrophysical properties of shoreface to offshore transition environment. Six facies are defined: (1) Poorly bioturbated Hummocky Cross Stratified (HCS) sandstone (F1), (2) Moderately bioturbated HCS sandstone (F2), (3) Well bioturbated HCS sandstone (F3), (4) Poorly bioturbated Swaley Cross Stratified (SCS) sandstone (F4), (5) Interbedded HCS sandstone with sand-silt mudstone, (6) Heterolithic mudstone. The sedimentary successions were deposited in upper to lower shoreface, and offshore transition environment. Facies F3, F4 and F5 shows good reservoir quality with good porosity and fair permeability values from 20% to 21% and 14 mD to 33 mD respectively. While Facies F1 exhibits poor reservoir quality with low permeability values 3.13 mD.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, C.; Eichenseer, H.; Calatayud, P.

    The poster illustrates how the recent developments in genetic stratigraphy have contributed to constrain reservoir layering and to improve prediction of reservoir quality in the oil-bearing reservoir of N`KOSSA. The mixed lithology deposits formed during Albian times. Thanks to the excellent core coverage of the reservoir (4 cored wells over the entire reservoir interval), continuous sedimentological examination and interpretation of the facies succession have been carried out. The reservoir can be subdivided into composite sequences (50 to 150 in thick) which are made up of stacked metre-scale genetic units. Three different stacking patterns of genetic units have been identified; retrogradation,more » aggradation and progradation. These patterns reflect a gradual change of depositional regimes through time. Facies variations (texture, bio-association, geometry, spatial distribution) and early diagenetic overprints can be related to each type of stacking pattern. One additional model illustrates the depositional regime corresponding to low accomodation periods which mainly record siliciclastic input and extensive carbonate diagenesis by meteoric waters The resulting four models show the overall distribution of the main depositional units, the diagenetic zonations and the resulting overall reservoir qualities. This above approach have contributed to a more detailed reservoir architecture and a better delineation of reservoir heterogeneity due to both depositional and diagenetic regimes.« less

  13. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea.

    PubMed

    Baldwin, Suzanne L; Monteleone, Brian D; Webb, Laura E; Fitzgerald, Paul G; Grove, Marty; Hill, E June

    2004-09-16

    As lithospheric plates are subducted, rocks are metamorphosed under high-pressure and ultrahigh-pressure conditions to produce eclogites and eclogite facies metamorphic rocks. Because chemical equilibrium is rarely fully achieved, eclogites may preserve in their distinctive mineral assemblages and textures a record of the pressures, temperatures and deformation the rock was subjected to during subduction and subsequent exhumation. Radioactive parent-daughter isotopic variations within minerals reveal the timing of these events. Here we present in situ zircon U/Pb ion microprobe data that dates the timing of eclogite facies metamorphism in eastern Papua New Guinea at 4.3 +/- 0.4 Myr ago, making this the youngest documented eclogite exposed at the Earth's surface. Eclogite exhumation from depths of approximately 75 km was extremely rapid and occurred at plate tectonic rates (cm yr(-1)). The eclogite was exhumed within a portion of the obliquely convergent Australian-Pacific plate boundary zone, in an extending region located west of the Woodlark basin sea floor spreading centre. Such rapid exhumation (> 1 cm yr(-1)) of high-pressure and, we infer, ultrahigh-pressure rocks is facilitated by extension within transient plate boundary zones associated with rapid oblique plate convergence.

  14. Brackish to hypersaline lake dolostones of the Mississippian

    NASA Astrophysics Data System (ADS)

    Bennett, Carys; Kearsey, Timothy; Davies, Sarah; Millward, David; Marshall, John

    2016-04-01

    Flat-lying ferroan dolomite beds are common in the Mississippian and occur along the southern margin of Laurassia, from Kentucky USA to Poland. These rocks are important as they record shallow marine to coastal plain environments that may have acted as a pathway or refugia for animals that were radiating into freshwaters such as tetrapods, fish, molluscs and arthropods. This study is a contribution to the TW:eed Project (Tetrapod World: early evolution and diversification), that examines the rebuilding of Carboniferous ecosystems following a mass extinction at the end of the Devonian. The project focuses on the Tournaisian Ballagan Formation of Scotland, which contains rare fish and tetrapod fossils. The formation is characterised by an overbank facies association of siltstone, sandstone and palaeosols, interbedded with dolostone and evaporite units, and cut by fluvial sandstone facies associations of fining-upwards conglomerate lags, cross-bedded sandstone and rippled siltstone. Two sites are used as a case study to describe the sedimentological, faunal and ichnofaunal diversity of these dolostones. More than 270 dolostone beds are recorded in each of the 500 metre depth Norham Core (near Berwick-upon-Tweed) and from a 520 metre thick field section at Burnmouth. The beds are laterally extensive, over ˜1 km, although individual units do not appear to correlate between the core and the field site. In the Norham Core dolostones comprise up to 14% of the succession. 17% of the beds contain marginal marine fossils: Spirorbis, rare orthocones, brachiopods and putative marine sharks. More common fauna include ostracods, bivalves, plants, eurypterids, gastropods and sarcopterygian fish, which are interpreted as brackish to freshwater tolerant. Bioturbation is fairly common with Serpula colonies within dolostone beds and Chondrites burrowing down from the base of dolostone beds. Some rare units in the field section have a bulbous bed surface and preserve tree root traces, and 9% of all dolostone beds in the Norham Core are pedogenically altered. The isotopic composition of dolomite beds is δ18O -3.6‰ to -1.7‰ and δ13C -2.6‰ to 1.6‰ which is consistent with a brackish as opposed to marine origin. The dolostones are categorised by their sedimentary composition: Facies 1: Cemented siltstone and sandstone; Facies 2: Homogeneous micrite to micro-crystaline dolomite, within a clay matrix; Facies 3: Bedded dolomite and siltstone; Facies 4: Mixed calcite and dolomite; Facies 5: Dolomite with gypsum and anhydrite. Formation processes are diverse, and include diagenetic cementation (Facies 1), deposition in saline (brackish) lakes (Facies 2), deposition in saline lakes with clastic sediment input (Facies 3), lagoonal to shallow-marine carbonate deposition (Facies 4), and hypersaline lake to sabkha environments (Facies 5). 60% of the beds are facies 2 or 3 and their sedimentology, fauna, ichnofauna and isotopic composition indicate a brackish-water origin. Other Mississippian dolostones from around the world also contain a fairly restricted fauna and have been interpreted as brackish water deposits. The mechanism of dolomite formation under these conditions is discussed. These dolostones provided extensive coastal lakes that may have been an important habitat for tetrapods and other transitional groups during the Mississippian.

  15. Depositional Environments of Late Danian Plant Localities: Chubut Provice, Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Comer, E.; Slingerland, R. L.; Wilf, P.

    2010-12-01

    Diverse, well-preserved macroflora are observed within Cretaceous and Paleocene sediments of Chubut Province, Patagonia, Argentina. These macroflora are the most well preserved early Paleocene flora from Gondwana and add new insight into the diversity and environments of that epoch. Two major sites of fossil preservation, Palacio de los Loros and Parque Provincial Ormachea, sit near the top of the Late Danian (65.5-61.7 Ma) Salamanca Formation. Understanding the depositional history of the Salamanca is important in characterizing paleoenvironments in which these flora lived and relating these Patagonian macroflora to concurrent Paleocene flora within the Gondwanan supercontinent. During a two week field season, twenty stratigraphic sections were measured along the outcrop belt at Palacio de los Loros and Ormachea Park as well as two minor sites; Las Flores, and Rancho Grande. Photo mosaics, laser ranger data, and stratigraphic columns were merged with elevated geologic maps and imported into Fledermaus to generate a 3-D visualization of facies relationships. Rock samples were also collected and will be thin sectioned and analyzed for petrography and grain size. The Salamanca Fm. consists of 7 facies, listed here in stratigraphically ascending order: 1)Transgressive sands, 2)Wispy-bedded claystone, 3)Banco Verde, 4)White Cross bedded sandstone, 5)Accretion set siltstone, 6)Transitional silty claystone and 7)Banco Negro. Based on these facies, the Salamanca Fm. is interpreted as a marine-shelf to brackish, tide-dominated, estuarine deposit. The base of the Salamanca Fm. rests on an unconformity representing a marine flooding surface and lower sections of the Salamanca, facies 1 and 2, contain abundant glauconite and fossils indicative of a marine shelf environment. These facies give way upwards to bi-directional trough cross bedded sandstones interspersed with flaser bedded sandy siltstones (facies 3 and 4) indicating a less marine estuary with strong flow regimes and bi-directional currents. Unique features within these two facies such as microdeltas and plane parallel lamination indicate complex micro-environments and flow patterns. Fossil plant remains lie within lateral accretion sets or siltstone facies both above and below the trough cross-bedded sandstone facies. At the top of the Salamanca we reach facies 6 and 7 which transition from sandstone to black mudstone of the Banco Negro. Mammal fossils found in the Banco Negro identify it as a non-marine continental facies. The Late Paleocene Rio Chico formation that overlies the Banco Negro is identified as a continental fluvial formation indicating that facies 6 represents emptying of the estuary and a longstanding regional transition from a marine to a continental environment. To understand the origin of the tidal flows, a paleogeographic model of the Late Danian Patagonian shelf was constructed from facies distributions within the Salamanca Fm. A 2D hydrodynamic model driven by predicted tides in the paleo-Atlantic produces a tidal range of approximately 2m and strong ebb and flood tides throughout the central estuary. These observations are consistent with our interpretation of a meso-tidal estuarine environment as the paleo-flora accumulation site.

  16. Impacts of geochemical and environmental factors on seasonal variation of heavy metals in a coastal lagoon Yucatan, Mexico.

    PubMed

    Arcega-Cabrera, F; Garza-Pérez, R; Noreña-Barroso, E; Oceguera-Vargas, I

    2015-01-01

    This study investigated the influence of geochemical and environmental factors on seasonal variation in metals in Yucatan's Chelem lagoon. Anthropogenic activities discharge non-treated wastewater directly into it with detrimental environmental consequences. Accordingly, this study established the spatial and temporal patterns of fine grain sediments and concentrations of heavy metals. Multivariate analyses showed fine grain facies deposition, transition sites dominated by fine grain transport, and fine grain erosion sites. Spatial and temporal variations of heavy metals concentration were significant for Cd, Cu, Cr, and Pb. As, Cd, and Sn were as much as 12 times higher than SQuiRTs standards (Buchman 2008). The results indicate that aquifer water is bringing metals from relatively far inland and releasing them into the lagoon. Thus, it appears that the contamination of this lagoon is highly complex and must take into account systemic connections with inland anthropogenic activates and pollution, as well as local factors.

  17. Chemical variations among L-chondrites. IV - Analyses, with petrographic notes, of 13 L-group and 3 LL-group chondrites

    NASA Astrophysics Data System (ADS)

    Jarosewich, E.; Dodd, R. T.

    1985-03-01

    Procedures are reviewed for selecting, preparing and analyzing meteorite samples, present new analyses of 16 ordinary chondrites, and discuss variations of Fe, S and Si in the L-group. A tendency for Fe/Mg, S/Mg and Si/Mg to be low in L chondrites of facies d to f testifies that post-metamorphic shock melting played a significant role in the chemical diversification of the L-group. However, these ratios also vary widely and sympathetically in melt-free chondrites, indicating that much of the L-group's chemical variation arose prior to thermal metamorphism and is in that sense primary. If all L chondrites come from one parent body, type-correlated chemical trends suggest: (1) that the body had a tradiational 'onion skin' structure, with metamorphic intensity increasing with depth; and (2) that it formed from material that became more homogeneous, slightly poorer in iron, and significantly richer in sulfur as accretion proceeded.

  18. Chemical Variations Among L-Chondrites--IV. Analyses, with Petrographic Notes, of 13 L-group and 3 LL-group Chondrites

    NASA Astrophysics Data System (ADS)

    Jarosewich, E.; Dodd, R. T.

    1985-03-01

    We review our procedures for selecting, preparing and analyzing meteorite samples, present new analyses of 16 ordinary chondrites, and discuss variations of Fe, S and Si in the L-group. A tendency for Fe/Mg, S/Mg and Si/Mg to be low in L chondrites of facies d to f testifies that post-metamorphic shock melting played a significant role in the chemical diversification of the L-group. However, these ratios also vary widely and sympathetically in melt-free chondrites, indicating that much of the L-group's chemical variation arose prior to thermal metamorphism and is in that sense primary. If all L chondrites come from one parent body, type-correlated chemical trends suggest: 1) that the body had a traditional "onion skin" structure, with metamorphic intensity increasing with depth; and 2) that it formed from material that became more homogeneous, slightly poorer in iron, and significantly richer in sulfur as accretion proceeded.

  19. Prediction of sedimentary facies of x-oilfield in northwest of China by geostatistical inversion

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Ling, Ke; Tingting, He

    2017-03-01

    In the early stage of oilfield development, there are only a few wells and well spacing can reach several kilometers. for the alluvial fans and other heterogeneous reservoirs, information from wells alone is not sufficient to derive detailed reservoir information. In this paper, the method of calculating sand thickness through geostatistics inversion is studied, and quantitative relationships between each sedimentary micro-facies are analyzed by combining with single well sedimentary facies. Further, the sedimentary facies plane distribution based on seismic inversion is obtained by combining with sedimentary model, providing the geological basis for the next exploration and deployment.

  20. Quantification of Reflection Patterns in Ground-Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.

    2005-12-01

    Radar facies analysis provides a way of interpreting the large-scale structure of the subsurface from ground-penetrating radar (GPR) data. Radar facies are often distinguished from each other by the presence of patterns, such as flat-lying, dipping, or chaotic reflections, in different regions of a radar image. When these patterns can be associated with radar facies in a repeated and predictable manner we refer to them as `radar textures'. While it is often possible to qualitatively differentiate between radar textures visually, pattern recognition tools, like neural networks, require a quantitative measure to discriminate between them. We investigate whether currently available tools, such as instantaneous attributes or metrics adapted from standard texture analysis techniques, can be used to improve the classification of radar facies. To this end, we use a neural network to perform cross-validation tests that assess the efficacy of different textural measures for classifying radar facies in GPR data collected from the William River delta, Saskatchewan, Canada. We found that the highest classification accuracies (>93%) were obtained for measures of texture that preserve information about the spatial arrangement of reflections in the radar image, e.g., spatial covariance. Lower accuracy (87%) was obtained for classifications based directly on windows of amplitude data extracted from the radar image. Measures that did not account for the spatial arrangement of reflections in the image, e.g., instantaneous attributes and amplitude variance, yielded classification accuracies of less than 65%. Optimal classifications were obtained for textural measures that extracted sufficient information from the radar data to discriminate between radar facies but were insensitive to other facies specific characteristics. For example, the rotationally invariant Fourier-Mellin transform delivered better classification results than the spatial covariance because dip angle of the reflections, but not dip direction, was an important discriminator between radar facies at the William River delta. To extend the use of radar texture beyond the identification of radar facies to sedimentary facies we are investigating how sedimentary features are encoded in GPR data at Borden, Ontario, Canada. At this site, we have collected extensive sedimentary and hydrologic data over the area imaged by GPR. Analysis of this data coupled with synthetic modeling of the radar signal has allowed us to develop insight into the generation of radar texture in complex geologic environments.

  1. High-resolution seismic-reflection interpretations of some sediment deposits, Antarctic continental margin: Focus on the western Ross Sea

    USGS Publications Warehouse

    Karl, Herman A.

    1989-01-01

    High-resolution seismic-reflection data have been used to a varying degree by geoscientists to interpret the history of marine sediment accumulations around Antarctica. Reconnaissance analysis of 1-, 3.5-, and 12-kHz data collected by the U.S. Geological Survey in the western Ross Sea has led to the identification of eight echo-character facies and six microtopographic facies in the sediment deposits that overlie the Ross Sea unconformity. Three depositional facies regions, each characterized by a particular assemblage of echo-character type and microtopographic facies, have been identified on the continental shelf. These suites of acoustic facies are the result of specific depositional processes that control type and accumulation of sediment in a region. Evidence of glacial processes and products is uncommon in regions 1 and 2, but is abundant in region 3. McMurdo Sound, region 1, is characterized by a monospecific set of acoustic facies. This unique assemblage probably represents turbidity current deposition in the western part of the basin. Most of the seafloor in region 2, from about latitude 77??S to 75??S, is deeper than 600 m below sealevel. The microtopographic facies and echo-character facies observed on the lower slopes and basin floor there reflect the thin deposits of pelagic sediments that have accumulated in the low-energy conditions that are typical of deep-water environments. In shallower water near the boundary with region 3, the signature of the acoustic facies is different from that in deeper water and probably indicates higher energy conditions or, perhaps, ice-related processes. Thick deposits of tills emplaced by lodgement during the most recent advance of the West Antarctic Ice Sheet are common from latitude 75??S to the northern boundary of the study area just south of Coulman Island (region 3). The signature of microtopographic facies in this region reflects the relief of the base of the grounded ice sheet prior to decoupling from the seafloor. Current winnowing and scour of shallow parts of the seafloor inhibits sediment deposition and maintains the irregular, hummocky relief that characterizes much of the region. Seafloor relief of this type in other polar areas could indicate the former presence of grounded ice. ?? 1989.

  2. Paleoecological evaluation of Late Eocene biostratigraphic zonations of the Pacific Coast of North America

    USGS Publications Warehouse

    McDougall, Kristin

    1980-01-01

    The late Eocene zonal criteria of the west coast of North America are to a large extent controlled by paleoecology and, therefore, the correlation of coeval but environmentally different benthic foraminiferal faunas cannot be achieved before paleoecological control of the biostratigraphy is understood. The faunal trends, morphology, characteristic occurrences and estimated upper depth limits of the benthic foraminifers and associated microfossils in the Oregon and Washington study sections lead to the recognition of paleoecologic facies. The interpretation of these late Eocene facies as bathymetric and low-oxygen facies is based on analogous late Eocene and Holocene assemblages. The paleoecologic facies criteria are often identical to the stage and zonal criteria. In the California zonal schemes, the Narizian zones are identified by lower and middle bathyal faunas whereas the Refugian zones are identified by outer neritic and upper bathyal faunas. The Washington late Eocene zones are identified by middle bathyal and transported neritic faunas. Modifications of the existing zonal schemes such that time and not paleoecology is the controlling factor results in a zonation that synthesizes the existing zonal schemes, recognizes regional stratigraphic ranges of diagnostic species, and removes paleoecologically controlled species occurrences. The late Narizian encompasses a bathyal and a neritic facies. The bathyal facies is correlative with a modified Bulimina corrugata Zone of California and the Uvigerina cf. U. yazooensis Zone of Washington. The neritic late Narizian facies corresponds to a modified Bulimina schencki-Plectofrondicularia cf. P. jenkinsi Zone of Washington and a modified Amphimorphina jenkinsi Zone of California. The Refugian can also be divided into a neritic and a bathyal facies. Although the early and late subdivisions of this stage are tentative, the early Refugian is equivalent to the modified versions of the Cibicides haydoni and the Uvigerina atwilli Subzones of the Valvulineria tumeyensis Zone and the Uvigerina vicksburgensis Zone (in part) of California and the modified version of the Sigmomorphina schencki Zone of Washington. The late Refugian is equivalent to modified versions of the California Uvigerina vicksburgensis Zone (in part) and the Washington Cassidulina galvinensis Zone. The Cibicides haydoni Subzone is the neritic facies of the Refugian Stage, whereas the faunas of the Uvigerina atwilli Subzone and the Uvigerina vicksburgensis, Sigmomorphina schencki and Cassidulina galvinensis Zones represent the bathyal Refugian facies.

  3. Facies development in the Lower Freeport coal bed, west-central Pennsylvania, U.S.A.

    USGS Publications Warehouse

    Pierce, B.S.; Stanton, R.W.; Eble, C.F.

    1991-01-01

    The Lower Freeport coal bed in west-central Pennsylvania is interpreted to have formed within a lacustrine-mire environment. Conditions of peat formation, caused by the changing chemical and physical environments, produced five coal facies and two mineral-rich parting facies within the coal bed. The coal bed facies are compositionally unique, having developed under varying conditions, and are manifested by megascopic, petrographic, palynologic and quality characteristics. The initial environment of the Lower Freeport peat resulted in a coal facies that is relatively high in ash yield and contains large amounts of lycopod miospores and moderate abundances of cryptotelinite, crypto-gelocollinite, inertinite and tree fern miospores. This initial Lower Freeport peat is interpreted to have been a topogenous body that was low lying, relatively nutrient rich (mesotrophic to eutrophic), and susceptible to ground water and to sediment influx from surface water. The next facies to form was a ubiquitous, clay-rich durain parting which is attributed to a general rise in the water table accompanied by widespread flooding. Following formation of the parting, peat accumulation resumed within an environment that inhibited clastic input. Development of doming in this facies restricted deposition of the upper shale parting to the margins of the mire and allowed low-ash peat to form in the interior of the mire. Because this environment was conducive to preservation of cellular tissue, this coal facies also contains large amounts of crypto-telinite. This facies development is interpreted to have been a transitional phase from topogenous, planar peat formation to slightly domed, oligotrophic (nutrient-poor) peat formation. As domed peat formation continued, fluctuations in the water table enabled oxidation of the peat surface and produced high inertinite concentrations toward the top of the coal bed. Tree ferns became an increasingly important peat contributor in the e upper facies, based on the palynoflora. This floral change is interpreted to have resulted from the peat surface becoming less wet or better drained, a condition that inhibited proliferation of lycopod trees. Accumulation of the peat continued until rising water levels formed a freshwater lake within which clays and silts were deposited. The development of the Lower Freeport peat from a planar mire through transitional phases toward domed peat formation may be an example of the type of peat formation of other upper Middle and Upper Pennsylvanian coal beds. ?? 1991.

  4. Shale Gas Exploration and Development Progress in China and the Way Forward

    NASA Astrophysics Data System (ADS)

    Chen, Jianghua

    2018-02-01

    Shale gas exploration in China started late but is progressing very quickly with the strong support from Central Government. China has 21.8 tcm technically recoverable shale gas resources and 764.3 bcm proved shale gas reserve, mainly in marine facies in Sichuan basin. In 2016, overall shale gas production in China is around 7.9 bcm, while it is set to reach 10 bcm in 2017 and 30 bcm in 2020. BP is the only remaining IOC actor in shale gas exploration in China partnering with CNPC in 2 blocks in Sichuan basin. China is encouraging shale gas business both at Central level and at Provincial level through establishing development plan, continuation of subsidies and research funding. Engineering services for shale gas development and infrastructures are developing, while the overall cost and gas marketing conditions will be key factors for the success in shale gas industry.

  5. Recent sedimentological studies of the Murray and Stimson formations and their implications for Gale crater evolution, Mars

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev; Fedo, Chris; Grotzinger, John; Edgett, Ken; Vasavada, Ashwin

    2017-04-01

    The Mars Science Laboratory (MSL) Curiosity rover has been exploring sedimentary rocks on the lower north slope of Aeolis Mons since August 2014. Previous work has demonstrated a succession of sedimentary rock types deposited dominantly in river-delta settings (Bradbury group), and interfingering/overlying contemporaneous/younger lake settings (Murray formation, Mt. Sharp group). The Murray formation is unconformably overlain by the Stimson formation, an ancient aeolian sand lithology. Here, we describe the MSL team's most recent sedimentological findings regarding the Murray and Stimson formations. The Murray formation is of the order of 200 meters thick and formed dominantly of mudstones. The mudstone facies, originally identified at the Pahrump Hills field site, show abundant fine-scale planar laminations throughout the Murray formation succession and is interpreted to record deposition in an ancient lake system in Gale crater. Since leaving the Naukluft Plateau (Stimson formation rocks) and driving south-southeastwards and progressive stratigraphically upwards through the Murray succession, we have recognised a variety of additional facies have been recognized that indicate variability in the overall palaeoenvironmental setting. These facies include (1) cross-bedded siltstones to very fine-grained sandstones with metre-scale troughs that might represent aeolian sedimentation; (2) a heterolithic mudstone-sandstone facies with laminated fine-grained strata, cm-scale ripple cross-laminations in siltstone or very fine sandstone, and dm-scale cross-stratified siltstone and very fine grained sandstone. The palaeoenvironmental setting for the second facies remains under discussion. Our results show that Gale crater hosted lakes systems for millions to tens of millions of years, perhaps punctuated by drier intervals. Murray strata are unconformably overlain by the Stimson formation. Stimson outcrops are typically characterized by cross-bedded sandstones with cross-sets ranging between 40-80 cm thick (Fig. 2). Within the sets, cross-strata comprise repetitive laminations that are a few millimeters thick and typically sub-parallel. Cross-laminations downlap onto the underlying bounding surface with an asymptotic profile and are truncated at their top by an overlying bounding surface. Palaeocurrent analysis based on measurements of 117 foreset azimuths indicate a wind regime that drove dune migration towards the northeast. Cross sets are separated by erosional bounding surfaces, which are interpreted to represent interdune surfaces, which were formed by migrating dunes as they climbed over the stoss slope of a preceding dune, eroding its stoss and upper part of the lee slope. From analysis of the sedimentary architecture, and comparison with terrestrial aeolian strata, we interpret the Stimson formation to represent sands deposited in a dry-aeolian dune system. In summary, sedimentary observations by the Curiosity rover record a diverse range of palaeoenvironments and a rich geological history in strata preserved in lower Aeolis Mons.

  6. Longitudinal Variation in Paleo-channel Complex Geometry and Associated Fill: Offshore South Carolina

    NASA Astrophysics Data System (ADS)

    Long, A. M.; Hill, J. C.

    2017-12-01

    In northeastern South Carolina, several shallow (<25 m deep) paleo-channel complexes have previously been interpreted as the result of the southward migration of the ancestral Pee Dee River system along the southern limb of the Cape Fear Arch since the Pliocene. These paleo-channel complexes can be traced 80 km across the continental shelf via Boomer and Chirp subbottom data. The Murrells Inlet paleo-channel complex is the most well imaged offshore; and this data coverage provides an opportunity for a detailed seismic stratigraphic interpretation and analysis of downstream variability. Initial observations from this case study indicate that inner shelf incisions, where bedrock is folded and faulted, tend to be shallow with numerous channels, while the incisions across the middle shelf appear to be deeper and contains larger, more sinuous channels that are cut into broadly tilted strata with a gentle south-southeastward dip. This suggests the geometry and spatial distribution of the incisions were a function of the inherited fabric of the underlying basement, which created local deflection and areas of aggradation and degradation. The inner shelf paleo-channel complex fill is dominated by fluvial cut and fill seismic facies, while the middle shelf contains a wide variety of seismic facies (i.e. transparent, layered, chaotic, etc). This overall longitudinal fill pattern is most likely due to each location's general proximity to base level. The variation in the cut and fill seismic facies may be driven by substantial changes in discharge, driven locally by the joining of another major river or by climatic changes in the drainage basin. There also appears to be preferential reoccupation of previously filled paleo-channels, as the basement in this region is Tertiary and Cretaceous carbonates and siliciclastic rocks that are more resistant to erosion. The most recent occupation in any given paleo-channel tends to be on the southern margin, which may imply tectonic forcing from the uplift of the Cape Fear Arch. Preliminary results from this case study suggest that first order controls on the position and geometry of the paleo-channel complexes appears to be largely allogenic (i.e. tectonic and base level driven), while the depositional history of the fill may have been a mix of autogenic and allogenic processes.

  7. Integrated Modeling and Carbonate Reservoir Analysis, Upper Jurassic Smackover Formation, Fishpond Field, Southwest Alabama

    NASA Astrophysics Data System (ADS)

    Owen, Alexander Emory

    This field case study focuses on Upper Jurassic (Oxfordian) Smackover hydrocarbon reservoir characterization, modeling and evaluation at Fishpond Field, Escambia County, Alabama, eastern Gulf Coastal Plain of North America. The field is located in the Conecuh Embayment area, south of the Little Cedar Creek Field in Conecuh County and east of Appleton Field in Escambia County. In the Conecuh Embayment, Smackover microbial buildups commonly developed on Paleozoic basement paleohighs in an inner to middle carbonate ramp setting. The microbial and associated facies identified in Fishpond Field are: (F-1) peloidal wackestone, (F-2) peloidal packstone, (F-3) peloidal grainstone, (F-4) peloidal grainstone/packstone, (F-5) microbially-influenced wackestone, (F-6) microbially-influenced packstone, (F-7) microbial boundstone, (F-8) oolitic grainstone, (F-9) shale, and (F-10) dolomitized wackestone/packstone. The Smackover section consists of an alternation of carbonate facies, including F-1 through F-8. The repetitive vertical trend in facies indicates variations in depositional conditions in the area as a result of changes in water depth, energy conditions, salinity, and/or water chemistry due to temporal variations or changes in relative sea level. Accommodation for sediment accumulation also was produced by a change in base level due to differential movement of basement rocks as a result of faulting and/or subsidence due to burial compaction and extension. These changes in base level contributed to the development of a microbial buildup that ranges between 130-165 ft in thickness. The Fishpond Field carbonate reservoir includes a lower microbial buildup interval, a middle grainstone/packstone interval and an upper microbial buildup interval. The Fishpond Field has sedimentary and petroleum system characteristics similar to the neighboring Appleton and Little Cedar Creek Fields, but also has distinct differences from these Smackover fields. The characteristics of the petroleum trap and reservoir at Fishpond Field requires modification of the exploration strategy presently in use to identify Smackover reservoirs productive of hydrocarbons in the Conecuh Embayment area. The complexity of the geologic history of the petroleum trap and reservoir development at Fishpond Field distinguishes this field from the Appleton basement paleohigh and related microbial buildup and the Little Cedar Creek stratigraphic trap and associated inner ramp microbial buildups.

  8. The Cauaburi magmatic arc: Litho-stratigraphic review and evolution of the Imeri Domain, Rio Negro Province, Amazonian Craton

    NASA Astrophysics Data System (ADS)

    Carneiro, Marcia C. R.; Nascimento, Rielva S. C.; Almeida, Marcelo E.; Salazar, Carlos A.; Trindade, Ivaldo Rodrigues da; Rodrigues, Vanisse de Oliveira; Passos, Marcel S.

    2017-08-01

    A lithostratigraphic review of the Cauaburi Complex was carried out by means of field, tectono-metamorphic and geochemical data, which were the basis for the sub-division of the Cauaburi Complex orthogneisses into the Santa Izabel do Rio Negro, Cumati and São Jorge facies. These rocks crop out between São Gabriel da Cachoeira and Santa Izabel do Rio Negro, Amazonas, Brazil. The gneisses of the Santa Izabel do Rio Negro and Cumati facies are metaluminous and of calc-alkaline affinity; in turn, the rocks of the São Jorge facies are peraluminous and of alkaline affinity. They vary from (amphibole)-biotite granodiorites/monzogranites (Cumati and Santa Izabel do Rio Negro facies) to spessartite-bearing biotite monzogranites (São Jorge facies). The Cauaburi Complex geochemical signature is compatible with that of granites generated in collisional settings (magmatic arc?) and its evolution is related to three distinct tectono-metamorphic events: D1, causing foliation S1, which developed during the Cauaburi Complex syn-tectonic emplacement in the Cauaburi Orogeny; D2/M2, causing foliation S2, which was generated under amphibolite facies conditions (717.9 °C and 5.84 kbars), and the emplacement of I- and S-type granite during the Içana Orogen, and low-temperature D3, associated with the K'Mudku Event, which caused foliation S3 and reworking via transcurrent shear zones under greenschist facies conditions.

  9. Anatomy of a lower Mississippian oil reservoir, West Virginia, United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchen, D.; Hohn, M.E.; McDowell, R.

    1993-09-01

    Several lines of evidence indicate that the oil reservoir in Granny Creek field is compartmentalized due to internal heterogeneities: an analysis of initial open flows vs. year completed and well location; mapping of initial open flows and cumulative production; and the nonuniform behavior of injection pressures and rates in waterflood patterns. The Big Injun sandstones includes an upper, coarse-grained, fluvial channel facies, and a lower, fine-grained, distributary mouthbar facies. The bar facies is the main reservoir, and can be subdivided into crest, distal, and proximal subfacies. Low original porosity and permeability in the poorly sorted channel facies was reduced furthermore » by quartz cementation. In contrast, chlorite coatings restricted quartz cementation and preserved porosity and permeability in the proximal bar subfacies. Small, low-amplitude folds plunge northeastward on the flank of the main syncline in which the fields is located. These minor structural highs seem to match areas of high initial open flows and cumulative production. High production also occurs where the distal and marine-influenced, proximal mouth-bar subfacies pinch out against at least a few feet of the relatively impremeable channel facies. Lower production is associated with (1) thin areas of proximal mouth-bar subfacies; (2) a change from marine to fluvial dominance of the bar facies, which is accompanied by a reduction in porosity and permeability; and (3) loss of the less permeable channel facies above the porous reservoir sandstone, due to downcutting by regional erosion that produced a post-Big Injun unconformity.« less

  10. Diagenetic controls on reservoir heterogeneity in St. Peter Sandstone, deep Michigan basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, D.A.; Turmelle, T.M.; Adam, R.

    1989-03-01

    The St. Peter Sandstone is a highly productive gas and condensate reservoir throughout the central part of the Michigan basin. Production occurs in several intervals: a laterally continuous zone at the top of the formation typified in the Woodville, Falmouth, and Rose City fields and less continuous intervals lower in the formation typified in the Ruwe Gulf zone of the Reed City field. Porosity is not limited to hydrocarbon productive zones, however. Diagenesis has dramatically modified primary mineralogy and textures in the formation. Dominant diagenetic components are quartz, dolomite, and clay authigenic cements, extensive chemical compaction, and pervasive mineral leaching.more » Their model for sandstone diagenesis is consistent throughout the basin. Variation in the significance of these diagenetic components is strongly templated by stratigraphically predictable facies variations within the St. Peter Sandstone.« less

  11. Marine habitat mapping of the Milford Haven Waterway, Wales, UK: Comparison of facies mapping and EUNIS classification for monitoring sediment habitats in an industrialized estuary

    NASA Astrophysics Data System (ADS)

    Carey, Drew A.; Hayn, Melanie; Germano, Joseph D.; Little, David I.; Bullimore, Blaise

    2015-06-01

    A detailed map and dataset of sedimentary habitats of the Milford Haven Waterway (MHW) was compiled for the Milford Haven Waterway Environmental Surveillance Group (MHWESG) from seafloor images collected in May, 2012 using sediment-profile and plan-view imaging (SPI/PV) survey techniques. This is the most comprehensive synoptic assessment of sediment distribution and benthic habitat composition available for the MHW, with 559 stations covering over 40 km2 of subtidal habitats. In the context of the MHW, an interpretative framework was developed that classified each station within a 'facies' that included information on the location within the waterway and inferred sedimentary and biological processes. The facies approach provides critical information on landscape-scale habitats including relative location and inferred sediment transport processes and can be used to direct future monitoring activities within the MHW and to predict areas of greatest potential risk from contaminant transport. Intertidal sediment 'facies' maps have been compiled in the past for MHW; this approach was expanded to map the subtidal portions of the waterway. Because sediment facies can be projected over larger areas than individual samples (due to assumptions based on physiography, or landforms) they represent an observational model of the distribution of sediments in an estuary. This model can be tested over time and space through comparison with additional past or future sample results. This approach provides a means to evaluate stability or change in the physical and biological conditions of the estuarine system. Initial comparison with past results for intertidal facies mapping and grain size analysis from grab samples showed remarkable stability over time for the MHW. The results of the SPI/PV mapping effort were cross-walked to the European Nature Information System (EUNIS) classification to provide a comparison of locally derived habitat mapping with European-standard habitat mapping. Cross-walk was conducted by assigning each facies (or group of facies) to a EUNIS habitat (Levels 3 or 5) and compiling maps comparing facies distribution with EUNIS habitat distribution. The facies approach provides critical information on landscape-scale habitats including relative location and inferred sediment transport processes. The SPI/PV approach cannot consistently identify key species contained within the EUNIS Level 5 Habitats. For regional planning and monitoring efforts, a combination of EUNIS classification and facies description provides the greatest flexibility for management of dynamic soft-bottom habitats in coastal estuaries. The combined approach can be used to generate and test hypotheses of linkages between biological characteristics (EUNIS) and physical characteristics (facies). This approach is practical if a robust cross-walk methodology is developed to utilize both classification approaches. SPI/PV technology can be an effective rapid ground truth method for refining marine habitat maps based on predictive models.

  12. Arctic Alaska’s Lower Cretaceous (Hauterivian and Barremian) mudstone succession - Linking lithofacies, texture, and geochemistry to marine processes: Chapter B in Studies by the U.S. Geological Survey in Alaska, vol. 15

    USGS Publications Warehouse

    Keller, Margaret A.; Macquaker, Joe H.S.

    2015-01-01

    Our results document the variation in facies and textures of the Hauterivian and Barremian Lower Cretaceous mudstone succession of Arctic Alaska. Comparison of these characteristics to the products of modern processes on the North Slope of Alaska, in the Beaufort Sea, and elsewhere suggest that this succession formed primarily from depositional processes related to seasonal sea ice with intermittent fluvial-sourced sediment deposited by density currents and episodic erosion and reworking by storms and other currents.

  13. CHARACTERIZATION OF SANDSTONE RESERVOIRS FOR ENHANCED OIL RECOVERY: THE PERMIAN UPPER MINNELUSA FORMATION, POWDER RIVER BASIN, WYOMING.

    USGS Publications Warehouse

    Schenk, C.J.; Schmoker, J.W.; Scheffler, J.M.

    1986-01-01

    Upper Minnelusa sandstones form a complex group of reservoirs because of variations in regional setting, sedimentology, and diagenetic alteration. Structural lineaments separate the reservoirs into northern and southern zones. Production in the north is from a single pay sand, and in the south from multi-pay sands due to differential erosion on top of the Upper Minnelusa. The intercalation of eolian dune, interdune, and sabkha sandstones with marine sandstones, carbonates, and anhydrites results in significant reservoir heterogeneity. Diagenetic alterations further enhance heterogeneity, because the degree of cementation and dissolution is partly facies-related.

  14. Is cratonic sedimentation consistent with available models? An example from the Upper Proterozoic of the West African craton

    NASA Astrophysics Data System (ADS)

    Bertrand-Sarfati, Janine; Moussine-Pouchkine, Alexis

    1988-08-01

    The Atar Group, part of the Upper Proterozoic sequence covering the West African craton, stable since 2000 Ma, is characterized by an alternation of extensive carbonate beds and mixed siliciclastic and carbonate facies. The carbonate beds comprise essentially columnar stromatolite biostromes and bioherms which reflect sublittoral environments. The mixed facies contain a variety of laterally discontinuous facies which imply more variable environmental conditions. The settings of the mixed facies are not always clear but they do not contain thick sequences of high-energy facies. Few obvious facies sequences are discernable; those that are present are considered to be punctuated aggradational cycles (PACs) and they always start with biostromes of columnar stromatolites with very few sediments. Composite sequences are interpreted as due to shallowing upward or increasing energy environments that may be laterally contiguous, despite the fact that the contacts are not gradational. However, much of the stratigraphic sequence cannot be subdivided into cycles and seems to consist of unrelated individual facies, bound by sharp boundaries. The basin analysis reveals that biostromes of columnar stromatolites start after an instantaneous geological event corresponding to a sea-level rise. Consequently, their appearance can be considered as a time-line. We describe, in the Atar Group and its equivalents, three sedimentation trends, all of which are interpreted to be of shallowing upward character. The Atar Group appears to have been deposited in an epeiric sea (i.e. an extremely flat ramp). There are two contrasting styles of sedimentation: (1) after the submergence of the whole area, columnar stromatolites built extensive biostromes; (2) during the stable phase, sediments are deposited in a mosaic of laterally-discontinuous facies. Tidal influence cannot be recognized in the sequence, neither can a salinity increase toward the land; both common features in published epeiric sea models. A cratonic sedimentation area such as this is characterized by its size and flatness. Only during the stable phase of the cycle does small-scale topographic relief lead to deposition of a mosaic of facies. The sedimentation is storm- and wave-dominated.

  15. Evaluation of conditions along the grounding line of temperate marine glaciers: An example from Muir Inlet, Glacier Bay, Alaska

    USGS Publications Warehouse

    Seramur, K.C.; Powell, R.D.; Carlson, P.R.

    1997-01-01

    In the marine environment, stability of the glacier terminus and the location of subglacial streams are the dominant controls on the distribution of grounding-line deposits within morainal banks. A morainal bank complex in Muir Inlet, Glacier Bay, SE Alaska, is used to develop a model of terminus stability and location of subglacial streams along the grounding line of temperate marine glaciers. This model can be used to interpret former grounding-line conditions in other glacimarine settings from the facies architecture within morainal bank deposits. The Muir Inlet morainal bank complex was deposited between 1860 A.D. and 1899 A.D., and historical observations provide a record of terminus positions, glacial retreat rates and sedimentary sources. These data are used to reconstruct the depositional environment and to develop a correlation between sedimentary facies and conditions along the grounding line. Four seismic facies identified on the high-resolution seismic-reflection profiles are used to interpret sedimentary facies within the morainal bank complex. Terminus stability is interpreted from the distribution of sedimentary facies within three distinct submarine geomorphic features, a grounding-line fan; stratified ridges, and a field of push ridges. The grounding-line fan was deposited along a stable terminus and is represented on seismic-reflection profiles by two distinct seismic facies, a proximal and a distal fan facies. The proximal fan facies was deposited at the efflux of subglacial streams and indicates the location of former glacifluvial discharges into the sea. Stratified ridges formed as a result of the influence of a quasi-stable terminus on the distribution of sedimentary facies along the grounding line. A field of push ridges formed along the grounding line of an unstable terminus that completely reworked the grounding-line deposits through glacitectonic deformation. Between 1860 A.D. and 1899 A.D. (39 years), 8.96 x 108 m3 of sediment were deposited within the Muir Inlet morainal bank complex at an average annual sediment accumulation rate of 2.3 x 107 m3/a. This rate represents the annual sediment production capacity of the glacier when the Muir Inlet drainage basin is filled with glacial ice.

  16. Unraveling the polymetamorphic history of garnet-bearing metabasites: Insights from the North Motagua Mélange (Guatemala Suture Zone)

    NASA Astrophysics Data System (ADS)

    Bonnet, G.; Flores, K. E.; Martin, C.; Harlow, G. E.

    2014-12-01

    The Guatemala Suture Zone is the fault-bound region in central Guatemala that contains the present North American-Caribbean plate boundary. This major composite geotectonic unit contains a variety of ophiolites, serpentinite mélanges, and metavolcano-sedimentary sequences along with high-grade schists, gneisses, low-grade metasediments and metagranites thrusted north and south of the active Motagua fault system (MFS). The North Motagua Mélange (NMM) outcrops north of the MFS and testifies the emplacement of exhumed subduction assemblages along a collisional tectonic setting. The NMM is composed of a serpentinite-matrix mélange that contains blocks of metabasites (subgreenschist facies metabasalt, grt-blueschist, eclogite, grt-amphibolite), vein-related rocks (jadeitite, omphacitite, albitite, mica-rock), and metatrondhjemites. Our new detailed petrographic and thermobarometric study on the garnet-bearing metabasites reveals a complex polymetamorphic history with multiple tectonic events. Eclogites show a classical clockwise PT path composed of (a) prograde blueschist/eclogite facies within garnet cores, (b) eclogite facies metamorphic peak at ~1.7 GPa and 620°C, (c) post-peak blueschist facies, (d) amphibolite facies overprint, and (e) late stage greenschist facies. Two types of garnet amphibolite blocks can be found, the first consist of (a) a relict eclogite facies peak at ~1.3 GPa and 550°C only preserved within anhedral garnet cores, and (b) surrounded by a post-peak amphibolite facies. In contrast, the second type displays a prograde amphibolite facies at 0.6-1.1 GPa and 400-650°C. The eclogites metamorphic peak suggests formation in a normal subduction zone at ~60 km depth, a subsequent exhumation to the middle section of the subduction channel (~35 km), and a later metamorphic reworking at lower P and higher T before its final exhumation. The first type of garnet amphibolite shows a similar trajectory as the eclogites but at warmer conditions. In contrast, the second type of garnet amphibolite recorded a single prograde evolution along a hotter thermal gradient. These different PT paths suggest multiple metamorphic events that may be related to subduction initiation, partial exhumation and storage of HP-LT rocks, subduction of buoyant crust, final exhumation and obduction.

  17. Evolution of sedimentary architecture in retro-foreland basin: Aquitaine basin example from Paleocene to lower Eocene.

    NASA Astrophysics Data System (ADS)

    Ortega, Carole; Lasseur, Eric; Guillocheau, François; Serrano, Olivier; Malet, David

    2017-04-01

    The Aquitaine basin located in south western Europe, is a Pyrenean retro-foreland basin. Two main phases of compression are recorded in this retro-foreland basin during the Pyrenean orogeny. A first upper Cretaceous phase corresponding to the early stage of the orogeny, and a second one usually related to a Pyrenean paroxysmal phase during the middle Eocene. During Paleocene to lower Eocene deformations are less pronounced, interpreted as a tectonically quiet period. The aim of the study is to better constrain the sedimentary system of the Aquitaine basin during this period of Paleocene-lower Eocene, in order to discuss the evolution of the sedimentary architecture in response of the Pyrenean compression. This work is based on a compilation of a large set of subsurface data (wells logs, seismic lines and cores logs) represented by isopachs and facies map. Three main cycles were identified during this structural quiet period: (1) The Danian cycle, is recorded by the aggradation of carbonate reef-rimmed platform. This platform is characterized by proximal facies (oncoid carbonate and mudstone with thalassinoides) to the north, which leads to distal deposit facies southern (pelagic carbonate with globigerina and slump facies) and present a significant thickness variation linked to the platform-slope-basin morphology. (2) The upper Selandian-Thanetian cycle follows a non-depositional/erosional surface associated with a Selandian hiatus. The base of this cycle marked the transition between the last reef rimmed platform and a carbonate ramp. The transgressive cycle is characterized by proximal lagoon facies to the north that leads southward to distal hemipelagic facies interfingered by turbiditic Lowstand System Tracks (LST). The location of these LST is strongly controlled by inherited Danian topography. The regressive cycle ends with a major regression associated with an erosional surface. This surface is linked with a network of canyons in the north, an important terrigeneous LST and a massive erosional surface in deep basin. We correlated this upper Thanetian major regression with a flexural deformation of the basin. In this context, the importance of terrigeneous LST could be explained by the erosion of the East Pyrenean range. (3) The lower Ypresian records the installation of mixed terrigenous-carbonated system. While the East-West progradation of siliciclastic deltas is drained into foreland basin, a carbonates condensation are developed on structural ridges, attesting the structural activation of foreland basin during lower Ypresian. This study shows that Danian to middle Thanetian time represents a quiet tectonic period in the retro-foreland basin. During the upper Thanetian period, the compressive deformation is increasing, marked by the emersion of the northern platform, a massive LST in distal environment and a rise of terrigenous input in flexural basin (LST). This deformation associated with the Pyrenean compression continues during the Ypresian and highlights the paroxysm of the Pyrenean orogeny. This work is included in the Gaia project founded by TIGF, BRGM and Agence de l'Eau Adour/Garonne whose aim at constrain the nature and dynamics of deep Upper cretaceous and Tertiary aquifers of the Aquitaine basin.

  18. Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Calder, E. S.; Sparks, R. S. J.; Gardeweg, M. C.

    2000-12-01

    Investigations have been made on the distribution of pumice and lithic clasts in the lithic rich Soncor ignimbrite (26.5 ka) and the 1993 pumice flow deposits of Lascar Volcano, Chile. The Soncor ignimbrite shows three main lithofacies which grade into one another. Coarse lithic breccias range from matrix poor stratified varieties, irregular shaped sheets and elongate hummocks in proximal environments, to breccia lenses with pumiceous ignimbrite matrix. Massive, lithic rich facies comprise the bulk of the ignimbrite. Pumice rich facies are bimodal with abundant large pumice clasts (often with reverse grading), rare lithic clasts and occur distally and on high ground adjacent to deep proximal valleys. In the 1993 pyroclastic flow deposits lithic rich facies are deposited on slopes up to 14° whereas pumice rich facies are deposited only on slopes <4°. Lithic rich parts show a thin pumice rich corrugated surface which can be traced into the pumice rich facies. The high lithic content in the Soncor ignimbrite is attributed to the destruction of a pre-existing dome complex, deep explosive cratering into the interior of the volcano and erosion during pyroclastic flow emplacement. Lithic clasts incorporated into the flows during erosion of the basement substrate have been distinguished from those derived from the vent. Categorisation of these lithics and knowledge of the local geology allows these clasts to be used as tracers to interpret former flow dynamics. Lithic populations demonstrate local flow paths and show that lithics are picked up preferentially where flows move around or over obstacles, or through constrictions. Eroded lithics can be anomalously large, particularly close to the location of erosion. Observations of both the Soncor ignimbrite and the 1993 deposits show that lithic rich parts of flows were much more erosive than pumice rich parts. Both the Soncor and 1993 deposits are interpreted as resulting from predominantly high concentration granular suspensions where particle-particle interactions played a major role. The concentrated flows segregated from more expanded and turbulent suspension currents within a few kilometres of the source. During emplacement some degree of internal mixing is inferred to have occurred enabling entrained lithics to migrate into flow interiors. The facies variations and distributions and the strong negative correlation between maximum pumice and lithic clast size are interpreted as the consequence of efficient density segregation within the concentrated flows. The frictional resistance of the lithic rich part is greater so that it deposits on steeper slopes and generally closer to the source. The lower density and more mobile pumice rich upper portions continued to flow and sequentially detached from the lithic rich base of the flow. Pumice rich portions moved to the margins and distal parts of the flow so that distal deposits are lithic poor and non-erosive. The flows are therefore envisaged as going though several important transformations. Proximally, dense, granular flow, undercurrents are formed by rapid sedimentation of suspension currents. Medially to distally the undercurrents evolve to flows with significantly different rheology and mobility characteristics as lithic clasts are sedimented out and distal flows become dominated by pumice.

  19. [Burden of proof in medical cases--presumption of fact and prima facie evidence. II. Presumption of fact and prima facie evidence].

    PubMed

    Sliwka, Marcin

    2004-01-01

    The aim of this paper was to present the main rules concerning the burden of proof in polish civil trials, including medical cases. The standard rules were presented with all the important exclusions such as presumption of law and fact or prima facie evidence. The author analyses the effect of these institutions on burden of proof in medical cases. The difference between presumptions of fact and prima facie evidence was analysed and explained. This paper also describes the importance of the res ipsa loquitur rule in United Kingdom and USA. This paper includes numerous High Court sentences on evidential and medical issues.

  20. A mélange of subduction temperatures: Evidence from Zr-in-rutile thermometry for strengthening of the subduction interface

    NASA Astrophysics Data System (ADS)

    Penniston-Dorland, Sarah C.; Kohn, Matthew J.; Piccoli, Philip M.

    2018-01-01

    The Catalina Schist contains a spectacular, km-scale amphibolite facies mélange zone, thought to be part of a Cretaceous convergent margin plate interface. In this setting, blocks ranging from centimeters up to ≥100 m in diameter are surrounded by finer-grained matrix that is derived from the blocks. Blocks throughout the mélange represent a diversity of protoliths derived from basalts, cherts and other sediments, and hydrated mantle, but all contain assemblages consistent with upper amphibolite-facies conditions, suggesting a relatively restricted range of depths and temperatures over which material within the mélange was metamorphosed. This apparent uniformity of metamorphic grade contrasts with other mélanges, such as the Franciscan Complex, where coexisting rocks with highly variable peak metamorphic grade suggest extensive mixing of materials along the subduction interface. This mixing has been ascribed to flow of material within relatively low viscosity matrix. The Zr content of rutile in samples from across the amphibolite facies mélange of the Catalina Schist was measured to determine peak metamorphic temperatures, identify whether these temperatures were different among blocks, and whether the spatial distribution of temperatures throughout the mélange was systematic or random. Resolvably different Zr contents, between 290 and 720 (±10-40) ppm, are found among the blocks, corresponding to different peak metamorphic temperatures of 650 to 730 (±2-16) °C at an assumed pressure of 1 GPa. These results are broadly consistent with previous thermobarometric estimates. No systematic distribution of temperatures was found, however. Like other mélange zones, material flow within the Catalina Schist mélange was likely chaotic, but appears to have occurred on a more restricted scale compared to some other localities. Progressive metamorphism of mélange matrix is expected to produce rheologically stiffer matrix minerals (such as amphiboles and pyroxenes) at the expense of weaker matrix minerals (sheet silicates), affecting the overall rheological behavior of the mélange, and dictating the scale of flow. The Catalina Schist amphibolite facies mélange matrix appears to provide a snapshot of hotter, stiffer portions of a subduction interface, perhaps more representative of rheological behavior at depths approaching the subarc than is found in some other exhumed mélange zones.

  1. Organic content of Devonian shale in western Appalachian basin.

    USGS Publications Warehouse

    Schmoker, J.W.

    1980-01-01

    In the organic-rich facies of the Devonian shale in the western part of the Appalachian basin, the distribution of organic matter provides an indirect measure of both gas in place and the capacity of the shale to supply gas to permeable pathways.The boundary between organic-rich ('black') and organic-poor ('gray') facies is defined here as 2% organic content by volume. The thickness of organic-rich facies ranges from 200ft in central Kentucky to 1000ft along the Kentucky-West Virginia border. The average content of the organic-rich facies increases from 5% by volume on the edge to 16% in central Kentucky. The net thickness of organic matter in the organic-rich facies shows the amount of organic material in the shale, and is the most fundamental of the organic-content characterizations. Net thickness of organic matter ranges between 20 and 80ft (6.1 and 24.4m) within the mapped area.-from Author

  2. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green

    2002-10-01

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation ormore » printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.« less

  3. Calibration of Seismic Attributes for Reservoir Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne D. Pennington

    2002-09-29

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation ormore » printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.« less

  4. Anatomy of the grainstone shoal facies of the Salem Limestone (Mississippian) of southern Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, J.R.; Petzold, D.D.; Thompson, T.A.

    In 1990 M.A. Brown described the middle Mississippian (Valmeyeran) Salem Limestone exposed on the eastern side of the Illinois Basin as consisting of a massive grainstone shoal facies behind which developed a sand flat, an open lagoon, and a restricted lagoon facies. Smaller intrashoal channels provided limited exchange between lagoon and open ocean. The authors have made detailed studies of sedimentary structures and petrography of the shoal facies in three settings: the shoal proper, an intrashoal channel, and an intershoal channel. The shoal and channel facies consists of tabular-planar and trough cross-stratified beds of grainstone containing echinoderm and fenestrate bryozoanmore » grains as their primary constituents. Prominent hardgrounds that have up to 1 m of erosional relief occur in two of the sections. Despite the apparent uniformity of composition of the shoal, porosity and especially permeability varies over a wide range, suggesting a range of cementation patterns within the shoal. Most of the cement in the shoal consists of syntaxial overgrowths on echinoderm grains. Cementation is less and thus porosity and permeability greater, in portions of the shoals containing a lower concentration of echinoderm grains and grains with thick micrite envelopes. However, some portions of the intershoal channel facies that contain a high percentage of ooids have reduced porosity and permeability due to crushing of ooids, producing micrite that clogged the pores. Primary sedimentary features of the shoal facies were produced predominantly by storm reworking of carbonate grains produced in situ and perhaps in part washed in from surrounding environments.« less

  5. Channel characterization using multiple-point geostatistics, neural network, and modern analogy: A case study from a carbonate reservoir, southwest Iran

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyyedhossein; Javaherian, Abdolrahim; Ataee-pour, Majid; Tahmasebi, Pejman; Khoshdel, Hossein

    2014-12-01

    In facies modeling, the ideal objective is to integrate different sources of data to generate a model that has the highest consistency to reality with respect to geological shapes and their facies architectures. Multiple-point (geo)statistics (MPS) is a tool that gives the opportunity of reaching this goal via defining a training image (TI). A facies modeling workflow was conducted on a carbonate reservoir located southwest Iran. Through a sequence stratigraphic correlation among the wells, it was revealed that the interval under a modeling process was deposited in a tidal flat environment. Bahamas tidal flat environment which is one of the most well studied modern carbonate tidal flats was considered to be the source of required information for modeling a TI. In parallel, a neural network probability cube was generated based on a set of attributes derived from 3D seismic cube to be applied into the MPS algorithm as a soft conditioning data. Moreover, extracted channel bodies and drilled well log facies came to the modeling as hard data. Combination of these constraints resulted to a facies model which was greatly consistent to the geological scenarios. This study showed how analogy of modern occurrences can be set as the foundation for generating a training image. Channel morphology and facies types currently being deposited, which are crucial for modeling a training image, was inferred from modern occurrences. However, there were some practical considerations concerning the MPS algorithm used for facies simulation. The main limitation was the huge amount of RAM and CPU-time needed to perform simulations.

  6. A locally adaptive kernel regression method for facies delineation

    NASA Astrophysics Data System (ADS)

    Fernàndez-Garcia, D.; Barahona-Palomo, M.; Henri, C. V.; Sanchez-Vila, X.

    2015-12-01

    Facies delineation is defined as the separation of geological units with distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from the fact that only a few scattered pieces of hydrogeological information are available to delineate geological facies. Several methods to delineate facies are available in the literature, ranging from those based only on existing hard data, to those including secondary data or external knowledge about sedimentological patterns. This paper describes a methodology to use kernel regression methods as an effective tool for facies delineation. The method uses both the spatial and the actual sampled values to produce, for each individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal directions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is shown to outperform the nearest neighbor classification method in a number of synthetic aquifers whenever the available number of hard data is small and randomly distributed in space. In the case of exhaustive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings. It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of the method is demonstrated to significantly improve when external information regarding facies proportions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies connectivity patterns, shown in terms of breakthrough curves performance.

  7. Kimberlite emplacement record in diamond morphology

    NASA Astrophysics Data System (ADS)

    Fedortchouk, Y.; Chinn, I.

    2015-12-01

    Diamond resorption morphology reflects conditions and events in the host kimberlite magma and in diamond sources in subcratonic mantle. Recent experimental studies on diamond dissolution enable us now to use surface features of diamonds to examine magmatic fluid in kimberlites. This study uses optical and scanning electron microscopy examination of ~750 macro-diamonds from two kimberlites in Orapa cluster, Botswana. Kimberlite A is a simple body filled with coherent kimberlite facies (CK); kimberlite B is a complex body with two facies of coherent kimberlite and a massive volcaniclastic kimberlite facies (MVK). Distinction between kimberlite-induced and mantle-derived resorption was based on: the type of the most abundant resorption style, morphology of crystals with attached kimberlite fragments, and the study of pseudohemimorphic diamonds. Kimberlite-induced resorption is the focus of this work. The three facies in the pipe B show three contrasting diamond resorption types. Resorption in MVK facies leads to glossy rounded surfaces with fine striation and hillocks, and is identical to the resorption style in CK facies of pipe A. This type of resorption is typical for volcaniclastic facies and indicates emplacement in the presence of abundant COH fluid with high H2O:CO2 ratio (>50mol% of H2O). We propose that pipe A is a root zone supplying material to a larger kimberlite body filled with VK. The two CK in pipe B have very different resorption style. One forms similar glossy surfaces but with regular small cavities of rounded outline, while the other seems more corrosive and develops extremely rough features and deep cavities. Comparison to the experimental data suggests that the former had almost pure H2O fluid at low pressure (where solubility of SiO2 is low). The later CK facies was emplaced in the absence or very low abundance of a free fluid, and possibly in melt closer to carbonatitic composition.

  8. Mineralogy and Geochemistry of the Main Glauconite Bed in the Middle Eocene of Texas: Paleoenvironmental Implications for the Verdine Facies

    PubMed Central

    Harding, Sherie C.; Nash, Barbara P.; Petersen, Erich U.; Ekdale, A. A.; Bradbury, Christopher D.; Dyar, M. Darby

    2014-01-01

    The Main Glauconite Bed (MGB) is a pelleted greensand located at Stone City Bluff on the south bank of the Brazos River in Burleson County, Texas. It was deposited during the Middle Eocene regional transgression on the Texas Gulf Coastal Plain. Stratigraphically it lies in the upper Stone City Member, Crockett Formation, Claiborne Group. Its mineralogy and geochemistry were examined in detail, and verdine facies minerals, predominantly odinite, were identified. Few glauconitic minerals were found in the green pelleted sediments of the MGB. Without detailed mineralogical work, glaucony facies minerals and verdine facies minerals are easily mistaken for one another. Their distinction has value in assessing paleoenvironments. In this study, several analytical techniques were employed to assess the mineralogy. X-ray diffraction of oriented and un-oriented clay samples indicated a clay mixture dominated by 7 and 14Å diffraction peaks. Unit cell calculations from XRD data for MGB pellets match the odinite-1M data base. Electron microprobe analyses (EMPA) from the average of 31 data points from clay pellets accompanied with Mössbauer analyses were used to calculate the structural formula which is that of odinite: Fe3+ 0.89 Mg0.45 Al0.67 Fe2+ 0.30 Ti0.01 Mn0.01) Σ = 2.33 (Si1.77 Al0.23) O5.00 (OH)4.00. QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) data provided mineral maps of quantitative proportions of the constituent clays. The verdine facies is a clay mineral facies associated with shallow marine shelf and lagoonal environments at tropical latitudes with iron influx from nearby runoff. Its depositional environment is well documented in modern nearshore locations. Recognition of verdine facies clays as the dominant constituent of the MGB clay pellets, rather than glaucony facies clays, allows for a more precise assessment of paleoenvironmental conditions. PMID:24503875

  9. Application of different classification methods for litho-fluid facies prediction: a case study from the offshore Nile Delta

    NASA Astrophysics Data System (ADS)

    Aleardi, Mattia; Ciabarri, Fabio

    2017-10-01

    In this work we test four classification methods for litho-fluid facies identification in a clastic reservoir located in the offshore Nile Delta. The ultimate goal of this study is to find an optimal classification method for the area under examination. The geologic context of the investigated area allows us to consider three different facies in the classification: shales, brine sands and gas sands. The depth at which the reservoir zone is located (2300-2700 m) produces a significant overlap of the P- and S-wave impedances of brine sands and gas sands that makes discrimination between these two litho-fluid classes particularly problematic. The classification is performed on the feature space defined by the elastic properties that are derived from recorded reflection seismic data by means of amplitude versus angle Bayesian inversion. As classification methods we test both deterministic and probabilistic approaches: the quadratic discriminant analysis and the neural network methods belong to the first group, whereas the standard Bayesian approach and the Bayesian approach that includes a 1D Markov chain a priori model to constrain the vertical continuity of litho-fluid facies belong to the second group. The ability of each method to discriminate the different facies is evaluated both on synthetic seismic data (computed on the basis of available borehole information) and on field seismic data. The outcomes of each classification method are compared with the known facies profile derived from well log data and the goodness of the results is quantitatively evaluated using the so-called confusion matrix. The results show that all methods return vertical facies profiles in which the main reservoir zone is correctly identified. However, the consideration of as much prior information as possible in the classification process is the winning choice for deriving a reliable and physically plausible predicted facies profile.

  10. Shallow water mud-mounds of the Early Devonian Buchan Group, East Gippsland, Australia

    NASA Astrophysics Data System (ADS)

    Tosolini, A.-M. P.; Wallace, M. W.; Gallagher, S. J.

    2012-12-01

    The Lower Devonian Rocky Camp Member of the Murrindal Limestone, Buchan Group of southeastern Australia consists of a series of carbonate mud-mounds and smaller lagoonal bioherms. The Rocky Camp mound is the best exposed of the mud-mounds and has many characteristics in common with Waulsortian (Carboniferous) mounds. Detailed paleoecological and sedimentological studies indicate that the mound initially accumulated in the photic zone, in contrast to most of the previously recorded mud-mounds. Five facies are present in the mud-mound: a Dasycladacean Wackestone Facies at the base of the mound represents a moderate energy, shallow water bank environment within the photic zone. A Crinioidal Wackestone Facies was deposited in a laterally equivalent foreslope setting. A Poriferan-Crinoidal Mudstone Facies developed in a quiet, deeper water, lee-side mound setting associated with a minor relative sea-level rise. A Stromatoporoid-Coralline Packstone Facies in the upper part of the mound deposited in a high-energy, fair-weather wave base, mound-front environment. The crest of the mound is represented by a Crinoidal-Receptaculitid Packstone Facies indicative of a moderate-energy mound-top environment in the photic zone, sheltered by the mound-front stromatoporoid-coral communities. A mound flank facies is present on the southern side of the mound and this consists of high-energy crinoidal grainstones. Mud-mound deposition was terminated by a transgression that deposited dark gray, fossil-poor marl of the overlying Taravale Formation. The Rocky Camp mound appears to have originated in shallow water photic zone conditions and grew into a high-energy environment, with the mound being eventually colonized by corals and stromatoporoids. The indications of a high-energy environment during later mound growth (growth form of colonial metazoans and grainstones of the flanking facies) suggest that the micrite in the mound was autochthonous and implies the presence of an energy damping mechanism (probably biological) at the mound surface.

  11. Stratigraphy of the Morrison and related formations, Colorado Plateau region, a preliminary report

    USGS Publications Warehouse

    Craig, Lawrence C.; ,

    1955-01-01

    Three subdivisions of the Jurassic rocks of the Colorado Plateau region are: the Glen Canyon group, mainly eolian and fluvial sedimentary rocks; the San Rafael group, marine and marginal marine sedimentary rocks; and the Morrison formation, fluvial and lacustrine sedimentary rocks. In central and eastern Colorado the Morrison formation has not been differ- entiated into members. In eastern Utah, northeastern Arizona, northwestern New Mexico, and in part of western Colorado, the Morrison may be divided into a lower part and an upper part; each part has two members which are di1Ierentiated on a lithologic basis. Where differentiated, the lower part of the Morrison consists either of the Salt Wash member or the Recapture member or both; these are equivalent in age and inter tongue and intergrade over a broad area in the vicinity of the Four Corners area of New Mexico, Colorado, Arizona, and Utah. The Salt Wash member is present in eastern Utah and parts of western Colorado, north- eastern Arizona, and northwestern New Mexico. It was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams diverging to the north and east from an apex in south-central Utah. The major source area of the Salt Wash was to the southwest of south-central Utah, probably in west-central Arizona and southeastern California. The member was derived mainly from sedimentary rocks. The Salt Wash deposits grade from predomi- nantly coarse texture at the apex of the 'fan' to predominantly flne texture at the margin of the 'fan'. The Salt Wash member has been arbitrarily divided into four facies: a con- glomera tic sandstone facies, a sandstone and mudstone facies, a claystone and lenticular sandstone facies, and a claystone and limestone facies. The Recapture member of the Morrison formation is present in northeastern Arizona, northwestern New Mexico, and small areas of southeastern Utah and southwestern Colorado near the Four Corners. It was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams. The Recap- ture deposits grade from predominantly coarse texture sedimentary rocks to predominantly fine texture and have been arbitrarily divided into three facies: a conglomeratic sandstone facies, a sandstone facies, and a claystone and sandstone facies. The distribution of the facies indicates that the major source area of the Recapture was south of Gallup, N. Mex., probably in west-central New Mexico. The Recapture was derived from an area of intrusive and extrusive igneous rocks, metamorphic rocks, and sedimentary rocks. The upper part of the Morrison formation consists of the Westwater Canyon member and the Brushy Basin member. The Westwater Canyon member forms the lower portion of the upper part of the Morrison in northeastern Arizona, northwestern New Mexico, and places in southeastern Utah and southwestern Colorade near the Four Corners, and it intertongues and intergrades northward into the Brushy Basin member. The Westwater Canyon member was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams. The Westwater deposits grade from predominantly coarse-textured sedimentary rocks to somewhat finer textured sedimentary rocks, and have been arbitrarily divided into two facies: a conglomeratic sandstone facies and a sandstone facies. The distribution of the facies indicates that the major source area of the Westwater was south of Gallup, N. Mex., probably in west-central New Mexico. The Westwater was derived from an area of intrusive and extrusive igneous rocks, metamorphic rocks, and sedimentary rocks. The similarity of the distribution and composition of the Westwater to the Recapture indicates that the Westwater represents essentially a continuation of deposition on the Recapture 'fan'; the Westwater contains, however, considerably coarser materials. Whereas the S

  12. Stratigraphy, correlation, depositional setting, and geophysical characteristics of the Oligocene Snowshoe Mountain Tuff and Creede Formation in two cored boreholes

    USGS Publications Warehouse

    Larsen, Daniel; Nelson, Philip H.

    2000-01-01

    Core descriptions and geophysical logs from two boreholes (CCM-1 and CCM-2) in the Oligocene Snowshoe Mountain Tuff and Creede Formation, south-central Colorado, are used to interpret sedimentary and volcanic facies associations and their physical properties. The seven facies association include a mixed sequence of intracaldera ash-flow tuffs and breccias, alluvial and lake margin deposits, and tuffaceous lake beds. These deposits represent volcanic units related to caldera collapse and emplacement of the Snowshoe Mountain Tuff, and sediments and pyroclastic material deposited in the newly formed caldera basin, Early sedimentation is interpreted to have been rapid, and to have occurred in volcaniclastic fan environments at CCM-1 and in a variery of volcaniclastic fan, braided stream shallow lacustrine, and mudflat environments at CCM-2. After an initial period of lake-level rise, suspension settling, turbidite, and debris-flow sedimentation occurred in lacustrine slope and basin environments below wave base. Carbonate sedimentation was initially sporadic, but more continuous in the latter part of the recorded lake history (after the H fallout tuff). Sublacustrine-fan deposition occurred at CCM-1 after a pronounced lake-level fall and subsequent rise that preceded the H tuff. Variations in density, neutron, gamma-ray, sonic, and electrical properties of deposits penetrated oin the two holes reflect variations in lithology, porosity, and alteration. Trends in the geophysical properties of the lacustrine strata are linked to downhole changes in authigenic mineralology and a decrease in porosity interpreted to have resulted primarily from diagenesis. Lithological and geophysical characteristics provide a basis for correlation of the cores; however, mineralogical methods of correlation are hampered by the degree of diagenesis and alteration.

  13. Field-trip guide to subaqueous volcaniclastic facies in the Ancestral Cascades arc in southern Washington State—The Ohanapecosh Formation and Wildcat Creek beds

    USGS Publications Warehouse

    Jutzeler, Martin; McPhie, Jocelyn

    2017-06-27

    Partly situated in the idyllic Mount Rainier National Park, this field trip visits exceptional examples of Oligocene subaqueous volcaniclastic successions in continental basins adjacent to the Ancestral Cascades arc. The >800-m-thick Ohanapecosh Formation (32–26 Ma) and the >300-m-thick Wildcat Creek (27 Ma) beds record similar sedimentation processes from various volcanic sources. Both show evidence of below-wave-base deposition, and voluminous accumulation of volcaniclastic facies from subaqueous density currents and suspension settling. Eruption-fed facies include deposits from pyroclastic flows that crossed the shoreline, from tephra fallout over water, and from probable Surtseyan eruptions, whereas re-sedimented facies comprise subaqueous density currents and debris flow deposits.

  14. Sequence stratigraphy and sedimentary study on Mishrif formation of Fauqi Oilfield of Missan in south east Iraq

    NASA Astrophysics Data System (ADS)

    Sang, Hua; Lin, Changsong; Jiang, Yiming

    2017-05-01

    The reservoir of Mishrif formation has a large scale distribution of marine facies carbonate sediments in great thickness in central and south east Iraq. Rudist reef and shoal facies limestones of the Mishrif Formation (Late Cenomanian - Middle Turonian) form a great potential reservoir rocks at oilfields and structures of Iraq. Facies modelling was applied to predict the relationship between facies distribution and reservoir characteristics to construct a predictive geologic model which will assist future exploration and development in south east Iraq. Microfacies analysis and electrofacies identification and correlations indicate that the limestone of the Mishrif Formation were mainly deposited in open platform setting. Sequence stratigraphic analyses of the Mishrif Formation indicate 3 third order depositional sequences.

  15. Northernmost Known Outcrop in North America of Lower Cretaceous Porphyritic Ocoite Facies (Ocoa, Chile) at Western Mexico: the Talpa Ocoite

    NASA Astrophysics Data System (ADS)

    Zárate-del Valle, P. F.; Demant, A.

    2003-04-01

    At Talpa de Allende region in Western Mexico is located the northernmost known outcrop of ocoite facies (andesite): the Talpa ocoite (TO). The ocoite facies consists of an calk-alkaline andesitic rock rich in K and characterized by the presence of megacrysts of plagioclase (An48-65). TO belongs to the so-called Guerrero Terrane composed of plutono-volcanic and volcano-sedimentary sequences of the Alisitos-Teloloapan arc that was accreted to the North American craton at the end of the early Cretaceous (Lapierre et al., 1992, Can. J. Earth Sci. 29. 2478--2489). Geodynamically TO belongs to lithological sequence number IV or "Tecoman" of Tardy et al. (1994, Tectonophysics 230, 49--73). TO in hand-sample shows typical megacrysts (>1 cm) of plagioclase and clinopyroxene in a dark green aphanitic matrix. This andesitic lava has a shoshonitic character as evidenced by chemical composition: SiO_2 TiO_2 Al_2O_3 Fe_2O_3 MnO MgO CaO Na_2O K_2O P_2O_5 LOI % Ba Sr (ppm) 55.64 0.73 16.61 8.39 0.13 3.59 6.40 3.55 2.85 0.36 1.84% 1093 880 Under microscope TO is characterized by a porphyritic texture made of large labradorite phenocrysts (up to 3 cm) and clinopyroxene with a matrix made of plagioclase microlites; TO has been affected by a low grade metamorphism process belonging to the prehnite-pumpellite facies as it happens in Chile (Levi, 1969, Contr. Mineral. and Petrol. 24-1, p. 30--49). Electron microprobe analysis shows that plagioclase (An55-57) is partly transformed into albite (An7-9); clinopyroxene shows a variation in composition from Wo33En41Fs17 to Wo40En44Fs24 and it is transformed towards the margin first into amphibole and then into biotite. TO outcrops located at East of Talpa river are affected by a deep rubefaction process. TO is not characterized by the presence of bitumen as it occurs in Northern Chile (Nova-Muñoz et al., 2001, EUG XI Meeting, OS09 Supo09 PO, 606); TO is related in time with albian-cenomanian volcanogenic massive sulphides of Western Mexico: La América and El Rubí mines.

  16. Effects of the Laramide Structures on the Regional Distribution of Tight-Gas Sandstone in the Upper Mesaverde Group, Uinta Basin, Utah

    NASA Astrophysics Data System (ADS)

    Sitaula, R. P.; Aschoff, J.

    2013-12-01

    Regional-scale sequence stratigraphic correlation, well log analysis, syntectonic unconformity mapping, isopach maps, and depositional environment maps of the upper Mesaverde Group (UMG) in Uinta basin, Utah suggest higher accommodation in northeastern part (Natural Buttes area) and local development of lacustrine facies due to increased subsidence caused by uplift of San Rafael Swell (SRS) in southern and Uinta Uplift in northern parts. Recently discovered lacustrine facies in Natural Buttes area are completely different than the dominant fluvial facies in outcrops along Book Cliffs and could have implications for significant amount of tight-gas sand production from this area. Data used for sequence stratigraphic correlation, isopach maps and depositional environmental maps include > 100 well logs, 20 stratigraphic profiles, 35 sandstone thin sections and 10 outcrop-based gamma ray profiles. Seven 4th order depositional sequences (~0.5 my duration) are identified and correlated within UMG. Correlation was constructed using a combination of fluvial facies and stacking patterns in outcrops, chert-pebble conglomerates and tidally influenced strata. These surfaces were extrapolated into subsurface by matching GR profiles. GR well logs and core log of Natural Buttes area show intervals of coarsening upward patterns suggesting possible lacustrine intervals that might contain high TOC. Locally, younger sequences are completely truncated across SRS whereas older sequences are truncated and thinned toward SRS. The cycles of truncation and thinning represent phases of SRS uplift. Thinning possibly related with the Uinta Uplift is also observed in northwestern part. Paleocurrents are consistent with interpretation of periodic segmentation and deflection of sedimentation. Regional paleocurrents are generally E-NE-directed in Sequences 1-4, and N-directed in Sequences 5-7. From isopach maps and paleocurrent direction it can be interpreted that uplift of SRS changed route of sediment supply from west to southwest. Locally, paleocurrents are highly variable near SRS further suggesting UMG basin-fill was partitioned by uplift of SRS. Sandstone composition analysis also suggests the uplift of SRS causing the variation of source rocks in upper sequences than the lower sequences. In conclusion, we suggest that Uinta basin was episodically partitioned during the deposition of UMG due to uplift of Laramide structures in the basin and accommodation was localized in northeastern part. Understanding of structural controls on accommodation, sedimentation patterns and depositional environments will aid prediction of the best-producing gas reservoirs.

  17. Eclogites and their geodynamic interpretation: a history

    NASA Astrophysics Data System (ADS)

    Godard, Gaston

    2001-09-01

    Haüy coined the term eclogite, meaning "chosen rock", in 1822, but de Saussure had already observed rocks of this type in the Alps four decades earlier. Throughout the 19th century, the origin of eclogite remained an enigma, in spite of great progress in our knowledge of this rock. The first chemical analyses, carried out around 1870, showed that its bulk composition was the same as gabbro. Therefore, eclogite was thought to be either an igneous rock of gabbroic composition or a metamorphosed gabbro. This second hypothesis became preferred when progressive transitions were observed between gabbros and eclogites. In 1903, simply by comparing the molar volumes of gabbroic and eclogite parageneses, Becke inferred that eclogite was the high-pressure equivalent of gabbro. In 1920, eclogite was involved in the conception of the metamorphic facies by Eskola. However, a few researchers denied the existence of an eclogite facies, and claimed that high stress instead of high lithostatic pressure could generate eclogites. In the 1960s, consideration of the water pressure parameter also favoured the belief that eclogite was simply the anhydrous equivalent of amphibolite. Finally, eclogite was definitely considered as a high-pressure metamorphic rock following the development of experimental petrology and the application of thermodynamics. In recent years, the discovery of ultrahigh-pressure coesite-bearing rocks in the crust has drastically changed geologists' ideas concerning the limits of eclogite-facies crustal metamorphism. Eclogites have been involved in several geodynamic theories. Around 1900, kimberlite studies favoured the idea that eclogite might be abundant in the interior of the Earth. In 1912, Fermor predicted the existence of a dense eclogite-bearing zone in the mantle. This "eclogite layer" hypothesis was still envisaged as late as 1970. The alternative "peridotite" hypothesis became preferred when experimental investigations demonstrated that the gabbro-to-eclogite transition could not coincide with a sharp Mohorovičić discontinuity. Before plate tectonics, high-pressure belts were interpreted as remnants of ophiolite-bearing "geosynclines", metamorphosed by loading during thrust faulting. After the acceptance of plate tectonics, around 1970, the same high-pressure Alpine-type belts came to be considered as former oceanic crust, transformed into eclogite within subduction zones, and subsequently incorporated into mountain belts. Surprisingly, formation of eclogite in "subsidence" zones (i.e. subduction zones) had already been envisaged as early as 1931 by Holmes, the inventor of a convection-current theory. In the 1980s, many authors tried to apply the model of Alpine-type high-pressure belts to eclogites enclosed within the gneisses of ancient orogens, but the question remains obscure nowadays. These eclogites have been involved in the "in situ versus foreign" controversy and in the unresolved enigma of ultrahigh-pressure metamorphism. The latter came under scrutiny in 1984 after the discovery of coesite and diamond in some eclogite-facies rocks. It has been a matter of considerable interest during the last two decades. Currently, the debate is focused on the geodynamic mechanisms responsible for the exhumation of these rocks, a question that will probably remain unresolved for part of the coming century.

  18. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.)

    NASA Technical Reports Server (NTRS)

    Fouke, B. W.; Farmer, J. D.; Des Marais, D. J.; Pratt, L.; Sturchio, N. C.; Burns, P. C.; Discipulo, M. K.

    2000-01-01

    Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72 degrees C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62 degrees C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite "ice sheets", calcified bubbles, and aggregates of aragonite needles ("fuzzy dumbbells") precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54 degrees C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30 degrees C) is composed of calcite spherules and calcite "feather" crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding delta 13C. Travertine delta 13C and delta 18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature (approximately 50-73 degrees C) depositional facies. Conversely, travertine precipitating in the lower-temperature (< approximately 50 degrees C) depositional facies exhibits delta 13C and delta 18O values that are as much as 4% less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H2S and the abundance of sulfide oxidizing microbes, preliminary delta 34S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO2 degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry.

  19. Guidebook to the Gaudalupian symposium

    USGS Publications Warehouse

    Rohr, D.M.; Wardlaw, B.R.; Rudine, S.F.; Haneef, Mohammad; Hall, A.J.; Grant, R.E.

    2000-01-01

    Compared to the Guadalupe Mountains of Texas and New Mexico the depositional environments of the Permian strata of the Glass Mountains (and adjacent Del Norte Mountains) are less well known. In general, the Guadalupian facies in the the Glass and Del Norte mountains changes from predominantly carbonate facies in the northeast to thicker clastic facies in the southwest. Philip B. Kind (1931) originally considered this trend to reflect an uplifted clastic source to the southwest, with carbonate facies developing away from the source area. Ross (1986) interpreted the eastern portion of the Road Canyon and Word formations to consist the shelf, shelf-edge bioherm, and reef facies, and the southwest area to consist of deeper water siliceous shale, clastic limestone, and basinal sandstone facies. Probably the best known controversy in the Glass Mountains involves the depositional environment of the Skinner Ranch Formation (Leonardian according to Ross, 1986; Wolfcampian according to Cooper and Grant, 1972) at its type section on Leonard Mountain. Cooper and Grant (1964) identified in situ patch reefs at the base of the section, which were subsequently interpreted as displaced limestone blocks deposited in a slope environment (Rogers, 1972; Cys and Mazzullo, 1978; Ross, 1986). Later Flores, McMillan, and Watters (1977) interpreted the same units as subtidal and intertidal deposits. The Skinner Ranch Formation illustrates the complexities involved in interpreting the paleogeography of the Glass Mountains. If the Sinner Ranch contains displaced blocks, some eroded from older units, it explains the occurrence of Wolfcampian fossils in the Skinner Ranch (Ross, 1986).The slop facies interpretation also is used to place the shelf edge at that time between Skinner Ranch outcrops at Leonard Mountain and the lagoonal, backreef deposits of the Hess Formation to the east, although most of the actual shelf edge is not preserved (Ross, 1987:30). Similar conflicting interpretations exist in younger rocks in the western facies of the Leonardian Guadalupian to the southwest in the Del Norte Mountains. Ross (1986, 1987) considered the western facies of the Road Canyon and Word formations to be basinal shales and turbidites. Wardlaw et al. (1990) and Rohr et al. (1987) have interpreted this area to be shallow intertidal to lagoonal environments adjacent to an uplifted area to the south. The type section of the Road Canyon Formation is also a subject of disagreement and will be discusses in more detail later.

  20. Sand ridges off Sarasota, Florida: A complex facies boundary on a low-energy inner shelf environment

    USGS Publications Warehouse

    Twichell, D.; Brooks, Gillian L.; Gelfenbaum, G.; Paskevich, V.; Donahue, Brian

    2003-01-01

    The innermost shelf off Sarasota, Florida was mapped using sidescan-sonar imagery, seismic-reflection profiles, surface sediment samples, and short cores to define the transition between an onshore siliciclastic sand province and an offshore carbonate province and to identify the processes controlling the distribution of these distinctive facies. The transition between these facies is abrupt and closely tied to the morphology of the inner shelf. A series of low-relief nearly shore-normal ridges characterize the inner shelf. Stratigraphically, the ridges are separated from the underlying Pleistocene and Tertiary carbonate strata by the Holocene ravinement surface. While surficial sediment is fine to very-fine siliciclastic sand on the southeastern sides of the ridges and shell hash covers their northwestern sides, the cores of these Holocene deposits are a mixture of both of these facies. Along the southeastern edges of the ridges the facies boundary coincides with the discontinuity that separates the ridge deposits from the underlying strata. The transition from siliciclastic to carbonate sediment on the northwestern sides of the ridges is equally abrupt, but it falls along the crests of the ridges rather than at their edges. Here the facies transition lies within the Holocene deposit, and appears to be the result of sediment reworking by modern processes. This facies distribution primarily appears to result from south-flowing currents generated during winter storms that winnow the fine siliciclastic sediment from the troughs and steeper northwestern sides of the ridges. A coarse shell lag is left armoring the steeper northwestern sides of the ridges, and the fine sediment is deposited on the gentler southeastern sides of the ridges. This pronounced partitioning of the surficial sediment appears to be the result of the siliciclastic sand being winnowed and transported by these currents while the carbonate shell hash falls below the threshold of sediment movement and is left as a lag. The resulting facies boundaries on this low-energy, sediment-starved inner continental shelf are of two origins which both are tied to the remarkably subtle ridge morphology. Along the southeastern sides of the ridges the facies boundary coincides with a stratigraphic discontinuity that separates Holocene from the older deposits while the transition along the northwestern sides of the ridges is within the Holocene deposit and is the result of sediment redistribution by modern processes. ?? 2003 Elsevier B.V. All rights reserved.

  1. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.).

    PubMed

    Fouke, B W; Farmer, J D; Des Marais, D J; Pratt, L; Sturchio, N C; Burns, P C; Discipulo, M K

    2000-05-01

    Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72 degrees C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62 degrees C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite "ice sheets", calcified bubbles, and aggregates of aragonite needles ("fuzzy dumbbells") precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54 degrees C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30 degrees C) is composed of calcite spherules and calcite "feather" crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding delta 13C. Travertine delta 13C and delta 18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature (approximately 50-73 degrees C) depositional facies. Conversely, travertine precipitating in the lower-temperature (< approximately 50 degrees C) depositional facies exhibits delta 13C and delta 18O values that are as much as 4% less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H2S and the abundance of sulfide oxidizing microbes, preliminary delta 34S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO2 degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry.

  2. Epiphytic calcium carbonate production and facies development within sub-tropical seagrass beds, Inhaca Island, Mozambique

    NASA Astrophysics Data System (ADS)

    Perry, C. T.; Beavington-Penney, S. J.

    2005-02-01

    Seagrass beds have been widely recognised as playing an important role in influencing carbonate sediment facies development. This reflects their role not only as facilitators of fine sediment settling and stabilisation, but also as substrates for epiphytic organisms that, after death, contribute skeletal carbonate to the sediment substrate. In low latitude (reef-related) settings, epiphytic carbonate production rates are often high and this, in combination with the trapping of carbonate mud produced by a range of associated calcareous algal species, typically results in the development of carbonate mud-rich facies. Whilst such environments, and their associated sediment substrates, have been widely documented, studies of seagrass facies in marginal (sub-tropical/warm temperate) marine settings have not been conducted from a sedimentological perspective. This study determines rates of epiphytic carbonate production on two seagrass species Thalassodendron ciliatum and Thalassia hemprichii, and examines seagrass sediment facies from a sub-tropical reef-related environment in southern Mozambique. Dense seagrass beds colonise primarily siliciclastic sediment substrates and are characterised by low rates of epiphytic carbonate production (mean: 43.9 g CaCO 3 m -2 year -1 for T. ciliatum, and 33.4 g CaCO 3 m -2 year -1 for T. hemprichii). Epiphytic encrusters are dominated by thin, monostromatic layers of the crustose coralline red algae Hydrolithon farinosum, along with rotaliid smaller benthic foraminifera (including Asterorotalia cf. gaimardi and Spirillina sp.) and the soritid Peneroplis sp., as well as rare encrusting acervulinid foraminifera, serpulids and bryozoans. Epiphytic calcium carbonate production rates are therefore low and this is reflected in the low (<15%) carbonate content of the seagrass sediments, as well as the low (<1%) sediment fine (<63 μm size fraction) content. This study suggests that mud-rich sediment facies do not necessarily develop in conjunction with seagrass beds and that mud-poor facies may develop in some seagrass-colonised environments. At these sites (sub-tropical and siliciclastic-sediment dominated) this is suggested to reflect both the low levels of epiphytic and benthic algal carbonate mud production as well as a net outflux of fine-grained sediment due to tidal current-induced sediment resuspension. In keeping with carbonate facies generally there are thus likely to be latitude and environment-related shifts in the composition and character of seagrass related sediment facies.

  3. Trace fossils and sedimentary facies from a Late Cambrian‐Early Ordovician tide‐dominated shelf (Santa Rosita Formation, northwest Argentina): Implications for ichnofacies models of shallow marine successions

    USGS Publications Warehouse

    Mángano, M. Gabriela; Buatois, Luis A.; Aceñolaza, Guillermo F.

    1996-01-01

    The Santa Rosita Formation is one the most widely distributed lower Paleozoic units of northwest Argentina. At the Quebrada del Salto Alto section, east of Purmamarca, Jujuy Province, it is represented by four sedimentary facies: thick‐bedded planar cross‐stratified quartzose sandstones (A), thin‐bedded planar cross‐stratified quartzose sandstones and mudstones (B), wave‐rippled sandstones and bioturbated mudstones (C), and black and greenish gray shales (D). Paleocurrent data, sandstone architecture, and sedimentary structures from faciès A and B indicate bipolar/bimodal paleoflows, suggesting the action of tidal currents. The succession is interpreted as that of a tide‐dominated shelf, with only secondary influence of wave processes. Trace fossils are restricted to facies B and C.The Cruziana ichnocoenosis is preserved on the soles of thin‐bedded planar cross‐stratified quartzose sandstones (faciès B). This ichnocoenosis consists of Conostichus isp., Cruziana omanica, C. semiplicata, C. cf. tortworthi, Cruziana isp. Helminthopsis abeli, Monomorphichnus bilinearis, M. multilineatus, Palaeophycus tubularis, Rusophycus carbonarias, R. latus, and R. isp. The occurrence of Cruziana semiplicata, C. omanica, C. cf. tortworthi, and Rusophycus latus supports a Late Cambrian‐Tremadoc age. Slabbing of Cruziana shows complex interactions between biologic and sedimentologic processes, and suggests a predominance of exhumed traces, washed out and recast by tractive sand deposition. Sandstone soles are densely packed with biogenic structures and exhibit distinctive clusters of Rusophycus isp. that most likely represent trilobite nesting burrows. The Cruziana ichnocoenosis records the resident fauna of a protected, lower intertidal to subtidal interbar setting.The Skolithos ichnocoenosis is represented by high to low density vertical burrows of Skolithos linearis, which extend downwards to the quartzose sandstone soles of faciès B and cross the Cruziana ichnocoenosis. The Skolithos ichnocoenosis represents colonization by suspension‐feeding organisms following a major change in environmental conditions, related to the migration of lower intertidal to subtidal sandwaves.The Planolites ichnocoenosis consists exclusively of Planolites montanus within mudstones overlying wave‐rippled sandstones (facies C). The Planolites ichnocoenosis records opportunistic colonization by inf aunal deposit feeders that mined the organic‐rich fine‐grained sediment during the waning phase of storms that scoured organic detritus from the sea bottom.The section records, from base to top, a Cruziana‐Skolithos ichnofacies zone, a Skolithos ichnofacies zone and an unbioturbated zone typified by the thick‐bedded cross‐stratified quartzose sandstone (fades A). This trend reflects progressively higher energy conditions linked to the establishment of a large sand wave complex. The presence of a mixed Cruziana‐Skolithos ichnofacies in the lower interval reflects changes in substrate and energy levels, rather than water depth. Accordingly, contrasting ichnocoenoses from interbars (Cruziana) and sandwaves (Skolithos) must be considered an example of ichnofacies controlled by local parameters instead of general bathymétrie trends. Conversely, the vertical replacement of the Cruziana ichnofacies by the Skolithos ichnofacies towards the middle interval of the section reflects the environmental changes associated with the transition between the intertidal and subtidal zones. As overall tidal energy increases from supratidal to subtidal settings, the Skolithos ichnofacies tends to occur seaward of the Cruzianaichnofacies in tide‐dominated shallow marine environments. Therefore, onshore‐offshore ichnofacies replacement in tide‐dominated shallow seas is opposite to that in wave‐dominated marine settings.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, M.R.; Collins, L.B.; Wyrwoll, K.H.

    The Houtman Abrolhos reefs are located 80 km off the west coast of Australia between latitudes 28 and 29{degree} south. The islands are situated on three Pleistocene carbonate reef platforms which rise above the surrounding shelf. The modern coral reefs are close to the geographic limit for coral growth in the southern hemisphere and survive due to the presence of the Leeuwin current (a poleward-flowing warm stream). Two major shallow-water benthic communities coexist in the Abrolhos: a macroalgal-dominated community on the windward platform margins and a coral-dominated community on the leeward margins. These communities overlap-particularly in the platform lagoons, wheremore » competition between macroalgae and corals is intense. This interaction has been suggested as a major factor controlling the growth of cord reefs at high latitudes. The Holocene carbonate sediments lack nonskeletal components and are dominated by coral and coralline algal fragments with subordinate molluskan and echinoderm debris. The accumulations can be grouped into the following major facies: (1) coral framestone and coralline algal/serpulid boundstone, (2) submarine sand sheets, (3) subaerial coral storm ridges, (4-) peritidal to subtidal shingle and rubble veneers composed of dominantly coral debris, and (5) eolian dunes and beach sand. The Holocene sediment is a thin (< 2 m) veneer on the Pleistocene reef platform, which is emergent as small islands. The Pleistocene platform is composed of reef facies that can be directly related to the Holocene sediments. The platform is composed of framestone and boundstone facies (corals and coralline algal/serpulid facies), rudstones (submarine coral rubble facies), planar-bedded skeletal grainstones dipping 12-13{degree} (submarine sand sheet and peritidal shingle facies), and large 15-m-high eolianite dunes (eolian dune facies).« less

  5. Nickel and cobalt distribution in the laterites of the Lomié region, south-east Cameroon

    NASA Astrophysics Data System (ADS)

    Yongue-Fouateu, R.; Ghogomu, R. T.; Penaye, J.; Ekodeck, G. E.; Stendal, H.; Colin, F.

    2006-05-01

    In the Lomié region (south-east Cameroon), strong weathering of serpentinized ultramafic rocks has produced a thick laterite cover with significant nickel and cobalt contents. The highest concentrations of these elements are located in the middle section of the laterite profiles, in the lower clay horizon, and preferentially along the slopes of the interfluves. The investigation of the composition of the laterite ores (by whole-rock analysis) and of the main components, using SEM/microprobe and XRD, reveals the presence of four main enriched facies: a non-differentiated facies, a layered smectitic facies, a quartz-rich facies and a gibbsitic nodular facies. Nickel, with generally low concentrations (less than 2% NiO), is hosted by several secondary mineral phases (goethite, Mn-oxyhydroxides and smectite locally). Cobalt is generally of higher grade (up to 0.9% CoO), and is associated with cryptocrystalline and crystallized Mn-oxyhydroxides. SEM/microprobe observations suggest that nickel and cobalt concentration in secondary minerals is due to repeated remobilization. This has also favored the formation of mineral phases, of which the best crystallized and most richly mineralized are mainly those of the asbolan-lithiophorite group. The SEM studies indicate that these mineral phases show various morphologies related to their chemical composition: poorly crystallized nipple shaped (Fe, Mn, Ni), fine cross-bedded needles (Mn, Ni) and elongated crystals (Mn, Al, Ni, Co) occur in the layered smectitic facies, while platy and needle-like forms (Mn, Al, Ni, Co) characterize the gibbsitic nodular facies. The predominantly cobaltiferous nature of the Lomié laterite ore deposit is the result of remobilizations and transformations of elements that led to the impoverishment of both the Ni-Co contents of the laterite but most importantly of Ni rather than Co.

  6. Microfacies and depositional environments of the Late Ordovician Lianglitage Formation at the Tazhong Uplift in the Tarim Basin of Northwest China

    NASA Astrophysics Data System (ADS)

    Gao, Da; Lin, Changsong; Yang, Haijun; Zuo, Fanfan; Cai, Zhenzhong; Zhang, Lijuan; Liu, Jingyan; Li, Hong

    2014-04-01

    The Late Ordovician Lianglitage Formation comprises 13 microfacies (Mf1-Mf13) that were deposited on a carbonate platform at the Tazhong Uplift of the Tarim Basin in Northwest China. Each type of microfacies indicates a specific depositional environment with a certain level of wave energy. Four primary groups of microfacies associations (MA1-MA4) were determined. These associations represent different depositional facies, including reef-shoal facies in the platform margin (MA1), carbonate sand shoal facies (MA2) and oncoid shoal (MA3) on open platforms, and lagoon and tidal flat facies (MA4) in the platform interior. Each microfacies association was generated in a fourth-order sedimentary sequence developing within third-order sequences (SQ1, SQ2, and SQ3, from bottom to top), showing a shallowing-upward trend. High-frequency sequences and facies correlation between wells suggests that the reef-shoal facies more successively developed in the southeastern part of the platform margin, and high-energy microfacies were more strictly confined by the top boundary of fourth-order sequences in the northwestern part of the platform. The highstand systems tract (HST) of the SQ2 is characterized by reef-shoals that developed along the platform margin and tidal flats and lagoons that developed in the platform interior, while the SQ3 is characterized by the oncoid shoal facies that generally developed on the uplift due to a regionally extensive transgression that occurred during the latter part of the Late Ordovician. The results of this study can be used for investigating the development and distribution of potential reservoirs; the reservoirs in southeastern part of the platform margin may be of premium quality because the high-energy microfacies were best preserved there.

  7. Source versus depositional controls on sandstone composition in a foreland basin: The El Imperial Formation (Mid Carboniferous-Lower Permian), San Rafael basin, western Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espejo, E.S.; Lopez-Gamundi, O.R.

    1994-01-01

    The El Imperial Formation (mid-Carboniferous-Lower Permian) constitutes a progradational sandstone-rich succession deposited in the San Rafael foreland basin of western Argentina. Four facies associations have been identified: a basal glacial marine association, a shallow marine association, a deltaic association, and an uppermost fluvial association. Sand-prone deposits in the deltaic association, a shallow marine association, a deltaic association, and an uppermost fluvial association. Sand-prone deposits in the deltaic association are represented by prodelta and delta-front shales and subordinate fine sandstones (Facies A), deltaic platform, wave-reworked channel mouth-bar sandstones (Facies B), and fluvial-dominated distributary channel sandstones (Facies C). Analysis of framework grainsmore » of sandstone samples from Facies B and C shows two distinct mineral assemblages or petrofacies. The quartzose petrofacies is characterized by high contents of quartz and low percentages of feldspar and lithic grains. The quartzolithic petrofacies shows an increase in labile components, in particular lithic fragments, and a concomitant decrease in quartz. The quartzolithic petrofacies shows a source signature. Average detrital modes of sandstones from this petrofacies are similar to those from overlying fluvial sandstones. All wave-reworked, channel mouth-bar sandstones (Facies B) correspond compositionally to the quartzose petrofacies, whereas detrital modes from the distributary-channel sandstones (Facies C) fall into the quartzolithic petrofacies. This correspondence between depositional environment and petrofacies suggests a strong depositional influence on composition (depositional signature). Abrasion (mechanical breakdown) by wave action in shallow marine environments accounts for the quartz-rich nature and paucity of labile grains in the quartzose petrofacies.« less

  8. Environmental Transitions Recorded by Fluvial Fan Stratigraphy at Dingo Gap and Moonlight Valley, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Edgar, L. A.; Gupta, S.; Rubin, D. M.; Schieber, J.; Stack, K.; Lewis, K. W.

    2016-12-01

    The Mars Science Laboratory (MSL) Curiosity rover investigated a number of sedimentary outcrops across Aeolis Palus. Observations of conglomerates, cross-bedded sandstones, and mudstones suggest that fluvial and lacustrine environments were common. Outcrops that expose cross-sections are particularly helpful for identifying stratigraphic relationships and changes through time. In the vicinity of an outcrop informally named Dingo Gap, the drive strategy shifted from driving on the topographic high areas to the topographic low areas, which resulted in a unique vantage point to observe stratigraphy in cross-section. During Sols 513-541, Curiosity investigated 4 m of stratigraphy exposed at Dingo Gap and Moonlight Valley. The valley walls reveal five distinct sedimentary facies, including 1) a fine-grained evenly laminated facies interpreted as upper plane bed stratification, 2) ripple and dune cross-stratified sandstone facies, interpreted to represent the southward migration of subaqueous bedforms, 3) fully preserved bedform sandstone facies, formed during high rates of deposition, 4) planar-bedded granule-rich sandstone facies, interpreted as sheet flood deposits, and 5) a weakly stratified, poorly-sorted conglomerate facies, interpreted to represent rapid deposition from a high-energy fluvial flow. The conglomerate facies is unlike other conglomerates observed thus far in the mission, on the basis of both texture and chemistry. Analysis of conglomerates reveal that they occur as distinct channel bodies, incised into cross-stratified sandstones. This coarsening upward signature is interpreted to record a prograding fan succession. Channel bodies appear to be time-equivalent, which suggests a major change in the system, likely associated with a drop in base level. The unique viewing geometry offered by Dingo Gap and Moonlight Valley makes it possible to observe these environmental changes.

  9. Depositional environment and sedimentary of the basinal sediments in the Eibiswalder Bucht (Radl Formation and Lower Eibiswald Beds), Miocene Western Styrian Basin, Austria

    NASA Astrophysics Data System (ADS)

    Stingl, K.

    1994-12-01

    The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.

  10. Nature and classification of waterlain glaciogenic sediments, exemplified by Pleistocene, Late Paleozoic and Late Precambrian deposits

    NASA Astrophysics Data System (ADS)

    Gravenor, C. P.; von Brunn, V.; Dreimanis, A.

    1984-03-01

    This study of waterlain glaciogenic sediments is designed to present both a review and new information on glaciogenic subaquatic deposits of differing age in a number of localities in North and South America and South Africa. The Late Paleozoic glaciogenic deposits of the ParanáBasin in Brazil and the Karoo Basin of South Africa are singled out for special attention as they show a reasonably complete lateral sequence of terrestrial to off-shore glaciogenic sedimentation. Although the environment of subaquatic glaciogenic sedimentation varies from one area to the next, certain common elements are found which can be used to develop a generalized model for both glaciomarine and glaciolacustrine sedimentation. For descriptive purposes, the model is divided into two broad categories: a shelf facies and a basinal facies. The shelf facies is marked by massive diamicton(ite) which may be 200 m or more in thickness and which is frequently overlain by a complex of clastic sediments consisting primarily of gravity and fluid flows. The basinal facies is marked by products of subaquatic slumps and more distal turbidites and glaciomarine sediments. New terminology is introduced. The massive diamicton(ite), which is diagnostic of the shelf facies, probably represents deposition from the base of active ice in a subaquatic environment and is termed undermelt diamicton(ite). The gravity and fluid flows which are usually found overlying undermelt diamicton(ite) and in the basinal facies are subdivided into six categories: glaciogenic subaquatic outwash, glaciogenic suspension flow, glaciogenic chaotic debris flow, glaciogenic subaquatic debris flow, glaciogenic slurry flow and glaciogenic turbidity flow. The relative abundance of undermelt diamicton(ite) and the various types of gravity and fluid flows can be used to define inner shelf, outer shelf, inner basin and outer basin facies of glaciomarine sedimentation.

  11. Multiscale approach to (micro)porosity quantification in continental spring carbonate facies: Case study from the Cakmak quarry (Denizli, Turkey)

    NASA Astrophysics Data System (ADS)

    De Boever, Eva; Foubert, Anneleen; Oligschlaeger, Dirk; Claes, Steven; Soete, Jeroen; Bertier, Pieter; Özkul, Mehmet; Virgone, Aurélien; Swennen, Rudy

    2016-07-01

    Carbonate spring deposits gained renewed interest as potential contributors to subsurface reservoirs and as continental archives of environmental changes. In contrast to their fabrics, petrophysical characteristics - and especially the importance of microporosity (< 1µm) - are less understood. This study presents the combination of advanced petrophysical and imaging techniques to investigate the pore network characteristics of three, common and widespread spring carbonate facies, as exposed in the Pleistocene Cakmak quarry (Denizli, Turkey): the extended Pond, the dipping crystalline Proximal Slope Facies and the draping Apron and Channel Facies deposits formed by encrustation of biological substrate. Integrating mercury injection capillary pressure, bulk and diffusion Nuclear Magnetic Resonance (NMR), NMR profiling and Brunauer-Emmett-Teller (BET) measurements with microscopy and micro-computer tomography (µ-CT), shows that NMR T2 distributions systematically display a single group of micro-sized pore bodies, making up between 6 and 33% of the pore space (average NMR T2 cut-off value: 62 ms). Micropore bodies are systematically located within cloudy crystal cores of granular and dendritic crystal textures in all facies. The investigated properties therefore do not reveal differences in micropore size or shape with respect to more or less biology-associated facies. The pore network of the travertine facies is distinctive in terms of (i) the percentage of microporosity, (ii) the connectivity of micropores with meso- to macropores, and (ii) the degree of heterogeneity at micro- and macroscale. Results show that an approach involving different NMR experiments provided the most complete view on the 3-D pore network especially when microporosity and connectivity are of interest.

  12. PROBLEMS AND METHODOLOGY OF THE PETROLOGIC ANALYSIS OF COAL FACIES.

    USGS Publications Warehouse

    Chao, Edward C.T.

    1983-01-01

    This condensed synthesis gives a broad outline of the methodology of coal facies analysis, procedures for constructing sedimentation and geochemical formation curves, and micro- and macrostratigraphic analysis. The hypothetical coal bed profile has a 3-fold cycle of material characteristics. Based on studies of other similar profiles of the same coal bed, and on field studies of the sedimentary rock types and their facies interpretation, one can assume that the 3-fold subdivision is of regional significance.

  13. Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Sawyer, Derek E.; Flemings, Peter B.; Dugan, Brandon; Germaine, John T.

    2009-10-01

    Clay-rich mass transport deposits (MTDs) in the Ursa Basin, Gulf of Mexico, record failures that mobilized along extensional failure planes and transformed into long runout flows. Failure proceeded retrogressively: scarp formation unloaded adjacent sediment causing extensional failure that drove successive scarp formation updip. This model is developed from three-dimensional seismic reflection data, core and log data from Integrated Ocean Drilling Project (IODP) Expedition 308, and triaxial shear experiments. MTDs are imaged seismically as low-amplitude zones above continuous, grooved, high-amplitude basal reflections and are characterized by two seismic facies. A Chaotic facies typifies the downdip interior, and a Discontinuous Stratified facies typifies the headwalls/sidewalls. The Chaotic facies contains discontinuous, high-amplitude reflections that correspond to flow-like features in amplitude maps: it has higher bulk density, resistivity, and shear strength, than bounding sediment. In contrast, the Discontinuous Stratified facies contains relatively dim reflections that abut against intact pinnacles of parallel-stratified reflections: it has only slightly higher bulk density, resistivity, and shear strength than bounding sediment, and deformation is limited. In both facies, densification is greatest at the base, resulting in a strong basal reflection. Undrained shear tests document strain weakening (sensitivity = 3). We estimate that failure at 30 meters below seafloor will occur when overpressure = 70% of the hydrostatic effective stress: under these conditions soil will liquefy and result in long runout flows.

  14. Molecular and bulk isotopic analyses of organic matter in marls of the Mulhouse Basin (Tertiary, Alsace, France)

    NASA Technical Reports Server (NTRS)

    Hollander, D. J.; Sinninghe Damste, J. S.; Hayes, J. M.; de Leeuw, J. W.; Huc, A. Y.

    1993-01-01

    Contents of 13C in kerogens and carbonates in 21 samples from a core of the MAX borehole, Mulhouse Evaporite Basin, range from -27.3 to -23.5 and -3.7 to -1.8% vs PDB, respectively. Organic nitrogen in the same samples is enriched in 15N relative to atmospheric N2 by 12.2-15.7%. Hydrogen indices and delta values for kerogens vary systematically with facies, averaging 493 mg HC/g Corg and -25.7% in the most saline facies (dominated by inputs from aquatic sources) and 267 mg HC/g Corg and -23.7% in the least saline facies (50/50 aquatic/terrigenous). Values of delta were measured for individual aliphatic hydrocarbons from three samples representing three different organic facies. For all samples, terrigenous inputs were unusually rich in 13C, the estimated delta value for bulk terrigenous debris, apparently derived partly from CAM plants, being -22.5%. In the most saline facies, isotopic evidence indicates the mixing of 13C-depleted products of photosynthetic bacteria with 13C-enriched products of halotolerant eukaryotic algae. At lower salinities, a change in the producer community is marked by a decrease in the 13C content of algal lipids. The content of 13C in algal lipids increases in the least saline facies, due either to succession of different organisms or to decreased concentrations of dissolved CO2.

  15. Development of a carbonate platform with potential for large discoveries - an example from Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayall, M.; Bent, A.; Dale, B.

    1996-01-01

    In offshore central and southern Vietnam a number of carbonate accumulations can be recognized. Platform carbonates form basin-wide units of carbonate characterized by strong, continuous parallel seismic reflectors. Facies are dominated by bioclastic wackestones with poor-moderate reservoir quality. On the more isolated highs, large buildups developed. These are typically 5-10 km across and 300 m thick. They unconformably overlie the platform carbonate facies which are extensively karstified. In places these are pinnacles, typically 2-5 km across, 300 m+ thick with chaotic or mounded internal seismic facies. The large carbonate buildups are characterized by steep sided slopes with talus cones, reef-marginmore » rims usually developed around only part of the buildup, and a prominent back-stepping geometry. Buildup interior facies form the main potential reservoirs They are dominated by fine to coarse grained coralgal packstones. Fine grained carbonates are associated with deeper water events and multiple karst surfaces can also be identified. Reservoir quality is excellent, largely controlled by extensive dissolution and dolomitization believed to be related to the exposure events. Gas has been found in a number of reservoirs. Heterogeneities can be recognized which could potentially effect production. These include the extensive finer grained facies, cementation or open fissures associated with the karst surfaces, a more cemented reef rim, shallowing upwards facies cycles and faults.« less

  16. Development of a carbonate platform with potential for large discoveries - an example from Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayall, M.; Bent, A.; Dale, B.

    1996-12-31

    In offshore central and southern Vietnam a number of carbonate accumulations can be recognized. Platform carbonates form basin-wide units of carbonate characterized by strong, continuous parallel seismic reflectors. Facies are dominated by bioclastic wackestones with poor-moderate reservoir quality. On the more isolated highs, large buildups developed. These are typically 5-10 km across and 300 m thick. They unconformably overlie the platform carbonate facies which are extensively karstified. In places these are pinnacles, typically 2-5 km across, 300 m+ thick with chaotic or mounded internal seismic facies. The large carbonate buildups are characterized by steep sided slopes with talus cones, reef-marginmore » rims usually developed around only part of the buildup, and a prominent back-stepping geometry. Buildup interior facies form the main potential reservoirs They are dominated by fine to coarse grained coralgal packstones. Fine grained carbonates are associated with deeper water events and multiple karst surfaces can also be identified. Reservoir quality is excellent, largely controlled by extensive dissolution and dolomitization believed to be related to the exposure events. Gas has been found in a number of reservoirs. Heterogeneities can be recognized which could potentially effect production. These include the extensive finer grained facies, cementation or open fissures associated with the karst surfaces, a more cemented reef rim, shallowing upwards facies cycles and faults.« less

  17. Geomorphological stability of Permo-Triassic albitized profiles - case study of the Montseny-Guilleries High (NE Iberia)

    NASA Astrophysics Data System (ADS)

    Parcerisa, D.; Casas, L.; Franke, C.; Gomez-Gras, D.; Lacasa, G.; Nunez, J. A.; Thiry, M.

    2010-05-01

    Massif paleoalteration profiles (≥ 200 m) occur in the upper parts of the Montseny-Guilleries High (NE Catalan Coastal Ranges). The profiles consist of hard albitized-chloritized-hematized facies in the lower part and softer kaolinized-hematized facies in the upper part of the section. Preliminary paleomagnetic data show Triassic ages for both, the albitized and the kaolinized parts, and point to a surficial formation altered under oxidising conditions. Similar paleoalteration profiles have already been described and dated to Triassic ages elsewhere in Europe [Schmitt, 1992; Ricordel et al., 2007; Parcerisa et al., 2009]. These Permian-Triassic alterations are following a succession of different mineral transformations from the top to the base of the profile: 1) Red facies are defined by an increase in the amount and size of haematite crystals leading to the red colour of the rocks. The increase on haematite content is pervasively affecting the whole rock and is accompanied by the kaolinitization of the feldspars. 2) Pink facies: here, the granite shows an uniform pink colouration, which is mainly due to the albitization of the primary Ca-bearing plagioclases, accompanied by a precipitation of minute haematite, sericite, and calcite crystals inside the albite. Additionally primary biotite is fully chloritized. The pink granites are much more resistant to the present-day weathering than the "unaltered" facies at the base of the profile. 3) Spotted facies is characterized by a partial alteration of the rock, which caused a pink-screened aspect to the rock. The alteration developed along the fractures and is less well developed or absent in the non-fractured zones. In the pink-screened facies, the plagioclases are partially albitized and contain numerous hematite inclusions. Biotites are usually almost entirely chloritized. 4) Unaltered facies: These granites are coloured white to greyish, containing plagioclase and K-feldspar that do not show any trace of albitization. Biotites are not or weakly chloritized. However, these "unaltered" (or primary) granites are strongly weathered into granite boulders embedded in grus by the present-day climatic conditions. The maturest paleoprofiles occur at the northern part of the Catalan Coastal Ranges (i.e. the Montseny-Guilleries High) where the Variscan basement remained exposed during Triassic times. Towards the South the profiles progressively disappear and Triassic sediments acquire their maximum thickness here. The alteration profiles are related with the Permo-Triassic paleosurface still outcroping on wide areas [Gómez-Gras and Ferrer, 1999]. They are partially covered by Triassic fluvial sandstones (Buntsandstein facies) in the South [Gómez-Gras, 1993] and by Palaeocene alluvial conglomerates in the West [Anadón et al., 1979]. The Triassic paleosurface shows a remarkable stability successively outcropping during Mesozoic and Tertiary times, the pre-Tertiary exhumation and even the present day weathering affected very little these albitized profiles. The hardness and thus preservation of the Triassic paleosurface is mainly related to the albitization. The albitized granites are entirely lacking anorthitic plagioclase, which is much more sensitive to chemo-mechanical weathering. Development of albite and additional chloritization of the primary biotite crystals render the rocks much more resistant to weathering and erosion. This stability is particularly well expressed in case of the Montseny-Guilleries High, which is limited by a high fault scarp at the south-eastern margin. The albitized top of the scarp shows remarkably hard fresh rocks, whereas the base of the scarp (formed of primary, non-albitized facies) is deeply weathered into gruss. This is causing much smother landscape reliefs in the valleys and thalwegs. Since a long time the remarkable persistence of the Triassic paleosurface expressed in the Paleozoic massifs has been highlighted by geomorphologists. Only recently we could draw the link of the paleosurface preservation to its albitisation [Battiau-Queney, 1996; Widdowson, 1997]. Anadón, P., Colombo, F., Esteban, M., Marzo, M., Robles, S., Santanach, P., Solé-Sugrañes, L.., 1979. Evolución tectonostratigráfica de los Catalánides. Acta Geológica Hispánica, 14: 242-270. Battiau-Queney Y., 1996, A tentative classification of paleoweathering formations based on geomorphological criteria. Geomorphology, 16, p. 87-102. Gómez-Gras, D., 1993. El Permotrias de la Cordillera Costero Catalana: facies y petrologia sedimentaria (Parte I). Boletin Geologico y Minero, 104(2): 115-161. Gómez-Gras, D., Ferrer, C., 1999. Caracterización petrológica de perfiles de meteorización antiguos desarrollados en granitos tardihercínicos de la Cordillera Costero Catalana. Revista de la Sociedad Geológica de España, 12(2): 281-299. Parcerisa, D., Thiry, M., Schmitt, J.M., 2009. Albitisation related to the Triassic unconformity in igneous rocks of the Morvan Massif (France). International Journal of Earth Sciences (Geol Rundsch). DOI 10.1007/s00531-008-0405-1 Ricordel, C., Parcerisa, D., Thiry, M., Moreau, M.G., Gómez-Gras, D., 2007. Triassic magnetic overprints related to albitization in granites from the Morvan massif (France). Palaeogeography, Palaeoclimatology, Palaeoecology, 251: 268-282. Schmitt J.M., 1992, Triassic albitization in southern France : an unusual mineralogical record from a major continental paleosurface. in : Mineralogical and geochemical records of paleoweathering, IGCP 317, Schmitt J.M., Gall Q., (eds), E.N.S.M.P. Mém. Sc. de la Terre, 18, p. 115-132. Widdowson M., 1997, The geomorphological and geological importance of palaeosurfaces. in: Widdowson M. (ed.), Palaeosurfaces: recognition, reconstruction and palaeoenvironmental interpretation. Geol. Soc. Special Publ., 120, p. 1-12.

  18. Strain localization along micro-boudinage

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Eleftheria; Rogowitz, Anna; Grasemann, Bernhard; Habler, Gerlinde; Soukis, Konstantinos; Schneider, David

    2016-04-01

    The progressive development of boudinage strongly depends on the kinematic framework and the mechanical properties of the boudinaged layer and host rock. A common type of boudin, which can often be observed in natural examples, is the domino boudinage. This boudin type typically reflects a strong competency contrast of the interlayered rock sequences. Numerical models have shown that a relatively high amount of strain is necessary in order to develop separated boudin segments. With ongoing deformation and consequent rotation of the individual segments into the shear direction, the terminal sectors tend to experience a higher rotation rate, progressively resulting in isoclinal folding. Whereas most investigations of domino boudinage are cm- to dm-scale examples, we examined one order of magnitude smaller examples, where the deformation mechanism between the segments and the matrix could be directly investigated. The samples are from Kalymnos Island located in the southeastern Aegean Sea (Dodecanese islands-Greece). The analysed sample belongs to the upper unit of the pre-Alpidic basement, which consists of a succession of marbles, which were deformed under lower-greenschist facies conditions during the Variscan orogeny. 40Ar/39Ar geochronological dating on white micas in the adjacent upper quartz-mica schists unit yielded deformation ages between 240 and 334 Ma. The calcitic marble comprises boudinaged dolomite layers with thickness varying between 1 and 20 mm. Progressive deformation of the boudinaged layers resulted in the development of ptygmatic folds with fold axes parallel to the stretching lineation. The grain size from the host rock marbles (10 μm) decreases towards the boudinaged dolomite layer (5 μm) indicating strain localization adjacent to the dolomite layers. Furthermore, strain is localized within micro shear zones which nucleate in the necks of rotated boudin segments. Crystallographic preferred orientations (CPO) derived from electron backscatter diffraction analysis show a distinct variation in CPO between the coarser and finer grained calcite next to the boudinaged dolomite. Detailed microstructural analysis revealed that strain is strongly partitioned parallel to the boudin segments and to the almost oblique inter-boudin surfaces.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlaing, K.K.; Lemoy, C.; Maret, J.P.

    Conventional sonic measurements of shear and compressional slowness are body waves that travel within the formation and are commonly used for petrophysical analysis of a well. Low-frequency Stoneley waves travel within the well bore and are traditionally used to interpret fractures and formation permeability, usually by analyzing the energy losses and, to a lesser extent, the slowness. The authors have found that Stoneley energy has been very useful in the identification of vuggy carbonate facies linked to paleokarstic surfaces in the Upper Burman limestone reservoir of Miocene age, in the YADANA gas deposit, offshore Myanmar. One good example is seenmore » in well YAD-1 where the carbonate reservoir has been cored, allowing precise facies and porosity type determination. Matching Stoneley energy and core description show a striking correlation between loss of energy and vuggy carbonate facies due to karstic diagenetic processes, always in relation with reefal or near reefal facies. Accordingly, facies interpretation has tentatively been done in the deeper, noncored reservoir zone, where losses of energy are important and considered as indicating karstic influence and the specific environment.« less

  20. Sequence Stratigraphic Analysis and Facies Architecture of the Cretaceous Mancos Shale on and Near the Jicarilla Apache Indian Reservation, New Mexico-their relation to Sites of Oil Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridgley, Jennie

    2001-08-21

    The purpose of phase 1 and phase 2 of the Department of Energy funded project Analysis of oil- bearing Cretaceous Sandstone Hydrocarbon Reservoirs, exclusive of the Dakota Sandstone, on the Jicarilla Apache Indian Reservation, New Mexico was to define the facies of the oil producing units within the Mancos Shale and interpret the depositional environments of these facies within a sequence stratigraphic context. The focus of this report will center on (1) redefinition of the area and vertical extent of the ''Gallup sandstone'' or El Vado Sandstone Member of the Mancos Shale, (2) determination of the facies distribution within themore » ''Gallup sandstone'' and other oil-producing sandstones within the lower Mancos, placing these facies within the overall depositional history of the San Juan Basin, (3) application of the principals of sequence stratigraphy to the depositional units that comprise the Mancos Shale, and (4) evaluation of the structural features on the Reservation as they may control sites of oil accumulation.« less

  1. Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard).

    PubMed

    Fairchild, I J; Knoll, A H; Swett, K

    1991-01-01

    The Draken Formation (120-250 m) of northeast Spitsbergen (Svalbard) forms part of a thick Upper Proterozoic carbonate platform succession. It consists predominantly of intraformational dolomitic conglomerates, with excellent textural preservation. Six main lithofacies were recognized in the field: quartz sandstones, stromatolitic mats, conglomerates with silicified intraclasts, dolostone conglomerates with desiccated mudrocks, oolitic/pisolitic grainstones and fenestral dolostones. A series of five main gradational biofacies were recognized from silicified (and rare calcified) microfossils. Biofacies 1 represents low-energy subtidal benthos (erect filaments) and plankton (acritarchs and vase-shaped microfossils) whereas biofacies 2 to 5 are microbial mat assemblages (with filamentous mat-builders, and associated dwellers and washed-in plankton) ranging from basal intertidal to high intertidal/supratidal. Colour values (a measure of the lightness of the colour shade) of sawn rock samples were quantified using a Munsell chart, and exhibit a pronounced variation (means of major groups varying from 4.0 to 5.95) across the spectrum of subtidal to supratidal sediments as inferred from other criteria. The lightening in progressively more exposed sediments is related to lowering of organic carbon contents, probably mainly by oxidation. Six types of early cement have been recognized. Calcite microspar (type 1) is common as a subtidal cement in many Proterozoic formations, whereas types 2 (subtidal isopachous fringes), 3 (subtidal hardground dolomicrite) and 4 (intertidal meniscus dolomicrite) are very similar to Phanerozoic examples except for their dolomitic mineralogy. Types 5 and 6 are complex and variable dolomite growths associated with expansion and replacive phenomena. They characterize the fenestral lithofacies and compare with modern supratidal cements. Consideration of diagenetic fabrics and truncation textures of intraclasts indicates that leaching, dolomitization, silicification were all significant syndepositional processes altering the original metastable carbonates. The data set provides evidence for a spectrum of peritidal environments including ooid shoals, protected subtidal, tidal sandflats and protected carbonate mudflats. Different sections show a preponderance of particular facies. The coastal lithofacies continuum was completely dolomitized, unlike offshore to ooid shoal facies of adjacent formations. Dolomitization thus bears a relationship to depositional bathymetry. Although hydrodynamics clearly have a role, the potential importance of whiting precipitation in raising Mg/Ca in marginal marine environments is also stressed.

  2. Reinvestigating an interval of the English Wealden (non-marine Lower Cretaceous): Integrated analysis for palaeoenvironmental and climate cyclicities

    NASA Astrophysics Data System (ADS)

    Sames, Benjamin

    2017-04-01

    Although increasing over the last years, relatively few studies on changing palaeoenvironments and climate cycles in non-marine archives of the Cretaceous greenhouse Earth do exist. This is primarily a result of the nature of non-marine or terrestrial deposits - strong lateral facies change on local scales and the strong local to regional control of deposition - as well as the lack of high-resolution stratigraphy and correlations to the marine record. On the other hand, major advances in the refinements of the Cretaceous timescale now facilitate the correlation and dating of short-term sea-level records and their supposable relation to climate and/or tectonic events with appropriate resolution, i.e. on Milankovitch scales. Innovations and progress in non-marine bio-, magneto- and chemostratigraphy as well as growing data on Lower and Upper Cretaceous non-marine successions are promising towards approaches for supraregional correlation of these deposits and their appropriate correlation to the Cretaceous marine standard sections. However, convincing evidence for orbitally (climate) driven cyclicity in non-marine Lower Cretaceous deposits is thus far sparse. The non-marine Wealden deposits of England have been used eponymous for widely distributed similar Lower Cretaceous non-marine facies, and they are a 'classical' example for a Mesozoic non-marine succession for which depositional cycles have been suggested since the 1970s, including the famous ostracod 'faunicycles' by F.W. Anderson, but so far lack convincing analyses and remain to be tested. The project 'Lower Cretaceous Climate and Non-marine Stratigraphy (LCCNS)' funded by the Austrian Science Fund (FWF) analyses a chosen interval of the English Wealden at the Clock House Brickworks pit (near Capel, Surrey, England, UK) for orbitally/climate driven cyclicities with an interdisciplinary methodology: micropalaeontology, sedimentology, and geochemistry. Ostracod (aquatic microcrustaceans with calcified shell) faunal composition changes are correlated with the variation of geochemical and sedimentological parameters through time to draw conclusions regarding the controlling (palaeoenvironmental) factors and their regulating mechanisms ('climate changes', orbital cycles?), while magnetostratigraphy is used for chronological control. First results will be presented here. The crucial point of the approach is that the fluctuating evolution of a Wealden ecosystem over time is presumed to be climatically (and thus, orbitally) controlled and that the cyclic changes deducible from multiple proxies in its geologic record can be tested and used for cyclostratigraphy.

  3. Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard)

    NASA Technical Reports Server (NTRS)

    Fairchild, I. J.; Knoll, A. H.; Swett, K.

    1991-01-01

    The Draken Formation (120-250 m) of northeast Spitsbergen (Svalbard) forms part of a thick Upper Proterozoic carbonate platform succession. It consists predominantly of intraformational dolomitic conglomerates, with excellent textural preservation. Six main lithofacies were recognized in the field: quartz sandstones, stromatolitic mats, conglomerates with silicified intraclasts, dolostone conglomerates with desiccated mudrocks, oolitic/pisolitic grainstones and fenestral dolostones. A series of five main gradational biofacies were recognized from silicified (and rare calcified) microfossils. Biofacies 1 represents low-energy subtidal benthos (erect filaments) and plankton (acritarchs and vase-shaped microfossils) whereas biofacies 2 to 5 are microbial mat assemblages (with filamentous mat-builders, and associated dwellers and washed-in plankton) ranging from basal intertidal to high intertidal/supratidal. Colour values (a measure of the lightness of the colour shade) of sawn rock samples were quantified using a Munsell chart, and exhibit a pronounced variation (means of major groups varying from 4.0 to 5.95) across the spectrum of subtidal to supratidal sediments as inferred from other criteria. The lightening in progressively more exposed sediments is related to lowering of organic carbon contents, probably mainly by oxidation. Six types of early cement have been recognized. Calcite microspar (type 1) is common as a subtidal cement in many Proterozoic formations, whereas types 2 (subtidal isopachous fringes), 3 (subtidal hardground dolomicrite) and 4 (intertidal meniscus dolomicrite) are very similar to Phanerozoic examples except for their dolomitic mineralogy. Types 5 and 6 are complex and variable dolomite growths associated with expansion and replacive phenomena. They characterize the fenestral lithofacies and compare with modern supratidal cements. Consideration of diagenetic fabrics and truncation textures of intraclasts indicates that leaching, dolomitization, silicification were all significant syndepositional processes altering the original metastable carbonates. The data set provides evidence for a spectrum of peritidal environments including ooid shoals, protected subtidal, tidal sandflats and protected carbonate mudflats. Different sections show a preponderance of particular facies. The coastal lithofacies continuum was completely dolomitized, unlike offshore to ooid shoal facies of adjacent formations. Dolomitization thus bears a relationship to depositional bathymetry. Although hydrodynamics clearly have a role, the potential importance of whiting precipitation in raising Mg/Ca in marginal marine environments is also stressed.

  4. Intermediate P/T-type regional metamorphism of the Isua Supracrustal Belt, southern west Greenland: The oldest Pacific-type orogenic belt?

    NASA Astrophysics Data System (ADS)

    Arai, Tatsuyuki; Omori, Soichi; Komiya, Tsuyoshi; Maruyama, Shigenori

    2015-11-01

    The 3.7-3.8 Ga Isua Supracrustal Belt (ISB), southwest Greenland, might be the oldest accretionary complex on Earth. Regional metamorphism of the ISB has a potential to constrain the tectonothermal history of the Earth during the Eoarchean. Chemical and modal analyses of metabasite in the study area (i.e., the northeast part of the ISB) show that the metamorphic grade increases from greenschist facies in the northern part of the study area to amphibolite facies in the southern part. To determine the precise metamorphic P-T ranges, isochemical phase diagrams of minerals of metabasite were made using Perple_X. A synthesis of the estimated metamorphic P-T ranges of the ISB indicates that both the metamorphic pressure and temperature increase systematically to the south in the study area from 3 kbar and 380 °C to 6 kbar and 560 °C. The monotonous metamorphic P-T change suggests that the northeast part of the ISB preserves regional metamorphism resulting from the subduction of an accretionary complex although the ISB experienced metamorphic overprints during the Neoarchean. Both the presence of the regional metamorphism and an accretionary complex having originating at subduction zone suggest that the ISB may be the oldest Pacific-type orogenic belt. The progressive metamorphism can be considered as a record of intermediate-P/T type geothermal gradient at the subduction zone in the Eoarchean. Intermediate-P/T type geothermal gradient is typical at the current zones of subducting young oceanic crust, such as in the case of the Philippine Sea Plate in the southwest part of Japan. Considering the fact that almost all metamorphisms in the Archean are greenschist-amphibolite facies, the intermediate-P/T type geothermal gradient at the ISB might have been worldwide in the Archean. This would indicate that the subduction of young micro-plates was common because of the vigorous convection of hot mantle in the Archean.

  5. Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas.

    PubMed

    Chaudhuri, Sriroop; Ale, Srinivasulu

    2013-05-01

    A vast region in north-central Texas, centering on Dallas-Fort Worth metroplex, suffers from intense groundwater drawdown and water quality degradation, which led to inclusion of 18 counties of this region into Priority Groundwater Management Areas. We combined aquifer-based and county-based hydrologic analyses to (1) assess spatio-temporal changes in groundwater level and quality between 1960 and 2010 in the Trinity and Woodbine aquifers underlying the study region, (2) delve into major hydrochemical facies with reference to aquifer hydrostratigraphy, and (3) identify county-based spatial zones to aid in future groundwater management initiatives. Water-level and quality data was obtained from the Texas Water Development Board (TWDB) and analyzed on a decadal scale. Progressive water-level decline was the major concern in the Trinity aquifer with >50% of observations occurring at depths >100 m since the 1980s, an observation becoming apparent only in the 2000s in the Woodbine aquifer. Water quality degradation was the major issue in the Woodbine aquifer with substantially higher percentage of observations exceeding the secondary maximum contaminant levels (SMCL; a non-enforceable threshold set by the United State Environmental Protection Agency (USEPA)) and/or maximum contaminant level (MCL, a legally enforceable drinking water standard set by the USEPA) for sulfate (SO4(2-)), chloride (Cl(-)), and fluoride (F(-)) in each decade. In both aquifers, however, >70% of observations exceeded the SMCL for total dissolved solids indicating high groundwater salinization. Water-level changes in Trinity aquifer also had significant negative impact on water quality. Hydrochemical facies in this region sequentially evolved from Ca-Mg-HCO3 and Ca-HCO3 in the fluvial sediments of the west to Na-SO4-Cl in the deltaic sediments to the east. Sequentially evolving hydrogeochemical facies and increasing salinization closely resembled regional groundwater flow pattern. Distinct spatial zones based on homogenous hydrologic characteristics have become increasingly apparent over time indicating necessity of zone-specific groundwater management strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. New evidence for the Hawaiian hotspot plume motion since the Eocene

    NASA Astrophysics Data System (ADS)

    Parés, Josep M.; Moore, Ted C.

    2005-09-01

    A thick mound of fossiliferous sediments, reflecting high biogenic productivity at the Equator can be used to determine latitudinal motion of the Pacific lithospheric plate. Plate motion estimates based on the latitudinal movement of Equatorial facies are independent of paleomagnetic data and hotspot tracks and thus permit further testing of kinematic models. We have determined the northward motion of the Pacific Plate for the last 53 Myr based on the position of the paleoequator as shown by Equatorial sediment facies. Between 26 and 69 DSDP and ODP Sites sample the past 53 Myr in the tropical Pacific. Based on the mapped patterns of accumulation rates in these sites, we were able not only to determine the position of the paleoequator but also to estimate the Equatorial great circle and hence the relative position of the spin axis since the early Eocene. The northward motion of the Pacific Plate inferred from the change in latitude of dated Hawaiian Chain seamounts relative to the Hawaiian hotspot is consistently higher than that deduced from the analyses of Equatorial sediment facies. Such a difference results from a latitudinal shift of the Hawaiian hotspot during the last 53 Myr. All together, our observations and recent paleomagnetic results from the Detroit, Nintoku and Koko seamounts [J.A. Tarduno, R.A. Duncan, D.W. Scholl, R.D. Cottrell, B., Steinberger, T. Thordarson, B.C. Kerr, C.R. Neal, F.A. Frey, M. Torii, M., C. Carvallo. The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth's mantle. Science 301 (2003) 1064-1069.] [1] are consistent with a progressive southward motion of the Hawaiian mantle plume since the Late Cretaceous. Our results suggest that the Hawaiian hotspot moved at ˜32 mm/yr to the SE during the past 43 million years and that the Pacific Plate moved ˜12° northward since 53 Ma at an average rate of 25 mm/yr.

  7. Chemical and isotopic fingerprinting of small ungauged watershed: How far the hydrological functioning can be understood?

    NASA Astrophysics Data System (ADS)

    Petelet-Giraud, Emmanuelle; Luck, Jean-Marc; Ben Othman, Dalila; Joseph, Christian; Négrel, Philippe

    2016-05-01

    This study presents the ability of major/trace elements together with strontium isotopes to trace water origins at small scale at the outlet of a small watershed (Peyne, Hérault, France). Two small sub-basins draining distinct lithologies in their headwater (Plio-Villafranchian conglomerate versus Triassic gypsum-rich marls and dolomites) and the Miocene formations downstream are investigated. The Ca/Na vs. Mg/Na ratios and Ca/Sr vs. 87Sr/86Sr ratios allow the different facies that imprint the water signature to be identified, according to the hydrological conditions (low/high flows). Moreover, Sr isotopes evidence the two distinct Miocene facies, the sandy marls and the marine carbonates. The variation of the signature at the outlet of the basin allows identifying the main contributing compartments according to the hydrological conditions. This approach, based on a limited number of samples, highlights the potential of geochemical and isotopic tracers to define the contributing compartments to the runoff at the outlet of a basin. It thus could be considered as a potential alternative way to classical hydrological monitoring to delineate the main contributing areas during floods, especially in small ungauged river basins, where most of the devastating flash floods are recorded.

  8. Carbon and oxygen isotope variations of the Middle-Late Triassic Al Aziziyah Formation, northwest Libya

    NASA Astrophysics Data System (ADS)

    Moustafa, Mohamed S. H.; Pope, Michael C.; Grossman, Ethan L.; Mriheel, Ibrahim Y.

    2016-06-01

    This study presents the δ13C and δ18O records from whole rock samples of the Middle-Late Triassic (Ladinian-Carnian) Al Aziziyah Formation that were deposited on a gently sloping carbonate ramp within the Jifarah Basin of Northwest Libya. The Al Aziziyah Formation consists of gray limestone, dolomite, and dolomitic limestone interbedded with shale. The Ghryan Dome and Kaf Bates sections were sampled and analyzed for carbon and oxygen isotope chemostratigraphy to integrate high-resolution carbon isotope data with an outcrop-based stratigraphy, to provide better age control of the Al Aziziyah Formation. This study also discusses the relation between the facies architecture of the Al Aziziyah Formation and the carbon isotope values. Seven stages of relative sea level rise and fall within the Ghryan Dome were identified based on facies stacking patterns, field observations and carbon stable isotopes. The Al Aziziyah Formation δ13C chemostratigraphic curve can be partially correlated with the Triassic global δ13C curve. This correlation indicates that the Al Aziziyah Formation was deposited during the Ladinian and early Carnian. No straight-forward relationship is seen between δ13C and relative sea level probably because local influences complicated systematic environmental and diagenetic isotopic effects associated with sea level change.

  9. Sedimentary, tectonic, and sea-level controls on submarine fan and slope-apron turbidite systems

    USGS Publications Warehouse

    Stow, D.A.V.; Howell, D.G.; Nelson, C.H.

    1984-01-01

    To help understand factors that influence submarine fan deposition, we outline some of the principal sedimentary, tectonic, and sea-level controls involved in deep-water sedimentation, give some data on the rates at which they operate, and evaluate their probable effects. Three depositional end-member systems, two submarine fan types (elongate and radial), and a third nonfan, slope-apron system result primarily from variations in sediment type and supply. Tectonic setting and local and global sea-level changes further modify the nature of fan growth, the distribution of facies, and the resulting vertical stratigraphic sequences. ?? 1984 Springer-Verlag New York Inc.

  10. Pre-Holocene to Modern Evolution of the Lower Delaware Estuary: Constraints from High-Resolution Chirp Subbottom Profiles

    NASA Astrophysics Data System (ADS)

    Daw, Julianne

    Throughout the Quaternary Period, the Delaware Estuary, which is located within the Mid-Atlantic region of the United States, has undergone substantial change as a result of sea-level fluctuations. To better understand the recent (late Pleistocene to Holocene) evolution of the region, chirp subbottom profiles were analyzed within Delaware Bay near the southern end of the Delaware River Navigation Channel including the adjacent shoals and sloughs, using RoxAnn bottom classification data and available vibracores to aid in interpreting sediment types and depositional environments within the study area. Using seismic processing software (SonarWiz6), chirp profiles were processed and reflection events were identified and their positions digitized. Major reflection events were analyzed using a seismic facies approach. The identified facies were each characterized as distinct units composed of reflections with unique elements, such as configuration, amplitude, and continuity. Five seismic facies were identified and their thicknesses determined. Depths to the major reflection events were correlated with sediment boundaries as observed in the available vibracores, allowing the seismic facies to be interpreted in terms of their associated sediment types and inferred environments of deposition. The distributions of surficial and subsurface seismic and sedimentological features were visualized using three-dimensional images. The interpretations of the identified facies are as follows: Facies I is a surficial unit of the modern Holocene estuarine deposits; Facies II is a beach-berm washover zone deposition; Facies III is a deposit of a lagoonal environment; Facies IV is a deposit of an open water environment; and Facies V is a marsh deposition. The chirp data, when integrated with available information from vibracores and RoxAnn bottom sediment classification, was also used to map the position of a former major river system (paleochannel). This paleochannel, trending generally northwest to southeast, can be correlated with the southern channel that was identified in previous work by Knebel and Circe (1988). In addition to the knowledge gained by studying the geological evolution of Delaware Bay, our data can be used by decision makers and stakeholders to inform future management of the Delaware Estuary in practical applications that range from planning for maintenance dredging of the navigation channel to determining locations and thicknesses of suitable sand resources for shoreline replenishment. The surficial layer that would be most affected by such applications is mostly composed of sand & muddy sand, but in the deeper portions and along the shoals, it is composed of mixed and coarse sediments and mud & sandy mud, respectively. Furthermore, the surficial unit is thickest (between 1.5 and 4 meters) in the central and eastern regions of the study area encompassing the deeper portions, and it is thinnest (up to 1 meter) along the western and northern regions that include the shoals.

  11. High-Resolution Subsurface Imaging and Stratigraphy of Quaternary Deposits, Marapanim Estuary, Northern Brazil

    NASA Astrophysics Data System (ADS)

    Silva, C. A.; Souza Filho, P. M.; Gouvea Luiz, J.

    2007-05-01

    The Marapanim estuary is situated in the Para Coastal Plain, North Brazil. It is characterized by an embayed coastline developed on Neogene and Quaternary sediments of the Barreiras and Pos-Barreiras Group. This system is strongly influenced by macrotidal regimes with semidiurnal tides and by humid tropical climate conditions. The interpretation of GPR-reflections presented in this paper is based on correlation of the GPR signal with stratigraphic data acquired on the coastal plain through five cores that were taken along GPR survey lines from the recent deposits and outcrops observed along to the coastal area. The profiles were obtained using a Geophysical Survey Systems Inc., Model YR-2 GPR, with monostatic 700 MHz antenna that permitted to get records of subsurface deposits at 20m depth. Were collected 54 radar sections completing a total of 4.360m. The field data were analyzed using a RADAN software and applying different filters. The interpretation of radar facies following the principles of seismic stratigraphy that permitted analyze the sedimentary facies and facies architecture in order to understand the lithology, depositional environments and stratigraphic evolution of this sedimentary succession as well as to leading to a more precise stratigraphic framework for the Neogene to Quaternary deposits at Marapanim coastal plain. Facies characteristics and sedimentologic analysis (i.e., texture, composition and structure aspects) were investigated from five cores collected through a Rammkernsonde system. The locations were determined using a Global Positioning System. Remote sensing images (Landsat-7 ETM+ and RADARSAT-1 Wide) and SRTM elevation data were used to identify and define the distribution of the different morphologic units. The Coastal Plain extends west-east of the mouth of the Marapanim River, where were identified six morphologic units: paleodune, strand plain, recent coastal dune, macrotidal sandy beach, mangrove and salt marsh. The integration of GPR profiles and stratigraphy data allowed for the recognition of paleochannel geometry, with width of 150m and depth of 20m, developed on Barreiras Group, two discontinuity surfaces and three facies associations organized into sedimentary facies: (i) Tidal channel with mottled sand, Conglomerate with clay pebble and Ophiomorpha/linear Skolithos, channel-fill and tabular cross-bedding sand and sand/mud interlayer facies. (ii) Dune/interdune with wavy bedding and cross-bedding sand and planar bedding and tabular cross-bedding sand facies. (iii) infilled tidal channel with mottled sand, planar/flaser bedding sand, lenticular bedding clay and sand/mud interlayer facies. The present study demonstrates that some facies associations occur restricts to tidal paleochannels and shows features well preserved that are very important to reconstruction of the relative sea-level history in the Marapanim Estuary.

  12. Genetic Variation in Dopamine Pathways Differentially Associated with Smoking Progression in Adolescence

    ERIC Educational Resources Information Center

    Laucht, Manfred; Becker, Katja; Frank, Josef; Schmidt, Martin H.; Esser, Gunter; Treutlein, Jens; Skowronek, Markus H.; Schumann, Gunter

    2008-01-01

    A study examines whether genetic variation in dopamine pathways differentially associate with smoking progression in adolescence. Results indicate the influence of specific dopamine genes in different stages of smoking progression in adolescents.

  13. Multinomial Logistic Regression & Bootstrapping for Bayesian Estimation of Vertical Facies Prediction in Heterogeneous Sandstone Reservoirs

    NASA Astrophysics Data System (ADS)

    Al-Mudhafar, W. J.

    2013-12-01

    Precisely prediction of rock facies leads to adequate reservoir characterization by improving the porosity-permeability relationships to estimate the properties in non-cored intervals. It also helps to accurately identify the spatial facies distribution to perform an accurate reservoir model for optimal future reservoir performance. In this paper, the facies estimation has been done through Multinomial logistic regression (MLR) with respect to the well logs and core data in a well in upper sandstone formation of South Rumaila oil field. The entire independent variables are gamma rays, formation density, water saturation, shale volume, log porosity, core porosity, and core permeability. Firstly, Robust Sequential Imputation Algorithm has been considered to impute the missing data. This algorithm starts from a complete subset of the dataset and estimates sequentially the missing values in an incomplete observation by minimizing the determinant of the covariance of the augmented data matrix. Then, the observation is added to the complete data matrix and the algorithm continues with the next observation with missing values. The MLR has been chosen to estimate the maximum likelihood and minimize the standard error for the nonlinear relationships between facies & core and log data. The MLR is used to predict the probabilities of the different possible facies given each independent variable by constructing a linear predictor function having a set of weights that are linearly combined with the independent variables by using a dot product. Beta distribution of facies has been considered as prior knowledge and the resulted predicted probability (posterior) has been estimated from MLR based on Baye's theorem that represents the relationship between predicted probability (posterior) with the conditional probability and the prior knowledge. To assess the statistical accuracy of the model, the bootstrap should be carried out to estimate extra-sample prediction error by randomly drawing datasets with replacement from the training data. Each sample has the same size of the original training set and it can be conducted N times to produce N bootstrap datasets to re-fit the model accordingly to decrease the squared difference between the estimated and observed categorical variables (facies) leading to decrease the degree of uncertainty.

  14. Hydrocarbon potential of the Early Oligocene Menilite shales in the Eastern Outer Carpathians (Tarcău and Vrancea Nappes, Romania)

    NASA Astrophysics Data System (ADS)

    Wendorff, Małgorzata; Rospondek, Mariusz; Kluska, Bartosz; Marynowski, Leszek

    2017-04-01

    During Oligocene to early Miocene time an extensive accumulation of organic-rich sedimentary rocks occurred in entire Paratethyan Basin, including its central part, i.e. the Carpathian Foredeep basin. Rocks of so-called Menilite facies formed there, burying significant amounts of organic matter (OM). These Menilite shales are now widely considered as a source of hydrocarbons throughout the Carpathian region. For the purpose of presented study, rock samples of the Menilite facies (mainly of the Lower Menilite and Bituminous Marl Members) were collected from two sections located in the different tectonic units (the Tarcău and Vrancea Nappes, Romania) of the Outer Carpathians. The main goal of the study was to assess and compare their hydrocarbon potential by examination of bulk geochemistry (total organic carbon content, pyrolysis Rock-Eval), vitrinite reflectance (Ro) and application of lipid biomarker parameters. The data show high variability in OM quantity and quality. Total organic carbon (TOC) content reaches peak values in the siliceous facies of the Lower Menilite Member (up to 8.6 wt% TOC), which contains type II kerogen represented by mainly marine OM type. Such results are confirmed by the presence of short-chain n-alkanes and hopanes. Mixed type II/III kerogen gains importance together with increasing contribution of turbiditic sedimentation. Terrigenous input is marked by occurrence of conifer aromatic biomarkers (such as simonellite, retene and 1,2,3,4-tetrahydroretene) and odd over even long chain n-alkanes predominance, characteristic for epicuticular leaf waxes. The analysed source rocks can be classified as oil-prone and subordinately mixed oil/gas-prone. OM in the inner tectonic unit (Tarcău Nappe; Tmax 430° C, Ro 0.5%) reaches onset of hydrocarbon generation, while in the outer unit (Vrancea Nappe) OM is immature (Tmax 425° C, Ro 0.4%). This maturity trend may be an effect of different burial histories of these units, as well as variation in subsequent erosion and exhumation levels resulting from the more inner position of the Tarcău Nappe within the orogen relative to the Vrancea Nappe (Wendorff et al., 2017). Based on the TOC content, S1 and S2 peak values the investigated rocks from the Vrancea Nappe reveal good to even excellent petroleum potential (especially for the siliceous facies of the Lower Menilite Mb.), although they did not attain the oil-window stage. The Tarcău Nappe source rocks have fair to good hydrocarbon potential. Hydrocarbons have been locally generated due to sufficient maturity, as also confirmed by high extractable bitumen yields and field observation of solid bitumen veins. However, hydrocarbon potential has not been exhausted as revealed by still high hydrocarbon index values. In the studied area the rocks of the Menilite facies have been suggested as a source for small gas/oil deposits, i.e. the Cuejdiu and Moineşti/Comăneşti field. References Wendorff, M., Rospondek, M., Kluska, B., Marynowski, L., 2017. Organic matter maturity and hydrocarbon potential of the Lower Oligocene Menilite facies in the Eastern Flysch Carpathians (Tarcău and Vrancea Nappes), Romania. Applied Geochemistry (in press).

  15. Publications - GMC 252 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 252 Publication Details Title: Kemik sandstone - petrology, physical properties, and facies of Continental Margins Program, 1995, Kemik sandstone - petrology, physical properties, and facies of outcrop

  16. Integrating bio-, chemo- and sequence stratigraphy of the Late Ordovician, Early Katian: A connection between onshore and offshore facies using carbon isotope analysis: Kentucky, Ohio, USA

    NASA Astrophysics Data System (ADS)

    Young, Allison; Brett, Carlton; McLaughlin, Patrick

    2017-04-01

    A common problem in stratigraphic correlation is the difficulty of bridging shallow water shelf carbonates and down ramp shale-rich facies. This issue is well exemplified by the Upper Ordovician (lower Katian) Lexington Limestone of Kentucky, USA and adjacent dark shale facies in the deeper water Sebree Trough, an elongate, narrow bathymetric low abruptly north of the outcrop belt in the Ohio subsurface. Chronostratigraphic schemes for this interval have been proposed on the basis of conodont and graptolite biostratigraphy, mapping of event beds, and sequence stratigraphy through facies analysis. The relation of the siliciclastic rich offshore records of the "Point Pleasant-Utica" interval, well known to drillers because of its oil and gas potential, with the up-ramp shallow water carbonate dominated equivalents of the Lexington Formation is complicated by convoluted nomenclature, a major, abrupt change in facies, and disparity in the availability and completeness of records. Current genetic models of organic rich shale intervals, such as the Point Pleasant-Utica interval, are still lacking in detail, and will greatly benefit from detailed correlation with shallow water settings where more is understood about paleoclimatic conditions. In order to understand the development and evolution of this Late Ordovician Laurentian basin, it is important to understand the age relationships of depositional processes occurring at a range of depths, particularly in the less well studied epeiric sea setting of the "Point Pleasant-Utica" interval of Ohio and partial lateral equivalent, Lexington Formation of central Kentucky. The outcrop area of central Kentucky, exposed by the later uplift of the Cincinnati Arch, hosts numerous world-class exposures of the Lexington Formation, nearly all of which are representative of the highly fossiliferous, shallow-water marine platform carbonates. These successions display well differentiated depositional sequences, with sharp facies offsets, and mineralized surfaces. They also contain well studied fossil assemblages and event beds, which at the scale of an outcrop, allow for detailed paleoenvironmental interpretation. The offshore record of this interval, known almost exclusively from a few drill cores, displays an abrupt transition to distal, siliciclastic dominated facies, recording a more dysoxic and organic rich interval. Internal correlation of these shales has relied mostly on limited graptolite biostratigraphic and geochemical analysis. Here we seek to establish age relationships across a major facies transition between these two interrelated paleoenvironmental settings using high resolution whole rock carbon isotope analysis to integrate new and previous work on lithostratigraphy, biostratigraphy, and sequence stratigraphy of a series of cores and outcrops. Results to date demonstrate the persistence of carbon isotopic patterns (including the globally recognized GICE positive carbon isotopic excursion) permitting extension of correlation into basinal facies where tracking of stratigraphic sequences becomes difficult. A complicated relationship across the region is emerging involving both rapid facies transitions and submarine erosional cutout of units toward the center of the Sebree Trough. This study demonstrates the utility of an integrated stratigraphic approach for establishing high resolution regional correlations allowing for interpretations across a major facies transitions.

  17. An Aquatic Journey toward Aeolis Mons (Mount Sharp): Sedimentary Rock Evidence observed by Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev; Edgar, Lauren; Williams, Rebecca; Rubin, David; Yingst, Aileen; Lewis, Kevin; Kocurek, Gary; Anderson, Ryan; Dromart, Gilles; Edgett, Ken; Hardgrove, Craig; Kah, Linda; Mangold, Nicolas; Milliken, Ralph; Minitti, Michelle; Palucis, Marisa; Rice, Melissa; Stack, Katie; Sumner, Dawn; Williford, Ken

    2014-05-01

    Since leaving Yellowknife Bay (summer 2013), Mars Science Laboratory Curiosity has investigated a number of key outcrops as it traverses along the Rapid Transit Route toward the entry point to begin its investigations of the extensive rock outcrops at the base of Mount Sharp. Rover observations are characterizing the variability of lithologies and sedimentary facies along the traverse and establishing stratigraphic relationships with the aim of reconstructing depositional processes and palaeoenvironments. Here, we report on sedimentological and stratigraphic observations based on images from the Mastcam and MAHLI instruments at Shaler and the Darwin waypoint. The informally named Shaler outcrop, which forms part of the Glenelg member of the Yellowknife Bay formation [1] is remarkable for the preservation of a rich suite of sedimentary structures and architecture, and was investigated on sols 120-121 and 309-324. The outcrop forms a pebbly sandstone body that is ~0.7 m thick and extends for up to 20 m. Shaler is largely characterized by pebbly sandstone facies showing well-developed decimeter-scale trough cross-stratification. Bedding geometries indicate sub-critical angles of climb, resulting in preservation of only the lee slope deposits. The grain size, and the presence and scale of cross-stratification imply sediment transport and deposition by unidirectional currents in a fluvial sedimentary environment. Curiosity investigated the informally named Darwin waypoint between sols 390 and 401, making detailed Mastcam and MAHLI observations at two separate locations. The Darwin outcrop comprises light-toned sandstone beds separated by darker pebbly sandstones. MAHLI observations permit differentiation of distinct sedimentary facies. The Altar Mountain facies is a poorly sorted pebbly sandstone that is rich in fine pebbles. Pebbles are sub-angular to sub-rounded in shape and show no preferred orientation or fabric. Pebbles and sand grains show clast-to-clast contacts. The clast-supported nature of the facies, the presence of coarse sand grains to fine pebbles, and the occurrence of some rounding of clasts indicates that these are sedimentary clasts that have been transported by aqueous flows. However, the absence of a well-sorted fabric, size grading of clast, and major rounding of grains suggests that these pebbly sandstones were rapidly deposited rather than built up from sustained fluvial reworking, implying that the deposits may be the result of more ephemeral river flows rather than sustained flow discharges. The Bardin Bluffs facies overlies the Altar Mountain facies and shows a more sand-dominated fabric with a smaller proportion of floating fine pebbles. This facies is also clast-supported but contains fewer pebbles and shows an overall fining-up trend. This facies is also interpreted to represent fluvial deposition albeit with a different grain size distribution than the Altar Mountains facies. We will compare and contrast the varying sedimentary fabrics and facies to develop models for the variety of aqueous fluvial transport processes that have led to the deposition of sedimentary rocks en route to Mount Sharp. The origin of these sedimentary rocks with relation to fluvial fan processes in Gale Crater will be discussed. References: [1] Grotzinger, J.P. et al Science 2013, doi: 10.1126/science.1242777.

  18. Assessing the Record of Anoxic/Dysoxic Events in Lower Aptian Cupido/La Peña Formations, Northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Maurrasse, F. J.; Barragan-Manzo, R.; Ponton, C.

    2008-05-01

    Lower Aptian series at the la Huasteca Canyon, Nuevo Leon, NE Mexico, include the uppermost part of the Cupido Formation, a shallow-platform facies (TIC > 60%) succeeded by the La Peña Formation (TIC very variable 17 - 92 %). The change indicated a long-term shift in sedimentation characterized by distinct periodic increase in terrigenous, organic matter and abundant occurrence of ammonites. The interbeds of marls, calcareous shales, marly calcilutites and calcirudites of the La Peña facies contain abundant thin-shelled ammonites, and few planktonic foraminifera. The change occurred in the Dufrenoya justinae ammonite Zone, coeval with the Dufrenoya furcata Zone of the standard ammonite biochronostratigraphy of the Mediterranean province for the uppermost Early Aptian (Barragan-Manzo and Mendez-Franco, 2005; Barragan and Maurrasse, 2008). These zones differentiate the upper part of the Lower Aptian, therefore posterior to OAE1a. Nonetheless, while microfacies of the La Peña Fm show also intermittent belemnites, small pelecypods other than rudists, and sea urchins, benthic foraminifera are mostly absent occurring toward younger levels in the Gargasian coincident with highest taxonomic diversity. Benthic foraminifers are conspicuously absent particularly at the levels closest to the transition zone with the infrajacent Cupido facies. Also, despite increase in TOC (up to 2.6 %) in the La Peña facies, ∂13 Corg curve shows little co-variation with increasing OM, which we interpret to represent a regional phenomenon related to super-productivity in the isolated sub-basin of the Mexican platform (Maurrasse et al., 2006). In contrast, typical Cupido Fm microfacies exhibit abundant miliolids (20-30 %), fragments of rudists, echinoids, ostracods (> 30-40%), very few thin ammonite shell debris, and oolites at intermittent levels. Rich benthic foraminifer assemblages are indicative of well-oxygenated bottom conditions. However, there are three horizons about 60 cm-thick each that are remarkably devoid of benthic foraminifers. They occur at 5. 72 m, 11.45m and 29.6 m, respectively, below the La Peña Fm. Variations within the Cupido Fm are consistent with fluctuating high- productivity, well-oxygenated neritic environment punctuated by development of hypoxic to anoxic bottom waters (Maurrasse et al., 2006). These recurrent episodes of severe oxygen depletion fall within the time interval that may be correlational with the infrajacent D. deshayesi to possibly the D. wessi zones in the Mediterranean ammonite biozonation scheme. We interpret these horizons to represent recurrent hypoxic to anoxic bottom conditions that are local expression of global forcing factors during Cretaceous greenhouse conditions that lead to well-defined OAE-1a and the subsequent anoxic events. Barragan-Manzo, R., and Maurrasse, F., (2008) Revista Mexicana de Ciencias Geologicas, v. 25, 1, p. 145-157. Barragan-Manzo, R., and Mendez-Franco, 2005, Towards a standard ammonite zonation for the Aptian (Lower Cretaceous) of northern Mexico. Revista Mexicana de Ciencias Geologicas, v. 22, 1, p. 39-47. Maurrasse, F. J-M. R., Barragan-Manzo, R., and Ponton, C. 2006, Cupido- La Peña Formations: High-Productivity to Super-Productivity during the Cretaceous Enhanced Greenhouse Conditions, GSA Abst.with programs v. 38, no 7, p. 491.

  19. Predicted facies, sedimentary structures and potential resources of Jurassic petroleum complex in S-E sWestern Siberia (based on well logging data)

    NASA Astrophysics Data System (ADS)

    Prakojo, F.; Lobova, G.; Abramova, R.

    2015-11-01

    This paper is devoted to the current problem in petroleum geology and geophysics- prediction of facies sediments for further evaluation of productive layers. Applying the acoustic method and the characterizing sedimentary structure for each coastal-marine-delta type was determined. The summary of sedimentary structure characteristics and reservoir properties (porosity and permeability) of typical facies were described. Logging models SP, EL and GR (configuration, curve range) in interpreting geophysical data for each litho-facies were identified. According to geophysical characteristics these sediments can be classified as coastal-marine-delta. Prediction models for potential Jurassic oil-gas bearing complexes (horizon J11) in one S-E Western Siberian deposit were conducted. Comparing forecasting to actual testing data of layer J11 showed that the prediction is about 85%.

  20. The effect of electromagnetic radiation of wireless connections on morphology of amniotic fluid

    NASA Astrophysics Data System (ADS)

    Novikov, Vsevolod O.; Titova, Natalia; Azarhov, Olexand; Wójcik, Waldemar; GrÄ dz, Å.»aklin; Mussabekova, Assel

    2016-09-01

    The article considers the effect of wireless networks on the morphology of amniotic fluid (AF) to demonstrate possible risks involving pregnant women. The analysis of AF thesiograms after exposure of the model fluid to Wi-Fi, 3G and β- radiation was chosen as the research method. A comparative analysis of facies structures is carried out, and depth maps of the facies structure are created. This comparative analysis permits an evaluation of the efficiency of morphological changes. It is shown that AF control facies differ in the concentration of areas with a narrow peripheral area and ellipsoidal formations of crystalloids in circumferences center. After exposure of different types of radiation onto AF, the facies structures collapse and form their own conglomerates. The obtained results show that the considered types of radiation have a negative effect on AF.

  1. Application of a Depositional Facies Model to an Acid Mine Drainage Site▿ †

    PubMed Central

    Brown, Juliana F.; Jones, Daniel S.; Mills, Daniel B.; Macalady, Jennifer L.; Burgos, William D.

    2011-01-01

    Lower Red Eyes is an acid mine drainage site in Pennsylvania where low-pH Fe(II) oxidation has created a large, terraced iron mound downstream of an anoxic, acidic, metal-rich spring. Aqueous chemistry, mineral precipitates, microbial communities, and laboratory-based Fe(II) oxidation rates for this site were analyzed in the context of a depositional facies model. Depositional facies were defined as pools, terraces, or microterracettes based on cm-scale sediment morphology, irrespective of the distance downstream from the spring. The sediments were composed entirely of Fe precipitates and cemented organic matter. The Fe precipitates were identified as schwertmannite at all locations, regardless of facies. Microbial composition was studied with fluorescence in situ hybridization (FISH) and transitioned from a microaerophilic, Euglena-dominated community at the spring, to a Betaproteobacteria (primarily Ferrovum spp.)-dominated community at the upstream end of the iron mound, to a Gammaproteobacteria (primarily Acidithiobacillus)-dominated community at the downstream end of the iron mound. Microbial community structure was more strongly correlated with pH and geochemical conditions than depositional facies. Intact pieces of terrace and pool sediments from upstream and downstream locations were used in flowthrough laboratory reactors to measure the rate and extent of low-pH Fe(II) oxidation. No change in Fe(II) concentration was observed with 60Co-irradiated sediments or with no-sediment controls, indicating that abiotic Fe(II) oxidation was negligible. Upstream sediments attained lower effluent Fe(II) concentrations compared to downstream sediments, regardless of depositional facies. PMID:21097582

  2. Multiparameter elastic full waveform inversion with facies-based constraints

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-dong; Alkhalifah, Tariq; Naeini, Ehsan Zabihi; Sun, Bingbing

    2018-06-01

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize FWI beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a priori information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.

  3. Sedimentology and palaeontology of the Upper Jurassic Puesto Almada Member (Cañadón Asfalto Formation, Fossati sub-basin), Patagonia Argentina: Palaeoenvironmental and climatic significance

    NASA Astrophysics Data System (ADS)

    Cabaleri, Nora G.; Benavente, Cecilia A.; Monferran, Mateo D.; Narváez, Paula L.; Volkheimer, Wolfgang; Gallego, Oscar F.; Do Campo, Margarita D.

    2013-10-01

    Six facies associations are described for the Puesto Almada Member at the Cerro Bandera locality (Fossati sub-basin). They correspond to lacustrine, palustrine, and pedogenic deposits (limestones); and subordinated alluvial fan, fluvial, aeolian, and pyroclastic deposits. The lacustrine-palustrine depositional setting consisted of carbonate alkaline shallow lakes surrounded by flooded areas in a low-lying topography. The facies associations constitute four shallowing upward successions defined by local exposure surfaces: 1) a Lacustrine-Palustrine-pedogenic facies association with a 'conchostracan'-ostracod association; 2) a Palustrine facies association representing a wetland subenvironment, and yielding 'conchostracans', body remains of insects, fish scales, ichnofossils, and palynomorphs (cheirolepidiacean species and ferns growing around water bodies, and other gymnosperms in more elevated areas); 3) an Alluvial fan facies association indicating the source of sediment supply; and 4) a Lacustrine facies association representing a second wetland episode, and yielding 'conchostracans', insect ichnofossils, and a palynoflora mainly consisting of planktonic green algae associated with hygrophile elements. The invertebrate fossil assemblage found contains the first record of fossil insect bodies (Insecta-Hemiptera and Coleoptera) for the Cañadón Asfalto Formation. The succession reflects a mainly climatic control over sedimentation. The sedimentary features of the Puesto Almada Member are in accordance with an arid climatic scenario across the Upper Jurassic, and they reflect a strong seasonality with periods of higher humidity represented by wetlands and lacustrine sediments.

  4. Structural and facies characterization of the Niobrara Formation in Goshen and Laramie counties, Wyoming

    NASA Astrophysics Data System (ADS)

    Kernan, Nicholas Devereux

    The Niobrara Formation is a fine-grained marine rock deposited in the Western Interior Seaway during the Late Cretaceous. It is composed of fossil-rich interlayered shale, marls, and chalks. Recent interest in the Niobrara has grown due to the advent of lateral drilling and multi-stage hydraulic fracturing. This technology allows operators to economically extract hydrocarbons from chalkier Niobrara facies. Yet two aspects of the Niobrara Formation have remained enigmatic. The first is the occurrence of abundant, randomly oriented, layer-bound, normal faults. The second is the large degree of vertical heterogeneity. This research aimed to increase understanding in both these aspects of the Niobrara Formation. Randomly oriented normal faults have been observed in Niobrara outcrops for nearly a hundred years. Recent high resolution 3D seismic in the Denver Basin has allowed investigators to interpret these faults as part of a polygonal fault system (PFS). PFS are layer bound extensional structures that typically occur in fine-grained marine sediments. Though their genesis and development is still poorly understood, their almost exclusive occurrence in fine-grained rocks indicates their origin is linked to lithology. Interpretation of a 3D seismic cube in Southeast Wyoming found a tier of polygonal faulting within the Greenhorn-Carlile formations and another tier of polygonal faulting within the Niobrara and Pierre formations. This research also found that underlying structural highs influence fault growth and geometries within both these tiers. Core data and thin sections best describe vertical heterogeneity in fine-grained rocks. This investigation interpreted core data and thin sections in a well in Southeast Wyoming and identified 10 different facies. Most of these facies fall within a carbonate/clay spectrum with clay-rich facies deposited during periods of lower sea level and carbonate-rich facies deposited during periods of higher sea level. Because the average operator will typically have little core but abundant well logs, this investigation used three different methods of describing facies variability with logs. Facies interpreted with these methods are referred to as electrofacies. First, a conventional interpretation of Niobrara sub-units was done using gamma ray and resistivity logs. Then a cluster analysis was conducted on an extensive petrophysical log suite. Finally, a neural network was trained with the previous core interpretation so that it learned to identify facies from logs. The research found that when little core is available a cluster analysis method can capture significant amounts of vertical heterogeneity within the Niobrara Formation. But if core is available then a neural network method provides more meaningful and higher resolution interpretations.

  5. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Wang, Chao; Cao, Yu-Ting; Chen, Dan-Ling; Kang, Lei; Yang, Wen-Qiang; Zhu, Xiao-Hui

    2012-04-01

    Petrography, mineral chemistry and pressure-temperature (P-T) estimates were carried out for the eclogite from the South Altyn in NW China. The results suggest three stages of metamorphism: an ultra-high pressure (UHP) eclogite-facies metamorphism at 717-871 °C and ≥ 2.8 GPa, a high pressure (HP) granulite-facies metamorphism at 624-789 °C and 1.42-1.52 GPa, and an amphibolite-facies metamorphism at 597-728 °C and 0.99-1.17 GPa. Cathodoluminescence investigation revealed that zircons from the retrograde eclogite display a distinct core-rim structure. Cores are grey-white luminescent and contain mineral inclusions of Garnet + Omphacite + Rutile + Quartz, suggesting eclogite-facies metamorphic origin. The rims are dark grey luminescent and contain Garnet + Clinopyroxene + Pagioclase inclusions, forming at HP granulite-facies conditions. A few residual zircon grains with mottled internal structure also occur as the metamorphic cores. LA-ICPMS zircon U-Pb dating yielded three discrete age groups: (1) a Neoproterozoic protolith age of 752 ± 7 Ma for the residual grains, (2) an eclogite-facies metamorphic age of 500 ± 7 Ma for the metamorphic cores, and (3) a HP granulite-facies retrograde age of 455 ± 2 Ma for the rims. These ages indicate that the protolith of the Altyn eclogite probably formed in response to breakup of the Rodinia supercontinent during the Neoproterozoic; it was subjected to continental deep subduction and UHP metamorphism during early Paleozoic (~ 500 Ma) and subsequently underwent two stages of retrograde metamorphism during exhumation. The petrological and geochronological data suggest a clockwise P-T-t path for the UHP eclogite. According to pressures and ages for the peak UHP eclogite-facies and the retrograde HP granulite-facies metamorphism, an exhumation rate of 1.2 mm/yr was estimated for the eclogite, which is considerably slower than that of some UHP rocks from other UHP terranes (> 5 mm/yr). While the peak metamorphic age of 500 Ma is consistent with previous dates of 480-504 Ma, it is 40-60 Myr older than the HP/UHP metamorphic ages of 420-461 Ma for UHP eclogites in North Qaidam. The retrograde metamorphic age is 455 ± 2 Ma for the Altyn eclogite, which is 30-55 Myr older than ~ 400-425 Ma for the North Qaidam eclogites. These age differences suggest that the South Altyn and North Qaidam eclogites do not belong to the same HP/UHP metamorphic zone.

  6. New insights on lithofacies architecture, sedimentological characteristics and volcanological evolution of pre-caldera (> 22 ka), multi-phase, scoria- and spatter-cones at Somma-Vesuvius

    NASA Astrophysics Data System (ADS)

    Sparice, Domenico; Scarpati, Claudio; Perrotta, Annamaria; Mazzeo, Fabio Carmine; Calvert, Andrew T.; Lanphere, Marvin A.

    2017-11-01

    Pre-caldera (> 22 ka) lateral activity at Somma-Vesuvius is related to scoria- and spatter-cone forming events of monogenetic or polygenetic nature. A new stratigraphic, sedimentological, textural and lithofacies investigation was performed on five parasitic cones (Pollena cones, Traianello cone, S. Maria a Castello cone and the recently found Terzigno cone) occurring below the Pomici di Base (22 ka) Plinian products emplaced during the first caldera collapse at Somma-Vesuvius. A new Ar/Ar age of 23.6 ± 0.3 ka obtained for the Traianello cone as well as the absence of a paleosol or reworked material between the S. Maria a Castello cone and the Pomici di Base deposits suggest that such cone-forming eruptions occurred near the upper limit of the pre-caldera period (22-39 ky). The stratigraphy of three of these eccentric cones (Pollena cones and Traianello cone) exhibits erosion surfaces, exotic tephras, volcaniclastic layers, paleosols, unconformity and paraconformity between superimposed eruptive units revealing their multi-phase, polygenetic evolution related to activation of separate vents and periods of quiescence. Such eccentric cones have been described as composed of scoria deposits and pure effusive lavas by previous authors. Lavas are here re-interpreted as welded horizons (lava-like) composed of coalesced spatter fragments whose pyroclastic nature is locally revealed by relicts of original fragments and remnants of clast outlines. These welded horizons show, locally, rheomorphic structures allowing to define them as emplaced as clastogenic lava flows. The lava-like facies is transitional, upward and downward, to less welded facies composed of agglutinated to unwelded spatter horizons in which clasts outlines are increasingly discernible. Such textural characteristics and facies variation are consistent with a continuous fall deposition of Hawaiian fire-fountains episodes alternated with Strombolian phases emplacing loose scoria deposits. High enrichment factor values, measured in the scoria deposits, imply the ejection of large proportion of ash even during Strombolian events.

  7. Disentangling the control of tectonics, eustasy, trophic conditions and climate on shallow-marine carbonate production during the Aalenian-Oxfordian interval: From the western France platform to the western Tethyan domain

    NASA Astrophysics Data System (ADS)

    Andrieu, Simon; Brigaud, Benjamin; Barbarand, Jocelyn; Lasseur, Eric; Saucède, Thomas

    2016-11-01

    The objective of this work is to improve our understanding of the processes controlling changes in the architecture and facies of intracontinental carbonate platforms. We examined the facies and sequence stratigraphy of Aalenian to Oxfordian limestones of western France. Seventy-seven outcrop sections were studied and thirty-one sedimentary facies identified in five depositional environments ranging from lower offshore to backshore. Platform evolution was reconstructed along a 500 km cross-section. Twenty-two depositional sequences were identified on the entire western France platform and correlated with European third-order sequences at the biozone level, demonstrating that eustasy was the major factor controlling the cyclic trend of accommodation. The tectonic subsidence rate was computed from accommodation measurements from the Aalenian to the Oxfordian in key localities. Tectonism controlled the sedimentation rate and platform architecture at a longer time scale. Tectonic subsidence triggered the demise of carbonate production at the Bathonian/Callovian boundary while the uplift made possible the recovery of carbonate platform from Caen to Le Mans during the mid Oxfordian. Topography of the Paleozoic basement mainly controlled lateral variations of paleodepth within the western France platform until the mid Bathonian. A synthesis of carbonate production in the western Tethyan domain at that time was conducted. Stages of high carbonate production during the Bajocian/Bathonian and the middle to late Oxfordian are synchronous with low δ13C, high eccentricity intervals, and rather dry climate promoting (1) evaporation and carbonate supersaturation, and (2) oligotrophic conditions. Periods of low carbonate production during the Aalenian and from the middle Callovian to early Oxfordian correlate with high δ13C and low eccentricity intervals, characterized by wet climate and less oligotrophic conditions. Such conditions tend to diminish growth potential of carbonate platforms. This work highlights the importance of climate control on carbonate growth and demise at large scale in western Tethyan epicontinental seas.

  8. Outcrop-scale acoustic facies analysis and latest Quaternary development of Hueneme and Dume submarine fans, offshore California

    USGS Publications Warehouse

    Piper, D.J.W.; Hiscott, R.N.; Normark, W.R.

    1999-01-01

    The uppermost Quaternary deposits of the Hueneme and Dume submarine fans in the Santa Monica Basin have been investigated using a closed-spaced grid of boomer seismic-reflection profiles, which give vertical resolution of a few tens of centimetres with acoustic penetration to 50 m. Acoustic facies integrated with geometry define six architectural elements, some with discrete subelements that are of a scale that can be recognized in outcrops of ancient turbidite systems. In the Santa Monica Basin, the relationship of these elements to fan morphology, stratigraphy and sediment source is precisely known. The width of upper Hueneme fan valley has been reduced from 5 km since the last glacial maximum to 1 km at present by construction of laterally confined sandy levees within the main valley. The middle fan comprises three main subelements: thick sand deposits at the termination of the fan valley, low-gradient sandy lobes typically 5 km long and < 10 m thick, and scoured lobes formed of alternating sand and mud beds with many erosional depressions. The site of thickest lobe sediment accumulation shifts through time, with each sand bed deposited in a previous bathymetric low (i.e. compensation cycles). The lower fan and basin plain consists of sheet-like alternations of sand and mud with shallow channels and lenses. Variations in the rate of late Quaternary sea level rise initiated changes in sediment facies distribution. At lowstand, and during the approximately 11 ka stillstand in sea level, the Hueneme Fan was fed largely by hyperpycnal flow from the Santa Clara River delta, depositing high sediment waves on the right hand levee and thick sandy lobes on the middle fan. At highstand of sea level, most turbidity currents were generated by failure of silty prodelta muds. In contrast, the smaller Dume Fan was apparently always fed from littoral drift of sand through a single-canyon point source.

  9. Recognition, correlation, and hierarchical stacking patterns of cycles in the Ferry Lake - Uppe Glen Rose, East Texas Basin: Implications for grainstone reservoir distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitchen, W.M.; Bebout, D.G.; Hoffman, C.L.

    1994-12-31

    Core descriptions and regional log correlation/interpretation of Ferry Lake-Upper Glen Rose strata in the East Texas Basin exhibit the uniformity of cyclicity in these shelf units. The cyclicity is defined by an upward decrease in shale content within each cycle accompanied by an upward increase in anhydrite (Ferry Lake) or carbonate (Upper Glen Rose). Core-to-log calibration of facies indicates that formation resistivity is inversely proportional to shale content and thus is a potential proxy for facies identification beyond core control. Cycles (delineated by resistivity log patterns) were correlated for 90 mi across the shelf; they show little change in logmore » signature despite significant updip thinning due to the regional subsidence gradient. The Ferry-Lake-Upper Glen Rose intervals is interpreted as a composite sequence composed of 13 high-frequency sequences (4 in the Ferry Lake and 9 in the Upper Glen Rose). High-frequency sequences contain approximately 20 ({+-}5) cycles; in the Upper Glen Rose, successive cycles exhibit decreasing proportions of shale and increasing proportions of grain-rich carbonate. High-frequency sequences were terminated by terrigenous inundation, possibly preceded by subaerial exposure. Cycle and high-frequency sequence composition is interpreted to reflect composite, periodic(?) fluctuations is terrigeneous dilution from nearby source areas. Grainstones typically occur (stratigraphically) within the upper cycles of high-frequency sequences, where terrigeneous dilution and turbidity were least and potential for carbonate production and shoaling was greatest. Published mid-Cretaceous geographic reconstructions and climate models suggest that precipitation and runoff in the area were controlled by the seasonal amplitude in solar insolation. In this model, orbital variations, combined with subsidence, hydrography, and bathymetry, were in primary controls on Ferry Lake-Upper Glen Rose facies architecture and stratigraphic development.« less

  10. Variations in eruptive style and depositional processes of Neoproterozoic terrestrial volcano-sedimentary successions in the Hamid area, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalaf, Ezz El Din Abdel Hakim

    2013-07-01

    Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes.

  11. Facies-dependent variations in sediment physical properties on the Mississippi River Delta Front, USA: evidence for depositional and post-depositional processes

    NASA Astrophysics Data System (ADS)

    Smith, J. E., IV; Bentley, S. J.; Courtois, A. J.; Obelcz, J.; Chaytor, J. D.; Maloney, J. M.; Georgiou, I. Y.; Xu, K.; Miner, M. D.

    2017-12-01

    Recent studies on Mississippi River Delta have documented sub-aerial land loss, driven in part by declining sediment load over the past century. Impacts of changing sediment load on the subaqueous delta are less well known. The subaqueous Mississippi River Delta Front is known to be shaped by extensive submarine mudflows operating at a range of temporal and spatial scales, however impacts of changing sediment delivery on mudflow deposits have not been investigated. To better understand seabed morphology and stratigraphy as impacted by plume sedimentation and mudflows, an integrated geological/geophysical study was undertaken in delta front regions offshore the three main passes of the Mississippi River Delta. This study focuses on stratigraphy and physical properties of 30 piston cores (5-9 m length) collected in June 2017. Coring locations were selected in gully, lobe and prodelta settings based on multibeam bathymetry and seismic profiles collected in mid-May 2017. Cores were analyzed for density, magnetic susceptibility, P-wave speed, and resistivity using a Geotek multi sensor core logger; here, we focus on density data. Core density profiles generally vary systematically across facies. Density profiles of gully cores are nearly invariant with some downward stepwise increases delineating units meters thick, and abundant gaps likely caused by gas expansion. Lobe cores generally have subtle downward increases in density, some stepwise density increases, and fewer gaps. Prodelta cores show more pronounced downward density increases, decimeter-scale peaks and valleys in density profiles, but stepwise increases are less evident. We hypothesize that density profiles in gully and lobe settings (uniform profiles except for stepwise increases) reflect remolding by mudflows, whereas density variations in prodelta settings instead reflect grain size variations (decimeter-scale) and more advanced consolidation (overall downward density increase) consistent with slower sediment deposition. These hypotheses will be evaluated by a more detailed study of seismic stratigraphy and core properties, including geochronology, grain size distribution and X-radiographic imaging, to further relate important sedimentary processes with resulting deposits.

  12. Magnetic properties and anomalies related to eclogite- and high-pressure granulite-facies mafic rocks: What do they tell about magnetization of deep-crustal lithosphere?

    NASA Astrophysics Data System (ADS)

    McEnroe, S. A.; Robinson, P.

    2012-12-01

    The magnetic response of crustal rocks is directly related to type and abundance of oxides in the rock bodies. About 800 samples from mafic bodies and mantle peridotites from the eclogite-facies part of the Western Gneiss Region, Norway, were studied for magnetic properties and oxide mineralogy, and show strong variations. Many eclogites are paramagnetic, while adjacent gabbros from which the eclogites were derived during high-pressure (HP) recrystallization, either preserved or formed magnetite during HP metamorphism or during the following exhumation. Phase petrology indicates many of these rocks were subjected to 4 Gpa and possibly to 6 Gpa equivalent to depths of 125 and 200 km during the Scandian (Upper Silurian - Lower Devonian) continental subduction. Likely conditions in intermediate stages of exhumation were temperature (T) > 700C and pressure (P) of 1 GPa. When magnetite dominates in these samples, the primary control on magnetization is abundance, because magnetite in coarse-grained igneous and high-grade metamorphic rocks is commonly of multi-domain size, close to end-member, and with few microstructures. With few features to stabilize the NRM, the magnetic response is dominated by induced magnetization (Ji). When exsolved members of the rhombohedral ilmenite-hematite solid solution are present, commonly in more oxidized rocks, the response is dominated by the NRM (Jr), and NRM intensity is more complicated than in magnetite-bearing rocks. Important here, in addition to the amount of oxide, are the orientation of the oxide grains relative to the magnetizing field, and the amount of exsolution lamellae, mostly produced during cooling from HP conditions, leading to lamellar magnetism. Where there is no coexisting magnetite, these rocks have high Q values (Jr/Ji) because the induced magnetization (Ji) is low. For such more oxidized rocks, remanent anomalies are generally more common than for more reduced magnetite-bearing rocks formed under the same conditions. Mafic rocks from the Southwest Swedish Granulite Region contain high-pressure granulite-facies assemblages produced during Sveconorwegian (early Neoproterozoic) metamorphism with peak T of 770C and P 0.75-1.05 GPa. Here, the assemblages commonly indicate more oxidized compositions than prevailing in the Western Gneiss Region. Thus, the NRM is dominant, and resultant magnetic vectors are controlled by NRM vectors, nearly opposite to the Earth's present magnetic field, giving rise to striking negative anomalies. Both regions offer insights and show strong variations in the magnetic properties of lower crustal rocks.

  13. Stratigraphy, facies analysis and depositional environments of the Upper Unit of Abu Roash "E" member in the Abu Gharadig field, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Hewaidy, Abdel Galil; Elshahat, O. R.; Kamal, Samy

    2018-03-01

    Abu Roach "E" member is of an important hydrocarbon reservoir-producing horizon in the Abu Gharadig Field (north Western Desert, Egypt). This study is used to build facies analysis and depositional environments model for the Upper Unit of the Abu Roash "E" member in Abu Gharadig Field. This target has been achieved throughout the sedimentological, wire line logs, lithostratigraphic and biostratigraphic analyses of more than 528 feet cores. The high-resolution biostratigraphic analysis provides a calibration for the paleo-bathymetry and depositional environmental interpretations. Biozonation and lithostratigraphic markers are used to constrain stratigraphic correlation. Integration between the core description and petorographic microfacies analysis by microscope examination provide an excellent indication for the rock types and depositional environments. Five depositional facies types are detected including carbonate inner ramp, tidal flats, tidal channels, supra-tidal and tide dominated delta facies. This model helps in the understanding of the Upper Unit of Abu Roash "E" member reservoir distribution as well as lateral and vertical facies changes that contribute to the development strategy for the remaining hydrocarbon reserves for this important oil reservoir.

  14. Prelude of benthic community collapse during the end-Permian mass extinction in siliciclastic offshore sub-basin: Brachiopod evidence from South China

    NASA Astrophysics Data System (ADS)

    Wu, Huiting; He, Weihong; Weldon, Elizabeth A.

    2018-04-01

    Analysis of the Permian-Triassic palaeocommunities from basinal facies in South China provides an insight into the environmental deterioration occurring in the prelude to the mass extinction event. Quantitative and multivariate analyses on three brachiopod palaeocommunities from the Changhsingian to the earliest Triassic in basinal facies in South China have been undertaken in this study. Although the end-Permian extinction has been proved to be a one-stepped event, ecological warning signals appeared in the palaeocommunities long before the main pulse of the event. A brachiopod palaeocommunity turnover occurred in the upper part of the Clarkina changxingensis Zone, associated with a significant decrease of palaeocommunity diversity and brachiopod body size. During this turnover the dominant genera changed from Fusichonetes and Crurithyris (or/and Paracrurithyris) to the more competitive genus Crurithyris (or/and Paracrurithyris). The brachiopod palaeocommunity turnover was supposed to be triggered by the decreased marine primary productivity and increased volcanic activity. Moreover, such early warning signals are found not only in the deep-water siliceous facies, but also in the shallow-water clastic facies and carbonate rock facies in South China.

  15. Pan-African granulites of central Dronning Maud Land and Mozambique: A comparison within the East-African-Antarctic orogen

    USGS Publications Warehouse

    Engvik, A.K.; Elevevold, S.; Jacobs, J.; Tveten, E.; de Azevedo, S.; Njange, F.

    2007-01-01

    Granulite-facies metamorphism is extensively reported in Late Neoproterozoic/Early Palaeozoic time during formation of the East-African-Antarctic orogen (EAAO). Metamorphic data acquired from the Pan-African orogen of central Dronning Maud Land (cDML) are compared with data from northern Mozambique. The metamorphic rocks of cDML are characterised by Opx±Grt-bearing gneisses and Sil+Kfs-bearing metapelites which indicate medium-P granulite-facies metamorphism. Peak conditions, which are estimated to 800-900ºC at pressures up to 1.0 GPa, were followed by near-isothermal decompression during late Pan-African extension and exhumation. Granulite-facies lithologies are widespread in northern Mozambique, and Grt+Cpx-bearing assemblages show that high-P granulite-facies conditions with PT reaching 1.55 GPa and 900ºC were reached during the Pan-African orogeny. Garnet is replaced by symplectites of Pl+Opx+Mag indicating isothermal decompression, and the subsequent formation of Pl+amphibole-coronas suggests cooling into amphibolite facies. It is concluded that high-T metamorphism was pervasive in EAAO in Late Neoproterozoic/Early Paleozoic time, strongly overprinting evidences of earlier metamorphic assemblages.

  16. 33 CFR 1.07-10 - Reporting and investigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... evidence to establish a prima facie case. If there is insufficient evidence, the case is either returned... prima facie case does exist, a case file is prepared and forwarded to the Hearing Officer, with a...

  17. 16 CFR 703.4 - Qualification of members.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... acquisition or ownership of an interest which is offered to the general public shall be prima facie evidence... acquisition or ownership of an interest which is offered to the general public shall be prima facie evidence...

  18. STRUCTURAL GEOMETRY OF AN EXHUMED UHP TERRANE IN THE EASTERN SULU OROGEN, CHINA: IMPLICATIONS FOR CONTINENTAL COLLISIONAL PROCESSES

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kusky, T.

    2009-12-01

    High-precision 1:1,000 mapping of Yangkou Bay, eastern Sulu orogen, defines the structural geometry and history of the world’s most significant UHP (Ultrahigh Pressure) rock exposures. Four stages of folds are recognized in the UHP rocks and associated quartzo-feldspathic gneiss. Eclogite facies rootless F1 and isoclinal F2 folds are preserved locally in coesite-eclogite. Mylonitic to ultramylonitic cosesit-eclogite shear zones separate 5-10-meter-thick nappes of ultramafic-mafic UHP rocks from banded quartzo-feldspathic gneiss. These shear zones are folded, and progressively overprinted by amphibolite and greenschist facies shear zones that become wider with lower grade. The deformation sequences is explained by deep subduction of offscraped thrust slices of oceanic or lower continental crust, caught between the colliding North and South China cratons in the Mesozoic. After these slices were structurally isolated along the plate interface, they were rolled like ball-bearings, in the subduction channel during their exhumation, forming several generations of folds, sequentially lower-grade foliations and lineations, and intruded by several generations of in situ and exotically derived melts. The shear zones formed during different generations of deformation are wider with lower grades, suggesting that deep-crustal/upper mantle deformation operates efficiently (perhaps with more active crystallographic slip systems) than deformation at mid to upper crustal levels.

  19. Morphologic and stratigraphic evolution of muddy ebb-tidal deltas along a subsiding coast: Barataria Bay, Mississippi River delta

    USGS Publications Warehouse

    FitzGerald, D.M.; Kulp, M.; Penland, S.; Flocks, J.; Kindinger, J.

    2004-01-01

    The Barataria barrier coast formed between two major distributaries of the Mississippi River delta: the Plaquemines deltaic headland to the east and the Lafourche deltaic headland to the west. Rapid relative sea-level rise (1??03 cm year-1) and other erosional processes within Barataria Bay have led to substantial increases in the area of open water (> 775 km2 since 1956) and the attendant bay tidal prism. Historically, the increase in tidal discharge at inlets has produced larger channel cross-sections and prograding ebb-tidal deltas. For example, the ebb delta at Barataria Pass has built seaward > 2??2 km since the 1880s. Shoreline erosion and an increasing bay tidal prism also facilitated the formation of new inlets. Four major lithofacies characterize the Barataria coast ebb-tidal deltas and associated sedimentary environments. These include a proximal delta facies composed of massive to laminated, fine grey-brown to pale yellow sand and a distal delta facies consisting of thinly laminated, grey to pale yellow sand and silty sand with mud layers. The higher energy proximal delta deposits contain a greater percentage of sand (75-100%) compared with the distal delta sediments (60-80%). Associated sedimentary units include a nearshore facies consisting of horizontally laminated, fine to very fine grey sand with mud layers and an offshore facies that is composed of grey to dark grey, laminated sandy silt to silty clay. All facies coarsen upwards except the offshore facies, which fines upwards. An evolutionary model is presented for the stratigraphic development of the ebb-tidal deltas in a regime of increasing tidal energy resulting from coastal land loss and tidal prism growth. Ebb-tidal delta facies prograde over nearshore sediments, which interfinger with offshore facies. The seaward decrease in tidal current velocity of the ebb discharge produces a gradational contact between proximal and distal tidal delta facies. As the tidal discharge increases and the inlet grows in dimensions, the proximal and distal tidal delta facies prograde seawards. Owing to the relatively low gradient of the inner continental shelf, the ebb-tidal delta lithosome is presently no more than 5 m thick and is generally only 2-3 m in thickness. The ebb delta sediment is sourced from deepening of the inlet and the associated channels and from the longshore sediment transport system. The final stage in the model envisages erosion and segmentation of the barrier chain, leading to a decrease in tidal discharge through the former major inlets. This process ultimately results in fine-grained sedimentation seaward of the inlets and the encasement of the ebb-tidal delta lithosome in mud. The ebb-tidal deltas along the Barataria coast are distinguished from most other ebb deltas along sand-rich coasts by their muddy content and lack of large-scale stratification produced by channel cut-and-fills and bar migration. ?? 2004 International Association of Sedimentologists.

  20. Silurian and Devonian in Vietnam—Stratigraphy and facies

    NASA Astrophysics Data System (ADS)

    Thanh, Tống Duy; Phương, Tạ Hoàng; Janvier, Philippe; Hùng, Nguyễn Hữu; Cúc, Nguyễn Thị Thu; Dương, Nguyễn Thùy

    2013-09-01

    Silurian and Devonian deposits in Viet Nam are present in several zones and regions, including Quang Ninh, East Bac Bo, and West Bac Bo Zones of the Bac Bo Region, the Dien Bien-Nghe An and Binh Tri Thien Zones of the Viet-Lao Region, and the South Trung Bo, and Western Nam Bo Zones of the South Viet Nam Region (Fig. 1). The main lithological features and faunal composition of the Silurian and Devonian Units in all these zones are briefly described. The Silurian consists of deep-water deposits of the upper parts of the Co To and Tan Mai Formations in the Quang Ninh Zone, the upper parts of the Phu Ngu Formation in the East Bac Bo Zone and the upper parts of the Long Dai and Song Ca Formations in the Viet-Lao Region. Shallow water facies Silurian units containing benthic faunas are more widely distributed, including the upper part of the Sinh Vinh and Bo Hieng Formations in the West Bac Bo Zone, the Kien An Formation in the Quang Ninh Zone, and, in the Viet-Lao Region, the Dai Giang Formation and the upper part of the Tay Trang Formation. No Lower and Middle Devonian deposits indicate deep water facies, but they are characterized by different shallow water facies. Continental to near shore, deltaic facies characterize the Lower Devonian Song Cau Group in the East Bac Bo Zone, the Van Canh Formation in the Quang Ninh Zone, and the A Choc Formation in the Binh Tri Thien Zone. Similar facies also occur in the Givetian Do Son Formation of the Quang Ninh Zone, and the Tan Lap Formation in the East Bac Bo Zone, and consist of coarse terrigenous deposits—cross-bedded conglomerates, sandstone, etc. Most Devonian units are characterized by shallow marine shelf facies. Carbonate and terrigenous-carbonate facies dominate, and terrigenous facies occur in the Lower and Middle Devonian sections in some areas only. The deep-water-like facies is characteriztic for some Upper Devonian formations in the Bac Bo (Bang Ca and Toc Tat Formations) and Viet-Lao Regions (Thien Nhan and Xom Nha Formations). These formations contain cherty shale or siliceous limestone, and fossils consist of conodonts, but there are also brachiopods and other benthos. They were possibly deposited in a deep water environment on the slope of the continental shelf. Most Devonian units distributed in the North and the Central Viet Nam consist of self shallow water sediments, and apparently they were deposited in a passive marginal marine environment. The coarse clastic continental or subcontinental deposits are distributed only in some areas of the East Bac Bo and of the Quang Ninh zones of the Bac Bo Region, and in the south of the Binh Tri Thien Zone. This situation suggests the influence of the Caledonian movement at the end of the Silurian period that called the Guangxi movement in South China.

  1. Glacial Ordovician new evidence in the Pakhuis Formation, South Africa : sedimentological investigation and palaeo-environnemental reconstruction

    NASA Astrophysics Data System (ADS)

    Portier, E.; Buoncristiani, Jf.; Deronzier, Jf.

    2009-04-01

    During the Late Ordovician (Hirnantian) an ice sheet covered a great part of the Gondwana. In Africa, several studies present the stratigraphy and the complexity of these glacial records. The different glacial landsystems correspond to several glacial cycles, related to rapid ice front oscillations and are grouped into two major ice-sheet advances, separated by a major ice sheet recession. The study was performed on three well outcropping Late Ordovician sections in South Africa. The Ordovician IV is described as the Pakhuis Rm, and is divided into three different lithological members (known as Sneekop, Oskop and Sternbras Mb) that could be related to two major glacial cycles. In the first cycle (pool the two first Mb), facies association indicate continental environment, with : massive sandy tillites with facetted and striated erratics, subaerial outwash plain to glaciolacustrine cross bedded sands and laminated silts. Near Clanwilliam, the outcrops exhibit a high lateral variability in facies and thickness, ranging from a few meters to several tens of meters. The second cycle is dominated by clear marine sedimentation and may be interpreted as a transgressive sequence, quite different from what occurred in North Gondwana. Typical facies define shoreface environment, and periglacial evidence such as dropstones at base are encountered, passing progressively to a clear offshore environment at top of the series, likely Silurian aged, and known as Cederberg fm. Two glacial pavements were also described. The most spectacular one was firstly described by Visser et al. 1974 and should be interpreted as an intra-formational glacial pavement, with striae indicating a flow from East to West. This pavement is overlying a newly discovered glacial floor which exhibits grooves, crescents marks, en echelon fractures, with the same E-W general orientation, and shaped as ‘roches moutonnées', which are typical evidences of glacial erosion on indurated substratum. Reconstructing paleoenvironment suggests a clear structural paleo-topography controlling the erosion and distribution of paelo-valleys, lakes and glacial lobes. The glaciogenic Ordovician deposits constitute a proven oil and gas bearing reservoir on the North Gondwana margin, also known for their sharp and rapid facies changes. Also, such a study provides an excellent opportunity to understand and appraise the complex architecture and geometries of the sands bodies, the structural control of the glacial erosion and infill of this promising play. Visser, 1974 J.N.J. Visser, The Table Mountain Group: a study in the deposition of quartz arenites on a stable shelf, Trans. Geol. Soc. S. Afr. 77 (1974), pp. 229-237.

  2. Glaciomarine sedimentation and bottom current activity on the north-western and northern continental margins of Svalbard during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Chauhan, Teena; Noormets, Riko; Rasmussen, Tine L.

    2016-04-01

    Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2-1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.

  3. Facies analysis of tuffaceous volcaniclastics and felsic volcanics of Tadpatri Formation, Cuddapah basin, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Goswami, Sukanta; Dey, Sukanta

    2018-05-01

    The felsic volcanics, tuff and volcaniclastic rocks within the Tadpatri Formation of Proterozoic Cuddapah basin are not extensively studied so far. It is necessary to evaluate the extrusive environment of felsic lavas with associated ash fall tuffs and define the resedimented volcaniclastic components. The spatial and temporal bimodal association were addressed, but geochemical and petrographic studies of mafic volcanics are paid more attention so far. The limited exposures of eroded felsic volcanics and tuffaceous volcaniclastic components in this terrain are highly altered and that is the challenge of the present facies analysis. Based on field observation and mapping of different lithounits a number of facies are categorized. Unbiased lithogeochemical sampling have provided major and selective trace element data to characterize facies types. Thin-section studies are also carried out to interpret different syn- and post- volcanic features. The facies analysis are used to prepare a representative facies model to visualize the entire phenomenon with reference to the basin evolution. Different devitrification features and other textural as well as structural attributes typical of flow, surge and ash fall deposits are manifested in the middle, lower and upper stratigraphic levels. Spatial and temporal correlation of lithologs are also supportive of bimodal volcanism. Felsic and mafic lavas are interpreted to have erupted through the N-S trending rift-associated fissures due to lithospheric stretching during late Palaeoproterozoic. It is also established from the facies model that the volcaniclastics were deposited in the deeper part of the basin in the east. The rifting and associated pressure release must have provided suitable condition of decompression melting at shallow depth with high geothermal gradient and this partial melting of mantle derived material at lower crust must have produced mafic magmas. Such upwelling into cold crust also caused partial heat transfer and associated melting of the surrounding shallow crustal rocks to generate felsic magmas.

  4. Fluvial to Lacustrine Facies Transitions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sumner, Dawn Y.; Williams, Rebecca M. E.; Schieber, Juergen; Palucis, Marisa C.; Oehler, Dorothy Z.; Mangold, Nicolas; Kah, Linda C.; Gupta, Sanjeev; Grotzinger, John P.; Grant, John A., III; hide

    2015-01-01

    NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and requires only short-lived, transient flows.

  5. Discontinuity surfaces in the Lower Cretaceous of the high Andes (Mendoza, Argentina): Trace fossils and environmental implications

    NASA Astrophysics Data System (ADS)

    Mangano, M. G.; Buatois, L. A.

    The paleoecologic and paleoenvironmental significance of trace fossils related to discontinuity surfaces in the Lower Cretaceous marine deposits of the Aconcagua area are analysed here. Carbonate-evaporite shoaling-upward cycles, developed by high organic production in a shallow hypersaline restricted environment, make up the section. Two types of cycles are defined, being mainly distinguished by their subtidal unit. Cycle I begins with a highly dolomitized lower subtidal unit (Facies A), followed upward by an intensely bioturbated upper subtidal unit (Facies B). The nodular packstone facies (B 1) is capped by a discontinuity surface (firmground or hardground) and occasionally overlain by an oystreid bed (Facies C). Cycle II is characterized by a pelletoidal subtidal unit (Facies B 2) with an abnormal salinity impoverished fauna. Both cycles end with intertidal to supratidal evaporite deposits (Facies D and E, respectively). Attention is particularly focused on cycle I due to its ichologic content. The mode of preservation and the distribution of trace fossils in nodular packstone facies are controlled by original substrate consolidation. Thalassinoides paradoxicus (pre-omission suite) represents colonization in a soft bottom, while Thalassinoides suevicus (omission suite pre-lithification) is apparently restricted to firm substrates. When consolidation processes are interrupted early, only an embryonic hard-ground that represents a minor halt in sedimentation was developed. Sometimes, consolidation processes continued leading to an intraformational hardground. Colonization by Trypanites solitarius (omission suite post-lithification) and Exogyra-like oystreids possibly characterizes hard substrate stage. When two discontinuity surfaces follow closely, a post-omission suite may be defined in relation to the lower cemented surface. As trace fossils are so closely related to changes in the degree of bottom lithification, they prove to be very useful as indicators of substrate evolution. The presence of discontinuity surfaces, evidenced by trace fossil association, suggests changes of sedimentary rate and environmental conditions that should be taken into account in future studies seeking to erect depositional models for these Cretaceous deposits.

  6. Late Devonian glacigenic and associated facies from the central Appalachian Basin, eastern United States

    USGS Publications Warehouse

    Brezinski, D.K.; Cecil, C.B.; Skema, V.W.

    2010-01-01

    Late Devonian strata in the eastern United States are generally considered as having been deposited under warm tropical conditions. However, a stratigraphically restricted Late Devonian succession of diamictite- mudstonesandstone within the Spechty Kopf and Rockwell Formations that extends for more than 400 km along depositional strike within the central Appalachian Basin may indicate other wise. This lithologic association unconformably overlies the Catskill Formation, where a 3- to 5-m-thick interval of deformed strata occurs immediately below the diamictite strata. The diamictite facies consists of several subfacies that are interpreted to be subglacial, englacial, supraglacial meltout, and resedimented deposits. The mudstone facies that overlies the diamictite consists of subfacies of chaotically bedded, clast-poor mudstone, and laminated mudstone sub facies that represent subaqueous proximal debris flows and distal glaciolacustrine rhythmites or varvites, respectively. The pebbly sandstone facies is interpreted as proglacial braided outwash deposits that both preceded glacial advance and followed glacial retreat. Both the tectonic and depositional frameworks suggest that the facies were deposited in a terrestrial setting within the Appalachian foreland basin during a single glacial advance and retreat. Regionally, areas that were not covered by ice were subject to increased rainfall as indicated by wet-climate paleosols. River systems eroded deeper channels in response to sea-level drop during glacial advance. Marine facies to the west contain iceborne dropstone boulders preserved within contemporaneous units of the Cleveland Shale Member of the Ohio Shale.The stratigraphic interval correlative with sea-level drop, climate change, and glacigenic succession represents one of the Appalachian Basin's most prolific oil-and gas-producing intervals and is contemporaneous with a global episode of sea-level drop responsible for the deposition of the Hangenberg Shale/Sandstone of Europe. This interval records the Hangenberg biotic crisis near the Devonian-Carboniferous boundary. ?? 2009 Geological Society of America.

  7. Sedimentology of the fluvial and fluvio-marine facies of the Bahariya Formation (Early Cenomanian), Bahariya Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalifa, M. A.; Catuneanu, O.

    2008-05-01

    The Lower Cenomanian Bahariya Formation in the Bahariya Oasis, Western Desert, Egypt, was deposited under two coeval environmental conditions. A fully fluvial system occurs in the southern portion of the Bahariya Oasis, including depositional products of meandering and braided streams, and a coeval fluvio-marine setting is dominant to the north. These deposits are organized into four unconformity-bounded depositional sequences, whose architecture is shaped by a complex system of incised valleys. The fluvial portion of the lower two depositional sequences is dominated by low-energy, meandering systems with a tabular geometry, dominated by overbank facies. The fluvial deposits of the upper two sequences represent the product of sedimentation within braided streams, and consist mainly of amalgamated channel-fills. The braided fluvial systems form the fill of incised valleys whose orientation follows a southeast-northwest trending direction, and which truncate the underlying sequences. Four sedimentary facies have been identified within the braided-channel systems, namely thin-laminated sandstones (Sh), cross-bedded sandstones (Sp, St), massive ferruginous sandstones (Sm) and variegated mudstones (Fm). The exposed off-channel overbank facies of the meandering systems include floodplain (Fm) and crevasse splay (Sl) facies. The fluvio-marine depositional systems consist of interbedded floodplain, coastal and shallow-marine deposits. The floodplain facies include fine-grained sandstones (Sf), laminated siltstones (Stf) and mudstones (Mf) that show fining-upward cycles. The coastal to shallow-marine facies consist primarily of mudstones (Mc) and glauconitic sandstones (Gc) organized vertically in coarsening-upward prograding cyclothems topped by thin crusts of ferricrete (Fc). The four depositional sequences are present across the Bahariya Oasis, albeit with varying degrees of preservation related to post-depositional erosion associated with the formation of sequence boundaries. These unconformities may be overlain by braided-stream channel sandstones at the base of incised valleys, or marked by ferricrete paleosols (lithofacies Fc) in the interfluve areas.

  8. 43 CFR 4.1394 - Burden of proof.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... review, OSM shall have the burden of going forward to establish a prima facie case and the person who... review, that person shall have the burden of going forward to establish a prima facie case and the...

  9. 43 CFR 4.1394 - Burden of proof.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... review, OSM shall have the burden of going forward to establish a prima facie case and the person who... review, that person shall have the burden of going forward to establish a prima facie case and the...

  10. Evolution of fluvial styles in the Eocene Wasatch Formation, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Warwick, Peter D.; Flores, Romeo M.; Ethridge, Frank G.; Flores, Romeo M.

    1987-01-01

    Vertical and lateral facies changes in the lower part of the Eocene Wasatch Formation in the Powder River Basin, Wyoming represent an evolution of fluvial systems that varied from meandering to anastomosing. The meandering facies in the lower part of the study interval formed in a series of broad meanderbelts in a northnorthwestflowing system. Upon abandonment this meanderbelt facies served as a topographic high on which a raised or ombrotrophic Felix peat swamp developed. Peat accumulated until compaction permitted encroachment of crevasse splays from an adjoining transitional facies which consists of deposits of a slightly sinuous fluvial system. Crevasse splays eventually prograded over the peat swamp that was partly covered by lakes. Bifurcation, reunification, and transformation of crevasse channels into major conduits produced an anastomosing system that was characterized by diverging and converging channels separated by floodbasins drowned by lakes and partly covered swamps.

  11. Secondary carbonate porosity as related to early teritiary depositional facies, Zelten field, Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bebout, D.G.; Pendexter, C.

    1975-04-01

    Production from the Zelten field, Libya, is from the highly porous shelf limestones of the Zelten Member (Main Pay) of the Paleocene and lower Eocene Ruaga Limestone. Fifteen facies are recognized, mapped, and predicted. Seven of the facies comprise the larger part of the Zelten Member. These include miliolid-foraminiferal micrite, argillaceous bryozoan/echinoid micrite, argillaceous-molluscan micrite, coralgal micrite. Discocyclina-foraminiferal calcarenite, foraminiferal calcarenite and micrite, and Discocyclina-foraminiferal micrite. In the Zelten field secondary porosity is recorded as much as 40%; this porosity is related to the original depositional fabric of the sediment and, therefore, is facies controlled. Porosity is highest in themore » coralgal micrite and Discocyclina-foraminiferal calcarenite, which together form a NW.-SE. trend across the N. part of the field, and in the formaniniferal calcarenite and micrite. (10 refs.)« less

  12. Regional metamorphism in the Condrey Mountain Quadrangle, north-central Klamath Mountains, California

    USGS Publications Warehouse

    Hotz, Preston Enslow

    1979-01-01

    A subcircular area of about 650 km 2 in northern California and southwestern Oregon is occupied by rocks of the greenschist metamorphic facies called the Condrey Mountain Schist. This greenschist terrane is bordered on the east and west by rocks belonging to the amphibolite metamorphic facies that structurally overlie and are thrust over the Condrey Mountain Schist. The amphibolite facies is succeeded upward by metavolcanic and metasedimentary rocks belonging to the greenschist metamorphic facies. The Condrey Mountain Schist is composed predominantly of quartz-muscovite schist and lesser amounts of actinolite-chlorite schist formed by the metamorphism of graywacke and spilitic volcanic rocks that may have belonged to the Galice Formation of Late Jurassic age. Potassium-argon age determinations of 141?4 m.y. and 155?5 m.y. obtained on these metamorphic rocks seem to be incompatible with the Late Jurassic age usually assigned the Galice. The rocks that border the amphibolite facies are part of an extensive terrane of metavolcanic and metasedimentary rocks belonging to the western Paleozoic and Triassic belt. The metavolcanic rocks include some unmetamorphosed spilite but are mostly of the greenschist metamorphic facies composed of oligoclase (An15-20) and actinolite with subordinate amounts of chlorite and clinozoisiteepidote. The interbedded sedimentary rocks are predominantly argillite and slaty argillite, less commonly siliceous argillite and chert, and a few lenticular beds of marble. On the south, high-angle faults and a tabular granitic pluton separate the greenschist metavolcanic terrane from the amphibolite facies rocks; on the east, nonfoliated amphibolite is succeeded upward, apparently conformably, by metasedimentary rocks belonging to the greenschist metavolcanic terrane. In the southern part of Condrey Mountain quadrangle, an outlier of a thrust plate composed of the Stuart Fork Formation overlies the metavolcanic and metasedimentary rocks. The Stuart Fork in this region is composed of siliceous phyllite and phyllitic quartzite and is believed to be the metamorphosed equivalent of rocks over which it is thrust. In the Yreka-Fort Jones area, potassium-argon determinations on mica from the blueschist facies in the Stuart Fork gave ages of approximately 220 m.y. (Late Triassic) for the age of metamorphism. Rocks of the amphibolite facies structurally overlie the Condrey Mountain Schist along a moderate to steeply dipping thrust fault. The amphibolite terrane is composed of amphibolite and metasedimentary rocks in approximately equal amounts accompanied by many bodies of serpentinite and a number of gabbro and dioritic plutons. Most of the amphibolite is foliated, but some is nonfoliated; the nonfoliated amphibolite has an amphibolite mineralogy and commonly a relict volcanic rock texture. The nonfoliated amphibolite occurs on the southern and eastern borders of the amphibolite terrane between the areas offoliated amphibolite and the overly ing metavolcanic and metasedimentary rocks. Hornblende and plagioclase (An30-35) are the characteristic minerals, indicating that the rocks are of the almandine-amphibolite metamorphic facies. The metasedimentary rocks interbedded with the amphibolites include siliceous schist and phyllite, minor quartzite, and subordinate amounts of marble. Potassium-argon age dates obtained on hornblende from foliated amphibolite yield ages of 146?4 and 148? 4 m.y., suggesting a Late Jurassic metamorphic episode. Mafic and ultramafic rocks are widespread in the amphibolite terrane but are almost entirely absent from the area of greenschist facies metavolcanic and metasedimentary rocks. The ultramafic rocks, predominantly serpentinite, occur as a few large bodies and many small tabular concordant bodies interleaved with the foliated rocks. The ultramafic rocks include harzburgite and d1lIlite and their serpentinized equivalents. In the Condrey Mountain quadrangle, probably more t

  13. Anatomy of a cyclically packaged Mesoproterozoic carbonate ramp in northern Canada

    NASA Astrophysics Data System (ADS)

    Sherman, A. G.; Narbonne, G. M.; James, N. P.

    2001-03-01

    Carbonates in the upper member of the Mesoproterozoic Victor Bay Formation are dominated by lime mud and packaged in cycles of 20-50 m. These thicknesses exceed those of classic shallowing-upward cycles by almost a factor of 10. Stratigraphic and sedimentological evidence suggests high-amplitude, high-frequency glacio-eustatic cyclicity, and thus a cool global climate ca. 1.2 Ga. The Victor Bay ramp is one of several late Proterozoic carbonate platforms where the proportions of lime mud, carbonate grains, and microbialites are more typical of younger Phanerozoic successions which followed the global waning of stromatolites. Facies distribution in the study area is compatible with deposition on a low-energy, microtidal, distally steepened ramp. Outer-ramp facies are hemipelagic lime mudstone, shale, carbonaceous rhythmite, and debrites. Mid-ramp facies are molar-tooth limestone tempestite with microspar-intraclast lags. In a marine environment where stromatolitic and oolitic facies were otherwise rare, large stromatolitic reefs developed at the mid-ramp, coeval with inner-ramp facies of microspar grainstone, intertidal dolomitic microbial laminite, and supratidal evaporitic red shale. Deep-subtidal, outer-ramp cycles occur in the southwestern part of the study area. Black dolomitic shale at the base is overlain by ribbon, nodular, and carbonaceous carbonate facies, all of which exhibit signs of synsedimentary disruption. Cycles in the northeast are shallow-subtidal and peritidal in character. Shallow-subtidal cycles consist of basal deep-water facies, and an upper layer of subtidal molar-tooth limestone tempestite interbedded with microspar calcarenite facies. Peritidal cycles are identical to shallow-subtidal cycles except that they contain a cap of dolomitic tidal-flat microbial laminite, and rarely of red shale sabkha facies or of sandy polymictic conglomerate. A transect along the wall of a valley extending 8.5 km perpendicular to depositional strike reveals progradation of inner-ramp tidal flats over outer- and mid-ramp facies during shoaling. The maximum basinward progradation of peritidal facies coincides with a zone of slope failure that may have promoted the development of the stromatolitic reefs. The sea-level history of the Victor Bay Formation is represented by three hectometre-scale sequences. An initial flooding event resulted in deposition of the lower Victor Bay shale member. Upper-member carbonate cycles were then deposited during highstand. Mid-ramp slumping was followed by late-highstand reef development. The second sequence began with development of an inner-ramp lowstand unconformity and a thick mid-ramp lowstand wedge. A second transgression promoted a more modest phase of reef development at the mid-ramp and shallow-water deposition continued inboard. A third and final transgressive episode eventually led to flooding of the backstepping ramp. Overall consistent cycle thickness and absence of truncated cycles, as well as the high rate and amount of creation of accommodation space, suggest that the periodicity and amplitude of sea-level fluctuation were relatively uniform, and point to a eustatic rather than tectonic mechanism of relative sea-level change. High-amplitude, high-frequency eustatic sea-level change is characteristic of icehouse worlds in which short-term, large-scale sea-level fluctuations accompany rapidly changing ice volumes affected by Milankovitch orbital forcing. Packaging of cyclic Upper Victor Bay carbonates therefore supports the hypothesis of a late Mesoproterozoic glacial period, as proposed by previous workers.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.L.; Lighty, R.G.

    Coral-rudist reefs of the Lower Cretaceous Mural limestone, southeastern Arizona, show a pronounced relationship between specific reef facies, primary porosity, and early submarine diagenesis. These large open-shelf reefs differ from the well-studied low-relief rudist buildups, and provide an alternate analog for many Cretaceous reef reservoirs. Arizona buildups have diverse corals, high depositional relief, and a well-developed facies zonation from fore reef to back reef: skeletal grainstone talus, muddy fore reef with branching and lamellar corals, massive reef crest with abundant lamellar corals and sandy matrix, protected thickets of delicate branching corals and large rudist mounds, and a wide sediment apronmore » of well-washed coral, rudist, and benthic foraminiferal sands. These well-exposed outcrops permit a detailed facies comparison of primary interparticle porosity. Porosity as high as 40% in grainstones was occluded by later subsurface cements. Reef-framework interparticle porosity was negligible because fore-reef coral and back-reef rudist facies were infilled by muds, and high-energy reef-crest frameworks were filled by peloidal submarine cement crusts and muddy skeletal sands. These thick crusts coated lamellar corals in cryptic and open reef-crest areas, and are laminated with ripple and draped bed forms that suggest current influence. Similar peloidal crusts and laminated textures are common magnesium-calcite submarine cement features in modern reefs. By documenting specific facies control on early cementation and textural variability, patterns of late-stage subsurface diagenesis and secondary porosity may be more easily explained for Cretaceous reef reservoirs. Significant primary porosity might be retained between sands in back-reef facies and within coral skeletons.« less

  15. The combined effects of eustasy, tectonism, and clastic influx on the development of Pennsylvanian cyclic carbonates, southern Sangre de Cristo Mountains, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Shouyeh; Humphrey, J.D.

    1991-03-01

    Pennsylvania cyclothems are well documented on stable continental shelves and the cyclicity has generally been attributed to glacio-eustasy. As a contrast, Atokan-Desmoinesian cyclic carbonates of the southern Sangre de Cristo Mountains developed in a tectonically active foreland basin, formed by thrusting along the Picuris-Pecos fault during early Pennsylvanian time. Strata exposed in two sections (Dalton Bluff, 260 m; Johnson Mesa, 340 m) are characterized by (1) shallowing-upward cycles, (2) cycles of variable thickness (5-20 m), (3) incomplete cycles, (4) cycles interrupted by terrigenous clastic input, and (5) noncyclic intervals. Allocyclic mechanisms alone cannot fully explain these observations; the authors hereinmore » propose that a complex interplay among eustasy, tectonism, and clastic sediment supply were responsible for the observed cycles. Lithofacies analysis indicates that location within the foreland basin played a significant role in cycle attributes. In the deeper portions of the basin (e.g., Dalton Bluff), an idealized cycle, from base to top consists of (1) shale/marl facies, (2) brachiopod wackestone facies, (3) phylloid algal facies, and (4) marine clastic facies. No evidence for subaerial exposure of cycle caps is noted. In contrast, in shallow portions of the basin near the forebulge (e.g., Johnson Mesa) the marine clastic facies is substituted by crinoidal grainstone/packstone facies that is capped by subaerial exposure surface. Each of the two cycles displays an overall grand (lower order) shallowing-upward cycle. This grand cycle developed as sediments infilled the initially starved foreland basin.« less

  16. Mid-Dinantian Waulsortian buildups in the Dublin Basin, Ireland

    NASA Astrophysics Data System (ADS)

    Somerville, Ian D.; Strogen, Peter; Jones, Gareth Ll.

    1992-08-01

    The sedimentary history and biostratigraphic setting of Waulsortian carbonate buildups of the Feltrim Limestone Formation (late Courceyan to early Chadian) within the Dublin Basin are described. There is no unique precursor or successor facies to this formation, and the massive Waulsortian banks are composed predominantly of peloidal, skeletal wackestones and lime mudstones with packstones near the tops of banks. These banks form tabular bodies of moderate relief and are interbedded with thin shales and argillaceous crinoidal limestones of inter-bank facies. In the southwest of the basin inter-bank facies are rare and the bank facies have abundant stromatactis cavities, and uniquely at Roselawn a fauna of rugose corals. All buildups in the Dublin Basin have Phase C and/or D component assemblages of Lees and Miller (1985) and are interpreted as accumulating in moderately shallow-water depths, near or within the photic zone. Isopachs for the Feltrim Limestone Formation show a NE-SW-trending axial depocentre where the Waulsortian facies is in excess of 400 m thickness. Deposition appears to have taken place on this "double-sided" ramp, in a manner similar to the model of Lees (1982) for Belgium and southern Britain. Soft-sediment deformation such as large-scale slumping, shale-injections and water-escape structures, not previously recorded from these rocks is widespread. The upper surface of the Feltrim Limestone Formation is fissured and displays a prominent erosion surface. Termination of Waulsortian facies deposition and influx of terrigenous sediment was caused by rapid uplift, attributed to Chadian tectonism. However, eustatic sea-level fall cannot be ruled out as a partial cause of the demise of the Waulsortian.

  17. 47 CFR 1.54 - Petitions for forbearance must be complete as filed.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requested relief. (b) Prima facie case. Petitions for forbearance must contain facts and arguments which, if... statement of the petitioner's prima facie case for relief. (3) Appendices that list: (i) The scope of relief...

  18. 10 CFR 205.192A - Burden of proof.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Remedial Order proceeding the ERA has the burden of establishing a prima facie case as to the validity of... supplemental information that may be made available under § 205.193A. (b) Once a prima facie case has been...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fouke, B.W.; Farmer, J.D.; Des Marais, D.J.

    Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43--72 C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30--62 C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonitemore » at lower temperatures. Calcite ice sheets, calcified bubbles, and aggregates of aragonite needles (fuzzy dumbbells) precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28--54 C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28--30 C) is composed of calcite spherules and calcite feather crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO{sub 2} degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding {delta}{sup 13}C. Travertine {delta}{sup 13}C and {delta}{sup 18}O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature ({approximately}50--73 C) depositional facies. Conversely, travertine precipitating in the lower-temperature (<{approximately}50 C) depositional facies exhibits {delta}{sup 13}C and {delta}{sup 18}O values that are as much as 4% less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H{sub 2}S and the abundance of sulfide-oxidizing microbes, preliminary {delta}{sub 34}S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO{sub 2} degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry.« less

  20. Review of metamorphic and kinematic data from Internal Crystalline Massifs (Western Alps): PTt paths and exhumation history

    NASA Astrophysics Data System (ADS)

    Gasco, Ivano; Gattiglio, Marco; Borghi, Alessandro

    2013-01-01

    Detailed geological mapping combined with micro-structural and petrological investigation allowed to clarify the tectono-metamorphic relationships between continental and oceanic units transition in the Penninic domain of the Western Alps. The three study areas (Gressoney, Orco and Susa sections) take into consideration the same structural level across the axial metamorphic belt of the Western Italian Alps, i.e., a geological section across the Internal Crystalline Massifs vs Piedmont Zone boundary. The units outcropping in these areas can be grouped into two Tectonic Elements according to their tectono-metamorphic evolution. The Lower Tectonic Element (LTE) consists of the Internal Crystalline Massifs and the Lower Piedmont Zone (Zermatt-Saas like units), both showing well preserved eclogite facies relics. Instead, the Upper Tectonic Element (UTE) consists of the Upper Piedmont Zone (Combin like units) lacking evidence of eclogite facies relics. In the Lower Tectonic Element two main Alpine tectono-metamorphic stages were identified: M1/D1 developed under eclogite facies conditions and M2/D2 is related to the development of the regional foliation under greenschist to epidote-albite amphibolite facies conditions. In the Upper Tectonic Element the metamorphic stage M1/D1 developed under bluschist to greenschist facies conditions and M2/D2 stage under greenschist facies conditions. These two Tectonic Elements are separated by a tectonic contact of regional importance generally developed along the boundary between the Lower and the Upper Piedmont zone under greenschist facies conditions. PT data compared to geochronology indicate that the first exhumation of ICM can be explained by buoyancy forces acting along the subduction channel that occurred during the tectonic coupling between the continental and oceanic eclogite units. These buoyancy forces vanished at the base of the crust where the density difference between the subducted crustal units and the surroundings rocks is too low. A stage where compression prevails on the previous exhumation followed, which leads to the development of the regional foliation under greenschist to amphibolite facies metamorphic conditions. Further exhumation occurred after the M2/D2 stage at shallower crustal levels along conjugated shear zones leading to the development of a composite axial dome consisting of eclogite-bearing continental-oceanic units (ICM and Zermatt-Saas Zones) beneath greenschist ones (Combin Zone).

  1. Modern foraminiferal facies in a subtropical estuarine channel, Bertioga, São Paulo, Brazil

    USGS Publications Warehouse

    Eichler, P.P.B.; Eichler, B.B.; De Miranda, L. B.; Rodrigues, A.R.

    2007-01-01

    Numerical analyses of modern foraminiferal abundance and environmental data from the Bertioga Channel (Sa??o Paulo, Brazil) reveal multiple biofacies within an overall paralic setting. Despite its fisheries, mariculture and attraction to tourists, the environmental state of Bertioga Channel remains poorly studied. The present investigation is an attempt to partly fill this gap; the parameters examined include depth, salinity, temperature, organic carbon, sulfur content and bottom sediment type. Muddy sediments with high organic carbon content derived from land drainage are found in the inner parts of the channel, whereas sandy sediment dominates the areas adjacent to the Atlantic Ocean. In the eastern entrance to the channel, sandy sediment contain species of Rotaliida from Facies 1 (including Elphidium discoidale, Elphidium poeyanum, Hanzawaia boueana, Pararotalia cananeiaensis and Nonionella atlantica), reflecting normal marine salinity. Sediments with high percentages of silt and clay in polyhaline and eurybaline environments of the eastern part and Itapanhau?? River contain Facies 2, which includes Ammonia beccarii and Pararotalia cananeiaensis. In the western entrance and central, western and eastern parts, where salinities vary from 18 to 30 psu and the sediments contain both low and high organic carbon, the foraminifera from Facies 3 are dominated by Quinqueloculina milletti, Arenoparrella mexicana, Pararotalia cananeiaensis, Ammonia beccarii, Buliminella elegantissima, Elphidium sp., Elphidium excavatum, Elphidium gunteri and Elphidium poeyanum. In mesohaline and polyhaline waters of the central part, the organic-carbon-rich silt and clay contain Facies 4, which includes Ammonia beccarii, Pararotalia cananeiaensis, Elphidium excavatum and Elphidium sp. Most of organic-carbon-enriched, silty-clay substrates that are subject to the highest fresh-water discharge and high bottom temperatures support two different assemblages: one of mostly Rotaliina and the other mostly of Textulariida (Facies 5 and 6). Facies 5 includes Ammonia beecarii, Elphidium excavatum, Arenoparrella mexicana, Haplophragmoides wilberti, Siphotrochammina lobata, Trochammina inflata and Trochammina sp., all of which are typical of mesohaline sites (mainly Crumau?? and Trindade rivers), and Facies 6 includes Bolivina sp., Ammoastuta salsa, Arenoparrella mexicana, Haplophragmoides wilberti and Trochammina sp., all of which are typical of oligohaline and mesohaline mangrove fringes. The foraminiferal species from the present study are frequently found in paralic environments in Brazil, western Africa and other estuaries around the world.

  2. Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador.

    PubMed

    Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B

    The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain size distribution of all samples independently of the facies, which further supports the interpretation that all three facies derive from the same initial flows. This study emphasizes the influence of topography on small volume pyroclastic density currents, and the importance of flow transformation and flow-stripping processes.

  3. The Ebro margin study, northwestern Mediterranean Sea - an introduction

    USGS Publications Warehouse

    Maldonado, A.; Hans, Nelson C.

    1990-01-01

    The Ebro continental margin from the coast to the deep sea off northeastern Spain was selected for a multidisciplinary project because of the abundant Ebro River sediment supply, Pliocene and Quaternary progradation, and margin development in a restricted basin where a variety of controlling factors could be evaluated. The nature of this young passive margin for the last 5 m.y. was investigated with particular emphasis on marine circulation, sediment dynamics, sediment geochemistry, depositional facies, seismic stratigraphy, geotechnical properties, geological hazards and human influences. These studies show the importance of marine circulation, variation in sediment supply, sea-level oscillation and tectonic setting for the understanding of modern and ancient margin depositional processes and growth patterns. ?? 1990.

  4. Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means

    NASA Astrophysics Data System (ADS)

    Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin

    2017-12-01

    Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.

  5. Effects of CO 2 on mechanical variability and constitutive behavior of the Lower Tuscaloosa formation, Cranfield Injection Site, USA

    DOE PAGES

    Rinehart, Alex J.; Dewers, Thomas A.; Broome, Scott T.; ...

    2016-08-25

    We characterize geomechanical constitutive behavior of reservoir sandstones at conditions simulating the “Cranfield” Southeast Regional Carbon Sequestration Partnership injection program. From two cores of Lower Tuscaloosa Formation, three sandstone lithofacies were identified for mechanical testing based on permeability and lithology. These include: chlorite-cemented conglomeratic sandstone (Facies A); quartz-cemented fine sandstone (Facies B); and quartz- and calcite-cemented very fine sandstone (Facies C). We performed a suite of compression tests for each lithofacies at 100 °C and pore pressure of 30 MPa, including hydrostatic compression and triaxial tests at several confining pressures. Plugs were saturated with supercritical CO 2-saturated brine. Chemical environmentmore » affected the mechanical response of all three lithofacies, which experience initial plastic yielding at stresses far below estimated in situ stress. Measured elastic moduli degradation defines a secondary yield surface coinciding with in situ stress for Facies B and C. Facies A shows measurable volumetric creep strain and a failure envelope below estimates of in situ stress, linked to damage of chlorite cements by acidic pore solutions. Furthermore, the substantial weakening of a particular lithofacies by CO 2 demonstrates a possible chemical-mechanical coupling during injection at Cranfield with implications for CO 2 injection, reservoir permeability stimulation, and enhanced oil recovery.« less

  6. Comparative facies formation in selected coal beds of the Powder River Basin

    USGS Publications Warehouse

    Stanton, R.W.; Moore, Timothy A.; Warwick, Peter D.; Crowley, S.S.; Flores, Romeo M.; Flores, Romeo M.; Warwick, Peter D.; Moore, Timothy A.; Glass, Gary; Smith, Archie; Nichols, Douglas J.; Wolfe, Jack A.; Stanton, Ronald W.; Weaver, Jean

    1989-01-01

    Petrologic studies of thick coal beds [Warwick, 1985; Moore, 1986; Moore and others, 1986; Moore and others, 1987; Warwick and Stanton, in press], which build on sedimentological interpretations [Flores, this volume] of associated units, provide data to interpret and contrast the varieties of peat formation in the Powder River Basin. Detailed analyses of the composition of coal beds lead to more complete interpretations regarding the depositional environment on a regional and local scale. Our efforts in the Powder River Basin [areas A-D in fig. 1 of Flores, this volume] have resulted in a series of site-specific studies that interpret the types of peat formation from the arrangement of different facies which comprise the coal beds and from the spatial form of the coal beds.Our approach was to use a combination of megascopic criteria for facies sampling, and where only core was available, to analyze many interval samples to discriminate facies by their maceral composition. Coal beds in the Powder River Basin are composed of laterally continuous, compositional subunits of the bed (facies) that can be discerned most easily in weathered highwall exposures, less readily in fresh highwalls, and very poorly in fresh-cut core surfaces. In general, very low ash ( 

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glicken, H.

    Large volcanic debris avalanches are among the world's largest mass movements. The rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens produced a 2.8 km/sup 3/ deposit and is the largest historic mass movement. A Pleistocene debris avalanche at Mount Shasta produced a 26 km/sup 3/ deposit that may be the largest Quaternary mass movement. The hummocky deposits at both volcanoes consist of rubble divided into (1) block facies that comprises unconsolidated pieces of the old edifice transported relatively intact, and (2) matrix facies that comprises a mixture of rocks from the old mountain and material pickedmore » up from the surrounding terrain. At Mount St. Helens, the juvenile dacite is found in the matrix facies, indicating that matrix facies formed from explosions of the erupting magma as well as from disaggregation and mixing of blocks. The block facies forms both hummocks and interhummock areas in the proximal part of the St. Helens avalanche deposit. At Mount St. Helens, the density of the old cone is 21% greater than the density of the avalanche deposit. Block size decreases with distance. Clast size, measured in the field and by sieving, coverages about a mean with distance, which suggests that blocks disaggregated and mixed together during transport.« less

  8. Predicted seafloor facies of Central Santa Monica Bay, California

    USGS Publications Warehouse

    Dartnell, Peter; Gardner, James V.

    2004-01-01

    Summary -- Mapping surficial seafloor facies (sand, silt, muddy sand, rock, etc.) should be the first step in marine geological studies and is crucial when modeling sediment processes, pollution transport, deciphering tectonics, and defining benthic habitats. This report outlines an empirical technique that predicts the distribution of seafloor facies for a large area offshore Los Angeles, CA using high-resolution bathymetry and co-registered, calibrated backscatter from multibeam echosounders (MBES) correlated to ground-truth sediment samples. The technique uses a series of procedures that involve supervised classification and a hierarchical decision tree classification that are now available in advanced image-analysis software packages. Derivative variance images of both bathymetry and acoustic backscatter are calculated from the MBES data and then used in a hierarchical decision-tree framework to classify the MBES data into areas of rock, gravelly muddy sand, muddy sand, and mud. A quantitative accuracy assessment on the classification results is performed using ground-truth sediment samples. The predicted facies map is also ground-truthed using seafloor photographs and high-resolution sub-bottom seismic-reflection profiles. This Open-File Report contains the predicted seafloor facies map as a georeferenced TIFF image along with the multibeam bathymetry and acoustic backscatter data used in the study as well as an explanation of the empirical classification process.

  9. Braided fluvial sedimentation in the lower paleozoic cape basin, South Africa

    NASA Astrophysics Data System (ADS)

    Vos, Richard G.; Tankard, Anthony J.

    1981-07-01

    Lower Paleozoic braided stream deposits from the Piekenier Formation in the Cape Province, South Africa, provide information on lateral and vertical facies variability in an alluvial plain complex influenced by a moderate to high runoff. Four braided stream facies are recognized on the basis of distinct lithologies and assemblages of sedimentary structures. A lower facies, dominated by upward-fining conglomerate to sandstone and mudstone channel fill sequences, is interpreted as a middle to lower alluvial plain deposit with significant suspended load sedimentation in areas of moderate to low gradients. These deposits are succeeded by longitudinal conglomerate bars which are attributed to middle to upper alluvial plain sedimentation with steeper gradients. This facies is in turn overlain by braid bar complexes of large-scale transverse to linguoid dunes consisting of coarse-grained pebbly sandstones with conglomerate lenses. These bar complexes are compared with environments of the Recent Platte River. They represent a middle to lower alluvial plain facies with moderate gradients and no significant suspended load sedimentation or vegetation to stabilize channels. These bar complexes interfinger basinward with plane bedded medium to coarse-grained sandstones interpreted as sheet flood deposits over the distal portions of an alluvial plain with low gradients and lacking fine-grained detritus or vegetation.

  10. Sedimentary geology of the middle Carboniferous of the Donbas region (Dniepr-Donets Basin, Ukraine).

    PubMed

    van Hinsbergen, Douwe J J; Abels, Hemmo A; Bosch, Wolter; Boekhout, Flora; Kitchka, Alexander; Hamers, Maartje; van der Meer, Douwe G; Geluk, Mark; Stephenson, Randell A

    2015-03-20

    The Paleozoic Dniepr-Donets Basin in Belarus, Ukraine, and Russia forms a major hydrocarbon province. Although well- and seismic data have established a 20 km thick stratigraphy, field-studies of its sediments are scarce. The inverted Donbas segment (Ukraine) exposes the middle Carboniferous part of the basin's stratigraphy. Here, we provide detailed sedimentological data from 13 sections that cover 1.5 of the total of 5 km of the Bashkirian and Moscovian stages and assess the paleoenvironment and paleo-current directions. Middle Carboniferous deposition occurred in a shelf environment, with coal deposition, subordinate fluvial facies, and abundant lower and middle shoreface facies, comprising an intercalated package of potential source and reservoir rocks. Sedimentary facies indicate a paleodepth range from below storm wave base to near-coastal swamp environments. Sedimentation and subsidence were hence in pace, with subtle facies changes likely representing relative sea-level changes. Paleocurrent directions are remarkably consistently southeastward in time and space in the different sedimentary facies across the Donbas Fold Belt, illustrating a dominant sedimentary infill along the basin axis, with little basin margin influence. This suggests that the middle Carboniferous stratigraphy of the Dniepr-Donets basin to the northwest probably contains significant amounts of fluvial sandstones, important for assessing hydrocarbon reservoir potential.

  11. Sedimentary geology of the middle Carboniferous of the Donbas region (Dniepr-Donets basin, Ukraine)

    PubMed Central

    van Hinsbergen, Douwe J. J.; Abels, Hemmo A.; Bosch, Wolter; Boekhout, Flora; Kitchka, Alexander; Hamers, Maartje; van der Meer, Douwe G.; Geluk, Mark; Stephenson, Randell A.

    2015-01-01

    The Paleozoic Dniepr-Donets Basin in Belarus, Ukraine, and Russia forms a major hydrocarbon province. Although well- and seismic data have established a 20 km thick stratigraphy, field-studies of its sediments are scarce. The inverted Donbas segment (Ukraine) exposes the middle Carboniferous part of the basin's stratigraphy. Here, we provide detailed sedimentological data from 13 sections that cover 1.5 of the total of 5 km of the Bashkirian and Moscovian stages and assess the paleoenvironment and paleo-current directions. Middle Carboniferous deposition occurred in a shelf environment, with coal deposition, subordinate fluvial facies, and abundant lower and middle shoreface facies, comprising an intercalated package of potential source and reservoir rocks. Sedimentary facies indicate a paleodepth range from below storm wave base to near-coastal swamp environments. Sedimentation and subsidence were hence in pace, with subtle facies changes likely representing relative sea-level changes. Paleocurrent directions are remarkably consistently southeastward in time and space in the different sedimentary facies across the Donbas Fold Belt, illustrating a dominant sedimentary infill along the basin axis, with little basin margin influence. This suggests that the middle Carboniferous stratigraphy of the Dniepr-Donets basin to the northwest probably contains significant amounts of fluvial sandstones, important for assessing hydrocarbon reservoir potential. PMID:25791400

  12. Cataplectic facies: clinical marker in the diagnosis of childhood narcolepsy-report of two cases.

    PubMed

    Prasad, Manish; Setty, Gururaj; Ponnusamy, Athi; Hussain, Nahin; Desurkar, Archana

    2014-05-01

    Narcolepsy is a chronic disease and is commonly diagnosed in adulthood. However, more than half of the patients have onset of symptoms in childhood and/or adolescence. The full spectrum of clinical manifestations, namely excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis, is usually not present at disease onset, delaying diagnosis during childhood. Mean delay in diagnosis since symptom onset is known to be several years. Initial manifestations can sometimes be as subtle as only partial drooping of eyelids leading to confusion with a myasthenic condition. We present two children who presented with "cataplectic facies," an unusual facial feature only recently described in children with narcolepsy with cataplexy. The diagnosis of narcolepsy was confirmed by multiple sleep latency test along with human leukocyte antigen typing and cerebrospinal fluid hypocretin assay. The diagnosis of narcolepsy with cataplexy at onset can be challenging in young children. With more awareness of subtle signs such as cataplectic facies, earlier diagnosis is possible. To date, only 11 children between 6 and 18 years of age presenting with typical cataplectic facies have been reported in the literature. We present two patients, one of whom is the youngest individual (4 years old) yet described with the typical cataplectic facies. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Depositional environments and cyclicity of the Early Ordovician carbonate ramp in the western Tarim Basin (NW China)

    NASA Astrophysics Data System (ADS)

    Guo, Chuan; Chen, Daizhao; Song, Yafang; Zhou, Xiqiang; Ding, Yi; Zhang, Gongjing

    2018-06-01

    During the Early Ordovician, the Tarim Basin (NW China) was mainly occupied by an extensive shallow-water carbonate platform, on which a carbonate ramp system was developed in the Bachu-Keping area of the western part of the basin. Three well-exposed typical outcrop sections of the Lower Ordovician Penglaiba Formation were investigated in order to identify the depositional facies and to clarify origins of meter-scale cycles and depositional sequences, thereby the platform evolution. Thirteen lithofacies are identified and further grouped into three depositional facies (associations): peritidal, restricted and open-marine subtidal facies. These lithofacies are vertically stacked into meter-scale, shallowing-upward peritidal and subtidal cycles. The peritidal cycles are mainly distributed in the lower and uppermost parts of the Penglaiba Formation deposited in the inner-middle ramp, and commonly start with shallow subtidal to intertidal facies followed by inter- to supratidal facies. In contrast, the subtidal cycles occur throughout the formation mostly in the middle-outer ramp and are dominated by shallow to relatively deep (i.e., intermediate) subtidal facies. The dominance of asymmetrical and incomplete cycles suggests a dominant control of Earth's orbital forcing on the cyclic deposition on the platform. On the basis of vertical facies and cycle stacking patterns, and accommodation changes illustrated by the Fischer plots from all studied sections, five third-order depositional sequences are recognized in the Penglaiba Formation. Individual sequences comprise a lower transgressive part and an upper regressive one. In shallow-water depositional environments, the transgressive packages are dominated by thicker-than-average subtidal cycles, indicating an increase in accommodation space, whereas regressive parts are mainly represented by thinner-than-average peritidal and subtidal cycles, denoting a decrease in accommodation space. In contrast, in intermediate to deep subtidal environments, transgressive and regressive packages display an opposite trend in accommodation space changes. Sequence boundaries (except the basal and top boundaries of the Penglaiba Formation) are usually represented by laterally traceable, transitional boundary zones without apparent subaerial exposure features. Good correlation of the long-term changes in accommodation space (or sea-level) inferred from vertical stacking patterns of facies and cycles suggests an overriding eustatic control on the formation of meter-scale cycles and third-order depositional sequences as well as platform evolution superimposed with local and/or regional tectonic influence during the Early Ordovician. This study would help understand the controls on the tempo-spatial facies distribution, stratal cyclicity and carbonate platform evolution in the western Tarim Basin during the Early Ordovician, facilitating prediction for favorable subsurface carbonate reservoirs and future hydrocarbon exploration and production in the Penglaiba Formation.

  14. Hyperactivity, unexplained speech delay, and coarse facies--is it Sanfilippo syndrome?

    PubMed

    Saini, Arushi Gahlot; Singhi, Pratibha; Sahu, Jitendra Kumar; Ganesan, Saptharishi L; Vyas, Sameer; Rao, Sandeep; Sachdeva, Man Updesh Singh

    2014-08-01

    Mucopolysaccharidosis-IIIB or Sanfilippo-B syndrome is caused by deficiency of lysosomal α-N-acetylglucosaminidase that leads to accumulation of heparan-sulphate and degeneration of central nervous system with progressive dementia, hyperactivity, and aggressive behavior. Mucopolysaccharidosis-III remains underdiagnosed as a cause of developmental delay and hyperactivity both in adults and children because in contrast to other mucopolysaccharidoses, they have little somatic disease, coarse facial features, hepatosplenomegaly or skeletal changes, and a high incidence of false-negative results on the urinary screening tests. We describe here a girl with the classic phenotype of mucopolysaccharidosis-IIIB to alert pediatricians to the possibility of this disorder in children with unexplained speech delay and hyperactivity and prevent unnecessary investigations. © The Author(s) 2013.

  15. "Ocular moyamoya" syndrome in a patient with features of microcephalic osteodysplastic primordial dwarfism type II.

    PubMed

    Bang, Genie M; Kirmani, Salman; Patton, Alice; Pulido, Jose S; Brodsky, Michael C

    2013-02-01

    Primordial dwarfism refers to severely impaired growth beginning early in fetal life. There are many genetic causes of primordial dwarfism, including disorders classified as microcephalic osteodysplastic primordial dwarfism. Microcephalic osteodysplastic primordial dwarfism type II is an autosomal-recessive disease characterized by small stature, bone and dental anomalies, and characteristic facies. Affected patients have a high risk of stroke secondary to progressive cerebral vascular anomalies, which often are classified as moyamoya disease. We present the case of a boy with features suggestive of MOPD II with unilateral moyamoya cerebrovascular changes and correlative moyamoya collaterals involving the iris of the ipsilateral eye. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  16. Detection of living cells in stratospheric samples

    NASA Astrophysics Data System (ADS)

    Harris, Melanie J.; Wickramasinghe, N. C.; Lloyd, David; Narlikar, J. V.; Rajaratnam, P.; Turner, Michael P.; Al-Mufti, Shirwan; Wallis, Max K.; Ramadurai, S.; Hoyle, Fred

    2002-02-01

    Air samples collected aseptically over tropical India at various stratospheric altitudes ranging from 20 to 41 km using cryosampler assemblies carried on balloons flown from Hyderabad have shown evidence of living microbial cells. Unambiguous evidence of living cells came from examining micropore filters on which the samples were recovered with the use of voltage sensitive lipophilic dyes that could detect the presents of active cells. Clumps of viable cells were found at all altitudes using this technique, and this conclusion was found to be consistent with images obtained from electron microscopy. Since the 41 km sample was collected well above the local tropopause, a prima facie case for a space incidence of these microorganisms is established. Further work on culturing, PCR analysis and isotopic analysis is in progress.

  17. L'Anti-Atlas occidental du Maroc: étude sédimentologique et reconstitutions paléogéographiques au Cambrien inférieur

    NASA Astrophysics Data System (ADS)

    Benssaou, M.; Hamoumi, N.

    2001-04-01

    L'étude lithostratigraphique en sédimentologique des formations du Cambrien inférieur de l'Anti-Atlas occidental (Maroc) a permis de mettre en évidence la diversité extrême des faciès allant des faciès continentaux jusqu'au faciès franchement marins. La répartition verticale de ces faciès ainsi que leurs associations ont permis de (i) proposer un nouveau découpage de la succession en formations lithostratigraphiques, (ii) reconstituer les milieux de dépôt (système fluviatile, lacs, fan-deltas, milieu littoral, plate-forme dominée par des constructions stromatolitiques et récifales et plate-forme dominée par les tempêtes) et (iii) établir des modèles paléogéographiques retraçant les différentes étapes d'évolution de ce bassin qui fait partie de la plate-forme nord-gondwanienne au Cambrien inférieur. Lithostratigraphical and sedimentological studies of the Early Cambrian formations in the western Anti-Atlas (Morocco) evidence their large diversity of facies ranging from continental to clearly marine. Vertical distribution and associations of facies afford opportunities to (i) suggest a new classification of the sedimentary sequence in terms of lithostratigraphic formations, (ii) restore the depositional environments (fluvial system, lake, delta fan, coast, stromatolite and reef-dominated platform, tempest-dominated platform), and (iii) establish palæogeographic models displaying the different evolutionary stages of this basin that constituted a part of the Lower Cambrian north-Gondwanian platform.

  18. Stratigraphy, structure, and lithofacies relationships of Devonian through Permian sedimentary rocks: Paradox Basin and adjacent areas - southeastern Utah. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCleary, J.; Rogers, T.; Ely, R.

    Geophysical well log analysis, literature review, and field work were conducted to develop isopach, structure contour, outcrop, and facies maps and cross sections for the Devonian through Permian strata of a 14,586-km/sup 2/ (5632-square-mile) area in southeastern Utah. The study area includes part of the Paradox Basin, the salt deposits of which are of interest in siting studies for a nuclear waste repository. For this reason hydrologic models of this area are needed. This study, part of which included the development of a three-dimensional stratigraphic computer model utilizing Geographic Information System software, can serve as a base for hydrologic ormore » other models for this area. Within and adjacent to the study area, 730 wells were screened to select the 191 wells analyzed for the study. It was found that the Elbert through Molas formations did not exhibit noticeable facies changes within the study area. The Pinkerton Trail Formation exhibits moderate changes: anhydrite and shale become somewhat more abundant toward the northeast. Facies changes in the Paradox Formation are more dramatic. Thick saline facies deposits are present in the northeast, grading to thinner anhydrite and then to carbonate facies in the south and west. The lithology of the Honaker Trail Formation appears to be fairly uniform throughout the area. Facies changes in the Cutler Group are numerous and sometimes dramatic, and generally correspond to the named formations of the group. Other factors that could affect groundwater flow, such as stratigraphic cover of fine-grained rocks, area of formation outcrops, and fracturing and faulting are discussed and delineated on maps.« less

  19. An Archaean submarine volcanic debris avalanche deposit, Yilgarn Craton, western Australia, with komatiite, basalt and dacite megablocks. The product of dome collapse

    NASA Astrophysics Data System (ADS)

    Trofimovs, J.; Cas, R. A. F.; Davis, B. K.

    2004-11-01

    The Boorara Domain of the Kalgoorlie Terrane, Eastern Goldfields Superterrane, western Australia contains excellent exposure of Archaean felsic and ultramafic breccias characterised by facies associations interpreted to reflect a volcanic debris avalanche mode of deposition. Such Archaean volcanic deposits are typically difficult to identify due to poor preservation and exposure. However, primary volcanological and sedimentological features are preserved within the relatively low strain and low metamorphic grade (up to lower greenschist facies) Boorara Domain that allow accurate facies reconstruction. The breccia deposit is characterised by two clast populations. A 'block facies' comprised of metre- to decimetre-scale megablocks of dacite, basalt and komatiite is preserved within a 'mixed' matrix breccia facies of angular, coarse sand- to boulder-sized clasts. The megablocks preserve original stratigraphy and show fracturing and jigsaw-fit textures within the poorly sorted, unstratified, genetically related matrix. Overlying the volcanic debris avalanche deposit, are a series of stratified horizons. These deposits show evidence of hydraulic sorting within bedforms exhibiting normal grain-size grading and tractional scour and fill structures along their basal contacts. The stratified facies is interpreted to have been deposited by high concentration, high competency turbidity currents, triggered by slope stabilization slides in the source region. Primary contacts and volcanic textures preserved in decimetre-scale volcanic blocks allow reconstruction of the pre-collapse palaeovolcanological history of the source region. The volcanic debris avalanche deposit, together with the associated stratified sedimentary horizons, were produced by sector collapse of a submarine, dacitic volcanic dome. Contemporaneous komatiite intrusion into the dacite dome may have caused dome flank instability. However, the volcanic debris avalanche trigger is interpreted to be a post-lithification tectonic influence.

  20. The Chimborazo sector collapse and debris avalanche: Deposit characteristics as evidence of emplacement mechanisms

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; van Wyk de Vries, Benjamin; Barba, Diego; Leyrit, Hervé; Robin, Claude; Alcaraz, Samantha; Samaniego, Pablo

    2008-09-01

    Chimborazo is a Late Pleistocene to Holocene stratovolcano located at the southwest end of the main Ecuadorian volcanic arc. It experienced a large sector collapse and debris avalanche (DA) of the initial edifice (CH-I). This left a 4 km wide scar, removing 8.0 ± 0.5 km 3 of the edifice. The debris avalanche deposit (DAD) is abundantly exposed throughout the Riobamba Basin to the Río Chambo, more than 35 km southeast of the volcano. The DAD averages a thickness of 40 m, covers about 280 km 2, and has a volume of > 11 km 3. Two main DAD facies are recognized: block and mixed facies. The block facies is derived predominantly from edifice lava and forms > 80 vol.% of the DAD, with a probable volume increase of 15-25 vol.%. The mixed facies was essentially created by mixing brecciated edifice rock with substratum and is found mainly in distal and marginal areas. The DAD has clear surface ridges and hummocks, and internal structures such as jigsaw cracks, injections, and shear-zone features are widespread. Structures such as stretched blocks along the base contact indicate high basal shear. Substratum incorporation is directly observed at the base and is inferred from the presence of substratum-derived material in the DAD body. Based on the facies and structural interpretation, we propose an emplacement model of a lava-rich avalanche strongly cataclased before and/or during failure initiation. The flow mobilises and incorporates significant substrata (10-14 vol.%) while developing a fine lubricating basal layer. The substrata-dominated mixed facies is transported to the DAD interior and top in dykes invading previously-formed fractures.

  1. Depositional facies and porosity development at Coon Creek Field (Newman [open quotes]Big Lime[close quotes]), Leslie County, Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moshier, S.O.; Stamper, M.E.

    1994-08-01

    Coon Creek field is a significant petroleum reservoir in the [open quotes]Big Lime[close quotes], Middle to Upper Mississippian Newman equivalent, in southeastern Kentucky. Initial production from select wells has exceeded 600 bbl of oil/day at drilling depths averaging 915 m (3300 ft). Facies patterns, dolomitization, porosity, and structure in this carbonate reservoir have been delineated by geophysical logs, subsurface mapping, and examination of cores and cuttings. The reservoir is set within a localized paleotopographic low on the unconformable surface of the underlying siliciclastic Borden Group; the Borden surface can express rapid relief of over a 10% grade within less thanmore » 300 m. Transgression across the exposed Borden surface resulted in the deposition of a complex system of carbonates lithofacies. Crinoidal dolostones, representing shallow subtidal skeletal bars and banks, form the basal Big Lime (1.5-6 m thick). They are overlain by a typical facies (30 m thick) of bryozoan grainstones/packstones, crinoid grainstones, and mixed skeletal wakestones/mudstones. The rybryozoanacies are characterized by unfragmented fenestrates cemented by radiaxial-fibrous calcite. Stratigraphic distributions indicate the bryozoan facies were broad buildups with crinoidal flank and cap deposits and muddy skeletal off-mount facies, similar to deeper water Waulsortian mounds in other basins. Pellet and ooid grainstones represent moderate- to high-energy subtidal shoal deposits that covered the mound complex. Hydrocarbon production is restricted in the field to the crinoid-bryozoan facies complex within the basal 30 m. Reservoir porosity and permeability have been enhanced by selective dolomitization of grainstones and fracturing related to postdepositional reactivation of basement faults.« less

  2. Level-set techniques for facies identification in reservoir modeling

    NASA Astrophysics Data System (ADS)

    Iglesias, Marco A.; McLaughlin, Dennis

    2011-03-01

    In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil-water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301-29 2004 Inverse Problems 20 259-82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg-Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush-Kuhn-Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies.

  3. Coral distribution patterns in Miocene Reefs of Anguilla, Leeward Islands, West Indies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, A.B.; Johnson, K.G.

    1988-01-01

    Anguilla, a 27 by 5 km island at 18/sup 0/13'N, 63/sup 0/05'W, parallels the northwest edge of the Anguilla bank (St. Martin plateau) in the outer lesser Angilles volcanic arc, which was active from the Eocene to Oligocene. Except for scattered exposures of tuff or basalt, the island is composed predominantly of reefal limestones and marls of the 70-m thick, middle Miocene Anguilla Formation, deposited on a shallow inner shelf platform extending from volcanoes near St. Martin. The reef framework consists of branched and platy corals interspersed with calcareous sand lenses. Although the limestones have been uplifted and subjected tomore » minor faulting, little evidence supports extensive transport across a slope. Coral distribution patterns have been quantified across the reefal units by point-counting species occurrences at 0.16-m intervals within 1-m/sup 2/ quadrants placed haphazardly across vertical exposures. Eight coral species (of possibly 18 total) were recorded. Cluster analysis delineated four facies: (1) a low-diversity facies dominated by branched Porites, (2) an intermediate diversity facies dominated by branched Porites, (3) a high-diversity facies dominated by massive Montastraea, Siderastrea, and Porites, and (4) an intermediate diversity facies dominated by platy Porites. These facies consists of lenses, no more than 100 m long and 2 m high, arranged in no apparent regular sequence. Thus, they do not represent zones across a depth gradient. Comparisons with living Caribbean reefs suggests that the Anguilla Miocene reefs were similar to small, modern, backreef fringing and patch reefs near the San Blas Islands of Panama, reefs whose variable composition and patchy distribution depend largely on sedimentation and current patterns.« less

  4. Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features

    NASA Astrophysics Data System (ADS)

    Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.

    2015-12-01

    Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.

  5. Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: A multimethod geochronological study from the Najac Massif

    NASA Astrophysics Data System (ADS)

    Lotout, Caroline; Pitra, Pavel; Poujol, Marc; Anczkiewicz, Robert; Van Den Driessche, Jean

    2018-05-01

    Accurate dating of eclogite-facies metamorphism is of paramount importance in order to understand the tectonic evolution of an orogen. An eclogite sample from the Najac Massif (French Massif Central, Variscan belt) displays a zircon-bearing garnet-omphacite-amphibole-rutile-quartz peak assemblage. Pseudosection modeling suggests peak pressure conditions of 15-20 kbar, 560-630 °C. Eclogite-facies garnet displays Lu-enriched cores and Sm-rich rims and yields a Lu-Hf age of 382.8 ± 1.0 Ma and a Sm-Nd age of 376.7 ± 3.3 Ma. The ages are interpreted as marking the beginning of the prograde garnet growth during the initial stages of the eclogite-facies metamorphism, and the high-pressure (and temperature) peak reached by the rock, respectively. Zircon grains display chondrite-normalized REE spectra with variably negative, positive or no Eu anomalies and are characterized by either enriched or flat HREE patterns. However, they yield a well constrained in situ LA-ICP-MS U-Pb age of 385.5 ± 2.3 Ma, despite this REE pattern variability. Zr zonation in garnet, Y content in zircon and the diversity of zircon HREE spectra may suggest that zircon crystallized prior to and during incipient garnet growth on the prograde P-T path, recording the initial stages of the eclogite-facies conditions. Consequently, the zircon age of 385.5 ± 2.3 Ma, comparable within error with the Lu-Hf age obtained on garnet, is interpreted as dating the beginning of the eclogite-facies metamorphism. Accordingly, the duration of the prograde part of the eclogite-facies event is estimated at 6.1 ± 4.3 Myr. Subsequent exhumation is constrained by an apatite U-Pb age at 369 ± 13 Ma.

  6. Emplacement mechanisms of the South Kona slide complex, Hawaii Island: Sampling and observations by remotely operated vehicle Kaiko

    USGS Publications Warehouse

    Yokose, H.; Lipman, P.W.

    2004-01-01

    Emplacement of a giant submarine slide complex, offshore of South Kona, Hawaii Island, was investigated in 2001 by visual observation and in-situ sampling on the bench scarp and a megablock, during two dives utilizing the Remotely Operated Vehicle (ROV) Kaiko and its mother ship R/V Kairei. Topography of the bench scarp and megablocks were defined in 3-D perspective, using high-resolution digital bathymetric data acquired during the cruise. Compositions of 34 rock samples provide constraints on the landslide source regions and emplacement mechanisms. The bench scarp consists mainly of highly fractured, vesiculated, and oxidized a-a lavas that slumped from the subaerial flank of ancestral Mauna Loa. The megablock contains three units: block facies, matrix facies, and draped sediment. The block facies contains hyaloclastite interbedded with massive lava, which slid from the shallow submarine flank of ancestral Mauna Loa, as indicated by glassy groundmass of the hyaloclastite, low oxidation state, and low sulfur content. The matrix facies, which directly overlies the block facies and is similar to a lahar deposit, is thought to have been deposited from the water column immediately after the South Kona slide event. The draped sediment is a thin high-density turbidite layer that may be a distal facies of the Alika-2 debris-avalanche deposit; its composition overlaps with rocks from subaerial Mauna Loa. The deposits generated by the South Kona slide vary from debris avalanche deposit to turbidite. Spatial distribution of the deposits is consistent with deposits related to large landslides adjacent to other Hawaiian volcanoes and the Canary Islands. ?? Springer-Verlag 2004.

  7. The dilemma of gaps in carbonate stratigraphic sequences: A case history from the Jurassic of the Venetian Alps, Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zempolich, W.G.

    The Lower Ammonitico Rosso (L.A.R.) of the western Venetian Alps is a thin, red nodular limestone that overlies a thick Late Triassic to Middle Jurassic (Aalenian) shallow-water platform sequence. It is thought to represent a Middle Jurassic (Bajocian) drowning event whereby the Trento Platform became a submerged plateau. The L.A.R. is problematic in that it (1) is rich in ammonites and other pelagic fauna; (2) contains stromatolites, oncolites, and shallow-water sedimentary structures; and (3) directly overlies platform sediments that contain complex brecciated fabrics filled by cement and Bajocian-age sediment. These seemingly contradictory features have generated much debate as to themore » sequence stratigraphy of the Trento Platform. New evidence suggests that the L.A.R. was deposited in a shallow-water environment following a period of subaerial exposure. In an east-west transect from the platform edge to platform interior, a clear transition is exhibited from high- and low-energy open-marine facies to restricted lagoonal facies. High-energy open-marine facies include well-sorted skeletal- and peloidal-rich sands possessing low-angle to planar cross stratification and thin, fairly sorted ammonite- and belemnite-rich gravels. Sands include both shallow-water and pelagic fauna; gravels commonly contain ripup clasts from underlying sediments. Low-energy open-marine facies consist of buff colored wackestones and packstones that contain ammonites, belemnites, pelagic bivalves, and peloids. With respect to paleogeography, the abrupt transition from open-marine facies at the platform edge to lagoonal facies in the platform interior indicates that thrombolites, stromatolites, and oncolites accumulated in a shallow restricted environment.« less

  8. Paleolimnology of Lake Tubutulik, an iron-meromictic Eocene Lake, eastern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Dickinson, K.A.

    1988-01-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual "iron-meromictic" Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a structural graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Late Cretaceous Darby Pluton, on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the river valley of the ancestral Tubutulik River in early Eocene time. Lake Tubutulik contained a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital layers containing mostly quartz and clay minerals. Both lacustrine facies contain turbidities. The lacustrine sediments graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake apparently occupied a small deep basin in a tectonically active area of high relief. Meromixus was probably stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixus decreased as the lake became shallower from sediment filling. The source of the iron, abundant in the monimolimnion of Lake Tubutulik, was probably the Eocene basalt. Based on carbon isotope analysis of the siderite, the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (??13C = +16.9) consistent with residual carbon formed during methanogenic fermentation. ?? 1988.

  9. Tephrostratigraphy of the A.D. 79 pyroclastic deposits in perivolcanic areas of Mt. Vesuvio (Italy)

    NASA Astrophysics Data System (ADS)

    Lirer, Lucio; Munno, Rosalba; Petrosino, Paola; Vinci, Anna

    1993-11-01

    Correlations between pyroclastic deposits in perivolcanic areas are often complicated by lateral and vertical textural variations linked to very localized depositional effects. In this regard, a detailed sampling of A.D. 79 eruption products has been performed in the main archaeological sites of the perivolcanic area, with the aim of carrying out a grain-size, compositional and geochemical investigation so as to identify the marker layers from different stratigraphic successions and thus reconstruct the eruptive sequence. In order to process the large number of data available, a statistical approach was considered the most suitable. Statistical processing highlighted 14 marker layers among the fall, stratified surge and pyroclastic flow deposits. Furthermore statistical analysis made it possible to correlate pyroclastic flow and surge deposits interbedded with fall, interpreted as a lateral facies variation. Finally, the passage from magmatic to hydromagmatic activity is marked by the deposition of pyroclastic flow, surge and accretionary lapilli-bearing deposits. No transitional phase from magmatic to hydromagmatic activity has been recognized.

  10. Intra-Trackway Morphological Variations Due to Substrate Consistency: The El Frontal Dinosaur Tracksite (Lower Cretaceous, Spain)

    PubMed Central

    Razzolini, Novella L.; Vila, Bernat; Castanera, Diego; Falkingham, Peter L.; Barco, José Luis; Canudo, José Ignacio; Manning, Phillip L.; Galobart, Àngel

    2014-01-01

    An ichnological and sedimentological study of the El Frontal dinosaur tracksite (Early Cretaceous, Cameros basin, Soria, Spain) highlights the pronounced intra-trackway variation found in track morphologies of four theropod trackways. Photogrammetric 3D digital models revealed various and distinct intra-trackway morphotypes, which reflect changes in footprint parameters such as the pace length, the track length, depth, and height of displacement rims. Sedimentological analyses suggest that the original substrate was non-homogenous due to lateral changes in adjoining microfacies. Multidata analyses indicate that morphological differences in these deep and shallow tracks represent a part of a continuum of track morphologies and geometries produced by a gradient of substrate consistencies across the site. This implies that the large range of track morphologies at this site resulted from similar trackmakers crossing variable facies. The trackways at the El Frontal site present an exemplary case of how track morphology, and consequently potential ichnotaxa, can vary, even when produced by a single trackmaker. PMID:24699696

  11. Evolution of colour vision in mammals.

    PubMed

    Jacobs, Gerald H

    2009-10-12

    Colour vision allows animals to reliably distinguish differences in the distributions of spectral energies reaching the eye. Although not universal, a capacity for colour vision is sufficiently widespread across the animal kingdom to provide prima facie evidence of its importance as a tool for analysing and interpreting the visual environment. The basic biological mechanisms on which vertebrate colour vision ultimately rests, the cone opsin genes and the photopigments they specify, are highly conserved. Within that constraint, however, the utilization of these basic elements varies in striking ways in that they appear, disappear and emerge in altered form during the course of evolution. These changes, along with other alterations in the visual system, have led to profound variations in the nature and salience of colour vision among the vertebrates. This article concerns the evolution of colour vision among the mammals, viewing that process in the context of relevant biological mechanisms, of variations in mammalian colour vision, and of the utility of colour vision.

  12. Evolution of colour vision in mammals

    PubMed Central

    Jacobs, Gerald H.

    2009-01-01

    Colour vision allows animals to reliably distinguish differences in the distributions of spectral energies reaching the eye. Although not universal, a capacity for colour vision is sufficiently widespread across the animal kingdom to provide prima facie evidence of its importance as a tool for analysing and interpreting the visual environment. The basic biological mechanisms on which vertebrate colour vision ultimately rests, the cone opsin genes and the photopigments they specify, are highly conserved. Within that constraint, however, the utilization of these basic elements varies in striking ways in that they appear, disappear and emerge in altered form during the course of evolution. These changes, along with other alterations in the visual system, have led to profound variations in the nature and salience of colour vision among the vertebrates. This article concerns the evolution of colour vision among the mammals, viewing that process in the context of relevant biological mechanisms, of variations in mammalian colour vision, and of the utility of colour vision. PMID:19720656

  13. A Facies Model for Temperate Continental Glaciers.

    ERIC Educational Resources Information Center

    Ashley, Gail Mowry

    1987-01-01

    Discusses the presence and dynamics of continental glaciers in the domination of the physical processes of erosion and deposition in the mid-latitudes during the Pleistocene period. Describes the use of a sedimentary facies model as a guide to recognizing ancient temperate continental glacial deposits. (TW)

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurst, J.M.; Lapointe, P.A.; Nyein, U.K.

    Three Oligocene-Miocene carbonate depositional morphologies commonly occur: shoals, reefs, and isolated platforms. Lenticular shoals (0-25 m thick, 1 km long) are stacked and intercalated with siliciclastic mudstones. Facies include trough/festoon cross-bedded benthic foram grainstones passing laterally and vertically into red-algal dominated graded-laminated beds, bioturbated silty calcareous mudstone, and siliciclastic sandy foram wackestone and packstone. The morphology and facies are hydrodynamically controlled. Pinnacle reefs (1-2 km[sup 2]) dominated by red-algae, branching corals, and large mollusks occur on structure or aligned within shelf mudstones. The latter location reflects low sedimentation rates and hydrodynamic control. Isolated platforms (up to 150 km[sup 2]) aremore » environmental mosaics of marginal path reefs and shoals, interior lagoons, and islands plus marginal slopes. Facies are similar to shoals and reefs except there are more muddy fabrics and less high-energy facies. They develop on tilted fault blocks or eroded submerged arcs in the offshore Gulf of Martaban, distal to the ancestral Irrawaddy delta.« less

  15. Peritidal cyclic sedimentation from La Manga Formation (Oxfordian), Neuquén Basin, Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Palma, Ricardo M.; Kietzmann, Diego A.; Bressan, Graciela S.; Martín-Chivelet, Javier; López-Gómez, José; Farias, María E.; Iglesias Llanos, María P.

    2013-11-01

    The La Manga Formation consists of marine carbonates and represents most of the sedimentary record of the Callovian-Oxfordian in the Neuquén Basin. Three localities in the southern Mendoza province were studied and their cyclicity was determined by means of facies analysis and their vertical arrangement. Facies of inner ramp, that were deposited in extremely shallow-water environments with intermittent subaerial exposures have been broken down into shallow subtidal, and intertidal-supratidal environments. Shallow subtidal facies are arranged into decimetre scale upward-shallowing cycles composed of marls, laminated or massive mudstones or bioclastic wackestones and intraclastic wackestone-packstones. Intertidal-supratidal centimetre-scale cycles consist of an upward-shallowing succession of restricted facies, overlaid by horizontal or crinkle microbial laminites, flat pebble conglomerates or breccias beds. The defined cycles show a shallowing upward trend in which the evidence of relative sea-level lowering is accepted. The interpretation of Fischer plots allowed the recognition of changes in accommodation space.

  16. Seismic imaging and hydrogeologic characterization of the Potomac Formation in northern New Castle County, Delaware

    NASA Astrophysics Data System (ADS)

    Zullo, Claudia Cristina

    Water supply demands of a growing population in the Coastal Plain of Delaware make detailed understanding of aquifers increasingly important. Previous studies indicate that the stratigraphy of the non-marine Potomac Formation, which includes the most important confined aquifers in the area, is complex and lithologically heterogeneous, making sands difficult to correlate. This study aimed to delineate the stratigraphic architecture of these sediments with a focus on the sand bodies that provide significant volumes of groundwater to northern Delaware. This project utilized an unconventional seismic system, a land streamer system, for collecting near-surface, high-resolution seismic reflection data on unpaved and paved public roadways. To calibrate the 20 km of seismic data to lithologies, a corehole and wireline geophysical logs were obtained. Six lithofacies (paleosols, lake, frequently flooded lake/abandoned channel, splay/levee, splay channel, fluvial channel) and their respective geophysical log patterns were identified and then correlated with the seismic data to relate seismic facies to these environments. Using seismic attribute analysis, seismic facies that correspond to four of the lithofacies were identified: fluvial channel seismic facies, paleosol seismic facies, splay/levee seismic facies, and a frequently flooded lake/abandoned channel and splay/levee combined seismic facies. Correlations for eleven horizons identified in the seismic sections and cross sections show local changes in thickness and erosional relief. The analysis of seismic facies sections provides a two-dimensional basis for detailed understanding of the stratigraphy of the Potomac Formation, and suggests an anastomosing fluvial style with poorly connected winding channel sands encased in fine-grained overbank sediments that produced a complex, labyrinth-style heterogeneity. The results indicate that the 2D lateral connectivity of the sand bodies of the Potomac Formation is limited to short distances, contrary to correlations in previous studies that have indicated connection of sands at distances of at least 3 km. The results highlight the importance of integrating multiple sources of geologic information for the interpretation of the stratigraphic architecture of non-marine sediments, and the value of roadway-based land-streamer seismic data for the interpretation of near-surface (less than 300-m-depth) aquifer sand characteristics in developed areas.

  17. Modern sedimentary facies, depositional environments, and major controlling processes on an arid siliciclastic coast, Al qahmah, SE Red Sea, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Nabhan, Abdullah I.; Yang, Wan

    2018-04-01

    The facies and environments along the arid siliciclastic coast of Red Sea in Al Qahmah, Saudi Arabia are studied to establish a depositional model for interpretation of ancient rocks deposited in rift settings. Field and petrographic studies of 151 sediment samples in an area of 20 km2 define seven main facies types: beach, washover fan, tidal channel, dune, sabkha, delta, and wadi (seasonal stream). The wadi and delta facies are composed of poorly to moderately well-sorted, gravelly, medium-to-fine sands. Delta-front sands are redistributed by southward longshore currents to form a beach. Beach facies is composed of well-to-moderately sorted fine sands with minor gravels, which contain high concentrations of magnetite, ilmenite, garnet, pyroxene, amphibole, epidote, titanite, and apatite grains, indicating strong winnowing. Crabs and other burrowers destroy primary sedimentary structures and mix sediments in foreshore and backshore of the beaches. Wind and storm surge rework foreshore and backshore sediments to form washover fans. Sabkha facies occurs extensively in supratidal depressions behind beach, are flooded by rainstorms and spring tide, and capped by a 5-cm-thick crust composed of interlaminated halite, quartz, albite, minor gypsum and biotite, and rarely calcium carbonate. Halite occurs as thin sheets and gypsum as nodules with a chicken-wire structure. Clastic fraction in sabkha sediments ranges from coarse silt to coarse sand with moderate sorting, and is transported by currents and wind. Tidal inlets and tidal creeks assume abandoned wadis and are filled by muddy sand. Sand dunes and sand sheets are 1-7 m high and widely distributed due to variable wind directions. Fine-grained dune sands are moderately well sorted, whereas sheet sands are coarser and poorly sorted due to vegetation baffling. Most eolian sands are sourced from beach deposits. This suite of complex riverine, wave, tidal, wind, chemical, and biological processes form the facies mosaic along the arid Al Qahmah coast, which is strongly affected by climate-driven evaporation and wind action.

  18. 50 Myr. in a serpentinite subduction channel: Insights into slow eclogite exhumation

    NASA Astrophysics Data System (ADS)

    Flores, K. E.; Bonnet, G.; Cai, Y.; Martin, C.; Hemming, S. R.; Brueckner, H. K.; Harlow, G. E.

    2017-12-01

    Modern petrochronology shows that the exhumation of metamorphosed oceanic rocks in subduction zones is commonly a brief process (<10-20 Ma) characterized by rates of 2-5 km/Ma. This rapid exhumation is essential to avoid complete retrogression of high grade assemblages during ascension. However, our multi-approach P-T-t results on retrograde eclogites from the Northern Motagua Mélange (NMM) in Guatemala challenges those previous findings because they record remarkably slower exhumation rates ( 1 km/Ma). The retrograde eclogites occur as cm to tens of m sized blocks within a serpentinite matrix mélange that also contains blocks of subgreenschist to amphibolite and blueschist facies metabasites, jadeitites, omphacitites, albitites, mica-rocks, metatrondhjemites, and minor low grade metasediments. The studied samples range from almost unaltered eclogites to retrograde blueschist and ep-amphibolite facies metabasites containing eclogite relicts. The successive assemblages define classical clockwise P-T paths: comprised of (a) prograde blueschist/eclogite facies metamorphism within garnet cores, (b) eclogite facies peak recrystallization at 2.1 GPa and 500°C, (c) post-peak blueschist facies recrystallization, (d) amphibolite facies overprinting, and (e) late stage greenschist facies retrogression. This complex polymetamorphic history defines an exhumation path with a metamorphic peak at 136-125 Ma (Sm-Nd mineral isochrons) at 70 km depth, an ascent to the middle section of a subduction channel ( 40 km) at 99-92 Ma (Ar-Ar in Ph), and exhumation to 25-20 km at 80-75 Ma (Ar-Ar in Mhb). Synchronous jadeitite and mica-rocks yielded crystallization and exhumation ages of 95 Ma (U-Pb in Zrn) and 77-53 Ma (Ar-Ar in Ph), respectively. In contrast, an associated eclogite-bearing sheet of continental crust shows a younger eclogite metamorphic peak of 77-75 Ma at 80 km depth, but similar exhumation ages of 76-66 Ma and near surface regional exposure at 30 Ma (AFT). These new data argues for significantly low exhumation rate of 1 km/Ma, which satisfactorily explains the highly retrograde nature of most eclogites and the well documented rock-fluids interactions inside a serpentinite subduction channel. However, it contradicts most current buoyancy- low viscosity driven exhumation models.

  19. Acoustic Facies Analysis of Side-Scan Sonar Data

    NASA Astrophysics Data System (ADS)

    Dwan, Fa Shu

    Acoustic facies analysis methods have allowed the generation of system-independent values for the quantitative seafloor acoustic parameter, backscattering strength, from GLORIA and (TAMU) ^2 side-scan sonar data. The resulting acoustic facies parameters enable quantitative comparisons of data collected by different sonar systems, data from different environments, and measurements made with survey geometries. Backscattering strength values were extracted from the sonar amplitude data by inversion based on the sonar equation. Image processing products reveal seafloor features and patterns of relative intensity. To quantitatively compare data collected at different times or by different systems, and to ground truth-measurements and geoacoustic models, quantitative corrections must be made on any given data set for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area contribution, and grazing angle effects. In the sonar equation, backscattering strength is the sonar parameter which is directly related to seafloor properties. The GLORIA data used in this study are from the edge of a distal lobe of the Monterey Fan. An interfingered region of strong and weak seafloor signal returns from a flat seafloor region provides an ideal data set for this study. Inversion of imagery data from the region allows the quantitative definition of different acoustic facies. The (TAMU) ^2 data used are from a calibration site near the Green Canyon area of the Gulf of Mexico. Acoustic facies analysis techniques were implemented to generate statistical information for acoustic facies based on the estimates of backscattering strength. The backscattering strength values have been compared with Lambert's Law and other functions to parameterize the description of the acoustic facies. The resulting Lambertian constant values range from -26 dB to -36 dB. A modified Lambert relationship, which consists of both intercept and slope terms, appears to represent the BSS versus grazing angle profiles better based on chi^2 testing and error ellipse generation. Different regression functions, composed of trigonometric functions, were analyzed for different segments of the BSS profiles. A cotangent or sine/cosine function shows promising results for representing the entire grazing angle span of the BSS profiles.

  20. Limits on the Time Evolution of Space Dimensions from Newton's Constant

    NASA Astrophysics Data System (ADS)

    Nasseri, Forough

    Limits are imposed upon the possible rate of change of extra spatial dimensions in a decrumpling model Universe with time variable spatial dimensions (TVSD) by considering the time variation of (1+3)-dimensional Newton's constant. Previous studies on the time variation of (1+3)-dimensional Newton's constant in TVSD theory had not include the effects of the volume of the extra dimensions and the effects of the surface area of the unit sphere in D-space dimensions. Our main result is that the absolute value of the present rate of change of spatial dimensions to be less than about 10-14 yr-1. Our results would appear to provide a prima facie case for ruling the TVSD model out. We show that based on observational bounds on the present variation of Newton's constant, one would have to conclude that the spatial dimension of the Universe when the Universe was "at the Planck scale" to be less than or equal to 3.09. If the dimension of space when the Universe was "at the Planck scale" is constrained to be fractional and very close to 3, then the whole edifice of TVSD model loses credibility.

  1. Stratigraphic variation in petrographic composition of Nanushuk Group sandstones at Slope Mountain, North Slope, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Johnsson, Mark J.; Sokol, Nikolas K.

    2000-01-01

    Fluvial, deltaic, and marine sediments of the Nanushuk Group (Albian to Cenomanian), North Slope, Alaska, record Early Cretaceous orogenic events in the Brooks Range to the south. The 1,060-m section at Slope Mountain is part of the Lower Cretaceous Umiat Delta, shed from the Endicott and De Long Mountains subterranes in the central Brooks Range. These sandstones are litharenites dominated by metasedimentary lithic fragments. Subtle and previously unrecognized stratigraphic variations in composition (up-section increases in metasedimentary lithic fragments, volcanic lithic fragments, and quartz interpreted to be of metamorphic origin) reflect a combination of facies migration and changes in provenance associated with unroofing of the ancestral Brooks Range. We recognize stratigraphic variation in sandstone composition at Slope Mountain whereas previous workers have not, probably because of our use of finely subdivided point-counting categories. The source of the volcanic lithic fragments in the Nanushuk Group remains enigmatic; the most likely candidate is a now-eroded volcanic arc, perhaps a volcanic superstructure to granitic rocks of the Ruby terrane to the south.

  2. Facies Interpretation and the Stratigraphic Record

    NASA Astrophysics Data System (ADS)

    Cisne, John

    This book is a short, readable, and interesting introduction to facies analysis—or as Hallam prefers to call it, facies interpretation—in the form of an advanced undergraduate to beginning graduate level textbook. Unlike conventional textbooks on the subject, the emphasis here is not so much on the basics of sedimentation and stratigraphy as on applying the basics to sweeping, large-scale problems in tectonics, paleo-oceanography, paleoclimatology, and the history of life. This is not a comprehensive textbook. One must know the basics to appreciate it fully. But its very brevity and portability combine with its extensive bibliography to make it a particularly useful guide to recent work.

  3. Sedimentary conditions of Upper Permian volcano-clastic rocks of Ayan-Yrahskiy anticlinorium (Verhoyansk-Kolyma orogen)

    NASA Astrophysics Data System (ADS)

    Astakhova, Anna; Khardikov, Aleksandr

    2013-04-01

    Sedimentation conditions of upper Permian volcano-clastic rocks of Ayan-Yurakhsky anticlinorium are the reason of discussions between researchers. It is important to correctly solve this problem. Investigation allows us to conclude that upper Permian sediments was formed due to high rate deltaic sedimentation on shelf and continental slope of epicontinental sea basin. More than 45 outcrops of upper Permian sediments were described within Ayan-Yurakhsky anticlinorium. Termochemical and X-ray phase, lithological facies, stadial, paleogeographic and others were applied. Investigation allows to classify following types: tuffs, tuffites of andesites, andesi-dacites, sandstone tuffs, siltstone tuffs and claystone tuffs. Two facies were deliniated in the research area: 1) delta channel facies 2) epicontinental sea shelf edge and continental slope. Delta channel facies are located on the south-west part of Aian-Yrahskiy anticlinorium. It is composed of silty packsand and psammitic tuff-siltstone alternation and gravel-psammitic andesi-dacitic tuffute and tuff-breccia bands. Sediments have cross-bedding, through cross-bedding, curvilinear lamination structures. Facies occurred during high rate deltaic sedimentation on the shelf of epicontinental sea. Epicontinental sea shelf edge and continental slope facies are located on the south-west part. Sediments are represented by large thickness tuff-siltstone with tuff-sandstone, tuff-madstone, tuff, tuffite bands and lenses. Large number of submarine landslides sediments provide evidence that there was high angle sea floore environment. 30-50 m diametr eruption centers were described by authors during geological traverses. They are located in Kulu river basin. Their locations are limited by deep-seated pre-ore fault which extended along Ayan-Yurakhsky anticlinorium. U-Pb SHRIMP method showed that the average age of circons, taken from eruption centers, is Permian (256,3±3,7 ma). This fact confirms our emphasis that eruption centers were the centre of underwater effusive explosions which had been occurred in late Permian time. Gold ore deposits mainly localized in the south of Ayan-Yurakhsky anticlinorium and associated with upper Permian deltaic facies sediments. Taking into account lithological facies feature and volcanoclastic origin of sediments it is reasonable to suggest expelled-catagenesis model of gold mineralization. Gold was entered in sedimentary basin with piroclastic material. During catagenesis stage gold migrated from complex of shelf edge and continental slope to fan delta front complex in conjunction with expelled water. The emplacement of ore gold deposits related with upper Permian sediments can be successfully predicted, using this model and associated techniques.

  4. Occurrence of inter-eruption debris flow and hyperconcentrated flood-flow deposits on Vesuvio volcano, Italy

    NASA Astrophysics Data System (ADS)

    Lirer, L.; Vinci, A.; Alberico, I.; Gifuni, T.; Bellucci, F.; Petrosino, P.; Tinterri, R.

    2001-02-01

    In the period between AD 79 and AD 472 eruptions, inter-eruption debris flow and hyperconcentrated-flood-flow deposits were deposited in the Somma-Vesuvio areas. These deposits, forming cliffs at the Torre Bassano and Torre Annunziata, were generated by highly erosive floods, whose erosive capacity was enhanced by acceleration due to the steepness of the volcano slopes. In this type of deposits were distinguished five depositional facies (from A to E) outcropping well at Torre Bassano where they are stacked in three fining-upward (FU) sequences, probably representing three forestepping — backstepping episodes in the emplacement area of gravity flows. These five facies from coarse to fine are interpreted to represent the downcurrent evolution of particular composite sediment gravity flows characterized by horizontal segregation of the main grain-size population. The blocking of these highly concentrated composite parent flows would first produce the deposition of the coarse front part to form facies A and then the overriding of this deposit by the bipartite flow, which constitutes the body of the flow. This flow is composed of a highly concentrated basal inertia carpet responsible for the deposition of facies B, C and D and an upper hyperconcentrated flood flow that forms facies E, through traction plus fallout processes, respectively. Finally, the occurrence of "lahar" type events at Somma-Vesuvio region even at present times is discussed.

  5. Development of Miocene-Pliocene reef trend, St. Croix, U. S. Virgin Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, I.; Eby, D.E.; Hubbard, D.K.

    1988-01-01

    The Miocene-Pliocene reef trend on St. Croix, U.S. Virgin Islands, rims the present southern western coasts of the island and includes accompanying lagoonal and forereef facies. The reef trend was established on a foram-algal bank facies that represents basinal shallowing from the deep-water pelagic and hemipelagic facies of the Miocene Kingshill Limestone. Information on facies distribution and thickness is derived from rock exposures and 22 test wells drilled to a maximum depth of 91 m. The greatest thickness of the reef facies exists in a subsidiary graben on the south coast of St. Croix. The thickness of the reef sectionmore » in this locality is due to preservation of the section in a downdropped block. Reef faunas include extant corals, as well as several extinct genera. Extant corals (e.g. Montastrea annularis, Diploria sp., and Porites porites) and extinct corals (e.g., Stylophora affinis, Antillea bilobata, and Thysanus sp.) are the main reef frame-builders. Coralline algea and large benthic foraminifera are significant contributors to the sediments both prior to and during scleractinian reef growth. Dolomitization and calcite cementation occur prominantly in an area corresponding to a Holocene lagoon. The spatial distribution of the dolomite suggests that the lagoon is a Tertiary feature directly related to the dolomitization process. Stable isotopic values suggest dolomitization of fluids of elevated salinity.« less

  6. Cyclic transgressive and regressive sequences, Paleocene Suite, Sirte basin, Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abushagur, S.A.

    1986-05-01

    The Farrud lithofacies represent the main reservoir rock of the Ghani oil field and Western Concession Eleven of the Sirte basin, Libya. Eight microfacies are recognized in the Farrud lithofacies in the Ghani field area: (1) bryozoan-bioclastic (shallow, warm, normal marine shelf deposits); (2) micrite (suggesting quiet, low-energy conditions such as may have existed in a well-protected lagoon); (3) dasycladacean (very shallow, normal marine environment); (4) bioclastic (very shallow, normal marine environment with moderate to vigorous energy); (5) mgal (very shallow, normal marine environment in a shelf lagoon); (6) pelletal-skeletal (deposition within slightly agitated waters of a sheltered lagoon withmore » restricted circulation); (7) dolomicrite (fenestrate structures indicating a high intertidal environment of deposition); and (8) anhydrite (supratidal environment). The Paleocene suite of the Farrud lithofacies generally shows a prograding, regressive sequence of three facies: (1) supratidal facies, characterized by nonfossiliferous anhydrite, dolomite, and dolomitic pelletal carbonate mudstone; (2) intertidal to very shallow subtidal facies, characterized by fossiliferous, pelletal, carbonate mudstone and skeletal calcarenite; and (3) subtidal facies, characterized by a skeletal, pelletal, carbonate mudstone. Source rocks were primarily organic-rich shales overlying the Farrud reservoir rock. Porosity and permeability were developed in part by such processes as dolomitization, leaching, and fracturing in the two progradational, regressive carbonate facies. Hydrocarbons were trapped by a supratidal, anhydrite cap rock.« less

  7. Sedimentation and tectonics in the southern Bida Basin, Nigeria: depositional response to varying tectonic context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braide, S.P.

    1990-05-01

    The Upper Cretaceous Bida basin of central Nigeria is sandwiched between the Precambrian schist belts of the Northern Nigerian massif and the West African craton. Of interest is the southern part of the basin, which developed in continental settings, because the facies architecture of the sedimentary fill suggests a close relation between sedimentation dynamics and basin margin tectonics. This relationship is significant to an understanding of the basin's origin, which has been controversial. A simple sag and rift origin has been suggested, and consequently dominated the negative thinking on the hydrocarbon prospects of the basin which were considered poor. Thismore » detailed study of the facies indicates rapid basin-wide changes from various alluvial fan facies through flood-basin and deltaic facies to lacustrine facies. Paleogeographic reconstruction suggests lacustrine environments were widespread and elongate. Lacustrine environments occurred at the basin's axis and close to the margins. This suggests the depocenter must have migrated during the basin's depositional history and subsided rapidly to accommodate the 3.5-km-thick sedimentary fill. Although distinguishing pull-apart basins from rift basins, based solely on sedimentologic grounds, may be difficult, the temporal migration of the depocenter, as well as the basin architecture of upward coarsening cyclicity, show a strong tectonic and structural overprint that suggests a tectonic framework for the Southern Bida basin similar in origin to a pull-apart basin.« less

  8. Spectral properties and ASTER-based alteration mapping of Masahim volcano facies, SE Iran

    NASA Astrophysics Data System (ADS)

    Tayebi, Mohammad H.; Tangestani, Majid H.; Vincent, Robert K.; Neal, Devin

    2014-10-01

    This study applies Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and the Mixture Tuned Matched Filtering (MTMF) algorithm to map the sub-pixel distribution of alteration minerals associated with the Masahim volcano, SE Iran for understanding the spatial relationship between alteration minerals and volcano facies. Investigations of the alteration mineralogy were conducted using field-spectroscopy, X-ray diffraction (XRD) analysis and ASTER Short Wave Infrared (SWIR) spectral data. In order to spectrally characterize the stratovolcano deposits, lithological units and alteration minerals, the volcano was divided into three facies: the Central, Proximal, and Medial-distal facies. The reflectance spectra of rock samples show absorption features of a number of minerals including white mica, kaolinite, montmorillonite, illite, goethite, hematite, jarosite, opal, and chlorite. The end-members of key alteration minerals including sericite (phyllic zone), kaolinite (argillic zone) and chlorite (propylitic zone) were extracted from imagery using the Pixel Purity Index (PPI) method and were used to map alteration minerals. Accuracy assessment through field observations was used to verify the fraction maps. The results showed that most prominent altered rocks situated at the central facies of volcano. The alteration minerals were discriminated with the coefficient of determination (R2) of 0.74, 0.81, and 0.68 for kaolinite, sericite, and chlorite, respectively. The results of this study have the potential to refine the map of alteration zones in the Masahim volcano.

  9. [Research progress of molecular genetic analysis in Schistosoma variation].

    PubMed

    Zheng, Su-Yue; Li, Fei

    2014-02-01

    The development of molecular biology techniques makes important contributions to the researches of heritable variation of Schistosoma. In recent years, the molecular genetic analysis in the Schistosoma variation researches mainly includes the restriction fragment length polymorphism (RFLP), random amplified polymorphism technology (RAPD), microsatellite anchored PCR (SSR-PCR), and polymerase reaction single-strand conformation polymorphism (PCR-SSCP). This article reviews the research progress of molecular genetic analysis in Schistosoma variation in recent years.

  10. Structures, microfabrics and textures of the Cordilleran-type Rechnitz metamorphic core complex, Eastern Alps☆

    PubMed Central

    Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai; Genser, Johann

    2013-01-01

    Rechnitz window group represents a Cordilleran-style metamorphic core complex, which is almost entirely located within nearly contemporaneous Neogene sediments at the transition zone between the Eastern Alps and the Neogene Pannonian basin. Two tectonic units are distinguished within the Rechnitz metamorphic core complex (RMCC): (1) a lower unit mainly composed of Mesozoic metasediments, and (2) an upper unit mainly composed of ophiolite remnants. Both units are metamorphosed within greenschist facies conditions during earliest Miocene followed by exhumation and cooling. The internal structure of the RMCC is characterized by the following succession of structure-forming events: (1) blueschist relics of Paleocene/Eocene age formed as a result of subduction (D1), (2) ductile nappe stacking (D2) of an ophiolite nappe over a distant passive margin succession (ca. E–W to WNW–ESE oriented stretching lineation), (3) greenschist facies-grade metamorphism annealing dominant in the lower unit, and (4) ductile low-angle normal faulting (D3) (with mainly NE–SW oriented stretching lineation), and (5) ca. E to NE-vergent folding (D4). The microfabrics are related to mostly ductile nappe stacking to ductile low-angle normal faulting. Paleopiezometry in conjunction with P–T estimates yield high strain rates of 10− 11 to 10− 13 s− 1, depending on the temperature (400–350 °C) and choice of piezometer and flow law calibration. Progressive microstructures and texture analysis indicate an overprint of the high-temperature fabrics (D2) by the low-temperature deformation (D3). Phengitic mica from the Paleocene/Eocene high-pressure metamorphism remained stable during D2 ductile deformation as well as preserved within late stages of final sub-greenschist facies shearing. Chlorite geothermometry yields two temperature groups, 376–328 °C, and 306–132 °C. Chlorite is seemingly accessible to late-stage resetting. The RMCC underwent an earlier large-scale coaxial deformation accommodated by a late non-coaxial shear with ductile low-angle normal faulting, resulting in subvertical thinning in the extensional deformation regime. The RMCC was rapidly exhumed during ca. 23–18 Ma. PMID:27065502

  11. Zircon (Hf, O isotopes) as melt indicator: Melt infiltration and abundant new zircon growth within melt rich layers of granulite-facies lenses versus solid-state recrystallization in hosting amphibolite-facies gneisses (central Erzgebirge, Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Tichomirowa, Marion; Whitehouse, Martin; Gerdes, Axel; Schulz, Bernhard

    2018-03-01

    In the central Erzgebirge within the Bohemian Massif, lenses of high pressure and ultrahigh pressure felsic granulites occur within meta-sedimentary and meta-igneous amphibolite-facies felsic rocks. In the felsic granulite, melt rich parts and restite form alternating layers, and were identified by petrology and bulk rock geochemistry. Mineral assemblages representing the peak P-T conditions were best preserved in melanocratic restite layers. In contrast, in the melt rich leucocratic layers, garnet and related HP minerals as kyanite are almost completely resorbed. Both layers display differences in accessory minerals: melanosomes have frequent and large monazite and Fe-Ti-minerals but lack xenotime and apatite; leucosomes have abundant apatite and xenotime while monazite is rare. Here we present a detailed petrographic study of zircon grains (abundance, size, morphology, inclusions) in granulite-facies and amphibolite-facies felsic gneisses, along with their oxygen and hafnium isotope compositions. Our data complement earlier Usbnd Pb ages and trace element data (REE, Y, Hf, U) on zircons from the same rocks (Tichomirowa et al., 2005). Our results show that the degree of melting determines the behaviour of zircon in different layers of the granulites and associated amphibolite-facies rocks. In restite layers of the granulite lenses, small, inherited, and resorbed zircon grains are preserved and new zircon formation is very limited. In contrast, new zircons abundantly grew in the melt rich leucocratic layers. In these layers, the new zircons (Usbnd Pb age, trace elements, Hf, O isotopes) best preserve the information on peak metamorphic conditions due to intense corrosion of other metamorphic minerals. The new zircons often contain inherited cores. Compared to cores, the new zircons and rims show similar or slightly lower Hf isotope values, slightly higher Hf model ages, and decreased oxygen isotope ratios. The isotope compositions (Hf, O) of new zircons indicate partial Hf isotope homogenization in the melt, and melt infiltration from an external source. New zircon was most likely formed by a peritectic reaction with melt above the wet solidus (peritectic zircon). Conversely, the amphibolite-facies host gneisses lack indications of significant melt production. Pre-metamorphic zircons experienced mainly solid-state recrystallization and variable Pb loss with only minor new zircon formation. However, subtle changes in cathodoluminescence pattern, in the Hf and O isotopes, and in the Lu/Hf, Yb/Hf ratios of zircons suggest that small volumes of melt were locally present. In difference to granulites, melt was internally produced. The detection of low degree melts (inferred from zircon geochemistry) is extremely important for the rheology because these amphibolite-facies rocks could act as large scale ductile shear zones. The new zircon data support a different P-T path for closely spaced amphibolite- and granulite-facies rocks.

  12. Reconnaissance Marine Geophysical Survey for the Shallow Water Acoustics Program

    DTIC Science & Technology

    2013-09-30

    Swift, D.J.P. (Ed.), Shelf Sand and Sandstone Bodies: Geometry, Facies and Sequence Stratigraphy, Wiley, Hoboken, New Jersey, Spec. Publs. Int. Ass...sequences, their component system tra cts, and bounding surfaces. In Swift, D.J.P. (Ed.), Shelf Sand and Sandstone Bodies: Geometry, Facies and Sequence

  13. Source facies and oil families of the Malay Basin, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creaney, S.; Hussein, A.H.; Curry, D.J.

    1994-07-01

    The Malay Basin consists of a number of separate petroleum systems, driven exclusively by nonmarine source rocks. These systems range from lower Oligocene to middle Miocene and show a progression from lacustrine-dominated source facies in the lower Oligocene to lower Miocene section to coastal plain/delta plain coal-related sources in the lower to middle Miocene section. Two lacustrine sources are recognized in the older section, and multiple source/reservoir pairs are recognized in the younger coaly section. The lacustrine sources can be recognized using well-log analysis combined with detailed core and sidewall core sampling. Chemically, they are characterized by low pristane/phytane ratios,more » low oleanane contents, and a general absence of resin-derived terpanes. These sources have TOCs in the 1.0-4.0% range and hydrogen indices of up to 750. In contrast, the coal-related sources are chemically distinct with pristane/phytane ratios of up to 8, very high oleanane contents, and often abundant resinous compounds. All these sources are generally overmature in the basin center and immature toward the basin margin. The oils sourced from all sources in the Malay Basin are generally low in sulfur and of very high economic value. Detailed biomarker analysis of the oils in the Malay Basin has allowed the recognition of families associated with the above sources and demonstrated that oil migration has been largely strata parallel with little cross-stratal mixing of families.« less

  14. Hunter-McAlpine craniosynostosis phenotype associated with skeletal anomalies and interstitial deletion of chromosome 17q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J.; Prescott, K.; Milner, R.

    1994-09-01

    Syndromic craniosynostosis is frequently associated with skeletal abnormalities, but the biological basis for this association is unclear. Molecular genetic studies have the biological basis for this association is unclear. Molecular genetic studies have identified a number of loci and at least one candidate gene, the MSX2 gene. We recently encountered a 9 y.o. boy with moderate mental retardation, congenital craniosynostosis, and multiple skeletal anomalies. Physical features strongly suggested Hunter-McAlpine syndrome (HMS). Specifically, he had triangular facies with a small mouth prominent chin, bulbous nose, thin vermillion border, malaligned and malformed teeth, and low set, rudimentary ears. Skeletal features included: bilambdoidal,more » bicoronal, and sagittal craniosynostosis; right preaxial polydactyly; bilateral talipes; coxa valga; genu valgum; bilateral fusion of the hamate and capitate; scoliosis; and small, irregular middle phalangeal epiphyses. High resolution chromosome analysis revealed an interstitial deletion of G negative material of subbands q23.1{r_arrow}23.3 or q23.3{r_arrow}q24.2 of a No. 17 homologue. HMS, a presumed autosomal dominant disorder associated with characteristic facies, variable degrees of mental retardation, craniosynostosis, and minor acral-skeletal anomalies, proved to be the most likely explanation for this patient`s findings. We propose that our patient has a new mutation for HMS with more severe skeletal involvement than previously reported. Linkage studies are in progress to test the hypothesis that familial HMS may be localized to chromosome 17.« less

  15. Parts-based geophysical inversion with application to water flooding interface detection and geological facies detection

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei

    I built parts-based and manifold based mathematical learning model for the geophysical inverse problem and I applied this approach to two problems. One is related to the detection of the oil-water encroachment front during the water flooding of an oil reservoir. In this application, I propose a new 4D inversion approach based on the Gauss-Newton approach to invert time-lapse cross-well resistance data. The goal of this study is to image the position of the oil-water encroachment front in a heterogeneous clayey sand reservoir. This approach is based on explicitly connecting the change of resistivity to the petrophysical properties controlling the position of the front (porosity and permeability) and to the saturation of the water phase through a petrophysical resistivity model accounting for bulk and surface conductivity contributions and saturation. The distributions of the permeability and porosity are also inverted using the time-lapse resistivity data in order to better reconstruct the position of the oil water encroachment front. In our synthetic test case, we get a better position of the front with the by-products of porosity and permeability inferences near the flow trajectory and close to the wells. The numerical simulations show that the position of the front is recovered well but the distribution of the recovered porosity and permeability is only fair. A comparison with a commercial code based on a classical Gauss-Newton approach with no information provided by the two-phase flow model fails to recover the position of the front. The new approach could be also used for the time-lapse monitoring of various processes in both geothermal fields and oil and gas reservoirs using a combination of geophysical methods. A paper has been published in Geophysical Journal International on this topic and I am the first author of this paper. The second application is related to the detection of geological facies boundaries and their deforation to satisfy to geophysica data and prior distributions. We pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case study, performing a joint inversion of gravity and galvanometric resistivity data with the stations all located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to deform the facies boundaries preserving prior topological properties of the facies throughout the inversion. With the additional help of prior facies petrophysical relationships, topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The result of the inversion technique is encouraging when applied to a second synthetic case study, showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries. A paper has been submitted to Geophysics on this topic and I am the first author of this paper. During this thesis, I also worked on the time lapse inversion problem of gravity data in collaboration with Marios Karaoulis and a paper was published in Geophysical Journal international on this topic. I also worked on the time-lapse inversion of cross-well geophysical data (seismic and resistivity) using both a structural approach named the cross-gradient approach and a petrophysical approach. A paper was published in Geophysics on this topic.

  16. Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, Hans-Peter

    2002-08-01

    Earth's mantle overturns itself about once every 200 Million years (myrs). Prima facie evidence for this overturn is the motion of tectonic plates at the surface of the Earth driving the geologic activity of our planet. Supporting evidence also comes from seismic tomograms of the Earth's interior that reveal the convective currents in remarkable clarity. Much has been learned about the physics of solid state mantle convection over the past two decades aided primarily by sophisticated computer simulations. Such simulations are reaching the threshold of fully resolving the convective system globally. In this talk we will review recent progress in mantle dynamics studies. We will then turn our attention to the fundamental question of whether it is possible to explicitly reconstruct mantle flow back in time. This is a classic problem of history matching, amenable to control theory and data assimilation. The technical advances that make such approach feasible are dramatically increasing compute resources, represented for example through Beowulf clusters, and new observational initiatives, represented for example through the US-Array effort that should lead to an order-of-magnitude improvement in our ability to resolve Earth structure seismically below North America. In fact, new observational constraints on deep Earth structure illustrate the growing importance of of improving our data assimilation skills in deep Earth models. We will explore data assimilation through high resolution global adjoint models of mantle circulation and conclude that it is feasible to reconstruct mantle flow back in time for at least the past 100 myrs.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burwood, R.; Mycke, B.

    The Lower Congo Coastal and Kwanza provinces cumulatively account for reserves of ca 6 GBOR. These are dominantly reservoired in Pinda carbonate traps of the former basin. However, with production from a range of accretionary wedge, carbonate platform and Pre-Salt reservoirs, a diversity in oil character presupposes complex hydrocarbon habitats charged by multiple sourcing. Each of these two major Atlantic margin salt basins constitutes a different, source rock driven, hydrocarbon habitat. As classic passive margin pull-apart basins, Early Cretaceous initiated rift events (Pre-rift, Synrift I, II, etc.) evolved into the Drift phase opening of the southern Atlantic. A striking featuremore » of this progression was widespread evaporate deposition of the Aptian Loeme Salt. This separates two distinct sedimentary and tectonic domains of the Pre- and Post-Salt. The core Lower Congo habitat is dominated by the Pre-Salt Bucomazi (!) petroleum system. These lacustrine, often super-rich, sediments reveal considerable organofacies variations between their basin fill (Synrift I) and sheet drape (Synrift II) development, accounting for the compositional diversity in their progenic petroleums. Of crucial impact is a cognate diversity in their kerogen kinetic behaviour. This controls the conditions and timing of generation and realization of charge potential. With the Lower Congo habitat extending southwards to the Ambriz Spur, the Bucomazi facies proper appears restricted to the northern and deeper proto-lake trend. Over the more weakly subsident margins such troughs host inferior sheet drape potential. Elsewhere, the Upper Cretaceous-Paleogene marine clastic labe (!) petroleum system is hydrocarbon productive, yielding petroleums of unique, and/or mixed Pre-Salt, source provenance.« less

  18. A basin on an unstable ground: Correlation of the Middle Archaean Moodies Basin, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Ohnemueller, Frank; Heubeck, Christoph; Kirstein, Jens; Gamper, Antonia

    2010-05-01

    The 3.22 Ga-old Moodies Group, representing the uppermost part of the Barberton Supergroup of the Barberton Greenstone Belt (BGB), is the oldest well-exposed, relatively unmetamorphosed, quartz-rich sedimentary unit on Earth. Moodies facies (north of the Inyoka Fault) were thought to be largely of alluvial, fluvial, deltaic or shallow-marine origin (Anhaeusser, 1976; Eriksson, 1980; Heubeck and Lowe, 1994) and in its upper part syndeformational. However, units can only locally be correlated, and the understanding of the interplay between Moodies sedimentation and deformation is thus limited. We mapped and measured Moodies units in the northern BGB. They partly consist of extensive turbiditic deepwater deposits, including graded bedding, flame structures, and slumped beds, interbedded with jaspilites. These contrast with shallow-water environments, south-facing progressive unconformities and overlying alluvial-fan conglomerates along the northern margin of the Saddleback Syncline further south. The palaeogeographic setting in which late BGB deformation was initiated therefore appears complex and cannot be readily explained by a simple southward-directed shortening event. In order to constrain Moodies basin setting before and during late-Moodies basin collapse, we correlated ~15 measured sections in the northern and central BGB. Most units below the Moodies Lava (MdL, ca. 3230.6+-6 Ma) can be correlated throughout although facies variations are apparent. Above the Moodies Lava, coarse-grained units can only be correlated through the Eureka Syncline and the Moodies Hills Block but not with the Saddleback Syncline. Fine-grained and jaspilitic units can be correlated throughout the northern BGB. Moodies below-wavebase deposition occurred largely north of the Saddleback Fault. The observations are consistent with a pronounced basin compartmentalization event following the eruption of the MdL which appeared to have blanketed most of the Moodies basin(s) in middle Moodies time and immediately predates the initiation of basin shortening. Basin compartmentalization was likely due to the movement along a group of major faults (Sheba, Haki, Barbrook, Saddleback Faults) between the present Saddleback and Eureka Synclines, creating at least two subbasins in late Moodies time. Even though sediment provenance thus became localized, intensive Archaean weathering likely contributed to generate petrographically similar quartz-rich sandstones in fault-bounded minibasins. The late-Moodies minibasins may have become connected occasionally, allowing concurrent deposition of thin BIFs. A similar phase of movement along the major transcurrent Inyoka Fault may be responsible for the distinct petrographic character of Moodies sandstones south of that fault.

  19. Majewski osteodysplastic primordial dwarfism type II: clinical findings and dental management of a child patient

    PubMed Central

    Terlemez, Arslan; Altunsoy, Mustafa; Celebi, Hakki

    2015-01-01

    Majewski osteodysplastic primordial dwarfism type II (MOPD II) is an unusual autosomal recessive inherited form of primordial dwarfism, which is characterized by a small head diameter at birth, but which also progresses to severe microcephaly, progressive bony dysplasia, and characteristic facies and personality. This report presents a case of a five-year-old girl with MOPD II syndrome. The patient was referred to our clinic with the complaint of severe tooth pain at the left mandibular primary molar teeth. Clinical examination revealed that most of the primary teeth had been decayed and all primary teeth were hypoplastic. Patient’s history revealed delayed development in the primary dentition and radiographic examination showed rootless primary molar teeth and short-rooted incisors. The treatment was not possible due to the lack of root of the left mandibular primary molars; so the teeth were extracted. Thorough and timely dental evaluation is crucial for the prevention of dental problems and the maintenance of oral health in patients with MOPD II syndrome is of utmost importance. PMID:28955524

  20. Majewski osteodysplastic primordial dwarfism type II: clinical findings and dental management of a child patient.

    PubMed

    Terlemez, Arslan; Altunsoy, Mustafa; Celebi, Hakki

    2015-01-01

    Majewski osteodysplastic primordial dwarfism type II (MOPD II) is an unusual autosomal recessive inherited form of primordial dwarfism, which is characterized by a small head diameter at birth, but which also progresses to severe microcephaly, progressive bony dysplasia, and characteristic facies and personality. This report presents a case of a five-year-old girl with MOPD II syndrome. The patient was referred to our clinic with the complaint of severe tooth pain at the left mandibular primary molar teeth. Clinical examination revealed that most of the primary teeth had been decayed and all primary teeth were hypoplastic. Patient's history revealed delayed development in the primary dentition and radiographic examination showed rootless primary molar teeth and short-rooted incisors. The treatment was not possible due to the lack of root of the left mandibular primary molars; so the teeth were extracted. Thorough and timely dental evaluation is crucial for the prevention of dental problems and the maintenance of oral health in patients with MOPD II syndrome is of utmost importance.

  1. Spatial and Temporal Variations of the Indidura Formation (Cenomanian-Turonian) in Northeastern Mexico, Coahuila State

    NASA Astrophysics Data System (ADS)

    Duque-Botero, F.; Maurrasse, F. J.

    2002-12-01

    Rock sequences of Cenomanian-Turonian age commonly assigned to the Indidura Formation in northeastern Mexico, Coahuila State, are shown to include distinct facies indicative of significant spatial variability over the carbonate platform of that region. The type section at Las Delicias is characterized by very-pale orange (10YR8/2) bedded biocalcirudites (10-30 cm thick), without internal structures, and comprises fossil assemblages rich in epifaunal groups, as well as nektonic and planktic taxa. Total inorganic carbon (TIC) varies between 48 % and 94 %, with fluctuation in total organic carbon (TOC) between 0.73 % and 1.58 %. The section at la Casita Canyon, farther southeast, consists of pale yellowish brown (10YR6/2) interbedded biocalcilutites and olive gray (5Y3/2) shales between 3 and 30 cm thick. They also show no apparent original internal structures, and allochems consist essentially of sparse fragments of planktonic foraminifera and radiolarian. TIC content varies between 0.84 % and 59.3 %, whereas TOC changes between 0.17 % and 5.85 %. In contrast, in the Parras Mountains, located south of La Delicias and northwest of la Casita, the succession occurs under a characteristic sequence showing interbeds of light olive gray (5Y6/1) and brownish black to olive black (5YR2/1 - 5Y2/1) shales and marly biocalcilutites 30 to 100 cm thick. They display distinct internal structures arranged in nearly even parallel varve-like dual lamina (<3 mm thick). Few planktonic foraminifera are present, but epifaunal remains are absent, except for occasional rare pelecypods (Inoceramus) that occur intermittently. Laminae from either the shales or limestone facies show that they are formed by differences associated with varying abundance of micro spheres and "micro-ooids", interpreted to be of cyanobacterial origin. TIC content varies from 43 % to 78.3 %, while TOC content remains relatively high with values between 7.35 % and 24.39 %, but more consistently higher than 20 %. Assuming that these facies are coeval, microfacies studies of these rocks as well as acid etched polished rocks, and scanning electron microscope examination (secondary and backscatter imaging) further substantiate these spatial differences. TOC-rich black shales in the Parras region further document unique paleoceanographic conditions, which was also characterized by oxygenation of oceanic waters less effective than usual. These unique paleoceanographic conditions imply that oxygenation of oceanic waters remained apparently less effective than usual throughout the sequence. Temporal distribution of the epifauna and carbon/carbonate variations in the Parras region suggest the effects of strong dysoxic/anoxic bottom conditions on the biota with rhythmical production and disappearance of cyanobacterial mats which remained dominant throughout.

  2. Can tract element distributions reclaim tectonomagmatic facies of basalts in greenstone assemblages?

    NASA Technical Reports Server (NTRS)

    Butler, J. C.

    1986-01-01

    During the past two decades many words have been written both for and against the hypothesis that the tectonic setting of a suite of igneous rocks is retained by the chemical variability within the suite. For example, it is argued that diagrams can be constructed from modern/recent basalt subcompositions within the system Ti-Zr-Y-Nb-Sr such that tectonomagmatic settings can be reclaimed. If one accepts this conclusion, it is tempting to inquire as to how far this hypothesis can be extended into other petrological realms. If chemical variations of metabasalts retain information relating to their genesis (tectonic setting), for example, this would be most helpful in reconstructing the history of basalts from greenstone belts. A discussion follows.

  3. De nouveaux éléments structuraux du complexe aquifère profond du bassin du Rharb (Maroc) : implications hydrogéologiques

    NASA Astrophysics Data System (ADS)

    Kili, Malika; El Mansouri, Bouabid; Chao, Jamal; Fora, Abderrahman Ait

    2006-12-01

    The Rharb basin is located in northwestern Morocco. It is a part of one of the most important hydrogeological basins of Morocco, and extends over some 4000 km 2. The nature of its Plio-Quaternary sedimentary fill and its structural and palaeoenvironmental contexts are reflected by great variations in aerial and temporal facies distribution. This distribution, in turn, is a direct cause of the observed complexity in the geometry of potentially water-bearing beds. In the present work, we present an image of potential new hydrogeological reservoirs and define new structures that partially explain their architecture. To cite this article: M. Kili et al., C. R. Geoscience 338 (2006).

  4. Development of 3-D lithostratigraphic and confidence models at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Buesch, D.C.; Nelson, J.E.; Dickerson, R.P.; Spengler, R.W.

    1993-01-01

    Computerized three-dimensional geologic models of potential high-level nuclear waste repositories such as Yucca Moutain, Nevada, are important for visualizing the complex interplay of (1) thickness and facies variations in lithostratigraphic units and (2) the disruption of these units by faults. The concept of a 'model of confidence' in the lithostratigraphic model is introduced to show where data are located versus regions where interpolations are included. Models of confidence can be based on (1) expert judgment, (2) geostatistical analysis, or (3) a simplified combination of these two methods. Linking of lithostratigraphic models and models of confidence provide guidelines for future characterization and modeling activities, as well as for design and construction of the Exploratory Studies Facility.

  5. A procedure for classifying textural facies in gravel-bed rivers

    Treesearch

    John M. Buffington; David R. Montgomery

    1999-01-01

    Textural patches (i.e., grain-size facies) are commonly observed in gravel-bed channels and are of significance for both physical and biological processes at subreach scales. We present a general framework for classifying textural patches that allows modification for particular study goals, while maintaining a basic degree of standardization. Textures are classified...

  6. Getting to First Base: Prima Facie Arguments for Propositions of Value.

    ERIC Educational Resources Information Center

    Tuman, Joseph S.

    1987-01-01

    Argues that few clear standards exist for value debate. Defines values as instrumental or terminal, and identifies four prima facie burdens necessary for affirming a value resolution: value identification; value criteria; value hierarchy; and topicality through relevance. Examines the role of presumption and burden of proof in value debate. (MM)

  7. Tectonically controlled sedimentation: impact on sediment supply and basin evolution of the Kashafrud Formation (Middle Jurassic, Kopeh-Dagh Basin, northeast Iran)

    NASA Astrophysics Data System (ADS)

    Sardar Abadi, Mehrdad; Da Silva, Anne-Christine; Amini, Abdolhossein; Aliabadi, Ali Akbar; Boulvain, Frédéric; Sardar Abadi, Mohammad Hossein

    2014-11-01

    The Kashafrud Formation was deposited in the extensional Kopeh-Dagh Basin during the Late Bajocian to Bathonian (Middle Jurassic) and is potentially the most important siliciclastic unit from NE Iran for petroleum geology. This extensional setting allowed the accumulation of about 1,700 m of siliciclastic sediments during a limited period of time (Upper Bajocian-Bathonian). Here, we present a detailed facies analysis combined with magnetic susceptibility (MS) results focusing on the exceptional record of the Pol-e-Gazi section in the southeastern part of the basin. MS is classically interpreted as related to the amount of detrital input. The amount of these detrital inputs and then the MS being classically influenced by sea-level changes, climate changes and tectonic activity. Facies analysis reveals that the studied rocks were deposited in shallow marine, slope to pro-delta settings. A major transgressive-regressive cycle is recorded in this formation, including fluvial-dominated delta to turbiditic pro-delta settings (transgressive phase), followed by siliciclastic to mixed siliciclastic and carbonate shoreface rocks (regressive phase). During the transgressive phase, hyperpycnal currents were feeding the basin. These hyperpycnal currents are interpreted as related to important tectonic variations, in relation to significant uplift of the hinterland during opening of the basin. This tectonic activity was responsible for stronger erosion, providing a higher amount of siliciclastic input into the basin, leading to a high MS signal. During the regressive phase, the tectonic activity strongly decreased. Furthermore, the depositional setting changed to a wave- to tide-dominated, mixed carbonate-siliciclastic setting. Because of the absence of strong tectonic variations, bulk MS was controlled by other factors such as sea-level and climatic changes. Fluctuations in carbonate production, possibly related to sea-level variations, influenced the MS of the siliciclastic/carbonate cycles. Carbonate intervals are characterized by a strong decrease of MS values indicates a gradual reduction of detrital influx. Therefore, the intensity of tectonic movement is thought to be the dominant factor in controlling sediment supply, changes in accommodation space and modes of deposition throughout the Middle Jurassic sedimentary succession in the Pol-e-Gazi section and possibly in the Kopeh-Dagh Basin in general.

  8. Spatiotemporal sedimentological and petrophysical characterization of El Gueria reservoir (Ypresian) in sFAX and Gulf of Gabes Basins (SE-Tunisia)

    NASA Astrophysics Data System (ADS)

    Nadhem, Kassabi; Zahra, Njahi; Ménendez, Béatriz; Salwa, Jeddi; Jamel, Touir

    2017-06-01

    El Gueria carbonate Formation (Ypresian) in Tunisia is a proven hydrocarbon reservoir. In the Gulf of Gabes, El Gueria reservoir consists mainly of a nummulitic limestone which is developed in an inner shelf environment. In order to characterize the depositional facies evolution and the petrophysical parameters, and to understand the origin of heterogeneity of El Gueria reservoir, we firstly conducted a sedimentological and a sequence stratigraphy study of this Formation in more than 10 wells especially in P1, then we established a detailed petrophysical study of El Gueria reservoir in P1, P3c and P7d cores. Based on lithostratigraphic and gamma ray correlations of an important number of wells in the study area, a detailed sedimentological study has been established. This latter shows that: (i): The Ypresien deposits are deposited in an inner shelf (El Gueria Formation) in the south and in an outer shelf (Boudabbous Formation) in the north of the study area with the form of horsts and grabens, (ii): 3 distinct members and 7 principal facies within El Gueria Formation have been distinguished. The coupling of data logging and data of the P1 core shows that the El Gueria deposits include 10 transgressive-regressive depositional sequences, while showing from bottom to top a broad regressive tendancy from a subtidal domain during the early Ypresian to an intertidal domain during the middle Ypresian reaching the supratidal environnement during the late Ypresian-early Lutetian. The petrophysical parameters (porosity and permeability) of El Gueria reservoir vary in time and space (laterally and vertically variation) following the deposit environment variation. Particularly, the porosity variation is controlled by eustatic cycles so that high porosities are linked with transgressive phases and low porosities with regressive phases. In addition, the vertical evolution of porosity through the El Gueria reservoir varies following the (i) deposit environments, (ii) type and morphology of nummulites such as large nummulites are more porous than small nummulites and nummilithoclastes (iii) matrix and cement such as micrite are more porous than sparite (iv) microfacies and diagenetic structures (Fractures, stylolithic seals …) such as the fractured wackstone are the most porous and permeable.

  9. Relationships between sedimentation, depositional environments, and coal quality: upper Potomac coalfield, West Virginia and Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jake, T.R.

    1987-09-01

    Evaluations were made of sedimentation patterns and depositional environments from approximately 450 core logs and 225 surface exposures in the Upper Potomac coalfield. The relationships between the clastic depositional facies and the distribution and quality of the Bakerstown and upper Freeport coals were also investigated. Data from 61 Bakerstown and 35 upper Freeport coal samples from selected cores indicate a change from uniform coal quality to highly variable coal quality when moving from related interchannel and bay-fill facies to channel, channel-fill, levee, and crevasse-splay facies. Areas of uniform coal quality range from 20-26% ash and 55-62% fixed carbon (weight percent,more » dry basis), whereas areas of highly variable coal quality range from 26-54% ash and 33-55% fixed carbon. The channel and related facies represent areas where increased fresh water was introduced into the topogenous swamp system, causing increased microbial degradation and the concentration of authigenic minerals within the peat material. These conditions, combined with the introduction of detrital minerals, resulted in areas of lower quality coal.« less

  10. Seismic facies analysis based on self-organizing map and empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Du, Hao-kun; Cao, Jun-xing; Xue, Ya-juan; Wang, Xing-jian

    2015-01-01

    Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and their time window have an obvious effect on the validity of classification and require iterative experimentation and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition (EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for validation. The application results show that seismic facies analysis can be improved and better help the interpretation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool than classical 1D grid SOM method, especially for waveform cluster with a narrow window.

  11. Calpionellid distribution and microfacies across the Jurassic/ Cretaceous boundary in western Cuba (Sierra de los Órganos)

    NASA Astrophysics Data System (ADS)

    López-Martínez, Rafael; Barragán, Ricardo; Reháková, Daniela; Cobiella-Reguera, Jorge Luis

    2013-06-01

    A detailed bed-by-bed sampled stratigraphic section of the Guasasa Formation in the Rancho San Vicente area of the "Sierra de los Órganos", western Cuba, provides well-supported evidence about facies and calpionellid distribution across the Jurassic/Cretaceous boundary. These new data allowed the definition of an updated and sound calpionellid biozonation scheme for the section. In this scheme, the drowning event of a carbonate platform displayed by the facies of the San Vicente Member, the lowermost unit of the section, is dated as Late Tithonian, Boneti Subzone. The Jurassic/Cretaceous boundary was recognized within the facies of the overlying El Americano Member on the basis of the acme of Calpionella alpina Lorenz. The boundary is placed nearly six meters above the contact between the San Vicente and the El Americano Members, in a facies linked to a sea-level drop. The recorded calpionellid bioevents should allow correlations of the Cuban biozonation scheme herein proposed, with other previously published schemes from distant areas of the Tethyan Domain.

  12. Subsurface recognition of oolitic facies in carbonate sequence: Exploration and development applications: Ste. Genevieve Formation (Mississippian), Illinois basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandy, W.F.

    1989-08-01

    The oolitic grainstone facies of the Ste. Genevieve Limestone is a widespread and highly productive reservoir in the Illinois basin. However, exploration and development of these oolitic facies are hampered by the inability to recognize the reservoir on logs. In many areas, the only log data available are old wireline electric logs. Comparison of cores with log response in northern Lawrence field, Lawrence County, Illinois, indicates a subjective but predictable relationship between log signature and carbonate lithology. Two productive lithologies, dolomite and oolitic grainstone, display well-developed SP curves. However, resistivity response is greatest in dense limestone, less well developed inmore » oolitic grainstone, and poorly developed in dolomites. On gamma-ray logs, oolitic facies can be differentiated from dolomites by their lower radioactivity. Oolitic sands are most easily recognized on porosity logs, where their average porosity is 13.7%, only half the average porosity of dolomites. In a new well, the best information for subsequent offset and development of an oolitic reservoir is provided by porosity and dipmeter logs.« less

  13. Application of facies analysis to improve gas reserve growth in Fluvial Frio Reservoirs, La Gloria Field, South Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, W.A.; Jackson, M.L.W.; Finley, R.J.

    1988-01-01

    Geologically based infill-drilling strategies hold great potential for extension of domestic gas resources. Traditional gas-well drilling and development have often assumed homogeneous and continuous reservoirs; uniform gas-well spacing has resulted in numerous untapped reservoirs isolated from other productive sand bodies. Strategically located infill wells drilled into these undrained reservoirs may ultimately contact an additional 20% of original gas in place in Texas gas fields. Tertiary formations in the Texas Gulf Coast commonly exhibit multiple fluvial and fluvial-deltaic reservoirs that contain vertical and horizontal permeability barriers. For example, the Frio La Gloria field (Jim Wells and Brooks Counties, Texas) contains isolatedmore » and compartmentalized reservoirs that can be related to the irregular distribution of heterogeneous facies. Net-sand and log-facies maps in areas of dense well spacing delineate relatively continuous pay defined by lenticular point-bar and channel-fill deposits 1,500-2,500 ft wide. These point-bar deposits are flanked laterally by sand-poor levee and splay facies that isolate the reservoirs into narrow, dip-elongate bands.« less

  14. Analysis on the overpressure characterization with respect to depositional environment facies: Case Study in Miri Area, Baram Delta

    NASA Astrophysics Data System (ADS)

    Mhd Hanapiah, N.; Yusoff, W. I. Wan; Zakariah, M. N. A.

    2017-10-01

    Overpressure studies in oil and gas exploration and production are carried out in order to mitigate any losses that could happen while drilling. These concerns can be addressed by enhancing the understanding of overpressure characterization in the fields. This research emphasizes in determining the pore pressure trend in Miri area to assist pore pressure prediction for future hydrocarbon exploration and production. Generally, pore pressure trends are related to mechanisms that contribute to the overpressure generation. In the region predominant overpressure are disequilibrium compaction within the prodelta shales meanwhile in outer shelf overpressure generation controlled by fluid expansion in deltaic sequence of inner shelf area. The objective of this research is to analyze the pore pressure profile of wells for determining vertical trends of pore pressure for various depositional environment facies of Miri area. Integration of rock physics and pore pressure analysis and relating the trends to environment depositional environment facies within shale underlying sand interval. Analysis done shows that overpressure top is characterize by depositional environment facies within shale underlying sand interval.

  15. An inverted metamorphic field gradient in the central Brooks Range, Alaska and implications for exhumation of high-pressure/low-temperature metamorphic rocks

    USGS Publications Warehouse

    Patrick, B.; Till, A.B.; Dinklage, W.S.

    1994-01-01

    During exhumation of the Brooks Range internal zone, amphibolite-facies rocks were emplaced atop the blueschist/greenschist facies schist belt. The resultant inverted metamorphic field gradient is mappable as a series of isograds encountered as one traverses up structural section. Amphibolite-facies metamorphism occurred at ??? 110 Ma as determined from 40Ar 39Ar analysis of hornblende. This contrasts with 40Ar 39Ar phengite cooling ages from the uderlying schist belt, which are clearly older (by 17-22 m.y.). Fabrics in both the amphibolite-facies rocks and schist belt are characterized by repeated cycles of N-vergent crenulation and transposition that was likely associated with out-of-sequence ductile thrusting in the internal zone of the Brooks Range orogen. Contractional deformation occurred in an overall environment of foreland-directed tectonic transport, broadly synchronous with exhumation of the internal zone, and shortening within the thin-skinned fold and thrust belt. These data are inconsistent with a recently postulated mid-Cretaceous episode of lithospheric extension in northern Alaska. ?? 1994.

  16. A not-so-big crisis: re-reading Silurian conodont diversity in a sequence-stratigraphic framework

    NASA Astrophysics Data System (ADS)

    Jarochowska, Emilia; Munnecke, Axel

    2016-04-01

    Conodonts are extensively used in Ordovician through Triassic biostratigraphy and fossil-based geochemistry. However, their distribution in rock successions is commonly taken at face value, without taking into account their diverse and poorly understood ecology. Multielement taxonomy, ontogenetic and environmental variability, difficulties in extraction, and relative rarity all contribute to the general lack of quantitative studies on conodont stratigraphic distribution and temporal turnover. With respect to Silurian conodonts, the concept of recurrent conodont extinction events - the so called Ireviken, Mulde and Lau events - has become a standard in the stratigraphic literature. The concept has been proposed based on qualitative observations of local extirpations of open-marine pelagic or nekto-benthic taxa and temporary dominance of shallow-water species in the Silurian succession of the Swedish island of Gotland. These changes coincided with positive carbon isotope excursions, abrupt facies shifts, "blooms" of benthic fauna, and changes in reef communities, which have all been combined into a general view of Silurian bio-geochemical events. This view posits a deterministic, reproducible pattern in Silurian conodont diversity, attributed to recurrent ecological or geochemical conditions. The growing body of sequence-stratigraphic interpretations across these events in Gotland and other sections worldwide indicate that in all cases the Silurian "events" are associated with rapid global regressions. This suggests that faunal changes such as the dominance of shallow-water, low-diversity conodont fauna and the increase of benthic invertebrate diversity and abundance represent predictable consequences of the variation in the completeness of the rock record and preservation potential of different environments. Our studies in Poland and Ukraine indicate that the magnitude of change in the taxonomic composition of conodont assemblages across the middle Silurian global regression and the hypothesized Mulde Event is proportional to the associated facies shift. Quantitative data on facies distribution of individual conodont species combined with sequence stratigraphic architecture provides a testable model for the impact of sea-level changes on perceived conodont diversity in a section or basin. This approach highlights the need for quantitative data on conodont distribution in their environmental context, their integration into conodont-based stratigraphy and geochemistry, and for the regular use of Occam's razor to interpretations of paleobiodiversity.

  17. Morpho-stratigraphic characterization of a tufa mound complex in the Spanish Pyrenees using ground penetrating radar and trenching, implications for studies in Mars

    NASA Astrophysics Data System (ADS)

    Pellicer, X. M.; Linares, R.; Gutiérrez, F.; Comas, X.; Roqué, C.; Carbonel, D.; Zarroca, M.; Rodríguez, J. A. P.

    2014-02-01

    The Isona tufa mound complex (ITMC), associated with artesian springs of the Areny-Montsec aquifer, Spanish Pyrenees, is a potential analog for water constructed landforms on Mars. We used Ground Penetrating Radar (GPR), trenching, sedimentological description of exposures, and radiocarbon and U-series dating methods for the geological characterization of the ITMC. Preliminary geomorphological mapping combined with sedimentological analyses permitted the recognition of the different facies and their spatial distribution. GPR surveys conducted next to an outcrop and a trench provided electromagnetic wave velocity in tufas (0.09 and 0.11 m ns-1) and determined the correspondence of the radar signatures with facies types. This was used to reconstruct the tufas internal structure and the depositional stages for two different contexts: (1) an upper unit representing the morpho-stratigraphic record of paleosprings - Tufa 1 - composed of relict tufa mounds older than 350 ka BP; and (2) a lower unit - Tufa 3 - associated with groundwater aquifer outlets (Basturs Lakes). The GPR data allowed depicting the signatures for the vent, pool, rimstone, palustrine, dam, cascade and slope facies. A relationship was inferred between the age of the tufas and the radar signature, in terms of relative amplitude and signal attenuation. Older dry tufas with advanced diagenesis and karstification are characterized by well-defined GPR reflectors and lower attenuation than younger tufas, associated with aquifer discharge and shallower water tables. U-series and radiocarbon ages obtained from the Basturs Lakes tufas indicate that these have been active since 106 ka BP during both cold and mild Marine Isotopic Stages (MIS). We hypothesize that tufas related to the deep-seated Areny-Montsec confined karst aquifer were insensitive to climate variations. Landforms reminiscent of the ITMC have been detected during the last decade on Mars. Since GPR will be part of the ExoMars Rover of the European Space Agency (ESA) mission projected for 2018, we anticipate that our results may be able to constrain the interpretation of landforms possibly related to water on Mars.

  18. Reconstructing the Holocene depositional environments along the northern coast of Sfax (Tunisia): Mineralogical and sedimentological approaches

    NASA Astrophysics Data System (ADS)

    Lamourou, Ali; Touir, Jamel; Fagel, Nathalie

    2017-05-01

    A sedimentological and mineralogical study of sedimentary cores allowed reconstructing the evolution of depositional environments along the Northern coast of Sfax (Tunisia). The aim of this research work is to identify the factors controlling the sedimentation from the Holocene to the Present time. Three 30-m sediment cores collected by drilling at 30 m water depth were analyzed for their color, magnetic susceptibility signal, grain size by laser diffraction, organic matter content by loss of ignition, carbonate content by calcimetry and mineralogy by X-ray diffraction on bulk powder and clay <2 μm. They broadly present the same sedimentological and mineralogical features. Microscopical observations of petrographic slides allowed identifying six main sedimentary facies. Bulk mineralogical assemblages comprised clay minerals, quartz, calcite, gypsum and K-feldspars were examined. Considerable change was observed in the carbonate content that mimicked the bioclaste abundance and diluted the detrital minerals (clay minerals, quartz and feldspars). The gypsum mainly occurred in the lower sedimentary columns (SC12 and SC9) and in the upper/middle of core SC6. The clay fraction was made of a mixture of kaolinite, illite, smectite and palygorskite with no clear variation through core depth. Both grain-size parameters and magnetic susceptibility profile showed a sharp transition in the upper 2-5 m of the sedimentological columns. Coarse, sandy to gravely sediments characterized by a low magnetic susceptibility signal were replaced by fine bioclastic-rich clayey sediments. The analysis of vertical succession of depositional facies revealed a fluvial depositional environment (coastal plain) basically marked by fluvial channels and inundation plains at the bottom of all cores. However, core-top sediments recorded a littoral marine environment with sand depositions rich in gastropods, lamellibranches and algæ. Depositional facies, sedimentological and mineralogical parameters were consistent with a transition from a fluviatile depositional environment with some emersion phases marked by the gypsum precipitation, to a marine littoral environment. Such evolution was accompanied with a relative sea-level rise which flooded the fluvial system at the coastal plain during the Holocene, in agreement with sea-level fluctuations in southeast Tunisia during the Holocene.

  19. Storm and tide influenced depositional architecture of the Pliocene-Pleistocene Chad Formation, Chad Basin (Bornu Sub-basin) NE Nigeria: A mixed fluvial, deltaic, shoreface and lacustrine complex

    NASA Astrophysics Data System (ADS)

    Shettima, Bukar; Kyari, Aji Maina; Aji, Mallam Musa; Adams, Fatimoh Dupe

    2018-07-01

    Lithofacies analyses of the upper part of the Chad Formation (Bama Ridge Complex) in the Bornu Sub-basin of the Chad Basin indicated four facies associations; fluvial, deltaic, shoreface and lacustrine sequences. The fluvial sequences are composed of fining upward cycles with successive occurrence of planar crossbedded sandstone facies displaying unimodal paleocurrent system and rare mudstone facies typical of braided river system. The deltaic succession consists of both fining and coarsening upwards cycles with the former depicting fluvial setting of an upper delta plain while the later suggestive of mouth-bar sequences. The setting displays a polymodal current system of fluvial, waves, storms and tides that were primarily induced by complex interactions of seiches and lunar tides. Similar current systems devoid of fluvial patterns were reflected in the coarsening upward packages of the shoreface sequences. Lacustrine succession composed of thick bioturbated mudstone facies generally defines the base of these coarsening upward profiles, giving a fluvio-lacustrine geomorphic relief where complex interaction developed the deltaic and shoreface facies along its shorelines. Clay mineral fractions of the formation are dominantly kaolinitic, indicating a predominantly humid tropical-subtropical climatic condition during their deposition. This climatic regime falls within the African humid period of the early-mid Holocene that led to the third lacustrine transgression of the Lake Mega-Chad, whereas the subordinate smectite mineralization points to aridification that characterizes most of the post humid period to recent.

  20. Cone penetration test for facies study: a review

    NASA Astrophysics Data System (ADS)

    Satriyo, N. A.; Soebowo, E.

    2018-02-01

    Engineering geology investigation through Cone Penetration Test (with pore-pressure measurements) approach is one of the most effective methods to find out sub surface layer. This method is generally used in Late Quaternary and typical deposit and can also be used for sedimentological purposes. CPTu and drilling core for high-resolution stratigraphy sub surface have been done in many research. These combined data can also be used to detail correlations of sub surface stratigraphy, to identify facies change and to determine the interpretation of sequence stratigraphy. The determination facies distribution research based on CPTu profile, which was included in quantitative data, is rarely done especially in Indonesia which has a different climate. Whereas drilling core description using grain size analysis will provide information on validation about physical lithology characteristics which are developed in research area. The interpretation is given using CPTu curve pattern and cone resistance parameter of CPTu’s data correlated with physical characteristics of drilling core. The cone resistance will provide the strength of the sediment layer which also gives the range of data between clay and sand. Finally, the review will show that each of developing facies characteristic provides a specific curve pattern and every sediment deposit facies can be determined by the transformation of CPTu curve profile. Despite the fact that the research using those methods are quite comprehensive, a review is presented on each of these methods related with the chronologic factor seen by the geological time and different characteristics sediment of different location.

  1. Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: implication for global rise in sea level

    NASA Astrophysics Data System (ADS)

    An, Kaixuan; Chen, Hanlin; Lin, Xiubin; Wang, Fang; Yang, Shufeng; Wen, Zhixin; Wang, Zhaoming; Zhang, Guangya; Tong, Xiaoguang

    2017-12-01

    The global rise in sea level during the Late Cretaceous has been an issue under discussion by the international geological community. Despite the significance, its impact on the deposition of continental basins is not well known. This paper presents the systematic review on stratigraphy and sedimentary facies compiled from 22 continental basins in northern Africa. The results indicate that the region was dominated by sediments of continental facies during Early Cretaceous, which were replaced by deposits of marine facies in Late Cretaceous. The spatio-temporal distribution of sedimentary facies suggests marine facies deposition reached as far south as Taoudeni-Iullemmeden-Chad-Al Kufra-Upper Egypt basins during Turonian to Campanian. These results indicate that northern Africa underwent significant transgression during Late Cretaceous reaching its peak during Turonian to Coniacian. This significant transgression has been attributed to the global high sea-level during this time. Previous studies show that global rise in sea level in Late Cretaceous may have been driven by an increase in the volume of ocean water (attributed to high CO2 concentration and subsequently warm climate) and a decrease in the volume of the ocean basin (attributed to rapid production of oceanic crust and seamounts). Tectonic mechanism of rapid production of oceanic crust and seamounts could play a fundamental role in driving the global rise in sea level and subsequent transgression in northern Africa during Late Cretaceous.

  2. Depositional analysis of Hill sand of Rodessa Formation (lower Cretaceous) in north Shongaloo-Red Rock field, Webster Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamick, J.A.; Sartin, A.A.

    1988-09-01

    Hill sand is an informal subdivision of the Lower Cretaceous Rodessa Formation and is a common hydrocarbon reservoir in northeastern Texas, northern Louisiana, and southern Arkansas. The Hill sand is lithologically variable within the study area and consists of conglomerate, fine-grained sandstone, siltstone, mottled red-green claystone, black shale, and limestone. Five depositional environments were interpreted for lithofacies present in Hill sand cores from the North Shongaloo-Red Rock field. These include facies A, fluvial point bar; facies B, crevasse system; facies C, interdistributary bay; facies D, swamp; and facies E, carbonate interdistributary bay. Fluvial point bar and crevasse deposits commonly formmore » hydrocarbon reservoirs in the field. On a regional scale, depositional environments observed in the Hill sand include several fluvial deposystems trending northeast-southwest through Webster Parish. These deposystems terminate into deltaic distributary mouth bars along a northwest-southeast-trending coastline. Areas west of the coastline were occupied by shallow marine environments. Interchannel areas east of the coastline were occupied by interdistributary bay, lake, and crevasse environments in lower deltaic areas, and by lake, swamp, and crevasse environments in upper deltaic areas. Lowermost deposits of the Hill sand throughout the region are interpreted to consist of shallow marine environments. These marine deposits were overlain by thick, predominantly nonmarine sediments. Near the end of Hill sand deposition, the entire region was covered by very shallow marine environments, prior to deposition of the overlying First Lower Anhydrite Stringer.« less

  3. New model of succession of Middle and Late Pennsylvanian fossil communities in north Texas, Mid-Continent, and Appalachians with implications on black shale controversy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boardman, D.R. II; Yancey, T.E.; Mapes, R.H.

    1983-03-01

    A new model for the succession of Pennsylvanian fossil communities, preserved in cyclothems, is proposed on the basis of more than 200 fossil localities in the Mid-Continent, Appalachians, and north Texas. Early models for Mid-Continent cyclothems placed the black shales in shallow water, with maximum transgression at the fusulinid-bearing zone in the overlying limestone. The most recent model proposed that the black phosphatic shales, which commonly occur between two subtidal carbonates, are widespread and laterally continuous over great distances and represent maximum transgression. The black phosphatic shales contain: ammonoids; inarticulate brachiopods; radiolarians; conularids; shark material and abundant and diverse conodonts.more » The black shales grade vertically and laterally into dark gray-black shales which contain many of the same pelagic and epipelagic forms found in the phosphatic black shales. This facies contains the deepest water benthic community. Most of these forms are immature, pyritized, and generally are preserved as molds. The dark gray-black facies grades into a medium gray shale facies which contains a mature molluscan fauna. The medium gray shale grades into a lighter gray facies, which is dominated by brachiopods, crinoids, and corals, with occasional bivalves and gastropods. (These facies are interpreted as being a moderate to shallow depth shelf community). The brachiopid-crinoid community is succeeded by shallow water communities which may have occupied shoreline, lagoonal, bay, interdeltaic, or shallow prodeltaic environments.« less

  4. Visual acuity testing in diabetic subjects: the decimal progression chart versus the Freiburg visual acuity test.

    PubMed

    Loumann Knudsen, Lars

    2003-08-01

    To study reproducibility and biological variation of visual acuity in diabetic maculopathy, using two different visual acuity tests, the decimal progression chart and the Freiburg visual acuity test. Twenty-two eyes in 11 diabetic subjects were examined several times within a 12-month period using both visual acuity tests. The most commonly used visual acuity test in Denmark (the decimal progression chart) was compared to the Freiburg visual acuity test (automated testing) in a paired study. Correlation analysis revealed agreement between the two methods (r(2)=0.79; slope=0.82; y-axis intercept=0.01). The mean visual acuity was found to be 15% higher (P<0.0001) with the decimal progression chart than with the Freiburg visual acuity test. The reproducibility was the same in both tests (coefficient of variation: 12% for each test); however, the variation within the 12-month examination period differed significantly. The coefficient of variation was 17% using the decimal progression chart, 35% with the Freiburg visual acuity test. The reproducibility of the two visual acuity tests is comparable under optimal testing conditions in diabetic subjects with macular oedema. However, it appears that the Freiburg visual acuity test is significantly better for detection of biological variation.

  5. Observations of Pronounced Greenland Ice Sheet Firn Warming and Implications for Runoff Production

    NASA Technical Reports Server (NTRS)

    Polashenski, Chris; Courville, Zoe; Benson, Carl; Wagner, Anna; Chen, Justin; Wong, Gifford; Hawley, Robert; Hall, Dorothy

    2014-01-01

    Field measurements of shallow borehole temperatures in firn across the northern Greenland ice sheet are collected during May 2013. Sites first measured in 19521955 are revisited, showing long-term trends in firn temperature. Results indicate a pattern of substantial firn warming (up to +5.7C) at midlevel elevations (1400-2500 m) and little temperature change at high elevations (2500 m). We find that latent heat transport into the firn due to meltwater percolation drives the observed warming. Modeling shows that heat is stored at depth for several years, and energy delivered from consecutive melt events accumulates in the firn. The observed warming is likely not yet in equilibrium with recent melt production rates but captures the progression of sites in the percolation facies toward net runoff production.

  6. Geophysical and hydrologic studies of lake seepage variability

    USGS Publications Warehouse

    Toran, Laura; Nyquist, Jonathan E.; Rosenberry, Donald O.; Gagliano, Michael P.; Mitchell, Natasha; Mikochik, James

    2014-01-01

    Variations in lake seepage were studied along a 130 m shoreline of Mirror Lake NH. Seepage was downward from the lake to groundwater; rates measured from 28 seepage meters varied from 0 to −282 cm/d. Causes of this variation were investigated using electrical resistivity surveys and lakebed sediment characterization. Two-dimensional (2D) resistivity surveys showed a transition in lakebed sediments from outwash to till that correlated with high- and low-seepage zones, respectively. However, the 2D survey was not able to predict smaller scale variations within these facies. In the outwash, fast seepage was associated with permeability variations in a thin (2 cm) layer of sediments at the top of the lakebed. In the till, where seepage was slower than that in the outwash, a three-dimensional resistivity survey mapped a point of high seepage associated with heterogeneity (lower resistivity and likely higher permeability). Points of focused flow across the sediment–water interface are difficult to detect and can transmit a large percentage of total exchange. Using a series of electrical resistivity geophysical methods in combination with hydrologic data to locate heterogeneities that affect seepage rates can help guide seepage meter placement. Improving our understanding of the causes and types of heterogeneity in lake seepage will provide better data for lake budgets and prediction of mass transfer of solutes or contaminants between lakes and groundwater.

  7. Sedimentary facies and environmental ichnology of a ?Permian playa-lake complex in western Argentina

    USGS Publications Warehouse

    Zhang, G.; Buatois, L.A.; Mangano, M.G.; Acenolaza, F.G.

    1998-01-01

    A moderately diverse arthropod icnofauna occurs in ?Permian ephemeral lacustrine deposits of the Paganzo Basin that crop out at Bordo Atravesado, Cuesta de Miranda, western Argentina. Sedimentary successions are interpreted as having accumulated in a playa-lake complex. Deposits include three sedimentary facies: (A) laminated siltstone and mudstone: (B) current-rippled cross-laminated very fine grained sandstone: and (C) climbing and wave-rippled cross-laminated fine-grained sandstone deposited by sheet floods under wave influence in the playa-lake complex. Analysis of facies sequences suggests that repeated vertical facies associations result from transgressive regressive episodes of variable time spans. The Bordo Atravesado ichnofauna includes Cruziana problematica, Diplocraterion isp., cf. Diplopadichnus biformis, Kouphichnium? isp., Merostomichnites aicunai, Mirandaichnium famatinense, Monomorphichnus lineatus, Palaeophyeus tubularis, Umfolozia sinuosa and Umfolozia ef. U. longula. The assemblage is largely dominated by arthropod trackways and represents an example of the Scoyenia ichnofacies. Trace fossils are mostly preserved as hypichnial ridges on the soles of facies C beds, being comparatively rare in facies A and B. Ichnofossil preservation was linked to rapid influx of sand via sheet floods entering into the lake. Four taphonomic variants (types 1-4) are recognized, each determined by substrate consistency and time averaging. Type 1 is recorded by the presence of low density assemblages consisting of poorly defined trackways, which suggests that arthropods crawled in soft, probably slightly subaqueous substrates. Type 2 is represented by low to moderate density suites that include sharply defined trackways commonly associated with mud cracks, suggesting that the tracemakers inhabited a firm, desiccated lacustrine substrate. Type 3 displays features of types 1 and 2 and represents palimpsestic bedding surfaces, resulting from the overprint of terrestrial ichnocoenoses over previously formed softground suites. Type 4 differs from type 2 only in that assemblages display a high density of traces, recorded by numerous superimposed trackways, which suggests a major time gap of subaerial exposure before sheet flood entrance. Therefore, type 4 surfaces are mostly interpreted as track imprinted omission surfaces.

  8. Petrologic and zircon U-Pb geochronological characteristics of the pelitic granulites from the Badu Complex of the Cathaysia Block, South China

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhou, Xiwen; Zhai, Mingguo; Liu, Bo; Cui, Xiahong

    2018-06-01

    The recognition of the Indosinian Orogeny in the South China block has been controversial and difficult because of strong weathering and thick cover. High temperature (HT) and high pressure (HP) metamorphic rocks related to this orogeny were considered to be absent from this orogenic belt until the recent discovery of eclogite and granulite facies meta-igneous rocks, occurring as lenses within the meta-sedimentary rocks of the Badu Complex. However, metamorphic state of these meta-sedimentary rocks is still not clear. Besides, there have been no geochronological data of HT pelitic granulites previously reported from the Badu Complex. This paper presents petrographic characteristics and zircon geochronological results on the newly discovered kyanite garnet gneiss, pyroxene garnet gneiss and the HT pelitic granulites (sillimanite garnet gneiss). Mineral assemblages are garnet + sillimanite + ternary feldspar + plagioclase + quartz + biotite for the HT pelitic granulite, kyanite + ternary feldspar + garnet + sillimanite + plagioclase + quartz + biotite for the kyanite garnet gneiss, and garnet + biotite + pyroxene + plagioclase + ternary feldspar + quartz for the pyroxene garnet gneiss, respectively. Decompressional coronas around garnet grains can be observed in all these pelitic rocks. Typical granulite facies mineral assemblages and reaction textures suggest that these rocks experienced HP granulite facies metamorphism and overprinted decompression along a clockwise P-T loop. Results from integrated U-Pb dating and REE analysis indicate the growth of metamorphic zircons from depleted heavy REE sources (100-50 chondrite) compared with detrital zircons derived from granitic sources (typically > 1000 chondrite). Metamorphic zircons in HP granulite exhibit no or subdued negative Eu anomalies, which perhaps indicate zircon overgrowth under eclogite facies conditions. The zircon overgrowth ages range from 250 to 235 Ma, suggesting that HP granulite (eclogite) to granulite facies metamorphism of these supracrustal rocks occurred in the Early-Middle Triassic. Based on the presence of HP granulite facies pelitic rocks, it is inferred that significant underthrusting was involved during the Indosinian Orogeny which introduced these supracrustal rocks to lower crustal levels.

  9. Facies-controlled fluid migration patterns and subsequent reservoir collapse by depressurization - the Entrada Sandstone, Utah

    NASA Astrophysics Data System (ADS)

    Sundal, A.; Skurtveit, E.; Midtkandal, I.; Hope, I.; Larsen, E.; Kristensen, R. S.; Braathen, A.

    2016-12-01

    The thick and laterally extensive Middle Jurassic Entrada Sandstone forms a regionally significant reservoir both in the subsurface and as outcrops in Utah. Individual layers of fluvial sandstone within otherwise fine-grained aeolian dunes and silty inter-dune deposits of the Entrada Earthy Member are of particular interest as CO2 reservoir analogs to study injectivity, reservoir-caprock interaction and bypass systems. Detailed mapping of facies and deformation structures, including petrographic studies and core plug tests, show significant rock property contrasts between layers of different sedimentary facies. Beds representing fluvial facies appear as white, medium-grained, well-sorted and cross-stratified sandstone, displaying high porosity, high micro-scale permeability, low tensile strength, and low seismic velocity. Subsequent to deposition, these beds were structurally deformed and contain a dense network of deformation bands, especially in proximity to faults and injectites. Over- and underlying low-permeability layers of inter-dune aeolian facies contain none or few deformation bands, display significantly higher rock strengths and high seismic velocities compared to the fluvial inter-beds. Permeable units between low-permeability layers are prone to become over-pressured during burial, and the establishment of fluid escape routes during regional tectonic events may have caused depressurization and selective collapse of weak layers. Through-cutting, vertical sand pipes display large clasts of stratified sandstone suspended in remobilized sand matrix, and may have served as permeable fluid conduits and pressure vents before becoming preferentially cemented and plugged. Bleached zones around faults and fractures throughout the succession indicate leakage and migration of reducing fluids. The fluvial beds are porous and would appear in wireline logs and seismic profiles as excellent reservoirs; whereas due to dense populations of deformation bands they may in fact display reduced horizontal and vertical permeability locally. Facies-related differences in geomechanical properties, pressure distribution and selective structural collapse have significant implications for injectivity and reservoir behavior.

  10. Sedimentology of the lower Karoo Supergroup fluvial strata in the Tuli Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Bordy, Emese M.; Catuneanu, Octavian

    2002-11-01

    The Karoo Supergroup in the Tuli Basin (South Africa) consists of a sedimentary sequence (˜450-500 m) composed of four stratigraphic units, namely the informal Basal, Middle and Upper Units, and the formal Clarens Formation. The units were deposited in continental settings from approximately Late Carboniferous to Middle Jurassic. This paper focuses on the ˜60-m-thick Basal Unit, which was examined in terms of sedimentary facies and palaeo-environments based on evidence provided by primary sedimentary structures, palaeo-flow measurements, palaeontological findings, borehole data (59 core descriptions) and stratigraphic relations. Three main facies associations have been identified: (i) gravelstone (breccias and conglomerate-breccias), (ii) sandstone and (iii) fine-grained sedimentary rocks. The coarser facies are interpreted as colluvial fan deposits, possibly associated with glaciogenic diamictites. The sandstone facies association is mainly attributed to channel fills of low sinuosity, braided fluvial systems. The coal-bearing finer-grained facies are interpreted as overbank and thaw-lake deposits, and represent the lower energy correlatives of the sandy channel fills. Sediment aggradation in this fluvio-lacustrine system took place under cold climatic conditions, with floating lake ice likely associated with lacustrine environments. Palaeo-current indicators suggest that the highly weathered, quartz-vein-rich metamorphic rock source of the Basal Unit was situated east-northeast of the study area. The accumulation of the Basal Unit took place within the back-bulge depozone of the Karoo foreland system. In addition to flexural subsidence, the amount of accommodation in this tectonic setting was also possibly modified by extensional tectonism in the later stages of the basin development. Based on sedimentological and biostratigraphic evidence, the coal-bearing fine-grained facies association displays strong similarities with the Vryheid Formation of the main Karoo Basin to the south. The lowermost non-fossiliferous breccias have been correlated before with the Dwyka Group in the main Karoo, and hence the Basal Unit may be regarded as the distal equivalent of the Dwyka and Ecca groups to the south.

  11. Larger benthic foraminifera of the Paleogene Promina Beds (Croatia)

    NASA Astrophysics Data System (ADS)

    Cosovic, V.; Mrinjek, E.; Drobne, K.

    2012-04-01

    In order to add more information about complex origin of Promina Beds (traditionally interpreted as Paleogene molasse of Dinarides), two sections (Lišani Ostrovački and Ostrovica, Central Dalmatia, Croatia) have been studied in detail. Sampled carbonate sequences contain predominantly coralline red algae, larger benthic foraminifera and corals. Based on sedimentary textures, nummulitid (Nummulites s.str and Asterigerina sp.) test shapes and the associated skeletal components, altogether three types of the Middle Eocene (Lutetian to Bartonian) facies were recognized. The Ostrovica section is composed of alternating couples of marly limestones and marls, several decimeters thick with great lateral continuity. Two facies which vertically alternate are recognized as Nummulites - Asterigerina facies, where patchily dispersed large, robust and party reworked larger benthic foraminifera constitute 20% and small bioclasts (fomaniniferal fragments and whole tests less than 3 mm in diameters) 10% of rock volume and, Coral - Red algal facies with coral fragments of solitary and colonial taxa up to 1 cm in size constitute 5 - 40%, red algae 15 - 60% and lager benthic foraminifera up to 5% of rock volume. The textural and compositional differences among the facies suggest rhythmic exchanges of conditions that characterize shallower part of the mesophotic zone with abundant nummulithoclasts with deeper mesophotic, lime mud-dominated settings where nummulitids with the flat tests, coralline red algae and scleractinian corals are common. The scleractinian corals (comprising up to 20% of rock volume) encrusted by foraminifera (Acervulina, Haddonia and nubeculariids) or coralline red algae and foraminiferal assemblage made of orthophragminid and nummulitid tests scattered in matrix, are distributed uniformly throughout the studied Lišani Ostrovački section. In the central part of section, wavy to smooth thin (< 1 mm) crusts (laminas) alternating with encrusted corals occur. The characteristics of associated fauna and spatial relationship between corals and laminations indicate that this facies originated in a mid-ramp (shelf) setting.

  12. Facies And Bedding Analysis of Deep-Marine, Arc-Related, Sediementary Rocks Cored on International Ocean Drilling Program Expedition 351.

    NASA Astrophysics Data System (ADS)

    Johnson, K. E.; Marsaglia, K. M.

    2015-12-01

    The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) arc volcanic sediment sources. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR) in the Amami-Sankaku Basin on International Ocean Discovery Program (IODP) Expedition 351 contains evidence of the variety of sediment sources that have existed in the area as a result of changing tectonic regimes through arc development, backarc basin formation and remnant arc abandonment. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. These materials contain a crucial record of arc development complementary to the Neogene history preserved in the active reararc (Expedition 350) and compressed whole-arc record in the current forearc (Expedition 352). A database of stratigraphic columns was created to display grain size trends, facies changes, and bedding characteristics. Individual beds (depositional events) were classified using existing and slightly modified classification schemes for muddy, sandy and gravel-rich gravity flow deposits, as well as muddy debris flows and tuffs. Utilizing the deep marine facies classes presented by Pickering et al. (1986), up section changes are apparent. Through time, as the arc developed, facies and bedding types and their proportions change dramatically and relatively abruptly. Following arc initiation facies are primarily mud-rich with intercalated tuffaceous sand. In younger intervals, sand to gravel gravity-flow deposits dominate, becoming more mud-rich. Muddy gravity flow deposits, however, dominate farther upsection. The overall coarsening-upward pattern (Unit III) is consistent with building of the arc edifice. Farther upsection (Unit II) an abrupt fining-upward trend represents the onset of isolation of the KPR as backarc spreading in the Shikoku Basin was initiated. This information will be combined with volcanic provenance and geochemical information from other studies, ultimately creating a deep-marine facies model for intraoceanic arc systems.

  13. Deposition of sedimentary organic matter in black shale facies indicated by the geochemistry and petrography of high-resolution samples, blake nose, western North Atlantic

    USGS Publications Warehouse

    Barker, C.E.; Pawlewicz, M.; Cobabe, E.A.

    2001-01-01

    A transect of three holes drilled across the Blake Nose, western North Atlantic Ocean, retrieved cores of black shale facies related to the Albian Oceanic Anoxic Events (OAE) lb and ld. Sedimentary organic matter (SOM) recovered from Ocean Drilling Program Hole 1049A from the eastern end of the transect showed that before black shale facies deposition organic matter preservation was a Type III-IV SOM. Petrography reveals that this SOM is composed mostly of degraded algal debris, amorphous SOM and a minor component of Type III-IV terrestrial SOM, mostly detroinertinite. When black shale facies deposition commenced, the geochemical character of the SOM changed from a relatively oxygen-rich Type III-IV to relatively hydrogen-rich Type II. Petrography, biomarker and organic carbon isotopic data indicate marine and terrestrial SOM sources that do not appear to change during the transition from light-grey calcareous ooze to the black shale facies. Black shale subfacies layers alternate from laminated to homogeneous. Some of the laminated and the poorly laminated to homogeneous layers are organic carbon and hydrogen rich as well, suggesting that at least two SOM depositional processes are influencing the black shale facies. The laminated beds reflect deposition in a low sedimentation rate (6m Ma-1) environment with SOM derived mostly from gravity settling from the overlying water into sometimes dysoxic bottom water. The source of this high hydrogen content SOM is problematic because before black shale deposition, the marine SOM supplied to the site is geochemically a Type III-IV. A clue to the source of the H-rich SOM may be the interlayering of relatively homogeneous ooze layers that have a widely variable SOM content and quality. These relatively thick, sometimes subtly graded, sediment layers are thought to be deposited from a Type II SOM-enriched sediment suspension generated by turbidities or direct turbidite deposition.

  14. Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust

    NASA Astrophysics Data System (ADS)

    Yang, Xin-Yue

    Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone in the Parry Sound domain, Ontario, formed at upper amphibolite facies conditions. The deformation process of the shear zone involves fully plastic deformation and high-temperature dynamic recrystallization and annealing recovery of both quartz and plagioclase. Geochemical evidence indicates that the chemical changes in the deformed rocks resulted from mixing of mafic and felsic layers together with fluid-assisted mass transfer within the shear zone. A geochemical model that incorporates closed-system two-component mixing with open-system mass transfer can well explain the observed major and trace element data.

  15. Mineral textural evolution and PT-path of relict eclogite-facies rocks in the Paleoproterozoic Nagssugtoqidian Orogen, South-East Greenland

    NASA Astrophysics Data System (ADS)

    Müller, Sascha; Dziggel, Annika; Kolb, Jochen; Sindern, Sven

    2018-01-01

    The Nagssugtoqidian Orogen in South-East Greenland is a deeply eroded, Paleoproterozoic collision orogen. It consists of a variety of Archean and Paleoproterozoic rocks, most notably TTG gneiss, a variety of supracrustal rocks and basic dykes. This study aims at providing new insight into the geodynamic processes and subduction depth of this orogen by investigating the metamorphic evolution of garnet pyroxenite, retrogressed eclogite and amphibolite-facies rocks that are exposed within the Kuummiut Terrane of the Nagssugtoqidian Orogen. The garnet-pyroxenite has a dominant mineral assemblage of garnet, orthopyroxene, clinopyroxene and hornblende, while garnet-amphibolite and garnet-kyanite schist are made up of garnet, hornblende, plagioclase and quartz, and garnet, kyanite, biotite and quartz, respectively. Relicts of, and pseudomorphs after, eclogite-facies mineral assemblages are frequently found within basic metavolcanic rocks and Paleoproterozoic discordant basic dykes. In the retrogressed eclogite, the retrograde mineral reactions ceased prior to completion, resulting in the formation of two domains. A clinopyroxene domain consists of diopside-plagioclase symplectites, which are interpreted to have grown at the expense of omphacite. The symplectites are surrounded and partly replaced by hornblende and plagioclase. Omphacite (XJd 25-42) is preserved in a Na-rich sample, where it occurs in the core of large clinopyroxene and as inclusion in garnet and hornblende. In a garnet domain, garnet is variably replaced by an inner corona of plagioclase and an outer corona of amphibole +/- orthopyroxene and clinopyroxene. The degree of retrogression as well as the type of the retrograde assemblage in both domains appears to be dependent on fluid activity. Large garnet grains preserve Ca-rich cores, interpreted as prograde in origin, while Mg-rich garnet rims formed during eclogite-facies metamorphism and later re-equilibration. Pseudosection modelling combined with conventional geothermobarometry reveals a clockwise PT-evolution, involving eclogite-facies conditions of 17-19 kbar and 740-810 °C, followed by near-isothermal decompression to medium-pressure granulite-facies conditions (13.8-15.4 kbar, 760-880 °C) and subsequent decompression with minor cooling to high-pressure amphibolite-facies grades (8.8-10.9 kbar, 660-840 °C). These data show that rocks of the Kuummiut Terrane were exhumed from 70 to about 30 km into the mid- and lower crust. The PT-path implies that exhumation initially was rapid and tectonically-controlled.

  16. An Appalachian Amazon? Magnetofossil evidence for the development of a tropical river-like system in the mid-Atlantic United States during the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Kopp, R. E.; Schumann, D.; Raub, T. D.; Powars, D. S.; Godfrey, L. V.; Swanson-Hysell, N.; Maloof, A. C.; Vali, H.

    2009-12-01

    The Paleocene-Eocene Thermal Maximum is preserved within the mid-Atlantic Coastal Plain as a unique clay deposited in the Salisbury Embayment, a tectonic downwarp that stretches from southeastern Virginia to central New Jersey. The mostly massive and kaolinite-rich clay is distinct from the glauconitic sediments that otherwise characterize regional Paleocene and lower Eocene deposits. It contains abundant magnetite produced by magnetotactic bacteria and by larger, presumptively eukaryotic microorganisms not yet known from any other locality. Because most magnetotactic bacteria live within a specific, narrow redox environment -- the suboxic zone of a water column or sediments, where both oxygen and sulfide concentrations are low and iron concentrations relatively high -- their biominerals can be used as a paleoenvironmental tracer. High iron bioavailability indicates a relatively thick suboxic zone. The preservation of iron biominerals suggests that this zone was located in sediments, rather than in the water column, as water column suboxia is associated with high sedimentary organic carbon concentrations, which promote magnetite dissolution. The thickest modern, sedimentary, high-iron suboxic zones occur in tropical river-dominated shelves, such as the Amazon Shelf. These zones result from the combination of a moderately high input of reactive Fe (produced by tropical weathering conditions) with a high-energy environment (produced by tides, frontal-zone currents, and surface waves) that promotes the regular physical reworking of the sediments, thus allowing the re-oxidation of reduced Fe and increasing the availability of Fe as an electron acceptor. To test the "Appalachian Amazon" hypothesis, we mapped the distribution of magnetofossils throughout the Salisbury Embayment using ferromagnetic resonance spectroscopy and electron microscopy, supplemented by organic carbon isotope data. We find three magnetic facies in the clay: Facies 1, characterized by a mix of detrital particles and magnetofossils; Facies 2, with a higher magnetofossil-to-detrital ratio; and Facies 3, with only transient magnetofossils. Facies 1 occurs in inner-middle neritic deposits of central Maryland and northern Virginia, near where the modern Potomac crosses the Fall Line. Facies 2 occurs throughout the middle neritic deposits of eastern Maryland and Virginia and of southern New Jersey. Facies 3 occurs in the outer neritic deposits of eastern New Jersey and on the northern and southern flanks of the embayment. Consistent with the hypothesis, this distribution suggests a link between the magnetofossil distribution and a river system with an outlet in the vicinity of Facies 1. The development of such a river system may have been linked to a combination of more intense weathering, higher precipitation, and increased storminess.

  17. Stable iron isotopes and microbial mediation in red pigmentation of the Rosso Ammonitico (mid-late Jurassic, Verona area, Italy).

    PubMed

    Préat, Alain R; de Jong, Jeroen T M; Mamet, Bernard L; Mattielli, Nadine

    2008-08-01

    The iron (Fe) isotopic composition of 17 Jurassic limestones from the Rosso Ammonitico of Verona (Italy) have been analyzed by Multiple-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). Such analysis allowed for the recognition of a clear iron isotopic fractionation (mean -0.8 per thousand, ranging between -1.52 to -0.06 per thousand) on a millimeter-centimeter scale between the red and grey facies of the studied formation. After gentle acid leaching, measurements of the Fe isotopic compositions gave delta(56)Fe values that were systematically lower in the red facies residues (median: -0.84 per thousand, range: -1.46 to +0.26 per thousand) compared to the grey facies residues (median: -0.08 per thousand, range: -0.34 to +0.23 per thousand). In addition, the red facies residues were characterized by a lighter delta(56)Fe signal relative to their corresponding leachates. These Fe isotopic fractionations could be a sensitive fingerprint of a biotic process; systematic isotopic differences between the red and grey facies residues, which consist of hematite and X-ray amorphous iron hydroxides, respectively, are hypothesized to have resulted from the oxidizing activity of iron bacteria and fungi in the red facies. The grey Fe isotopic data match the Fe isotopic signature of the terrestrial baseline established for igneous rocks and low-C(org) clastic sedimentary rocks. The Fe isotopic compositions of the grey laminations are consistent with the influx of detrital iron minerals and lack of microbial redox processes at the water-interface during deposition. Total Fe concentration measurements were performed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) (confirmed by concentration estimations obtained by MC-ICP-MS analyses of microdrilled samples) on five samples, and resultant values range between 0.30% (mean) in the grey facies and 1.31% (mean) in the red facies. No correlation was observed between bulk Fe content and pigmentation or between bulk Fe content and Fe isotopic compositions. The rapid transformation of the original iron oxyhydroxides to hematite could have preserved the original isotopic composition if it had occurred at about the same temperature. This paper supports the use of Fe isotopes as sensitive tracers of biological activities recorded in old sedimentary sequences that contain microfossils of iron bacteria and fungi. However, a careful interpretation of the iron isotopic fractionation in terms of biotic versus abiotic processes requires supporting data or direct observations to characterize the biological, (geo)chemical, or physical context in relation to the geologic setting. This will become even more pertinent when Fe isotopic studies are expanded to the interplanetary realm.

  18. Non-marine carbonate facies, facies models and palaeogeographies of the Purbeck Formation (Late Jurassic to Early Cretaceous) of Dorset (Southern England).

    NASA Astrophysics Data System (ADS)

    Gallois, Arnaud; Bosence, Dan; Burgess, Peter

    2015-04-01

    Non-marine carbonates are relatively poorly understood compared with their more abundant marine counterparts. Sedimentary facies and basin architecture are controlled by a range of environmental parameters such as climate, hydrology and tectonic setting but facies models are few and limited in their predictive value. Following the discovery of extensive Early Cretaceous, non-marine carbonate hydrocarbon reservoirs in the South Atlantic, the interest of understanding such complex deposits has increased during recent years. This study is developing a new depositional model for non-marine carbonates in a semi-arid climate setting in an extensional basin; the Purbeck Formation (Upper Jurassic - Lower Cretaceous) in Dorset (Southern England). Outcrop study coupled with subsurface data analysis and petrographic study (sedimentology and early diagenesis) aims to constrain and improve published models of depositional settings. Facies models for brackish water and hypersaline water conditions of these lacustrine to palustrine carbonates deposited in the syn-rift phase of the Wessex Basin will be presented. Particular attention focusses on the factors that control the accumulation of in-situ microbialite mounds that occur within bedded inter-mound packstones-grainstones in the lower Purbeck. The microbialite mounds are located in three units (locally known as the Skull Cap, the Hard Cap and the Soft Cap) separated by three fossil soils (locally known as the Basal, the Lower and the Great Dirt Beds) respectively within three shallowing upward lacustrine sequences. These complex microbialite mounds (up to 4m high), are composed of tabular small-scale mounds (flat and long, up to 50cm high) divided into four subfacies. Many of these small-scale mounds developed around trees and branches which are preserved as moulds (or silicified wood) which are surrounded by a burrowed mudstone-wackestone collar. Subsequently a thrombolite framework developed on the upper part only within bedded inter-mound packestones-grainstones. Finally a discontinuous basal laminated subfacies can be found overlaying the fossil soils. The overall control on facies and their distribution is the tectonic control as highlighted by the activity of the two main extensional faults during Purbeck times. The tectonic control on development of microbialite mounds is indicated by their relationship with the relay ramp. Their occurrence is controlled by palaeotopography generated on sub-aerial exposure surfaces, palaesols and early conifer trees and developed mainly on the shallowest area of the lake as indicated by their relationship with the inter-mound packstone-grainstone facies and the palaeosols. The new depositional models developed in this study integrate sedimentological facies models with the syn-rift setting of the Wessex Basin to explain the distribution of the microbialite mounds.

  19. Zircon and monazite petrochronologic record of prolonged amphibolite to granulite facies metamorphism in the Ivrea-Verbano and Strona-Ceneri Zones, NW Italy

    NASA Astrophysics Data System (ADS)

    Guergouz, Celia; Martin, Laure; Vanderhaeghe, Olivier; Thébaud, Nicolas; Fiorentini, Marco

    2018-05-01

    In order to improve the understanding of thermal-tectonic evolution of high-grade terranes, we conducted a systematic study of textures, REE content and U-Pb ages of zircon and monazite grains extracted from migmatitic metapelites across the amphibolite to granulite facies metamorphic gradient exposed in the Ivrea-Verbano and Strona-Ceneri Zones (Italy). This study documents the behaviour of these accessory minerals in the presence of melt. The absence of relict monazite grains in the metasediments and the gradual decrease in the size of inherited zircon grains from amphibolite to granulite facies cores indicate partial to total dissolution of accessory minerals during the prograde path and partial melting. The retrograde path is marked by (i) growth of new zircon rims (R1 and R2) around inherited cores in the mesosome, (ii) crystallisation of stubby zircon grains in the leucosome, especially at granulite facies, and (iii) crystallisation of new monazite in the mesosome. Stubby zircon grains have a distinctive fir-tree zoning and a constant Th/U ratio of 0.20. Together, these features reflect growth in the melt; conversely, the new zircon grains with R1 rims have dark prismatic habits and Th/U ratios < 0.1, pointing to growth in solid residues. U-Pb ages obtained on both types are similar, indicating contemporaneous growth of stubby zircon and rims around unresorbed zircon grains, reflecting the heterogeneous distribution of the melt at the grain scale. In the Ivrea-Verbano Zone the interquartile range (IQR) of U-Pb ages on zircon and monazite are interpreted to represent the length of zircon and monazite crystallisation in the presence of melt. Accordingly, they provide an indication on the minimum duration for high-temperature metamorphism and partial melting of the lower crust: 20 Ma and 30 Ma in amphibolite and granulite facies, respectively. In amphibolite facies, zircon crystallisation between 310 and 294 Ma (IQR) is interpreted to reflect metamorphic peak condition and earlier retrograde history; conversely, monazite crystallisation between 297 and 271 Ma (IQR) reflects cooling under 750 °C to a temperature close to the solidus. In granulite facies, zircon crystallisation between 295 and 265 Ma (IQR) is interpreted to reflect high-temperature conditions, which were attained after peak of metamorphism during isothermal decompression and subsequent cooling under 850-950 °C. The observed decrease of U-Pb ages in metamorphic zircon and monazite from amphibolite to granulite facies (i.e. from the middle to the lower crust) is interpreted to record slow cooling and crystallisation of the Variscan orogenic root at the transition from orogenic collapse to opening of the Tethys Ocean.

  20. Tectono-metamorphic evolution of meta-ophiolitic units along Susa Valley (Italian Western Alps): new suggestions for the exhumation processes

    NASA Astrophysics Data System (ADS)

    Ghignone, Stefano; Borghi, Alessandro; Balestro, Gianni; Gattiglio, Marco

    2017-04-01

    In the inner Western Alps, meta-ophiolite units (i.e., the Piemonte Zone) show different stages of the tectono-metamorphic evolution, since the early phases of subduction to the latest exhumation steps. Tectono-metamorphic data collected through the meta-ophiolite units of the Piemonte Zone along the middle Susa Valley allowed to infer new ideas about the exhumation processes that developed in the (U)HP units. In this area, Zermatt-Saas-like meta-ophiolite unit (i.e., the eclogite-facies Internal Piemonte Zone, IPZ) are tectonically overlain by Combin-like ones (i.e., the blueschist-facies External Piemonte Zone, EPZ), through a thick shear zone (i.e., the Susa Shear Zone, SSZ). Metamorphic history was achieved by analyzing basic rocks (metabasalt and Fe-Ti metagabbro) and sedimentary rocks derived from reworking basic rocks in oceanic environment (basic sandstones and conglomerates, and ophiolitic breccia). Different P-T paths were inferred for IPZ and EPZ, according with mineral assemblages and realizations of pseudosections. In the IPZ, four tectono-metamorphic events, developed under variables metamorphic conditions, were recognized. The first (peak-P) event shows (U)HP conditions, defined by the occurrence of relic mineral assemblage (Grt I+ Omp I + Rt). The paragenesis is completed by Zo + Pg pseudomorphs, implying that Lws-eclogite facies were reached. The discovery in Grt (and Rt) relics inclusions of black euhedral pseudomorphs of disordered graphite, suggesting to be derived from original microdiamonds, agree with other petrologic constrains. The second event, marked by the Grt II + Omp II + Ph + Gln + Zo assemblage, developed under epidote-eclogite facies conditions. Following a retrograde and decompressional trajectory, the IPZ was then re-equilibrated under greenschist-facies conditions and a new assemblage (Ab + Chl + Mu + Czo + Ttn + Act) overprinted HP paragenesis. The last event is marked by a weak heating, with crystallization of Bt + Ep + Olig + Hbl (Prg) + Ms. The EPZ shows a different metamorphic evolution, where only two events were recognized. The first event developed under blueschist-facies conditions, with relics of mineral assemblages consisting of Gln + Rt + Ph. Then, a retrograde trajectory re-equilibrated EPZ under greenschist-facies conditions and a new stable mineral assemblage (Ab + Chl + Mu + Ttn + Act + Czo) grew. The inferred P-T path suggests, for the IPZ, a first isothermal exhumation stage, likely driven by buoyancy forces from the base of the orogenic wedge. In the EPZ, HP peak occurs at the same gradient of the second event in the IPZ, suggesting that, during exhumation of the IPZ, the EPZ was still subducted. The strong re-equilibration under greenschist-facies conditions suggests a stage of slow exhumation rate, which can be related to the coupling between IPZ and EPZ.

  1. Protracted tectono-metamorphic history of the SE Superior Province : contribution of 40Ar/39Ar thermochronology in the Abitibi-Opatica contact zone, Québec, Canada

    NASA Astrophysics Data System (ADS)

    Daoudene, Yannick; Tremblay, Alain; Ruffet, Gilles; Leclerc, François; Goutier, Jean

    2015-04-01

    Archean orogens mainly consist of greenstone belts juxtaposing deeper crustal domains of TTG-type plutonic rocks. The greenstone belts show regional folds, penetrative steeply-dipping fabrics, and localised shear zones, whereas the plutonic belts predominantly display dome structures. Concurrently, rocks in Archean orogens undergone MT/HT-LP/MP metamorphic conditions that vary, from upper to lower crustal domains, between greenschist- and granulite-facies, respectively. These structural and metamorphic variations are well-documented, but modes of deformation related to such orogens is still debated. Some studies suggest that the Archean tectonic processes were comparable to present-day plate tectonics and the Archean greenstone belts were interpreted as tectonic collages commonly documented in Phanerozoic subduction/collision zones. Alternative models propose that the Archean tectonics were different from those predicted by the plate tectonics paradigm, mainly due to the existence of a hotter mantle and a mechanically weak crust. In such models, the burying and exhumation of crustal rocks are attributed to the vertical transfer of material, resulting in the development of pop-down and domes structures. As a contribution of the study of mechanisms that might have operated during the Archean, we present a structural and metamorphic study of the contact zone between the Abitibi subprovince (ASP), which contains greenstone belts, and the Opatica subprovince (OSP), which is dominated by plutonic rocks, of the Superior Province. The 40Ar/39Ar dating of amphiboles and micas is used to constrain the age and duration of regional metamorphism and associated deformations. On the basis of seismic profiling, showing a north-dipping lithospheric-scale reflector, the ASP-OSP contact has been interpreted as the surficial trace of an Archean subduction zone. However, our structural analysis suggest that the ASP overlies the OSP and that the ASP-OSP contact does not show evidences of an important sub-vertical shearing deformation as expected if it was a major upper plate-lower plate boundary. Furthermore, the contact does not present significant metamorphic break between the two domains, but a progressive increasing of metamorphism toward the OSP, from greenschist- to amphibolite-facies conditions. Based on these structural and metamorphic characteristics, we suggest that the OSP exposes the deepest rocks at outcrop of an ASP-OSP crust in the study area. Regionally, the 40Ar/39Ar ages acquired during this study indicate that the ASP-OSP contact records a protracted metamorphic history that started around 2685 Ma. The structural and isotopic age data suggest that, from ~2685 Ma to ~2632 Ma, the deepest level of the ASP and the underlying OSP reached amphibolite-facies metamorphic conditions and that regional deformation was accommodated by an overall horizontal shortening and sub-vertical transfers of crustal material. Subsequently, the cooling of these crustal rocks was accompanied by strain localisation, which led to the development of oblique strike-slip shear zones from ~2600 Ma, when the lateral flowing of crustal material became predominant. Our 40Ar/39Ar data compared with metamorphic ages documented in adjacent areas of the Superior Province suggests that the peak and duration of regional metamorphism might have been coeval over a large region. This rather favours a mode of pervasive deformation as expected in vertical tectonics.

  2. Deposits related to supercritical flows in glacifluvial deltas and subaqueous ice-contact fans: Integrating facies analysis and ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Lang, Joerg; Sievers, Julian; Loewer, Markus; Igel, Jan; Winsemann, Jutta

    2017-04-01

    Bedforms related to supercritical flows have recently received much interest and the understanding of flow morphodynamics and depositional processes has been greatly advanced. However, outcrop studies of these bedforms are commonly hampered by their long wavelengths. Therefore, we combined outcrop-based facies analysis with extensive ground-penetrating radar (GPR) measurements. Different GPR antennas (200, 400 and 1500 MHz) were utilised to measure both long profiles and densely spaced grids in order to map the large-scale facies architecture and image the three-dimensional geometry of the deposits. The studied delta and subaqueous ice-contact fan successions were deposited within ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. These glacilacustrine depositional systems are characterised by high aggradation rates due to the rapid expansion and deceleration of high-energy sediment-laden flows, favouring the preservation of bedforms related to supercritical flows. In flow direction, delta foresets commonly display lenticular scours, which are 2 to 6 m wide and 0.15 to 0.5 m deep. Characteristically, scours are filled by upslope dipping backsets, consisting of pebbly sand. In a few cases, massive and deformed strata were observed, passing upflow into backsets. Across flow, scours are 2 to 3 m wide and typically display a concentric infill. The scour fills are commonly associated with subhorizontally or sinusoidal stratified pebbly sand. These facies types are interpreted as deposits of cyclic steps and antidunes, respectively, representing deposition from supercritical density flows, which formed during high meltwater discharge events or regressive slope failures (Winsemann et al., in review). The GPR-sections show that the scour fills form trains along the delta foresets, which can be traced for up to 15 m. The studied subaqueous ice-contact fan succession relates to the zone of flow transition of a supercritical plane-wall efflux-jet and is characterised by deposits of chutes-and-pools, antidunes and humpback dunes (Lang & Winsemann, 2013). In the GPR-sections, long wavelength (2 to 40 m) sinusoidal reflectors with lateral extents of up to 175 m represent the dominant radar facies, which is interpreted as deposits of stationary aggrading antidunes. This radar facies is associated with lenses (2 to 15 m wide, 0.5 to 1.5 m thick) filled with planar upflow-dipping reflectors, and sheet-like sigmoidal downflow-dipping reflectors, which are interpreted as deposits of chutes-and-pools and humpback dunes, respectively. Facies transitions occur from cyclic steps or chutes-and-pools to antidunes and from antidunes to humpback dunes, and are interpreted as related to the evolution of bedforms under spatially and temporarily changing flow conditions. References: Lang, J. & Winsemann, J. (2013) Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: from cyclic steps to humpback dunes. Sedimentary Geology 296, 36-54. Winsemann, J., Lang, J., Loewer, M., Polom, U., Pollok, L., Igel, J. & Brandes, C. (in review) Forced regressive ice-marginal deltas in glacial lake basins: geomorphology, facies variability and large-scale depositional architecture.

  3. Magnetic Hysteresis of Deep-Sea Sediments in Korea Deep Ocean Study(KODOS) Area, NE Pacific

    NASA Astrophysics Data System (ADS)

    Kim, K.; Park, C.; Yoo, C.

    2001-12-01

    The KODOS area within the Clarion-Clipperton fracture zone (C-C zone) is surrounded by the Hawaiian and Line Island Ridges to the west and the central American continent to the east. Topography of the seafloor consists of flat-topped abyssal hills and adjacent abyssal troughs, both of which run parallel in N-S direction. Sediments from the study area consist mainly of biogenic sediments. Latitudinal zonation of sedimentary facies was caused by the accumulation of biogenic materials associated with the equatorial current system and movement of the Pacific plate toward the north or northwest. The KODOS area belongs to the latitudinal transition zone having depositional characteristics between non-fossiliferous pelagic clay-dominated zone and calcareous sediment-dominated zone. The box core sediments of the KODOS area are analyzed in an attempt to obtain magnetic hysteresis information and to elucidate the relationship between hysteresis property and lithological facies. Variations in magnetic hysteresis parameters with unit layers reflect the magnetic grain-size and concentrations within the sediments. The ratios of remanant coercivity/coercive force (Hcr/Hc) and saturation remnance/saturation magnetization (Mrs/Ms) indicate that coarse magnetic grains are mainly distributed in dark brown sediments (lower part of the sediment core samples) reflecting high Hcr/Hc and low Mrs/Ms ratios. These results are mainly caused by dissolution differences with core depth. From the plotting of the ratios of hyteresis parameters, it is indicated that magnetic minerals in cubic samples are in pseudo-single domain (PSD) state.

  4. Hydrocarbon traps within a seismic sequence framework, Stevens turbidites, southern San Joaquin Valley, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewlett, J.S.; Jordan, D.W.; Crebs, T.J.

    1991-02-01

    Interpretation of the seismic sequence framework and log and lithologic character of upper Miocene Stevens turbidites on the Bakersfield arch has led to an improved understanding of the expression of stratigraphic trapping that should reduce exploration risk in the basin, and may aid exploration efforts in similar sand-rich systems globally. These deepwater sandstones are contained within three lowstand turbidite systems (LTS) that were deposited in a narrow deepwater basin adjacent to the ancestral Sierra Nevada. the oldest LTS, the Coulter, was transported through several submarine canyons incised into the Fruitvale Shale. In contrast, numerous smaller scale erosional features located onmore » the high-relief slopes of the highstand Santa Margarita deltas, fed the overlying Gosford and Bellevue LTS. The systems consist of sandy, high-density (primarily) and low-density turbidites that were deposited within channel-lobe complexes. On the arch, 472 MMBO and 1.3 tcf have been produced from four seismically detectable traps with strong stratigraphic components: (1) sandstone permeability changes within turbidite wedges that thin rapidly onto structure (2) confined (channelized) turbidites that lap out on a structure (e.g., F-1 sand, South Coles levee), (3) channelized turbidites that pinch out within slope gullies, and (4) depositional compaction anticlines occurring in conjunction with low-gradient regional structure. Condensed section sediments form regional and reservoir-scale seals. Rapid lateral facies changes and grain size variations provide additional seal facies.« less

  5. Is there a Developed Oldowan A at Olduvai Gorge? A diachronic analysis of the Oldowan in Bed I and Lower-Middle Bed II at Olduvai Gorge, Tanzania.

    PubMed

    Proffitt, Tomos

    2018-05-08

    Debates regarding the validity of the Developed Oldowan as separate cultural facies within the Oldowan techno-complex have primarily concentrated on the Developed Oldowan B/Acheulean transition, with little attention paid to the validity of the Developed Oldowan A (DOA) as a valid technological differentiation. This study presents a diachronic technological analysis and comparison of Oldowan and DOA lithic assemblages from Olduvai Gorge, Tanzania, dated between 1.84 and 1.6 Ma, to test the validity of Leakey's original distinction between these two cultural facies. The results from this comparative analysis show very few technological differences between the lithic assemblages previously assigned to the DOA and Classic Oldowan. Significant diachronic variation in raw material availability and use is, however, identified between Bed I and Lower/Middle Bed II of Olduvai Gorge, which may go some way to explaining the originally perceived techno-cultural differences. The results suggest an increase in hominin knapping and percussive activities, as well as a clear ability to preferentially select high quality raw materials stratigraphically above Tuff IF. Technological innovation and complexity, however, does not seem to vary significantly between the Classic Oldowan and DOA assemblages. The results of this analysis along with similar studies from the wider eastern African region lead to the conclusion that the term Developed Oldowan A should no longer be used. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Mesozoic Alpine facies deposition as a result of past latitudinal plate motion.

    PubMed

    Muttoni, Giovanni; Erba, Elisabetta; Kent, Dennis V; Bachtadse, Valerian

    2005-03-03

    The fragmentation of Pangaea as a consequence of the opening of the Atlantic Ocean is documented in the Alpine-Mediterranean region by the onset of widespread pelagic sedimentation. Shallow-water sediments were replaced by mainly pelagic limestones in the Early Jurassic period, radiolarian cherts in the Middle-Late Jurassic period, and again pelagic limestones in the Late Jurassic-Cretaceous period. During initial extension, basin subsidence below the carbonate compensation depth (CCD) is thought to have triggered the transition from Early Jurassic limestones to Middle-Late Jurassic radiolarites. It has been proposed that the transition from radiolarites to limestones in the Late Jurassic period was due to an increase in calcareous nannoplankton abundance when the CCD was depressed below the ocean floor. But in modern oceans, sediments below the CCD are not necessarily radiolaritic. Here we present palaeomagnetic samples from the Jurassic-Cretaceous pelagic succession exposed in the Lombardian basin, Italy. On the basis of an analysis of our palaeolatitudinal data in a broader palaeogeographic context, we propose an alternative explanation for the above facies tripartition. We suggest that the Lombardian basin drifted initially towards, and subsequently away from, a near-equatorial upwelling zone of high biosiliceous productivity. Our tectonic model for the genesis of radiolarites adds an essential horizontal plate motion component to explanations involving only vertical variations of CCD relative to the ocean floor. It may explain the deposition of radiolarites throughout the Mediterranean and Middle Eastern region during the Jurassic period.

  7. Spatial and temporal modelling of fluvial aggradation in the Hasli Valley (Swiss Alps) during the last 1300 years

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Schulte, Lothar; Carvalho, Filipe

    2016-04-01

    The Haslital delta (upper Aare River catchment, Bernese Alps) progradated into the Lake Brienz after the retreat of the Aare Glacier (post-LGM). Present delta plain geomorphology and spatial distribution of sedimentary facies result from historical fluvial dynamics and aggradation. Over centuries, local communities have struggled to control the Aare floods and to mitigate their effects on the floodplain (by means of raising artificial levees, channelizing the course, creating an underground drainage network, constructing dams at the basin headwaters). This study focuses on the spatial and temporal evolution of sediment dynamics of the floodplain by analyzing fluvial sedimentary records . The internal variability of lithostratigraphic sequences is a key issue to understand hydrological processes in the basin under the effect of environmental and anthropogenic changes of the past. The floodplain lithostratigraphy was reconstructed by coring alongside four cross-sections; each one is composed of more than 25 shallow boreholes (2 m deep) and two long drillings (variable depth, up to 9 m). The chronostratigraphical models were obtained by AMS 14C dating, and information of paleofloods and channel migration were reconstructed from historical sources (Schulte et al., 2015). The identification of different sedimentary facies, associated with the fluvial architecture structures, provides information on variations of vertical and lateral accretion processes (Houben, 2007). The location and geometry of buried channel-levee facies (gravel and coarse sand layers) indicate a significant mobility of the riverbed of the Hasli-Aare river, following an oscillatory pattern during the last millennia. Furthermore, fine sedimentary deposits and peat layers represent the existence of stable areas where floods have a low incidence. Once the different types of deposits were identified, aggradation rates were estimated in order to determine the spatial variability of the accumulation process. Results suggest a longitudinal decrease of sedimentation rates from the apex towards the distal section of the delta plain. Differences in rates are also found within each cross-section (e.g. channel-levée: higher rates; interdistributary depression: lower rates), suggesting an asymmetric growth of the floodplain. A GIS paleosurfaces model was executed to calculate the fluvial sediment storage, which was subdivided in 300-year time slices, thus contributing to identify temporal trends in floodplain aggradation. The results were analyzed with regard to external drivers that control the sedimentation processes in the Haslital delta, such as climate and/or anthropogenic factors (land-use changes, hydraulic management), as well as the influence of the internal system settings. The facies-based approach provides an explanation of both the spatial and temporal components of delta plain formation; and produces valid information for local flood risk management, concerning the problem of alpine floodplains aggradation.

  8. Liquification and soft-sediment deformation in a limestone megabreccia: The Ayabacas giant collapse, Cretaceous, southern Peru

    NASA Astrophysics Data System (ADS)

    Callot, Pierre; Odonne, Francis; Sempere, Thierry

    2008-12-01

    In the back-arc basin of southern Peru, the bulk of the mid-Cretaceous carbonate platform collapsed near the Turonian-Coniacian boundary (~ 90-89 Ma), due to slope creation and resulting oversteepening. The resulting mass-wasting deposits, namely the Ayabacas Formation, consist of a megabreccia which is organised from NE to SW in relation with two major fault systems. Facies of sediment reworking (such as brecciation, liquification, sedimentary dykes and soft-sediment deformation) are described and four types of resedimentation facies are define. In the northeastern part of the study area, deposits mainly consist of a mixture of very heterometric clasts and blocks (millimetric to kilometric in size), mainly carbonate but also sandy-marly in nature, floating in sandy-marly matrix that exhibits features of liquification (sedimentary dykes and flows) and plastic deformation. Here, resedimentation facies are characterized by deformations and a brecciated facies at each observation scale (from aerial photographs to thin sections) and are therefore defined as fractal or multi-scale breccias. Some clasts and large amounts of the matrix were derived from the underlying clay-rich sandstones of the Murco Formation. These materials were prone to liquification and plastic deformation, allowing them to act as a sliding sole that facilitated the slides and the downslope movement of large limestone rafts. In the southwestern part of the study area, only limestone breccias are observed, in alternation with well-stratified levels. The sliding sole of plastically deformable siliciclastic sediments that previously acted as a lubricating layer was not present here, as materials were more deeply buried. Variations in the degree of sediment lithification from northeast to southwest are inferred to have existed before the collapse and also within the sedimentary succession in the northeastern part. In particular, limestones were well-cemented at the base of the carbonate succession and formed a cap that prevented water to escape from the underlying siliciclastic materials. Such a succession allowed the formation of limestone clasts and of a slide sole constituted by water-saturated siliciclastic materials. In the southern part of the study area, the slide surface was located within the Murco Formation in the upper part of the collapse and just above the Murco Formation downslope. The collapse was frontally confined as it was blocked downslope by a topographic high that folded the whole limestone succession. In the northern part of the study area, the slide surface was also within the Murco Formation in the upper part, but occurs within the limestone succession downslope, due to higher subsidence that buried the sediments more deeply. The compressional structures affecting the limestone succession in the south are not observed there, suggesting that the toe of the collapse was not blocked here.

  9. Cenozoic evolution of the Socotra Island: opening of the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Razin, P.; Robin, C.; Serra Kiel, J.; Leroy, S.; Bellahsen, N.; Khanbari, K.

    2009-12-01

    A complete stratigraphic and geological map revision of the Tertiary of Socotra Island is undertaken in order to better characterize the geometry and the tecto-sedimentary evolution of the southern margin of the Gulf of Aden, and compare them with those of the conjugate northern margin in Oman. An increase of the rate of subsidence is recorded during the Late Eocene and is associated with a transgressive peak within carbonate platform deposits (Aydim Fm.). At the scale of the Arabian plate, the extent of this platform is reduced to the future rift area. This evolution of the platform system shows a modification of the sedimentary profiles, controlled by the beginning of the rifting. The syn-rift deposits of the Early Oligocene correspond to sub-reef carbonate platform facies (Ashawq Fm.). First, the throw of synsedimentary faults and the movements linked with differential subsidence are widely compensated by carbonate production which manages to maintain a platform profile. These movements are recorded by thickness variations, significant lateral variations in the platform facies and by a local inversion of sedimentary polarities controlled by the tilting of faulted blocks. Like on the northern margin, an acceleration of the extension process leads, during the Late Oligocene, to a collapse of the platform and to the creation of deep sub-basins with carbonate gravity-flow sedimentation. Marginal reef platforms keep growing at this stage on the structural highs and feed gravity-flow sedimentary systems. The sedimentation rate stays then relatively low in the basin, forming a complex topography of the margin, marked by a segmentation into numerous sub-basins more or less connected and separated by submarine escarpments marked by wedges of breccia deposits along active normal faults. In different points, these faults are sealed by sedimentary deposits characterized by progressive unconformities and onlap geometries on the fault escarpments. These geometries show the relatively short length of the phase of « stretching » of the continental crust. Around the end of the Early Miocene, the progradation of conglomerate fan-delta deposits locally results in the fill of the basins and shows a major phase of uplift. It is very rapidly followed by a new phase of subsidence which allows the preservation of thick fan-delta and equivalent reef platform complex unconformably overlying different units of the syn-rift and pre-rift sequences, or even the exhumed Proterozoic basement. This tectonic-sedimentary phase is interpreted as synchronous to the continental breakup and the onset of the OCT at the foot of the margin. The analogy with the phase of development of «sag basins» on the Atlantic margins has to be analyzed. This major uplift at the transition syn-rift/post-rift seems to be expressed symmetrically on both margins. These syn-OCT deposits are then uplifted and affected by late tilting events. However, the most recent deposits, probably Late Miocene to plio-Quaternary in age, have only been affected by small uplifts, unlike those of the Dhofar on the northern margin

  10. The Burger Court and the Prima Facie Case in Employment Discrimination Litigation: A Critique.

    ERIC Educational Resources Information Center

    Friedman, Joel William

    1979-01-01

    The unprincipled and contrived reasoning running through these opinions manifests an intentional effort by the Court to impede litigants' ability to secure their rights to equal employment opportunity by raising the requirements of the prima facie case. Available from Fred B. Rothman & Co., 10368 West Centennial Road, Littleton, CO 80123; sc…

  11. Phenotypic delineation of ring chromosome 15 and Russell-Silver syndromes.

    PubMed Central

    Wilson, G N; Sauder, S E; Bush, M; Beitins, I Z

    1985-01-01

    A male child with features of the Russell-Silver syndrome, including pre- and postnatal growth delay, triangular facies, bilateral fifth finger clinodactyly, and disproportionate lower extremities, was found to have a ring chromosome 15 in all peripheral leucocytes examined. Review of the reported cases of ring chromosome 15 defines a malformation syndrome with a characteristic facies related to deletion of the 15q26.2----qter region. Russell-Silver and ring 15 syndromes share clinical features such as growth deficiency, triangular facies, digital anomalies, and café-au-lait spots. Microcephaly, mental retardation, facial dysmorphology, limb anomalies, and cardiac defects are more striking in ring chromosome 15 patients and are indications for karyotyping when found in conjunction with the Russell-Silver phenotype. Images PMID:4040173

  12. Geophysical and topographic expression of early Mesozoic grand cycles of the Milankovitch band

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Reynolds, D. J.; Goldberg, D.; Kent, D. V.; Whiteside, J. H.

    2012-12-01

    Grand cycles are orbitally controlled insolation cycles that have frequencies significantly lower than the precession-related ~1/100ky "eccentricity" cycles (1). We have previously shown that variations in sedimentary facies and δ13C interpreted in terms of lake level changes in Triassic-Jurassic cores of the Newark Basin Coring Project (NBCP) of eastern North America track predicted orbital cycles related to precession (2,3). In addition to the usual ~1/20ky and "spilt" ~1/100ky cycles, Grand Cycles with frequencies of 1/405ky (g2-g5) are very prominent and cycles with much lower frequency of ~1/1.8m.y. representing the g4-g3 frequency are present. The latter differs from the present frequency of ~1/2.4m.y. because of the chaotic diffusion of planetary orbits (4). Wavelet analysis of borehole geophysical logs from the NBCP show the same basic frequencies as do sedimentary facies. The high-frequency precession-related cycles as seen in natural gamma and sonic velocity logs are strikingly complimentary to visually identified sedimentary facies patterns because the former tend to show the most striking cyclicity where the sedimentary facies pattern are the most muted. The 1/405ky cycles are also very prominent; but other grand cycles, while detectable, are distorted by the necessary detrending of each of the seven borehole records that comprise the NBCP composite (cf. 5,6). Simple detrending procedures leave a low-frequency residue and more complex models prejudge the low frequencies we are trying to detect. This emphasizes the importance of the facies interpretations that requires no detrending, and clear understanding of the meaning of the geophysical environmental proxies. As might be expected from the seismic velocity logs, synthetic seismic traces generated from the borehole data of the NBCP show the grand cycles. When tied to very long industry exploratory borehole records from the Newark basin, themselves tied to seismic lies, both the 1/405ky (g2-g5) and ~1/1.8m.y. (g4-g3) cycles can be clearly seen as the most coherent components of the seismic profiles across the basin (6). The topographic expression of the deeply eroded tilted strata of the Newark basin section also reveals the grand cycles which can be seen from space, with ridges reflecting time intervals of high- and valleys low-precessional variability that can be directly tied to the stratigraphy, much as bundles of plausibly obliquity-related rhythms can be seen in crater walls on Mars (7). All of these ways of observing the grand cycles of the Milankovitch band reflect their importance as major features of the sedimentary record and are complementary means to detect and empirically map the chaotic evolution of the solar system. References: 1) Olsen PE, 2008, GSA Abst. Prog. 40(6):282. 2) Olsen PE, Kent DV, 1996, PPP 122:1. 3) Whiteside JH et al. 2011, PPP 301:1; 4) Olsen PE, Kent DV, 1999, Phil. Trans. Roy. Soc. Lond. (A), 357:1761. 5) Goldberg DS, 2003, in LeTorneau PM & Olsen PE, Columbia Univ. Press., pp 104-117. 6) Reynolds DJ, 1993, Ph.D. thesis Columbia Univ., NY. 7) Lewis K. et al. 2008, Science 322:1532.

  13. Eo-Ulrichian to Neo-Ulrichian views: The renaissance of "layer-cake stratigraphy"

    USGS Publications Warehouse

    Brett, Carlton E.; McLaughlin, P.I.; Baird, G.C.

    2007-01-01

    Classical notions of "layer-cake stratigraphy" have been denigrated as representing an antiquated "Neptunian" view of the geologic record with the American paleontologist-stratigrapher E.O. Ulrich vilified as its quintessential advocate. Some of the extreme "layer-cake" interpretations of E.O. Ulrich are demonstrably incorrect, especially where applied in marginal marine and terrestrial settings. However, close scrutiny of Ulrich's work suggests that the bulk was correct and demonstrated considerable insight for the time. Subsequent development of facies concepts revolutionized geologists' view of time-space relationships in stratigraphy, but rather than focusing on facies patterns within the established stratigraphic (layer-cake) frameworks many geologists in North America came to view strata as parts of diachronous facies mosaics. Recent advances in the development of event and sequence stratigraphic paradigms are beginning to swing the pendulum back the other way. Possible causes of "layer-cake" patterns are numerous and varied, including: (1) parallelism of depositional strike and outcrop belts, especially in foreland basins, (2) very widespread environmental belts developed in low-relief cratonic areas, (3) time-averaging homogenizes facies to a limited extent, resulting in a very subtle signature of lateral change, (4) condensed beds (hardgrounds, bone beds, ironstones, etc.) often form in responses to extrabasinal forces, thus they cross-cut facies, and (5) large events (i.e. hurricanes, floods, tsunamis, eruptions, etc.) are "over represented" in the rock record. A revised ("Neo-Ulrichian") layer-cake paradigm carries many of the original correct empirical observations of pattern, noted by Ulrich, recast in terms of event and sequence stratigraphy.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlin, H.S.; Dutton, S.P.; Tyler, N.

    The Tirrawarra Sandstone contains 146 million bbl of oil in Tirrawarra field in the Cooper basin of South Australia. We used core, well logs, and petro-physical data to construct a depositional-facies-based flow-unit model of the reservoir, which describes rock properties and hydrocarbon saturations in three dimensions. Using the model to calculate volumes and residency of original and remaining oil in place, we identified an additional 36 million bbl of oil in place and improved understanding of past production patterns. The Tirrawarra Sandstone reservoir was deposited in a Carboniferous-Permian proglacial intracratonic setting and is composed of lacustrine and fluvial facies assemblages.more » The stratigraphic framework of these nonmarine facies is defined by distinctive stacking patterns and erosional unconformities. Mudstone dominated zones that are analogous to marine maximum flooding surfaces bound the reservoir. At its base a progradational lacustrine-delta system, composed of lenticular mud-clast-rich sandstones enclosed in mudstone, is truncated by an unconformity. Sandstones in these lower deltaic facies lost most of their porosity by mechanical compaction of ductile grains. Sediment reworking by channel migration and locally shore-zone processes created by quartz-rich, multilateral sandstones, which retained the highest porosity and permeability of all the reservoir facies and contained most of the original oil in place. Braided-channel sandstones, however, are overlain by lenticular meandering-channel sandstones, which in turn grade upward into widespread mudstones and coals. Thus, this uppermost part of the reservoir displays a retrogradational stacking pattern and upward-decreasing reservoir quality. Our results demonstrate that depositional variables are the primary controls on reservoir quality and productivity in the Tirrawarra Sandstone.« less

  15. Evolution of a Holocene delta driven by episodic sediment delivery and coseismic deformation, Puget Sound, Washington, USA

    USGS Publications Warehouse

    Barnhardt, W.A.; Sherrod, B.L.

    2006-01-01

    Episodic, large-volume pulses of volcaniclastic sediment and coseismic subsidence of the coast have influenced the development of a late Holocene delta at southern Puget Sound. Multibeam bathymetry, ground-penetrating radar (GPR) and vibracores were used to investigate the morphologic and stratigraphic evolution of the Nisqually River delta. Two fluvial–deltaic facies are recognized on the basis of GPR data and sedimentary characteristics in cores, which suggest partial emplacement from sediment-rich floods that originated on Mount Rainier. Facies S consists of stacked, sheet-like deposits of andesitic sand up to 4 m thick that are continuous across the entire width of the delta. Flat-lying, highly reflective surfaces separate the sand sheets and comprise important facies boundaries. Beds of massive, pumice- and charcoal-rich sand overlie one of the buried surfaces. Organic-rich material from that surface, beneath the massive sand, yielded a radiocarbon age that is time-correlative with a series of known eruptive events that generated lahars in the upper Nisqually River valley. Facies CF consists of linear sandbodies or palaeochannels incised into facies S on the lower delta plain. Radiocarbon ages of wood fragments in the sandy channel-fill deposits also correlate in time to lahar deposits in upstream areas. Intrusive, sand-filled dikes and sills indicate liquefaction caused by post-depositional ground shaking related to earthquakes. Continued progradation of the delta into Puget Sound is currently balanced by tidal-current reworking, which redistributes sediment into large fields of ebb- and flood-oriented bedforms.

  16. Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    NASA Astrophysics Data System (ADS)

    Kunz, Barbara E.; Regis, Daniele; Engi, Martin

    2018-03-01

    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U-Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P-T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U-Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure.

  17. Pressure-temperature evolution of Neoproterozoic metamorphism in the Welayati Formation (Kabul Block), Afghanistan

    NASA Astrophysics Data System (ADS)

    Collett, Stephen; Faryad, Shah Wali

    2015-11-01

    The Welayati Formation, consisting of alternating layers of mica-schist and quartzite with lenses of amphibolite, unconformably overlies the Neoarchean Sherdarwaza Formation of the Kabul Block that underwent Paleoproterozoic granulite-facies and Neoproterozoic amphibolite-facies metamorphic events. To analyze metamorphic history of the Welayati Formation and its relations to the underlying Sherdarwaza Formation, petrographic study and pressure-temperature (P-T) pseudosection modeling were applied to staurolite- and kyanite-bearing mica-schists, which crop out to the south of Kabul City. Prograde metamorphism, identified by inclusion trails and chemical zonation in garnet from the micaschists indicates that the rocks underwent burial from around 6.2 kbar at 525 °C to maximum pressure conditions of around 9.5 kbar at temperatures of around 650 °C. Decompression from peak pressures under isothermal or moderate heating conditions are indicated by formation of biotite and plagioclase porphyroblasts which cross-cut and overgrow the dominant foliation. The lack of sillimanite and/or andalusite suggests that cooling and further decompression occurred in the kyanite stability field. The results of this study indicate a single amphibolite-facies metamorphism that based on P-T conditions and age dating correlates well with the Neoproterozoic metamorphism in the underlying Sherdarwaza Formation. The rocks lack any paragenetic evidence for a preceding granulite-facies overprint or subsequent Paleozoic metamorphism. Owing to the position of the Kabul Block, within the India-Eurasia collision zone, partial replacement of the amphibolite-facies minerals in the micaschist could, in addition to retrogression of the Neoproterozoic metamorphism, relate to deformation associated with the Alpine orogeny.

  18. Petroleum system of the Shelf Rift Basin, East China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, A.C.; Armentrout, J.M.; Prebish, M.

    1996-12-31

    The Tertiary section of the Oujioang and Quiontang Depressions of the East China Sea Basin consists of at least eight rift-related depositional sequences identified seismically by regionally significant onlap and truncation surfaces. These sequences are calibrated by several wells including the Wenzhou 6-1-1 permitting extrapolation of petroleum system elements using seismic facies analysis. Gas and condensate correlated to non-marine source rocks and reservoired in sandstone at the Pinghu field to the north of the study area provides an known petroleum system analogue. In the Shelf Rift Basin, synrift high-amplitude parallel reflections within the graben axes correlate with coaly siltstone stratamore » and are interpreted as coastal plain and possibly lacustrine facies with source rock potential. Synrift clinoform seismic facies prograding from the northwest footwall correlate with non-marine to marginal marine conglomerate, sandstone and siltstone, and are interpreted as possible delta or fan-delta facies with reservoir potential although porosity and permeability is low within the Wenzhou 6-1-1 well. Post-rift thermal sag sequences are characterized by parallel and relatively continuous seismic reflections and locally developed clinoform packages. These facies correlate with porous and permeable marine sandstone and siltstone. Shales of potential sealing capacity occur within marine flooding intervals of both the synrift and post-rift sequences. Traps consist of differentially rotated synrift fill, and post-rift inversion anticlines. Major exploration risk factors include migration from the synrift coaly source rocks to the post-rift porous and permeable sandstones, and seismic imaging and drilling problems associated with extensive Tertiary igneous intrusions.« less

  19. Petroleum system of the Shelf Rift Basin, East China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, A.C.; Armentrout, J.M.; Prebish, M.

    1996-01-01

    The Tertiary section of the Oujioang and Quiontang Depressions of the East China Sea Basin consists of at least eight rift-related depositional sequences identified seismically by regionally significant onlap and truncation surfaces. These sequences are calibrated by several wells including the Wenzhou 6-1-1 permitting extrapolation of petroleum system elements using seismic facies analysis. Gas and condensate correlated to non-marine source rocks and reservoired in sandstone at the Pinghu field to the north of the study area provides an known petroleum system analogue. In the Shelf Rift Basin, synrift high-amplitude parallel reflections within the graben axes correlate with coaly siltstone stratamore » and are interpreted as coastal plain and possibly lacustrine facies with source rock potential. Synrift clinoform seismic facies prograding from the northwest footwall correlate with non-marine to marginal marine conglomerate, sandstone and siltstone, and are interpreted as possible delta or fan-delta facies with reservoir potential although porosity and permeability is low within the Wenzhou 6-1-1 well. Post-rift thermal sag sequences are characterized by parallel and relatively continuous seismic reflections and locally developed clinoform packages. These facies correlate with porous and permeable marine sandstone and siltstone. Shales of potential sealing capacity occur within marine flooding intervals of both the synrift and post-rift sequences. Traps consist of differentially rotated synrift fill, and post-rift inversion anticlines. Major exploration risk factors include migration from the synrift coaly source rocks to the post-rift porous and permeable sandstones, and seismic imaging and drilling problems associated with extensive Tertiary igneous intrusions.« less

  20. Sedimentary processes and architecture of Upper Cretaceous deep-sea channel deposits: a case from the Skole Nappe, Polish Outer Carpathians

    NASA Astrophysics Data System (ADS)

    Łapcik, Piotr

    2018-02-01

    Deep-sea channels are one of the architectonic elements, forming the main conduits for sand and gravel material in the turbidite depositional systems. Deep-sea channel facies are mostly represented by stacking of thick-bedded massive sandstones with abundant coarse-grained material, ripped-up clasts, amalgamation and large scale erosional structures. The Manasterz Quarry of the Ropianka Formation (Upper Cretaceous, Skole Nappe, Carpathians) contains a succession of at least 31 m of thick-bedded high-density turbidites alternated with clast-rich sandy debrites, which are interpreted as axial deposits of a deep-sea channel. The section studied includes 5 or 6 storeys with debrite basal lag deposits covered by amalgamated turbidite fills. The thickness of particular storeys varies from 2.5 to 13 m. Vertical stacking of similar facies through the whole thickness of the section suggest a hierarchically higher channel-fill or a channel complex set, with an aggradation rate higher than its lateral migration. Such channel axis facies cannot aggrade without simultaneous aggradation of levee confinement, which was distinguished in an associated section located to the NW from the Manasterz Quarry. Lateral offset of channel axis facies into channel margin or channel levee facies is estimated at less than 800 m. The Manasterz Quarry section represents mostly the filling and amalgamation stage of channel formation. The described channel architectural elements of the Ropianka Formation are located within the so-called Łańcut Channel Zone, which was previously thought to be Oligocene but may have been present already in the Late Cretaceous.

Top