MANGO: a new approach to multiple sequence alignment.
Zhang, Zefeng; Lin, Hao; Li, Ming
2007-01-01
Multiple sequence alignment is a classical and challenging task for biological sequence analysis. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state of the art multiple sequence alignment programs suffer from the 'once a gap, always a gap' phenomenon. Is there a radically new way to do multiple sequence alignment? This paper introduces a novel and orthogonal multiple sequence alignment method, using multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds are provably significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks showing that MANGO compares favorably, in both accuracy and speed, against state-of-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, Prob-ConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0 and Kalign 2.0.
High-speed multiple sequence alignment on a reconfigurable platform.
Oliver, Tim; Schmidt, Bertil; Maskell, Douglas; Nathan, Darran; Clemens, Ralf
2006-01-01
Progressive alignment is a widely used approach to compute multiple sequence alignments (MSAs). However, aligning several hundred sequences by popular progressive alignment tools requires hours on sequential computers. Due to the rapid growth of sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to MSA on reconfigurable hardware platforms to gain high performance at low cost. We have constructed a linear systolic array to perform pairwise sequence distance computations using dynamic programming. This results in an implementation with significant runtime savings on a standard FPGA.
Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW.
Oliver, Tim; Schmidt, Bertil; Nathan, Darran; Clemens, Ralf; Maskell, Douglas
2005-08-15
Aligning hundreds of sequences using progressive alignment tools such as ClustalW requires several hours on state-of-the-art workstations. We present a new approach to compute multiple sequence alignments in far shorter time using reconfigurable hardware. This results in an implementation of ClustalW with significant runtime savings on a standard off-the-shelf FPGA.
Progression of regional grey matter atrophy in multiple sclerosis
Marinescu, Razvan V; Young, Alexandra L; Firth, Nicholas C; Jorge Cardoso, M; Tur, Carmen; De Angelis, Floriana; Cawley, Niamh; Brownlee, Wallace J; De Stefano, Nicola; Laura Stromillo, M; Battaglini, Marco; Ruggieri, Serena; Gasperini, Claudio; Filippi, Massimo; Rocca, Maria A; Rovira, Alex; Sastre-Garriga, Jaume; Geurts, Jeroen J G; Vrenken, Hugo; Wottschel, Viktor; Leurs, Cyra E; Uitdehaag, Bernard; Pirpamer, Lukas; Enzinger, Christian; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A; Chard, Declan; Thompson, Alan J; Barkhof, Frederik; Alexander, Daniel C; Ciccarelli, Olga
2018-01-01
Abstract See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article. Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple sclerosis and late atrophy in primary-progressive multiple sclerosis. Patients with secondary-progressive multiple sclerosis showed the highest event-based model stage (the highest number of atrophic regions, P < 0.001) at the study entry. All multiple sclerosis phenotypes, but clinically isolated syndrome, showed a faster rate of increase in the event-based model stage than healthy controls. T2 lesion load and disease duration in all patients were associated with increased event-based model stage, but no effects of disease-modifying treatments and comorbidity on event-based model stage were observed. The annualized rate of event-based model stage was associated with the disability accumulation in relapsing-remitting multiple sclerosis, independent of disease duration (P < 0.0001). The data-driven staging of atrophy progression in a large multiple sclerosis sample demonstrates that grey matter atrophy spreads to involve more regions over time. The sequence in which regions become atrophic is reasonably consistent across multiple sclerosis phenotypes. The spread of atrophy was associated with disease duration and with disability accumulation over time in relapsing-remitting multiple sclerosis. PMID:29741648
Progression of regional grey matter atrophy in multiple sclerosis.
Eshaghi, Arman; Marinescu, Razvan V; Young, Alexandra L; Firth, Nicholas C; Prados, Ferran; Jorge Cardoso, M; Tur, Carmen; De Angelis, Floriana; Cawley, Niamh; Brownlee, Wallace J; De Stefano, Nicola; Laura Stromillo, M; Battaglini, Marco; Ruggieri, Serena; Gasperini, Claudio; Filippi, Massimo; Rocca, Maria A; Rovira, Alex; Sastre-Garriga, Jaume; Geurts, Jeroen J G; Vrenken, Hugo; Wottschel, Viktor; Leurs, Cyra E; Uitdehaag, Bernard; Pirpamer, Lukas; Enzinger, Christian; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A; Chard, Declan; Thompson, Alan J; Barkhof, Frederik; Alexander, Daniel C; Ciccarelli, Olga
2018-06-01
See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article.Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple sclerosis and late atrophy in primary-progressive multiple sclerosis. Patients with secondary-progressive multiple sclerosis showed the highest event-based model stage (the highest number of atrophic regions, P < 0.001) at the study entry. All multiple sclerosis phenotypes, but clinically isolated syndrome, showed a faster rate of increase in the event-based model stage than healthy controls. T2 lesion load and disease duration in all patients were associated with increased event-based model stage, but no effects of disease-modifying treatments and comorbidity on event-based model stage were observed. The annualized rate of event-based model stage was associated with the disability accumulation in relapsing-remitting multiple sclerosis, independent of disease duration (P < 0.0001). The data-driven staging of atrophy progression in a large multiple sclerosis sample demonstrates that grey matter atrophy spreads to involve more regions over time. The sequence in which regions become atrophic is reasonably consistent across multiple sclerosis phenotypes. The spread of atrophy was associated with disease duration and with disability accumulation over time in relapsing-remitting multiple sclerosis.
Mango: multiple alignment with N gapped oligos.
Zhang, Zefeng; Lin, Hao; Li, Ming
2008-06-01
Multiple sequence alignment is a classical and challenging task. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state-of-the-art works suffer from the "once a gap, always a gap" phenomenon. Is there a radically new way to do multiple sequence alignment? In this paper, we introduce a novel and orthogonal multiple sequence alignment method, using both multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole and tries to build the alignment vertically, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds have proved significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks, showing that MANGO compares favorably, in both accuracy and speed, against state-of-the-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, ProbConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0, and Kalign 2.0. We have further demonstrated the scalability of MANGO on very large datasets of repeat elements. MANGO can be downloaded at http://www.bioinfo.org.cn/mango/ and is free for academic usage.
Hadac, Jamie N; Leystra, Alyssa A; Paul Olson, Terrah J; Maher, Molly E; Payne, Susan N; Yueh, Alexander E; Schwartz, Alexander R; Albrecht, Dawn M; Clipson, Linda; Pasch, Cheri A; Matkowskyj, Kristina A; Halberg, Richard B; Deming, Dustin A
2015-10-01
Human colorectal cancers often possess multiple mutations, including three to six driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present before the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here, we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence. ©2015 American Association for Cancer Research.
Hadac, Jamie N.; Leystra, Alyssa A.; Olson, Terrah J. Paul; Maher, Molly E.; Payne, Susan N; Yueh, Alexander E.; Schwartz, Alexander R.; Albrecht, Dawn M.; Clipson, Linda; Pasch, Cheri A.; Matkowskyj, Kristina A.; Halberg, Richard B.; Deming, Dustin A.
2015-01-01
Human colorectal cancers often possess multiple mutations, including 3–6 driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present prior to the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence. PMID:26276752
Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G
2012-09-01
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Lily Pad Doubling: Proportional Reasoning Development
ERIC Educational Resources Information Center
Robichaux-Davis, Rebecca R.
2017-01-01
Progressing from additive to multiplicative thinking is critical for the development of middle school students' proportional reasoning abilities. Yet, many middle school mathematics teachers lack a thorough understanding of additive versus multiplicative situations. This article describes a sequence of instructional activities used to develop the…
Battig, Mark R; Soontornworajit, Boonchoy; Wang, Yong
2012-08-01
Polymeric delivery systems have been extensively studied to achieve localized and controlled release of protein drugs. However, it is still challenging to control the release of multiple protein drugs in distinct stages according to the progress of disease or treatment. This study successfully demonstrates that multiple protein drugs can be released from aptamer-functionalized hydrogels with adjustable release rates at predetermined time points using complementary sequences (CSs) as biomolecular triggers. Because both aptamer-protein interactions and aptamer-CS hybridization are sequence-specific, aptamer-functionalized hydrogels constitute a promising polymeric delivery system for the programmable release of multiple protein drugs to treat complex human diseases.
Simple chained guide trees give high-quality protein multiple sequence alignments
Boyce, Kieran; Sievers, Fabian; Higgins, Desmond G.
2014-01-01
Guide trees are used to decide the order of sequence alignment in the progressive multiple sequence alignment heuristic. These guide trees are often the limiting factor in making large alignments, and considerable effort has been expended over the years in making these quickly or accurately. In this article we show that, at least for protein families with large numbers of sequences that can be benchmarked with known structures, simple chained guide trees give the most accurate alignments. These also happen to be the fastest and simplest guide trees to construct, computationally. Such guide trees have a striking effect on the accuracy of alignments produced by some of the most widely used alignment packages. There is a marked increase in accuracy and a marked decrease in computational time, once the number of sequences goes much above a few hundred. This is true, even if the order of sequences in the guide tree is random. PMID:25002495
Jossinet, Fabrice; Westhof, Eric
2005-08-01
Efficient RNA sequence manipulations (such as multiple alignments) need to be constrained by rules of RNA structure folding. The structural knowledge has increased dramatically in the last years with the accumulation of several large RNA structures similar to those of the bacterial ribosome subunits. However, no tool in the RNA community provides an easy way to link and integrate progress made at the sequence level using the available three-dimensional information. Sequence to Structure (S2S) proposes a framework in which an user can easily display, manipulate and interconnect heterogeneous RNA data, such as multiple sequence alignments, secondary and tertiary structures. S2S has been implemented using the Java language and has been developed and tested under UNIX systems, such as Linux and MacOSX. S2S is available at http://bioinformatics.org/S2S/.
Arterial signal timing optimization using PASSER II-87
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, E.C.P.; Messer, C.J.; Garza, R.U.
1988-11-01
PASSER is the acronym for the Progression Analysis and Signal System Evaluation Routine. PASSER II was originally developed by the Texas Transportation Institute (TTI) for the Dallas Corridor Project. The Texas State Department of Highways and Public Transportation (SDHPT) has sponsored the subsequent program development on both mainframe computers and microcomputers. The theory, model structure, methodology, and logic of PASSER II have been evaluated and well documented. PASSER II is widely used because of its ability to easily select multiple-phase sequences by adjusting the background cycle length and progression speeds to find the optimal timing plants, such as cycle, greenmore » split, phase sequence, and offsets, that can efficiently maximize the two-way progression bands.« less
A Study of Two Instructional Sequences Informed by Alternative Learning Progressions in Genetics
NASA Astrophysics Data System (ADS)
Duncan, Ravit Golan; Choi, Jinnie; Castro-Faix, Moraima; Cavera, Veronica L.
2017-12-01
Learning progressions (LPs) are hypothetical models of how learning in a domain develops over time with appropriate instruction. In the domain of genetics, there are two independently developed alternative LPs. The main difference between the two progressions hinges on their assumptions regarding the accessibility of classical (Mendelian) versus molecular genetics and the order in which they should be taught. In order to determine the relative difficulty of the different genetic ideas included in the two progressions, and to test which one is a better fit with students' actual learning, we developed two modules in classical and molecular genetics and alternated their sequence in an implementation study with 11th grade students studying biology. We developed a set of 56 ordered multiple-choice items that collectively assessed both molecular and classical genetic ideas. We found significant gains in students' learning in both molecular and classical genetics, with the largest gain relating to understanding the informational content of genes and the smallest gain in understanding modes of inheritance. Using multidimensional item response modeling, we found no statistically significant differences between the two instructional sequences. However, there was a trend of slightly higher gains for the molecular-first sequence for all genetic ideas.
Acquired mutations associated with ibrutinib resistance in Waldenström macroglobulinemia.
Xu, Lian; Tsakmaklis, Nicholas; Yang, Guang; Chen, Jiaji G; Liu, Xia; Demos, Maria; Kofides, Amanda; Patterson, Christopher J; Meid, Kirsten; Gustine, Joshua; Dubeau, Toni; Palomba, M Lia; Advani, Ranjana; Castillo, Jorge J; Furman, Richard R; Hunter, Zachary R; Treon, Steven P
2017-05-04
Ibrutinib produces high response rates and durable remissions in Waldenström macroglobulinemia (WM) that are impacted by MYD88 and CXCR4 WHIM mutations. Disease progression can develop on ibrutinib, although the molecular basis remains to be clarified. We sequenced sorted CD19 + lymphoplasmacytic cells from 6 WM patients who progressed after achieving major responses on ibrutinib using Sanger, TA cloning and sequencing, and highly sensitive and allele-specific polymerase chain reaction (AS-PCR) assays that we developed for Bruton tyrosine kinase ( BTK ) mutations. AS-PCR assays were used to screen patients with and without progressive disease on ibrutinib, and ibrutinib-naïve disease. Targeted next-generation sequencing was used to validate AS-PCR findings, assess for other BTK mutations, and other targets in B-cell receptor and MYD88 signaling. Among the 6 progressing patients, 3 had BTK Cys481 variants that included BTK Cys481Ser(c.1635G>C and c.1634T>A) and BTK Cys481Arg(c.1634T>C) Two of these patients had multiple BTK mutations. Screening of 38 additional patients on ibrutinib without clinical progression identified BTK Cys481 mutations in 2 (5.1%) individuals, both of whom subsequently progressed. BTK Cys481 mutations were not detected in baseline samples or in 100 ibrutinib-naive WM patients. Using mutated MYD88 as a tumor marker, BTK Cys481 mutations were subclonal, with a highly variable clonal distribution. Targeted deep-sequencing confirmed AS-PCR findings, and identified an additional BTK Cys481Tyr(c.1634G>A) mutation in the 2 patients with multiple other BTK Cys481 mutations, as well as CARD11 Leu878Phe(c.2632C>T) and PLCγ2 Tyr495His(c.1483T>C) mutations. Four of the 5 patients with BTK C481 variants were CXCR4 mutated. BTK Cys481 mutations are common in WM patients with clinical progression on ibrutinib, and are associated with mutated CXCR4 . © 2017 by The American Society of Hematology.
Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment
2013-01-01
Background Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences. Results In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly. Conclusion Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model, we are able to identify conserved regions fast or even interactively using a standard PC. Our method has many potential applications such as finding characteristic signature sequences for families of organisms and studying conserved and variable regions in, for example, 16S rRNA. PMID:24564200
Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment.
Nagar, Anurag; Hahsler, Michael
2013-01-01
Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences. In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly. Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model, we are able to identify conserved regions fast or even interactively using a standard PC. Our method has many potential applications such as finding characteristic signature sequences for families of organisms and studying conserved and variable regions in, for example, 16S rRNA.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Edgar, Robert C
2004-01-01
We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.
GLAD: a system for developing and deploying large-scale bioinformatics grid.
Teo, Yong-Meng; Wang, Xianbing; Ng, Yew-Kwong
2005-03-01
Grid computing is used to solve large-scale bioinformatics problems with gigabytes database by distributing the computation across multiple platforms. Until now in developing bioinformatics grid applications, it is extremely tedious to design and implement the component algorithms and parallelization techniques for different classes of problems, and to access remotely located sequence database files of varying formats across the grid. In this study, we propose a grid programming toolkit, GLAD (Grid Life sciences Applications Developer), which facilitates the development and deployment of bioinformatics applications on a grid. GLAD has been developed using ALiCE (Adaptive scaLable Internet-based Computing Engine), a Java-based grid middleware, which exploits the task-based parallelism. Two bioinformatics benchmark applications, such as distributed sequence comparison and distributed progressive multiple sequence alignment, have been developed using GLAD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geraghty, M.T.; Stetten, G.; Kearns, W.
1994-09-01
X-linked adrenoleukodystrophy (ALD) is a disorder of peroxisomal {beta}-oxidation of very long chain fatty acids. It presents either as progressive dementia in childhood or as progressive paraparesis in later years. Adrenal insufficiency occurs in both phenotypes. The gene of the ALD protein has been mapped to Xq28 and has recently been cloned and characterized. The ALD protein has significant homology to the peroxisomal membrane protein, PMP70 and belongs to the ATP binding cassette superfamily of transporters. We screened a human genomic library with an ALDP cDNA and isolated 5 different but highly similar clones containing sequences corresponding to the 3{prime}more » end of the ALDP gene. Comparison of the sequences over the region corresponding to exon 9 through the 3{prime} end of the ALDP gene reveals {approximately}96% nucleotide identity in both exonic and intronic regions. Splice sites and open reading frames are maintained. Using both FISH and human-rodent DNA mapping panels, we positively assign these ALDP-related sequences to chromosomes 2, 16 and 22, and provisionally to 1 and 20. Southern blot of primate DNA probed with a partial ALDP cDNA (exon 2-10) shows that expansion of ALDP-related sequences occurred in higher primates (chimp, gorilla and human). Although Northern blots show multiple ALDP-hybridizing transcripts in certain tissues, we have no evidence to date for expression of these ALDP-related sequences. In conclusion, our data show there has been an unusual and recent dispersal to multiple chromosomes of structural gene sequences related to the ALDP gene. The functional significance of these sequences remains to be determined but their existence complicates PCR and mutation analysis of the ALDP gene.« less
Merelli, E; Sola, P; Marasca, R; Salati, R; Torelli, G
1993-01-01
To contribute to the undecided question if a retrovirus of the human T-cell lymphotropic virus (HTLV) family may be involved in the development of multiple sclerosis (MS), we investigated by the polymerase chain reaction (PCR) the presence of HTLV-I and HTLV-II sequences in the peripheral blood mononuclear cell DNAs from 30 patients affected by MS and 15 by chronic progressive myelopathy. Moreover a control group of 14 blood donors was examined. All these patients were devoid of anti-HTLV-I antibody in the serum and cerebrospinal fluid at ELISA. For the PCR, primers and probes specific for the tax region common to HTLV-I and HTLV-II, for the pol region of HTLV-I, and for the pol region of HTLV-II were used. In spite of the high sensitivity of the technique used, the three groups of subjects were negative for HTLV-I and HTLV-II genomic sequences.
Di Pietro, C; Di Pietro, V; Emmanuele, G; Ferro, A; Maugeri, T; Modica, E; Pigola, G; Pulvirenti, A; Purrello, M; Ragusa, M; Scalia, M; Shasha, D; Travali, S; Zimmitti, V
2003-01-01
In this paper we present a new Multiple Sequence Alignment (MSA) algorithm called AntiClusAl. The method makes use of the commonly use idea of aligning homologous sequences belonging to classes generated by some clustering algorithm, and then continue the alignment process ina bottom-up way along a suitable tree structure. The final result is then read at the root of the tree. Multiple sequence alignment in each cluster makes use of the progressive alignment with the 1-median (center) of the cluster. The 1-median of set S of sequences is the element of S which minimizes the average distance from any other sequence in S. Its exact computation requires quadratic time. The basic idea of our proposed algorithm is to make use of a simple and natural algorithmic technique based on randomized tournaments which has been successfully applied to large size search problems in general metric spaces. In particular a clustering algorithm called Antipole tree and an approximate linear 1-median computation are used. Our algorithm compared with Clustal W, a widely used tool to MSA, shows a better running time results with fully comparable alignment quality. A successful biological application showing high aminoacid conservation during evolution of Xenopus laevis SOD2 is also cited.
Singular Isothermal Disks and the Formation of Multiple Stars
NASA Technical Reports Server (NTRS)
Galli, Daniele; Shu, Frank H.; Laughlin, Gregory; Lizano, Susana; DeVincenzi, Donald (Technical Monitor)
2000-01-01
A crucial missing ingredient in previous theoretical studies of fragmentation is the inclusion of dynamically important levels of magnetic fields. As a minimal model for a candidate presursor to the formation of binary and multiple stars, we therefore consider the equilibrium configuration of isopedically magnetized, scale-free, singular isothermal disks, without the assumption of axial symmetry. We find that lopsided (M = 1) configurations exist at any dimensionless rotation rate, including zero. Multiple-lobed (M = 2, 3, 4, ...) configurations bifurcate from an underlying axisymmetric sequence at progressively higher dimensionless rates of rotation, but such nonaxisymmetric sequences always terminate in shockwaves before they have a chance to fission into separate bodies. We advance the hypothesis that binary and multiple star-formation from smooth (i.e., not highly turbulent) starting states that are supercritical but in unstable mechanical balance requires the rapid (i.e., dynamical) loss of magnetic flux at some stage of the ensuing gravitational collapse.
Zemali, El-Amine; Boukra, Abdelmadjid
2015-08-01
The multiple sequence alignment (MSA) is one of the most challenging problems in bioinformatics, it involves discovering similarity between a set of protein or DNA sequences. This paper introduces a new method for the MSA problem called biogeography-based optimization with multiple populations (BBOMP). It is based on a recent metaheuristic inspired from the mathematics of biogeography named biogeography-based optimization (BBO). To improve the exploration ability of BBO, we have introduced a new concept allowing better exploration of the search space. It consists of manipulating multiple populations having each one its own parameters. These parameters are used to build up progressive alignments allowing more diversity. At each iteration, the best found solution is injected in each population. Moreover, to improve solution quality, six operators are defined. These operators are selected with a dynamic probability which changes according to the operators efficiency. In order to test proposed approach performance, we have considered a set of datasets from Balibase 2.0 and compared it with many recent algorithms such as GAPAM, MSA-GA, QEAMSA and RBT-GA. The results show that the proposed approach achieves better average score than the previously cited methods.
USDA-ARS?s Scientific Manuscript database
Microbial ecologists are intensely interested in the processes governing microbial community assembly, progress has been limited by a lack of studies that span multiple geographical scales and levels of biological organization. High throughput sequencing was used to characterize foliar fungal endoph...
Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.
Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias
2011-01-01
The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.
The "Yin" and "Yang" of Cell Cycle Progression and Differentiation in the Oligodendroglial Lineage
ERIC Educational Resources Information Center
Nguyen, Laurent; Borgs, Laurence; Vandenbosch, Renaud; Mangin, Jean-Marie; Beukelaers, Pierre; Moonen, Gustave; Gallo, Vittorio; Malgrange, Brigitte; Belachew, Shibeshih
2006-01-01
In white matter disorders such as leukodystrophies (LD), periventricular leucomalacia (PVL), or multiple sclerosis (MS), the hypomyelination or the remyelination failure by oligodendrocyte progenitor cells involves errors in the sequence of events that normally occur during development when progenitors proliferate, migrate through the white…
Singular Isothermal Disks. Paper 2; Nonaxiymmetric Bifurcations and Equilibria
NASA Technical Reports Server (NTRS)
Galli, Danielle; Shu, Frank H.; Laughlin, Gregory; Lizano, Susana
2000-01-01
We review the difficulties of the classical fission and fragmentation hypotheses for the formation of binary and multiple stars. A crucial missing ingredient in previous theoretical studies is the inclusion of dynamically important levels of magnetic fields. As a minimal model for a candidate presursor to the formation of binary and multiple stars, we therefore formulate and solve the problem of the equilibria of isopedically magnetized, singular isothermal disks, without the assumption of axial symmetry. Considerable analytical progress can be made if we restrict our attention to models that are scale-free, i.e., that have surface densities that vary inversely with distance omega from the rotation axis of the system. In agreement with earlier analysis by Syer and Tremaine, we find that lopsided (M = 1) configurations exist at any dimensionless rotation rate, including zero. Multiple-lobed (M = 2, 3, 4, ...) configurations bifurcate from an underlying axisymmetric sequence at progressively higher dimensionless rates of rotation, but such nonaxisymmetric sequences always terminate in shockwaves before they have a chance to fission into M = 2, 3, 4, ... separate bodies. On the basis of our experience in this paper, we advance the hypothesis that binary and multiple star-formation from smooth (i.e., not highly turbulent) starting states that are supercritical but in unstable mechanical balance requires the rapid (i.e., dynamical) loss of magnetic flux at some stage of the ensuing gravitational collapse.
ERIC Educational Resources Information Center
Floris, S.; Blezer, E. L. A.; Schreibelt, G.; Dopp, E.; van der Pol, S. M. A.; Schadee-Eestermans, I. L.; Nicolay, K.; Dijkstra, C. D.; de Vries, H. E.
2004-01-01
Enhanced cerebrovascular permeability and cellular infiltration mark the onset of early multiple sclerosis lesions. So far, the precise sequence of these events and their role in lesion formation and disease progression remain unknown. Here we provide quantitative evidence that blood-brain barrier leakage is an early event and precedes massive…
Foundations for Modeling University Curricula in Terms of Multiple Learning Goal Sets
ERIC Educational Resources Information Center
Gluga, R.; Kay, J.; Lever, T.
2013-01-01
It is important, but very challenging, to design degree programs, so that the sequence of learning activities, topics, and assessments over three to five years give an effective progression in learning of generic skills, discipline-specific learning goals and accreditation competencies. Our CUSP (Course and Unit of Study Portal) system tackles…
Hagopian, Raffi; Davidson, John R; Datta, Ruchira S; Samad, Bushra; Jarvis, Glen R; Sjölander, Kimmen
2010-07-01
We present the jump-start simultaneous alignment and tree construction using hidden Markov models (SATCHMO-JS) web server for simultaneous estimation of protein multiple sequence alignments (MSAs) and phylogenetic trees. The server takes as input a set of sequences in FASTA format, and outputs a phylogenetic tree and MSA; these can be viewed online or downloaded from the website. SATCHMO-JS is an extension of the SATCHMO algorithm, and employs a divide-and-conquer strategy to jump-start SATCHMO at a higher point in the phylogenetic tree, reducing the computational complexity of the progressive all-versus-all HMM-HMM scoring and alignment. Results on a benchmark dataset of 983 structurally aligned pairs from the PREFAB benchmark dataset show that SATCHMO-JS provides a statistically significant improvement in alignment accuracy over MUSCLE, Multiple Alignment using Fast Fourier Transform (MAFFT), ClustalW and the original SATCHMO algorithm. The SATCHMO-JS webserver is available at http://phylogenomics.berkeley.edu/satchmo-js. The datasets used in these experiments are available for download at http://phylogenomics.berkeley.edu/satchmo-js/supplementary/.
Algorithmic methods to infer the evolutionary trajectories in cancer progression
Graudenzi, Alex; Ramazzotti, Daniele; Sanz-Pamplona, Rebeca; De Sano, Luca; Mauri, Giancarlo; Moreno, Victor; Antoniotti, Marco; Mishra, Bud
2016-01-01
The genomic evolution inherent to cancer relates directly to a renewed focus on the voluminous next-generation sequencing data and machine learning for the inference of explanatory models of how the (epi)genomic events are choreographed in cancer initiation and development. However, despite the increasing availability of multiple additional -omics data, this quest has been frustrated by various theoretical and technical hurdles, mostly stemming from the dramatic heterogeneity of the disease. In this paper, we build on our recent work on the “selective advantage” relation among driver mutations in cancer progression and investigate its applicability to the modeling problem at the population level. Here, we introduce PiCnIc (Pipeline for Cancer Inference), a versatile, modular, and customizable pipeline to extract ensemble-level progression models from cross-sectional sequenced cancer genomes. The pipeline has many translational implications because it combines state-of-the-art techniques for sample stratification, driver selection, identification of fitness-equivalent exclusive alterations, and progression model inference. We demonstrate PiCnIc’s ability to reproduce much of the current knowledge on colorectal cancer progression as well as to suggest novel experimentally verifiable hypotheses. PMID:27357673
Yamada, Kazunori D.; Tomii, Kentaro; Katoh, Kazutaka
2016-01-01
Motivation: Large multiple sequence alignments (MSAs), consisting of thousands of sequences, are becoming more and more common, due to advances in sequencing technologies. The MAFFT MSA program has several options for building large MSAs, but their performances have not been sufficiently assessed yet, because realistic benchmarking of large MSAs has been difficult. Recently, such assessments have been made possible through the HomFam and ContTest benchmark protein datasets. Along with the development of these datasets, an interesting theory was proposed: chained guide trees increase the accuracy of MSAs of structurally conserved regions. This theory challenges the basis of progressive alignment methods and needs to be examined by being compared with other known methods including computationally intensive ones. Results: We used HomFam, ContTest and OXFam (an extended version of OXBench) to evaluate several methods enabled in MAFFT: (1) a progressive method with approximate guide trees, (2) a progressive method with chained guide trees, (3) a combination of an iterative refinement method and a progressive method and (4) a less approximate progressive method that uses a rigorous guide tree and consistency score. Other programs, Clustal Omega and UPP, available for large MSAs, were also included into the comparison. The effect of method 2 (chained guide trees) was positive in ContTest but negative in HomFam and OXFam. Methods 3 and 4 increased the benchmark scores more consistently than method 2 for the three datasets, suggesting that they are safer to use. Availability and Implementation: http://mafft.cbrc.jp/alignment/software/ Contact: katoh@ifrec.osaka-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27378296
Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.
Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo
2016-07-19
Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .
Dautzenberg, K H W; Polderman, F N; van Suylen, R J; Moviat, M A M
2017-05-01
Both purpura fulminans and toxic epidermal necrolysis (TEN) are rare and life-threatening disorders with a high mortality. We present a case of suspected rapidly progressive, severe pneumococcal sepsis-induced purpura fulminans complicated by multiple organ failure, severe epidermolysis and cutaneous necrosis. We show the diagnostic challenge to differentiate between purpura fulminans and TEN, as the extensive epidermolysis in purpura fulminans may mimic TEN and we highlight the additional value of repeated skin biopsies and 16S rRNA gene sequencing.
Brown, David; Smeets, Dominiek; Székely, Borbála; Larsimont, Denis; Szász, A. Marcell; Adnet, Pierre-Yves; Rothé, Françoise; Rouas, Ghizlane; Nagy, Zsófia I.; Faragó, Zsófia; Tőkés, Anna-Mária; Dank, Magdolna; Szentmártoni, Gyöngyvér; Udvarhelyi, Nóra; Zoppoli, Gabriele; Pusztai, Lajos; Piccart, Martine; Kulka, Janina; Lambrechts, Diether; Sotiriou, Christos; Desmedt, Christine
2017-01-01
Several studies using genome-wide molecular techniques have reported various degrees of genetic heterogeneity between primary tumours and their distant metastases. However, it has been difficult to discern patterns of dissemination owing to the limited number of patients and available metastases. Here, we use phylogenetic techniques on data generated using whole-exome sequencing and copy number profiling of primary and multiple-matched metastatic tumours from ten autopsied patients to infer the evolutionary history of breast cancer progression. We observed two modes of disease progression. In some patients, all distant metastases cluster on a branch separate from their primary lesion. Clonal frequency analyses of somatic mutations show that the metastases have a monoclonal origin and descend from a common ‘metastatic precursor’. Alternatively, multiple metastatic lesions are seeded from different clones present within the primary tumour. We further show that a metastasis can be horizontally cross-seeded. These findings provide insights into breast cancer dissemination. PMID:28429735
A greedy, graph-based algorithm for the alignment of multiple homologous gene lists.
Fostier, Jan; Proost, Sebastian; Dhoedt, Bart; Saeys, Yvan; Demeester, Piet; Van de Peer, Yves; Vandepoele, Klaas
2011-03-15
Many comparative genomics studies rely on the correct identification of homologous genomic regions using accurate alignment tools. In such case, the alphabet of the input sequences consists of complete genes, rather than nucleotides or amino acids. As optimal multiple sequence alignment is computationally impractical, a progressive alignment strategy is often employed. However, such an approach is susceptible to the propagation of alignment errors in early pairwise alignment steps, especially when dealing with strongly diverged genomic regions. In this article, we present a novel accurate and efficient greedy, graph-based algorithm for the alignment of multiple homologous genomic segments, represented as ordered gene lists. Based on provable properties of the graph structure, several heuristics are developed to resolve local alignment conflicts that occur due to gene duplication and/or rearrangement events on the different genomic segments. The performance of the algorithm is assessed by comparing the alignment results of homologous genomic segments in Arabidopsis thaliana to those obtained by using both a progressive alignment method and an earlier graph-based implementation. Especially for datasets that contain strongly diverged segments, the proposed method achieves a substantially higher alignment accuracy, and proves to be sufficiently fast for large datasets including a few dozens of eukaryotic genomes. http://bioinformatics.psb.ugent.be/software. The algorithm is implemented as a part of the i-ADHoRe 3.0 package.
Tracing cell lineages in videos of lens-free microscopy.
Rempfler, Markus; Stierle, Valentin; Ditzel, Konstantin; Kumar, Sanjeev; Paulitschke, Philipp; Andres, Bjoern; Menze, Bjoern H
2018-06-05
In vitro experiments with cultured cells are essential for studying their growth and migration pattern and thus, for gaining a better understanding of cancer progression and its treatment. Recent progress in lens-free microscopy (LFM) has rendered it an inexpensive tool for label-free, continuous live cell imaging, yet there is only little work on analysing such time-lapse image sequences. We propose (1) a cell detector for LFM images based on fully convolutional networks and residual learning, and (2) a probabilistic model based on moral lineage tracing that explicitly handles multiple detections and temporal successor hypotheses by clustering and tracking simultaneously. (3) We benchmark our method in terms of detection and tracking scores on a dataset of three annotated sequences of several hours of LFM, where we demonstrate our method to produce high quality lineages. (4) We evaluate its performance on a somewhat more challenging problem: estimating cell lineages from the LFM sequence as would be possible from a corresponding fluorescence microscopy sequence. We present experiments on 16 LFM sequences for which we acquired fluorescence microscopy in parallel and generated annotations from them. Finally, (5) we showcase our methods effectiveness for quantifying cell dynamics in an experiment with skin cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Bowling, Bethany V.; Schultheis, Patrick J.
2015-01-01
Saccharomyces cerevisiae was the first eukaryotic organism to be sequenced, however little progress has been made in recent years in furthering our understanding of all open reading frames (ORFs). From October 2012 to May 2015 the number of verified ORFs has only risen from 75.31% to 78% while the number of uncharacterized ORFs have decreased from 12.8% to 11% (representing more than 700 genes still left in this category) [http://www.yeastgenome.org/genomesnapshot]. Course-based research has been shown to increase student learning while providing experience with real scientific investigation; however, implementation in large, multi-section courses presents many challenges. This study sought to test the feasibility and effectiveness of incorporating authentic research into a core genetics course with multiple instructors to increase student learning and progress our understanding of uncharacterized ORFs. We generated a module-based annotation toolkit and utilized easily accessible bioinformatics tools to predict gene function for uncharacterized ORFs within the Saccharomyces Genome Database (SGD). Students were each assigned an uncharacterized ORF which they annotated using contemporary comparative genomics methodologies including multiple sequence alignment, conserved domain identification, signal peptide prediction and cellular localization algorithms. Student learning outcomes were measured by quizzes, project reports and presentations, as well as a post-project questionnaire. Our results indicate the authentic research experience had positive impacts on student's perception of their learning and their confidence to conduct future research. Furthermore we believe that creation of an online repository and adoption and/or adaptation of this project across multiple researchers and institutions could speed the process of gene function prediction. PMID:26460164
Bowling, Bethany V; Schultheis, Patrick J; Strome, Erin D
2016-02-01
Saccharomyces cerevisiae was the first eukaryotic organism to be sequenced; however, little progress has been made in recent years in furthering our understanding of all open reading frames (ORFs). From October 2012 to May 2015 the number of verified ORFs had only risen from 75.31% to 78%, while the number of uncharacterized ORFs had decreased from 12.8% to 11% (representing > 700 genes still left in this category; http://www.yeastgenome.org/genomesnapshot). Course-based research has been shown to increase student learning while providing experience with real scientific investigation; however, implementation in large, multi-section courses presents many challenges. This study sought to test the feasibility and effectiveness of incorporating authentic research into a core genetics course, with multiple instructors, to increase student learning and progress our understanding of uncharacterized ORFs. We generated a module-based annotation toolkit and utilized easily accessible bioinformatics tools to predict gene function for uncharacterized ORFs within the Saccharomyces Genome Database (SGD). Students were each assigned an uncharacterized ORF, which they annotated using contemporary comparative genomics methodologies, including multiple sequence alignment, conserved domain identification, signal peptide prediction and cellular localization algorithms. Student learning outcomes were measured by quizzes, project reports and presentations, as well as a post-project questionnaire. Our results indicate that the authentic research experience had positive impacts on students' perception of their learning and their confidence to conduct future research. Furthermore, we believe that creation of an online repository and adoption and/or adaptation of this project across multiple researchers and institutions could speed the process of gene function prediction. Copyright © 2015 John Wiley & Sons, Ltd.
Protein alignment algorithms with an efficient backtracking routine on multiple GPUs.
Blazewicz, Jacek; Frohmberg, Wojciech; Kierzynka, Michal; Pesch, Erwin; Wojciechowski, Pawel
2011-05-20
Pairwise sequence alignment methods are widely used in biological research. The increasing number of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted. Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman algorithms with a backtracking procedure which is needed to construct the alignment. In this paper we present the solution that performs the alignment of every given sequence pair, which is a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover, multiple GPUs support with load balancing makes the application very scalable. The article shows that the backtracking procedure of the sequence alignment algorithms may be designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of molecular biology to take advantage of the new computational architecture. Performed tests show that the efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost linearly increased when using more than one graphics card.
Genomic and Epigenomic Alterations in Cancer.
Chakravarthi, Balabhadrapatruni V S K; Nepal, Saroj; Varambally, Sooryanarayana
2016-07-01
Multiple genetic and epigenetic events characterize tumor progression and define the identity of the tumors. Advances in high-throughput technologies, like gene expression profiling, next-generation sequencing, proteomics, and metabolomics, have enabled detailed molecular characterization of various tumors. The integration and analyses of these high-throughput data have unraveled many novel molecular aberrations and network alterations in tumors. These molecular alterations include multiple cancer-driving mutations, gene fusions, amplification, deletion, and post-translational modifications, among others. Many of these genomic events are being used in cancer diagnosis, whereas others are therapeutically targeted with small-molecule inhibitors. Multiple genes/enzymes that play a role in DNA and histone modifications are also altered in various cancers, changing the epigenomic landscape during cancer initiation and progression. Apart from protein-coding genes, studies are uncovering the critical regulatory roles played by noncoding RNAs and noncoding regions of the genome during cancer progression. Many of these genomic and epigenetic events function in tandem to drive tumor development and metastasis. Concurrent advances in genome-modulating technologies, like gene silencing and genome editing, are providing ability to understand in detail the process of cancer initiation, progression, and signaling as well as opening up avenues for therapeutic targeting. In this review, we discuss some of the recent advances in cancer genomic and epigenomic research. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Reid-Bayliss, Kate S; Loeb, Lawrence A
2017-08-29
Transcriptional mutagenesis (TM) due to misincorporation during RNA transcription can result in mutant RNAs, or epimutations, that generate proteins with altered properties. TM has long been hypothesized to play a role in aging, cancer, and viral and bacterial evolution. However, inadequate methodologies have limited progress in elucidating a causal association. We present a high-throughput, highly accurate RNA sequencing method to measure epimutations with single-molecule sensitivity. Accurate RNA consensus sequencing (ARC-seq) uniquely combines RNA barcoding and generation of multiple cDNA copies per RNA molecule to eliminate errors introduced during cDNA synthesis, PCR, and sequencing. The stringency of ARC-seq can be scaled to accommodate the quality of input RNAs. We apply ARC-seq to directly assess transcriptome-wide epimutations resulting from RNA polymerase mutants and oxidative stress.
Lahuerta, Juan J.; Pepin, François; González, Marcos; Barrio, Santiago; Ayala, Rosa; Puig, Noemí; Montalban, María A.; Paiva, Bruno; Weng, Li; Jiménez, Cristina; Sopena, María; Moorhead, Martin; Cedena, Teresa; Rapado, Immaculada; Mateos, María Victoria; Rosiñol, Laura; Oriol, Albert; Blanchard, María J.; Martínez, Rafael; Bladé, Joan; San Miguel, Jesús; Faham, Malek; García-Sanz, Ramón
2014-01-01
We assessed the prognostic value of minimal residual disease (MRD) detection in multiple myeloma (MM) patients using a sequencing-based platform in bone marrow samples from 133 MM patients in at least very good partial response (VGPR) after front-line therapy. Deep sequencing was carried out in patients in whom a high-frequency myeloma clone was identified and MRD was assessed using the IGH-VDJH, IGH-DJH, and IGK assays. The results were contrasted with those of multiparametric flow cytometry (MFC) and allele-specific oligonucleotide polymerase chain reaction (ASO-PCR). The applicability of deep sequencing was 91%. Concordance between sequencing and MFC and ASO-PCR was 83% and 85%, respectively. Patients who were MRD– by sequencing had a significantly longer time to tumor progression (TTP) (median 80 vs 31 months; P < .0001) and overall survival (median not reached vs 81 months; P = .02), compared with patients who were MRD+. When stratifying patients by different levels of MRD, the respective TTP medians were: MRD ≥10−3 27 months, MRD 10−3 to 10−5 48 months, and MRD <10−5 80 months (P = .003 to .0001). Ninety-two percent of VGPR patients were MRD+. In complete response patients, the TTP remained significantly longer for MRD– compared with MRD+ patients (131 vs 35 months; P = .0009). PMID:24646471
Ryan, Niamh M; Lihm, Jayon; Kramer, Melissa; McCarthy, Shane; Morris, Stewart W; Arnau-Soler, Aleix; Davies, Gail; Duff, Barbara; Ghiban, Elena; Hayward, Caroline; Deary, Ian J; Blackwood, Douglas H R; Lawrie, Stephen M; McIntosh, Andrew M; Evans, Kathryn L; Porteous, David J; McCombie, W Richard; Thomson, Pippa A
2018-06-07
Psychiatric disorders are a group of genetically related diseases with highly polygenic architectures. Genome-wide association analyses have made substantial progress towards understanding the genetic architecture of these disorders. More recently, exome- and whole-genome sequencing of cases and families have identified rare, high penetrant variants that provide direct functional insight. There remains, however, a gap in the heritability explained by these complementary approaches. To understand how multiple genetic variants combine to modify both severity and penetrance of a highly penetrant variant, we sequenced 48 whole genomes from a family with a high loading of psychiatric disorder linked to a balanced chromosomal translocation. The (1;11)(q42;q14.3) translocation directly disrupts three genes: DISC1, DISC2, DISC1FP and has been linked to multiple brain imaging and neurocognitive outcomes in the family. Using DNA sequence-level linkage analysis, functional annotation and population-based association, we identified common and rare variants in GRM5 (minor allele frequency (MAF) > 0.05), PDE4D (MAF > 0.2) and CNTN5 (MAF < 0.01) that may help explain the individual differences in phenotypic expression in the family. We suggest that whole-genome sequencing in large families will improve the understanding of the combined effects of the rare and common sequence variation underlying psychiatric phenotypes.
Influence of age on adaptability of human mastication.
Peyron, Marie-Agnès; Blanc, Olivier; Lund, James P; Woda, Alain
2004-08-01
The objective of this work was to study the influence of age on the ability of subjects to adapt mastication to changes in the hardness of foods. The study was carried out on 67 volunteers aged from 25 to 75 yr (29 males, 38 females) who had complete healthy dentitions. Surface electromyograms of the left and right masseter and temporalis muscles were recorded simultaneously with jaw movements using an electromagnetic transducer. Each volunteer was asked to chew and swallow four visco-elastic model foods of different hardness, each presented three times in random order. The number of masticatory cycles, their frequency, and the sum of all electromyographic (EMG) activity in all four muscles were calculated for each masticatory sequence. Multiple linear regression analyses were used to assess the effects of hardness, age, and gender. Hardness was associated to an increase in the mean number of cycles and mean summed EMG activity per sequence. It also increased mean vertical amplitude. Mean vertical amplitude and mean summed EMG activity per sequence were higher in males. These adaptations were present at all ages. Age was associated with an increase of 0.3 cycles per sequence per year of life and with a progressive increase in mean summed EMG activity per sequence. Cycle and opening duration early in the sequence also fell with age. We concluded that although the number of cycles needed to chew a standard piece of food increases progressively with age, the capacity to adapt to changes in the hardness of food is maintained.
Mining co-occurrence and sequence patterns from cancer diagnoses in New York State.
Wang, Yu; Hou, Wei; Wang, Fusheng
2018-01-01
The goal of this study is to discover disease co-occurrence and sequence patterns from large scale cancer diagnosis histories in New York State. In particular, we want to identify disparities among different patient groups. Our study will provide essential knowledge for clinical researchers to further investigate comorbidities and disease progression for improving the management of multiple diseases. We used inpatient discharge and outpatient visit records from the New York State Statewide Planning and Research Cooperative System (SPARCS) from 2011-2015. We grouped each patient's visit history to generate diagnosis sequences for seven most popular cancer types. We performed frequent disease co-occurrence mining using the Apriori algorithm, and frequent disease sequence patterns discovery using the cSPADE algorithm. Different types of cancer demonstrated distinct patterns. Disparities of both disease co-occurrence and sequence patterns were observed from patients within different age groups. There were also considerable disparities in disease co-occurrence patterns with respect to different claim types (i.e., inpatient, outpatient, emergency department and ambulatory surgery). Disparities regarding genders were mostly found where the cancer types were gender specific. Supports of most patterns were usually higher for males than for females. Compared with secondary diagnosis codes, primary diagnosis codes can convey more stable results. Two disease sequences consisting of the same diagnoses but in different orders were usually with different supports. Our results suggest that the methods adopted can generate potentially interesting and clinically meaningful disease co-occurrence and sequence patterns, and identify disparities among various patient groups. These patterns could imply comorbidities and disease progressions.
Effective Identification of Similar Patients Through Sequential Matching over ICD Code Embedding.
Nguyen, Dang; Luo, Wei; Venkatesh, Svetha; Phung, Dinh
2018-04-11
Evidence-based medicine often involves the identification of patients with similar conditions, which are often captured in ICD (International Classification of Diseases (World Health Organization 2013)) code sequences. With no satisfying prior solutions for matching ICD-10 code sequences, this paper presents a method which effectively captures the clinical similarity among routine patients who have multiple comorbidities and complex care needs. Our method leverages the recent progress in representation learning of individual ICD-10 codes, and it explicitly uses the sequential order of codes for matching. Empirical evaluation on a state-wide cancer data collection shows that our proposed method achieves significantly higher matching performance compared with state-of-the-art methods ignoring the sequential order. Our method better identifies similar patients in a number of clinical outcomes including readmission and mortality outlook. Although this paper focuses on ICD-10 diagnosis code sequences, our method can be adapted to work with other codified sequence data.
Targeted therapy according to next generation sequencing-based panel sequencing.
Saito, Motonobu; Momma, Tomoyuki; Kono, Koji
2018-04-17
Targeted therapy against actionable gene mutations shows a significantly higher response rate as well as longer survival compared to conventional chemotherapy, and has become a standard therapy for many cancers. Recent progress in next-generation sequencing (NGS) has enabled to identify huge number of genetic aberrations. Based on sequencing results, patients recommend to undergo targeted therapy or immunotherapy. In cases where there are no available approved drugs for the genetic mutations detected in the patients, it is recommended to be facilitate the registration for the clinical trials. For that purpose, a NGS-based sequencing panel that can simultaneously target multiple genes in a single investigation has been used in daily clinical practice. To date, various types of sequencing panels have been developed to investigate genetic aberrations with tumor somatic genome variants (gain-of-function or loss-of-function mutations, high-level copy number alterations, and gene fusions) through comprehensive bioinformatics. Because sequencing panels are efficient and cost-effective, they are quickly being adopted outside the lab, in hospitals and clinics, in order to identify personal targeted therapy for individual cancer patients.
Progressive simplification and transmission of building polygons based on triangle meshes
NASA Astrophysics Data System (ADS)
Li, Hongsheng; Wang, Yingjie; Guo, Qingsheng; Han, Jiafu
2010-11-01
Digital earth is a virtual representation of our planet and a data integration platform which aims at harnessing multisource, multi-resolution, multi-format spatial data. This paper introduces a research framework integrating progressive cartographic generalization and transmission of vector data. The progressive cartographic generalization provides multiple resolution data from coarse to fine as key scales and increments between them which is not available in traditional generalization framework. Based on the progressive simplification algorithm, the building polygons are triangulated into meshes and encoded according to the simplification sequence of two basic operations, edge collapse and vertex split. The map data at key scales and encoded increments between them are stored in a multi-resolution file. As the client submits requests to the server, the coarsest map is transmitted first and then the increments. After data decoding and mesh refinement the building polygons with more details will be visualized. Progressive generalization and transmission of building polygons is demonstrated in the paper.
Aircraft Simulator: Multiple-Cockpit Combat Mission Trainer Network.
1984-01-01
Force Human Resources Laboratory (AFHRL), the Air Force Office of Scientific Research (AFOSR), and the Southeastern Center for Electrical Engineering...New York: IEEE Press. Rapumno, R. A. , A Shimsaki, N. (1974). Synchronization of earth stations to satellite-switched sequences. Comunications ...Satellite Technology, 33 (Progress in Astronautics and Aeronautics) , 411-429. Tobagi, F. A. (1980). Multiaccess protocols in packet comunication systems. IEEE TMS. C". , 4 (vol. CO-28), 468-488. 27 ORR .0--000
Lai, Chih-Cheng; Tsai, Hsih-Yeh; Ruan, Sheng-Yuan; Liao, Chun-Hsing; Hsueh, Po-Ren
2015-12-01
We describe a case of pneumonia and empyema thoracis caused by trimethoprim-sulfamethoxazole-susceptible, but imipenem-resistant Nocardia abscessus in a cancer patient. The isolate was confirmed to the species level by 16S rRNA sequencing analysis. The patient did not respond to antibiotic therapy, including ceftriaxone and imipenem, and died of progressing pneumonia and multiple organ failure. Copyright © 2013. Published by Elsevier B.V.
Primate amygdala neurons evaluate the progress of self-defined economic choice sequences
Grabenhorst, Fabian; Hernadi, Istvan; Schultz, Wolfram
2016-01-01
The amygdala is a prime valuation structure yet its functions in advanced behaviors are poorly understood. We tested whether individual amygdala neurons encode a critical requirement for goal-directed behavior: the evaluation of progress during sequential choices. As monkeys progressed through choice sequences toward rewards, amygdala neurons showed phasic, gradually increasing responses over successive choice steps. These responses occurred in the absence of external progress cues or motor preplanning. They were often specific to self-defined sequences, typically disappearing during instructed control sequences with similar reward expectation. Their build-up rate reflected prospectively the forthcoming choice sequence, suggesting adaptation to an internal plan. Population decoding demonstrated a high-accuracy progress code. These findings indicate that amygdala neurons evaluate the progress of planned, self-defined behavioral sequences. Such progress signals seem essential for aligning stepwise choices with internal plans. Their presence in amygdala neurons may inform understanding of human conditions with amygdala dysfunction and deregulated reward pursuit. DOI: http://dx.doi.org/10.7554/eLife.18731.001 PMID:27731795
Primate amygdala neurons evaluate the progress of self-defined economic choice sequences.
Grabenhorst, Fabian; Hernadi, Istvan; Schultz, Wolfram
2016-10-12
The amygdala is a prime valuation structure yet its functions in advanced behaviors are poorly understood. We tested whether individual amygdala neurons encode a critical requirement for goal-directed behavior: the evaluation of progress during sequential choices. As monkeys progressed through choice sequences toward rewards, amygdala neurons showed phasic, gradually increasing responses over successive choice steps. These responses occurred in the absence of external progress cues or motor preplanning. They were often specific to self-defined sequences, typically disappearing during instructed control sequences with similar reward expectation. Their build-up rate reflected prospectively the forthcoming choice sequence, suggesting adaptation to an internal plan. Population decoding demonstrated a high-accuracy progress code. These findings indicate that amygdala neurons evaluate the progress of planned, self-defined behavioral sequences. Such progress signals seem essential for aligning stepwise choices with internal plans. Their presence in amygdala neurons may inform understanding of human conditions with amygdala dysfunction and deregulated reward pursuit.
Calculating stage duration statistics in multistage diseases.
Komarova, Natalia L; Thalhauser, Craig J
2011-01-01
Many human diseases are characterized by multiple stages of progression. While the typical sequence of disease progression can be identified, there may be large individual variations among patients. Identifying mean stage durations and their variations is critical for statistical hypothesis testing needed to determine if treatment is having a significant effect on the progression, or if a new therapy is showing a delay of progression through a multistage disease. In this paper we focus on two methods for extracting stage duration statistics from longitudinal datasets: an extension of the linear regression technique, and a counting algorithm. Both are non-iterative, non-parametric and computationally cheap methods, which makes them invaluable tools for studying the epidemiology of diseases, with a goal of identifying different patterns of progression by using bioinformatics methodologies. Here we show that the regression method performs well for calculating the mean stage durations under a wide variety of assumptions, however, its generalization to variance calculations fails under realistic assumptions about the data collection procedure. On the other hand, the counting method yields reliable estimations for both means and variances of stage durations. Applications to Alzheimer disease progression are discussed.
In-depth characterization of the microRNA transcriptome in a leukemia progression model
Kuchenbauer, Florian; Morin, Ryan D.; Argiropoulos, Bob; Petriv, Oleh I.; Griffith, Malachi; Heuser, Michael; Yung, Eric; Piper, Jessica; Delaney, Allen; Prabhu, Anna-Liisa; Zhao, Yongjun; McDonald, Helen; Zeng, Thomas; Hirst, Martin; Hansen, Carl L.; Marra, Marco A.; Humphries, R. Keith
2008-01-01
MicroRNAs (miRNAs) have been shown to play important roles in physiological as well as multiple malignant processes, including acute myeloid leukemia (AML). In an effort to gain further insight into the role of miRNAs in AML, we have applied the Illumina massively parallel sequencing platform to carry out an in-depth analysis of the miRNA transcriptome in a murine leukemia progression model. This model simulates the stepwise conversion of a myeloid progenitor cell by an engineered overexpression of the nucleoporin 98 (NUP98)–homeobox HOXD13 fusion gene (ND13), to aggressive AML inducing cells upon transduction with the oncogenic collaborator Meis1. From this data set, we identified 307 miRNA/miRNA* species in the ND13 cells and 306 miRNA/miRNA* species in ND13+Meis1 cells, corresponding to 223 and 219 miRNA genes. Sequence counts varied between two and 136,558, indicating a remarkable expression range between the detected miRNA species. The large number of miRNAs expressed and the nature of differential expression suggest that leukemic progression as modeled here is dictated by the repertoire of shared, but differentially expressed miRNAs. Our finding of extensive sequence variations (isomiRs) for almost all miRNA and miRNA* species adds additional complexity to the miRNA transcriptome. A stringent target prediction analysis coupled with in vitro target validation revealed the potential for miRNA-mediated release of oncogenes that facilitates leukemic progression from the preleukemic to leukemia inducing state. Finally, 55 novel miRNAs species were identified in our data set, adding further complexity to the emerging world of small RNAs. PMID:18849523
Plant metabolic clusters - from genetics to genomics.
Nützmann, Hans-Wilhelm; Huang, Ancheng; Osbourn, Anne
2016-08-01
Contents 771 I. 771 II. 772 III. 780 IV. 781 V. 786 786 References 786 SUMMARY: Plant natural products are of great value for agriculture, medicine and a wide range of other industrial applications. The discovery of new plant natural product pathways is currently being revolutionized by two key developments. First, breakthroughs in sequencing technology and reduced cost of sequencing are accelerating the ability to find enzymes and pathways for the biosynthesis of new natural products by identifying the underlying genes. Second, there are now multiple examples in which the genes encoding certain natural product pathways have been found to be grouped together in biosynthetic gene clusters within plant genomes. These advances are now making it possible to develop strategies for systematically mining multiple plant genomes for the discovery of new enzymes, pathways and chemistries. Increased knowledge of the features of plant metabolic gene clusters - architecture, regulation and assembly - will be instrumental in expediting natural product discovery. This review summarizes progress in this area. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Ionita-Laza, Iuliana; Ottman, Ruth
2011-11-01
The recent progress in sequencing technologies makes possible large-scale medical sequencing efforts to assess the importance of rare variants in complex diseases. The results of such efforts depend heavily on the use of efficient study designs and analytical methods. We introduce here a unified framework for association testing of rare variants in family-based designs or designs based on unselected affected individuals. This framework allows us to quantify the enrichment in rare disease variants in families containing multiple affected individuals and to investigate the optimal design of studies aiming to identify rare disease variants in complex traits. We show that for many complex diseases with small values for the overall sibling recurrence risk ratio, such as Alzheimer's disease and most cancers, sequencing affected individuals with a positive family history of the disease can be extremely advantageous for identifying rare disease variants. In contrast, for complex diseases with large values of the sibling recurrence risk ratio, sequencing unselected affected individuals may be preferable.
Subclonal diversification of primary breast cancer revealed by multiregion sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian
Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less
Subclonal diversification of primary breast cancer revealed by multiregion sequencing
Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian; ...
2015-06-22
Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less
Gruber, Barry L.; Couto, Ana Rita; Armas, Jácome Bruges; Brown, Matthew A.; Finzel, Kathleen; Terkeltaub, Robert A.
2015-01-01
This report describes a 32-year-old woman presenting since childhood with progressive calcium pyrophosphate disease (CPPD), characterized by severe arthropathy and chondrocalcinosis involving multiple peripheral joints and intervertebral disks. Because ANKH mutations have been previously described in familial CPPD, the proband’s DNA was assessed at this locus by direct sequencing of promoter and coding regions and revealed 3 sequence variants in ANKH. Sequences of exon 1 revealed a novel isolated nonsynonymous mutation (c.13 C>T), altering amino acid in codon 5 from proline to serine (CCG>TCG). Sequencing of parental DNA revealed an identical mutation in the proband’s father but not the mother. Subsequent clinical evaluation demonstrated extensive chondrocalcinosis and degenerative arthropathy in the proband’s father. In summary, we report a novel mutation, not previously described, in ANKH exon 1, wherein serine replaces proline, in a case of early-onset severe CPPD associated with metabolic abnormalities, with similar findings in the proband’s father. PMID:22647861
Gruber, Barry L; Couto, Ana Rita; Armas, Jácome Bruges; Brown, Matthew A; Finzel, Kathleen; Terkeltaub, Robert A
2012-06-01
This report describes a 32-year-old woman presenting since childhood with progressive calcium pyrophosphate disease (CPPD), characterized by severe arthropathy and chondrocalcinosis involving multiple peripheral joints and intervertebral disks. Because ANKH mutations have been previously described in familial CPPD, the proband's DNA was assessed at this locus by direct sequencing of promoter and coding regions and revealed 3 sequence variants in ANKH. Sequences of exon 1 revealed a novel isolated nonsynonymous mutation (c.13 C>T), altering amino acid in codon 5 from proline to serine (CCG>TCG). Sequencing of parental DNA revealed an identical mutation in the proband's father but not the mother. Subsequent clinical evaluation demonstrated extensive chondrocalcinosis and degenerative arthropathy in the proband's father. In summary, we report a novel mutation, not previously described, in ANKH exon 1, wherein serine replaces proline, in a case of early-onset severe CPPD associated with metabolic abnormalities, with similar findings in the proband's father.
Aguilar, Carlos A.; Shcherbina, Anna; Ricke, Darrell O.; Pop, Ramona; Carrigan, Christopher T.; Gifford, Casey A.; Urso, Maria L.; Kottke, Melissa A.; Meissner, Alexander
2015-01-01
Traumatic lower-limb musculoskeletal injuries are pervasive amongst athletes and the military and typically an individual returns to activity prior to fully healing, increasing a predisposition for additional injuries and chronic pain. Monitoring healing progression after a musculoskeletal injury typically involves different types of imaging but these approaches suffer from several disadvantages. Isolating and profiling transcripts from the injured site would abrogate these shortcomings and provide enumerative insights into the regenerative potential of an individual’s muscle after injury. In this study, a traumatic injury was administered to a mouse model and healing progression was examined from 3 hours to 1 month using high-throughput RNA-Sequencing (RNA-Seq). Comprehensive dissection of the genome-wide datasets revealed the injured site to be a dynamic, heterogeneous environment composed of multiple cell types and thousands of genes undergoing significant expression changes in highly regulated networks. Four independent approaches were used to determine the set of genes, isoforms, and genetic pathways most characteristic of different time points post-injury and two novel approaches were developed to classify injured tissues at different time points. These results highlight the possibility to quantitatively track healing progression in situ via transcript profiling using high- throughput sequencing. PMID:26381351
Hafler, Brian P
2017-03-01
Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.
Using single cell sequencing data to model the evolutionary history of a tumor.
Kim, Kyung In; Simon, Richard
2014-01-24
The introduction of next-generation sequencing (NGS) technology has made it possible to detect genomic alterations within tumor cells on a large scale. However, most applications of NGS show the genetic content of mixtures of cells. Recently developed single cell sequencing technology can identify variation within a single cell. Characterization of multiple samples from a tumor using single cell sequencing can potentially provide information on the evolutionary history of that tumor. This may facilitate understanding how key mutations accumulate and evolve in lineages to form a heterogeneous tumor. We provide a computational method to infer an evolutionary mutation tree based on single cell sequencing data. Our approach differs from traditional phylogenetic tree approaches in that our mutation tree directly describes temporal order relationships among mutation sites. Our method also accommodates sequencing errors. Furthermore, we provide a method for estimating the proportion of time from the earliest mutation event of the sample to the most recent common ancestor of the sample of cells. Finally, we discuss current limitations on modeling with single cell sequencing data and possible improvements under those limitations. Inferring the temporal ordering of mutational sites using current single cell sequencing data is a challenge. Our proposed method may help elucidate relationships among key mutations and their role in tumor progression.
Hepatitis E virus and fulminant hepatitis--a virus or host-specific pathology?
Smith, Donald B; Simmonds, Peter
2015-04-01
Fulminant hepatitis is a rare outcome of infection with hepatitis E virus. Several recent reports suggest that virus variation is an important determinant of disease progression. To critically examine the evidence that virus-specific factors underlie the development of fulminant hepatitis following hepatitis E virus infection. Published sequence information of hepatitis E virus isolates from patients with and without fulminant hepatitis was collected and analysed using statistical tests to identify associations between virus polymorphisms and disease outcome. Fulminant hepatitis has been reported following infection with all four hepatitis E virus genotypes that infect humans comprising multiple phylogenetic lineages within genotypes 1, 3 and 4. Analysis of virus sequences from individuals infected by a common source did not detect any common substitutions associated with progression to fulminant hepatitis. Re-analysis of previously reported associations between virus substitutions and fulminant hepatitis suggests that these were probably the result of sampling biases. Host-specific factors rather than virus genotype, variants or specific substitutions appear to be responsible for the development of fulminant hepatitis. © 2014 The Authors. Liver International Published by John Wiley & Sons Ltd.
Ai, Dongmei; Huang, Ruocheng; Wen, Jin; Li, Chao; Zhu, Jiangping; Xia, Li Charlie
2017-01-25
Periodontitis is an inflammatory disease affecting the tissues supporting teeth (periodontium). Integrative analysis of metagenomic samples from multiple periodontitis studies is a powerful way to examine microbiota diversity and interactions within host oral cavity. A total of 43 subjects were recruited to participate in two previous studies profiling the microbial community of human subgingival plaque samples using shotgun metagenomic sequencing. We integrated metagenomic sequence data from those two studies, including six healthy controls, 14 sites representative of stable periodontitis, 16 sites representative of progressing periodontitis, and seven periodontal sites of unknown status. We applied phylogenetic diversity, differential abundance, and network analyses, as well as clustering, to the integrated dataset to compare microbiological community profiles among the different disease states. We found alpha-diversity, i.e., mean species diversity in sites or habitats at a local scale, to be the single strongest predictor of subjects' periodontitis status (P < 0.011). More specifically, healthy subjects had the highest alpha-diversity, while subjects with stable sites had the lowest alpha-diversity. From these results, we developed an alpha-diversity logistic model-based naive classifier able to perfectly predict the disease status of the seven subjects with unknown periodontal status (not used in training). Phylogenetic profiling resulted in the discovery of nine marker microbes, and these species are able to differentiate between stable and progressing periodontitis, achieving an accuracy of 94.4%. Finally, we found that the reduction of negatively correlated species is a notable signature of disease progression. Our results consistently show a strong association between the loss of oral microbiota diversity and the progression of periodontitis, suggesting that metagenomics sequencing and phylogenetic profiling are predictive of early periodontitis, leading to potential therapeutic intervention. Our results also support a keystone pathogen-mediated polymicrobial synergy and dysbiosis (PSD) model to explain the etiology of periodontitis. Apart from P. gingivalis, we identified three additional keystone species potentially mediating the progression of periodontitis progression based on pathogenic characteristics similar to those of known keystone pathogens.
Bonizzoni, Paola; Rizzi, Raffaella; Pesole, Graziano
2005-10-05
Currently available methods to predict splice sites are mainly based on the independent and progressive alignment of transcript data (mostly ESTs) to the genomic sequence. Apart from often being computationally expensive, this approach is vulnerable to several problems--hence the need to develop novel strategies. We propose a method, based on a novel multiple genome-EST alignment algorithm, for the detection of splice sites. To avoid limitations of splice sites prediction (mainly, over-predictions) due to independent single EST alignments to the genomic sequence our approach performs a multiple alignment of transcript data to the genomic sequence based on the combined analysis of all available data. We recast the problem of predicting constitutive and alternative splicing as an optimization problem, where the optimal multiple transcript alignment minimizes the number of exons and hence of splice site observations. We have implemented a splice site predictor based on this algorithm in the software tool ASPIC (Alternative Splicing PredICtion). It is distinguished from other methods based on BLAST-like tools by the incorporation of entirely new ad hoc procedures for accurate and computationally efficient transcript alignment and adopts dynamic programming for the refinement of intron boundaries. ASPIC also provides the minimal set of non-mergeable transcript isoforms compatible with the detected splicing events. The ASPIC web resource is dynamically interconnected with the Ensembl and Unigene databases and also implements an upload facility. Extensive bench marking shows that ASPIC outperforms other existing methods in the detection of novel splicing isoforms and in the minimization of over-predictions. ASPIC also requires a lower computation time for processing a single gene and an EST cluster. The ASPIC web resource is available at http://aspic.algo.disco.unimib.it/aspic-devel/.
Meisner, Joshua K.; Price, Richard J.
2010-01-01
Arterial occlusive disease (AOD) is the leading cause of morbidity and mortality through the developed world, which creates a significant need for effective therapies to halt disease progression. Despite success of animal and small-scale human therapeutic arteriogenesis studies, this promising concept for treating AOD has yielded largely disappointing results in large-scale clinical trials. One reason for this lack of successful translation is that endogenous arteriogenesis is highly dependent on a poorly understood sequence of events and interactions between bone marrow derived cells (BMCs) and vascular cells, which makes designing effective therapies difficult. We contend that the process follows a complex, ordered sequence of events with multiple, specific BMC populations recruited at specific times and locations. Here we present the evidence suggesting roles for multiple BMC populations from neutrophils and mast cells to progenitor cells and propose how and where these cell populations fit within the sequence of events during arteriogenesis. Disruptions in these various BMC populations can impair the arteriogenesis process in patterns that characterize specific patient populations. We propose that an improved understanding of how arteriogenesis functions as a system can reveal individual BMC populations and functions that can be targeted for overcoming particular impairments in collateral vessel development. PMID:21044213
Genetic and Epigenetic Events Generate Multiple Pathways in Colorectal Cancer Progression
Pancione, Massimo; Remo, Andrea; Colantuoni, Vittorio
2012-01-01
Colorectal cancer (CRC) is one of the most common causes of death, despite decades of research. Initially considered as a disease due to genetic mutations, it is now viewed as a complex malignancy because of the involvement of epigenetic abnormalities. A functional equivalence between genetic and epigenetic mechanisms has been suggested in CRC initiation and progression. A hallmark of CRC is its pathogenetic heterogeneity attained through at least three distinct pathways: a traditional (adenoma-carcinoma sequence), an alternative, and more recently the so-called serrated pathway. While the alternative pathway is more heterogeneous and less characterized, the traditional and serrated pathways appear to be more homogeneous and clearly distinct. One unsolved question in colon cancer biology concerns the cells of origin and from which crypt compartment the different pathways originate. Based on molecular and pathological evidences, we propose that the traditional and serrated pathways originate from different crypt compartments explaining their genetic/epigenetic and clinicopathological differences. In this paper, we will discuss the current knowledge of CRC pathogenesis and, specifically, summarize the role of genetic/epigenetic changes in the origin and progression of the multiple CRC pathways. Elucidation of the link between the molecular and clinico-pathological aspects of CRC would improve our understanding of its etiology and impact both prevention and treatment. PMID:22888469
ClonEvol: clonal ordering and visualization in cancer sequencing.
Dang, H X; White, B S; Foltz, S M; Miller, C A; Luo, J; Fields, R C; Maher, C A
2017-12-01
Reconstruction of clonal evolution is critical for understanding tumor progression and implementing personalized therapies. This is often done by clustering somatic variants based on their cellular prevalence estimated via bulk tumor sequencing of multiple samples. The clusters, consisting of the clonal marker variants, are then ordered based on their estimated cellular prevalence to reconstruct clonal evolution trees, a process referred to as 'clonal ordering'. However, cellular prevalence estimate is confounded by statistical variability and errors in sequencing/data analysis, and therefore inhibits accurate reconstruction of the clonal evolution. This problem is further complicated by intra- and inter-tumor heterogeneity. Furthermore, the field lacks a comprehensive visualization tool to facilitate the interpretation of complex clonal relationships. To address these challenges we developed ClonEvol, a unified software tool for clonal ordering, visualization, and interpretation. ClonEvol uses a bootstrap resampling technique to estimate the cellular fraction of the clones and probabilistically models the clonal ordering constraints to account for statistical variability. The bootstrapping allows identification of the sample founding- and sub-clones, thus enabling interpretation of clonal seeding. ClonEvol automates the generation of multiple widely used visualizations for reconstructing and interpreting clonal evolution. ClonEvol outperformed three of the state of the art tools (LICHeE, Canopy and PhyloWGS) for clonal evolution inference, showing more robust error tolerance and producing more accurate trees in a simulation. Building upon multiple recent publications that utilized ClonEvol to study metastasis and drug resistance in solid cancers, here we show that ClonEvol rediscovered relapsed subclones in two published acute myeloid leukemia patients. Furthermore, we demonstrated that through noninvasive monitoring ClonEvol recapitulated the emerging subclones throughout metastatic progression observed in the tumors of a published breast cancer patient. ClonEvol has broad applicability for longitudinal monitoring of clonal populations in tumor biopsies, or noninvasively, to guide precision medicine. ClonEvol is written in R and is available at https://github.com/ChrisMaherLab/ClonEvol. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Noell, George H.; Gresham, Frank M.
2001-01-01
Describes design logic and potential uses of a variant of the multiple-baseline design. The multiple-baseline multiple-sequence (MBL-MS) consists of multiple-baseline designs that are interlaced with one another and include all possible sequences of treatments. The MBL-MS design appears to be primarily useful for comparison of treatments taking…
Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions
Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S
2013-06-25
A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.
Lin, John C; Spinella, Philip C; Fitzgerald, Julie C; Tucci, Marisa; Bush, Jenny L; Nadkarni, Vinay M; Thomas, Neal J; Weiss, Scott L
2017-01-01
To describe the epidemiology, morbidity, and mortality of new or progressive multiple organ dysfunction syndrome in children with severe sepsis. Secondary analysis of a prospective, cross-sectional, point prevalence study. International, multicenter PICUs. Pediatric patients with severe sepsis identified on five separate days over a 1-year period. None. Of 567 patients from 128 PICUs in 26 countries enrolled, 384 (68%) developed multiple organ dysfunction syndrome within 7 days of severe sepsis recognition. Three hundred twenty-seven had multiple organ dysfunction syndrome on the day of sepsis recognition. Ninety-one of these patients developed progressive multiple organ dysfunction syndrome, whereas an additional 57 patients subsequently developed new multiple organ dysfunction syndrome, yielding a total proportion with severe sepsis-associated new or progressive multiple organ dysfunction syndrome of 26%. Hospital mortality in patients with progressive multiple organ dysfunction syndrome was 51% compared with patients with new multiple organ dysfunction syndrome (28%) and those with single-organ dysfunction without multiple organ dysfunction syndrome (10%) (p < 0.001). Survivors of new or progressive multiple organ dysfunction syndrome also had a higher frequency of moderate to severe disability defined as a Pediatric Overall Performance Category score of greater than or equal to 3 and an increase of greater than or equal to 1 from baseline: 22% versus 29% versus 11% for progressive, new, and no multiple organ dysfunction syndrome, respectively (p < 0.001). Development of new or progressive multiple organ dysfunction syndrome is common (26%) in severe sepsis and is associated with a higher risk of morbidity and mortality than severe sepsis without new or progressive multiple organ dysfunction syndrome. Our data support the use of new or progressive multiple organ dysfunction syndrome as an important outcome in trials of pediatric severe sepsis although efforts are needed to validate whether reducing new or progressive multiple organ dysfunction syndrome leads to improvements in more definitive morbidity and mortality endpoints.
The brain in time: insights from neuromagnetic recordings.
Hari, Riitta; Parkkonen, Lauri; Nangini, Cathy
2010-03-01
The millisecond time resolution of magnetoencephalography (MEG) is instrumental for investigating the brain basis of sensory processing, motor planning, cognition, and social interaction. We review the basic principles, recent progress, and future potential of MEG in noninvasive tracking of human brain activity. Cortical activation sequences from tens to hundreds of milliseconds can be followed during, e.g., perception, motor action, imitation, and language processing by recording both spontaneous and evoked brain signals. Moreover, tagging of sensory input can be used to reveal neuronal mechanisms of binaural interaction and perception of ambiguous images. The results support the emerging ideas of multiple, hierarchically organized temporal scales in human brain function. Instrumentation and data analysis methods are rapidly progressing, enabling attempts to decode the four-dimensional spatiotemporal signal patterns to reveal correlates of behavior and mental contents.
Molecular Insight into Gut Microbiota and Rheumatoid Arthritis.
Wu, Xiaohao; He, Bing; Liu, Jin; Feng, Hui; Ma, Yinghui; Li, Defang; Guo, Baosheng; Liang, Chao; Dang, Lei; Wang, Luyao; Tian, Jing; Zhu, Hailong; Xiao, Lianbo; Lu, Cheng; Lu, Aiping; Zhang, Ge
2016-03-22
Rheumatoid arthritis (RA) is a systemic, inflammatory, and autoimmune disorder. Gut microbiota play an important role in the etiology of RA. With the considerable progress made in next-generation sequencing techniques, the identified gut microbiota difference between RA patients and healthy individuals provides an updated overview of the association between gut microbiota and RA. We reviewed the reported correlation and underlying molecular mechanisms among gut microbiota, the immune system, and RA. It has become known that gut microbiota contribute to the pathogenesis of RA via multiple molecular mechanisms. The progressive understanding of the dynamic interaction between gut microbiota and their host will help in establishing a highly individualized management for each RA patient, and achieve a better efficacy in clinical practice, or even discovering new drugs for RA.
The MiRNA Journey from Theory to Practice as a CNS Biomarker.
Stoicea, Nicoleta; Du, Amy; Lakis, D Christie; Tipton, Courtney; Arias-Morales, Carlos E; Bergese, Sergio D
2016-01-01
MicroRNAs (miRNAs), small nucleotide sequences that control gene transcription, have the potential to serve an expanded function as indicators in the diagnosis and progression of neurological disorders. Studies involving debilitating neurological diseases such as, Alzheimer's disease, multiple sclerosis, traumatic brain injuries, Parkinson's disease and CNS tumors, already provide validation for their clinical diagnostic use. These small nucleotide sequences have several features, making them favorable candidates as biomarkers, including function in multiple tissues, stability in bodily fluids, a role in pathogenesis, and the ability to be detected early in the disease course. Cerebrospinal fluid, with its cell-free environment, collection process that minimizes tissue damage, and direct contact with the brain and spinal cord, is a promising source of miRNA in the diagnosis of many neurological disorders. Despite the advantages of miRNA analysis, current analytic technology is not yet affordable as a clinically viable diagnostic tool and requires standardization. The goal of this review is to explore the prospective use of CSF miRNA as a reliable and affordable biomarker for different neurological disorders.
The MiRNA Journey from Theory to Practice as a CNS Biomarker
Stoicea, Nicoleta; Du, Amy; Lakis, D. Christie; Tipton, Courtney; Arias-Morales, Carlos E.; Bergese, Sergio D.
2016-01-01
MicroRNAs (miRNAs), small nucleotide sequences that control gene transcription, have the potential to serve an expanded function as indicators in the diagnosis and progression of neurological disorders. Studies involving debilitating neurological diseases such as, Alzheimer's disease, multiple sclerosis, traumatic brain injuries, Parkinson's disease and CNS tumors, already provide validation for their clinical diagnostic use. These small nucleotide sequences have several features, making them favorable candidates as biomarkers, including function in multiple tissues, stability in bodily fluids, a role in pathogenesis, and the ability to be detected early in the disease course. Cerebrospinal fluid, with its cell-free environment, collection process that minimizes tissue damage, and direct contact with the brain and spinal cord, is a promising source of miRNA in the diagnosis of many neurological disorders. Despite the advantages of miRNA analysis, current analytic technology is not yet affordable as a clinically viable diagnostic tool and requires standardization. The goal of this review is to explore the prospective use of CSF miRNA as a reliable and affordable biomarker for different neurological disorders. PMID:26904099
Stochastic Cell Fate Progression in Embryonic Stem Cells
NASA Astrophysics Data System (ADS)
Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad
2013-03-01
Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund
Uptake, Results, and Outcomes of Germline Multiple-Gene Sequencing After Diagnosis of Breast Cancer.
Kurian, Allison W; Ward, Kevin C; Hamilton, Ann S; Deapen, Dennis M; Abrahamse, Paul; Bondarenko, Irina; Li, Yun; Hawley, Sarah T; Morrow, Monica; Jagsi, Reshma; Katz, Steven J
2018-05-10
Low-cost sequencing of multiple genes is increasingly available for cancer risk assessment. Little is known about uptake or outcomes of multiple-gene sequencing after breast cancer diagnosis in community practice. To examine the effect of multiple-gene sequencing on the experience and treatment outcomes for patients with breast cancer. For this population-based retrospective cohort study, patients with breast cancer diagnosed from January 2013 to December 2015 and accrued from SEER registries across Georgia and in Los Angeles, California, were surveyed (n = 5080, response rate = 70%). Responses were merged with SEER data and results of clinical genetic tests, either BRCA1 and BRCA2 (BRCA1/2) sequencing only or including additional other genes (multiple-gene sequencing), provided by 4 laboratories. Type of testing (multiple-gene sequencing vs BRCA1/2-only sequencing), test results (negative, variant of unknown significance, or pathogenic variant), patient experiences with testing (timing of testing, who discussed results), and treatment (strength of patient consideration of, and surgeon recommendation for, prophylactic mastectomy), and prophylactic mastectomy receipt. We defined a patient subgroup with higher pretest risk of carrying a pathogenic variant according to practice guidelines. Among 5026 patients (mean [SD] age, 59.9 [10.7]), 1316 (26.2%) were linked to genetic results from any laboratory. Multiple-gene sequencing increasingly replaced BRCA1/2-only testing over time: in 2013, the rate of multiple-gene sequencing was 25.6% and BRCA1/2-only testing, 74.4%;in 2015 the rate of multiple-gene sequencing was 66.5% and BRCA1/2-only testing, 33.5%. Multiple-gene sequencing was more often ordered by genetic counselors (multiple-gene sequencing, 25.5% and BRCA1/2-only testing, 15.3%) and delayed until after surgery (multiple-gene sequencing, 32.5% and BRCA1/2-only testing, 19.9%). Multiple-gene sequencing substantially increased rate of detection of any pathogenic variant (multiple-gene sequencing: higher-risk patients, 12%; average-risk patients, 4.2% and BRCA1/2-only testing: higher-risk patients, 7.8%; average-risk patients, 2.2%) and variants of uncertain significance, especially in minorities (multiple-gene sequencing: white patients, 23.7%; black patients, 44.5%; and Asian patients, 50.9% and BRCA1/2-only testing: white patients, 2.2%; black patients, 5.6%; and Asian patients, 0%). Multiple-gene sequencing was not associated with an increase in the rate of prophylactic mastectomy use, which was highest with pathogenic variants in BRCA1/2 (BRCA1/2, 79.0%; other pathogenic variant, 37.6%; variant of uncertain significance, 30.2%; negative, 35.3%). Multiple-gene sequencing rapidly replaced BRCA1/2-only testing for patients with breast cancer in the community and enabled 2-fold higher detection of clinically relevant pathogenic variants without an associated increase in prophylactic mastectomy. However, important targets for improvement in the clinical utility of multiple-gene sequencing include postsurgical delay and racial/ethnic disparity in variants of uncertain significance.
HAFLER, BRIAN P.
2017-01-01
Purpose Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. Methods A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Results Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Conclusion Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies. PMID:27753762
Jiang, Yanwen; Nie, Kui; Redmond, David; Melnick, Ari M; Tam, Wayne; Elemento, Olivier
2015-12-28
Understanding tumor clonality is critical to understanding the mechanisms involved in tumorigenesis and disease progression. In addition, understanding the clonal composition changes that occur within a tumor in response to certain micro-environment or treatments may lead to the design of more sophisticated and effective approaches to eradicate tumor cells. However, tracking tumor clonal sub-populations has been challenging due to the lack of distinguishable markers. To address this problem, a VDJ-seq protocol was created to trace the clonal evolution patterns of diffuse large B cell lymphoma (DLBCL) relapse by exploiting VDJ recombination and somatic hypermutation (SHM), two unique features of B cell lymphomas. In this protocol, Next-Generation sequencing (NGS) libraries with indexing potential were constructed from amplified rearranged immunoglobulin heavy chain (IgH) VDJ region from pairs of primary diagnosis and relapse DLBCL samples. On average more than half million VDJ sequences per sample were obtained after sequencing, which contain both VDJ rearrangement and SHM information. In addition, customized bioinformatics pipelines were developed to fully utilize sequence information for the characterization of IgH-VDJ repertoire within these samples. Furthermore, the pipeline allows the reconstruction and comparison of the clonal architecture of individual tumors, which enables the examination of the clonal heterogeneity within the diagnosis tumors and deduction of clonal evolution patterns between diagnosis and relapse tumor pairs. When applying this analysis to several diagnosis-relapse pairs, we uncovered key evidence that multiple distinctive tumor evolutionary patterns could lead to DLBCL relapse. Additionally, this approach can be expanded into other clinical aspects, such as identification of minimal residual disease, monitoring relapse progress and treatment response, and investigation of immune repertoires in non-lymphoma contexts.
Enhancing knowledge discovery from cancer genomics data with Galaxy
Albuquerque, Marco A.; Grande, Bruno M.; Ritch, Elie J.; Pararajalingam, Prasath; Jessa, Selin; Krzywinski, Martin; Grewal, Jasleen K.; Shah, Sohrab P.; Boutros, Paul C.
2017-01-01
Abstract The field of cancer genomics has demonstrated the power of massively parallel sequencing techniques to inform on the genes and specific alterations that drive tumor onset and progression. Although large comprehensive sequence data sets continue to be made increasingly available, data analysis remains an ongoing challenge, particularly for laboratories lacking dedicated resources and bioinformatics expertise. To address this, we have produced a collection of Galaxy tools that represent many popular algorithms for detecting somatic genetic alterations from cancer genome and exome data. We developed new methods for parallelization of these tools within Galaxy to accelerate runtime and have demonstrated their usability and summarized their runtimes on multiple cloud service providers. Some tools represent extensions or refinement of existing toolkits to yield visualizations suited to cohort-wide cancer genomic analysis. For example, we present Oncocircos and Oncoprintplus, which generate data-rich summaries of exome-derived somatic mutation. Workflows that integrate these to achieve data integration and visualizations are demonstrated on a cohort of 96 diffuse large B-cell lymphomas and enabled the discovery of multiple candidate lymphoma-related genes. Our toolkit is available from our GitHub repository as Galaxy tool and dependency definitions and has been deployed using virtualization on multiple platforms including Docker. PMID:28327945
Enhancing knowledge discovery from cancer genomics data with Galaxy.
Albuquerque, Marco A; Grande, Bruno M; Ritch, Elie J; Pararajalingam, Prasath; Jessa, Selin; Krzywinski, Martin; Grewal, Jasleen K; Shah, Sohrab P; Boutros, Paul C; Morin, Ryan D
2017-05-01
The field of cancer genomics has demonstrated the power of massively parallel sequencing techniques to inform on the genes and specific alterations that drive tumor onset and progression. Although large comprehensive sequence data sets continue to be made increasingly available, data analysis remains an ongoing challenge, particularly for laboratories lacking dedicated resources and bioinformatics expertise. To address this, we have produced a collection of Galaxy tools that represent many popular algorithms for detecting somatic genetic alterations from cancer genome and exome data. We developed new methods for parallelization of these tools within Galaxy to accelerate runtime and have demonstrated their usability and summarized their runtimes on multiple cloud service providers. Some tools represent extensions or refinement of existing toolkits to yield visualizations suited to cohort-wide cancer genomic analysis. For example, we present Oncocircos and Oncoprintplus, which generate data-rich summaries of exome-derived somatic mutation. Workflows that integrate these to achieve data integration and visualizations are demonstrated on a cohort of 96 diffuse large B-cell lymphomas and enabled the discovery of multiple candidate lymphoma-related genes. Our toolkit is available from our GitHub repository as Galaxy tool and dependency definitions and has been deployed using virtualization on multiple platforms including Docker. © The Author 2017. Published by Oxford University Press.
Zhang, Sharon; Ratliff, Eric P.; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W.; Achal, Madhulika; Mauntz, Ruth E.; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A.; Macias, Andrew M.; Daugherty, Daniel; Harris, Greg L.; Edwards, Robert A.; Finley, Kim D.
2018-01-01
The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system. PMID:29642630
Zhang, Sharon; Ratliff, Eric P; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W; Achal, Madhulika; Mauntz, Ruth E; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A; Macias, Andrew M; Daugherty, Daniel; Harris, Greg L; Edwards, Robert A; Finley, Kim D
2018-04-10
The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.
Olson, Nathan D; Treangen, Todd J; Hill, Christopher M; Cepeda-Espinoza, Victoria; Ghurye, Jay; Koren, Sergey; Pop, Mihai
2017-08-07
Metagenomic samples are snapshots of complex ecosystems at work. They comprise hundreds of known and unknown species, contain multiple strain variants and vary greatly within and across environments. Many microbes found in microbial communities are not easily grown in culture making their DNA sequence our only clue into their evolutionary history and biological function. Metagenomic assembly is a computational process aimed at reconstructing genes and genomes from metagenomic mixtures. Current methods have made significant strides in reconstructing DNA segments comprising operons, tandem gene arrays and syntenic blocks. Shorter, higher-throughput sequencing technologies have become the de facto standard in the field. Sequencers are now able to generate billions of short reads in only a few days. Multiple metagenomic assembly strategies, pipelines and assemblers have appeared in recent years. Owing to the inherent complexity of metagenome assembly, regardless of the assembly algorithm and sequencing method, metagenome assemblies contain errors. Recent developments in assembly validation tools have played a pivotal role in improving metagenomics assemblers. Here, we survey recent progress in the field of metagenomic assembly, provide an overview of key approaches for genomic and metagenomic assembly validation and demonstrate the insights that can be derived from assemblies through the use of assembly validation strategies. We also discuss the potential for impact of long-read technologies in metagenomics. We conclude with a discussion of future challenges and opportunities in the field of metagenomic assembly and validation. © The Author 2017. Published by Oxford University Press.
Recent developments in the theory of protein folding: searching for the global energy minimum.
Scheraga, H A
1996-04-16
Statistical mechanical theories and computer simulation are being used to gain an understanding of the fundamental features of protein folding. A major obstacle in the computation of protein structures is the multiple-minima problem arising from the existence of many local minima in the multidimensional energy landscape of the protein. This problem has been surmounted for small open-chain and cyclic peptides, and for regular-repeating sequences of models of fibrous proteins. Progress is being made in resolving this problem for globular proteins.
Montané, Lucia Sentchordi; Marín, Oliver R; Rivera-Pedroza, Carlos I; Vallespín, Elena; Del Pozo, Ángela; Heath, Karen E
2016-06-01
Progressive pseudorheumatoid dysplasia (PPD) is a rare autosomal recessive disorder characterized by spondyloepiphyseal dysplasia associated with pain and stiffness of multiple joints, enlargement of the interphalangeal joints, normal inflammatory parameters, and absence of extra-skeletal manifestations. Homozygous or compound heterozygous WISP3 mutations cause PPD. We report two siblings from a non-consanguineous Ecuadorian family with a late-onset spondyloepiphyseal dysplasia. Mutation screening was undertaken in the two affected siblings using a customized skeletal dysplasia next generation sequencing (NGS) panel and confirmed by Sanger sequencing. Two compound heterozygous mutations were identified in WISP3 exon 2, c.[190G>A];[197G>A] (p.[(Gly64Arg)];[(Ser66Asn)]) in the two siblings, both of which had been inherited. The p. (Gly64Arg) mutation has not been previously described whilst the p. (Ser66Asn) mutation has been reported in two PPD families. The two siblings presented with atypical PPD, as they presented during late childhood, yet the severity was different between them. The progression was particularly aggressive in the male sibling who suffered severe scoliosis by the age of 13 years. This case reaffirms the clinical heterogeneity of this disorder and the clinical utility of NGS to genetically diagnose skeletal dysplasias, enabling adequate management, monitorization, and genetic counseling. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function.
Ontaneda, Daniel; Thompson, Alan J; Fox, Robert J; Cohen, Jeffrey A
2017-04-01
Multiple sclerosis is a major cause of neurological disability, which accrues predominantly during progressive forms of the disease. Although development of multifocal inflammatory lesions is the underlying pathological process in relapsing-remitting multiple sclerosis, the gradual accumulation of disability that characterises progressive multiple sclerosis seems to result more from diffuse immune mechanisms and neurodegeneration. As a result, the 14 anti-inflammatory drugs that have regulatory approval for treatment of relapsing-remitting multiple sclerosis have little or no efficacy in progressive multiple sclerosis without inflammatory lesion activity. Effective therapies for progressive multiple sclerosis that prevent worsening, reverse damage, and restore function are a major unmet need. In this Series paper we summarise the current status of therapy for progressive multiple sclerosis and outline prospects for the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions
Gardner, Shea N [San Leandro, CA; Mariella, Jr., Raymond P.; Christian, Allen T [Tracy, CA; Young, Jennifer A [Berkeley, CA; Clague, David S [Livermore, CA
2011-01-18
A method of fabricating a DNA molecule of user-defined sequence. The method comprises the steps of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an even or odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths. In one embodiment starting sequence fragments are of different lengths, n, n+1, n+2, etc.
Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer
2016-09-01
AWARD NUMBER: W81XWH-14-1-0080 TITLE: Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer. PRINCIPAL INVESTIGATOR...PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release...SUBTITLE Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer. 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0080 GRANT11489
Dal Bosco, Daniela; Sinski, Iraci; Ritschel, Patrícia S; Camargo, Umberto A; Fajardo, Thor V M; Harakava, Ricardo; Quecini, Vera
2018-06-06
Increased tolerance to pathogens is an important goal in conventional and biotechnology-assisted grapevine breeding programs worldwide. Fungal and viral pathogens cause direct losses in berry production, but also affect the quality of the final products. Precision breeding strategies allow the introduction of resistance characters in elite cultivars, although the factors determining the plant's overall performance are not fully characterized. Grapevine plants expressing defense proteins, from fungal or plant origins, or of the coat protein gene of grapevine leafroll-associated virus 3 (GLRaV-3) were generated by Agrobacterium-mediated transformation of somatic embryos and shoot apical meristems. The responses of the transformed lines to pathogen challenges were investigated by biochemical, phytopathological and molecular methods. The expression of a Metarhizium anisopliae chitinase gene delayed pathogenesis and disease progression against the necrotrophic pathogen Botrytis cinerea. Modified lines expressing a Solanum nigrum osmotin-like protein also exhibited slower disease progression, but to a smaller extent. Grapevine lines carrying two hairpin-inducing constructs had lower GLRaV-3 titers when challenged by grafting, although disease symptoms and viral multiplication were detected. The levels of global genome methylation were determined for the genetically engineered lines, and correlation analyses demonstrated the association between higher levels of methylated DNA and larger portions of virus-derived sequences. Resistance expression was also negatively correlated with the contents of introduced viral sequences and genome methylation, indicating that the effectiveness of resistance strategies employing sequences of viral origin is subject to epigenetic regulation in grapevine.
Finger tapping analysis in patients with Parkinson's disease and atypical parkinsonism.
Djurić-Jovičić, Milica; Petrović, Igor; Ječmenica-Lukić, Milica; Radovanović, Saša; Dragašević-Mišković, Nataša; Belić, Minja; Miler-Jerković, Vera; Popović, Mirjana B; Kostić, Vladimir S
2016-08-01
The goal of this study was to investigate repetitive finger tapping patterns in patients with Parkinson's disease (PD), progressive supranuclear palsy-Richardson syndrome (PSP-R), or multiple system atrophy of parkinsonian type (MSA-P). The finger tapping performance was objectively assessed in PD (n=13), PSP-R (n=15), and MSA-P (n=14) patients and matched healthy controls (HC; n=14), using miniature inertial sensors positioned on the thumb and index finger, providing spatio-temporal kinematic parameters. The main finding was the lack or only minimal progressive reduction in amplitude during the finger tapping in PSP-R patients, similar to HC, but significantly different from the sequence effect (progressive decrement) in both PD and MSA-P patients. The mean negative amplitude slope of -0.12°/cycle revealed less progression of amplitude decrement even in comparison to HC (-0.21°/cycle, p=0.032), and particularly from PD (-0.56°/cycle, p=0.001), and MSA-P patients (-1.48°/cycle, p=0.003). No significant differences were found in the average finger separation amplitudes between PD, PSP-R and MSA-P patients (pmsa-pd=0.726, pmsa-psp=0.363, ppsp-pd=0.726). The lack of clinically significant sequence effect during finger tapping differentiated PSP-R from both PD and MSA-P patients, and might be specific for PSP-R. The finger tapping kinematic parameter of amplitude slope may be a neurophysiological marker able to differentiate particular forms of parkinsonism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transcriptional mechanisms of resistance to anti-PD-1 therapy
Ascierto, Maria L.; Makohon-Moore, Alvin; Lipson, Evan J.; Taube, Janis M.; McMiller, Tracee L.; Berger, Alan E.; Fan, Jinshui; Kaunitz, Genevieve J.; Cottrell, Tricia R.; Kohutek, Zachary A.; Favorov, Alexander; Makarov, Vladimir; Riaz, Nadeem; Chan, Timothy A.; Cope, Leslie; Hruban, Ralph H.; Pardoll, Drew M.; Taylor, Barry S.; Solit, David B.; Iacobuzio-Donahue, Christine A; Topalian, Suzanne L.
2017-01-01
Purpose To explore factors associated with response and resistance to anti-PD-1 therapy, we analyzed multiple disease sites at autopsy in a patient with widely metastatic melanoma who had a heterogeneous response. Materials and Methods Twenty-six melanoma specimens (four pre-mortem, 22 post-mortem) were subjected to whole-exome sequencing. Candidate immunologic markers and gene expression were assessed in ten cutaneous metastases showing response or progression during therapy. Results The melanoma was driven by biallelic inactivation of NF1. All lesions had highly concordant mutational profiles and copy number alterations, indicating linear clonal evolution. Expression of candidate immunologic markers was similar in responding and progressing lesions. However, progressing cutaneous metastases were associated with over-expression of genes associated with extracellular matrix and neutrophil function. Conclusions Although mutational and immunologic differences have been proposed as the primary determinants of heterogeneous response/resistance to targeted therapies and immunotherapies, respectively, differential lesional gene expression profiles may also dictate anti-PD-1 outcomes. PMID:28193624
Palau, Montserrat; Kulmann, Marcos; Ramírez-Lázaro, María José; Lario, Sergio; Quilez, María Elisa; Campo, Rafael; Piqué, Núria; Calvet, Xavier; Miñana-Galbis, David
2016-12-01
Helicobacter pylori infects human stomachs of over half the world's population, evades the immune response and establishes a chronic infection. Although most people remains asymptomatic, duodenal and gastric ulcers, MALT lymphoma and progression to gastric cancer could be developed. Several virulence factors such as flagella, lipopolysaccharide, adhesins and especially the vacuolating cytotoxin VacA and the oncoprotein CagA have been described for H. pylori. Despite the extensive published data on H. pylori, more research is needed to determine new virulence markers, the exact mode of transmission or the role of multiple infection. Amplification and sequencing of six housekeeping genes (amiA, cgt, cpn60, cpn70, dnaJ, and luxS) related to H. pylori pathogenesis have been performed in order to evaluate their usefulness for the specific detection of H. pylori, the genetic discrimination at strain level and the detection of multiple infection. A total of 52 H. pylori clones, isolated from 14 gastric biopsies from 11 patients, were analyzed for this purpose. All genes were specifically amplified for H. pylori and all clones isolated from different patients were discriminated, with gene distances ranged from 0.9 to 7.8%. Although most clones isolated from the same patient showed identical gene sequences, an event of multiple infection was detected in all the genes and microevolution events were showed for amiA and cpn60 genes. These results suggested that housekeeping genes could be useful for H. pylori detection and to elucidate the mode of transmission and the relevance of the multiple infection. © 2016 John Wiley & Sons Ltd.
Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives
Ontaneda, Daniel; Fox, Robert J.; Chataway, Jeremy
2015-01-01
Progressive multiple sclerosis is characterized by the gradual accrual of disability independent of relapses and can occur with disease onset (primary progressive) or preceded by a relapsing disease course (secondary progressive). An effective disease modifying treatment for progressive multiple sclerosis has not been identified, and the results of clinical trials to date have been generally disappointing. Ongoing advances in our understanding of pathogenesis, identification of novel targets for neuro-protection, and improved outcome measures have the potential to lead to effective treatments for progressive multiple sclerosis. In this review lessons learned from previous clinical trials and perspectives from current trials in progressive multiple sclerosis are summarized. Promising clinical, imaging, and biological markers will also be reviewed, along with novel clinical trial designs. PMID:25772899
Uronic polysaccharide degrading enzymes.
Garron, Marie-Line; Cygler, Miroslaw
2014-10-01
In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Fong, Kristen E.; Melguizo, Tatiana; Prather, George
2015-01-01
This study tracks students' progression through developmental math sequences and defines progression as both attempting and passing each level of the sequence. A model of successful progression in developmental education was built utilizing individual-, institutional-, and developmental math-level factors. Employing step-wise logistic regression…
Learning Progressions and Teaching Sequences: A Review and Analysis
ERIC Educational Resources Information Center
Duschl, Richard; Maeng, Seungho; Sezen, Asli
2011-01-01
Our paper is an analytical review of the design, development and reporting of learning progressions and teaching sequences. Research questions are: (1) what criteria are being used to propose a "hypothetical learning progression/trajectory" and (2) what measurements/evidence are being used to empirically define and refine a "hypothetical learning…
Generic accelerated sequence alignment in SeqAn using vectorization and multi-threading.
Rahn, René; Budach, Stefan; Costanza, Pascal; Ehrhardt, Marcel; Hancox, Jonny; Reinert, Knut
2018-05-03
Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics analyses. In this paper, we present a generically accelerated module for pairwise sequence alignments applicable for a broad range of applications. In our module, we unified the standard dynamic programming kernel used for pairwise sequence alignments and extended it with a generalized inter-sequence vectorization layout, such that many alignments can be computed simultaneously by exploiting SIMD (Single Instruction Multiple Data) instructions of modern processors. We then extended the module by adding two layers of thread-level parallelization, where we a) distribute many independent alignments on multiple threads and b) inherently parallelize a single alignment computation using a work stealing approach producing a dynamic wavefront progressing along the minor diagonal. We evaluated our alignment vectorization and parallelization on different processors, including the newest Intel® Xeon® (Skylake) and Intel® Xeon Phi™ (KNL) processors, and use cases. The instruction set AVX512-BW (Byte and Word), available on Skylake processors, can genuinely improve the performance of vectorized alignments. We could run single alignments 1600 times faster on the Xeon Phi™ and 1400 times faster on the Xeon® than executing them with our previous sequential alignment module. The module is programmed in C++ using the SeqAn (Reinert et al., 2017) library and distributed with version 2.4. under the BSD license. We support SSE4, AVX2, AVX512 instructions and included UME::SIMD, a SIMD-instruction wrapper library, to extend our module for further instruction sets. We thoroughly test all alignment components with all major C++ compilers on various platforms. rene.rahn@fu-berlin.de.
Cottrell, D A; Kremenchutzky, M; Rice, G P; Koopman, W J; Hader, W; Baskerville, J; Ebers, G C
1999-04-01
We report a natural history study of 216 patients with primary progressive (PP)- multiple sclerosis defined by at least 1 year of exacerbation-free progression at onset. This represents 19.8% of a largely population-based patient cohort having a mean longitudinal follow-up of 23 years. This subgroup of PP-multiple sclerosis patients had a mean age of onset of 38.5 years, with females predominating by a ratio of 1.3:1.0. The rate of deterioration from disease onset was substantially more rapid than for relapsing-remitting multiple sclerosis, with a median time to disability status score (DSS) 6 and DSS 8 of 8 and 18 years, respectively. Forty-nine percent of patients were followed through to death. Examination of the early disease course revealed two groups with adverse prognostic profiles. Firstly, a shorter time to reach DSS 3 from onset of PP-multiple sclerosis significantly adversely influenced time to DSS 8. Second, involvement of three or more neurological systems at onset resulted in a median time to DSS 10 of 13.5 years in contrast to PP-multiple sclerosis patients with one system involved at onset where median time to death from multiple sclerosis was 33.2 years. However, age, gender and type of neurological system involved at onset appeared to have little influence on prognosis. Life expectancy, cause of mortality and familial history profile were similar in PP-multiple sclerosis and non-PP-multiple sclerosis (all other multiple sclerosis patients from the total population). From clinical onset, rate of progression was faster in the PP-multiple sclerosis group than in the secondary progressive (SP)-multiple sclerosis group. When the rates of progression from onset of the progressive phase to DSS 6, 8 and 10 were compared, SP-multiple sclerosis had a more rapid progressive phase. A substantial minority (28%) of the PP-multiple sclerosis cohort had a distinct relapse even decades after onset of progressive deterioration. These studies establish natural history outcomes for the subgroup of multiple sclerosis patients with primary progressive disease.
Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring
2012-01-01
Background Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families. Results The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function. Conclusions Our results demonstrate that the method we present here using a k-modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family. PMID:22793672
Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring.
Durston, Kirk K; Chiu, David Ky; Wong, Andrew Kc; Li, Gary Cl
2012-07-13
Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families. The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function. Our results demonstrate that the method we present here using a k-modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma | Office of Cancer Genomics
In a recent Nature article, Morin et al. uncovered a novel role for chromatin modification in driving the progression of two non-Hodgkin lymphomas (NHLs), follicular lymphoma and diffuse large B-cell lymphoma. Through DNA and RNA sequencing of 117 tumor samples and 10 assorted cell lines, the authors identified and validated 109 genes with multiple mutations in these B-cell NHLs. Of the 109 genes, several genes not previously linked to lymphoma demonstrated positive selection for mutation including two genes involved in histone modification, MLL2 and MEF2B.
[Progress on mechanism of cell apoptosis induced by rubella virus].
Li, Zhen-mei; Chu, Fu-lu; Liu, Ying; Wang, Zhi-yu
2013-09-01
Rubella virus (RV), a member of the family Togaviridae, can induce apoptosis of host cells in vitro. Protein kinases of the Ras-Raf-MEK-ERK pathway and PI3K-Akt pathway play essential roles in virus multiplication, cell survival and apoptosis. Proteins p53 and TAp63 that bind to specific DNA sequences stimulate Bax in a manner to produce functional pores that facilitate release of mitochondrial cytochrome c and downstream caspase activation. In this review, the molecular mechanisms of RV-induced cell apoptosis, including RV-infected cell lines, pathological changes in cell components and apoptosis signaling pathways are summarized.
The evolution of dorsal-ventral patterning mechanisms in insects.
Lynch, Jeremy A; Roth, Siegfried
2011-01-15
The gene regulatory network (GRN) underpinning dorsal-ventral (DV) patterning of the Drosophila embryo is among the most thoroughly understood GRNs, making it an ideal system for comparative studies seeking to understand the evolution of development. With the emergence of widely applicable techniques for testing gene function, species with sequenced genomes, and multiple tractable species with diverse developmental modes, a phylogenetically broad and molecularly deep understanding of the evolution of DV axis formation in insects is feasible. Here, we review recent progress made in this field, compare our emerging molecular understanding to classical embryological experiments, and suggest future directions of inquiry.
Doan, Ninh B; Nguyen, Ha S; Alhajala, Hisham S; Jaber, Basem; Al-Gizawiy, Mona M; Ahn, Eun-Young Erin; Mueller, Wade M; Chitambar, Christopher R; Mirza, Shama P; Schmainda, Kathleen M
2018-05-04
The absence of major progress in the treatment of glioblastoma (GBM) is partly attributable to our poor understanding of both GBM tumor biology and the acquirement of treatment resistance in recurrent GBMs. Recurrent GBMs are characterized by their resistance to radiation. In this study, we used an established stable U87 radioresistant GBM model and total RNA sequencing to shed light on global mRNA expression changes following irradiation. We identified many genes, the expressions of which were altered in our radioresistant GBM model, that have never before been reported to be associated with the development of radioresistant GBM and should be concertedly further investigated to understand their roles in radioresistance. These genes were enriched in various biological processes such as inflammatory response, cell migration, positive regulation of epithelial to mesenchymal transition, angiogenesis, apoptosis, positive regulation of T-cell migration, positive regulation of macrophage chemotaxis, T-cell antigen processing and presentation, and microglial cell activation involved in immune response genes. These findings furnish crucial information for elucidating the molecular mechanisms associated with radioresistance in GBM. Therapeutically, with the global alterations of multiple biological pathways observed in irradiated GBM cells, an effective GBM therapy may require a cocktail carrying multiple agents targeting multiple implicated pathways in order to have a chance at making a substantial impact on improving the overall GBM survival.
Tsui, Dana Wai Yi; Murtaza, Muhammed; Wong, Alvin Seng Cheong; Rueda, Oscar M; Smith, Christopher G; Chandrananda, Dineika; Soo, Ross A; Lim, Hong Liang; Goh, Boon Cher; Caldas, Carlos; Forshew, Tim; Gale, Davina; Liu, Wei; Morris, James; Marass, Francesco; Eisen, Tim; Chin, Tan Min; Rosenfeld, Nitzan
2018-06-01
Tumour heterogeneity leads to the development of multiple resistance mechanisms during targeted therapies. Identifying the dominant driver(s) is critical for treatment decision. We studied the relative dynamics of multiple oncogenic drivers in longitudinal plasma of 50 EGFR -mutant non-small-cell lung cancer patients receiving gefitinib and hydroxychloroquine. We performed digital PCR and targeted sequencing on samples from all patients and shallow whole-genome sequencing on samples from three patients who underwent histological transformation to small-cell lung cancer. In 43 patients with known EGFR mutations from tumour, we identified them accurately in plasma of 41 patients (95%, 41/43). We also found additional mutations, including EGFR T790M (31/50, 62%), TP53 (23/50, 46%), PIK3CA (7/50, 14%) and PTEN (4/50, 8%). Patients with both TP53 and EGFR mutations before treatment had worse overall survival than those with only EGFR Patients who progressed without T790M had worse PFS during TKI continuation and developed alternative alterations, including small-cell lung cancer-associated copy number changes and TP53 mutations, that tracked subsequent treatment responses. Longitudinal plasma analysis can help identify dominant resistance mechanisms, including non-druggable genetic information that may guide clinical management. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Li, Cheng-Wei; Chen, Bor-Sen
2016-01-01
Epigenetic and microRNA (miRNA) regulation are associated with carcinogenesis and the development of cancer. By using the available omics data, including those from next-generation sequencing (NGS), genome-wide methylation profiling, candidate integrated genetic and epigenetic network (IGEN) analysis, and drug response genome-wide microarray analysis, we constructed an IGEN system based on three coupling regression models that characterize protein-protein interaction networks (PPINs), gene regulatory networks (GRNs), miRNA regulatory networks (MRNs), and epigenetic regulatory networks (ERNs). By applying system identification method and principal genome-wide network projection (PGNP) to IGEN analysis, we identified the core network biomarkers to investigate bladder carcinogenic mechanisms and design multiple drug combinations for treating bladder cancer with minimal side-effects. The progression of DNA repair and cell proliferation in stage 1 bladder cancer ultimately results not only in the derepression of miR-200a and miR-200b but also in the regulation of the TNF pathway to metastasis-related genes or proteins, cell proliferation, and DNA repair in stage 4 bladder cancer. We designed a multiple drug combination comprising gefitinib, estradiol, yohimbine, and fulvestrant for treating stage 1 bladder cancer with minimal side-effects, and another multiple drug combination comprising gefitinib, estradiol, chlorpromazine, and LY294002 for treating stage 4 bladder cancer with minimal side-effects.
Actinomycetoma in SE Asia: the first case from Laos and a review of the literature.
Rattanavong, Sayaphet; Vongthongchit, Sivay; Bounphamala, Khamhou; Vongphakdy, Phouvong; Gubler, Jacques; Mayxay, Mayfong; Phetsouvanh, Rattanaphone; Elliott, Ivo; Logan, Julie; Hill, Robert; Newton, Paul N; Dance, David
2012-12-12
Mycetoma is a chronic, localized, slowly progressing infection of the cutaneous and subcutaneous tissues caused either by fungi (eumycetoma or implantation mycosis) or by aerobic actinomycetes (actinomycetoma). It is acquired by traumatic implantation, most commonly in the tropics and subtropics, especially in rural agricultural communities. Although well recognized elsewhere in Asia, it has not been reported from the Lao People's Democratic Republic (Laos). A 30 year-old female elementary school teacher and rice farmer from northeast Laos was admitted to Mahosot Hospital, Vientiane, with a massive growth on her left foot, without a history of trauma. The swelling had progressed slowly but painlessly over 5 years and multiple draining sinuses had developed. Ten days before admission the foot had increased considerably in size and became very painful, with multiple sinuses and discharge, preventing her from walking. Gram stain and bacterial culture of tissue biopsies revealed a branching filamentous Gram-positive bacterium that was subsequently identified as Actinomadura madurae by 16S rRNA gene amplification and sequencing. She was treated with long-term co-trimoxazole and multiple 3-week cycles of amikacin with a good therapeutic response. We report the first patient with actinomycetoma from Laos. The disease should be considered in the differential diagnosis of chronic skin and bone infections in patients from rural SE Asia.
FASMA: a service to format and analyze sequences in multiple alignments.
Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M
2007-12-01
Multiple sequence alignments are successfully applied in many studies for under- standing the structural and functional relations among single nucleic acids and protein sequences as well as whole families. Because of the rapid growth of sequence databases, multiple sequence alignments can often be very large and difficult to visualize and analyze. We offer a new service aimed to visualize and analyze the multiple alignments obtained with different external algorithms, with new features useful for the comparison of the aligned sequences as well as for the creation of a final image of the alignment. The service is named FASMA and is available at http://bioinformatica.isa.cnr.it/FASMA/.
Evidence for Multiple Rhythmic Skills
Tierney, Adam; Kraus, Nina
2015-01-01
Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions. PMID:26376489
Garland, Ellen C; Noad, Michael J; Goldizen, Anne W; Lilley, Matthew S; Rekdahl, Melinda L; Garrigue, Claire; Constantine, Rochelle; Daeschler Hauser, Nan; Poole, M Michael; Robbins, Jooke
2013-01-01
Humpback whales have a continually evolving vocal sexual display, or "song," that appears to undergo both evolutionary and "revolutionary" change. All males within a population adhere to the current content and arrangement of the song. Populations within an ocean basin share similarities in their songs; this sharing is complex as multiple variations of the song (song types) may be present within a region at any one time. To quantitatively investigate the similarity of song types, songs were compared at both the individual singer and population level using the Levenshtein distance technique and cluster analysis. The highly stereotyped sequences of themes from the songs of 211 individuals from populations within the western and central South Pacific region from 1998 through 2008 were grouped together based on the percentage of song similarity, and compared to qualitatively assigned song types. The analysis produced clusters of highly similar songs that agreed with previous qualitative assignments. Each cluster contained songs from multiple populations and years, confirming the eastward spread of song types and their progressive evolution through the study region. Quantifying song similarity and exchange will assist in understanding broader song dynamics and contribute to the use of vocal displays as population identifiers.
Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal
2015-07-01
Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Sass, Stephanie N; Ramsey, Kimberley D; Egan, Shawn M; Wang, Jianmin; Cortes Gomez, Eduardo; Gollnick, Sandra O
2018-06-01
The etiology of prostate cancer is poorly understood, but it is a multi-step process that has been linked to environmental factors that induce inflammation within the gland. Glands of prostate cancer patients frequently contain multiple zones of disease at various stages of progression. The factors that drive disease progression from an indolent benign stage to aggressive disease are not well-defined. Prostate inflammation and carcinoma are associated with high levels of myeloid cell infiltration; these cells are linked to disease progression in other cancers, but their role in prostate cancer is unclear. To determine whether myeloid cells contribute to prostate cancer progression, the ability of prostate tumor-associated CD11b + cells (TAMC) to drive prostate epithelial cell tumorigenesis was tested. Co-culture of CD11b + TAMC with non-tumorigenic genetically primed prostate epithelial cells resulted in stable transformation and induction of tumorigenesis. RNA sequencing identified the IL-1α pathway as a potential molecular mechanism responsible for tumor promotion by TAMC. Inhibition of IL-1α delayed growth of TAMC-induced tumors. Further analysis showed that IL-1α inhibition led to decreased angiogenesis within tumors, suggesting that IL-1α promotes prostate tumor progression, potentially through augmentation of angiogenesis.
Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis
Lovato, Laura; Willis, Simon N.; Rodig, Scott J.; Caron, Tyler; Almendinger, Stefany E.; Howell, Owain W.; Reynolds, Richard; Hafler, David A.
2011-01-01
In the central nervous system of patients with multiple sclerosis, B cell aggregates populate the meninges, raising the central question as to whether these structures relate to the B cell infiltrates found in parenchymal lesions or instead, represent a separate central nervous system immune compartment. We characterized the repertoires derived from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue derived primarily from patients with progressive multiple sclerosis. The majority of expanded antigen-experienced B cell clones derived from meningeal aggregates were also present in the parenchyma. We extended this investigation to include 20 grey matter specimens containing meninges, 26 inflammatory plaques, 19 areas of normal appearing white matter and cerebral spinal fluid. Analysis of 1833 B cell receptor heavy chain variable region sequences demonstrated that antigen-experienced clones were consistently shared among these distinct compartments. This study establishes a relationship between extraparenchymal lymphoid tissue and parenchymal infiltrates and defines the arrangement of B cell clones that populate the central nervous system of patients with multiple sclerosis. PMID:21216828
Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis.
Lovato, Laura; Willis, Simon N; Rodig, Scott J; Caron, Tyler; Almendinger, Stefany E; Howell, Owain W; Reynolds, Richard; O'Connor, Kevin C; Hafler, David A
2011-02-01
In the central nervous system of patients with multiple sclerosis, B cell aggregates populate the meninges, raising the central question as to whether these structures relate to the B cell infiltrates found in parenchymal lesions or instead, represent a separate central nervous system immune compartment. We characterized the repertoires derived from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue derived primarily from patients with progressive multiple sclerosis. The majority of expanded antigen-experienced B cell clones derived from meningeal aggregates were also present in the parenchyma. We extended this investigation to include 20 grey matter specimens containing meninges, 26 inflammatory plaques, 19 areas of normal appearing white matter and cerebral spinal fluid. Analysis of 1833 B cell receptor heavy chain variable region sequences demonstrated that antigen-experienced clones were consistently shared among these distinct compartments. This study establishes a relationship between extraparenchymal lymphoid tissue and parenchymal infiltrates and defines the arrangement of B cell clones that populate the central nervous system of patients with multiple sclerosis.
Molecular detection and characterization of noroviruses in river water in Thailand.
Inoue, K; Motomura, K; Boonchan, M; Takeda, N; Ruchusatsawa, K; Guntapong, R; Tacharoenmuang, R; Sangkitporn, S; Chantaroj, S
2016-03-01
Norovirus (NoV) generally exists as a mixture of multiple genotype variants in nature. However, there has been no published report monitoring NoV in natural settings in Thailand. To obtain information on mixed presence of the NoV RNA genome, we conducted viral genome analysis of 15 water specimens collected from five sites in a river near Bangkok between August 2013 and August 2014. The number of viral RNA copies per specimen declined progressively from the most upstream to the most downstream site. Following direct nucleotide sequencing of the PCR products, we obtained three partial genome sequences of the NoV GI strain and 13 partial genome sequences of the NoV GII strains. Phylogenetic analysis indicated the presence of four GII.4 variant groups pro-circulated after the Den Haag_2006b, New Orleans_2009 and Sydney_2012 outbreaks. On the other hand, only GI.4 was observed from the specimens collected on April, 2014. These results indicated that multiple genogroups and genotypes of noroviruses are present and are circulating in the natural environment in Thailand as in other countries. Our study provides comprehensive information on the occurrence of new variants. Our study is the first paper that multiple genogroups and genotypes of norovirus exist, and are circulating in the river water near Bangkok, Thailand. Phylogenetic analysis indicated the presence of four GII.4 variant groups pro-circulated after the Den Haag_2006b, New Orleans_2009 and Sydney_2012 that caused outbreaks in the world. Continued research will be essential for understanding the natural history of NoV and the control of future outbreaks. © 2015 The Society for Applied Microbiology.
Evidence That Up-Regulation of MicroRNA-29 Contributes to Postnatal Body Growth Deceleration
Kamran, Fariha; Andrade, Anenisia C.; Nella, Aikaterini A.; Clokie, Samuel J.; Rezvani, Geoffrey; Nilsson, Ola; Baron, Jeffrey
2015-01-01
Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that this growth-limiting genetic program is orchestrated by microRNAs (miRNAs). Bioinformatic analysis identified target sequences of the miR-29 family of miRNAs to be overrepresented in age–down-regulated genes. Concomitantly, expression microarray analysis in mouse kidney and lung showed that all members of the miR-29 family, miR-29a, -b, and -c, were strongly up-regulated from 1 to 6 weeks of age. Real-time PCR confirmed that miR-29a, -b, and -c were up-regulated with age in liver, kidney, lung, and heart, and their expression levels were higher in hepatocytes isolated from 5-week-old mice than in hepatocytes from embryonic mouse liver at embryonic day 16.5. We next focused on 3 predicted miR-29 target genes (Igf1, Imp1, and Mest), all of which are growth-promoting. A 3′-untranslated region containing the predicted target sequences from each gene was placed individually in a luciferase reporter construct. Transfection of miR-29 mimics suppressed luciferase gene activity for all 3 genes, and this suppression was diminished by mutating the target sequences, suggesting that these genes are indeed regulated by miR-29. Taken together, the findings suggest that up-regulation of miR-29 during juvenile life drives the down-regulation of multiple growth-promoting genes, thus contributing to physiological slowing and eventual cessation of body growth. PMID:25866874
Evidence That Up-Regulation of MicroRNA-29 Contributes to Postnatal Body Growth Deceleration.
Kamran, Fariha; Andrade, Anenisia C; Nella, Aikaterini A; Clokie, Samuel J; Rezvani, Geoffrey; Nilsson, Ola; Baron, Jeffrey; Lui, Julian C
2015-06-01
Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that this growth-limiting genetic program is orchestrated by microRNAs (miRNAs). Bioinformatic analysis identified target sequences of the miR-29 family of miRNAs to be overrepresented in age-down-regulated genes. Concomitantly, expression microarray analysis in mouse kidney and lung showed that all members of the miR-29 family, miR-29a, -b, and -c, were strongly up-regulated from 1 to 6 weeks of age. Real-time PCR confirmed that miR-29a, -b, and -c were up-regulated with age in liver, kidney, lung, and heart, and their expression levels were higher in hepatocytes isolated from 5-week-old mice than in hepatocytes from embryonic mouse liver at embryonic day 16.5. We next focused on 3 predicted miR-29 target genes (Igf1, Imp1, and Mest), all of which are growth-promoting. A 3'-untranslated region containing the predicted target sequences from each gene was placed individually in a luciferase reporter construct. Transfection of miR-29 mimics suppressed luciferase gene activity for all 3 genes, and this suppression was diminished by mutating the target sequences, suggesting that these genes are indeed regulated by miR-29. Taken together, the findings suggest that up-regulation of miR-29 during juvenile life drives the down-regulation of multiple growth-promoting genes, thus contributing to physiological slowing and eventual cessation of body growth.
He, Zihuai; Xu, Bin; Lee, Seunggeun; Ionita-Laza, Iuliana
2017-09-07
Substantial progress has been made in the functional annotation of genetic variation in the human genome. Integrative analysis that incorporates such functional annotations into sequencing studies can aid the discovery of disease-associated genetic variants, especially those with unknown function and located outside protein-coding regions. Direct incorporation of one functional annotation as weight in existing dispersion and burden tests can suffer substantial loss of power when the functional annotation is not predictive of the risk status of a variant. Here, we have developed unified tests that can utilize multiple functional annotations simultaneously for integrative association analysis with efficient computational techniques. We show that the proposed tests significantly improve power when variant risk status can be predicted by functional annotations. Importantly, when functional annotations are not predictive of risk status, the proposed tests incur only minimal loss of power in relation to existing dispersion and burden tests, and under certain circumstances they can even have improved power by learning a weight that better approximates the underlying disease model in a data-adaptive manner. The tests can be constructed with summary statistics of existing dispersion and burden tests for sequencing data, therefore allowing meta-analysis of multiple studies without sharing individual-level data. We applied the proposed tests to a meta-analysis of noncoding rare variants in Metabochip data on 12,281 individuals from eight studies for lipid traits. By incorporating the Eigen functional score, we detected significant associations between noncoding rare variants in SLC22A3 and low-density lipoprotein and total cholesterol, associations that are missed by standard dispersion and burden tests. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Using comparative genome analysis to identify problems in annotated microbial genomes.
Poptsova, Maria S; Gogarten, J Peter
2010-07-01
Genome annotation is a tedious task that is mostly done by automated methods; however, the accuracy of these approaches has been questioned since the beginning of the sequencing era. Genome annotation is a multilevel process, and errors can emerge at different stages: during sequencing, as a result of gene-calling procedures, and in the process of assigning gene functions. Missed or wrongly annotated genes differentially impact different types of analyses. Here we discuss and demonstrate how the methods of comparative genome analysis can refine annotations by locating missing orthologues. We also discuss possible reasons for errors and show that the second-generation annotation systems, which combine multiple gene-calling programs with similarity-based methods, perform much better than the first annotation tools. Since old errors may propagate to the newly sequenced genomes, we emphasize that the problem of continuously updating popular public databases is an urgent and unresolved one. Due to the progress in genome-sequencing technologies, automated annotation techniques will remain the main approach in the future. Researchers need to be aware of the existing errors in the annotation of even well-studied genomes, such as Escherichia coli, and consider additional quality control for their results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, M.H.; Gustason, E.R.
1987-05-01
The Muddy Sandstone at Kitty field is a valley-fill sequence that records a late Albian sea level rise and accompanying transgression. The valley was cut during a preceding sea level lowstand. Stratal geometries and facies successions within the valley fill demonstrate the history of transgression was not gradual and progressive. Rather, the valley fill comprises a series of discrete, time-bounded, depositional units which onlap the erosional surface. Five time-bounded depositional units were defined by facies successions and were used to define onlap geometries. Facies successions within individual units record progressive shoaling. Capping each succession, there may be a planar disconformity,more » a thin bioturbated interval, or the deepest water facies of the next depositional event. Thus, the termination of each depositional event is marked by an episode of rapid deepening. At a single geographic location, stratal successions within older depositional units represent more landward facies than those within younger units. Therefore, the onlap geometry of the valley-fill sequence consists of a landward-stepping arrangement of depositional units. The primary reservoirs within the valley-fill sequence, at Kitty field, are laterally coalesced, channel-belt sandstones at the base and barrier island sandstones at the top. Reservoir sandstones of lesser quality occur within the intermediate estuarine facies. The stacking pattern, developed by onlap of the units, results in multiple pay zones within mid-valley reaches. The boundaries of each depositional unit define a high-resolution, chronostratigraphic correlation of valley-fill strata, a correlation corroborated by bentonites. This correlation method gives an accurate description of the internal geometry of valley-fill strata and, therefore, provides a basis for understanding the process of transgressive onlap.« less
A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome
Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali
2017-01-01
Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene (ERCC6), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family. PMID:28848724
A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome.
Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali
2017-01-01
Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.
SARA-Coffee web server, a tool for the computation of RNA sequence and structure multiple alignments
Di Tommaso, Paolo; Bussotti, Giovanni; Kemena, Carsten; Capriotti, Emidio; Chatzou, Maria; Prieto, Pablo; Notredame, Cedric
2014-01-01
This article introduces the SARA-Coffee web server; a service allowing the online computation of 3D structure based multiple RNA sequence alignments. The server makes it possible to combine sequences with and without known 3D structures. Given a set of sequences SARA-Coffee outputs a multiple sequence alignment along with a reliability index for every sequence, column and aligned residue. SARA-Coffee combines SARA, a pairwise structural RNA aligner with the R-Coffee multiple RNA aligner in a way that has been shown to improve alignment accuracy over most sequence aligners when enough structural data is available. The server can be accessed from http://tcoffee.crg.cat/apps/tcoffee/do:saracoffee. PMID:24972831
FISHtrees 3.0: Tumor Phylogenetics Using a Ploidy Probe.
Gertz, E Michael; Chowdhury, Salim Akhter; Lee, Woei-Jyh; Wangsa, Darawalee; Heselmeyer-Haddad, Kerstin; Ried, Thomas; Schwartz, Russell; Schäffer, Alejandro A
2016-01-01
Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees.
FISHtrees 3.0: Tumor Phylogenetics Using a Ploidy Probe
Chowdhury, Salim Akhter; Lee, Woei-Jyh; Wangsa, Darawalee; Heselmeyer-Haddad, Kerstin; Ried, Thomas; Schwartz, Russell; Schäffer, Alejandro A.
2016-01-01
Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees. PMID:27362268
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggles, Kelly V.; Tang, Zuojian; Wang, Xuya
Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations and splice variants identified in cancer cells are translated. Herein we therefore describe a proteogenomic data integration tool (QUILTS) and illustrate its application to whole genome, transcriptome and global MS peptide sequence datasets generated from a pair of luminal and basal-like breast cancer patient derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS process replicates. Despite over thirty sample replicates, only about 10% of all SNV (somatic andmore » germline) were detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNV without a detectable mRNA transcript were also observed demonstrating the transcriptome coverage was also incomplete (~80%). In contrast to germ-line variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than the luminal tumor raising the possibility of differential translation or protein degradation effects. In conclusion, the QUILTS program integrates DNA, RNA and peptide sequencing to assess the degree to which somatic mutations are translated and therefore biologically active. By identifying gaps in sequence coverage QUILTS benchmarks current technology and assesses progress towards whole cancer proteome and transcriptome analysis.« less
Weber, Stefanie; Büscher, Anja K; Hagmann, Henning; Liebau, Max C; Heberle, Christian; Ludwig, Michael; Rath, Sabine; Alberer, Martin; Beissert, Antje; Zenker, Martin; Hoyer, Peter F; Konrad, Martin; Klein, Hanns-Georg; Hoefele, Julia
2016-01-01
Steroid-resistant nephrotic syndrome (SRNS) is a severe cause of progressive renal disease. Genetic forms of SRNS can present with autosomal recessive or autosomal dominant inheritance. Recent studies have identified mutations in multiple podocyte genes responsible for SRNS. Improved sequencing methods (next-generation sequencing, NGS) now promise rapid mutational testing of SRNS genes. In the present study, a simultaneous screening of ten SRNS genes in 37 SRNS patients was performed by NGS. In 38 % of the patients, causative mutations in one SRNS gene were found. In 22 % of the patients, in addition to these mutations, a secondary variant in a different gene was identified. This high incidence of accumulating sequence variants was unexpected but, although they might have modifier effects, the pathogenic potential of these additional sequence variants seems unclear so far. The example of molecular diagnostics by NGS in SRNS patients shows that these new sequencing technologies might provide further insight into molecular pathogenicity in genetic disorders but will also generate results, which will be difficult to interpret and complicate genetic counseling. Although NGS promises more frequent identification of disease-causing mutations, the identification of causative mutations, the interpretation of incidental findings and possible pitfalls might pose problems, which hopefully will decrease by further experience and elucidation of molecular interactions.
DNA Replication Profiling Using Deep Sequencing.
Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W
2018-01-01
Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.
Multiplexed fragaria chloroplast genome sequencing
W. Njuguna; A. Liston; R. Cronn; N.V. Bassil
2010-01-01
A method to sequence multiple chloroplast genomes using ultra high throughput sequencing technologies was recently described. Complete chloroplast genome sequences can resolve phylogenetic relationships at low taxonomic levels and identify informative point mutations and indels. The objective of this research was to sequence multiple Fragaria...
Embedding strategies for effective use of information from multiple sequence alignments.
Henikoff, S.; Henikoff, J. G.
1997-01-01
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain. PMID:9070452
Progressive multiple sclerosis: from pathogenic mechanisms to treatment.
Correale, Jorge; Gaitán, María I; Ysrraelit, María C; Fiol, Marcela P
2017-03-01
During the past decades, better understanding of relapsing-remitting multiple sclerosis disease mechanisms have led to the development of several disease-modifying therapies, reducing relapse rates and severity, through immune system modulation or suppression. In contrast, current therapeutic options for progressive multiple sclerosis remain comparatively disappointing and challenging. One possible explanation is a lack of understanding of pathogenic mechanisms driving progressive multiple sclerosis. Furthermore, diagnosis is usually retrospective, based on history of gradual neurological worsening with or without occasional relapses, minor remissions or plateaus. In addition, imaging methods as well as biomarkers are not well established. Magnetic resonance imaging studies in progressive multiple sclerosis show decreased blood-brain barrier permeability, probably reflecting compartmentalization of inflammation behind a relatively intact blood-brain barrier. Interestingly, a spectrum of inflammatory cell types infiltrates the leptomeninges during subpial cortical demyelination. Indeed, recent magnetic resonance imaging studies show leptomeningeal contrast enhancement in subjects with progressive multiple sclerosis, possibly representing an in vivo marker of inflammation associated to subpial demyelination. Treatments for progressive disease depend on underlying mechanisms causing central nervous system damage. Immunity sheltered behind an intact blood-brain barrier, energy failure, and membrane channel dysfunction may be key processes in progressive disease. Interfering with these mechanisms may provide neuroprotection and prevent disability progression, while potentially restoring activity and conduction along damaged axons by repairing myelin. Although most previous clinical trials in progressive multiple sclerosis have yielded disappointing results, important lessons have been learnt, improving the design of novel ones. This review discusses mechanisms involved in progressive multiple sclerosis, correlations between histopathology and magnetic resonance imaging studies, along with possible new therapeutic approaches. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Progress in ion torrent semiconductor chip based sequencing.
Merriman, Barry; Rothberg, Jonathan M
2012-12-01
In order for next-generation sequencing to become widely used as a diagnostic in the healthcare industry, sequencing instrumentation will need to be mass produced with a high degree of quality and economy. One way to achieve this is to recast DNA sequencing in a format that fully leverages the manufacturing base created for computer chips, complementary metal-oxide semiconductor chip fabrication, which is the current pinnacle of large scale, high quality, low-cost manufacturing of high technology. To achieve this, ideally the entire sensory apparatus of the sequencer would be embodied in a standard semiconductor chip, manufactured in the same fab facilities used for logic and memory chips. Recently, such a sequencing chip, and the associated sequencing platform, has been developed and commercialized by Ion Torrent, a division of Life Technologies, Inc. Here we provide an overview of this semiconductor chip based sequencing technology, and summarize the progress made since its commercial introduction. We described in detail the progress in chip scaling, sequencing throughput, read length, and accuracy. We also summarize the enhancements in the associated platform, including sample preparation, data processing, and engagement of the broader development community through open source and crowdsourcing initiatives. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Watt, Stuart; Jiao, Wei; Brown, Andrew M K; Petrocelli, Teresa; Tran, Ben; Zhang, Tong; McPherson, John D; Kamel-Reid, Suzanne; Bedard, Philippe L; Onetto, Nicole; Hudson, Thomas J; Dancey, Janet; Siu, Lillian L; Stein, Lincoln; Ferretti, Vincent
2013-09-01
Using sequencing information to guide clinical decision-making requires coordination of a diverse set of people and activities. In clinical genomics, the process typically includes sample acquisition, template preparation, genome data generation, analysis to identify and confirm variant alleles, interpretation of clinical significance, and reporting to clinicians. We describe a software application developed within a clinical genomics study, to support this entire process. The software application tracks patients, samples, genomic results, decisions and reports across the cohort, monitors progress and sends reminders, and works alongside an electronic data capture system for the trial's clinical and genomic data. It incorporates systems to read, store, analyze and consolidate sequencing results from multiple technologies, and provides a curated knowledge base of tumor mutation frequency (from the COSMIC database) annotated with clinical significance and drug sensitivity to generate reports for clinicians. By supporting the entire process, the application provides deep support for clinical decision making, enabling the generation of relevant guidance in reports for verification by an expert panel prior to forwarding to the treating physician. Copyright © 2013 Elsevier Inc. All rights reserved.
Simultaneous phylogeny reconstruction and multiple sequence alignment
Yue, Feng; Shi, Jian; Tang, Jijun
2009-01-01
Background A phylogeny is the evolutionary history of a group of organisms. To date, sequence data is still the most used data type for phylogenetic reconstruction. Before any sequences can be used for phylogeny reconstruction, they must be aligned, and the quality of the multiple sequence alignment has been shown to affect the quality of the inferred phylogeny. At the same time, all the current multiple sequence alignment programs use a guide tree to produce the alignment and experiments showed that good guide trees can significantly improve the multiple alignment quality. Results We devise a new algorithm to simultaneously align multiple sequences and search for the phylogenetic tree that leads to the best alignment. We also implemented the algorithm as a C program package, which can handle both DNA and protein data and can take simple cost model as well as complex substitution matrices, such as PAM250 or BLOSUM62. The performance of the new method are compared with those from other popular multiple sequence alignment tools, including the widely used programs such as ClustalW and T-Coffee. Experimental results suggest that this method has good performance in terms of both phylogeny accuracy and alignment quality. Conclusion We present an algorithm to align multiple sequences and reconstruct the phylogenies that minimize the alignment score, which is based on an efficient algorithm to solve the median problems for three sequences. Our extensive experiments suggest that this method is very promising and can produce high quality phylogenies and alignments. PMID:19208110
Single-cell genomic sequencing using Multiple Displacement Amplification.
Lasken, Roger S
2007-10-01
Single microbial cells can now be sequenced using DNA amplified by the Multiple Displacement Amplification (MDA) reaction. The few femtograms of DNA in a bacterium are amplified into micrograms of high molecular weight DNA suitable for DNA library construction and Sanger sequencing. The MDA-generated DNA also performs well when used directly as template for pyrosequencing by the 454 Life Sciences method. While MDA from single cells loses some of the genomic sequence, this approach will greatly accelerate the pace of sequencing from uncultured microbes. The genetically linked sequences from single cells are also a powerful tool to be used in guiding genomic assembly of shotgun sequences of multiple organisms from environmental DNA extracts (metagenomic sequences).
Robinson, Gail A; Spooner, Donna; Harrison, William J
2015-10-01
Frontal dynamic aphasia is characterised by a profound reduction in spontaneous speech despite well-preserved naming, repetition and comprehension. Since Luria (1966, 1970) designated this term, two main forms of dynamic aphasia have been identified: one, a language-specific selection deficit at the level of word/sentence generation, associated with left inferior frontal lesions; and two, a domain-general impairment in generating multiple responses or connected speech, associated with more extensive bilateral frontal and/or frontostriatal damage. Both forms of dynamic aphasia have been interpreted as arising due to disturbances in early prelinguistic conceptual preparation mechanisms that are critical for language production. We investigate language-specific and domain-general accounts of dynamic aphasia and address two issues: one, whether deficits in multiple conceptual preparation mechanisms can co-occur; and two, the contribution of broader cognitive processes such as energization, the ability to initiate and sustain response generation over time, to language generation failure. Thus, we report patient WAL who presented with frontal dynamic aphasia in the context of progressive supranuclear palsy (PSP). WAL was given a series of experimental tests that showed that his dynamic aphasia was not underpinned by a language-specific deficit in selection or in microplanning. By contrast, WAL presented with a domain-general deficit in fluent sequencing of novel thoughts. The latter replicated the pattern documented in a previous PSP patient (Robinson, et al., 2006); however, unique to WAL, generating novel thoughts was impaired but there was no evidence of a sequencing deficit because perseveration was absent. Thus, WAL is the first unequivocal case to show a distinction between novel thought generation and subsequent fluent sequencing. Moreover, WAL's generation deficit encompassed verbal and non-verbal responses, showing a similar (but more profoundly reduced) pattern of performance to frontal patients with an energization deficit. In addition to impaired generation of novel thoughts, WAL presented with a concurrent strategy generation deficit, both falling within the second form of dynamic aphasia comprised of domain-general conceptual preparation mechanisms. Thus, within this second form of dynamic aphasia, concurrent deficits can co-occur. Overall, WAL presented with the second form of dynamic aphasia and was impaired in the generation of novel thoughts and internally-generated strategies, in the context of PSP and bilateral frontostriatal damage. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Bellerophon: A program to detect chimeric sequences in multiple sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip
2003-12-23
Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments.
A novel approach to multiple sequence alignment using hadoop data grids.
Sudha Sadasivam, G; Baktavatchalam, G
2010-01-01
Multiple alignment of protein sequences helps to determine evolutionary linkage and to predict molecular structures. The factors to be considered while aligning multiple sequences are speed and accuracy of alignment. Although dynamic programming algorithms produce accurate alignments, they are computation intensive. In this paper we propose a time efficient approach to sequence alignment that also produces quality alignment. The dynamic nature of the algorithm coupled with data and computational parallelism of hadoop data grids improves the accuracy and speed of sequence alignment. The principle of block splitting in hadoop coupled with its scalability facilitates alignment of very large sequences.
Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato
Margos, Gabriele; Vollmer, Stephanie A.; Ogden, Nicholas H.; Fish, Durland
2011-01-01
In order to understand the population structure and dynamics of bacterial microorganisms, typing systems that accurately reflect the phylogenetic and evolutionary relationship of the agents are required. Over the past 15 years multilocus sequence typing schemes have replaced single locus approaches, giving novel insights into phylogenetic and evolutionary relationships of many bacterial species and facilitating taxonomy. Since 2004, several schemes using multiple loci have been developed to better understand the taxonomy, phylogeny and evolution of Lyme borreliosis spirochetes and in this paper we have reviewed and summarized the progress that has been made for this important group of vector-borne zoonotic bacteria. PMID:21843658
PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments.
Caffrey, Daniel R; Dana, Paul H; Mathur, Vidhya; Ocano, Marco; Hong, Eun-Jong; Wang, Yaoyu E; Somaroo, Shyamal; Caffrey, Brian E; Potluri, Shobha; Huang, Enoch S
2007-10-11
By virtue of their shared ancestry, homologous sequences are similar in their structure and function. Consequently, multiple sequence alignments are routinely used to identify trends that relate to function. This type of analysis is particularly productive when it is combined with structural and phylogenetic analysis. Here we describe the release of PFAAT version 2.0, a tool for editing, analyzing, and annotating multiple sequence alignments. Support for multiple annotations is a key component of this release as it provides a framework for most of the new functionalities. The sequence annotations are accessible from the alignment and tree, where they are typically used to label sequences or hyperlink them to related databases. Sequence annotations can be created manually or extracted automatically from UniProt entries. Once a multiple sequence alignment is populated with sequence annotations, sequences can be easily selected and sorted through a sophisticated search dialog. The selected sequences can be further analyzed using statistical methods that explicitly model relationships between the sequence annotations and residue properties. Residue annotations are accessible from the alignment viewer and are typically used to designate binding sites or properties for a particular residue. Residue annotations are also searchable, and allow one to quickly select alignment columns for further sequence analysis, e.g. computing percent identities. Other features include: novel algorithms to compute sequence conservation, mapping conservation scores to a 3D structure in Jmol, displaying secondary structure elements, and sorting sequences by residue composition. PFAAT provides a framework whereby end-users can specify knowledge for a protein family in the form of annotation. The annotations can be combined with sophisticated analysis to test hypothesis that relate to sequence, structure and function.
Sequential Progressions in a Theory of Mind Scale: Longitudinal Perspectives
Wellman, Henry M.; Fuxi, Fang; Peterson, Candida C.
2011-01-01
Consecutive re-testings of 92 U.S. preschoolers (n = 30), Chinese preschoolers (n = 31), and deaf children (n = 31) examined whether the sequences of development apparent in cross-sectional results with a theory-of-mind scale also appeared in longitudinal assessment. Longitudinal data confirmed that theory-of-mind progressions apparent in cross-sectional scaling data also characterized longitudinal sequences of understanding for individual children. The match between cross-sectional and longitudinal sequences appeared for children who exhibit different progressions across cultures (U.S. vs. China) and for children with substantial delays (deaf children of hearing parents). Moreover, greater scale distances reflected larger longitudinal age differences. PMID:21428982
NASA Astrophysics Data System (ADS)
Caruso, Stefano; Fiorentini, Marco L.; Moroni, Marilena; Martin, Laure A. J.
2017-12-01
Magmatic degassing from komatiite lava flows potentially influenced the geochemical evolution of the Archean atmosphere and hydrosphere. We argue that the escape of SO2-rich volatiles from komatiites impacted on the mineralogical, geochemical and isotopic composition of associated nickel-sulfide mineralization leaving behind detectable and measurable footprints that can be best observed where the polarity of the magmatic sequence is clearly recognizable. Here we focus on the ore-bearing sequence of the Archean komatiite-hosted N01 nickel-sulfide orebody at Wannaway, Yilgarn Craton, Western Australia. This deposit displays a volcanic sequence with a well-defined succession of stratigraphically-correlated facies comprising a massive sulfide horizon at the base of the channelized komatiite flow, overlain by matrix and disseminated sulfide mineralization. Pyrrhotite is the dominant sulfide phase in the lower part of the ore profile. The amount of troilite gradually increases from the base of the matrix ore over several meters up-sequence, eventually becoming dominant at the expense of pyrrhotite. In the upper portion of the mineralized sequence troilite is associated with accessory Mn sulfide alabandite (MnS), which is usually reported in reduced terrestrial and extra-terrestrial environments. Such mineralogical and volcanological features are consistent with upwards decreasing in fS2 and fO2 away from the basal contact of the komatiite flow. After evaluating the possible role of metamorphism, the pyrrhotite-troilite-alabandite assemblage and the progressive up-sequence decrease of the pyrrhotite/troilite ratio across the upper part of the mineralized sequence are interpreted as magmatic and indicative of progressive loss of sulfur with concomitant establishment of reducing conditions within the sulfide melt ponding at the base of the komatiite lava. In this context, the investigation of spatially constrained sulfur isotopic signatures allows to isolate the multiple sulfur fractionation processes that impacted on sulfide mineralization and ultimately permits the identification of the isotopic shift associated with magmatic degassing. Following this approach we recognize two distinct sulfur isotope exchanges processes triggered by 1) assimilation of sulfidic shales during emplacement of the komatiite flow, and 2) equilibration between the sulfide melt and the sulfur dissolved in the silicate melt. We finally correlate the remaining δ34S depletion up-stratigraphy with the loss of heavy sulfur isotopes through magmatic degassing of SO2-rich volatiles from the ultramafic flow. The emission of SO2 upon emplacement and cooling of the magma flow would also explain the progressive reducing fO2 and fS2 conditions indicated by variations in mineral assemblages from the base of the komatiite upwards.
NASA Astrophysics Data System (ADS)
Miyatake, Teruhiko; Chiba, Kazuki; Hamamura, Masanori; Tachikawa, Shin'ichi
We propose a novel asynchronous direct-sequence codedivision multiple access (DS-CDMA) using feedback-controlled spreading sequences (FCSSs) (FCSS/DS-CDMA). At the receiver of FCSS/DS-CDMA, the code-orthogonalizing filter (COF) produces a spreading sequence, and the receiver returns the spreading sequence to the transmitter. Then the transmitter uses the spreading sequence as its updated version. The performance of FCSS/DS-CDMA is evaluated over time-dispersive channels. The results indicate that FCSS/DS-CDMA greatly suppresses both the intersymbol interference (ISI) and multiple access interference (MAI) over time-invariant channels. FCSS/DS-CDMA is applicable to the decentralized multiple access.
Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons
NASA Astrophysics Data System (ADS)
Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.
2016-08-01
Objective. The field of retinal prosthetics has made major progress over the last decade, restoring visual percepts to people suffering from retinitis pigmentosa. The stimulation pulses used by present implants are suprathreshold, meaning individual pulses are designed to activate the retina. In this paper we explore subthreshold pulse sequences as an alternate stimulation paradigm. Subthreshold pulses have the potential to address important open problems such as fading of visual percepts when patients are stimulated at moderate pulse repetition rates and the difficulty in preferentially stimulating different retinal pathways. Approach. As a first step in addressing these issues we used Gaussian white noise electrical stimulation combined with spike-triggered averaging to interrogate whether a subthreshold sequence of pulses can be used to activate the mouse retina. Main results. We demonstrate that the retinal network can integrate multiple subthreshold electrical stimuli under an experimental paradigm immediately relevant to retinal prostheses. Furthermore, these characteristic stimulus sequences varied in their shape and integration window length across the population of retinal ganglion cells. Significance. Because the subthreshold sequences activate the retina at stimulation rates that would typically induce strong fading (25 Hz), such retinal ‘tickling’ has the potential to minimize the fading problem. Furthermore, the diversity found across the cell population in characteristic pulse sequences suggests that these sequences could be used to selectively address the different retinal pathways (e.g. ON versus OFF). Both of these outcomes may significantly improve visual perception in retinal implant patients.
Pröbstel, Anne-Katrin; Baranzini, Sergio E
2018-01-01
Multiple sclerosis (MS) is the prototypic complex disease, in which both genes and the environment contribute to its pathogenesis. To date, > 200 independent loci across the genome have been associated with MS risk. However, these only explain a fraction of the total phenotypic variance, suggesting the possible presence of additional genetic factors, and, most likely, also environmental factors. New DNA sequencing technologies have enabled the sequencing of all kinds of microorganisms, including those living in and around humans (i.e., microbiomes). The study of bacterial populations inhabiting the gut is of particular interest in autoimmune diseases owing to their key role in shaping immune responses. In this review, we address the potential crosstalk between B cells and the gut microbiota, a relevant scenario in light of recently approved anti-B-cell therapies for MS. In addition, we review recent efforts to characterize the gut microbiome in patients with MS and discuss potential challenges and future opportunities. Finally, we describe the international MS microbiome study, a multicenter effort to study a large population of patients with MS and their healthy household partners to define the core MS microbiome, how it is shaped by disease-modifying therapies, and to explore potential therapeutic interventions.
Molecular Cloning of Drebrin: Progress and Perspectives.
Kojima, Nobuhiko
2017-01-01
Chicken drebrin isoforms were first identified in the optic tectum of developing brain. Although the time course of protein expression was different in each drebrin isoform, the similarity between their protein structures was suggested by biochemical analysis of purified protein. To determine their protein structures, the cloning of drebrin cDNAs was conducted. Comparison between the cDNA sequences shows that all drebrin cDNAs are identical except that the internal insertion sequences are present or absent in their sequences. Chicken drebrin are now classified into three isoforms, namely, drebrins E1, E2, and A. Genomic cloning demonstrated that the three isoforms are generated by an alternative splicing of individual exons encoding the insertion sequences from single drebrin gene. The mechanism should be precisely regulated in cell-type-specific and developmental stage-specific fashion. Drebrin protein, which is well conserved in various vertebrate species, although mammalian drebrin has only two isoforms, namely, drebrin E and drebrin A, is different from chicken drebrin that has three isoforms. Drebrin belongs to an actin-depolymerizing factor homology (ADF-H) domain protein family. Besides the ADF-H domain, drebrin has other domains, including the actin-binding domain and Homer-binding motifs. Diversity of protein isoform and multiple domains of drebrin could interact differentially with the actin cytoskeleton and other intracellular proteins and regulate diverse cellular processes.
Koutsis, Georgios; Lynch, David S; Tucci, Arianna; Houlden, Henry; Karadima, Georgia; Panas, Marios
2015-08-15
To present a Greek family in which 5 male and 2 female members developed progressive spastic paraplegia. Plasma very long chain fatty acids (VLCFA) were reportedly normal at first testing in an affected male and for over 30 years the presumed diagnosis was hereditary spastic paraplegia (HSP). Targeted next generation sequencing (NGS) was used as a further diagnostic tool. Targeted exome sequencing in the proband, followed by Sanger sequencing confirmation; mutation segregation testing in multiple family members and plasma VLCFA measurement in the proband. NGS of the proband revealed a novel frameshift mutation in ABCD1 (c.1174_1178del, p.Leu392Serfs*7), bringing an end to diagnostic uncertainty by establishing the diagnosis of adrenomyeloneuropathy (AMN), the myelopathic phenotype of X-linked adrenoleukodystrophy (ALD). The mutation segregated in all family members and the diagnosis of AMN/ALD was confirmed by plasma VLCFA measurement. Confounding factors that delayed the diagnosis are presented. This report highlights the diagnostic utility of NGS in patients with undiagnosed spastic paraplegia, establishing a molecular diagnosis of AMN, allowing proper genetic counseling and management, and overcoming the diagnostic delay that can be rarely caused by false negative VLCFA analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Ferret, Yann; Caillault, Aurélie; Sebda, Shéhérazade; Duez, Marc; Grardel, Nathalie; Duployez, Nicolas; Villenet, Céline; Figeac, Martin; Preudhomme, Claude; Salson, Mikaël; Giraud, Mathieu
2016-05-01
High-throughput sequencing (HTS) is considered a technical revolution that has improved our knowledge of lymphoid and autoimmune diseases, changing our approach to leukaemia both at diagnosis and during follow-up. As part of an immunoglobulin/T cell receptor-based minimal residual disease (MRD) assessment of acute lymphoblastic leukaemia patients, we assessed the performance and feasibility of the replacement of the first steps of the approach based on DNA isolation and Sanger sequencing, using a HTS protocol combined with bioinformatics analysis and visualization using the Vidjil software. We prospectively analysed the diagnostic and relapse samples of 34 paediatric patients, thus identifying 125 leukaemic clones with recombinations on multiple loci (TRG, TRD, IGH and IGK), including Dd2/Dd3 and Intron/KDE rearrangements. Sequencing failures were halved (14% vs. 34%, P = 0.0007), enabling more patients to be monitored. Furthermore, more markers per patient could be monitored, reducing the probability of false negative MRD results. The whole analysis, from sample receipt to clinical validation, was shorter than our current diagnostic protocol, with equal resources. V(D)J recombination was successfully assigned by the software, even for unusual recombinations. This study emphasizes the progress that HTS with adapted bioinformatics tools can bring to the diagnosis of leukaemia patients. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grouse, L.H.; Ketterling, R.P.; Sommer, S.S.
Most mutations causing hemophilia B have arisen within the past 150 years. By correcting for multiple biases, the underlying rates of spontaneous germline mutation have been estimated in the factor IX gene. From these rates, an underlying pattern of mutation has emerged. To determine if this pattern compares to a underlying pattern found in the great apes, sequence changes were determined in intronic regions of the factor IX gene. The following species were studied: Gorilla gorilla, Pan troglodytes (chimpanzee), Pongo pygmacus (orangutan) and Homo sapiens. Intronic sequences at least 200 bp from a splice junction were randomly chosen, amplified bymore » cross-species PCR, and sequenced. These regions are expected to be subject to little if any selective pressure. Early diverged species of Old World monkeys were also studied to help determine the direction of mutational changes. A total of 62 sequence changes were observed. Initial data suggest that the average pattern since evolution of the great apes has a paucity of transitions at CpG dinucleotides and an excess of microinsertions to microdeletions when compared to the pattern observed in humans during the past 150 years (p<.05). A larger study is in progress to confirm these results.« less
Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches.
Yahr, Rebecca; Schoch, Conrad L; Dentinger, Bryn T M
2016-09-05
The fungal kingdom is a hyperdiverse group of multicellular eukaryotes with profound impacts on human society and ecosystem function. The challenge of documenting and describing fungal diversity is exacerbated by their typically cryptic nature, their ability to produce seemingly unrelated morphologies from a single individual and their similarity in appearance to distantly related taxa. This multiplicity of hurdles resulted in the early adoption of DNA-based comparisons to study fungal diversity, including linking curated DNA sequence data to expertly identified voucher specimens. DNA-barcoding approaches in fungi were first applied in specimen-based studies for identification and discovery of taxonomic diversity, but are now widely deployed for community characterization based on sequencing of environmental samples. Collectively, fungal barcoding approaches have yielded important advances across biological scales and research applications, from taxonomic, ecological, industrial and health perspectives. A major outstanding issue is the growing problem of 'sequences without names' that are somewhat uncoupled from the traditional framework of fungal classification based on morphology and preserved specimens. This review summarizes some of the most significant impacts of fungal barcoding, its limitations, and progress towards the challenge of effective utilization of the exponentially growing volume of data gathered from high-throughput sequencing technologies.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.
Accelerated probabilistic inference of RNA structure evolution
Holmes, Ian
2005-01-01
Background Pairwise stochastic context-free grammars (Pair SCFGs) are powerful tools for evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary structure prediction, but the associated algorithms are intensive in both CPU and memory usage. The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985 algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences and using this first pass to limit the range of structures and/or alignments that can be considered. Results We demonstrate how flexible classes of constraint can be imposed, greatly reducing the computational costs while maintaining a high quality of structural homology prediction. Any score-attributed context-free grammar (e.g. energy-based scoring schemes, or conditionally normalized Pair SCFGs) is amenable to this treatment. It is now possible to combine independent structural and alignment constraints of unprecedented general flexibility in Pair SCFG alignment algorithms. We outline several applications to the bioinformatics of RNA sequence and structure, including Waterman-Eggert N-best alignments and progressive multiple alignment. We evaluate the performance of the algorithm on test examples from the RFAM database. Conclusion A program, Stemloc, that implements these algorithms for efficient RNA sequence alignment and structure prediction is available under the GNU General Public License. PMID:15790387
Catalog of genetic progression of human cancers: breast cancer.
Desmedt, Christine; Yates, Lucy; Kulka, Janina
2016-03-01
With the rapid development of next-generation sequencing, deeper insights are being gained into the molecular evolution that underlies the development and clinical progression of breast cancer. It is apparent that during evolution, breast cancers acquire thousands of mutations including single base pair substitutions, insertions, deletions, copy number aberrations, and structural rearrangements. As a consequence, at the whole genome level, no two cancers are identical and few cancers even share the same complement of "driver" mutations. Indeed, two samples from the same cancer may also exhibit extensive differences due to constant remodeling of the genome over time. In this review, we summarize recent studies that extend our understanding of the genomic basis of cancer progression. Key biological insights include the following: subclonal diversification begins early in cancer evolution, being detectable even in in situ lesions; geographical stratification of subclonal structure is frequent in primary tumors and can include therapeutically targetable alterations; multiple distant metastases typically arise from a common metastatic ancestor following a "metastatic cascade" model; systemic therapy can unmask preexisting resistant subclones or influence further treatment sensitivity and disease progression. We conclude the review by describing novel approaches such as the analysis of circulating DNA and patient-derived xenografts that promise to further our understanding of the genomic changes occurring during cancer evolution and guide treatment decision making.
Significance of perivascular tumour cells defined by CD109 expression in progression of glioma.
Shiraki, Yukihiro; Mii, Shinji; Enomoto, Atsushi; Momota, Hiroyuki; Han, Yi-Peng; Kato, Takuya; Ushida, Kaori; Kato, Akira; Asai, Naoya; Murakumo, Yoshiki; Aoki, Kosuke; Suzuki, Hiromichi; Ohka, Fumiharu; Wakabayashi, Toshihiko; Todo, Tomoki; Ogawa, Seishi; Natsume, Atsushi; Takahashi, Masahide
2017-12-01
In the progression of glioma, tumour cells often exploit the perivascular microenvironment to promote their survival and resistance to conventional therapies. Some of these cells are considered to be brain tumour stem cells (BTSCs); however, the molecular nature of perivascular tumour cells has not been specifically clarified because of the complexity of glioma. Here, we identified CD109, a glycosylphosphatidylinositol-anchored protein and regulator of multiple signalling pathways, as a critical regulator of the progression of lower-grade glioma (World Health Organization grade II/III) by clinicopathological and whole-genome sequencing analysis of tissues from human glioma. The importance of CD109-positive perivascular tumour cells was confirmed not only in human lower-grade glioma tissues but also in a mouse model that recapitulated human glioma. Intriguingly, BTSCs isolated from mouse glioma expressed high levels of CD109. CD109-positive BTSCs exerted a proliferative effect on differentiated glioma cells treated with temozolomide. These data reveal the significance of tumour cells that populate perivascular regions during glioma progression, and indicate that CD109 is a potential therapeutic target for the disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Binladen, Jonas; Gilbert, M Thomas P; Bollback, Jonathan P; Panitz, Frank; Bendixen, Christian; Nielsen, Rasmus; Willerslev, Eske
2007-02-14
The invention of the Genome Sequence 20 DNA Sequencing System (454 parallel sequencing platform) has enabled the rapid and high-volume production of sequence data. Until now, however, individual emulsion PCR (emPCR) reactions and subsequent sequencing runs have been unable to combine template DNA from multiple individuals, as homologous sequences cannot be subsequently assigned to their original sources. We use conventional PCR with 5'-nucleotide tagged primers to generate homologous DNA amplification products from multiple specimens, followed by sequencing through the high-throughput Genome Sequence 20 DNA Sequencing System (GS20, Roche/454 Life Sciences). Each DNA sequence is subsequently traced back to its individual source through 5'tag-analysis. We demonstrate that this new approach enables the assignment of virtually all the generated DNA sequences to the correct source once sequencing anomalies are accounted for (miss-assignment rate<0.4%). Therefore, the method enables accurate sequencing and assignment of homologous DNA sequences from multiple sources in single high-throughput GS20 run. We observe a bias in the distribution of the differently tagged primers that is dependent on the 5' nucleotide of the tag. In particular, primers 5' labelled with a cytosine are heavily overrepresented among the final sequences, while those 5' labelled with a thymine are strongly underrepresented. A weaker bias also exists with regards to the distribution of the sequences as sorted by the second nucleotide of the dinucleotide tags. As the results are based on a single GS20 run, the general applicability of the approach requires confirmation. However, our experiments demonstrate that 5'primer tagging is a useful method in which the sequencing power of the GS20 can be applied to PCR-based assays of multiple homologous PCR products. The new approach will be of value to a broad range of research areas, such as those of comparative genomics, complete mitochondrial analyses, population genetics, and phylogenetics.
Snake Genome Sequencing: Results and Future Prospects
Kerkkamp, Harald M. I.; Kini, R. Manjunatha; Pospelov, Alexey S.; Vonk, Freek J.; Henkel, Christiaan V.; Richardson, Michael K.
2016-01-01
Snake genome sequencing is in its infancy—very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression. PMID:27916957
Snake Genome Sequencing: Results and Future Prospects.
Kerkkamp, Harald M I; Kini, R Manjunatha; Pospelov, Alexey S; Vonk, Freek J; Henkel, Christiaan V; Richardson, Michael K
2016-12-01
Snake genome sequencing is in its infancy-very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.
Determination of haplotypes at structurally complex regions using emulsion haplotype fusion PCR.
Tyson, Jess; Armour, John A L
2012-12-11
Genotyping and massively-parallel sequencing projects result in a vast amount of diploid data that is only rarely resolved into its constituent haplotypes. It is nevertheless this phased information that is transmitted from one generation to the next and is most directly associated with biological function and the genetic causes of biological effects. Despite progress made in genome-wide sequencing and phasing algorithms and methods, problems assembling (and reconstructing linear haplotypes in) regions of repetitive DNA and structural variation remain. These dynamic and structurally complex regions are often poorly understood from a sequence point of view. Regions such as these that are highly similar in their sequence tend to be collapsed onto the genome assembly. This is turn means downstream determination of the true sequence haplotype in these regions poses a particular challenge. For structurally complex regions, a more focussed approach to assembling haplotypes may be required. In order to investigate reconstruction of spatial information at structurally complex regions, we have used an emulsion haplotype fusion PCR approach to reproducibly link sequences of up to 1kb in length to allow phasing of multiple variants from neighbouring loci, using allele-specific PCR and sequencing to detect the phase. By using emulsion systems linking flanking regions to amplicons within the CNV, this led to the reconstruction of a 59kb haplotype across the DEFA1A3 CNV in HapMap individuals. This study has demonstrated a novel use for emulsion haplotype fusion PCR in addressing the issue of reconstructing structural haplotypes at multiallelic copy variable regions, using the DEFA1A3 locus as an example.
Statistical Physics of Vaccine Design
NASA Astrophysics Data System (ADS)
Deem, Michael
2009-03-01
I will define a new parameter to quantify the antigenic distance between two H3N2 influenza strains. I will use this parameter to measure antigenic distance between circulating H3N2 strains and the closest vaccine component of the influenza vaccine. For the data between 1971 and 2004, the measure of antigenic distance correlates better with efficacy in humans of the H3N2 influenza A annual vaccine than do current state of the art measures of antigenic distance such as phylogenetic sequence analysis or ferret antisera inhibition assays. I suggest that this measure of antigenic distance can be used to guide the design of the annual flu vaccine. I will describe combining this measure of antigenic distance with a multiple-strain avian influenza transmission model to study the threat of simultaneous introduction of multiple avian influenza strains. For H3N2 influenza, the model is validated against observed viral fixation rates and epidemic progression rates from the World Health Organization FluNet - Global Influenza Surveillance Network. I find that a multiple-component avian influenza vaccine is helpful to control a simultaneous multiple introduction of bird-flu strains. I introduce Population at Risk (PaR) to quantify the risk of a flu pandemic, and calculate by this metric the improvement that a multiple vaccine offers.
Using a Sequence of Earcons to Monitor Multiple Simulated Patients.
Hickling, Anna; Brecknell, Birgit; Loeb, Robert G; Sanderson, Penelope
2017-03-01
The aim of this study was to determine whether a sequence of earcons can effectively convey the status of multiple processes, such as the status of multiple patients in a clinical setting. Clinicians often monitor multiple patients. An auditory display that intermittently conveys the status of multiple patients may help. Nonclinician participants listened to sequences of 500-ms earcons that each represented the heart rate (HR) and oxygen saturation (SpO 2 ) levels of a different simulated patient. In each sequence, one, two, or three patients had an abnormal level of HR and/or SpO 2 . In Experiment 1, participants reported which of nine patients in a sequence were abnormal. In Experiment 2, participants identified the vital signs of one, two, or three abnormal patients in sequences of one, five, or nine patients, where the interstimulus interval (ISI) between earcons was 150 ms. Experiment 3 used the five-sequence condition of Experiment 2, but the ISI was either 150 ms or 800 ms. Participants reported which patient(s) were abnormal with median 95% accuracy. Identification accuracy for vital signs decreased as the number of abnormal patients increased from one to three, p < .001, but accuracy was unaffected by number of patients in a sequence. Overall, identification accuracy was significantly higher with an ISI of 800 ms (89%) compared with an ISI of 150 ms (83%), p < .001. A multiple-patient display can be created by cycling through earcons that represent individual patients. The principles underlying the multiple-patient display can be extended to other vital signs, designs, and domains.
Cognitive-Linguistic Deficit and Speech Intelligibility in Chronic Progressive Multiple Sclerosis
ERIC Educational Resources Information Center
Mackenzie, Catherine; Green, Jan
2009-01-01
Background: Multiple sclerosis is a disabling neurological disease with varied symptoms, including dysarthria and cognitive and linguistic impairments. Association between dysarthria and cognitive-linguistic deficit has not been explored in clinical multiple sclerosis studies. Aims: In patients with chronic progressive multiple sclerosis, the…
Students' Progression of Understanding the Matter Concept from Elementary to High School
ERIC Educational Resources Information Center
Liu, Xiufeng; Lesniak, Kathleen M.
2005-01-01
Using the US national sample from the Third International Mathematics and Science Study (TIMSS) and the Rasch modeling method, this study identified the conceptual progression sequence of various matter concept aspects, and compared students' latent abilities against the sequence. We found that the four matter aspects, i.e. conservation, physical…
Quantifying selection in evolving populations using time-resolved genetic data
NASA Astrophysics Data System (ADS)
Illingworth, Christopher J. R.; Mustonen, Ville
2013-01-01
Methods which uncover the molecular basis of the adaptive evolution of a population address some important biological questions. For example, the problem of identifying genetic variants which underlie drug resistance, a question of importance for the treatment of pathogens, and of cancer, can be understood as a matter of inferring selection. One difficulty in the inference of variants under positive selection is the potential complexity of the underlying evolutionary dynamics, which may involve an interplay between several contributing processes, including mutation, recombination and genetic drift. A source of progress may be found in modern sequencing technologies, which confer an increasing ability to gather information about evolving populations, granting a window into these complex processes. One particularly interesting development is the ability to follow evolution as it happens, by whole-genome sequencing of an evolving population at multiple time points. We here discuss how to use time-resolved sequence data to draw inferences about the evolutionary dynamics of a population under study. We begin by reviewing our earlier analysis of a yeast selection experiment, in which we used a deterministic evolutionary framework to identify alleles under selection for heat tolerance, and to quantify the selection acting upon them. Considering further the use of advanced intercross lines to measure selection, we here extend this framework to cover scenarios of simultaneous recombination and selection, and of two driver alleles with multiple linked neutral, or passenger, alleles, where the driver pair evolves under an epistatic fitness landscape. We conclude by discussing the limitations of the approach presented and outlining future challenges for such methodologies.
Relapse May Serve as a Mediator Variable in Longitudinal Outcomes in Multiple Sclerosis.
Stone, Lael Anne; Cutter, Gary Raymond; Fisher, Elizabeth; Richert, Nancy; McCartin, Jennifer; Ohayon, Joan; Bash, Craig; McFarland, Henry
2016-05-01
Contrast-enhancing lesions (CEL) on magnetic resonance imaging (MRI) are believed to represent inflammatory disease activity in multiple sclerosis (MS), but their relationship to subsequent long-term disability and progression is unclear, particularly at longer time periods such as 8-10 years. Between 1989 and 1994, 111 MS patients were seen at the National Institutes of Health for clinical evaluations and 3 monthly contrast-enhanced MRI scans. Of these, 94 patients were re-evaluated a mean of 8 years later (range 6.1-10.5 years) with a single MRI scan and clinical evaluation. CEL number and volume were determined at baseline and follow-up. The number of relapses was ascertained over the follow-up period and annualized relapse rates were calculated. Other MRI parameters, such as T2 hyperintensity volume, T1 volume, and brain parenchymal fraction, were also calculated. While there was no direct correlation between CEL number or volume at baseline and disability status at follow-up, CEL measures at baseline did correlate with number of relapses observed in the subsequent years, and the number of relapses in turn correlated with subsequent disability as well as transition to progressive MS. While number and volume of CEL at baseline do not directly correlate with disability in the longer term in MS, our data suggest that 1 route to disability involves relapses as a mediator variable in the causal sequence of MS progression from CEL to disability. Further studies using relapse as a mediator variable in a larger data set may be warranted. Copyright © 2015 by the American Society of Neuroimaging.
Zivadinov, Robert; Ramasamy, Deepa P; Vaneckova, Manuela; Gandhi, Sirin; Chandra, Avinash; Hagemeier, Jesper; Bergsland, Niels; Polak, Paul; Benedict, Ralph Hb; Hojnacki, David; Weinstock-Guttman, Bianca
2017-09-01
Leptomeningeal contrast enhancement (LM CE) has been recently described in multiple sclerosis (MS) patients as a potential in vivo marker of cortical pathology. To investigate the association of LM CE and development of cortical atrophy in 50 MS patients (27 relapsing-remitting (RR) and 23 secondary-progressive (SP)) followed for 5 years. The presence and number of LM CE foci were assessed only at the 5-year follow-up using three-dimensional (3D) fluid-attenuated inversion recovery magnetic resonance imaging (MRI) sequence obtained 10 minutes after single dose of gadolinium injection on 3T scanner. The percentage change in whole brain, cortical and deep gray matter (GM) volumes, and lesion volume (LV) was measured between baseline and the 5-year follow-up. In total, 25 (50%) of MS patients had LM CE at the 5-year follow-up. Significantly more SPMS patients (12, 85.7%) had multiple LM CE foci, compared to those with RRMS (2, 18.2%) ( p = 0.001). MS patients with LM CE showed significantly greater percentage decrease in total GM (-3.6% vs -2%, d = 0.80, p = 0.006) and cortical (-3.4% vs -1.8%, d = 0.84, p = 0.007) volumes and greater percentage increase in ventricular cerebrospinal fluid (vCSF) volume (22.8% vs 9.9%, d = 0.90, p = 0.003) over the follow-up, compared to those without. In this retrospective, pilot, observational longitudinal study, the presence of LM CE was associated with progression of cortical atrophy over 5 years.
Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization.
Simpson, Rachel M; Bruno, Andrew E; Chen, Runpu; Lott, Kaylen; Tylec, Brianna L; Bard, Jonathan E; Sun, Yijun; Buck, Michael J; Read, Laurie K
2017-07-27
Uridine insertion/deletion RNA editing is an essential process in kinetoplastid parasites whereby mitochondrial mRNAs are modified through the specific insertion and deletion of uridines to generate functional open reading frames, many of which encode components of the mitochondrial respiratory chain. The roles of numerous non-enzymatic editing factors have remained opaque given the limitations of conventional methods to interrogate the order and mechanism by which editing progresses and thus roles of individual proteins. Here, we examined whole populations of partially edited sequences using high throughput sequencing and a novel bioinformatic platform, the Trypanosome RNA Editing Alignment Tool (TREAT), to elucidate the roles of three proteins in the RNA Editing Mediator Complex (REMC). We determined that the factors examined function in the progression of editing through a gRNA; however, they have distinct roles and REMC is likely heterogeneous in composition. We provide the first evidence that editing can proceed through numerous paths within a single gRNA and that non-linear modifications are essential, generating commonly observed junction regions. Our data support a model in which RNA editing is executed via multiple paths that necessitate successive re-modification of junction regions facilitated, in part, by the REMC variant containing TbRGG2 and MRB8180. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Du, G; Lewis, M M; Kanekar, S; Sterling, N W; He, L; Kong, L; Li, R; Huang, X
2017-05-01
Both diffusion tensor imaging and the apparent transverse relaxation rate have shown promise in differentiating Parkinson disease from atypical parkinsonism (particularly multiple system atrophy and progressive supranuclear palsy). The objective of the study was to assess the ability of DTI, the apparent transverse relaxation rate, and their combination for differentiating Parkinson disease, multiple system atrophy, progressive supranuclear palsy, and controls. A total of 106 subjects (36 controls, 35 patients with Parkinson disease, 16 with multiple system atrophy, and 19 with progressive supranuclear palsy) were included. DTI and the apparent transverse relaxation rate measures from the striatal, midbrain, limbic, and cerebellar regions were obtained and compared among groups. The discrimination performance of DTI and the apparent transverse relaxation rate among groups was assessed by using Elastic-Net machine learning and receiver operating characteristic curve analysis. Compared with controls, patients with Parkinson disease showed significant apparent transverse relaxation rate differences in the red nucleus. Compared to those with Parkinson disease, patients with both multiple system atrophy and progressive supranuclear palsy showed more widespread changes, extending from the midbrain to striatal and cerebellar structures. The pattern of changes, however, was different between the 2 groups. For instance, patients with multiple system atrophy showed decreased fractional anisotropy and an increased apparent transverse relaxation rate in the subthalamic nucleus, whereas patients with progressive supranuclear palsy showed an increased mean diffusivity in the hippocampus. Combined, DTI and the apparent transverse relaxation rate were significantly better than DTI or the apparent transverse relaxation rate alone in separating controls from those with Parkinson disease/multiple system atrophy/progressive supranuclear palsy; controls from those with Parkinson disease; those with Parkinson disease from those with multiple system atrophy/progressive supranuclear palsy; and those with Parkinson disease from those with multiple system atrophy; but not those with Parkinson disease from those with progressive supranuclear palsy, or those with multiple system atrophy from those with progressive supranuclear palsy. DTI and the apparent transverse relaxation rate provide different but complementary information for different parkinsonisms. Combined DTI and apparent transverse relaxation rate may be a superior marker for the differential diagnosis of parkinsonisms. © 2017 by American Journal of Neuroradiology.
Advances for Studying Clonal Evolution in Cancer
Raphael, Benjamin J.; Chen, Feng; Wendl, Michael C.
2013-01-01
The “clonal evolution” model of cancer emerged and “evolved” amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other’s survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. PMID:23353056
Advances for studying clonal evolution in cancer.
Ding, Li; Raphael, Benjamin J; Chen, Feng; Wendl, Michael C
2013-11-01
The "clonal evolution" model of cancer emerged and "evolved" amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other's survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J; Tyler, Scott R; Tisoncik-Go, Jennifer; Brawand, David; Law, G Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J; Kelly, Sara M; Chang, Jean; Thomas, Matthew J; Johnson, Jeremy; Berlin, Aaron M; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M; Tumpey, Terrence M; Siepel, Adam; Wisely, Samantha M; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F; Palermo, Robert E; Katze, Michael G
2014-12-01
The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.
Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J.; Tyler, Scott R.; Tisoncik-Go, Jennifer; Brawand, David; Law, G. Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J.; Kelly, Sara M.; Chang, Jean; Thomas, Matthew J.; Johnson, Jeremy; Berlin, Aaron M.; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M.; Tumpey, Terrence M.; Siepel, Adam; Wisely, Samantha M.; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W.; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F.; Palermo, Robert E.; Katze, Michael G.
2014-01-01
The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the ‘gold standard’ for modeling human influenza virus infection and transmission1–4. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotate 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterize the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time courses, and show distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis (CF) disease progression, we show that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with CF disease. PMID:25402615
Principles of gene microarray data analysis.
Mocellin, Simone; Rossi, Carlo Riccardo
2007-01-01
The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.
Molecular machinery of signal transduction and cell cycle regulation in Plasmodium.
Koyama, Fernanda C; Chakrabarti, Debopam; Garcia, Célia R S
2009-05-01
The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.
Molecular epidemiology of measles viruses in China, 1995–2003
Zhang, Yan; Zhu, Zhen; Rota, Paul A; Jiang, Xiaohong; Hu, Jiayu; Wang, Jianguo; Tang, Wei; Zhang, Zhenying; Li, Congyong; Wang, Changyin; Wang, Tongzhan; Zheng, Lei; Tian, Hong; Ling, Hua; Zhao, Chunfang; Ma, Yan; Lin, Chunyan; He, Jilan; Tian, Jiang; Ma, Yan; Li, Ping; Guan, Ronghui; He, Weikuan; Zhou, Jianhui; Liu, Guiyan; Zhang, Hong; Yan, Xinge; Yang, Xuelei; Zhang, Jinlin; Lu, Yiyu; Zhou, Shunde; Ba, Zhuoma; Liu, Wei; Yang , Xiuhui; Ma, Yujie; Liang, Yong; Li, Yeqiang; Ji, Yixin; Featherstone, David; Bellini, William J; Xu, Songtao; Liang, Guodong; Xu, Wenbo
2007-01-01
This report describes the genetic characterization of 297 wild-type measles viruses that were isolated in 24 provinces of China between 1995 and 2003. Phylogenetic analysis of the N gene sequences showed that all of the isolates belonged to genotype H1 except 3 isolates, which were genotype A. The nucleotide sequence and predicted amino acid homologies of the 294-genotype H1 strains were 94.7%–100% and 93.3%–100%, respectively. The genotype H1 isolates were divided into 2 clusters, which differed by approximately 2.9% at the nucleotide level. Viruses from both clusters were distributed throughout China with no apparent geographic restriction and multiple co-circulating lineages were present in many provinces. Even though other measles genotypes have been detected in countries that border China, this report shows that genotype H1 is widely distributed throughout the country and that China has a single, endemic genotype. This important baseline data will help to monitor the progress of measles control in China. PMID:17280609
Separation/extraction, detection, and interpretation of DNA mixtures in forensic science (review).
Tao, Ruiyang; Wang, Shouyu; Zhang, Jiashuo; Zhang, Jingyi; Yang, Zihao; Sheng, Xiang; Hou, Yiping; Zhang, Suhua; Li, Chengtao
2018-05-25
Interpreting mixed DNA samples containing material from multiple contributors has long been considered a major challenge in forensic casework, especially when encountering low-template DNA (LT-DNA) or high-order mixtures that may involve missing alleles (dropout) and unrelated alleles (drop-in), among others. In the last decades, extraordinary progress has been made in the analysis of mixed DNA samples, which has led to increasing attention to this research field. The advent of new methods for the separation and extraction of DNA from mixtures, novel or jointly applied genetic markers for detection and reliable interpretation approaches for estimating the weight of evidence, as well as the powerful massively parallel sequencing (MPS) technology, has greatly extended the range of mixed samples that can be correctly analyzed. Here, we summarized the investigative approaches and progress in the field of forensic DNA mixture analysis, hoping to provide some assistance to forensic practitioners and to promote further development involving this issue.
McDonell, Laura M.; Mirzaa, Ghayda M.; Alcantara, Diana; Schwartzentruber, Jeremy; Carter, Melissa T.; Lee, Leo J.; Clericuzio, Carol L.; Graham, John M.; Morris-Rosendahl, Deborah J.; Polster, Tilman; Acsadi, Gyula; Townshend, Sharron; Williams, Simon; Halbert, Anne; Isidor, Bertrand; Smyser, Christopher D.; Paciorkowski, Alex R.; Willing, Marcia; Woulfe, John; Das, Soma; Beaulieu, Chandree L.; Marcadier, Janet; Geraghty, Michael T.; Frey, Brendan J.; Majewski, Jacek; Bulman, Dennis E.; Dobyns, William B.; O’Driscoll, Mark; Boycott, Kym M.
2014-01-01
Microcephaly-capillary malformation (MIC-CAP) syndrome exhibits severe microcephaly with progressive cortical atrophy, intractable epilepsy, profound developmental delay and multiple small capillary malformations on the skin. We employed whole-exome sequencing of five patients with MIC-CAP syndrome and identified novel recessive mutations in STAMBP, a gene encoding the deubiquitinating (DUB) isopeptidase STAMBP (STAM-binding protein)/AMSH (Associated Molecule with the SH3 domain of STAM), that plays a key role in cell surface receptor-mediated endocytosis and sorting. Patient cell lines showed reduced STAMBP expression associated with accumulation of ubiquitin-conjugated protein aggregates, elevated apoptosis and insensitive activation of the RAS-MAPK and PI3K-AKT-mTOR pathways. The latter cellular phenotype is significant considering the established connection between these pathways and their association with vascular and capillary malformations. Furthermore, our findings of a congenital human disorder caused by a defective DUB protein that functions in endocytosis, implicates ubiquitin-conjugate aggregation and elevated apoptosis as factors potentially influencing the progressive neuronal loss underlying MIC-CAP. PMID:23542699
Huber, Thomas; Herwerth, Marina; Alberts, Esther; Kirschke, Jan S; Zimmer, Claus; Ilg, Ruediger
2017-02-01
Adult-onset vanishing white-matter disease (VWM) is a rare autosomal recessive disease with neurological symptoms such as ataxia and paraparesis, showing extensive white-matter hyperintensities (WMH) on magnetic resonance (MR) imaging. Besides symptom-specific scores like the International Cooperative Ataxia Rating Scale (ICARS), there is no established tool to monitor disease progression. Because of extensive WMH, visual comparison of MR images is challenging. Here, we report the results of an automated method of segmentation to detect alterations in T2-weighted fluid-attenuated-inversion-recovery (FLAIR) sequences in a one-year follow-up study of a clinically stable patient with genetically diagnosed VWM. Signal alterations in MR imaging were quantified with a recently published WMH segmentation method by means of extreme value distribution (EVD). Our analysis revealed progressive FLAIR alterations of 5.84% in the course of one year, whereas no significant WMH change could be detected in a stable multiple sclerosis (MS) control group. This result demonstrates that automated EVD-based segmentation allows a precise and rapid quantification of extensive FLAIR alterations like in VWM and might be a powerful tool for the clinical and scientific monitoring of degenerative white-matter diseases and potential therapeutic interventions.
Metabolic pathways as possible therapeutic targets for progressive multiple sclerosis.
Heidker, Rebecca M; Emerson, Mitchell R; LeVine, Steven M
2017-08-01
Unlike relapsing remitting multiple sclerosis, there are very few therapeutic options for patients with progressive forms of multiple sclerosis. While immune mechanisms are key participants in the pathogenesis of relapsing remitting multiple sclerosis, the mechanisms underlying the development of progressive multiple sclerosis are less well understood. Putative mechanisms behind progressive multiple sclerosis have been put forth: insufficient energy production via mitochondrial dysfunction, activated microglia, iron accumulation, oxidative stress, activated astrocytes, Wallerian degeneration, apoptosis, etc . Furthermore, repair processes such as remyelination are incomplete. Experimental therapies that strive to improve metabolism within neurons and glia, e.g. , oligodendrocytes, could act to counter inadequate energy supplies and/or support remyelination. Most experimental approaches have been examined as standalone interventions; however, it is apparent that the biochemical steps being targeted are part of larger pathways, which are further intertwined with other metabolic pathways. Thus, the potential benefits of a tested intervention, or of an established therapy, e.g. , ocrelizumab, could be undermined by constraints on upstream and/or downstream steps. If correct, then this argues for a more comprehensive, multifaceted approach to therapy. Here we review experimental approaches to support neuronal and glial metabolism, and/or promote remyelination, which may have potential to lessen or delay progressive multiple sclerosis.
Bellerophon: a program to detect chimeric sequences in multiple sequence alignments.
Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip
2004-09-22
Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments. Bellerophon is available as an interactive web server at http://foo.maths.uq.edu.au/~huber/bellerophon.pl
Within-Host Evolution of Human Influenza Virus.
Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D
2018-03-10
The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Studer, Valeria; Rocchi, Camilla; Motta, Caterina; Lauretti, Benedetta; Perugini, Jacopo; Brambilla, Laura; Pareja-Gutierrez, Lorena; Camera, Giorgia; Barbieri, Francesca Romana; Marfia, Girolama A; Centonze, Diego; Rossi, Silvia
2017-01-01
Sympathovagal imbalance has been associated with poor prognosis in chronic diseases, but there is conflicting evidence in multiple sclerosis. The objective of this study was to investigate the autonomic nervous system dysfunction correlation with inflammation and progression in multiple sclerosis. Heart rate variability was analysed in 120 multiple sclerosis patients and 60 healthy controls during supine rest and head-up tilt test; the normalised units of low frequency and high frequency power were considered to assess sympathetic and vagal components, respectively. Correlation analyses with clinical and radiological markers of disease activity and progression were performed. Sympathetic dysfunction was closely related to the progression of disability in multiple sclerosis: progressive patients showed altered heart rate variability with respect to healthy controls and relapsing-remitting patients, with higher rest low frequency power and lacking the expected low frequency power increase during the head-up tilt test. In relapsing-remitting patients, disease activity, even subclinical, was associated with lower rest low frequency power, whereas stable relapsing-remitting patients did not differ from healthy controls. Less sympathetic reactivity and higher low frequency power at rest were associated with incomplete recovery from relapse. Autonomic balance appears to be intimately linked with both the inflammatory activity of multiple sclerosis, which is featured by an overall hypoactivity of the sympathetic nervous system, and its compensatory plastic processes, which appear inefficient in case of worsening and progressive multiple sclerosis.
Psarakis, Michael; Greene, David; Moresi, Mark; Baker, Michael; Stubbs, Peter; Brodie, Matthew; Lord, Stephen; Hoang, Phu
2017-11-01
Gait impairment in people with Multiple Sclerosis results from neurological impairment, muscle weakness and reduced range of motion. Restrictions in passive ankle range of motion can result in abnormal heel-to-toe progression (weight transfer) and inefficient gait patterns in people with Multiple Sclerosis. The purpose of this study was to determine the associations between gait impairment, heel-to-toe progression and ankle range of motion in people with Multiple Sclerosis. Twelve participants with Multiple Sclerosis and twelve healthy age-matched participants were assessed. Spatiotemporal parameters of gait and individual footprint data were used to investigate group differences. A pressure sensitive walkway was used to divide each footprint into three phases (contact, mid-stance, propulsive) and calculate the heel-to-toe progression during the stance phase of gait. Compared to healthy controls, people with Multiple Sclerosis spent relatively less time in contact phase (7.8% vs 25.1%) and more time in the mid stance phase of gait (57.3% vs 33.7%). Inter-limb differences were observed in people with Multiple Sclerosis between the affected and non-affected sides for contact (7.8% vs 15.3%) and mid stance (57.3% and 47.1%) phases. Differences in heel-to-toe progression remained significant after adjusting for walking speed and were correlated with walking distance and ankle range of motion. Impaired heel-to-toe progression was related to poor ankle range of motion in people with Multiple Sclerosis. Heel-to-toe progression provided a sensitive measure for assessing gait impairments that were not detectable using standard spatiotemporal gait parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.
DNA Multiple Sequence Alignment Guided by Protein Domains: The MSA-PAD 2.0 Method.
Balech, Bachir; Monaco, Alfonso; Perniola, Michele; Santamaria, Monica; Donvito, Giacinto; Vicario, Saverio; Maggi, Giorgio; Pesole, Graziano
2018-01-01
Multiple sequence alignment (MSA) is a fundamental component in many DNA sequence analyses including metagenomics studies and phylogeny inference. When guided by protein profiles, DNA multiple alignments assume a higher precision and robustness. Here we present details of the use of the upgraded version of MSA-PAD (2.0), which is a DNA multiple sequence alignment framework able to align DNA sequences coding for single/multiple protein domains guided by PFAM or user-defined annotations. MSA-PAD has two alignment strategies, called "Gene" and "Genome," accounting for coding domains order and genomic rearrangements, respectively. Novel options were added to the present version, where the MSA can be guided by protein profiles provided by the user. This allows MSA-PAD 2.0 to run faster and to add custom protein profiles sometimes not present in PFAM database according to the user's interest. MSA-PAD 2.0 is currently freely available as a Web application at https://recasgateway.cloud.ba.infn.it/ .
Treatment of progressive multiple sclerosis: what works, what does not, and what is needed.
Feinstein, Anthony; Freeman, Jenny; Lo, Albert C
2015-02-01
Disease-modifying drugs have mostly failed as treatments for progressive multiple sclerosis. Management of the disease therefore solely aims to minimise symptoms and, if possible, improve function. The degree to which this approach is based on empirical data derived from studies of progressive disease or whether treatment decisions are based on what is known about relapsing-remitting disease remains unclear. Symptoms rated as important by patients with multiple sclerosis include balance and mobility impairments, weakness, reduced cardiovascular fitness, ataxia, fatigue, bladder dysfunction, spasticity, pain, cognitive deficits, depression, and pseudobulbar affect; a comprehensive literature search shows a notable paucity of studies devoted solely to these symptoms in progressive multiple sclerosis, which translates to few proven therapeutic options in the clinic. A new strategy that can be used in future rehabilitation trials is therefore needed, with the adoption of approaches that look beyond single interventions to concurrent, potentially synergistic, treatments that maximise what remains of neural plasticity in patients with progressive multiple sclerosis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shirvani-Dastgerdi, E; Amini-Bavil-Olyaee, S; Alavian, S Moayed; Trautwein, C; Tacke, F
2015-05-01
Delta hepatitis, caused by co-infection or super-infection of hepatitis D virus (HDV) in hepatitis B virus (HBV) -infected patients, is the most severe form of chronic hepatitis, often progressing to liver cirrhosis and liver failure. Although 15 million individuals are affected worldwide, molecular data on the HDV genome and its proteins, small and large delta antigen (S-/L-HDAg), are limited. We therefore conducted a nationwide study in HBV-HDV-infected patients from Iran and successfully amplified 38 HDV full genomes and 44 L-HDAg sequences from 34 individuals. Phylogenetic analyses of full-length HDV and L-HDAg isolates revealed that all strains clustered with genotype 1 and showed high genotypic distances to HDV genotypes 2 to 8, with a maximal distance to genotype 3. Longitudinal analyses in individual patients indicated a reverse evolutionary trend, especially in L-HDAg amino acid composition, over time. Besides multiple sequence variations in the hypervariable region of HDV, nucleotide substitutions preferentially occurred in the stabilizing P4 domain of the HDV ribozyme. A high rate of single amino acid changes was detected in structural parts of L-HDAg, whereas its post-translational modification sites were highly conserved. Interestingly, several non-synonymous mutations were positively selected that affected immunogenic epitopes of L-HDAg towards CD8 T-cell- and B-cell-driven immune responses. Hence, our comprehensive molecular analysis comprising a nationwide cohort revealed phylogenetic relationships and provided insight into viral evolution within individual hosts. Moreover, preferential areas of frequent mutations in the HDV ribozyme and antigen protein were determined in this study. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Association of a novel point mutation in MSH2 gene with familial multiple primary cancers.
Hu, Hai; Li, Hong; Jiao, Feng; Han, Ting; Zhuo, Meng; Cui, Jiujie; Li, Yixue; Wang, Liwei
2017-10-03
Multiple primary cancers (MPC) have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing) that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR) genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.
Detecting and Characterizing Repeating Earthquake Sequences During Volcanic Eruptions
NASA Astrophysics Data System (ADS)
Tepp, G.; Haney, M. M.; Wech, A.
2017-12-01
A major challenge in volcano seismology is forecasting eruptions. Repeating earthquake sequences often precede volcanic eruptions or lava dome activity, providing an opportunity for short-term eruption forecasting. Automatic detection of these sequences can lead to timely eruption notification and aid in continuous monitoring of volcanic systems. However, repeating earthquake sequences may also occur after eruptions or along with magma intrusions that do not immediately lead to an eruption. This additional challenge requires a better understanding of the processes involved in producing these sequences to distinguish those that are precursory. Calculation of the inverse moment rate and concepts from the material failure forecast method can lead to such insights. The temporal evolution of the inverse moment rate is observed to differ for precursory and non-precursory sequences, and multiple earthquake sequences may occur concurrently. These observations suggest that sequences may occur in different locations or through different processes. We developed an automated repeating earthquake sequence detector and near real-time alarm to send alerts when an in-progress sequence is identified. Near real-time inverse moment rate measurements can further improve our ability to forecast eruptions by allowing for characterization of sequences. We apply the detector to eruptions of two Alaskan volcanoes: Bogoslof in 2016-2017 and Redoubt Volcano in 2009. The Bogoslof eruption produced almost 40 repeating earthquake sequences between its start in mid-December 2016 and early June 2017, 21 of which preceded an explosive eruption, and 2 sequences in the months before eruptive activity. Three of the sequences occurred after the implementation of the alarm in late March 2017 and successfully triggered alerts. The nearest seismometers to Bogoslof are over 45 km away, requiring a detector that can work with few stations and a relatively low signal-to-noise ratio. During the Redoubt eruption, earthquake sequences were observed in the months leading up to the eruptive activity beginning in March 2009 as well as immediately preceding 7 of the 19 explosive events. In contrast to Bogoslof, Redoubt has a local monitoring network which allows for better detection and more detailed analysis of the repeating earthquake sequences.
DIALIGN P: fast pair-wise and multiple sequence alignment using parallel processors.
Schmollinger, Martin; Nieselt, Kay; Kaufmann, Michael; Morgenstern, Burkhard
2004-09-09
Parallel computing is frequently used to speed up computationally expensive tasks in Bioinformatics. Herein, a parallel version of the multi-alignment program DIALIGN is introduced. We propose two ways of dividing the program into independent sub-routines that can be run on different processors: (a) pair-wise sequence alignments that are used as a first step to multiple alignment account for most of the CPU time in DIALIGN. Since alignments of different sequence pairs are completely independent of each other, they can be distributed to multiple processors without any effect on the resulting output alignments. (b) For alignments of large genomic sequences, we use a heuristics by splitting up sequences into sub-sequences based on a previously introduced anchored alignment procedure. For our test sequences, this combined approach reduces the program running time of DIALIGN by up to 97%. By distributing sub-routines to multiple processors, the running time of DIALIGN can be crucially improved. With these improvements, it is possible to apply the program in large-scale genomics and proteomics projects that were previously beyond its scope.
Computer-aided visualization and analysis system for sequence evaluation
Chee, M.S.
1998-08-18
A computer system for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments are improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area and sample sequences in another area on a display device. 27 figs.
Computer-aided visualization and analysis system for sequence evaluation
Chee, Mark S.; Wang, Chunwei; Jevons, Luis C.; Bernhart, Derek H.; Lipshutz, Robert J.
2004-05-11
A computer system for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments are improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area and sample sequences in another area on a display device.
Computer-aided visualization and analysis system for sequence evaluation
Chee, Mark S.
1998-08-18
A computer system for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments are improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area and sample sequences in another area on a display device.
Computer-aided visualization and analysis system for sequence evaluation
Chee, Mark S.
2003-08-19
A computer system for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments may be improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area and sample sequences in another area on a display device.
A Systematic Bayesian Integration of Epidemiological and Genetic Data
Lau, Max S. Y.; Marion, Glenn; Streftaris, George; Gibson, Gavin
2015-01-01
Genetic sequence data on pathogens have great potential to inform inference of their transmission dynamics ultimately leading to better disease control. Where genetic change and disease transmission occur on comparable timescales additional information can be inferred via the joint analysis of such genetic sequence data and epidemiological observations based on clinical symptoms and diagnostic tests. Although recently introduced approaches represent substantial progress, for computational reasons they approximate genuine joint inference of disease dynamics and genetic change in the pathogen population, capturing partially the joint epidemiological-evolutionary dynamics. Improved methods are needed to fully integrate such genetic data with epidemiological observations, for achieving a more robust inference of the transmission tree and other key epidemiological parameters such as latent periods. Here, building on current literature, a novel Bayesian framework is proposed that infers simultaneously and explicitly the transmission tree and unobserved transmitted pathogen sequences. Our framework facilitates the use of realistic likelihood functions and enables systematic and genuine joint inference of the epidemiological-evolutionary process from partially observed outbreaks. Using simulated data it is shown that this approach is able to infer accurately joint epidemiological-evolutionary dynamics, even when pathogen sequences and epidemiological data are incomplete, and when sequences are available for only a fraction of exposures. These results also characterise and quantify the value of incomplete and partial sequence data, which has important implications for sampling design, and demonstrate the abilities of the introduced method to identify multiple clusters within an outbreak. The framework is used to analyse an outbreak of foot-and-mouth disease in the UK, enhancing current understanding of its transmission dynamics and evolutionary process. PMID:26599399
eShadow: A tool for comparing closely related sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovcharenko, Ivan; Boffelli, Dario; Loots, Gabriela G.
2004-01-15
Primate sequence comparisons are difficult to interpret due to the high degree of sequence similarity shared between such closely related species. Recently, a novel method, phylogenetic shadowing, has been pioneered for predicting functional elements in the human genome through the analysis of multiple primate sequence alignments. We have expanded this theoretical approach to create a computational tool, eShadow, for the identification of elements under selective pressure in multiple sequence alignments of closely related genomes, such as in comparisons of human to primate or mouse to rat DNA. This tool integrates two different statistical methods and allows for the dynamic visualizationmore » of the resulting conservation profile. eShadow also includes a versatile optimization module capable of training the underlying Hidden Markov Model to differentially predict functional sequences. This module grants the tool high flexibility in the analysis of multiple sequence alignments and in comparing sequences with different divergence rates. Here, we describe the eShadow comparative tool and its potential uses for analyzing both multiple nucleotide and protein alignments to predict putative functional elements. The eShadow tool is publicly available at http://eshadow.dcode.org/« less
Multiple Access Interference Reduction Using Received Response Code Sequence for DS-CDMA UWB System
NASA Astrophysics Data System (ADS)
Toh, Keat Beng; Tachikawa, Shin'ichi
This paper proposes a combination of novel Received Response (RR) sequence at the transmitter and a Matched Filter-RAKE (MF-RAKE) combining scheme receiver system for the Direct Sequence-Code Division Multiple Access Ultra Wideband (DS-CDMA UWB) multipath channel model. This paper also demonstrates the effectiveness of the RR sequence in Multiple Access Interference (MAI) reduction for the DS-CDMA UWB system. It suggests that by using conventional binary code sequence such as the M sequence or the Gold sequence, there is a possibility of generating extra MAI in the UWB system. Therefore, it is quite difficult to collect the energy efficiently although the RAKE reception method is applied at the receiver. The main purpose of the proposed system is to overcome the performance degradation for UWB transmission due to the occurrence of MAI during multiple accessing in the DS-CDMA UWB system. The proposed system improves the system performance by improving the RAKE reception performance using the RR sequence which can reduce the MAI effect significantly. Simulation results verify that significant improvement can be obtained by the proposed system in the UWB multipath channel models.
Determination of haplotypes at structurally complex regions using emulsion haplotype fusion PCR
2012-01-01
Background Genotyping and massively-parallel sequencing projects result in a vast amount of diploid data that is only rarely resolved into its constituent haplotypes. It is nevertheless this phased information that is transmitted from one generation to the next and is most directly associated with biological function and the genetic causes of biological effects. Despite progress made in genome-wide sequencing and phasing algorithms and methods, problems assembling (and reconstructing linear haplotypes in) regions of repetitive DNA and structural variation remain. These dynamic and structurally complex regions are often poorly understood from a sequence point of view. Regions such as these that are highly similar in their sequence tend to be collapsed onto the genome assembly. This is turn means downstream determination of the true sequence haplotype in these regions poses a particular challenge. For structurally complex regions, a more focussed approach to assembling haplotypes may be required. Results In order to investigate reconstruction of spatial information at structurally complex regions, we have used an emulsion haplotype fusion PCR approach to reproducibly link sequences of up to 1kb in length to allow phasing of multiple variants from neighbouring loci, using allele-specific PCR and sequencing to detect the phase. By using emulsion systems linking flanking regions to amplicons within the CNV, this led to the reconstruction of a 59kb haplotype across the DEFA1A3 CNV in HapMap individuals. Conclusion This study has demonstrated a novel use for emulsion haplotype fusion PCR in addressing the issue of reconstructing structural haplotypes at multiallelic copy variable regions, using the DEFA1A3 locus as an example. PMID:23231411
A Novel Center Star Multiple Sequence Alignment Algorithm Based on Affine Gap Penalty and K-Band
NASA Astrophysics Data System (ADS)
Zou, Quan; Shan, Xiao; Jiang, Yi
Multiple sequence alignment is one of the most important topics in computational biology, but it cannot deal with the large data so far. As the development of copy-number variant(CNV) and Single Nucleotide Polymorphisms(SNP) research, many researchers want to align numbers of similar sequences for detecting CNV and SNP. In this paper, we propose a novel multiple sequence alignment algorithm based on affine gap penalty and k-band. It can align more quickly and accurately, that will be helpful for mining CNV and SNP. Experiments prove the performance of our algorithm.
Computer-aided visualization and analysis system for sequence evaluation
Chee, Mark S.
1999-10-26
A computer system (1) for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments may be improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area (814) and sample sequences in another area (816) on a display device (3).
Computer-aided visualization and analysis system for sequence evaluation
Chee, Mark S.
2001-06-05
A computer system (1) for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments may be improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area (814) and sample sequences in another area (816) on a display device (3).
ERIC Educational Resources Information Center
Hernández, María Isabel; Couso, Digna; Pintó, Roser
2015-01-01
The study we have carried out aims to characterize 15-to 16-year-old students' learning progressions throughout the implementation of a teaching-learning sequence on the acoustic properties of materials. Our purpose is to better understand students' modeling processes about this topic and to identify how the instructional design and actual…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; Stewart, Tessandra; Shi, Min
Aim: The alpha-synuclein (α-syn) level in human cerebrospinal fluid (CSF), as measured by immunoassays, is promising as a Parkinson’s disease (PD) biomarker. However, the levels of total α-syn are inconsistent among studies with large cohorts and different measurement platforms. Total α-syn level also does not correlate with disease severity or progression. Here, we developed a highly sensitive Multiple Reaction Monitoring (MRM) method to measure absolute CSF α-syn peptide concentrations without prior enrichment or fractionation, aiming to discover new candidate biomarkers. Results: Six peptides covering 73% of protein sequence were reliably identified, and two were consistently quantified in cross-sectional and longitudinalmore » cohorts. Absolute concentration of α-syn in human CSF was determined to be 2.1ng/mL. A unique α-syn peptide, TVEGAGSIAAATGFVK (81-96), displayed excellent correlation with previous immunoassay results in two independent PD cohorts (p < 0.001), correlated with disease severity, and its changes significantly tracked the disease progression longitudinally. Conclusions: An MRM assay to quantify human CSF α-syn was developed and optimized. Sixty clinical samples from cross-sectional and longitudinal PD cohorts were analyzed with this approach. Although further larger-scale validation is needed, the results suggest that α-syn peptide could serve as a promising biomarker in PD diagnosis and progression.« less
The Gypsy Database (GyDB) of mobile genetic elements: release 2.0
Llorens, Carlos; Futami, Ricardo; Covelli, Laura; Domínguez-Escribá, Laura; Viu, Jose M.; Tamarit, Daniel; Aguilar-Rodríguez, Jose; Vicente-Ripolles, Miguel; Fuster, Gonzalo; Bernet, Guillermo P.; Maumus, Florian; Munoz-Pomer, Alfonso; Sempere, Jose M.; Latorre, Amparo; Moya, Andres
2011-01-01
This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org. PMID:21036865
The Gypsy Database (GyDB) of mobile genetic elements: release 2.0.
Llorens, Carlos; Futami, Ricardo; Covelli, Laura; Domínguez-Escribá, Laura; Viu, Jose M; Tamarit, Daniel; Aguilar-Rodríguez, Jose; Vicente-Ripolles, Miguel; Fuster, Gonzalo; Bernet, Guillermo P; Maumus, Florian; Munoz-Pomer, Alfonso; Sempere, Jose M; Latorre, Amparo; Moya, Andres
2011-01-01
This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org.
Chitsazzadeh, Vida; Coarfa, Cristian; Drummond, Jennifer A.; Nguyen, Tri; Joseph, Aaron; Chilukuri, Suneel; Charpiot, Elizabeth; Adelmann, Charles H.; Ching, Grace; Nguyen, Tran N.; Nicholas, Courtney; Thomas, Valencia D.; Migden, Michael; MacFarlane, Deborah; Thompson, Erika; Shen, Jianjun; Takata, Yoko; McNiece, Kayla; Polansky, Maxim A.; Abbas, Hussein A.; Rajapakshe, Kimal; Gower, Adam; Spira, Avrum; Covington, Kyle R.; Xiao, Weimin; Gunaratne, Preethi; Pickering, Curtis; Frederick, Mitchell; Myers, Jeffrey N.; Shen, Li; Yao, Hui; Su, Xiaoping; Rapini, Ronald P.; Wheeler, David A.; Hawk, Ernest T.; Flores, Elsa R.; Tsai, Kenneth Y.
2016-01-01
Cutaneous squamous cell carcinoma (cuSCC) comprises 15–20% of all skin cancers, accounting for over 700,000 cases in USA annually. Most cuSCC arise in association with a distinct precancerous lesion, the actinic keratosis (AK). To identify potential targets for molecularly targeted chemoprevention, here we perform integrated cross-species genomic analysis of cuSCC development through the preneoplastic AK stage using matched human samples and a solar ultraviolet radiation-driven Hairless mouse model. We identify the major transcriptional drivers of this progression sequence, showing that the key genomic changes in cuSCC development occur in the normal skin to AK transition. Our data validate the use of this ultraviolet radiation-driven mouse cuSCC model for cross-species analysis and demonstrate that cuSCC bears deep molecular similarities to multiple carcinogen-driven SCCs from diverse sites, suggesting that cuSCC may serve as an effective, accessible model for multiple SCC types and that common treatment and prevention strategies may be feasible. PMID:27574101
Vertical decomposition with Genetic Algorithm for Multiple Sequence Alignment
2011-01-01
Background Many Bioinformatics studies begin with a multiple sequence alignment as the foundation for their research. This is because multiple sequence alignment can be a useful technique for studying molecular evolution and analyzing sequence structure relationships. Results In this paper, we have proposed a Vertical Decomposition with Genetic Algorithm (VDGA) for Multiple Sequence Alignment (MSA). In VDGA, we divide the sequences vertically into two or more subsequences, and then solve them individually using a guide tree approach. Finally, we combine all the subsequences to generate a new multiple sequence alignment. This technique is applied on the solutions of the initial generation and of each child generation within VDGA. We have used two mechanisms to generate an initial population in this research: the first mechanism is to generate guide trees with randomly selected sequences and the second is shuffling the sequences inside such trees. Two different genetic operators have been implemented with VDGA. To test the performance of our algorithm, we have compared it with existing well-known methods, namely PRRP, CLUSTALX, DIALIGN, HMMT, SB_PIMA, ML_PIMA, MULTALIGN, and PILEUP8, and also other methods, based on Genetic Algorithms (GA), such as SAGA, MSA-GA and RBT-GA, by solving a number of benchmark datasets from BAliBase 2.0. Conclusions The experimental results showed that the VDGA with three vertical divisions was the most successful variant for most of the test cases in comparison to other divisions considered with VDGA. The experimental results also confirmed that VDGA outperformed the other methods considered in this research. PMID:21867510
Novel genomic findings in multiple myeloma identified through routine diagnostic sequencing.
Ryland, Georgina L; Jones, Kate; Chin, Melody; Markham, John; Aydogan, Elle; Kankanige, Yamuna; Caruso, Marisa; Guinto, Jerick; Dickinson, Michael; Prince, H Miles; Yong, Kwee; Blombery, Piers
2018-05-14
Multiple myeloma is a genomically complex haematological malignancy with many genomic alterations recognised as important in diagnosis, prognosis and therapeutic decision making. Here, we provide a summary of genomic findings identified through routine diagnostic next-generation sequencing at our centre. A cohort of 86 patients with multiple myeloma underwent diagnostic sequencing using a custom hybridisation-based panel targeting 104 genes. Sequence variants, genome-wide copy number changes and structural rearrangements were detected using an inhouse-developed bioinformatics pipeline. At least one mutation was found in 69 (80%) patients. Frequently mutated genes included TP53 (36%), KRAS (22.1%), NRAS (15.1%), FAM46C/DIS3 (8.1%) and TET2/FGFR3 (5.8%), including multiple mutations not previously described in myeloma. Importantly we observed TP53 mutations in the absence of a 17 p deletion in 8% of the cohort, highlighting the need for sequencing-based assessment in addition to cytogenetics to identify these high-risk patients. Multiple novel copy number changes and immunoglobulin heavy chain translocations are also discussed. Our results demonstrate that many clinically relevant genomic findings remain in multiple myeloma which have not yet been identified through large-scale sequencing efforts, and provide important mechanistic insights into plasma cell pathobiology. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
2012-01-01
Background Drug resistance in the malaria parasite Plasmodium falciparum severely compromises the treatment and control of malaria. A knowledge of the critical mutations conferring resistance to particular drugs is important in understanding modes of drug action and mechanisms of resistances. They are required to design better therapies and limit drug resistance. A mutation in the gene (pfcrt) encoding a membrane transporter has been identified as a principal determinant of chloroquine resistance in P. falciparum, but we lack a full account of higher level chloroquine resistance. Furthermore, the determinants of resistance in the other major human malaria parasite, P. vivax, are not known. To address these questions, we investigated the genetic basis of chloroquine resistance in an isogenic lineage of rodent malaria parasite P. chabaudi in which high level resistance to chloroquine has been progressively selected under laboratory conditions. Results Loci containing the critical genes were mapped by Linkage Group Selection, using a genetic cross between the high-level chloroquine-resistant mutant and a genetically distinct sensitive strain. A novel high-resolution quantitative whole-genome re-sequencing approach was used to reveal three regions of selection on chr11, chr03 and chr02 that appear progressively at increasing drug doses on three chromosomes. Whole-genome sequencing of the chloroquine-resistant parent identified just four point mutations in different genes on these chromosomes. Three mutations are located at the foci of the selection valleys and are therefore predicted to confer different levels of chloroquine resistance. The critical mutation conferring the first level of chloroquine resistance is found in aat1, a putative aminoacid transporter. Conclusions Quantitative trait loci conferring selectable phenotypes, such as drug resistance, can be mapped directly using progressive genome-wide linkage group selection. Quantitative genome-wide short-read genome resequencing can be used to reveal these signatures of drug selection at high resolution. The identities of three genes (and mutations within them) conferring different levels of chloroquine resistance generate insights regarding the genetic architecture and mechanisms of resistance to chloroquine and other drugs. Importantly, their orthologues may now be evaluated for critical or accessory roles in chloroquine resistance in human malarias P. vivax and P. falciparum. PMID:22435897
NASA Technical Reports Server (NTRS)
Khanampompan, Teerapat; Gladden, Roy; Fisher, Forest; DelGuercio, Chris
2008-01-01
The Sequence History Update Tool performs Web-based sequence statistics archiving for Mars Reconnaissance Orbiter (MRO). Using a single UNIX command, the software takes advantage of sequencing conventions to automatically extract the needed statistics from multiple files. This information is then used to populate a PHP database, which is then seamlessly formatted into a dynamic Web page. This tool replaces a previous tedious and error-prone process of manually editing HTML code to construct a Web-based table. Because the tool manages all of the statistics gathering and file delivery to and from multiple data sources spread across multiple servers, there is also a considerable time and effort savings. With the use of The Sequence History Update Tool what previously took minutes is now done in less than 30 seconds, and now provides a more accurate archival record of the sequence commanding for MRO.
Differential evolution-simulated annealing for multiple sequence alignment
NASA Astrophysics Data System (ADS)
Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.
2017-10-01
Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.
RNA metabolism in the regulation of protein synthesis in plants. Progress report, 1975-1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, J L
1979-01-01
The major objectives of the research for the contract period covered by this report were (1) to gain an insight into the sequence organization of the DNA of soybean, emphasizing the arrangement of single copy or unique sequences and repetitive sequences of DNA throughout the genome, (2) to characterize soybean RNAs relative to nucleotide sequence complexity and kinetics of synthesis and turnover of poly A/sup +/ mRNA, and (3) to study ribosomal proteins directed to an analysis of possible changes in proteins which relate to the activation of 80S ribosomes and thus mRNA utilization and protein synthesis in response tomore » environmental stimuli. Even with greatly reduced funding compared to that requested, objectives 1 and 2 were substantially accomplished. Because of reduced funding and the 20-month no cost extension, relatively little progress was made on objective 3. Accordingly objectives 1 and 2 will be summarized in some detail; a brief account of progress is presented on objective 3.« less
Germi, Raphaëlle; Bernard, Corinne; Garcia-Montojo, Marta; Deluen, Cécile; Farinelli, Laurent; Faucard, Raphaël; Veas, Francisco; Stefas, Ilias; Fabriek, Babs O; Van-Horssen, Jack; Van-der-Valk, Paul; Gerdil, Claire; Mancuso, Roberta; Saresella, Marina; Clerici, Mario; Marcel, Sébastien; Creange, Alain; Cavaretta, Rosella; Caputo, Domenico; Arru, Giannina; Morand, Patrice; Lang, Alois B; Sotgiu, Stefano; Ruprecht, Klemens; Rieckmann, Peter; Villoslada, Pablo; Chofflon, Michel; Boucraut, Jose; Pelletier, Jean; Hartung, Hans-Peter
2012-01-01
Background: The envelope protein from multiple sclerosis (MS) associated retroviral element (MSRV), a member of the Human Endogenous Retroviral family ‘W’ (HERV-W), induces dysimmunity and inflammation. Objective: The objective of this study was to confirm and specify the association between HERV-W/MSRV envelope (Env) expression and MS. Methods: 103 MS, 199 healthy controls (HC) and controls with other neurological diseases (28), chronic infections (30) or autoimmunity (30) were analysed with an immunoassay detecting Env in serum. Env RNA or DNA copy numbers in peripheral blood mononuclear cells (PBMC) were determined by a quantitative polymerase chain reaction (PCR). Env was detected by immunohistology in the brains of patients with MS with three specific monoclonals. Results: Env antigen was detected in a serum of 73% of patients with MS with similar prevalence in all clinical forms, and not in chronic infection, systemic lupus, most other neurological diseases and healthy donors (p<0.01). Cases with chronic inflammatory demyelinating polyneuropathy (5/8) and rare HC (4/103) were positive. RNA expression in PBMC and DNA copy numbers were significantly elevated in patients with MS versus HC (p<0.001). In patients with MS, DNA copy numbers were significantly increased in chronic progressive MS (secondary progressive MS vs relapsing–remitting MS (RRMS) p<0.001; primary progressive MS vs RRMS –<0.02). Env protein was evidenced in macrophages within MS brain lesions with particular concentrations around vascular elements. Conclusion: The association between MS disease and the MSRV-type HERV-W element now appears quite strong, as evidenced ex-vivo from serum and PBMC with post-mortem confirmation in brain lesions. Chronic progressive MS, RRMS and clinically isolated syndrome show different ELISA (Enzyme-Linked Immunosorbent Assay) and/or PCR profiles suggestive of an increase with disease evolution, and amplicon sequencing confirms the association with particular HERV-W elements. PMID:22457345
Analysis of Ribosome Inactivating Protein (RIP): A Bioinformatics Approach
NASA Astrophysics Data System (ADS)
Jothi, G. Edward Gnana; Majilla, G. Sahaya Jose; Subhashini, D.; Deivasigamani, B.
2012-10-01
In spite of the medical advances in recent years, the world is in need of different sources to encounter certain health issues.Ribosome Inactivating Proteins (RIPs) were found to be one among them. In order to get easy access about RIPs, there is a need to analyse RIPs towards constructing a database on RIPs. Also, multiple sequence alignment was done towards screening for homologues of significant RIPs from rare sources against RIPs from easily available sources in terms of similarity. Protein sequences were retrieved from SWISS-PROT and are further analysed using pair wise and multiple sequence alignment.Analysis shows that, 151 RIPs have been characterized to date. Amongst them, there are 87 type I, 37 type II, 1 type III and 25 unknown RIPs. The sequence length information of various RIPs about the availability of full or partial sequence was also found. The multiple sequence alignment of 37 type I RIP using the online server Multalin, indicates the presence of 20 conserved residues. Pairwise alignment and multiple sequence alignment of certain selected RIPs in two groups namely Group I and Group II were carried out and the consensus level was found to be 98%, 98% and 90% respectively.
AlignMe—a membrane protein sequence alignment web server
Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.
2014-01-01
We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425
Xiao, Jian; Cao, Hongyuan; Chen, Jun
2017-09-15
Next generation sequencing technologies have enabled the study of the human microbiome through direct sequencing of microbial DNA, resulting in an enormous amount of microbiome sequencing data. One unique characteristic of microbiome data is the phylogenetic tree that relates all the bacterial species. Closely related bacterial species have a tendency to exhibit a similar relationship with the environment or disease. Thus, incorporating the phylogenetic tree information can potentially improve the detection power for microbiome-wide association studies, where hundreds or thousands of tests are conducted simultaneously to identify bacterial species associated with a phenotype of interest. Despite much progress in multiple testing procedures such as false discovery rate (FDR) control, methods that take into account the phylogenetic tree are largely limited. We propose a new FDR control procedure that incorporates the prior structure information and apply it to microbiome data. The proposed procedure is based on a hierarchical model, where a structure-based prior distribution is designed to utilize the phylogenetic tree. By borrowing information from neighboring bacterial species, we are able to improve the statistical power of detecting associated bacterial species while controlling the FDR at desired levels. When the phylogenetic tree is mis-specified or non-informative, our procedure achieves a similar power as traditional procedures that do not take into account the tree structure. We demonstrate the performance of our method through extensive simulations and real microbiome datasets. We identified far more alcohol-drinking associated bacterial species than traditional methods. R package StructFDR is available from CRAN. chen.jun2@mayo.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Nakashima, Ryoichi; Komori, Yuya; Maeda, Eriko; Yoshikawa, Takeharu; Yokosawa, Kazuhiko
2016-01-01
Although viewing multiple stacks of medical images presented on a display is a relatively new but useful medical task, little is known about this task. Particularly, it is unclear how radiologists search for lesions in this type of image reading. When viewing cluttered and dynamic displays, continuous motion itself does not capture attention. Thus, it is effective for the target detection that observers' attention is captured by the onset signal of a suddenly appearing target among the continuously moving distractors (i.e., a passive viewing strategy). This can be applied to stack viewing tasks, because lesions often show up as transient signals in medical images which are sequentially presented simulating a dynamic and smoothly transforming image progression of organs. However, it is unclear whether observers can detect a target when the target appears at the beginning of a sequential presentation where the global apparent motion onset signal (i.e., signal of the initiation of the apparent motion by sequential presentation) occurs. We investigated the ability of radiologists to detect lesions during such tasks by comparing the performances of radiologists and novices. Results show that overall performance of radiologists is better than novices. Furthermore, the temporal locations of lesions in CT image sequences, i.e., when a lesion appears in an image sequence, does not affect the performance of radiologists, whereas it does affect the performance of novices. Results indicate that novices have greater difficulty in detecting a lesion appearing early than late in the image sequence. We suggest that radiologists have other mechanisms to detect lesions in medical images with little attention which novices do not have. This ability is critically important when viewing rapid sequential presentations of multiple CT images, such as stack viewing tasks.
Nakashima, Ryoichi; Komori, Yuya; Maeda, Eriko; Yoshikawa, Takeharu; Yokosawa, Kazuhiko
2016-01-01
Although viewing multiple stacks of medical images presented on a display is a relatively new but useful medical task, little is known about this task. Particularly, it is unclear how radiologists search for lesions in this type of image reading. When viewing cluttered and dynamic displays, continuous motion itself does not capture attention. Thus, it is effective for the target detection that observers' attention is captured by the onset signal of a suddenly appearing target among the continuously moving distractors (i.e., a passive viewing strategy). This can be applied to stack viewing tasks, because lesions often show up as transient signals in medical images which are sequentially presented simulating a dynamic and smoothly transforming image progression of organs. However, it is unclear whether observers can detect a target when the target appears at the beginning of a sequential presentation where the global apparent motion onset signal (i.e., signal of the initiation of the apparent motion by sequential presentation) occurs. We investigated the ability of radiologists to detect lesions during such tasks by comparing the performances of radiologists and novices. Results show that overall performance of radiologists is better than novices. Furthermore, the temporal locations of lesions in CT image sequences, i.e., when a lesion appears in an image sequence, does not affect the performance of radiologists, whereas it does affect the performance of novices. Results indicate that novices have greater difficulty in detecting a lesion appearing early than late in the image sequence. We suggest that radiologists have other mechanisms to detect lesions in medical images with little attention which novices do not have. This ability is critically important when viewing rapid sequential presentations of multiple CT images, such as stack viewing tasks. PMID:27774080
Identification and analysis of mutational hotspots in oncogenes and tumour suppressors.
Baeissa, Hanadi; Benstead-Hume, Graeme; Richardson, Christopher J; Pearl, Frances M G
2017-03-28
The key to interpreting the contribution of a disease-associated mutation in the development and progression of cancer is an understanding of the consequences of that mutation both on the function of the affected protein and on the pathways in which that protein is involved. Protein domains encapsulate function and position-specific domain based analysis of mutations have been shown to help elucidate their phenotypes. In this paper we examine the domain biases in oncogenes and tumour suppressors, and find that their domain compositions substantially differ. Using data from over 30 different cancers from whole-exome sequencing cancer genomic projects we mapped over one million mutations to their respective Pfam domains to identify which domains are enriched in any of three different classes of mutation; missense, indels or truncations. Next, we identified the mutational hotspots within domain families by mapping small mutations to equivalent positions in multiple sequence alignments of protein domainsWe find that gain of function mutations from oncogenes and loss of function mutations from tumour suppressors are normally found in different domain families and when observed in the same domain families, hotspot mutations are located at different positions within the multiple sequence alignment of the domain. By considering hotspots in tumour suppressors and oncogenes independently, we find that there are different specific positions within domain families that are particularly suited to accommodate either a loss or a gain of function mutation. The position is also dependent on the class of mutation.We find rare mutations co-located with well-known functional mutation hotspots, in members of homologous domain superfamilies, and we detect novel mutation hotspots in domain families previously unconnected with cancer. The results of this analysis can be accessed through the MOKCa database (http://strubiol.icr.ac.uk/extra/MOKCa).
An innovative SNP genotyping method adapting to multiple platforms and throughputs.
Long, Y M; Chao, W S; Ma, G J; Xu, S S; Qi, L L
2017-03-01
An innovative genotyping method designated as semi-thermal asymmetric reverse PCR (STARP) was developed for genotyping individual SNPs with improved accuracy, flexible throughputs, low operational costs, and high platform compatibility. Multiplex chip-based technology for genome-scale genotyping of single nucleotide polymorphisms (SNPs) has made great progress in the past two decades. However, PCR-based genotyping of individual SNPs still remains problematic in accuracy, throughput, simplicity, and/or operational costs as well as the compatibility with multiple platforms. Here, we report a novel SNP genotyping method designated semi-thermal asymmetric reverse PCR (STARP). In this method, genotyping assay was performed under unique PCR conditions using two universal priming element-adjustable primers (PEA-primers) and one group of three locus-specific primers: two asymmetrically modified allele-specific primers (AMAS-primers) and their common reverse primer. The two AMAS-primers each were substituted one base in different positions at their 3' regions to significantly increase the amplification specificity of the two alleles and tailed at 5' ends to provide priming sites for PEA-primers. The two PEA-primers were developed for common use in all genotyping assays to stringently target the PCR fragments generated by the two AMAS-primers with similar PCR efficiencies and for flexible detection using either gel-free fluorescence signals or gel-based size separation. The state-of-the-art primer design and unique PCR conditions endowed STARP with all the major advantages of high accuracy, flexible throughputs, simple assay design, low operational costs, and platform compatibility. In addition to SNPs, STARP can also be employed in genotyping of indels (insertion-deletion polymorphisms). As vast variations in DNA sequences are being unearthed by many genome sequencing projects and genotyping by sequencing, STARP will have wide applications across all biological organisms in agriculture, medicine, and forensics.
Enhanced sequencing coverage with digital droplet multiple displacement amplification
Sidore, Angus M.; Lan, Freeman; Lim, Shaun W.; Abate, Adam R.
2016-01-01
Sequencing small quantities of DNA is important for applications ranging from the assembly of uncultivable microbial genomes to the identification of cancer-associated mutations. To obtain sufficient quantities of DNA for sequencing, the small amount of starting material must be amplified significantly. However, existing methods often yield errors or non-uniform coverage, reducing sequencing data quality. Here, we describe digital droplet multiple displacement amplification, a method that enables massive amplification of low-input material while maintaining sequence accuracy and uniformity. The low-input material is compartmentalized as single molecules in millions of picoliter droplets. Because the molecules are isolated in compartments, they amplify to saturation without competing for resources; this yields uniform representation of all sequences in the final product and, in turn, enhances the quality of the sequence data. We demonstrate the ability to uniformly amplify the genomes of single Escherichia coli cells, comprising just 4.7 fg of starting DNA, and obtain sequencing coverage distributions that rival that of unamplified material. Digital droplet multiple displacement amplification provides a simple and effective method for amplifying minute amounts of DNA for accurate and uniform sequencing. PMID:26704978
Efficient computation of the joint sample frequency spectra for multiple populations.
Kamm, John A; Terhorst, Jonathan; Song, Yun S
2017-01-01
A wide range of studies in population genetics have employed the sample frequency spectrum (SFS), a summary statistic which describes the distribution of mutant alleles at a polymorphic site in a sample of DNA sequences and provides a highly efficient dimensional reduction of large-scale population genomic variation data. Recently, there has been much interest in analyzing the joint SFS data from multiple populations to infer parameters of complex demographic histories, including variable population sizes, population split times, migration rates, admixture proportions, and so on. SFS-based inference methods require accurate computation of the expected SFS under a given demographic model. Although much methodological progress has been made, existing methods suffer from numerical instability and high computational complexity when multiple populations are involved and the sample size is large. In this paper, we present new analytic formulas and algorithms that enable accurate, efficient computation of the expected joint SFS for thousands of individuals sampled from hundreds of populations related by a complex demographic model with arbitrary population size histories (including piecewise-exponential growth). Our results are implemented in a new software package called momi (MOran Models for Inference). Through an empirical study we demonstrate our improvements to numerical stability and computational complexity.
Efficient computation of the joint sample frequency spectra for multiple populations
Kamm, John A.; Terhorst, Jonathan; Song, Yun S.
2016-01-01
A wide range of studies in population genetics have employed the sample frequency spectrum (SFS), a summary statistic which describes the distribution of mutant alleles at a polymorphic site in a sample of DNA sequences and provides a highly efficient dimensional reduction of large-scale population genomic variation data. Recently, there has been much interest in analyzing the joint SFS data from multiple populations to infer parameters of complex demographic histories, including variable population sizes, population split times, migration rates, admixture proportions, and so on. SFS-based inference methods require accurate computation of the expected SFS under a given demographic model. Although much methodological progress has been made, existing methods suffer from numerical instability and high computational complexity when multiple populations are involved and the sample size is large. In this paper, we present new analytic formulas and algorithms that enable accurate, efficient computation of the expected joint SFS for thousands of individuals sampled from hundreds of populations related by a complex demographic model with arbitrary population size histories (including piecewise-exponential growth). Our results are implemented in a new software package called momi (MOran Models for Inference). Through an empirical study we demonstrate our improvements to numerical stability and computational complexity. PMID:28239248
Instructional versus schedule control of humans' choices in situations of diminishing returns
Hackenberg, Timothy D.; Joker, Veronica R.
1994-01-01
Four adult humans chose repeatedly between a fixed-time schedule (of points later exchangeable for money) and a progressive-time schedule that began at 0 s and increased by a fixed number of seconds with each point delivered by that schedule. Each point delivered by the fixed-time schedule reset the requirements of the progressive-time schedule to its minimum value. Subjects were provided with instructions that specified a particular sequence of choices. Under the initial conditions, the instructions accurately specified the optimal choice sequence. Thus, control by instructions and optimal control by the programmed contingencies both supported the same performance. To distinguish the effects of instructions from schedule sensitivity, the correspondence between the instructed and optimal choice patterns was gradually altered across conditions by varying the step size of the progressive-time schedule while maintaining the same instructions. Step size was manipulated, typically in 1-s units, first in an ascending and then in a descending sequence of conditions. Instructions quickly established control in all 4 subjects but, by narrowing the range of choice patterns, they reduced subsequent sensitivity to schedule changes. Instructional control was maintained across the ascending sequence of progressive-time values for each subject, but eventually diminished, giving way to more schedule-appropriate patterns. The transition from instruction-appropriate to schedule-appropriate behavior was characterized by an increase in the variability of choice patterns and local increases in point density. On the descending sequence of progressive-time values, behavior appeared to be schedule sensitive, sometimes even optimally sensitive, but it did not always change systematically with the contingencies, suggesting the involvement of other factors. PMID:16812747
Natural history of age-related lobular involution and impact on breast cancer risk.
Radisky, Derek C; Visscher, Daniel W; Frank, Ryan D; Vierkant, Robert A; Winham, Stacey; Stallings-Mann, Melody; Hoskin, Tanya L; Nassar, Aziza; Vachon, Celine M; Denison, Lori A; Hartmann, Lynn C; Frost, Marlene H; Degnim, Amy C
2016-02-01
Age-related lobular involution (LI) is a physiological process in which the terminal duct lobular units of the breast regress as a woman ages. Analyses of breast biopsies from women with benign breast disease (BBD) have found that extent of LI is negatively associated with subsequent breast cancer development. Here we assess the natural course of LI within individual women, and the impact of progressive LI on breast cancer risk. The Mayo Clinic BBD cohort consists of 13,455 women with BBD from 1967 to 2001. The BBD cohort includes 1115 women who had multiple benign biopsies, 106 of whom had developed breast cancer. Within this multiple biopsy cohort, the progression of the LI process was examined by age at initial biopsy and time between biopsies. The relationship between LI progression and breast cancer risk was assessed using standardized incidence ratios and by Cox proportional hazards analysis. Women who had multiple biopsies were younger age and had a slightly higher family history of breast cancer as compared with the overall BBD cohort. Extent of LI at subsequent biopsy was greater with increasing time between biopsies and for women age 55 + at initial biopsy. Among women with multiple biopsies, there was a significant association of higher breast cancer risk among those with involution stasis (lack of progression, HR 1.63) as compared with those with involution progression, p = 0.036. The multiple biopsy BBD cohort allows for a longitudinal study of the natural progression of LI. The majority of women in the multiple biopsy cohort showed progression of LI status between benign biopsies, and extent of progression was highest for women who were in the perimenopausal age range at initial biopsy. Progression of LI status between initial and subsequent biopsy was associated with decreased breast cancer risk.
Genomic and transcriptomic approaches to study immunology in cyprinids: What is next?
Petit, Jules; David, Lior; Dirks, Ron; Wiegertjes, Geert F
2017-10-01
Accelerated by the introduction of Next-Generation Sequencing (NGS), a number of genomes of cyprinid fish species have been drafted, leading to a highly valuable collective resource of comparative genome information on cyprinids (Cyprinidae). In addition, NGS-based transcriptome analyses of different developmental stages, organs, or cell types, increasingly contribute to the understanding of complex physiological processes, including immune responses. Cyprinids are a highly interesting family because they comprise one of the most-diversified families of teleosts and because of their variation in ploidy level, with diploid, triploid, tetraploid, hexaploid and sometimes even octoploid species. The wealth of data obtained from NGS technologies provides both challenges and opportunities for immunological research, which will be discussed here. Correct interpretation of ploidy effects on immune responses requires knowledge of the degree of functional divergence between duplicated genes, which can differ even between closely-related cyprinid fish species. We summarize NGS-based progress in analysing immune responses and discuss the importance of respecting the presence of (multiple) duplicated gene sequences when performing transcriptome analyses for detailed understanding of complex physiological processes. Progressively, advances in NGS technology are providing workable methods to further elucidate the implications of gene duplication events and functional divergence of duplicates genes and proteins involved in immune responses in cyprinids. We conclude with discussing how future applications of NGS technologies and analysis methods could enhance immunological research and understanding. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury
2016-02-01
14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for delayed, progressive...pugilistica 3, 11 or ‘punch drunk’ syndrome 9, 12. US military personnel 13, 14 and others who have sustained multiple concussive traumatic brain...Progress to date: To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in mice has been optimal. Ongoing
Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury
2015-02-01
13. SUPPLEMENTARY NOTES 14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for...multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently, there are no methods to identify progressive tau...after traumatic brain injury. Progress to date: To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in
Morrison, Heather; Roscoe, Eileen M; Atwell, Amy
2011-01-01
We evaluated antecedent exercise for treating the automatically reinforced problem behavior of 4 individuals with autism. We conducted preference assessments to identify leisure and exercise items that were associated with high levels of engagement and low levels of problem behavior. Next, we conducted three 3-component multiple-schedule sequences: an antecedent-exercise test sequence, a noncontingent leisure-item control sequence, and a social-interaction control sequence. Within each sequence, we used a 3-component multiple schedule to evaluate preintervention, intervention, and postintervention effects. Problem behavior decreased during the postintervention component relative to the preintervention component for 3 of the 4 participants during the exercise-item assessment; however, the effects could not be attributed solely to exercise for 1 of these participants. PMID:21941383
ERIC Educational Resources Information Center
Rau, M. A.; Aleven, V.; Rummel, N.; Pardos, Z.
2014-01-01
Providing learners with multiple representations of learning content has been shown to enhance learning outcomes. When multiple representations are presented across consecutive problems, we have to decide in what sequence to present them. Prior research has demonstrated that interleaving "tasks types" (as opposed to blocking them) can…
Oncogenic LINE-1 Retroelements Sustain Prostate Tumor Cells and Promote Metastatic Progression
2015-10-01
elements in prostate cancer contribute to its progression by activating oncogenic DNA sequences, or silencing tumor suppressor like sequences. We have...prostate cancer cells. Experiments are ongoing to determine if PIWIL-1 expression in prostate cancer cells will reduce their growth, thereby providing...proof of principle for future gene-based therapeutics for this cancer . 15. SUBJECT TERMS Prostate cancer , LINE-1, PIWIL-1, retrotransposons 16
Advances in DNA metabarcoding for food and wildlife forensic species identification.
Staats, Martijn; Arulandhu, Alfred J; Gravendeel, Barbara; Holst-Jensen, Arne; Scholtens, Ingrid; Peelen, Tamara; Prins, Theo W; Kok, Esther
2016-07-01
Species identification using DNA barcodes has been widely adopted by forensic scientists as an effective molecular tool for tracking adulterations in food and for analysing samples from alleged wildlife crime incidents. DNA barcoding is an approach that involves sequencing of short DNA sequences from standardized regions and comparison to a reference database as a molecular diagnostic tool in species identification. In recent years, remarkable progress has been made towards developing DNA metabarcoding strategies, which involves next-generation sequencing of DNA barcodes for the simultaneous detection of multiple species in complex samples. Metabarcoding strategies can be used in processed materials containing highly degraded DNA e.g. for the identification of endangered and hazardous species in traditional medicine. This review aims to provide insight into advances of plant and animal DNA barcoding and highlights current practices and recent developments for DNA metabarcoding of food and wildlife forensic samples from a practical point of view. Special emphasis is placed on new developments for identifying species listed in the Convention on International Trade of Endangered Species (CITES) appendices for which reliable methods for species identification may signal and/or prevent illegal trade. Current technological developments and challenges of DNA metabarcoding for forensic scientists will be assessed in the light of stakeholders' needs.
Outcomes of Radiofrequency Ablation for Dysplastic Barrett's Esophagus: A Comprehensive Review
Iabichino, Giuseppe; Arena, Monica; Consolo, Pierluigi; Morace, Carmela; Opocher, Enrico; Mangiavillano, Benedetto
2016-01-01
Barrett's esophagus is a condition in which the normal squamous lining of the esophagus has been replaced by columnar epithelium containing intestinal metaplasia induced by recurrent mucosal injury related to gastroesophageal reflux disease. Barrett's esophagus is a premalignant condition that can progress through a dysplasia-carcinoma sequence to esophageal adenocarcinoma. Multiple endoscopic ablative techniques have been developed with the goal of eradicating Barrett's esophagus and preventing neoplastic progression to esophageal adenocarcinoma. For patients with high-grade dysplasia or intramucosal neoplasia, radiofrequency ablation with or without endoscopic resection for visible lesions is currently the most effective and safe treatment available. Recent data demonstrate that, in patients with Barrett's esophagus and low-grade dysplasia confirmed by a second pathologist, ablative therapy results in a statistically significant reduction in progression to high-grade dysplasia and esophageal adenocarcinoma. Treatment of dysplastic Barrett's esophagus with radiofrequency ablation results in complete eradication of both dysplasia and of intestinal metaplasia in a high proportion of patients with a low incidence of adverse events. A high proportion of treated patients maintain the neosquamous epithelium after successful treatment without recurrence of intestinal metaplasia. Following successful endoscopic treatment, endoscopic surveillance should be continued to detect any recurrent intestinal metaplasia and/or dysplasia. This paper reviews all relevant publications on the endoscopic management of Barrett's esophagus using radiofrequency ablation. PMID:28070182
Albitar, Adam; Ma, Wanlong; DeDios, Ivan; Estella, Jeffrey; Ahn, Inhye; Farooqui, Mohammed; Wiestner, Adrian; Albitar, Maher
2017-03-14
Patients with chronic lymphocytic leukemia (CLL) that develop resistance to Bruton tyrosine kinase (BTK) inhibitors are typically positive for mutations in BTK or phospholipase c gamma 2 (PLCγ2). We developed a high sensitivity (HS) assay utilizing wild-type blocking polymerase chain reaction achieved via bridged and locked nucleic acids. We used this high sensitivity assay in combination with Sanger sequencing and next generation sequencing (NGS) and tested cellular DNA and cell-free DNA (cfDNA) from patients with CLL treated with the BTK inhibitor, ibrutinib. We also tested ibrutinib-naïve patients with CLL. HS testing achieved 100x greater sensitivity than Sanger. HS Sanger sequencing was capable of detecting < 1 mutant allele in background of 1000 wild-type alleles (1:1000). Similar sensitivity was achieved with HS NGS. No BTK or PLCγ2 mutations were detected in any of the 44 ibrutinib-naïve CLL patients. We demonstrate that without the HS testing 56% of positive samples would have been missed for BTK and 85% of PLCγ2 would have been missed. With the use of HS, we were able to detect multiple mutant clones in the same sample in 37.5% of patients; most would have been missed without HS testing. We also demonstrate that with HS sequencing, plasma cfDNA is more reliable than cellular DNA in detecting mutations. Our studies indicate that wild-type blocking and HS sequencing is necessary for proper and early detection of BTK or PLCγ2 mutations in monitoring patients treated with BTK inhibitors. Furthermore, cfDNA from plasma is very reliable sample-type for testing.
Does order matter? Investigating the effect of sequence on glance duration during on-road driving
Roberts, Shannon C.; Reimer, Bryan; Mehler, Bruce
2017-01-01
Previous literature has shown that vehicle crash risks increases as drivers’ off-road glance duration increases. Many factors influence drivers’ glance duration such as individual differences, driving environment, or task characteristics. Theories and past studies suggest that glance duration increases as the task progresses, but the exact relationship between glance sequence and glance durations is not fully understood. The purpose of this study was to examine the effect of glance sequence on glance duration among drivers completing a visual-manual radio tuning task and an auditory-vocal based multi-modal navigation entry task. Eighty participants drove a vehicle on urban highways while completing radio tuning and navigation entry tasks. Forty participants drove under an experimental protocol that required three button presses followed by rotation of a tuning knob to complete the radio tuning task while the other forty participants completed the task with one less button press. Multiple statistical analyses were conducted to measure the effect of glance sequence on glance duration. Results showed that across both tasks and a variety of statistical tests, glance sequence had inconsistent effects on glance duration—the effects varied according to the number of glances, task type, and data set that was being evaluated. Results suggest that other aspects of the task as well as interface design effect glance duration and should be considered in the context of examining driver attention or lack thereof. All in all, interface design and task characteristics have a more influential impact on glance duration than glance sequence, suggesting that classical design considerations impacting driver attention, such as the size and location of buttons, remain fundamental in designing in-vehicle interfaces. PMID:28158301
Ferdinandusse, Sacha; Waterham, Hans R; Heales, Simon J R; Brown, Garry K; Hargreaves, Iain P; Taanman, Jan-Willem; Gunny, Roxana; Abulhoul, Lara; Wanders, Ronald J A; Clayton, Peter T; Leonard, James V; Rahman, Shamima
2013-12-04
Deficiency of 3-hydroxy-isobutyryl-CoA hydrolase (HIBCH) caused by HIBCH mutations is a rare cerebral organic aciduria caused by disturbance of valine catabolism. Multiple mitochondrial respiratory chain (RC) enzyme deficiencies can arise from a number of mechanisms, including defective maintenance or expression of mitochondrial DNA. Impaired biosynthesis of iron-sulphur clusters and lipoic acid can lead to pyruvate dehydrogenase complex (PDHc) deficiency in addition to multiple RC deficiencies, known as the multiple mitochondrial dysfunctions syndrome. Two brothers born to distantly related Pakistani parents presenting in early infancy with a progressive neurodegenerative disorder, associated with basal ganglia changes on brain magnetic resonance imaging, were investigated for suspected Leigh-like mitochondrial disease. The index case had deficiencies of multiple RC enzymes and PDHc in skeletal muscle and fibroblasts respectively, but these were normal in his younger brother. The observation of persistently elevated hydroxy-C4-carnitine levels in the younger brother led to suspicion of HIBCH deficiency, which was investigated by biochemical assay in cultured skin fibroblasts and molecular genetic analysis. Specific spectrophotometric enzyme assay revealed HIBCH activity to be below detectable limits in cultured skin fibroblasts from both brothers. Direct Sanger sequence analysis demonstrated a novel homozygous pathogenic missense mutation c.950G
Aligning the unalignable: bacteriophage whole genome alignments.
Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M
2016-01-13
In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).
Syndromic parkinsonism and dementia associated with OPA 1 missense mutations
Musumeci, Olimpia; Caporali, Leonardo; Zanna, Claudia; La Morgia, Chiara; Del Dotto, Valentina; Porcelli, Anna Maria; Rugolo, Michela; Valentino, Maria Lucia; Iommarini, Luisa; Maresca, Alessandra; Barboni, Piero; Carbonelli, Michele; Trombetta, Costantino; Valente, Enza Maria; Patergnani, Simone; Giorgi, Carlotta; Pinton, Paolo; Rizzo, Giovanni; Tonon, Caterina; Lodi, Raffaele; Avoni, Patrizia; Liguori, Rocco; Baruzzi, Agostino; Toscano, Antonio; Zeviani, Massimo
2015-01-01
Objective Mounting evidence links neurodegenerative disorders such as Parkinson disease and Alzheimer disease with mitochondrial dysfunction, and recent emphasis has focused on mitochondrial dynamics and quality control. Mitochondrial dynamics and mtDNA maintenance is another link recently emerged, implicating mutations in the mitochondrial fusion genes OPA1 and MFN2 in the pathogenesis of multisystem syndromes characterized by neurodegeneration and accumulation of mtDNA multiple deletions in postmitotic tissues. Here, we report 2 Italian families affected by dominant chronic progressive external ophthalmoplegia (CPEO) complicated by parkinsonism and dementia. Methods Patients were extensively studied by optical coherence tomography (OCT) to assess retinal nerve fibers, and underwent muscle and brain magnetic resonance spectroscopy (MRS), and muscle biopsy and fibroblasts were analyzed. Candidate genes were sequenced, and mtDNA was analyzed for rearrangements. Results Affected individuals displayed a slowly progressive syndrome characterized by CPEO, mitochondrial myopathy, sensorineural deafness, peripheral neuropathy, parkinsonism, and/or cognitive impairment, in most cases without visual complains, but with subclinical loss of retinal nerve fibers at OCT. Muscle biopsies showed cytochrome c oxidase‐negative fibers and mtDNA multiple deletions, and MRS displayed defective oxidative metabolism in muscle and brain. We found 2 heterozygous OPA1 missense mutations affecting highly conserved amino acid positions (p.G488R, p.A495V) in the guanosine triphosphatase domain, each segregating with affected individuals. Fibroblast studies showed a reduced amount of OPA1 protein with normal mRNA expression, fragmented mitochondria, impaired bioenergetics, increased autophagy and mitophagy. Interpretation The association of CPEO and parkinsonism/dementia with subclinical optic neuropathy widens the phenotypic spectrum of OPA1 mutations, highlighting the association of defective mitochondrial dynamics, mtDNA multiple deletions, and altered mitophagy with parkinsonism. Ann Neurol 2015;78:21–38 PMID:25820230
Multi-purpose presentation techniques for geoscientific data in various media
NASA Astrophysics Data System (ADS)
Rink, Karsten; Bilke, Lars
2014-05-01
The intuitive presentation of the progression of complex geoscientific phenomena is often an underrated part of the modelling- and simulation workflow. Compiling such a presentation allows to easily communicate progress in joint research projects between participants with different backgrounds. Also, adequate 3D visualisations are usually easier to understand when presenting research results to stakeholders as well as the general public and critical information is conveyed in a more comprehensible manner. We established a workflow that is based on integration and preprocessing of multiple geoscientific data sets in a suitable framework such as the OpenGeoSys Data Explorer or ParaView. After choosing an adequate visual representation of the data in these frameworks, custom-made interfaces are employed to export the data to presentation frameworks. For instance, using the Unity 3D Engine allows to implement interaction techniques such as adding camera paths, concentrating on specific subsets of the data or scene, blending multiple data sets, etc. While a general sequence of the presentation can be predefined, interactive navigation is still possible and allows to focus on particular interests of the audience. Established interfaces and frameworks allow to display existing presentations in multiple ways, including virtual reality environments, novel hardware such as head-mounted displays like the Occulus Rift, or even websites presenting 3D content. Furthermore, the content can be redistributed as an executable for use on arbitrary machines. This versatility enables the use of prepared presentations for a multitude of occasions including exchange of intermediary result to partners in cooperate projects, reports at conferences, the defense of research projects, or use in training courses or for tutorials.
Grey matter damage and overall cognitive impairment in primary progressive multiple sclerosis.
Tur, C; Penny, S; Khaleeli, Z; Altmann, D R; Cipolotti, L; Ron, M; Thompson, A J; Ciccarelli, O
2011-11-01
To identify associations between cognitive impairment and imaging measures in a cross-sectional study of patients with primary progressive multiple sclerosis (PPMS). Neuropsychological tests were administered to 27 patients with PPMS and 31 controls. Patients underwent brain conventional magnetic resonance imaging (MRI) sequences, volumetric scans and magnetization transfer (MT) imaging; MT ratio (MTR) parameters, grey matter (GM) and normal-appearing white matter (NAWM) volumes, and WM T2 lesion load (T2LL) were obtained. In patients, multiple linear regression models identified the imaging measure associated with the abnormal cognitive tests independently from the other imaging variables. Partial correlation coefficients (PCC) were reported. Patients performed worse on tests of attention/speed of visual information processing, delayed verbal memory, and executive function, and had a worse overall cognitive performance index, when compared with controls. In patients, a lower GM peak location MTR was associated with worse overall cognitive performance (p < 0.001, PCC = 0.77). GM mean and peak height MTR showed the strongest association with the estimated verbal intelligence quotient (IQ) decline (p < 0.001, PCC = -0.62), and executive function (p < 0.001, PCC = 0.79). NAWM volume was associated with attention/speed of visual information processing (p < 0.001, PCC = 0.74), while T2LL was associated with delayed verbal memory (p = 0.007, PCC = -0.55). The finding of strong associations between GM MTR, NAWM volume and T2LL and specific cognitive impairments suggests that models that predict cognitive impairment in PPMS should include comprehensive MRI assessments of both GM and WM. However, GM MTR appears to be the main correlate of overall cognitive dysfunction, underlining the role of abnormal GM integrity in determining cognitive impairment in PPMS.
Spastic Paraplegia Type 7 Is Associated with Multiple Mitochondrial DNA Deletions
Wedding, Iselin Marie; Koht, Jeanette; Tran, Gia Tuong; Misceo, Doriana; Selmer, Kaja Kristine; Holmgren, Asbjørn; Frengen, Eirik; Bindoff, Laurence; Tallaksen, Chantal M. E.; Tzoulis, Charalampos
2014-01-01
Spastic paraplegia 7 is an autosomal recessive disorder caused by mutations in the gene encoding paraplegin, a protein located at the inner mitochondrial membrane and involved in the processing of other mitochondrial proteins. The mechanism whereby paraplegin mutations cause disease is unknown. We studied two female and two male adult patients from two Norwegian families with a combination of progressive external ophthalmoplegia and spastic paraplegia. Sequencing of SPG7 revealed a novel missense mutation, c.2102A>C, p.H 701P, which was homozygous in one family and compound heterozygous in trans with a known pathogenic mutation c.1454_1462del in the other. Muscle was examined from an additional, unrelated adult female patient with a similar phenotype caused by a homozygous c.1047insC mutation in SPG7. Immunohistochemical studies in skeletal muscle showed mosaic deficiency predominantly affecting respiratory complex I, but also complexes III and IV. Molecular studies in single, microdissected fibres showed multiple mitochondrial DNA deletions segregating at high levels (38–97%) in respiratory deficient fibres. Our findings demonstrate for the first time that paraplegin mutations cause accumulation of mitochondrial DNA damage and multiple respiratory chain deficiencies. While paraplegin is not known to be directly associated with the mitochondrial nucleoid, it is known to process other mitochondrial proteins and it is possible therefore that paraplegin mutations lead to mitochondrial DNA deletions by impairing proteins involved in the homeostasis of the mitochondrial genome. These studies increase our understanding of the molecular pathogenesis of SPG7 mutations and suggest that SPG7 testing should be included in the diagnostic workup of autosomal recessive, progressive external ophthalmoplegia, especially if spasticity is present. PMID:24466038
Reconstructing evolutionary trees in parallel for massive sequences.
Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam
2017-12-14
Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .
Christensen, Signe; Horowitz, Scott; Bardwell, James C.A.; Olsen, Johan G.; Willemoës, Martin; Lindorff-Larsen, Kresten; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Winther, Jakob R.
2017-01-01
Despite the development of powerful computational tools, the full-sequence design of proteins still remains a challenging task. To investigate the limits and capabilities of computational tools, we conducted a study of the ability of the program Rosetta to predict sequences that recreate the authentic fold of thioredoxin. Focusing on the influence of conformational details in the template structures, we based our study on 8 experimentally determined template structures and generated 120 designs from each. For experimental evaluation, we chose six sequences from each of the eight templates by objective criteria. The 48 selected sequences were evaluated based on their progressive ability to (1) produce soluble protein in Escherichia coli and (2) yield stable monomeric protein, and (3) on the ability of the stable, soluble proteins to adopt the target fold. Of the 48 designs, we were able to synthesize 32, 20 of which resulted in soluble protein. Of these, only two were sufficiently stable to be purified. An X-ray crystal structure was solved for one of the designs, revealing a close resemblance to the target structure. We found a significant difference among the eight template structures to realize the above three criteria despite their high structural similarity. Thus, in order to improve the success rate of computational full-sequence design methods, we recommend that multiple template structures are used. Furthermore, this study shows that special care should be taken when optimizing the geometry of a structure prior to computational design when using a method that is based on rigid conformations. PMID:27659562
Genetic alterations in seborrheic keratoses
Heidenreich, Barbara; Denisova, Evygenia; Rachakonda, Sivaramakrishna; Sanmartin, Onofre; Dereani, Timo; Hosen, Ismail; Nagore, Eduardo; Kumar, Rajiv
2017-01-01
Seborrheic keratoses are common benign epidermal lesions that are associated with increased age and sun-exposure. Those lesions despite harboring multiple somatic alterations in contrast to malignant tumors appear to be genetically stable. In order to investigate and characterize the presence of recurrent mutations, we performed exome sequencing on DNA from one seborrheic keratosis lesion and corresponding blood cells from the same patients with follow up investigation of alterations identified by exome sequencing in 24 additional lesions from as many patients. In addition we investigated alterations in all lesions at specific genes loci that included FGFR3, PIK3CA, HRAS, BRAF, CDKN2A and TERT and DHPH3 promoters. The exome sequencing data indicated three mutations per Mb of the targeted sequence. The mutational pattern depicted typical UV signature with majority of alterations being C>T and CC>TT base changes at dipyrimidinic sites. The FGFR3 mutations were the most frequent, detected in 12 of 25 (48%) lesions, followed by the PIK3CA (32%), TERT promoter (24%) and DPH3 promoter mutations (24%). TERT promoter mutations associated with increased age and were present mainly in the lesions excised from head and neck. Three lesions also carried alterations in CDKN2A. FGFR3, TERT and DPH3 expression did not correlate with mutations in the respective genes and promoters; however, increased FGFR3 transcript levels were associated with increased FOXN1 levels, a suggested positive feedback loop that stalls malignant progression. Thus, in this study we report overall mutation rate through exome sequencing and show the most frequent mutations seborrheic keratosis. PMID:28410231
Johansson, Kristoffer E; Tidemand Johansen, Nicolai; Christensen, Signe; Horowitz, Scott; Bardwell, James C A; Olsen, Johan G; Willemoës, Martin; Lindorff-Larsen, Kresten; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Winther, Jakob R
2016-10-23
Despite the development of powerful computational tools, the full-sequence design of proteins still remains a challenging task. To investigate the limits and capabilities of computational tools, we conducted a study of the ability of the program Rosetta to predict sequences that recreate the authentic fold of thioredoxin. Focusing on the influence of conformational details in the template structures, we based our study on 8 experimentally determined template structures and generated 120 designs from each. For experimental evaluation, we chose six sequences from each of the eight templates by objective criteria. The 48 selected sequences were evaluated based on their progressive ability to (1) produce soluble protein in Escherichia coli and (2) yield stable monomeric protein, and (3) on the ability of the stable, soluble proteins to adopt the target fold. Of the 48 designs, we were able to synthesize 32, 20 of which resulted in soluble protein. Of these, only two were sufficiently stable to be purified. An X-ray crystal structure was solved for one of the designs, revealing a close resemblance to the target structure. We found a significant difference among the eight template structures to realize the above three criteria despite their high structural similarity. Thus, in order to improve the success rate of computational full-sequence design methods, we recommend that multiple template structures are used. Furthermore, this study shows that special care should be taken when optimizing the geometry of a structure prior to computational design when using a method that is based on rigid conformations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Eimeria genomics: Where are we now and where are we going?
Blake, Damer P
2015-08-15
The evolution of sequencing technologies, from Sanger to next generation (NGS) and now the emerging third generation, has prompted a radical frameshift moving genomics from the specialist to the mainstream. For parasitology, genomics has moved fastest for the protozoa with sequence assemblies becoming available for multiple genera including Babesia, Cryptosporidium, Eimeria, Giardia, Leishmania, Neospora, Plasmodium, Theileria, Toxoplasma and Trypanosoma. Progress has commonly been slower for parasites of animals which lack zoonotic potential, but the deficit is now being redressed with impact likely in the areas of drug and vaccine development, molecular diagnostics and population biology. Genomics studies with the apicomplexan Eimeria species clearly illustrate the approaches and opportunities available. Specifically, more than ten years after initiation of a genome sequencing project a sequence assembly was published for Eimeria tenella in 2014, complemented by assemblies for all other Eimeria species which infect the chicken and Eimeria falciformis, a parasite of the mouse. Public access to these and other coccidian genome assemblies through resources such as GeneDB and ToxoDB now promotes comparative analysis, encouraging better use of shared resources and enhancing opportunities for development of novel diagnostic and control strategies. In the short term genomics resources support development of targeted and genome-wide genetic markers such as single nucleotide polymorphisms (SNPs), with whole genome re-sequencing becoming viable in the near future. Experimental power will develop rapidly as additional species, strains and isolates are sampled with particular emphasis on population structure and allelic diversity. Copyright © 2015 Elsevier B.V. All rights reserved.
Winterhoff, Boris J; Maile, Makayla; Mitra, Amit Kumar; Sebe, Attila; Bazzaro, Martina; Geller, Melissa A; Abrahante, Juan E; Klein, Molly; Hellweg, Raffaele; Mullany, Sally A; Beckman, Kenneth; Daniel, Jerry; Starr, Timothy K
2017-03-01
The purpose of this study was to determine the level of heterogeneity in high grade serous ovarian cancer (HGSOC) by analyzing RNA expression in single epithelial and cancer associated stromal cells. In addition, we explored the possibility of identifying subgroups based on pathway activation and pre-defined signatures from cancer stem cells and chemo-resistant cells. A fresh, HGSOC tumor specimen derived from ovary was enzymatically digested and depleted of immune infiltrating cells. RNA sequencing was performed on 92 single cells and 66 of these single cell datasets passed quality control checks. Sequences were analyzed using multiple bioinformatics tools, including clustering, principle components analysis, and geneset enrichment analysis to identify subgroups and activated pathways. Immunohistochemistry for ovarian cancer, stem cell and stromal markers was performed on adjacent tumor sections. Analysis of the gene expression patterns identified two major subsets of cells characterized by epithelial and stromal gene expression patterns. The epithelial group was characterized by proliferative genes including genes associated with oxidative phosphorylation and MYC activity, while the stromal group was characterized by increased expression of extracellular matrix (ECM) genes and genes associated with epithelial-to-mesenchymal transition (EMT). Neither group expressed a signature correlating with published chemo-resistant gene signatures, but many cells, predominantly in the stromal subgroup, expressed markers associated with cancer stem cells. Single cell sequencing provides a means of identifying subpopulations of cancer cells within a single patient. Single cell sequence analysis may prove to be critical for understanding the etiology, progression and drug resistance in ovarian cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Multiple DNA and protein sequence alignment on a workstation and a supercomputer.
Tajima, K
1988-11-01
This paper describes a multiple alignment method using a workstation and supercomputer. The method is based on the alignment of a set of aligned sequences with the new sequence, and uses a recursive procedure of such alignment. The alignment is executed in a reasonable computation time on diverse levels from a workstation to a supercomputer, from the viewpoint of alignment results and computational speed by parallel processing. The application of the algorithm is illustrated by several examples of multiple alignment of 12 amino acid and DNA sequences of HIV (human immunodeficiency virus) env genes. Colour graphic programs on a workstation and parallel processing on a supercomputer are discussed.
TaxI: a software tool for DNA barcoding using distance methods
Steinke, Dirk; Vences, Miguel; Salzburger, Walter; Meyer, Axel
2005-01-01
DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding. PMID:16214755
Next-generation Sequencing-based genomic profiling: Fostering innovation in cancer care?
Fernandes, Gustavo S; Marques, Daniel F; Girardi, Daniel M; Braghiroli, Maria Ignez F; Coudry, Renata A; Meireles, Sibele I; Katz, Artur; Hoff, Paulo M
2017-10-01
With the development of next-generation sequencing (NGS) technologies, DNA sequencing has been increasingly utilized in clinical practice. Our goal was to investigate the impact of genomic evaluation on treatment decisions for heavily pretreated patients with metastatic cancer. We analyzed metastatic cancer patients from a single institution whose cancers had progressed after all available standard-of-care therapies and whose tumors underwent next-generation sequencing analysis. We determined the percentage of patients who received any therapy directed by the test, and its efficacy. From July 2013 to December 2015, 185 consecutive patients were tested using a commercially available next-generation sequencing-based test, and 157 patients were eligible. Sixty-six patients (42.0%) were female, and 91 (58.0%) were male. The mean age at diagnosis was 52.2 years, and the mean number of pre-test lines of systemic treatment was 2.7. One hundred and seventy-seven patients (95.6%) had at least one identified gene alteration. Twenty-four patients (15.2%) underwent systemic treatment directed by the test result. Of these, one patient had a complete response, four (16.7%) had partial responses, two (8.3%) had stable disease, and 17 (70.8%) had disease progression as the best result. The median progression-free survival time with matched therapy was 1.6 months, and the median overall survival was 10 months. We identified a high prevalence of gene alterations using an next-generation sequencing test. Although some benefit was associated with the matched therapy, most of the patients had disease progression as the best response, indicating the limited biological potential and unclear clinical relevance of this practice.
Herrera, Alex F.; Kim, Haesook T.; Kong, Katherine A.; Faham, Malek; Sun, Heather; Sohani, Aliyah R.; Alyea, Edwin P.; Carlton, Victoria E.; Chen, Yi-Bin; Cutler, Corey S.; Ho, Vincent T.; Koreth, John; Kotwaliwale, Chitra; Nikiforow, Sarah; Ritz, Jerome; Rodig, Scott J.; Soiffer, Robert J.; Antin, Joseph H.; Armand, Philippe
2016-01-01
Summary Next-generation sequencing (NGS)-based circulating tumour DNA (ctDNA) detection is a promising monitoring tool for lymphoid malignancies. We evaluated whether the presence of ctDNA was associated with outcome after allogeneic haematopoietic stem cell transplantation (HSCT) in lymphoma patients. We studied 88 patients drawn from a phase 3 clinical trial of reduced-intensity conditioning HSCT in lymphoma. Conventional restaging and collection of peripheral blood samples occurred at pre-specified time points before and after HSCT and were assayed for ctDNA by sequencing of the immunoglobulin or T-cell receptor genes. Tumour clonotypes were identified in 87% of patients with adequate tumour samples. Sixteen of 19 (84%) patients with disease progression after HSCT had detectable ctDNA prior to progression at a median of 3.7 months prior to relapse/progression. Patients with detectable ctDNA 3 months after HSCT had inferior progression-free survival (PFS) (2-year PFS 58% versus 84% in ctDNA-negative patients, p=0.033). In multivariate models, detectable ctDNA was associated with increased risk of progression/death (Hazard ratio 3.9, p=0.003) and increased risk of relapse/progression (Hazard ratio 10.8, p=0.0006). Detectable ctDNA is associated with an increased risk of relapse/progression, but further validation studies are necessary to confirm these findings and determine the clinical utility of NGS-based minimal residual disease monitoring in lymphoma patients after HSCT. PMID:27711974
Probabilistic models of eukaryotic evolution: time for integration
Lartillot, Nicolas
2015-01-01
In spite of substantial work and recent progress, a global and fully resolved picture of the macroevolutionary history of eukaryotes is still under construction. This concerns not only the phylogenetic relations among major groups, but also the general characteristics of the underlying macroevolutionary processes, including the patterns of gene family evolution associated with endosymbioses, as well as their impact on the sequence evolutionary process. All these questions raise formidable methodological challenges, calling for a more powerful statistical paradigm. In this direction, model-based probabilistic approaches have played an increasingly important role. In particular, improved models of sequence evolution accounting for heterogeneities across sites and across lineages have led to significant, although insufficient, improvement in phylogenetic accuracy. More recently, one main trend has been to move away from simple parametric models and stepwise approaches, towards integrative models explicitly considering the intricate interplay between multiple levels of macroevolutionary processes. Such integrative models are in their infancy, and their application to the phylogeny of eukaryotes still requires substantial improvement of the underlying models, as well as additional computational developments. PMID:26323768
Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario.
Ali, Muhammad Umar; Rahman, Muhammad Saif Ur; Cao, Jiang; Yuan, Ping Xi
2017-08-01
Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.
Transcriptome profiles in sarcoidosis and their potential role in disease prediction.
Schupp, Jonas C; Vukmirovic, Milica; Kaminski, Naftali; Prasse, Antje
2017-09-01
Sarcoidosis is a systemic disease defined by the presence of nonnecrotizing granuloma in the absence of any known cause. Although the heterogeneity of sarcoidosis is well characterized clinically, the transcriptome of sarcoidosis and underlying molecular mechanisms are not. The signal of all transcripts, small and long noncoding RNAs, can be detected using microarrays or RNA-Sequencing. Analyzing the transcriptome of tissues that are directly affected by granulomas is of great importance to understand biology of the disease and may be predictive of disease and treatment outcome. Multiple genome wide expression studies performed on sarcoidosis affected tissues were published in the last 11 years. Published studies focused on differences in gene expression between sarcoidosis vs. control tissues, stable vs. progressive sarcoidosis, as well as sarcoidosis vs. other diseases. Strikingly, all these transcriptomics data confirm the key role of TH1 immune response in sarcoidosis and particularly of interferon-γ (IFN-γ) and type I IFN-driven signaling pathways. The steps toward transcriptomics of sarcoidosis in precision medicine highlight the potentials of this approach. Large prospective follow-up studies are required to identify signatures predictive of disease progression and outcome.
Wan, Shixiang; Zou, Quan
2017-01-01
Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.
Optimized scheduling technique of null subcarriers for peak power control in 3GPP LTE downlink.
Cho, Soobum; Park, Sang Kyu
2014-01-01
Orthogonal frequency division multiple access (OFDMA) is a key multiple access technique for the long term evolution (LTE) downlink. However, high peak-to-average power ratio (PAPR) can cause the degradation of power efficiency. The well-known PAPR reduction technique, dummy sequence insertion (DSI), can be a realistic solution because of its structural simplicity. However, the large usage of subcarriers for the dummy sequences may decrease the transmitted data rate in the DSI scheme. In this paper, a novel DSI scheme is applied to the LTE system. Firstly, we obtain the null subcarriers in single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems, respectively; then, optimized dummy sequences are inserted into the obtained null subcarrier. Simulation results show that Walsh-Hadamard transform (WHT) sequence is the best for the dummy sequence and the ratio of 16 to 20 for the WHT and randomly generated sequences has the maximum PAPR reduction performance. The number of near optimal iteration is derived to prevent exhausted iterations. It is also shown that there is no bit error rate (BER) degradation with the proposed technique in LTE downlink system.
Optimized Scheduling Technique of Null Subcarriers for Peak Power Control in 3GPP LTE Downlink
Park, Sang Kyu
2014-01-01
Orthogonal frequency division multiple access (OFDMA) is a key multiple access technique for the long term evolution (LTE) downlink. However, high peak-to-average power ratio (PAPR) can cause the degradation of power efficiency. The well-known PAPR reduction technique, dummy sequence insertion (DSI), can be a realistic solution because of its structural simplicity. However, the large usage of subcarriers for the dummy sequences may decrease the transmitted data rate in the DSI scheme. In this paper, a novel DSI scheme is applied to the LTE system. Firstly, we obtain the null subcarriers in single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems, respectively; then, optimized dummy sequences are inserted into the obtained null subcarrier. Simulation results show that Walsh-Hadamard transform (WHT) sequence is the best for the dummy sequence and the ratio of 16 to 20 for the WHT and randomly generated sequences has the maximum PAPR reduction performance. The number of near optimal iteration is derived to prevent exhausted iterations. It is also shown that there is no bit error rate (BER) degradation with the proposed technique in LTE downlink system. PMID:24883376
ERIC Educational Resources Information Center
Kritz, Gary H.; Lozada, Hector R.; Long, Mary M.
2007-01-01
Since the AACSB mandates that students demonstrate effective oral and written communication skills, it is imperative that business professors do what is necessary to improve such skills. The authors investigate whether the use of using multiple progress reports in an Advertising class project improves the final product. The data results show that…
Sequencing-based diagnostics for pediatric genetic diseases: progress and potential
Tayoun, Ahmad Abou; Krock, Bryan; Spinner, Nancy B.
2016-01-01
Introduction The last two decades have witnessed revolutionary changes in clinical diagnostics, fueled by the Human Genome Project and advances in high throughput, Next Generation Sequencing (NGS). We review the current state of sequencing-based pediatric diagnostics, associated challenges, and future prospects. Areas Covered We present an overview of genetic disease in children, review the technical aspects of Next Generation Sequencing and the strategies to make molecular diagnoses for children with genetic disease. We discuss the challenges of genomic sequencing including incomplete current knowledge of variants, lack of data about certain genomic regions, mosaicism, and the presence of regions with high homology. Expert Commentary NGS has been a transformative technology and the gap between the research and clinical communities has never been so narrow. Therapeutic interventions are emerging based on genomic findings and the applications of NGS are progressing to prenatal genetics, epigenomics and transcriptomics. PMID:27388938
Zepeda-Mendoza, Marie Lisandra; Bohmann, Kristine; Carmona Baez, Aldo; Gilbert, M Thomas P
2016-05-03
DNA metabarcoding is an approach for identifying multiple taxa in an environmental sample using specific genetic loci and taxa-specific primers. When combined with high-throughput sequencing it enables the taxonomic characterization of large numbers of samples in a relatively time- and cost-efficient manner. One recent laboratory development is the addition of 5'-nucleotide tags to both primers producing double-tagged amplicons and the use of multiple PCR replicates to filter erroneous sequences. However, there is currently no available toolkit for the straightforward analysis of datasets produced in this way. We present DAMe, a toolkit for the processing of datasets generated by double-tagged amplicons from multiple PCR replicates derived from an unlimited number of samples. Specifically, DAMe can be used to (i) sort amplicons by tag combination, (ii) evaluate PCR replicates dissimilarity, and (iii) filter sequences derived from sequencing/PCR errors, chimeras, and contamination. This is attained by calculating the following parameters: (i) sequence content similarity between the PCR replicates from each sample, (ii) reproducibility of each unique sequence across the PCR replicates, and (iii) copy number of the unique sequences in each PCR replicate. We showcase the insights that can be obtained using DAMe prior to taxonomic assignment, by applying it to two real datasets that vary in their complexity regarding number of samples, sequencing libraries, PCR replicates, and used tag combinations. Finally, we use a third mock dataset to demonstrate the impact and importance of filtering the sequences with DAMe. DAMe allows the user-friendly manipulation of amplicons derived from multiple samples with PCR replicates built in a single or multiple sequencing libraries. It allows the user to: (i) collapse amplicons into unique sequences and sort them by tag combination while retaining the sample identifier and copy number information, (ii) identify sequences carrying unused tag combinations, (iii) evaluate the comparability of PCR replicates of the same sample, and (iv) filter tagged amplicons from a number of PCR replicates using parameters of minimum length, copy number, and reproducibility across the PCR replicates. This enables an efficient analysis of complex datasets, and ultimately increases the ease of handling datasets from large-scale studies.
CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment.
Chen, Xi; Wang, Chen; Tang, Shanjiang; Yu, Ce; Zou, Quan
2017-06-24
The multiple sequence alignment (MSA) is a classic and powerful technique for sequence analysis in bioinformatics. With the rapid growth of biological datasets, MSA parallelization becomes necessary to keep its running time in an acceptable level. Although there are a lot of work on MSA problems, their approaches are either insufficient or contain some implicit assumptions that limit the generality of usage. First, the information of users' sequences, including the sizes of datasets and the lengths of sequences, can be of arbitrary values and are generally unknown before submitted, which are unfortunately ignored by previous work. Second, the center star strategy is suited for aligning similar sequences. But its first stage, center sequence selection, is highly time-consuming and requires further optimization. Moreover, given the heterogeneous CPU/GPU platform, prior studies consider the MSA parallelization on GPU devices only, making the CPUs idle during the computation. Co-run computation, however, can maximize the utilization of the computing resources by enabling the workload computation on both CPU and GPU simultaneously. This paper presents CMSA, a robust and efficient MSA system for large-scale datasets on the heterogeneous CPU/GPU platform. It performs and optimizes multiple sequence alignment automatically for users' submitted sequences without any assumptions. CMSA adopts the co-run computation model so that both CPU and GPU devices are fully utilized. Moreover, CMSA proposes an improved center star strategy that reduces the time complexity of its center sequence selection process from O(mn 2 ) to O(mn). The experimental results show that CMSA achieves an up to 11× speedup and outperforms the state-of-the-art software. CMSA focuses on the multiple similar RNA/DNA sequence alignment and proposes a novel bitmap based algorithm to improve the center star strategy. We can conclude that harvesting the high performance of modern GPU is a promising approach to accelerate multiple sequence alignment. Besides, adopting the co-run computation model can maximize the entire system utilization significantly. The source code is available at https://github.com/wangvsa/CMSA .
Learning of goal-relevant and -irrelevant complex visual sequences in human V1.
Rosenthal, Clive R; Mallik, Indira; Caballero-Gaudes, Cesar; Sereno, Martin I; Soto, David
2018-06-12
Learning and memory are supported by a network involving the medial temporal lobe and linked neocortical regions. Emerging evidence indicates that primary visual cortex (i.e., V1) may contribute to recognition memory, but this has been tested only with a single visuospatial sequence as the target memorandum. The present study used functional magnetic resonance imaging to investigate whether human V1 can support the learning of multiple, concurrent complex visual sequences involving discontinous (second-order) associations. Two peripheral, goal-irrelevant but structured sequences of orientated gratings appeared simultaneously in fixed locations of the right and left visual fields alongside a central, goal-relevant sequence that was in the focus of spatial attention. Pseudorandom sequences were introduced at multiple intervals during the presentation of the three structured visual sequences to provide an online measure of sequence-specific knowledge at each retinotopic location. We found that a network involving the precuneus and V1 was involved in learning the structured sequence presented at central fixation, whereas right V1 was modulated by repeated exposure to the concurrent structured sequence presented in the left visual field. The same result was not found in left V1. These results indicate for the first time that human V1 can support the learning of multiple concurrent sequences involving complex discontinuous inter-item associations, even peripheral sequences that are goal-irrelevant. Copyright © 2018. Published by Elsevier Inc.
Shih, Arthur Chun-Chieh; Lee, DT; Peng, Chin-Lin; Wu, Yu-Wei
2007-01-01
Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL . PMID:17319966
Long-range barcode labeling-sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Feng; Zhang, Tao; Singh, Kanwar K.
Methods for sequencing single large DNA molecules by clonal multiple displacement amplification using barcoded primers. Sequences are binned based on barcode sequences and sequenced using a microdroplet-based method for sequencing large polynucleotide templates to enable assembly of haplotype-resolved complex genomes and metagenomes.
RPAN: rice pan-genome browser for ∼3000 rice genomes.
Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun
2017-01-25
A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Dunbar, Robert C; Berden, Giel; Martens, Jonathan K; Oomens, Jos
2015-09-24
Conformational preferences have been surveyed for divalent metal cation complexes with the dipeptide ligands AlaPhe, PheAla, GlyHis, and HisGly. Density functional theory results for a full set of complexes are presented, and previous experimental infrared spectra, supplemented by a number of newly recorded spectra obtained with infrared multiple photon dissociation spectroscopy, provide experimental verification of the preferred conformations in most cases. The overall structural features of these complexes are shown, and attention is given to comparisons involving peptide sequence, nature of the metal ion, and nature of the side-chain anchor. A regular progression is observed as a function of binding strength, whereby the weakly binding metal ions (Ba(2+) to Ca(2+)) transition from carboxylate zwitterion (ZW) binding to charge-solvated (CS) binding, while the stronger binding metal ions (Ca(2+) to Mg(2+) to Ni(2+)) transition from CS binding to metal-ion-backbone binding (Iminol) by direct metal-nitrogen bonds to the deprotonated amide nitrogens. Two new sequence-dependent reversals are found between ZW and CS binding modes, such that Ba(2+) and Ca(2+) prefer ZW binding in the GlyHis case but prefer CS binding in the HisGly case. The overall binding strength for a given metal ion is not strongly dependent on the sequence, but the histidine peptides are significantly more strongly bound (by 50-100 kJ mol(-1)) than the phenylalanine peptides.
The effect of different control point sampling sequences on convergence of VMAT inverse planning
NASA Astrophysics Data System (ADS)
Pardo Montero, Juan; Fenwick, John D.
2011-04-01
A key component of some volumetric-modulated arc therapy (VMAT) optimization algorithms is the progressive addition of control points to the optimization. This idea was introduced in Otto's seminal VMAT paper, in which a coarse sampling of control points was used at the beginning of the optimization and new control points were progressively added one at a time. A different form of the methodology is also present in the RapidArc optimizer, which adds new control points in groups called 'multiresolution levels', each doubling the number of control points in the optimization. This progressive sampling accelerates convergence, improving the results obtained, and has similarities with the ordered subset algorithm used to accelerate iterative image reconstruction. In this work we have used a VMAT optimizer developed in-house to study the performance of optimization algorithms which use different control point sampling sequences, most of which fall into three different classes: doubling sequences, which add new control points in groups such that the number of control points in the optimization is (roughly) doubled; Otto-like progressive sampling which adds one control point at a time, and equi-length sequences which contain several multiresolution levels each with the same number of control points. Results are presented in this study for two clinical geometries, prostate and head-and-neck treatments. A dependence of the quality of the final solution on the number of starting control points has been observed, in agreement with previous works. We have found that some sequences, especially E20 and E30 (equi-length sequences with 20 and 30 multiresolution levels, respectively), generate better results than a 5 multiresolution level RapidArc-like sequence. The final value of the cost function is reduced up to 20%, such reductions leading to small improvements in dosimetric parameters characterizing the treatments—slightly more homogeneous target doses and better sparing of the organs at risk.
System, method and apparatus for generating phrases from a database
NASA Technical Reports Server (NTRS)
McGreevy, Michael W. (Inventor)
2004-01-01
A phrase generation is a method of generating sequences of terms, such as phrases, that may occur within a database of subsets containing sequences of terms, such as text. A database is provided and a relational model of the database is created. A query is then input. The query includes a term or a sequence of terms or multiple individual terms or multiple sequences of terms or combinations thereof. Next, several sequences of terms that are contextually related to the query are assembled from contextual relations in the model of the database. The sequences of terms are then sorted and output. Phrase generation can also be an iterative process used to produce sequences of terms from a relational model of a database.
Foltz, T M; Welsh, B M
1999-01-01
This paper uses the fact that the discrete Fourier transform diagonalizes a circulant matrix to provide an alternate derivation of the symmetric convolution-multiplication property for discrete trigonometric transforms. Derived in this manner, the symmetric convolution-multiplication property extends easily to multiple dimensions using the notion of block circulant matrices and generalizes to multidimensional asymmetric sequences. The symmetric convolution of multidimensional asymmetric sequences can then be accomplished by taking the product of the trigonometric transforms of the sequences and then applying an inverse trigonometric transform to the result. An example is given of how this theory can be used for applying a two-dimensional (2-D) finite impulse response (FIR) filter with nonlinear phase which models atmospheric turbulence.
The role of radiation therapy in the treatment of solitary plasmacytomas.
Mayr, N A; Wen, B C; Hussey, D H; Burns, C P; Staples, J J; Doornbos, J F; Vigliotti, A P
1990-04-01
Between 1960 and 1985, 30 patients with solitary plasmacytomas were treated with radiotherapy at the University of Iowa: 13 patients with extramedullary plasmacytomas (EMP) and 17 with solitary plasmacytomas of bone (SPB). The local control rates were 92% for patients with EMP and 88% for those with SPB. Two of nine patients (22%) with EMP treated to the primary tumor only developed regional lymph node metastasis, indicating the need for elective irradiation of this area. The most common pattern of failure in both groups was progression to multiple myeloma. This occurred in 23% of the patients with EMP and 53% of those with SPB. The time course of progression to multiple myeloma differed for the two groups. All of those who progressed to multiple myeloma in the EMP group did so within 2 years, whereas a significant number of those in the SPB group progressed more than 5 years after initial therapy. None of five patients who received adjuvant chemotherapy in the SPB group progressed to multiple myeloma, compared to 75% (9/12) of the patients who did not receive chemotherapy.
Identification of Prostate Cancer-Specific microDNAs
2016-02-01
circular DNA by rolling circle amplification (RCA) and then amplified DNA fragments were subject to deep sequencing. Deep sequencing of the...demonstrate the existence of microDNAs in prostate cancer. We adopted multiple displacement amplification (MDA) with random 2 primers for enriched...prostate cancer cells through multiple displacement amplification and next generation sequencing. R e la ti v e c e ll g ro w th ( % ) 0 20
Multiple sclerosis - etiology and diagnostic potential.
Kamińska, Joanna; Koper, Olga M; Piechal, Kinga; Kemona, Halina
2017-06-30
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of autoimmune originate. The main agents responsible for the MS development include exogenous, environmental, and genetic factors. MS is characterized by multifocal and temporally scattered central nervous system (CNS) damage which lead to the axonal damage. Among clinical courses of MS it can be distinguish relapsing-remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPSM), primary progressive multiple sclerosis (PPMS), and progressive-relapsing multiple sclerosis (RPMS). Depending on the severity of signs and symptoms MS can be described as benign MS or malignant MS. MS diagnosis is based on McDonald's diagnostic criteria, which link clinical manifestation with characteristic lesions demonstrated by magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis, and visual evoked potentials. Among CSF laboratory tests used to the MS diagnosis are applied: Tibbling & Link IgG index, reinbegrams, and CSF isoelectrofocusing for oligoclonal bands detection. It should be emphasized, that despite huge progress regarding MS as well as the availability of different diagnostics methods this disease is still a diagnostic challenge. It may result from fact that MS has diverse clinical course and there is a lack of single test, which would be of appropriate diagnostic sensitivity and specificity for quick and accurate diagnosis.
Gaspar'ian, A V; Sel'chuk, V Iu; Iakubovskaia, M G; Zborovskaia, I B; Tatosian, A G
1997-01-01
Restriction fragment length polymorphism in the human c-Ha-ras-1 locus, associated with a minisatellite sequence, was examined in 45 multiple primary cancer (MPC) patients, 56 patients with squamous cell lung cancer (SCLC), 21 patients with lung adenocarcinoma (LAC), and 53 individuals having no oncopathology. Southern analysis of cellular DNA revealed the presence of 4 common alleles (with collective allele frequency close to 94% in the control group) and a set of rare alleles. Allele a3, (2.1 kb in size under MspI/HpaII digestion) was shown to be more frequent in the MPC than in the control group. The same tendency was observed in the patients with highly differentiated cell lung cancer. An increased frequency of the a4 allele (2.5 kb under MspI/HpaII digestion) was observed in the patients with adenocarcinomas as well as in the patients with metastases and low levels of tumor tissue differentiation. The elevated frequencies of a3 in the MPC group and of a4 in the LAC patients did not correlate with increased risk of the cancers mentioned above but was associated with type of tumor progression. Previously, it was reported that the mini-satellite sequence within the c-Ha-ras-1 locus possesses enhancer activity. Our data indirectly confirm the hypothesis that the efficiency of minisatellite modulator activity is associated with fragment size.
Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea.
Miller, Allison; Schaal, Barbara
2005-09-06
Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated fruit tree. Sequences of the chloroplast spacer trnG-trnS were obtained for cultivated and wild S. purpurea trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated fruit tree. Haplotypes detected in S. purpurea trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG-trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea.
Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea
Miller, Allison; Schaal, Barbara
2005-01-01
Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated fruit tree. Sequences of the chloroplast spacer trnG–trnS were obtained for cultivated and wild S. purpurea trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated fruit tree. Haplotypes detected in S. purpurea trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG–trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea. PMID:16126899
Applying Agrep to r-NSA to solve multiple sequences approximate matching.
Ni, Bing; Wong, Man-Hon; Lam, Chi-Fai David; Leung, Kwong-Sak
2014-01-01
This paper addresses the approximate matching problem in a database consisting of multiple DNA sequences, where the proposed approach applies Agrep to a new truncated suffix array, r-NSA. The construction time of the structure is linear to the database size, and the computations of indexing a substring in the structure are constant. The number of characters processed in applying Agrep is analysed theoretically, and the theoretical upper-bound can approximate closely the empirical number of characters, which is obtained through enumerating the characters in the actual structure built. Experiments are carried out using (synthetic) random DNA sequences, as well as (real) genome sequences including Hepatitis-B Virus and X-chromosome. Experimental results show that, compared to the straight-forward approach that applies Agrep to multiple sequences individually, the proposed approach solves the matching problem in much shorter time. The speed-up of our approach depends on the sequence patterns, and for highly similar homologous genome sequences, which are the common cases in real-life genomes, it can be up to several orders of magnitude.
Heller, G; Topakian, T; Altenberger, C; Cerny-Reiterer, S; Herndlhofer, S; Ziegler, B; Datlinger, P; Byrgazov, K; Bock, C; Mannhalter, C; Hörmann, G; Sperr, W R; Lion, T; Zielinski, C C; Valent, P; Zöchbauer-Müller, S
2016-01-01
Little is known about the impact of DNA methylation on the evolution/progression of Ph+ chronic myeloid leukemia (CML). We investigated the methylome of CML patients in chronic phase (CP-CML), accelerated phase (AP-CML) and blast crisis (BC-CML) as well as in controls by reduced representation bisulfite sequencing. Although only ~600 differentially methylated CpG sites were identified in samples obtained from CP-CML patients compared with controls, ~6500 differentially methylated CpG sites were found in samples from BC-CML patients. In the majority of affected CpG sites, methylation was increased. In CP-CML patients who progressed to AP-CML/BC-CML, we identified up to 897 genes that were methylated at the time of progression but not at the time of diagnosis. Using RNA-sequencing, we observed downregulated expression of many of these genes in BC-CML compared with CP-CML samples. Several of them are well-known tumor-suppressor genes or regulators of cell proliferation, and gene re-expression was observed by the use of epigenetic active drugs. Together, our results demonstrate that CpG site methylation clearly increases during CML progression and that it may provide a useful basis for revealing new targets of therapy in advanced CML. PMID:27211271
NASA Astrophysics Data System (ADS)
Adams, M.; Ji, C.
2017-12-01
The November 14th 2016 MW 7.8 Kaikoura, New Zealand earthquake occurred along the east coast of the northern part of the South Island. The local tectonic setting is complicated. The central South Island is dominated by oblique continental convergence, whereas the southern part of this island experiences eastward subduction of the Australian plate. Available information (e.g., Hamling et al., 2017; Bradley et al., 2017) indicate that this earthquake involved multiple fault segments of the Marlborough fault system (MFS) as the rupture propagated northwards for more than 150 km. Additional slip might also occur on the subduction interface of the Pacific plate under the Australian plate, beneath the MFS. However, the exact number of involved fault segments as well as the temporal co-seismic rupture sequence has not been fully determined with geodetic and geological observations. Knowledge of the kinematics of complex fault interactions has important implications for our understanding of global seismic hazards, particularly to relatively unmodeled multisegment ruptures. Understanding the Kaikoura earthquake will provide insight into how one incorporates multi-fault ruptures in seismic-hazard models. We propose to apply a multiple double-couple inversion to determine the fault geometry and spatiotemporal rupture history using teleseismic and strong motion waveforms, before constraining the detailed slip history using both seismic and geodetic data. The Kaikoura earthquake will be approximated as the summation of multiple subevents—each represented as a double-couple point source, characterized by i) fault geometry (strike, dip and rake), ii) seismic moment, iii) centroid time, iv) half-duration and v) location (latitude, longitude and depth), a total of nine variables. We progressively increase the number of point sources until the additional source cannot produce significant improvement to the observations. Our preliminary results using only teleseismic data indicate that, broadly speaking, the sequence of fault planes dips towards the northwest and the motion of slip is largely to the northeast. Sequence and timing of the rupturing faults is still to be determined.
2015-12-01
Multiple Sclerosis ? PRINCIPAL INVESTIGATOR: David Pleasure MD CONTRACTING ORGANIZATION: University of California Davis, CA 95618 REPORT DATE...Murine Model of Progressive Multiple Sclerosis ? 5b. GRANT NUMBER W81XWH-12-1-0566 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David Pleasure MD 5d...enhance central nervous system (CNS) remyelination and preserve CNS axons in mouse models of multiple sclerosis models. After determining the dosage of
Blaustein, Ryan A; Lorca, Graciela L; Meyer, Julie L; Gonzalez, Claudio F; Teplitski, Max
2017-06-01
Stable associations between plants and microbes are critical to promoting host health and productivity. The objective of this work was to test the hypothesis that restructuring of the core microbiota may be associated with the progression of huanglongbing (HLB), the devastating citrus disease caused by Liberibacter asiaticus , Liberibacter americanus , and Liberibacter africanus The microbial communities of leaves ( n = 94) and roots ( n = 79) from citrus trees that varied by HLB symptom severity, cultivar, location, and season/time were characterized with Illumina sequencing of 16S rRNA genes. The taxonomically rich communities contained abundant core members (i.e., detected in at least 95% of the respective leaf or root samples), some overrepresented site-specific members, and a diverse community of low-abundance variable taxa. The composition and diversity of the leaf and root microbiota were strongly associated with HLB symptom severity and location; there was also an association with host cultivar. The relative abundance of Liberibacter spp. among leaf microbiota positively correlated with HLB symptom severity and negatively correlated with alpha diversity, suggesting that community diversity decreases as symptoms progress. Network analysis of the microbial community time series identified a mutually exclusive relationship between Liberibacter spp. and members of the Burkholderiaceae , Micromonosporaceae , and Xanthomonadaceae This work confirmed several previously described plant disease-associated bacteria, as well as identified new potential implications for biological control. Our findings advance the understanding of (i) plant microbiota selection across multiple variables and (ii) changes in (core) community structure that may be a precondition to disease establishment and/or may be associated with symptom progression. IMPORTANCE This study provides a comprehensive overview of the core microbial community within the microbiomes of plant hosts that vary in extent of disease symptom progression. With 16S Illumina sequencing analyses, we not only confirmed previously described bacterial associations with plant health (e.g., potentially beneficial bacteria) but also identified new associations and potential interactions between certain bacteria and an economically important phytopathogen. The importance of core taxa within broader plant-associated microbial communities is discussed. Copyright © 2017 American Society for Microbiology.
Jaschob, Daniel; Davis, Trisha N; Riffle, Michael
2014-07-23
As high throughput sequencing continues to grow more commonplace, the need to disseminate the resulting data via web applications continues to grow. Particularly, there is a need to disseminate multiple versions of related gene and protein sequences simultaneously--whether they represent alleles present in a single species, variations of the same gene among different strains, or homologs among separate species. Often this is accomplished by displaying all versions of the sequence at once in a manner that is not intuitive or space-efficient and does not facilitate human understanding of the data. Web-based applications needing to disseminate multiple versions of sequences would benefit from a drop-in module designed to effectively disseminate these data. SnipViz is a client-side software tool designed to disseminate multiple versions of related gene and protein sequences on web sites. SnipViz has a space-efficient, interactive, and dynamic interface for navigating, analyzing and visualizing sequence data. It is written using standard World Wide Web technologies (HTML, Javascript, and CSS) and is compatible with most web browsers. SnipViz is designed as a modular client-side web component and may be incorporated into virtually any web site and be implemented without any programming. SnipViz is a drop-in client-side module for web sites designed to efficiently visualize and disseminate gene and protein sequences. SnipViz is open source and is freely available at https://github.com/yeastrc/snipviz.
Generating Models of Surgical Procedures using UMLS Concepts and Multiple Sequence Alignment
Meng, Frank; D’Avolio, Leonard W.; Chen, Andrew A.; Taira, Ricky K.; Kangarloo, Hooshang
2005-01-01
Surgical procedures can be viewed as a process composed of a sequence of steps performed on, by, or with the patient’s anatomy. This sequence is typically the pattern followed by surgeons when generating surgical report narratives for documenting surgical procedures. This paper describes a methodology for semi-automatically deriving a model of conducted surgeries, utilizing a sequence of derived Unified Medical Language System (UMLS) concepts for representing surgical procedures. A multiple sequence alignment was computed from a collection of such sequences and was used for generating the model. These models have the potential of being useful in a variety of informatics applications such as information retrieval and automatic document generation. PMID:16779094
Jenista, Elizabeth R; Stokes, Ashley M; Branca, Rosa Tamara; Warren, Warren S
2009-11-28
A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.
Texture analysis of common renal masses in multiple MR sequences for prediction of pathology
NASA Astrophysics Data System (ADS)
Hoang, Uyen N.; Malayeri, Ashkan A.; Lay, Nathan S.; Summers, Ronald M.; Yao, Jianhua
2017-03-01
This pilot study performs texture analysis on multiple magnetic resonance (MR) images of common renal masses for differentiation of renal cell carcinoma (RCC). Bounding boxes are drawn around each mass on one axial slice in T1 delayed sequence to use for feature extraction and classification. All sequences (T1 delayed, venous, arterial, pre-contrast phases, T2, and T2 fat saturated sequences) are co-registered and texture features are extracted from each sequence simultaneously. Random forest is used to construct models to classify lesions on 96 normal regions, 87 clear cell RCCs, 8 papillary RCCs, and 21 renal oncocytomas; ground truths are verified through pathology reports. The highest performance is seen in random forest model when data from all sequences are used in conjunction, achieving an overall classification accuracy of 83.7%. When using data from one single sequence, the overall accuracies achieved for T1 delayed, venous, arterial, and pre-contrast phase, T2, and T2 fat saturated were 79.1%, 70.5%, 56.2%, 61.0%, 60.0%, and 44.8%, respectively. This demonstrates promising results of utilizing intensity information from multiple MR sequences for accurate classification of renal masses.
Cui, Zhihua; Zhang, Yi
2014-02-01
As a promising and innovative research field, bioinformatics has attracted increasing attention recently. Beneath the enormous number of open problems in this field, one fundamental issue is about the accurate and efficient computational methodology that can deal with tremendous amounts of data. In this paper, we survey some applications of swarm intelligence to discover patterns of multiple sequences. To provide a deep insight, ant colony optimization, particle swarm optimization, artificial bee colony and artificial fish swarm algorithm are selected, and their applications to multiple sequence alignment and motif detecting problem are discussed.
Score distributions of gapped multiple sequence alignments down to the low-probability tail
NASA Astrophysics Data System (ADS)
Fieth, Pascal; Hartmann, Alexander K.
2016-08-01
Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.
Detection of somatic, subclonal and mosaic CNVs from sequencing | Division of Cancer Prevention
Progress in technology has made individual genome sequencing a clinical reality, with partial genome sequencing already in use in clinical care. In fact, it is expected that within a few years whole genome sequencing will be a standard procedure that will allow discovering personal genomic variants of all types and thus greatly facilitate individualized medicine. However, fast
Ghafari, Somayeh; Ahmadi, Fazlolah; Nabavi, Masoud; Anoshirvan, Kazemnejad; Memarian, Robabe; Rafatbakhsh, Mohamad
2009-08-01
To identify the effects of applying Progressive Muscle Relaxation Technique on Quality of Life of patients with multiple Sclerosis. In view of the growing caring options in Multiple Sclerosis, improvement of quality of life has become increasingly relevant as a caring intervention. Complementary therapies are widely used by multiple sclerosis patients and Progressive Muscle Relaxation Technique is a form of complementary therapies. Quasi-experimental study. Multiple Sclerosis patients (n = 66) were selected with no probability sampling then assigned to experimental and control groups (33 patients in each group). Means of data collection included: Individual Information Questionnaire, SF-8 Health Survey, Self-reported checklist. PMRT performed for 63 sessions by experimental group during two months but no intervention was done for control group. Statistical analysis was done by SPSS software. Student t-test showed that there was no significant difference between two groups in mean scores of health-related quality of life before the study but this test showed a significant difference between two groups, one and two months after intervention (p < 0.05). anova test with repeated measurements showed that there is a significant difference in mean score of whole and dimensions of health-related quality of life between two groups in three times (p < 0.05). Although this study provides modest support for the effectiveness of Progressive Muscle Relaxation Technique on quality of life of multiple sclerosis patients, further research is required to determine better methods to promote quality of life of patients suffer multiple sclerosis and other chronic disease. Progressive Muscle Relaxation Technique is practically feasible and is associated with increase of life quality of multiple sclerosis patients; so that health professionals need to update their knowledge about complementary therapies.
[The human variome project and its progress].
Gao, Shan; Zhang, Ning; Zhang, Lei; Duan, Guang-You; Zhang, Tao
2010-11-01
The main goal of post genomics is to explain how the genome, the map of which has been constructed in the Human Genome Project, affacts activities of life. This leads to generate multiple "omics": structural genomics, functional genomics, proteomics, metabonomics, et al. In Jun. 2006, Melbourne, Australia, Human Genome Variation Society (HGVS) initiated the Human Variome Project (HVP) to collect all the sequence variation and polymorphism data worldwidely. HVP is to search and determine those mutations related with human diseases by association study between genetype and phenotype on the scale of genome level and other methods. Those results will be translated into clinical application. Considering the potential effects of this project on human health, this paper introduced its origin and main content in detail and discussed its meaning and prospect.
Comparative Planetology - Atmospheres and Aeronomy
NASA Astrophysics Data System (ADS)
Huestis, D. L.
2006-05-01
The Earth, planets, moons, comets, and other small bodies in the solar system are quite diverse, yet share a number of characteristics. Each has something to teach us about the others and about the extrasolar planets we are now discovering. Having multiple examples of similar phenomena under different local conditions provides the best means of identifying the underlying mechanisms and of quantitative testing of our understanding. This special session is one of a sequence of events attempting to define and document the comparative planetology vision and provide specific recommendations for actions by the research community and the funding agencies. This presentation will summarize the progress so far and solicit additional ideas and suggestions from the research community, with an emphasis on the atmosphere and aeronomy of the Earth, planets, moons, and comets in the solar system.
Molecular Approaches to Thyroid Cancer Diagnosis
Hsiao, Susan J.; Nikiforov, Yuri E.
2014-01-01
Thyroid nodules are common, and the accurate diagnosis of cancer or benign disease is important for the effective clinical management of these patients. Molecular markers are a helpful diagnostic tool, particularly for cytologically indeterminate thyroid nodules. In the past few years, significant progress has been made in developing molecular markers for clinical use in fine needle aspiration (FNA) specimens, including gene mutation panels and gene expression classifiers. With the availability of next generation sequencing technology, gene mutation panels can be expanded to interrogate multiple genes simultaneously and to provide yet more accurate diagnostic information. In addition, recently several new molecular markers in thyroid cancer have been identified that offer diagnostic, prognostic, and therapeutic information that could potentially be of value in guiding individualized management of patients with thyroid nodules. PMID:24829266
BlockLogo: visualization of peptide and sequence motif conservation
Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian; Sun, Jing; Schönbach, Christian; Reinherz, Ellis L.; Zhang, Guang Lan; Brusic, Vladimir
2013-01-01
BlockLogo is a web-server application for visualization of protein and nucleotide fragments, continuous protein sequence motifs, and discontinuous sequence motifs using calculation of block entropy from multiple sequence alignments. The user input consists of a multiple sequence alignment, selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms to enable on-the-fly prediction of MHC binding affinity to 15 common HLA class I and class II alleles as well as visual analysis of discontinuous epitopes from multiple sequence alignments. It enables the visualization and analysis of structural and functional motifs that are usually described as regular expressions. It provides a compact view of discontinuous motifs composed of distant positions within biological sequences. BlockLogo is available at: http://research4.dfci.harvard.edu/cvc/blocklogo/ and http://methilab.bu.edu/blocklogo/ PMID:24001880
Li, Ruichao; Xie, Miaomiao; Dong, Ning; Lin, Dachuan; Yang, Xuemei; Wong, Marcus Ho Yin; Chan, Edward Wai-Chi; Chen, Sheng
2018-03-01
Multidrug resistance (MDR)-encoding plasmids are considered major molecular vehicles responsible for transmission of antibiotic resistance genes among bacteria of the same or different species. Delineating the complete sequences of such plasmids could provide valuable insight into the evolution and transmission mechanisms underlying bacterial antibiotic resistance development. However, due to the presence of multiple repeats of mobile elements, complete sequencing of MDR plasmids remains technically complicated, expensive, and time-consuming. Here, we demonstrate a rapid and efficient approach to obtaining multiple MDR plasmid sequences through the use of the MinION nanopore sequencing platform, which is incorporated in a portable device. By assembling the long sequencing reads generated by a single MinION run according to a rapid barcoding sequencing protocol, we obtained the complete sequences of 20 plasmids harbored by multiple bacterial strains. Importantly, single long reads covering a plasmid end-to-end were recorded, indicating that de novo assembly may be unnecessary if the single reads exhibit high accuracy. This workflow represents a convenient and cost-effective approach for systematic assessment of MDR plasmids responsible for treatment failure of bacterial infections, offering the opportunity to perform detailed molecular epidemiological studies to probe the evolutionary and transmission mechanisms of MDR-encoding elements.
Frost, Julia; Grose, Jane; Britten, Nicky
2017-05-01
This article explores how people with progressive multiple sclerosis give meaning to their experiences. It builds upon the self-management literature, which has captured the tension between the desire for retaining normalcy and the increasing burden of self-management associated with chronic disease progression. This repeat interview study is empirically grounded in 28 interviews with 14 people with progressive multiple sclerosis. We identified gender differences in diagnosis-seeking which impacted subsequent sense-making. Male respondents found a diagnosis of multiple sclerosis difficult to come to terms with, and an enduring sense of loss or anger could inhibit further sense-making. A diagnosis of multiple sclerosis was more difficult to obtain for women respondents, and any sense of certainty that diagnosis provided framed their subsequent sense-making strategies. The complex sequelae of multiple sclerosis require that self-management strategies are both contextual and timely, although even the most accomplished self-managers can lose their sense of self with neurodegeneration. Disease progression can be associated with suicidal ideation, suggesting the need for greater dialogue to ensure that people with multiple sclerosis are adequately supported to fulfil their quality of life at all stages of neurodegeneration. These lay perspectives emphasise the articulation of affect rather than the rendering of a medical diagnosis, although diagnosis may provide a degree of certainty in the short term. The ethos of self-management ensures people attempt to retain their sense of 'normality' and existent social roles for as long as possible, but this ethos can negate both one's ability to self-manage and the management of self.
Herrera, Alex F; Kim, Haesook T; Kong, Katherine A; Faham, Malek; Sun, Heather; Sohani, Aliyah R; Alyea, Edwin P; Carlton, Victoria E; Chen, Yi-Bin; Cutler, Corey S; Ho, Vincent T; Koreth, John; Kotwaliwale, Chitra; Nikiforow, Sarah; Ritz, Jerome; Rodig, Scott J; Soiffer, Robert J; Antin, Joseph H; Armand, Philippe
2016-12-01
Next-generation sequencing (NGS)-based circulating tumour DNA (ctDNA) detection is a promising monitoring tool for lymphoid malignancies. We evaluated whether the presence of ctDNA was associated with outcome after allogeneic haematopoietic stem cell transplantation (HSCT) in lymphoma patients. We studied 88 patients drawn from a phase 3 clinical trial of reduced-intensity conditioning HSCT in lymphoma. Conventional restaging and collection of peripheral blood samples occurred at pre-specified time points before and after HSCT and were assayed for ctDNA by sequencing of the immunoglobulin or T-cell receptor genes. Tumour clonotypes were identified in 87% of patients with adequate tumour samples. Sixteen of 19 (84%) patients with disease progression after HSCT had detectable ctDNA prior to progression at a median of 3·7 months prior to relapse/progression. Patients with detectable ctDNA 3 months after HSCT had inferior progression-free survival (PFS) (2-year PFS 58% vs. 84% in ctDNA-negative patients, P = 0·033). In multivariate models, detectable ctDNA was associated with increased risk of progression/death (Hazard ratio 3·9, P = 0·003) and increased risk of relapse/progression (Hazard ratio 10·8, P = 0·0006). Detectable ctDNA is associated with an increased risk of relapse/progression, but further validation studies are necessary to confirm these findings and determine the clinical utility of NGS-based minimal residual disease monitoring in lymphoma patients after HSCT. © 2016 John Wiley & Sons Ltd.
Phylo-VISTA: Interactive visualization of multiple DNA sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.
The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. Results: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a frameworkmore » based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. Availability: Phylo-VISTA is available at http://www-gsd.lbl. gov/phylovista. It requires an Internet browser with Java Plugin 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu« less
Janssen, Imke; Powell, Lynda H; Jasielec, Mateusz S; Matthews, Karen A; Hollenberg, Steven M; Sutton-Tyrrell, Kim; Everson-Rose, Susan A
2012-02-01
Black women experience higher rates of cardiovascular disease (CVD) than white women, though evidence for racial differences in subclinical CVD is mixed. Few studies have examined multiple roles (number, perceived stress, and/or reward) in relation to subclinical CVD, or whether those effects differ by race. The aim of this study was to investigate the effects of multiple roles on 2-year progression of coronary artery calcium. Subjects were 104 black and 232 white women (mean age 50.8 years). Stress and reward from four roles (spouse, parent, employee, caregiver) were assessed on five-point scales. Coronary artery calcium progression was defined as an increase of ≥10 Agatston units. White women reported higher rewards from their multiple roles than black women, yet black women showed cardiovascular benefits from role rewards. Among black women only, higher role rewards were related significantly to lower progression of coronary artery calcium, adjusting for body mass index, blood pressure, and other known CVD risk factors. Blacks reported fewer roles but similar role stress as whites; role number and stress were unrelated to coronary artery calcium progression. Rewarding roles may be a novel protective psychosocial factor for progression of coronary calcium among black women.
State-of-the-Art Management for the Patient with Castration-Resistant Prostate Cancer in 2012.
Sartor, Oliver
2012-01-01
Much progress has been made in metastatic castration-resistant prostate cancer (CRPC), and multiple new U.S. Food and Drug Administration (FDA)-approved survival-prolonging drugs are now available. In 2004, docetaxel/prednisone was the first therapy shown to prolong survival. In 2010 and 2011, sipuleucel-T, cabazitaxel/prednisone, and abiraterone/prednisone were FDA approved. Two new agents, radium-223 and MDV-3100, have recently reported large phase III trials prolonging overall survival and will be submitted for regulatory approval in 2012. One can now begin to ask, is there an optimal sequence for therapies in metastatic CRPC? Despite the recent progress, there is much we do not know and virtually no information on this important question. We know that abiraterone/prednisone and cabazitaxel/prednisone are appropriate choices for a patient after receiving docetaxel, but we do not know what, if anything, represents the optimal sequence for abiraterone and cabazitaxel. In fact we do not understand how one therapy may affect the response to a subsequent therapy. We are also aware that the pre- and postdocetaxel spaces represent regulatory rather than biologic divisions. In addition, despite the proven role of docetaxel/prednisone, many patients with CRPC are not considered to be suitable for chemotherapy, and worldwide many never receive any form of chemotherapy. What is the optimal management for these patients? Taken together it is reasonable to assess patient preferences, prior therapies and response/tolerance to prior therapies, burden of disease, comorbidities, current symptoms, drug toxicities, out-of-pocket costs, etc., in clinical decision making. Given the many factors we do not know, it is hard to be dogmatic in approaching the therapeutic options for the patient with CRPC. We will likely soon move beyond the current sequencing paradigm and begin to assess new combinations in a systematic and rational fashion. Perhaps one day, in the not too distant future, we will develop molecular "stratification systems" to better guide therapeutic choices in CRPC.
Wilbe Ramsay, Karin; Alaeus, Annette; Albert, Jan; Leitner, Thomas
2011-01-01
The molecular evolution of HIV-1 is characterized by frequent substitutions, indels and recombination events. In addition, a HIV-1 population may adapt through frequency changes of its variants. To reveal such population dynamics we analyzed HIV-1 subpopulation frequencies in an untreated patient with stable, low plasma HIV-1 RNA levels and close to normal CD4+ T-cell levels. The patient was intensively sampled during a 32-day period as well as approximately 1.5 years before and after this period (days −664, 1, 2, 3, 11, 18, 25, 32 and 522). 77 sequences of HIV-1 env (approximately 3100 nucleotides) were obtained from plasma by limiting dilution with 7–11 sequences per time point, except day −664. Phylogenetic analysis using maximum likelihood methods showed that the sequences clustered in six distinct subpopulations. We devised a method that took into account the relatively coarse sampling of the population. Data from days 1 through 32 were consistent with constant within-patient subpopulation frequencies. However, over longer time periods, i.e. between days 1…32 and 522, there were significant changes in subpopulation frequencies, which were consistent with evolutionarily neutral fluctuations. We found no clear signal of natural selection within the subpopulations over the study period, but positive selection was evident on the long branches that connected the subpopulations, which corresponds to >3 years as the subpopulations already were established when we started the study. Thus, selective forces may have been involved when the subpopulations were established. Genetic drift within subpopulations caused by de novo substitutions could be resolved after approximately one month. Overall, we conclude that subpopulation frequencies within this patient changed significantly over a time period of 1.5 years, but that this does not imply directional or balancing selection. We show that the short-term evolution we study here is likely representative for many patients of slow and normal disease progression. PMID:21829600
G. Lavoie, Elise; Dranoff, Jonathan A.
2017-01-01
Liver myofibroblasts are specialized effector cells that drive hepatic fibrosis, a hallmark process of chronic liver diseases, leading to progressive scar formation and organ failure. Liver myofibroblasts are increasingly recognized as heterogeneous with regards to their origin, phenotype, and functions. For instance, liver myofibroblasts express cell markers that are universally represented such as, ItgαV and Pdgfrβ, or restricted to a given subpopulation such as, Lrat exclusively expressed in hepatic stellate cells, and Gpm6a in mesothelial cells. To study liver myofibroblasts in vitro, we have previously generated and characterized a SV40-immortalized polyclonal rat activated portal fibroblast cell line called RGF-N2 expressing multiple mesothelin mRNA transcripts. Mesothelin, a cell-surface molecule expressed in normal mesothelial cells and overexpressed in several cancers such as, mesothelioma and cholangiocarcinoma, was recently identified as a key regulator of portal myofibroblast proliferation, and fibrosis progression in the setting of chronic cholestatic liver disease. Here, we identify novel mesothelin splice variants expressed in rat activated portal fibroblasts. RGF-N2 portal fibroblast cDNA was used as template for insertion of hemagglutinin tag consensus sequence into the complete open reading frame of rat mesothelin variant coding sequences by extension PCR. Purified amplicons were subsequently cloned into an expression vector for in vitro translation and transfection in monkey COS7 fibroblasts, before characterization of fusion proteins by immunoblot and immunofluorescence. We show that rat activated portal fibroblasts, hepatic stellate cells, and cholangiocarcinoma cells express wild-type mesothelin and additional splice variants, while mouse activated hepatic stellate cells appear to only express wild-type mesothelin. Notably, rat mesothelin splice variants differ from the wild-type isoform by their protein properties and cellular distribution in transfected COS7 fibroblasts. We conclude that mesothelin is a marker of activated murine liver myofibroblasts. Mesothelin gene expression and regulation may be critical in liver myofibroblasts functions and fibrosis progression. PMID:28898276
Song, Dongliang; Hu, Liangning; Xie, Bingqian; Wang, Houcai; Gao, Lu; Gao, Minjie; Xu, Hongwei; Xu, Zhijian; Wu, Xiaosong; Zhang, Yiwen; Zhu, Weiliang; Zhan, Fenghuang; Shi, Jumei
2017-01-01
AAA-ATPase TRIP13 is one of the chromosome instability gene recently established in multiple myeloma (MM), the second most common and incurable hematological malignancy. However, the specific function of TRIP13 in MM is largely unknown. Using sequential gene expression profiling, we demonstrated that high TRIP13 expression levels were positively correlated with progression, disease relapse, and poor prognosis in MM patients. Overexpressing human TRIP13 in myeloma cells prompted cell growth and drug resistance, and overexpressing murine TRIP13, which shares 93% sequence identity with human TRIP13, led to colony formation of NIH/3T3 fibroblasts in vitro and tumor formation in vivo. Meanwhile, the knockdown of TRIP13 inhibited myeloma cell growth, induced cell apoptosis, and reduced tumor burden in xenograft MM mice. Mechanistically, we observed that the overexpression of TRIP13 abrogated the spindle checkpoint and induced proteasome-mediated degradation of MAD2 primarily through the Akt pathway. Thus, our results demonstrate that TRIP13 may serve as a biomarker for MM disease development and prognosis, making it a potential target for future therapies. PMID:28157697
Blixt, Maria K E; Hallböök, Finn
2016-01-01
Combining techniques of episomal vector gene-specific Cre expression and genomic integration using the piggyBac transposon system enables studies of gene expression-specific cell lineage tracing in the chicken retina. In this work, we aimed to target the retinal horizontal cell progenitors. A 208 bp gene regulatory sequence from the chicken retinoid X receptor γ gene (RXRγ208) was used to drive Cre expression. RXRγ is expressed in progenitors and photoreceptors during development. The vector was combined with a piggyBac "donor" vector containing a floxed STOP sequence followed by enhanced green fluorescent protein (EGFP), as well as a piggyBac helper vector for efficient integration into the host cell genome. The vectors were introduced into the embryonic chicken retina with in ovo electroporation. Tissue electroporation targets specific developmental time points and in specific structures. Cells that drove Cre expression from the regulatory RXRγ208 sequence excised the floxed STOP-sequence and expressed GFP. The approach generated a stable lineage with robust expression of GFP in retinal cells that have activated transcription from the RXRγ208 sequence. Furthermore, GFP was expressed in cells that express horizontal or photoreceptor markers when electroporation was performed between developmental stages 22 and 28. Electroporation of a stage 12 optic cup gave multiple cell types in accordance with RXRγ gene expression in the early retina. In this study, we describe an easy, cost-effective, and time-efficient method for testing regulatory sequences in general. More specifically, our results open up the possibility for further studies of the RXRγ-gene regulatory network governing the formation of photoreceptor and horizontal cells. In addition, the method presents approaches to target the expression of effector genes, such as regulators of cell fate or cell cycle progression, to these cells and their progenitor.
The set of triple-resonance sequences with a multiple quantum coherence evolution period
NASA Astrophysics Data System (ADS)
Koźmiński, Wiktor; Zhukov, Igor
2004-12-01
The new pulse sequence building block that relies on evolution of heteronuclear multiple quantum coherences is proposed. The particular chemical shifts are obtained in multiple quadrature, using linear combinations of frequencies taken from spectra measured at different quantum levels. The pulse sequences designed in this way consist of small number of RF-pulses, are as short as possible, and could be applied for determination of coupling constants. The examples presented involve 2D correlations H NCO, H NCA, H N(CO) CA, and H(N) COCA via heteronuclear zero and double coherences, as well as 2D H NCOCA technique with simultaneous evolution of triple and three distinct single quantum coherences. Applications of the new sequences are presented for 13C, 15N-labeled ubiquitin.
Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.
Leow, Alex D; Klunder, Andrea D; Jack, Clifford R; Toga, Arthur W; Dale, Anders M; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret J; Fleisher, Adam S; Fox, Nick C; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M
2006-06-01
Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.
Miller, Melissa A; Burgess, Tristan L; Dodd, Erin M; Rhyan, Jack C; Jang, Spencer S; Byrne, Barbara A; Gulland, Frances M D; Murray, Michael J; Toy-Choutka, Sharon; Conrad, Patricia A; Field, Cara L; Sidor, Inga F; Smith, Woutrina A
2017-04-01
We characterize Brucella infection in a wild southern sea otter ( Enhydra lutris nereis) with osteolytic lesions similar to those reported in other marine mammals and humans. This otter stranded twice along the central California coast, US over a 1-yr period and was handled extensively at two wildlife rehabilitation facilities, undergoing multiple surgeries and months of postsurgical care. Ultimately the otter was euthanized due to severe, progressive neurologic disease. Necropsy and postmortem radiographs revealed chronic, severe osteoarthritis spanning the proximal interphalangeal joint of the left hind fifth digit. Numerous coccobacilli within the joint were strongly positive on Brucella immunohistochemical labelling, and Brucella sp. was isolated in pure culture from this lesion. Sparse Brucella-immunopositive bacteria were also observed in the cytoplasm of a pulmonary vascular monocyte, and multifocal granulomas were observed in the spinal cord and liver on histopathology. Findings from biochemical characterization, 16S ribosomal DNA, and bp26 gene sequencing of the bacterial isolate were identical to those from marine-origin brucellae isolated from cetaceans and phocids. Although omp2a gene sequencing revealed 100% homology with marine Brucella spp. infecting pinnipeds, whales, and humans, omp2b gene sequences were identical only to pinniped-origin isolates. Multilocus sequence typing classified the sea otter isolate as ST26, a sequence type previously associated only with cetaceans. Our data suggest that the sea otter Brucella strain represents a novel marine lineage that is distinct from both Brucella pinnipedialis and Brucella ceti. Prior reports document the zoonotic potential of the marine brucellae. Isolation of Brucella sp. from a stranded sea otter highlights the importance of wearing personal protective equipment when handling sea otters and other marine mammals as part of wildlife conservation and rehabilitation efforts.
Longitudinal stability of MRI for mapping brain change using tensor-based morphometry
Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.
2007-01-01
Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900
Etiology of Ibrutinib Discontinuation and Outcomes in Chronic Lymphocytic Leukemia Patients
Maddocks, Kami J.; Ruppert, Amy S.; Lozanski, Gerard; Heerema, Nyla A.; Zhao, Weiqiang; Abruzzo, Lynne; Lozanski, Arletta; Davis, Melanie; Gordon, Amber; Smith, Lisa L.; Mantel, Rose; Jones, Jeffrey A.; Flynn, Joseph M.; Jaglowski, Samantha M.; Andritsos, Leslie A.; Awan, Farrukh; Blum, Kristie A.; Grever, Michael R.; Johnson, Amy J.; Byrd, John C.; Woyach, Jennifer A.
2015-01-01
Importance The Bruton’s Tyrosine Kinase inhibitor ibrutinib is effective in patients with chronic lymphocytic leukemia (CLL). Reasons for discontinuation from this drug and outcomes following discontinuation have not been evaluated outside of clinical trials with relatively short follow-up. Objective To determine features associated with discontinuation of ibrutinib and outcomes. Design 308 patients participating in four sequential trials of ibrutinib were included. These trials accrued patients included in this analysis from May 2010 until April 2014, and data were locked in June 2014. Setting The Ohio State University Comprehensive Cancer Center Participants Patients with CLL enrolled on 4 sequential clinical trials. Main Outcome Measure Patients were evaluated for time to discontinuation, reasons for discontinuation, and survival following discontinuation. For patients who discontinued due to progression, targeted deep sequencing was performed in samples at baseline and relapse. Results With a median follow-up of 20 months, 232 patients remain on therapy, 31 have discontinued because of progression, and 45 have discontinued for other reasons. Disease progression includes Richter’s transformation or progressive CLL. Richter’s appeared to occur early and CLL progressions later (cumulative incidence at 12 months: 4.5% (95% CI: 2.0% to 7.0%) and 0.3% (95% CI: 0% to 1.0%), respectively). Median survival following Richter’s transformation was 3.5 months (95% CI: 0.3–6.0), and 17.6 months (95% CI: 4.7-not reached) following CLL progression. Sequencing on peripheral blood from 8 patients with Richter’s transformation revealed 2 with mutations in BTK, and a lymph node sample showed no mutations in BTK or PLCγ2. Deep sequencing on 11 patients with CLL progression revealed BTK or PLCγ2 mutations in all. These mutations were not identified pre-treatment in any patient. Conclusions and Relevance This single institution experience with ibrutinib confirms it to be an effective therapy and identifies, for the first time, baseline factors associated with ibrutinib discontinuation. Outcomes data show poor prognosis after discontinuation, especially for those patients with Richter’s transformation. Finally, sequencing data confirm initial reports associating mutations in BTK and PLCγ2 with progression and clearly show that CLL progressions are associated with these mutations, while Richter’s transformation is likely not. PMID:26182309
Yu, Wen; Taylor, J Alex; Davis, Michael T; Bonilla, Leo E; Lee, Kimberly A; Auger, Paul L; Farnsworth, Chris C; Welcher, Andrew A; Patterson, Scott D
2010-03-01
Despite recent advances in qualitative proteomics, the automatic identification of peptides with optimal sensitivity and accuracy remains a difficult goal. To address this deficiency, a novel algorithm, Multiple Search Engines, Normalization and Consensus is described. The method employs six search engines and a re-scoring engine to search MS/MS spectra against protein and decoy sequences. After the peptide hits from each engine are normalized to error rates estimated from the decoy hits, peptide assignments are then deduced using a minimum consensus model. These assignments are produced in a series of progressively relaxed false-discovery rates, thus enabling a comprehensive interpretation of the data set. Additionally, the estimated false-discovery rate was found to have good concordance with the observed false-positive rate calculated from known identities. Benchmarking against standard proteins data sets (ISBv1, sPRG2006) and their published analysis, demonstrated that the Multiple Search Engines, Normalization and Consensus algorithm consistently achieved significantly higher sensitivity in peptide identifications, which led to increased or more robust protein identifications in all data sets compared with prior methods. The sensitivity and the false-positive rate of peptide identification exhibit an inverse-proportional and linear relationship with the number of participating search engines.
After the bomb drops: A new look at radiation-induced multiple organ dysfunction syndrome (MODS)
Williams, Jacqueline P.; McBride, William H.
2012-01-01
Purpose There is increasing concern that, since the Cold War era, there has been little progress regarding the availability of medical countermeasures in the event of either a radiological or nuclear incident. Fortunately, since much is known about the acute consequences that are likely to be experienced by an exposed population, the probability of survival from the immediate hematological crises after total body irradiation (TBI) has improved in recent years. Therefore focus has begun to shift towards later down-stream effects, seen in such organs as the gastrointestinal tract (GI), skin, and lung. However, the mechanisms underlying therapy-related normal tissue late effects, resulting from localised irradiation, have remained somewhat elusive and even less is known about the development of the delayed syndrome seen in the context of whole body exposures, when it is likely that systemic perturbations may alter tissue microenvironments and homeostasis. Conclusions The sequence of organ failures observed after near-lethal TBI doses are similar in many ways to that of multiple organ dysfunction syndrome (MODS), leading to multiple organ failure (MOF). In this review, we compare the mechanistic pathways that underlie both MODS and delayed normal tissue effects since these may impact on strategies to identify radiation countermeasures. PMID:21417595
Murillo, Gabriel H; You, Na; Su, Xiaoquan; Cui, Wei; Reilly, Muredach P; Li, Mingyao; Ning, Kang; Cui, Xinping
2016-05-15
Single nucleotide variant (SNV) detection procedures are being utilized as never before to analyze the recent abundance of high-throughput DNA sequencing data, both on single and multiple sample datasets. Building on previously published work with the single sample SNV caller genotype model selection (GeMS), a multiple sample version of GeMS (MultiGeMS) is introduced. Unlike other popular multiple sample SNV callers, the MultiGeMS statistical model accounts for enzymatic substitution sequencing errors. It also addresses the multiple testing problem endemic to multiple sample SNV calling and utilizes high performance computing (HPC) techniques. A simulation study demonstrates that MultiGeMS ranks highest in precision among a selection of popular multiple sample SNV callers, while showing exceptional recall in calling common SNVs. Further, both simulation studies and real data analyses indicate that MultiGeMS is robust to low-quality data. We also demonstrate that accounting for enzymatic substitution sequencing errors not only improves SNV call precision at low mapping quality regions, but also improves recall at reference allele-dominated sites with high mapping quality. The MultiGeMS package can be downloaded from https://github.com/cui-lab/multigems xinping.cui@ucr.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, K.
Tremendous progress has been made in the construction of physical and genetic maps of the human chromosomes. The next step in the solving of disease related problems, and in understanding the human genome as a whole, is the systematic isolation of transcribed sequences. Many investigators have already embarked upon comprehensive gene searches, and many more are considering the best strategies for undertaking such searches. Because these are likely to be costly and time consuming endeavors, it is important to determine the most efficient approaches. As a result, it is critical that investigators involved in the construction of transcriptional maps havemore » the opportunity to discuss their experiences and their successes with both old and new technologies. This document contains the proceedings of the Fourth Annual Workshop on the Identification of Transcribed Sequences, held in Montreal, Quebec, October 16-18, 1994. Included are the workshop notebook, containing the agenda, abstracts presented and list of attendees. Topics included: Progress in the application of the hybridization based approaches and exon trapping; Progress in transcriptional map construction of selected genomic regions; Computer assisted analysis of genomic and protein coding sequences and additional new approaches; and, Sequencing and mapping of random cDNAs.« less
Kwarciak, Kamil; Radom, Marcin; Formanowicz, Piotr
2016-04-01
The classical sequencing by hybridization takes into account a binary information about sequence composition. A given element from an oligonucleotide library is or is not a part of the target sequence. However, the DNA chip technology has been developed and it enables to receive a partial information about multiplicity of each oligonucleotide the analyzed sequence consist of. Currently, it is not possible to assess the exact data of such type but even partial information should be very useful. Two realistic multiplicity information models are taken into consideration in this paper. The first one, called "one and many" assumes that it is possible to obtain information if a given oligonucleotide occurs in a reconstructed sequence once or more than once. According to the second model, called "one, two and many", one is able to receive from biochemical experiment information if a given oligonucleotide is present in an analyzed sequence once, twice or at least three times. An ant colony optimization algorithm has been implemented to verify the above models and to compare with existing algorithms for sequencing by hybridization which utilize the additional information. The proposed algorithm solves the problem with any kind of hybridization errors. Computational experiment results confirm that using even the partial information about multiplicity leads to increased quality of reconstructed sequences. Moreover, they also show that the more precise model enables to obtain better solutions and the ant colony optimization algorithm outperforms the existing ones. Test data sets and the proposed ant colony optimization algorithm are available on: http://bioserver.cs.put.poznan.pl/download/ACO4mSBH.zip. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adaptive Digital Signature Design and Short-Data-Record Adaptive Filtering
2008-04-01
rate BPSK binary phase shift keying CA − CFAR cell averaging− constant false alarm rate CDMA code − division multiple − access CFAR constant false...Cotae, “Spreading sequence design for multiple cell synchronous DS-CDMA systems under total weighted squared correlation criterion,” EURASIP Journal...415-428, Mar. 2002. [6] P. Cotae, “Spreading sequence design for multiple cell synchronous DS-CDMA systems under total weighted squared correlation
Bernsen, M R; Dijkman, H B; de Vries, E; Figdor, C G; Ruiter, D J; Adema, G J; van Muijen, G N
1998-10-01
Molecular analysis of small tissue samples has become increasingly important in biomedical studies. Using a laser dissection microscope and modified nucleic acid isolation protocols, we demonstrate that multiple mRNA as well as DNA sequences can be identified from a single-cell sample. In addition, we show that the specificity of procurement of tissue samples is not compromised by smear contamination resulting from scraping of the microtome knife during sectioning of lesions. The procedures described herein thus allow for efficient RT-PCR or PCR analysis of multiple nucleic acid sequences from small tissue samples obtained by laser-assisted microdissection.
Initial Steps in Creating a Developmentally Valid Tool for Observing/Assessing Rope Jumping
ERIC Educational Resources Information Center
Roberton, Mary Ann; Thompson, Gregory; Langendorfer, Stephen J.
2017-01-01
Background: Valid motor development sequences show the various behaviors that children display as they progress toward competence in specific motor skills. Teachers can use these sequences to observe informally or formally assess their students. While longitudinal study is ultimately required to validate developmental sequences, there are earlier,…
Temporal Dynamics in Auditory Perceptual Learning: Impact of Sequencing and Incidental Learning
ERIC Educational Resources Information Center
Church, Barbara A.; Mercado, Eduardo, III; Wisniewski, Matthew G.; Liu, Estella H.
2013-01-01
Training can improve perceptual sensitivities. We examined whether the temporal dynamics and the incidental versus intentional nature of training are important. Within the context of a birdsong rate discrimination task, we examined whether the sequencing of pretesting exposure to the stimuli mattered. Easy-to-hard (progressive) sequencing of…
Research progress of plant population genomics based on high-throughput sequencing.
Wang, Yun-sheng
2016-08-01
Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.
A Study of Two Instructional Sequences Informed by Alternative Learning Progressions in Genetics
ERIC Educational Resources Information Center
Duncan, Ravit Golan; Choi, Jinnie; Castro-Faix, Moraima; Cavera, Veronica L.
2017-01-01
Learning progressions (LPs) are hypothetical models of how learning in a domain develops over time with appropriate instruction. In the domain of genetics, there are two independently developed alternative LPs. The main difference between the two progressions hinges on their assumptions regarding the accessibility of classical (Mendelian) versus…
Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury
2015-02-01
Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for delayed, progressive neurological and...11 or ‘punch drunk’ syndrome 9, 12. US military personnel 13, 14 and others who have sustained multiple concussive traumatic brain injuries 15-17...To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in mice has been optimal. Ongoing efforts include
Generation of 2A-linked multicistronic cassettes by recombinant PCR.
Szymczak-Workman, Andrea L; Vignali, Kate M; Vignali, Dario A A
2012-02-01
The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. It is now possible to express multiple proteins from a single open reading frame (ORF) using 2A peptide-linked multicistronic vectors. These small sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. Expression of more than two genes using conventional approaches has several limitations, most notably imbalanced protein expression and large size. The use of 2A peptide sequences alleviates these concerns. They are small (18-22 amino acids) and have divergent amino-terminal sequences, which minimizes the chance for homologous recombination and allows for multiple, different 2A peptide sequences to be used within a single vector. Importantly, separation of genes placed between 2A peptide sequences is nearly 100%, which allows for stoichiometric and concordant expression of the genes, regardless of the order of placement within the vector. This protocol describes the use of recombinant polymerase chain reaction (PCR) to connect multiple 2A-linked protein sequences. The final construct is subcloned into an expression vector.
Notredame, Cedric
2018-05-02
Cedric Notredame from the Centre for Genomic Regulation gives a presentation on New Challenges of the Computation of Multiple Sequence Alignments in the High-Throughput Era at the JGI/Argonne HPC Workshop on January 26, 2010.
USDA-ARS?s Scientific Manuscript database
The Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV), a pathogen of the Egyptian cotton leaf worm Spodoptera littoralis, was subjected to sequencing of its entire DNA genome and bioassay analysis comparing its virulence to that of other baculoviruses. The annotated SpliMNPV genome of...
Applications of Single-Cell Sequencing for Multiomics.
Xu, Yungang; Zhou, Xiaobo
2018-01-01
Single-cell sequencing interrogates the sequence or chromatin information from individual cells with advanced next-generation sequencing technologies. It provides a higher resolution of cellular differences and a better understanding of the underlying genetic and epigenetic mechanisms of an individual cell in the context of its survival and adaptation to microenvironment. However, it is more challenging to perform single-cell sequencing and downstream data analysis, owing to the minimal amount of starting materials, sample loss, and contamination. In addition, due to the picogram level of the amount of nucleic acids used, heavy amplification is often needed during sample preparation of single-cell sequencing, resulting in the uneven coverage, noise, and inaccurate quantification of sequencing data. All these unique properties raise challenges in and thus high demands for computational methods that specifically fit single-cell sequencing data. We here comprehensively survey the current strategies and challenges for multiple single-cell sequencing, including single-cell transcriptome, genome, and epigenome, beginning with a brief introduction to multiple sequencing techniques for single cells.
Somaiah, Neeta; Beird, Hannah C; Barbo, Andrea; Song, Juhee; Mills Shaw, Kenna R; Wang, Wei-Lien; Eterovic, Karina; Chen, Ken; Lazar, Alexander; Conley, Anthony P; Ravi, Vinod; Hwu, Patrick; Futreal, Andrew; Simon, George; Meric-Bernstam, Funda; Hong, David
2018-04-13
Well-differentiated/dedifferentiated liposarcoma is a common soft tissue sarcoma with approximately 1500 new cases per year. Surgery is the mainstay of treatment but recurrences are frequent and systemic options are limited. 'Tumor genotyping' is becoming more common in clinical practice as it offers the hope of personalized targeted therapy. We wanted to evaluate the results and the clinical utility of available next-generation sequencing panels in WD/DD liposarcoma. Patients who had their tumor sequenced by either FoundationOne ( n = 13) or the institutional T200/T200.1 panels ( n = 7) were included in this study. Significant copy number alterations were identified, but mutations were infrequent. Out of the 27 mutations detected in 7 samples, 8 ( CTNNB1, MECOM, ZNF536, EGFR, EML4, CSMD3, PBRM1, PPP1R3A ) were identified as deleterious (on Condel, PolyPhen and SIFT) and a truncating mutation was found in NF2 . Of these, EGFR and NF2 are potential driver mutations and have not been reported previously in liposarcoma. MDM2 and CDK4 amplification was universally present in all the tested samples and multiple other recurrent genes with high amplification or high deletion were detected. Many of these targets are potentially actionable. Eight patients went on to receive an MDM2 inhibitor with a median time to progression of 23 months (95% CI: 10-83 months).
Kovacs, A; Kandala, J C; Weber, K T; Guntaka, R V
1996-01-19
Type I and III fibrillar collagens are the major structural proteins of the extracellular matrix found in various organs including the myocardium. Abnormal and progressive accumulation of fibrillar type I collagen in the interstitial spaces compromises organ function and therefore, the study of transcriptional regulation of this gene and specific targeting of its expression is of major interest. Transient transfection of adult cardiac fibroblasts indicate that the polypurine-polypyrimidine sequence of alpha 1(I) collagen promoter between nucleotides - 200 and -140 represents an overall positive regulatory element. DNase I footprinting and electrophoretic mobility shift assays suggest that multiple factors bind to different elements of this promoter region. We further demonstrate that the unique polypyrimidine sequence between -172 and -138 of the promoter represents a suitable target for a single-stranded polypurine oligonucleotide (TFO) to form a triple helix DNA structure. Modified electrophoretic mobility shift assays show that this TFO specifically inhibits the protein-DNA interaction within the target region. In vitro transcription assays and transient transfection experiments demonstrate that the transcriptional activity of the promoter is inhibited by this oligonucleotide. We propose that TFOs represent a therapeutic potential to specifically influence the expression of alpha 1(I) collagen gene in various disease states where abnormal type I collagen accumulation is known to occur.
RNA 3D Modules in Genome-Wide Predictions of RNA 2D Structure
Theis, Corinna; Zirbel, Craig L.; zu Siederdissen, Christian Höner; Anthon, Christian; Hofacker, Ivo L.; Nielsen, Henrik; Gorodkin, Jan
2015-01-01
Recent experimental and computational progress has revealed a large potential for RNA structure in the genome. This has been driven by computational strategies that exploit multiple genomes of related organisms to identify common sequences and secondary structures. However, these computational approaches have two main challenges: they are computationally expensive and they have a relatively high false discovery rate (FDR). Simultaneously, RNA 3D structure analysis has revealed modules composed of non-canonical base pairs which occur in non-homologous positions, apparently by independent evolution. These modules can, for example, occur inside structural elements which in RNA 2D predictions appear as internal loops. Hence one question is if the use of such RNA 3D information can improve the prediction accuracy of RNA secondary structure at a genome-wide level. Here, we use RNAz in combination with 3D module prediction tools and apply them on a 13-way vertebrate sequence-based alignment. We find that RNA 3D modules predicted by metaRNAmodules and JAR3D are significantly enriched in the screened windows compared to their shuffled counterparts. The initially estimated FDR of 47.0% is lowered to below 25% when certain 3D module predictions are present in the window of the 2D prediction. We discuss the implications and prospects for further development of computational strategies for detection of RNA 2D structure in genomic sequence. PMID:26509713
Eye movement sequence generation in humans: Motor or goal updating?
Quaia, Christian; Joiner, Wilsaan M.; FitzGibbon, Edmond J.; Optican, Lance M.; Smith, Maurice A.
2011-01-01
Saccadic eye movements are often grouped in pre-programmed sequences. The mechanism underlying the generation of each saccade in a sequence is currently poorly understood. Broadly speaking, two alternative schemes are possible: first, after each saccade the retinotopic location of the next target could be estimated, and an appropriate saccade could be generated. We call this the goal updating hypothesis. Alternatively, multiple motor plans could be pre-computed, and they could then be updated after each movement. We call this the motor updating hypothesis. We used McLaughlin’s intra-saccadic step paradigm to artificially create a condition under which these two hypotheses make discriminable predictions. We found that in human subjects, when sequences of two saccades are planned, the motor updating hypothesis predicts the landing position of the second saccade in two-saccade sequences much better than the goal updating hypothesis. This finding suggests that the human saccadic system is capable of executing sequences of saccades to multiple targets by planning multiple motor commands, which are then updated by serial subtraction of ongoing motor output. PMID:21191134
The proximal-to-distal sequence in upper-limb motions on multiple levels and time scales.
Serrien, Ben; Baeyens, Jean-Pierre
2017-10-01
The proximal-to-distal sequence is a phenomenon that can be observed in a large variety of motions of the upper limbs in both humans and other mammals. The mechanisms behind this sequence are not completely understood and motor control theories able to explain this phenomenon are currently incomplete. The aim of this narrative review is to take a theoretical constraints-led approach to the proximal-to-distal sequence and provide a broad multidisciplinary overview of relevant literature. This sequence exists at multiple levels (brain, spine, muscles, kinetics and kinematics) and on multiple time scales (motion, motor learning and development, growth and possibly even evolution). We hypothesize that the proximodistal spatiotemporal direction on each time scale and level provides part of the organismic constraints that guide the dynamics at the other levels and time scales. The constraint-led approach in this review may serve as a first onset towards integration of evidence and a framework for further experimentation to reveal the dynamics of the proximal-to-distal sequence. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Jin Young; Park, Raehee; Lee, Jin Hwan J; Shin, Jinyeon; Nickas, Jenna; Kim, Seonhee; Cho, Seo-Hee
2016-11-15
Yap functions as a transcriptional regulator by acting together with sequence-specific DNA binding factors and transcription cofactors to mediate cell proliferation in developing epithelial tissues and tumors. An upstream kinase cascade controls nuclear localization and function in response to partially identified exogenous signals, including cell-to-cell contact. Nevertheless, its role in CNS development is poorly understood. In order to investigate Yap function in developing CNS, we characterized the cellular outcomes after selective Yap gene ablation in developing ocular tissues. When Yap was lost, presumptive retinal pigment epithelium acquired anatomical and molecular characteristics resembling those of the retinal epithelium rather than of RPE, including loss of pigmentation, pseudostratified epithelial morphology and ectopic induction of markers for retinal progenitor cells, like Chx10, and neurons, like β-Tubulin III. In addition, developing retina showed signs of progressive degeneration, including laminar folding, thinning and cell loss, which resulted from multiple defects in cell proliferation and survival, and in junction integrity. Furthermore, Yap-deficient retinal progenitors displayed decreased S-phase cells and altered cell cycle progression. Altogether, our studies not only illustrate the canonical function of Yap in promoting the proliferation of progenitors, but also shed new light on its evolutionarily conserved, instructive role in regional specification, maintenance of junctional integrity and precise regulation of cell proliferation during neuroepithelial development. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun
2016-01-01
We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.
Liu, Fei; Wu, Xiao-Li; Liu, Ying; Chen, Da-Xia; Zhang, De-Li; Yang, Da-Jian
2016-02-01
Isaria farinosa is the pathogen of the host of Ophiocordyceps sinensis. The present research has analyzed the progress on the molecular biology according to the bibliometrics, the sequences (including the gene sequences) of I. farinosa in the NCBI. The results indicated that different country had published different number of the papers, and had landed different kinds and different number of the sequences (including the gene sequences). China had published the most number of the papers, and had landed the most number of the sequences (including the gene sequences). America had landed the most numbers of the function genes. The main content about the pathogen study was focus on the biological controlling. The main content about the molecular study concentrated on the phylogenies classification. In recent years some protease genes and chitinase genes had been researched. With the increase of the effect on the healthy of O. sinensis, and the whole sequence and more and more pharmacological activities of I. farinosa being made known to the public, the study on the molecular biology of the I. farinosa would be deeper and wider. Copyright© by the Chinese Pharmaceutical Association.
Long-term disability progression in primary progressive multiple sclerosis: a 15-year study.
Rocca, Maria A; Sormani, Maria Pia; Rovaris, Marco; Caputo, Domenico; Ghezzi, Angelo; Montanari, Enrico; Bertolotto, Antonio; Laroni, Alice; Bergamaschi, Roberto; Martinelli, Vittorio; Comi, Giancarlo; Filippi, Massimo
2017-11-01
Prognostic markers of primary progressive multiple sclerosis evolution are needed. We investigated the added value of magnetic resonance imaging measures of brain and cervical cord damage in predicting long-term clinical worsening of primary progressive multiple sclerosis compared to simple clinical assessment. In 54 patients, conventional and diffusion tensor brain scans and cervical cord T1-weighted scans were acquired at baseline and after 15 months. Clinical evaluation was performed after 5 and 15 years in 49 patients. Lesion load, brain and cord atrophy, mean diffusivity and fractional anisotropy values from the brain normal-appearing white matter and grey matter were obtained. Using linear regression models, we screened the clinical and imaging variables as independent predictors of 15-year disability change (measured on the expanded disability status scale). At 15 years, 90% of the patients had disability progression. Integrating clinical and imaging variables at 15 months predicted disability changes at 15 years better than clinical factors at 5 years (R2 = 61% versus R2 = 57%). The model predicted long-term disability change with a precision within one point in 38 of 49 patients (77.6%). Integration of clinical and imaging measures allows identification of primary progressive multiple sclerosis patients at risk of long-term disease progression 4 years earlier than when using clinical assessment alone. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yang, Aifu; Zhou, Zunchun; Pan, Yongjia; Jiang, Jingwei; Dong, Ying; Guan, Xiaoyan; Sun, Hongjuan; Gao, Shan; Chen, Zhong
2016-06-14
Sea cucumber Apostichopus japonicus is an important economic species in China, which is affected by various diseases; skin ulceration syndrome (SUS) is the most serious. In this study, we characterized the transcriptomes in A. japonicus challenged with Vibrio splendidus to elucidate the changes in gene expression throughout the three stages of SUS progression. RNA sequencing of 21 cDNA libraries from various tissues and developmental stages of SUS-affected A. japonicus yielded 553 million raw reads, of which 542 million high-quality reads were generated by deep-sequencing using the Illumina HiSeq™ 2000 platform. The reference transcriptome comprised a combination of the Illumina reads, 454 sequencing data and Sanger sequences obtained from the public database to generate 93,163 unigenes (average length, 1,052 bp; N50 = 1,575 bp); 33,860 were annotated. Transcriptome comparisons between healthy and SUS-affected A. japonicus revealed greater differences in gene expression profiles in the body walls (BW) than in the intestines (Int), respiratory trees (RT) and coelomocytes (C). Clustering of expression models revealed stable up-regulation as the main pattern occurring in the BW throughout the three stages of SUS progression. Significantly affected pathways were associated with signal transduction, immune system, cellular processes, development and metabolism. Ninety-two differentially expressed genes (DEGs) were divided into four functional categories: attachment/pathogen recognition (17), inflammatory reactions (38), oxidative stress response (7) and apoptosis (30). Using quantitative real-time PCR, twenty representative DEGs were selected to validate the sequencing results. The Pearson's correlation coefficient (R) of the 20 DEGs ranged from 0.811 to 0.999, which confirmed the consistency and accuracy between these two approaches. Dynamic changes in global gene expression occur during SUS progression in A. japonicus. Elucidation of these changes is important in clarifying the molecular mechanisms associated with the development of SUS in sea cucumber.
Li, Man; Ling, Cheng; Xu, Qi; Gao, Jingyang
2018-02-01
Sequence classification is crucial in predicting the function of newly discovered sequences. In recent years, the prediction of the incremental large-scale and diversity of sequences has heavily relied on the involvement of machine-learning algorithms. To improve prediction accuracy, these algorithms must confront the key challenge of extracting valuable features. In this work, we propose a feature-enhanced protein classification approach, considering the rich generation of multiple sequence alignment algorithms, N-gram probabilistic language model and the deep learning technique. The essence behind the proposed method is that if each group of sequences can be represented by one feature sequence, composed of homologous sites, there should be less loss when the sequence is rebuilt, when a more relevant sequence is added to the group. On the basis of this consideration, the prediction becomes whether a query sequence belonging to a group of sequences can be transferred to calculate the probability that the new feature sequence evolves from the original one. The proposed work focuses on the hierarchical classification of G-protein Coupled Receptors (GPCRs), which begins by extracting the feature sequences from the multiple sequence alignment results of the GPCRs sub-subfamilies. The N-gram model is then applied to construct the input vectors. Finally, these vectors are imported into a convolutional neural network to make a prediction. The experimental results elucidate that the proposed method provides significant performance improvements. The classification error rate of the proposed method is reduced by at least 4.67% (family level I) and 5.75% (family Level II), in comparison with the current state-of-the-art methods. The implementation program of the proposed work is freely available at: https://github.com/alanFchina/CNN .
NASA Astrophysics Data System (ADS)
Furrer, Julien; Kramer, Frank; Marino, John P.; Glaser, Steffen J.; Luy, Burkhard
2004-01-01
Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding ˜10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.
Furrer, Julien; Kramer, Frank; Marino, John P; Glaser, Steffen J; Luy, Burkhard
2004-01-01
Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding approximately 10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.
Chen, Guiqian; Qiu, Yuan; Zhuang, Qingye; Wang, Suchun; Wang, Tong; Chen, Jiming; Wang, Kaicheng
2018-05-09
Next generation sequencing (NGS) is a powerful tool for the characterization, discovery, and molecular identification of RNA viruses. There were multiple NGS library preparation methods published for strand-specific RNA-seq, but some methods are not suitable for identifying and characterizing RNA viruses. In this study, we report a NGS library preparation method to identify RNA viruses using the Ion Torrent PGM platform. The NGS sequencing adapters were directly inserted into the sequencing library through reverse transcription and polymerase chain reaction, without fragmentation and ligation of nucleic acids. The results show that this method is simple to perform, able to identify multiple species of RNA viruses in clinical samples.
Hofstetter, Louis; Naegelin, Yvonne; Filli, Lukas; Kuster, Pascal; Traud, Stefan; Smieskova, Renata; Mueller-Lenke, Nicole; Kappos, Ludwig; Gass, Achim; Sprenger, Till; Penner, Iris-Katharina; Nichols, Thomas E; Vrenken, Hugo; Barkhof, Frederik; Polman, Chris; Radue, Ernst-Wilhelm; Borgwardt, Stefan J; Bendfeldt, Kerstin
2014-02-01
In multiple sclerosis (MS) regional grey matter (GM) atrophy has been associated with disability progression. The aim of this study was to compare regional GM volume changes in relapsing-remitting MS (RRMS) patients with progressive and stable disability, using voxel-based morphometry (VBM). We acquired baseline and 1-year follow-up 3-dimensional (3D) T1-weighted magnetic resonance imaging (MRI) data of RRMS patients, using two 1.5-Tesla scanners. Patients were matched pair-wise with respect to age, gender, disease duration, medication, scanner and baseline Expanded Disability Status Scale (EDSS) into 13 pairs, with either progressive EDSS (≥ 1 point change y(-1)) or stable EDSS, as well as into 29 pairs with either progressive Multiple Sclerosis Functional Composite (MSFC) at ≥ 0.25% decrease in y(-1) in any component, or stable MSFC. We analysed longitudinal regional differences in GM volumes in the progressive and stable EDSS and MSFC groups, respectively, using VBM. Significant GM volume reductions occurred in the right precuneus, in the progressive EDSS group. Differential between-group effects occurred in the right precuneus and in the postcentral gyrus. Further longitudinal GM volume reductions occurred in the right orbicular gyrus, in the progressive MSFC group, but no between-group differences were observed (non-stationary cluster-wise inference, all P(corrected) < 0.05). These results suggested a direct association of disability progression and regional GM atrophy in RRMS.
Chang, Su-Hsin; Luo, Suhong; O'Brian, Katiuscia K; Thomas, Theodore S; Colditz, Graham A; Carlsson, Nils P; Carson, Kenneth R
2015-01-01
Multiple myeloma is one of the most common haematological malignancies in the USA and is consistently preceded by monoclonal gammopathy of undetermined significance (MGUS). We aimed to assess the association between metformin use and progression of MGUS to multiple myeloma. We did a retrospective cohort study of patients registered in the US Veterans Health Administration database and diagnosed with MGUS between Oct 1, 1999, and Dec 31, 2009. We included patients (aged >18 years) with at least one International Classification of Diseases (9th revision) code for diabetes mellitus and one treatment for their diabetes before MGUS diagnosis. We reviewed patient-level clinical data to verify diagnoses and extract any available data for size of baseline M-protein and type of MGUS. We defined metformin users as patients with diabetes who were given metformin consistently for 4 years after their diabetes diagnosis and before multiple myeloma development, death, or censorship. Our primary outcome was time from MGUS diagnosis to multiple myeloma diagnosis. We used Kaplan-Meier curves and Cox models to analyse the association between metformin use and MGUS progression. We obtained data for 3287 patients, of whom 2003 (61%) were included in the final analytical cohort. Median follow-up was 69 months (IQR 49–96). 463 (23%) participants were metformin users and 1540 (77%) participants were non-users. 13 (3%) metformin users progressed to multiple myeloma compared with 74 (5%) non-users. After adjustment, metformin use was associated with a reduced risk of progression to multiple myeloma (hazard ratio 0·47, 95% CI 0·25–0·87). For patients with diabetes diagnosed with MGUS, metformin use for 4 years or longer was associated with a reduced risk of progression of MGUS to multiple myeloma. Prospective studies are needed to establish whether this association is causal and whether these results can be extrapolated to non-diabetic individuals. Barnes-Jewish Hospital Foundation, National Institutes of Health, Agency for Healthcare Research and Quality, American Cancer Society.
Genetic diversity among isolates of Autographa californica multiple nucleopolyhedrovirus
USDA-ARS?s Scientific Manuscript database
Our knowledge of genetic variation at the nucleotide sequence level of Autographa californica multiple nucleopolyhedrovirus (AcMNPV; Baculoviridae: Alphabaculovirus) derives from complete genome sequences of the C6 clonal isolate of AcMNPV and the R1 and CL3 clonal isolates of AcMNPV variants Rachip...
USDA-ARS?s Scientific Manuscript database
The Agrotis ipsilon multiple nucleopolyhedrovirus (AgipMNPV) is a group II nucleopolyhedrovirus (NPV) from the black cutworm, A. ipsilon, with potential as a biopesticide to control infestations of cutworm larvae. The genome of the Illinois strain of AgipMNPV was completely sequenced. The AgipMNPV...
USDA-ARS?s Scientific Manuscript database
Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains. To evaluate the genetic diversity of Lymantria dispar nucleopolyhedrovirus (LdMNPV) at the genomic level, the genomes of three isolates of...
EUGENE'HOM: A generic similarity-based gene finder using multiple homologous sequences.
Foissac, Sylvain; Bardou, Philippe; Moisan, Annick; Cros, Marie-Josée; Schiex, Thomas
2003-07-01
EUGENE'HOM is a gene prediction software for eukaryotic organisms based on comparative analysis. EUGENE'HOM is able to take into account multiple homologous sequences from more or less closely related organisms. It integrates the results of TBLASTX analysis, splice site and start codon prediction and a robust coding/non-coding probabilistic model which allows EUGENE'HOM to handle sequences from a variety of organisms. The current target of EUGENE'HOM is plant sequences. The EUGENE'HOM web site is available at http://genopole.toulouse.inra.fr/bioinfo/eugene/EuGeneHom/cgi-bin/EuGeneHom.pl.
Binary Sequences for Spread-Spectrum Multiple-Access Communication
1977-08-01
Massey, J. L., and Uhran, J. J., Jr., "Sub-baud coding," Proceedings of the Thirteenth Annual Allerton Conference on Circuit and System Theory, pp. 539...sequences in a multipl.e access environment," Proceedings of the Thirteenth Annual AIlerton Conference on Circuit and System Theory, pp. 21-27, October...34 Proceedings of the Thirteenth Annual Allertcn Conference on Circuit and System Theory, pp. 548-559, October 1975. Yao, K., *Performance bounds on
Zhang, Huimin; He, Hongkui; Yu, Xiujuan; Xu, Zhaohui; Zhang, Zhizhou
2016-11-01
It remains an unsolved problem to quantify a natural microbial community by rapidly and conveniently measuring multiple species with functional significance. Most widely used high throughput next-generation sequencing methods can only generate information mainly for genus-level taxonomic identification and quantification, and detection of multiple species in a complex microbial community is still heavily dependent on approaches based on near full-length ribosome RNA gene or genome sequence information. In this study, we used near full-length rRNA gene library sequencing plus Primer-Blast to design species-specific primers based on whole microbial genome sequences. The primers were intended to be specific at the species level within relevant microbial communities, i.e., a defined genomics background. The primers were tested with samples collected from the Daqu (also called fermentation starters) and pit mud of a traditional Chinese liquor production plant. Sixteen pairs of primers were found to be suitable for identification of individual species. Among them, seven pairs were chosen to measure the abundance of microbial species through quantitative PCR. The combination of near full-length ribosome RNA gene library sequencing and Primer-Blast may represent a broadly useful protocol to quantify multiple species in complex microbial population samples with species-specific primers.
Cao, Qizhi; Didelot, Xavier; Wu, Zhongbiao; Li, Zongwei; He, Lihua; Li, Yunsheng; Ni, Ming; You, Yuanhai; Lin, Xi; Li, Zhen; Gong, Yanan; Zheng, Minqiao; Zhang, Minli; Liu, Jie; Wang, Weijun; Bo, Xiaochen; Falush, Daniel; Wang, Shengqi; Zhang, Jianzhong
2015-01-01
Objective To study the detailed nature of genomic microevolution during mixed infection with multiple Helicobacter pylori strains in an individual. Design We sampled 18 isolates from a single biopsy from a patient with chronic gastritis and nephritis. Whole-genome sequencing was applied to these isolates, and statistical genetic tools were used to investigate their evolutionary history. Results The genomes fall into two clades, reflecting colonisation of the stomach by two distinct strains, and these lineages have accumulated diversity during an estimated 2.8 and 4.2 years of evolution. We detected about 150 clear recombination events between the two clades. Recombination between the lineages is a continuous ongoing process and was detected on both clades, but the effect of recombination in one clade was nearly an order of magnitude higher than in the other. Imputed ancestral sequences also showed evidence of recombination between the two strains prior to their diversification, and we estimate that they have both been infecting the same host for at least 12 years. Recombination tracts between the lineages were, on average, 895 bp in length, and showed evidence for the interspersion of recipient sequences that has been observed in in vitro experiments. The complex evolutionary history of a phage-related protein provided evidence for frequent reinfection of both clades by a single phage lineage during the past 4 years. Conclusions Whole genome sequencing can be used to make detailed conclusions about the mechanisms of genetic change of H. pylori based on sampling bacteria from a single gastric biopsy. PMID:25007814
Ruggles, Kelly V; Tang, Zuojian; Wang, Xuya; Grover, Himanshu; Askenazi, Manor; Teubl, Jennifer; Cao, Song; McLellan, Michael D; Clauser, Karl R; Tabb, David L; Mertins, Philipp; Slebos, Robbert; Erdmann-Gilmore, Petra; Li, Shunqiang; Gunawardena, Harsha P; Xie, Ling; Liu, Tao; Zhou, Jian-Ying; Sun, Shisheng; Hoadley, Katherine A; Perou, Charles M; Chen, Xian; Davies, Sherri R; Maher, Christopher A; Kinsinger, Christopher R; Rodland, Karen D; Zhang, Hui; Zhang, Zhen; Ding, Li; Townsend, R Reid; Rodriguez, Henry; Chan, Daniel; Smith, Richard D; Liebler, Daniel C; Carr, Steven A; Payne, Samuel; Ellis, Matthew J; Fenyő, David
2016-03-01
Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Dupuis, Julian R; Guerrero, Felix D; Skoda, Steven R; Phillips, Pamela L; Welch, John B; Schlater, Jack L; Azeredo-Espin, Ana Maria L; Pérez de León, Adalberto A; Geib, Scott M
2018-05-19
New World screwworm (NWS), Cochliomyia hominivorax (Coquerel 1858) (Diptera: Calliphoridae), is a myiasis-causing fly that can be a serious threat to the health of livestock, wildlife, and humans. Its progressive eradication from the southern United States, Mexico, and Central America from the 1950s to 2000s is an excellent example of successful pest management using sterile insect technique (SIT). In late 2016, autochthonous NWS were detected in the Florida Keys, representing this species' first invasion in the United States in >30 yr. Rapid use of quarantine and SIT was successful in eliminating the infestation by early 2017; however, the geographic source of this infestation remains unknown. Here, we use amplicon sequencing to generate mitochondrial and nuclear sequence data representing all confirmed cases of NWS from this infestation, and compare these sequences to preexisting data sets sampling the native distribution of NWS. We ask two questions regarding the FL Keys outbreak. First, is this infestation the result of a single invasion from one source, or multiple invasions from different sources? And second, what is the geographic origin of this invasion? We found virtually no sequence variation between specimens collected from the FL Keys outbreak, which is consistent with a single source of introduction. However, we also found very little geographic resolution in any of the data sets, which precludes identification of the source of this outbreak. Our lack of success in answering our second question speaks to the need for finer-scale genetic or genomic assessments of NWS population structure, which would facilitate source determination of potential future outbreaks.
DNAAlignEditor: DNA alignment editor tool
Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D
2008-01-01
Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684
Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling
NASA Astrophysics Data System (ADS)
Yan, Dan-Ping; Xu, Yan-Bo; Dong, Zhou-Bin; Qiu, Liang; Zhang, Sen; Wells, Michael
2016-03-01
Fault-related folds of variable structural styles and assemblages commonly coexist in orogenic belts with competent-incompetent interlayered sequences. Despite their commonality, the kinematic evolution of these structural styles and assemblages are often loosely constrained because multiple solutions exist in their structural progression during tectonic restoration. We use a sandbox modeling instrument with a particle image velocimetry monitor to test four designed sandbox models with multilayer competent-incompetent materials. Test results reveal that decollement folds initiate along selected incompetent layers with decreasing velocity difference and constant vorticity difference between the hanging wall and footwall of the initial fault tips. The decollement folds are progressively converted to fault-propagation folds and fault-bend folds through development of fault ramps breaking across competent layers and are followed by propagation into fault flats within an upper incompetent layer. Thick-skinned thrust is produced by initiating a decollement fault within the metamorphic basement. Progressive thrusting and uplifting of the thick-skinned thrust trigger initiation of the uppermost incompetent decollement with formation of a decollement fold and subsequent converting to fault-propagation and fault-bend folds, which combine together to form imbricate thrust. Breakouts at the base of the early formed fault ramps along the lowest incompetent layers, which may correspond to basement-cover contacts, domes the upmost decollement and imbricate thrusts to form passive roof duplexes and constitute the thin-skinned thrust belt. Structural styles and assemblages in each of tectonic stages are similar to that in the representative orogenic belts in the South China, Southern Appalachians, and Alpine orogenic belts.
Four-gene Pan-African Blood Signature Predicts Progression to Tuberculosis.
Suliman, Sara; Thompson, Ethan; Sutherland, Jayne; Weiner Rd, January; Ota, Martin O C; Shankar, Smitha; Penn-Nicholson, Adam; Thiel, Bonnie; Erasmus, Mzwandile; Maertzdorf, Jeroen; Duffy, Fergal J; Hill, Philip C; Hughes, E Jane; Stanley, Kim; Downing, Katrina; Fisher, Michelle L; Valvo, Joe; Parida, Shreemanta K; van der Spuy, Gian; Tromp, Gerard; Adetifa, Ifedayo M O; Donkor, Simon; Howe, Rawleigh; Mayanja-Kizza, Harriet; Boom, W Henry; Dockrell, Hazel; Ottenhoff, Tom H M; Hatherill, Mark; Aderem, Alan; Hanekom, Willem A; Scriba, Thomas J; Kaufmann, Stefan He; Zak, Daniel E; Walzl, Gerhard
2018-04-06
Contacts of tuberculosis (TB) patients constitute an important target population for preventative measures as they are at high risk of infection with Mycobacterium tuberculosis and progression to disease. We investigated biosignatures with predictive ability for incident tuberculosis. In a case-control study nested within the Grand Challenges 6-74 longitudinal HIV-negative African cohort of exposed household contacts, we employed RNA sequencing, polymerase chain reaction (PCR) and the Pair Ratio algorithm in a training/test set approach. Overall, 79 progressors, who developed tuberculosis between 3 and 24 months following exposure, and 328 matched non-progressors, who remained healthy during 24 months of follow-up, were investigated. A four-transcript signature (RISK4), derived from samples in a South African and Gambian training set, predicted progression up to two years before onset of disease in blinded test set samples from South Africa, The Gambia and Ethiopia with little population-associated variability and also validated on an external cohort of South African adolescents with latent Mycobacterium tuberculosis infection. By contrast, published diagnostic or prognostic tuberculosis signatures predicted on samples from some but not all 3 countries, indicating site-specific variability. Post-hoc meta-analysis identified a single gene pair, C1QC/TRAV27, that would consistently predict TB progression in household contacts from multiple African sites but not in infected adolescents without known recent exposure events. Collectively, we developed a simple whole blood-based PCR test to predict tuberculosis in household contacts from diverse African populations, with potential for implementation in national TB contact investigation programs.
NASA Astrophysics Data System (ADS)
Testa, Italo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella
2015-12-01
In this paper, we report about the development and validation of a learning progression about the Celestial Motion big idea. Existing curricula, research studies on alternative conceptions about these phenomena, and students' answers to an open questionnaire were the starting point to develop initial learning progressions about change of seasons, solar and lunar eclipses, and Moon phases; then, a two-tier multiple choice questionnaire was designed to validate and improve them. The questionnaire was submitted to about 300 secondary students of different school levels (14 to 18 years old). Item response analysis and curve integral method were used to revise the hypothesized learning progressions. Findings support that spatial reasoning is a key cognitive factor for building an explanatory framework for the Celestial Motion big idea, but also suggest that causal reasoning based on physics mechanisms underlying the phenomena, as light flux laws or energy transfers, may significantly impact a students' understanding. As an implication of the study, we propose that the teaching of the three discussed astronomy phenomena should follow a single teaching-learning path along the following sequence: (i) emphasize from the beginning the geometrical aspects of the Sun-Moon-Earth system motion; (ii) clarify consequences of the motion of the Sun-Moon-Earth system, as the changing solar radiation flow on the surface of Earth during the revolution around the Sun; (iii) help students moving between different reference systems (Earth and space observer's perspective) to understand how Earth's rotation and revolution can change the appearance of the Sun and Moon. Instructional and methodological implications are also briefly discussed.
Molecular aspects of diabetes mellitus: Resistin, microRNA, and exosome.
Saeedi Borujeni, Mohammad Javad; Esfandiary, Ebrahim; Taheripak, Gholamreza; Codoñer-Franch, Pilar; Alonso-Iglesias, Eulalia; Mirzaei, Hamed
2018-02-01
Diabetes mellitus (DM) is known as one of important common endocrine disorders which could due to deregulation of a variety of cellular and molecular pathways. A large numbers studies indicated that various pathogenesis events including mutation, serin phosphorylation, and increasing/decreasing expression of many genes could contribute to initiation and progression of DM. Insulin resistance is one of important factors which could play critical roles in DM pathogenesis. It has been showed that insulin resistance via targeting a sequence of cellular and molecular pathways (eg, PI3 kinases, PPARγ co-activator-1, microRNAs, serine/threonine kinase Akt, and serin phosphorylation) could induce DM. Among of various factors involved in DM pathogenesis, microRNAs, and exosomes have been emerged as effective factors in initiation and progression of DM. A variety of studies indicated that deregulation of these molecules could change behavior of various types of cells and contribute to progression of DM. Resistin is other main factor which is known as signal molecule involved in insulin resistance. Multiple lines evidence indicated that resistin exerts its effects via affecting on glucose metabolism, inhibition of fatty acid uptake and metabolism with affecting on a variety of targets such as CD36, fatty acid transport protein 1, Acetyl-CoA carboxylase, and AMP-activated protein kinase. Here, we summarized various molecular aspects are associated with DM particularly the molecular pathways involved in insulin resistance and resistin in DM. Moreover, we highlighted exosomes and microRNAs as effective players in initiation and progression of DM. © 2017 Wiley Periodicals, Inc.
The Release 6 reference sequence of the Drosophila melanogaster genome
Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.; ...
2015-01-14
Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy andmore » middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.« less
The Release 6 reference sequence of the Drosophila melanogaster genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.
Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy andmore » middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.« less
Roca, Alberto I
2014-01-01
The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org.
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies.
Utturkar, Sagar M; Klingeman, Dawn M; Hurt, Richard A; Brown, Steven D
2017-01-01
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.
2018-06-18
Multiple Sclerosis; Pathologic Processes; Demyelinating Diseases; Demyelinating Autoimmune Diseases; Nervous System Diseases; Autoimmune Diseases; Immune System Diseases; Primary Progressive Multiple Sclerosis; Relapsing Remitting Multiple Sclerosis
Díaz, David; Esteban, Francisco J.; Hernández, Pilar; Caballero, Juan Antonio; Guevara, Antonio
2014-01-01
We have developed the MC64-ClustalWP2 as a new implementation of the Clustal W algorithm, integrating a novel parallelization strategy and significantly increasing the performance when aligning long sequences in architectures with many cores. It must be stressed that in such a process, the detailed analysis of both the software and hardware features and peculiarities is of paramount importance to reveal key points to exploit and optimize the full potential of parallelism in many-core CPU systems. The new parallelization approach has focused into the most time-consuming stages of this algorithm. In particular, the so-called progressive alignment has drastically improved the performance, due to a fine-grained approach where the forward and backward loops were unrolled and parallelized. Another key approach has been the implementation of the new algorithm in a hybrid-computing system, integrating both an Intel Xeon multi-core CPU and a Tilera Tile64 many-core card. A comparison with other Clustal W implementations reveals the high-performance of the new algorithm and strategy in many-core CPU architectures, in a scenario where the sequences to align are relatively long (more than 10 kb) and, hence, a many-core GPU hardware cannot be used. Thus, the MC64-ClustalWP2 runs multiple alignments more than 18x than the original Clustal W algorithm, and more than 7x than the best x86 parallel implementation to date, being publicly available through a web service. Besides, these developments have been deployed in cost-effective personal computers and should be useful for life-science researchers, including the identification of identities and differences for mutation/polymorphism analyses, biodiversity and evolutionary studies and for the development of molecular markers for paternity testing, germplasm management and protection, to assist breeding, illegal traffic control, fraud prevention and for the protection of the intellectual property (identification/traceability), including the protected designation of origin, among other applications. PMID:24710354
Zivadinov, Robert; Khan, Nasreen; Medin, Jennie; Christoffersen, Pia; Price, Jennifer; Korn, Jonathan R; Bonzani, Ian; Dwyer, Michael G; Bergsland, Niels; Carl, Ellen; Silva, Diego; Weinstock-Guttman, Bianca
2017-05-01
To describe methodology, interim baseline, and longitudinal magnetic resonance imaging (MRI) acquisition parameter characteristics of the multiple sclerosis clinical outcome and MRI in the United States (MS-MRIUS). The MS-MRIUS is an ongoing longitudinal and retrospective study of MS patients on fingolimod. Clinical and brain MRI image scan data were collected from 600 patients across 33 MS centers in the United States. MRI brain outcomes included change in whole-brain volume, lateral ventricle volume, T2- and T1-lesion volumes, and new/enlarging T2 and gadolinium-enhancing lesions. Interim baseline and longitudinal MRI acquisition parameters results are presented for 252 patients. Mean age was 44 years and 81% were female. Forty percent of scans had 3-dimensional (3D) T1 sequence in the preindex period, increasing to 50% in the postindex period. Use of 2-dimensional (2D) T1 sequence decreased over time from 85% in the preindex period to 65% in the postindex. About 95% of the scans with FLAIR and 2D T1-WI were considered acceptable or good quality compared to 99-100% with 3D T1-WI. There were notable changes in MRI hardware, software, and coil (39.5% in preindex to index and 50% in index to postindex). MRI sequence parameters (orientation, thickness, or protocol) differed for 36%, 29%, and 20% of index/postindex scans for FLAIR, 2D T1-WI, and 3D T1-WI, respectively. The MS-MRIUS study linked the clinical and brain MRI outcomes into an integrated database to create a cohort of fingolimod patients in real-world practice. Variability was observed in MRI acquisition protocols overtime. © 2016 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.
Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition.
Grossberg, Stephen
2007-01-01
A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of preattentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.
Stages of physical dependence in New Zealand smokers: Prevalence and correlates.
Walton, Darren; Newcombe, Rhiannon; Li, Judy; Tu, Danny; DiFranza, Joseph R
2016-12-01
Physically dependent smokers experience symptoms of wanting, craving or needing to smoke when too much time has passed since the last cigarette. There is interest in whether wanting, craving and needing represent variations in the intensity of a single physiological parameter or whether multiple physiological processes may be involved in the developmental progression of physical dependence. Our aim was to determine how a population of cigarette smokers is distributed across the wanting, craving and needing stages of physical dependence. A nationwide survey of 2594 New Zealanders aged 15years and over was conducted in 2014. The stage of physical dependence was assessed using the Levels of Physical Dependence measure. Ordinal logistic regression analysis was used to assess relations between physical dependence and other variables. Among 590 current smokers (weighted 16.2% of the sample), 22.3% had no physical dependence, 23.5% were in the Wanting stage, 14.4% in the Craving stage, and 39.8% in the Needing stage. The stage of physical dependence was predicted by daily cigarette consumption, and the time to first cigarette, but not by age, gender, ethnicity or socioeconomic status. Fewer individuals were in the craving stage than either the wanting or needing stages. The resulting inverted U-shaped curve with concentrations at either extreme is difficult to explain as a variation of a single biological parameter. The data support an interpretation that progression through the stages of wanting, craving and needing may involve more than one physiological process. Physical dependence to tobacco develops through a characteristic sequence of wanting, craving and needing which correspond to changes in addiction pathways in the brain. It is important to neuroscience research to determine if the development of physical dependence involves changes in a single brain process, or multiple processes. Our data suggests that more than one physiologic process is involved in the progression of physical dependence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements
Tharakaraman, Kannan; Mariño-Ramírez, Leonardo; Sheetlin, Sergey L; Landsman, David; Spouge, John L
2006-01-01
Background Many DNA regulatory elements occur as multiple instances within a target promoter. Gibbs sampling programs for finding DNA regulatory elements de novo can be prohibitively slow in locating all instances of such an element in a sequence set. Results We describe an improvement to the A-GLAM computer program, which predicts regulatory elements within DNA sequences with Gibbs sampling. The improvement adds an optional "scanning step" after Gibbs sampling. Gibbs sampling produces a position specific scoring matrix (PSSM). The new scanning step resembles an iterative PSI-BLAST search based on the PSSM. First, it assigns an "individual score" to each subsequence of appropriate length within the input sequences using the initial PSSM. Second, it computes an E-value from each individual score, to assess the agreement between the corresponding subsequence and the PSSM. Third, it permits subsequences with E-values falling below a threshold to contribute to the underlying PSSM, which is then updated using the Bayesian calculus. A-GLAM iterates its scanning step to convergence, at which point no new subsequences contribute to the PSSM. After convergence, A-GLAM reports predicted regulatory elements within each sequence in order of increasing E-values, so users have a statistical evaluation of the predicted elements in a convenient presentation. Thus, although the Gibbs sampling step in A-GLAM finds at most one regulatory element per input sequence, the scanning step can now rapidly locate further instances of the element in each sequence. Conclusion Datasets from experiments determining the binding sites of transcription factors were used to evaluate the improvement to A-GLAM. Typically, the datasets included several sequences containing multiple instances of a regulatory motif. The improvements to A-GLAM permitted it to predict the multiple instances. PMID:16961919
Belmonte, Frances R; Martin, James L; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A; Kaufman, Brett A
2016-04-28
Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error.
Belmonte, Frances R.; Martin, James L.; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A.; Kaufman, Brett A.
2016-01-01
Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error. PMID:27122135
Auch, Alexander F; Klenk, Hans-Peter; Göker, Markus
2010-01-28
DNA-DNA hybridization (DDH) is a widely applied wet-lab technique to obtain an estimate of the overall similarity between the genomes of two organisms. To base the species concept for prokaryotes ultimately on DDH was chosen by microbiologists as a pragmatic approach for deciding about the recognition of novel species, but also allowed a relatively high degree of standardization compared to other areas of taxonomy. However, DDH is tedious and error-prone and first and foremost cannot be used to incrementally establish a comparative database. Recent studies have shown that in-silico methods for the comparison of genome sequences can be used to replace DDH. Considering the ongoing rapid technological progress of sequencing methods, genome-based prokaryote taxonomy is coming into reach. However, calculating distances between genomes is dependent on multiple choices for software and program settings. We here provide an overview over the modifications that can be applied to distance methods based in high-scoring segment pairs (HSPs) or maximally unique matches (MUMs) and that need to be documented. General recommendations on determining HSPs using BLAST or other algorithms are also provided. As a reference implementation, we introduce the GGDC web server (http://ggdc.gbdp.org).
Danchin, Antoine; Ouzounis, Christos; Tokuyasu, Taku; Zucker, Jean-Daniel
2018-07-01
Science and engineering rely on the accumulation and dissemination of knowledge to make discoveries and create new designs. Discovery-driven genome research rests on knowledge passed on via gene annotations. In response to the deluge of sequencing big data, standard annotation practice employs automated procedures that rely on majority rules. We argue this hinders progress through the generation and propagation of errors, leading investigators into blind alleys. More subtly, this inductive process discourages the discovery of novelty, which remains essential in biological research and reflects the nature of biology itself. Annotation systems, rather than being repositories of facts, should be tools that support multiple modes of inference. By combining deduction, induction and abduction, investigators can generate hypotheses when accurate knowledge is extracted from model databases. A key stance is to depart from 'the sequence tells the structure tells the function' fallacy, placing function first. We illustrate our approach with examples of critical or unexpected pathways, using MicroScope to demonstrate how tools can be implemented following the principles we advocate. We end with a challenge to the reader. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
DIFFUSION-WEIGHTED IMAGING OF THE LIVER: TECHNIQUES AND APPLICATIONS
Lewis, Sara; Dyvorne, Hadrien; Cui, Yong; Taouli, Bachir
2014-01-01
SYNOPSIS Diffusion weighted MRI (DWI) is a technique that assesses the cellularity, tortuosity of the extracellular/extravascular space and cell membrane density based upon differences in water proton mobility in tissues. The strength of the diffusion weighting is reflected by the b-value. DWI using several b-values enables quantification of the apparent diffusion coefficient (ADC). DWI is increasingly employed in liver imaging for multiple reasons: it can add useful qualitative and quantitative information to conventional imaging sequences, it is acquired relatively quickly, it is easily incorporated into existing clinical protocols, and it is a non-contrast technique. DWI is useful for focal liver lesion detection and characterization, for the assessment of post-treatment tumor response and for evaluation of diffuse liver disease. ADC quantification can be used to characterize lesions as cystic/necrotic or solid and for predicting tumor response to therapy. Advanced diffusion methods such as IVIM (intravoxel incoherent motion) may have potential for detection, staging and evaluation of the progression of liver fibrosis and for liver lesion characterization. The lack of standardization of DWI technique including choice of b-values and sequence parameters has somewhat limited its widespread adoption. PMID:25086935
COSMOS: Python library for massively parallel workflows
Gafni, Erik; Luquette, Lovelace J.; Lancaster, Alex K.; Hawkins, Jared B.; Jung, Jae-Yoon; Souilmi, Yassine; Wall, Dennis P.; Tonellato, Peter J.
2014-01-01
Summary: Efficient workflows to shepherd clinically generated genomic data through the multiple stages of a next-generation sequencing pipeline are of critical importance in translational biomedical science. Here we present COSMOS, a Python library for workflow management that allows formal description of pipelines and partitioning of jobs. In addition, it includes a user interface for tracking the progress of jobs, abstraction of the queuing system and fine-grained control over the workflow. Workflows can be created on traditional computing clusters as well as cloud-based services. Availability and implementation: Source code is available for academic non-commercial research purposes. Links to code and documentation are provided at http://lpm.hms.harvard.edu and http://wall-lab.stanford.edu. Contact: dpwall@stanford.edu or peter_tonellato@hms.harvard.edu. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24982428
Clonal evolution in myelodysplastic syndromes
da Silva-Coelho, Pedro; Kroeze, Leonie I.; Yoshida, Kenichi; Koorenhof-Scheele, Theresia N.; Knops, Ruth; van de Locht, Louis T.; de Graaf, Aniek O.; Massop, Marion; Sandmann, Sarah; Dugas, Martin; Stevens-Kroef, Marian J.; Cermak, Jaroslav; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; de Witte, Theo; Blijlevens, Nicole M. A.; Muus, Petra; Huls, Gerwin; van der Reijden, Bert A.; Ogawa, Seishi; Jansen, Joop H.
2017-01-01
Cancer development is a dynamic process during which the successive accumulation of mutations results in cells with increasingly malignant characteristics. Here, we show the clonal evolution pattern in myelodysplastic syndrome (MDS) patients receiving supportive care, with or without lenalidomide (follow-up 2.5–11 years). Whole-exome and targeted deep sequencing at multiple time points during the disease course reveals that both linear and branched evolutionary patterns occur with and without disease-modifying treatment. The application of disease-modifying therapy may create an evolutionary bottleneck after which more complex MDS, but also unrelated clones of haematopoietic cells, may emerge. In addition, subclones that acquired an additional mutation associated with treatment resistance (TP53) or disease progression (NRAS, KRAS) may be detected months before clinical changes become apparent. Monitoring the genetic landscape during the disease may help to guide treatment decisions. PMID:28429724
COSMOS: Python library for massively parallel workflows.
Gafni, Erik; Luquette, Lovelace J; Lancaster, Alex K; Hawkins, Jared B; Jung, Jae-Yoon; Souilmi, Yassine; Wall, Dennis P; Tonellato, Peter J
2014-10-15
Efficient workflows to shepherd clinically generated genomic data through the multiple stages of a next-generation sequencing pipeline are of critical importance in translational biomedical science. Here we present COSMOS, a Python library for workflow management that allows formal description of pipelines and partitioning of jobs. In addition, it includes a user interface for tracking the progress of jobs, abstraction of the queuing system and fine-grained control over the workflow. Workflows can be created on traditional computing clusters as well as cloud-based services. Source code is available for academic non-commercial research purposes. Links to code and documentation are provided at http://lpm.hms.harvard.edu and http://wall-lab.stanford.edu. dpwall@stanford.edu or peter_tonellato@hms.harvard.edu. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Recent progress in the genetics of spontaneously hypertensive rats.
Pravenec, M; Křen, V; Landa, V; Mlejnek, P; Musilová, A; Šilhavý, J; Šimáková, M; Zídek, V
2014-01-01
The spontaneously hypertensive rat (SHR) is the most widely used animal model of essential hypertension and accompanying metabolic disturbances. Recent advances in sequencing of genomes of BN-Lx and SHR progenitors of the BXH/HXB recombinant inbred (RI) strains as well as accumulation of multiple data sets of intermediary phenotypes in the RI strains, including mRNA and microRNA abundance, quantitative metabolomics, proteomics, methylomics or histone modifications, will make it possible to systematically search for genetic variants involved in regulation of gene expression and in the etiology of complex pathophysiological traits. New advances in manipulation of the rat genome, including efficient transgenesis and gene targeting, will enable in vivo functional analyses of selected candidate genes to identify QTL at the molecular level or to provide insight into mechanisms whereby targeted genes affect pathophysiological traits in the SHR.
Zhou, Rui; Wang, Yi Xin; Long, Ke Ren; Jiang, An An; Jin, Long
2018-04-20
Skeletal muscle is an essential tissue to maintain the normal functions of an organism. It is also closely associated with important economic performance, such as carcass weight, of domestic animals. In recent years, studies using high-throughput sequencing techniques have identified numerous long non-coding RNAs (lncRNAs) with myogenic functions involved in regulation of gene expression at multiple levels, including epigenetic, transcriptional and post-transcriptional regulation. These lncRNAs target myogenic factors, which participate in all processes of skeletal muscle development, including proliferation, migration and differentiation of skeletal muscle stem cells, proliferation, differentiation and fusion of myocytes, muscle hypertrophy and conversion of muscle fiber types. In this review, we summarize the functional roles of lncRNAs in regulation of myogenesis in humans and mice, describe the methods for the analysis of lncRNA function, discuss the progress of lncRNA research in domestic animals, and highlight the current problems and challenges in lncRNA research on livestock production. We hope to provide a useful reference for research on lncRNA in domestic animals, thereby further identifying the molecular regulatory mechanisms in skeletal muscle growth and development.
[Scientific progress and new biological weapons].
Berche, Patrick
2006-02-01
The biological weapons are different from conventional weapons, because living germs hold an extraordinary and predictable potential for multiplication, propagation and genetic variation during their dissemination in a susceptible population. Only natural pathogens (1rst generation weapons) have been used in the past (smallpox virus, plague, anthrax, toxins...). However, new threats are emerging, due to the rapid progress of scientific knowledge and its exponential worldwide diffusion. It is possible to synthesize microorganisms from in silico sequences widely diffused on Internet (poliovirus, influenza...), thus resulting in the accessibility of very dangerous virus confined today in high-security laboratories (virus Ebola...). It is possible also to "improve" pathogens by genetic manipulations, becoming more resistant or virulent (2nd generation weapons). Finally, one can now create de novo new pathogens by molecular breeding (DNA shuffling), potentially highly dangerous for naive populations (3rd generation weapons). Making biological weapons does not require too much technological resources and appears accessible to terrorists, due to low cost and easy use. Although the destructive consequences are difficult to predict, the psychological and social damages should be considerable, because of the highly emotional burden in the population associated to the transgression by man of a taboo of life.
Identifying Common Genetic Risk Factors of Diabetic Neuropathies
Witzel, Ini-Isabée; Jelinek, Herbert F.; Khalaf, Kinda; Lee, Sungmun; Khandoker, Ahsan H.; Alsafar, Habiba
2015-01-01
Type 2 diabetes mellitus (T2DM) is a global public health problem of epidemic proportions, with 60–70% of affected individuals suffering from associated neurovascular complications that act on multiple organ systems. The most common and clinically significant neuropathies of T2DM include uremic neuropathy, peripheral neuropathy, and cardiac autonomic neuropathy. These conditions seriously impact an individual’s quality of life and significantly increase the risk of morbidity and mortality. Although advances in gene sequencing technologies have identified several genetic variants that may regulate the development and progression of T2DM, little is known about whether or not the variants are involved in disease progression and how these genetic variants are associated with diabetic neuropathy specifically. Significant missing heritability data and complex disease etiologies remain to be explained. This article is the first to provide a review of the genetic risk variants implicated in the diabetic neuropathies and to highlight potential commonalities. We thereby aim to contribute to the creation of a genetic-metabolic model that will help to elucidate the cause of diabetic neuropathies, evaluate a patient’s risk profile, and ultimately facilitate preventative and targeted treatment for the individual. PMID:26074879
Complement research in the 18th-21st centuries: Progress comes with new technology.
Sim, R B; Schwaeble, W; Fujita, T
2016-10-01
The complement system has been studied for about 120 years. Progress in defining this large and complex system has been dependent on the research technologies available, but since the introduction of protein chromatography, electrophoresis, and antibody-based assay methods in the 1950s and 60s, and sequencing of proteins and DNA in the 70s and 80s, there has been very rapid accumulation of data. With more recent improvements in 3D structure determination (nmr and X-ray crystallography), the structures of most of the complement proteins have now been solved. Complement research since 1990 has been greatly stimulated by the discoveries of the multiple proteins in the lectin pathway, the strong association of Factor H, C3, Factor B allelic variants with adult macular degeneration and atypical haemolytic uremic syndrome, and the introduction of the anti-C5 monoclonal antibody as a therapy for paroxysmal nocturnal hemoglobinuria and atypical haemolytic uremic syndrome. Potential new roles for complement in tissue development and the search for novel therapeutics suggest a very active future for complement research. Copyright © 2016 Elsevier GmbH. All rights reserved.
Barata, Pedro C.; Ornstein, Moshe C.
2017-01-01
Despite significant changes in the therapeutic landscape of renal cell carcinoma, the majority of patients with metastatic disease eventually progress after first-line treatment with vascular endothelial growth factor receptors (VEGFR) tyrosine kinase inhibitor (TKI) therapy. Understanding existing data on subsequent therapies is crucial to define an optimal treatment sequence following first-line failure. This review examines the data supporting currently approved agents in this setting and provides a framework for decision-making regarding treatment sequencing beyond first-line therapy with VEGFR TKIs. PMID:28725539
Investigation of subsidence event over multiple seam mining area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohli, K.K.
1999-07-01
An investigation was performed to determine the sequence of events which caused the 1987 surface subsidence and related damage to several homes in Walker County, Alabama, USA. Surface affects compared to mine maps indicated the subsidence to be mine related. However, two coal seams had been worked under this area. The upper seam, the American seam, ranged from 250 to 280 feet beneath the surface in the area in question. It was mined-out before 1955 by room-and-pillar method leaving in place narrow-long pillars to support the overburden strata, and abandoned in 1955. The lower seam, the Mary Lee seam, rangedmore » from 650 to 700 feet beneath the surface. The Mary Lee seam had been abandoned in 1966 and subsequently became flooded. The dewatering of the Mary Lee seam workings in 1985 caused the submerged pillars to be exposed to the atmosphere. Due to multiple seam mining and the fact that workings had been inundated then dewatered, a subsurface investigation ensued to determine the sequence and ultimate cause of surface subsidence. Core sample tests with fracture analysis in conjunction with down-the-hole TV camera inspections provided necessary information to determine that the subsidence started in the lower seam and progressed through the upper coal seam to the surface. Evidence from the investigation program established that dewatering of the lower seam workings caused the marginally stable support pillars and the roof to collapse. This failure triggered additional subsidence in the upper seam which broadened the area of influence at the surface.« less
Use of multiple competitors for quantification of human immunodeficiency virus type 1 RNA in plasma.
Vener, T; Nygren, M; Andersson, A; Uhlén, M; Albert, J; Lundeberg, J
1998-07-01
Quantification of human immunodeficiency virus type 1 (HIV-1) RNA in plasma has rapidly become an important tool in basic HIV research and in the clinical care of infected individuals. Here, a quantitative HIV assay based on competitive reverse transcription-PCR with multiple competitors was developed. Four RNA competitors containing identical PCR primer binding sequences as the viral HIV-1 RNA target were constructed. One of the PCR primers was fluorescently labeled, which facilitated discrimination between the viral RNA and competitor amplicons by fragment analysis with conventional automated sequencers. The coamplification of known amounts of the RNA competitors provided the means to establish internal calibration curves for the individual reactions resulting in exclusion of tube-to-tube variations. Calibration curves were created from the peak areas, which were proportional to the starting amount of each competitor. The fluorescence detection format was expanded to provide a dynamic range of more than 5 log units. This quantitative assay allowed for reproducible analysis of samples containing as few as 40 viral copies of HIV-1 RNA per reaction. The within- and between-run coefficients of variation were <24% (range, 10 to 24) and <36% (range, 27 to 36), respectively. The high reproducibility (standard deviation, <0.13 log) of the overall procedure for quantification of HIV-1 RNA in plasma, including sample preparation, amplification, and detection variations, allowed reliable detection of a 0.5-log change in RNA viral load. The assay could be a useful tool for monitoring HIV-1 disease progression and antiviral treatment and can easily be adapted to the quantification of other pathogens.
Wightman, Bruce; Hark, Amy T
2012-01-01
The development of fields such as bioinformatics and genomics has created new challenges and opportunities for undergraduate biology curricula. Students preparing for careers in science, technology, and medicine need more intensive study of bioinformatics and more sophisticated training in the mathematics on which this field is based. In this study, we deliberately integrated bioinformatics instruction at multiple course levels into an existing biology curriculum. Students in an introductory biology course, intermediate lab courses, and advanced project-oriented courses all participated in new course components designed to sequentially introduce bioinformatics skills and knowledge, as well as computational approaches that are common to many bioinformatics applications. In each course, bioinformatics learning was embedded in an existing disciplinary instructional sequence, as opposed to having a single course where all bioinformatics learning occurs. We designed direct and indirect assessment tools to follow student progress through the course sequence. Our data show significant gains in both student confidence and ability in bioinformatics during individual courses and as course level increases. Despite evidence of substantial student learning in both bioinformatics and mathematics, students were skeptical about the link between learning bioinformatics and learning mathematics. While our approach resulted in substantial learning gains, student "buy-in" and engagement might be better in longer project-based activities that demand application of skills to research problems. Nevertheless, in situations where a concentrated focus on project-oriented bioinformatics is not possible or desirable, our approach of integrating multiple smaller components into an existing curriculum provides an alternative. Copyright © 2012 Wiley Periodicals, Inc.
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
USDA-ARS?s Scientific Manuscript database
Little is known about genetic variation of Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV; Baculoviridae: Alphabaculovirus) at the nucleotide sequence level. To obtain a more comprehensive view of genetic diversity among isolates of LdMNPV, partial sequences of the lef-8 gene were generated...
Prediction of β-turns in proteins from multiple alignment using neural network
Kaur, Harpreet; Raghava, Gajendra Pal Singh
2003-01-01
A neural network-based method has been developed for the prediction of β-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST–generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Qpred, Qobs, and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published β-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach. PMID:12592033
Determination of dipole coupling constants using heteronuclear multiple quantum NMR
NASA Astrophysics Data System (ADS)
Weitekamp, D. P.; Garbow, J. R.; Pines, A.
1982-09-01
The problem of extracting dipole couplings from a system of N spins I = 1/2 and one spin S by NMR techniques is analyzed. The resolution attainable using a variety of single quantum methods is reviewed. The theory of heteronuclear multiple quantum (HMQ) NMR is developed, with particular emphasis being placed on the superior resolution available in HMQ spectra. Several novel pulse sequences are introduced, including a two-step method for the excitation of HMQ coherence. Experiments on partially oriented [1-13C] benzene demonstrate the excitation of the necessary HMQ coherence and illustrate the calculation of relative line intensities. Spectra of high order HMQ coherence under several different effective Hamiltonians achievable by multiple pulse sequences are discussed. A new effective Hamiltonian, scalar heteronuclear recoupled interactions by multiple pulse (SHRIMP), achieved by the simultaneous irradiation of both spin species with the same multiple pulse sequence, is introduced. Experiments are described which allow heteronuclear couplings to be correlated with an S-spin spreading parameter in spectra free of inhomogeneous broadening.
Sequence harmony: detecting functional specificity from alignments
Feenstra, K. Anton; Pirovano, Walter; Krab, Klaas; Heringa, Jaap
2007-01-01
Multiple sequence alignments are often used for the identification of key specificity-determining residues within protein families. We present a web server implementation of the Sequence Harmony (SH) method previously introduced. SH accurately detects subfamily specific positions from a multiple alignment by scoring compositional differences between subfamilies, without imposing conservation. The SH web server allows a quick selection of subtype specific sites from a multiple alignment given a subfamily grouping. In addition, it allows the predicted sites to be directly mapped onto a protein structure and displayed. We demonstrate the use of the SH server using the family of plant mitochondrial alternative oxidases (AOX). In addition, we illustrate the usefulness of combining sequence and structural information by showing that the predicted sites are clustered into a few distinct regions in an AOX homology model. The SH web server can be accessed at www.ibi.vu.nl/programs/seqharmwww. PMID:17584793
Solving the problem of comparing whole bacterial genomes across different sequencing platforms.
Kaas, Rolf S; Leekitcharoenphon, Pimlapas; Aarestrup, Frank M; Lund, Ole
2014-01-01
Whole genome sequencing (WGS) shows great potential for real-time monitoring and identification of infectious disease outbreaks. However, rapid and reliable comparison of data generated in multiple laboratories and using multiple technologies is essential. So far studies have focused on using one technology because each technology has a systematic bias making integration of data generated from different platforms difficult. We developed two different procedures for identifying variable sites and inferring phylogenies in WGS data across multiple platforms. The methods were evaluated on three bacterial data sets and sequenced on three different platforms (Illumina, 454, Ion Torrent). We show that the methods are able to overcome the systematic biases caused by the sequencers and infer the expected phylogenies. It is concluded that the cause of the success of these new procedures is due to a validation of all informative sites that are included in the analysis. The procedures are available as web tools.
Kordes, Sebastian; Kössl, Manfred
2017-01-01
Abstract For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units’ responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams. PMID:29242823
Beetz, M Jerome; Kordes, Sebastian; García-Rosales, Francisco; Kössl, Manfred; Hechavarría, Julio C
2017-01-01
For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units' responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams.
Qualitative and quantitative assessment of Illumina's forensic STR and SNP kits on MiSeq FGx™.
Sharma, Vishakha; Chow, Hoi Yan; Siegel, Donald; Wurmbach, Elisa
2017-01-01
Massively parallel sequencing (MPS) is a powerful tool transforming DNA analysis in multiple fields ranging from medicine, to environmental science, to evolutionary biology. In forensic applications, MPS offers the ability to significantly increase the discriminatory power of human identification as well as aid in mixture deconvolution. However, before the benefits of any new technology can be employed, a thorough evaluation of its quality, consistency, sensitivity, and specificity must be rigorously evaluated in order to gain a detailed understanding of the technique including sources of error, error rates, and other restrictions/limitations. This extensive study assessed the performance of Illumina's MiSeq FGx MPS system and ForenSeq™ kit in nine experimental runs including 314 reaction samples. In-depth data analysis evaluated the consequences of different assay conditions on test results. Variables included: sample numbers per run, targets per run, DNA input per sample, and replications. Results are presented as heat maps revealing patterns for each locus. Data analysis focused on read numbers (allele coverage), drop-outs, drop-ins, and sequence analysis. The study revealed that loci with high read numbers performed better and resulted in fewer drop-outs and well balanced heterozygous alleles. Several loci were prone to drop-outs which led to falsely typed homozygotes and therefore to genotype errors. Sequence analysis of allele drop-in typically revealed a single nucleotide change (deletion, insertion, or substitution). Analyses of sequences, no template controls, and spurious alleles suggest no contamination during library preparation, pooling, and sequencing, but indicate that sequencing or PCR errors may have occurred due to DNA polymerase infidelities. Finally, we found utilizing Illumina's FGx System at recommended conditions does not guarantee 100% outcomes for all samples tested, including the positive control, and required manual editing due to low read numbers and/or allele drop-in. These findings are important for progressing towards implementation of MPS in forensic DNA testing.
NASA Astrophysics Data System (ADS)
Lin, Yi-Hsuan; Brady, Jacob P.; Forman-Kay, Julie D.; Chan, Hue Sun
2017-11-01
Biologically functional liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-phase-approximation (RPA) polymer theory to electrostatics, which is a major energetic component governing IDP phase properties. RPA accounts for charge patterns and thus has advantages over Flory-Huggins (FH) and Overbeek-Voorn mean-field theories. To make progress toward deciphering the phase behaviors of multiple IDP sequences, the RPA formulation for one IDP species plus solvent is hereby extended to treat polyampholyte solutions containing two IDP species plus solvent. The new formulation generally allows for binary coexistence of two phases, each containing a different set of volume fractions ({φ }1,{φ }2) for the two different IDP sequences. The asymmetry between the two predicted coexisting phases with regard to their {φ }1/{φ }2 ratios for the two sequences increases with increasing mismatch between their charge patterns. This finding points to a multivalent, stochastic, ‘fuzzy’ mode of molecular recognition that helps populate various IDP sequences differentially into separate phase compartments. An intuitive illustration of this trend is provided by FH models, whereby a hypothetical case of ternary coexistence is also explored. Augmentations of the present RPA theory with a relative permittivity {ɛ }{{r}}(φ ) that depends on IDP volume fraction φ ={φ }1+{φ }2 lead to higher propensities to phase separate, in line with the case with one IDP species we studied previously. Notably, the cooperative, phase-separation-enhancing effects predicted by the prescriptions for {ɛ }{{r}}(φ ) we deem physically plausible are much more prominent than that entailed by common effective medium approximations based on Maxwell Garnett and Bruggeman mixing formulas. Ramifications of our findings on further theoretical development for IDP phase separation are discussed.
Akram, Afia Muhammad; Iqbal, Zafar; Akhtar, Tanveer; Khalid, Ahmed Mukhtar; Sabar, Muhammad Farooq; Qazi, Mahmood Hussain; Aziz, Zeba; Sajid, Nadia; Aleem, Aamer; Rasool, Mahmood; Asif, Muhammad; Aloraibi, Saleh; Aljamaan, Khaled; Iqbal, Mudassar
2017-04-03
BCR-ABL kinase domain (K D ) mutations are well known for causing resistance against tyrosine kinase inhibitors (TKIs) and disease progression in chronic myeloid leukemia (CML). In recent years, compound BCR-ABL mutations have emerged as a new threat to CML patients by causing higher degrees of resistance involving multiple TKIs, including ponatinib. However, there are limited reports about association of compound BCR-ABL mutations with disease progression in imatinib (IM) sensitive CML patients. Therefore, we investigated presence of ABL-K D mutations in chronic phase (n = 41), late chronic phase (n = 33) and accelerated phase (n = 16) imatinib responders. Direct sequencing analysis was used for this purpose. Eleven patients (12.22%) in late-CP CML were detected having total 24 types of point mutations, out of which 8 (72.72%) harbored compound mutated sites. SH2 contact site mutations were dominant in our study cohort, with E355G (3.33%) being the most prevalent. Five patients (45%) all having compound mutated sites, progressed to advanced phases of disease during follow up studies. Two novel silent mutations G208G and E292E/E were detected in combination with other mutants, indicating limited tolerance for BCR-ABL1 kinase domain for missense mutations. However, no patient in early CP of disease manifested mutated ABL-K D . Occurrence of mutations was found associated with elevated platelet count (p = 0.037) and patients of male sex (p = 0.049). The median overall survival and event free survival of CML patients (n = 90) was 6.98 and 5.8 y respectively. The compound missense mutations in BCR-ABL kinase domain responsible to elicit disease progression, drug resistance or disease relapse in CML, can be present in yet Imatinib sensitive patients. Disease progression observed here, emphasizes the need of ABL-K D mutation screening in late chronic phase CML patients for improved clinical management of disease.
Evolutionary distances in the twilight zone--a rational kernel approach.
Schwarz, Roland F; Fletcher, William; Förster, Frank; Merget, Benjamin; Wolf, Matthias; Schultz, Jörg; Markowetz, Florian
2010-12-31
Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.
DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.
Kelly, Steven; Maini, Philip K
2013-01-01
The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.
Data-Driven Sequence of Changes to Anatomical Brain Connectivity in Sporadic Alzheimer's Disease.
Oxtoby, Neil P; Garbarino, Sara; Firth, Nicholas C; Warren, Jason D; Schott, Jonathan M; Alexander, Daniel C
2017-01-01
Model-based investigations of transneuronal spreading mechanisms in neurodegenerative diseases relate the pattern of pathology severity to the brain's connectivity matrix, which reveals information about how pathology propagates through the connectivity network. Such network models typically use networks based on functional or structural connectivity in young and healthy individuals, and only end-stage patterns of pathology, thereby ignoring/excluding the effects of normal aging and disease progression. Here, we examine the sequence of changes in the elderly brain's anatomical connectivity over the course of a neurodegenerative disease. We do this in a data-driven manner that is not dependent upon clinical disease stage, by using event-based disease progression modeling. Using data from the Alzheimer's Disease Neuroimaging Initiative dataset, we sequence the progressive decline of anatomical connectivity, as quantified by graph-theory metrics, in the Alzheimer's disease brain. Ours is the first single model to contribute to understanding all three of the nature, the location, and the sequence of changes to anatomical connectivity in the human brain due to Alzheimer's disease. Our experimental results reveal new insights into Alzheimer's disease: that degeneration of anatomical connectivity in the brain may be a viable, even early, biomarker and should be considered when studying such neurodegenerative diseases.
Assessment of progressively delayed prompts on guided skill learning in rats.
Reid, Alliston K; Futch, Sara E; Ball, Katherine M; Knight, Aubrey G; Tucker, Martha
2017-03-01
We examined the controlling factors that allow a prompted skill to become autonomous in a discrete-trials implementation of Touchette's (1971) progressively delayed prompting procedure, but our subjects were rats rather than children with disabilities. Our prompted skill was a left-right lever-press sequence guided by two panel lights. We manipulated (a) the effectiveness of the guiding lights prompt and (b) the presence or absence of a progressively delayed prompt in four groups of rats. The less effective prompt yielded greater autonomy than the more effective prompt. The ability of the progressively delayed prompt procedure to produce behavioral autonomy depended upon characteristics of the obtained delay (trial duration) rather than on the pending prompt. Sequence accuracy was reliably higher in unprompted trials than in prompted trials, and this difference was maintained in the 2 groups that received no prompts but yielded equivalent trial durations. Overall sequence accuracy decreased systematically as trial duration increased. Shorter trials and their greater accuracy were correlated with higher overall reinforcement rates for faster responding. Waiting for delayed prompts (even if no actual prompt was provided) was associated with lower overall reinforcement rate by decreasing accuracy and by lengthening trials. These findings extend results from previous studies regarding the controlling factors in delayed prompting procedures applied to children with disabilities.
Hidden Markov models of biological primary sequence information.
Baldi, P; Chauvin, Y; Hunkapiller, T; McClure, M A
1994-01-01
Hidden Markov model (HMM) techniques are used to model families of biological sequences. A smooth and convergent algorithm is introduced to iteratively adapt the transition and emission parameters of the models from the examples in a given family. The HMM approach is applied to three protein families: globins, immunoglobulins, and kinases. In all cases, the models derived capture the important statistical characteristics of the family and can be used for a number of tasks, including multiple alignments, motif detection, and classification. For K sequences of average length N, this approach yields an effective multiple-alignment algorithm which requires O(KN2) operations, linear in the number of sequences. PMID:8302831
Gemi: PCR Primers Prediction from Multiple Alignments
Sobhy, Haitham; Colson, Philippe
2012-01-01
Designing primers and probes for polymerase chain reaction (PCR) is a preliminary and critical step that requires the identification of highly conserved regions in a given set of sequences. This task can be challenging if the targeted sequences display a high level of diversity, as frequently encountered in microbiologic studies. We developed Gemi, an automated, fast, and easy-to-use bioinformatics tool with a user-friendly interface to design primers and probes based on multiple aligned sequences. This tool can be used for the purpose of real-time and conventional PCR and can deal efficiently with large sets of sequences of a large size. PMID:23316117
PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences.
Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong; Warnow, Tandy
2015-05-01
We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate--slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory.
EUGÈNE'HOM: a generic similarity-based gene finder using multiple homologous sequences
Foissac, Sylvain; Bardou, Philippe; Moisan, Annick; Cros, Marie-Josée; Schiex, Thomas
2003-01-01
EUGÈNE'HOM is a gene prediction software for eukaryotic organisms based on comparative analysis. EUGÈNE'HOM is able to take into account multiple homologous sequences from more or less closely related organisms. It integrates the results of TBLASTX analysis, splice site and start codon prediction and a robust coding/non-coding probabilistic model which allows EUGÈNE'HOM to handle sequences from a variety of organisms. The current target of EUGÈNE'HOM is plant sequences. The EUGÈNE'HOM web site is available at http://genopole.toulouse.inra.fr/bioinfo/eugene/EuGeneHom/cgi-bin/EuGeneHom.pl. PMID:12824408
FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation.
Bolleman, Jerven T; Mungall, Christopher J; Strozzi, Francesco; Baran, Joachim; Dumontier, Michel; Bonnal, Raoul J P; Buels, Robert; Hoehndorf, Robert; Fujisawa, Takatomo; Katayama, Toshiaki; Cock, Peter J A
2016-06-13
Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. We have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned "omics" areas. Using the same data format to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe - and potentially merge - sequence annotations from multiple sources. Data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.
FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation
Bolleman, Jerven T.; Mungall, Christopher J.; Strozzi, Francesco; ...
2016-06-13
Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. In this paper, we have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned “omics” areas. Using the same data formatmore » to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe – and potentially merge – sequence annotations from multiple sources. Finally, data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.« less
Fast alignment-free sequence comparison using spaced-word frequencies.
Leimeister, Chris-Andre; Boden, Marcus; Horwege, Sebastian; Lindner, Sebastian; Morgenstern, Burkhard
2014-07-15
Alignment-free methods for sequence comparison are increasingly used for genome analysis and phylogeny reconstruction; they circumvent various difficulties of traditional alignment-based approaches. In particular, alignment-free methods are much faster than pairwise or multiple alignments. They are, however, less accurate than methods based on sequence alignment. Most alignment-free approaches work by comparing the word composition of sequences. A well-known problem with these methods is that neighbouring word matches are far from independent. To reduce the statistical dependency between adjacent word matches, we propose to use 'spaced words', defined by patterns of 'match' and 'don't care' positions, for alignment-free sequence comparison. We describe a fast implementation of this approach using recursive hashing and bit operations, and we show that further improvements can be achieved by using multiple patterns instead of single patterns. To evaluate our approach, we use spaced-word frequencies as a basis for fast phylogeny reconstruction. Using real-world and simulated sequence data, we demonstrate that our multiple-pattern approach produces better phylogenies than approaches relying on contiguous words. Our program is freely available at http://spaced.gobics.de/. © The Author 2014. Published by Oxford University Press.
An intuitive graphical webserver for multiple-choice protein sequence search.
Banky, Daniel; Szalkai, Balazs; Grolmusz, Vince
2014-04-10
Every day tens of thousands of sequence searches and sequence alignment queries are submitted to webservers. The capitalized word "BLAST" becomes a verb, describing the act of performing sequence search and alignment. However, if one needs to search for sequences that contain, for example, two hydrophobic and three polar residues at five given positions, the query formation on the most frequently used webservers will be difficult. Some servers support the formation of queries with regular expressions, but most of the users are unfamiliar with their syntax. Here we present an intuitive, easily applicable webserver, the Protein Sequence Analysis server, that allows the formation of multiple choice queries by simply drawing the residues to their positions; if more than one residue are drawn to the same position, then they will be nicely stacked on the user interface, indicating the multiple choice at the given position. This computer-game-like interface is natural and intuitive, and the coloring of the residues makes possible to form queries requiring not just certain amino acids in the given positions, but also small nonpolar, negatively charged, hydrophobic, positively charged, or polar ones. The webserver is available at http://psa.pitgroup.org. Copyright © 2014 Elsevier B.V. All rights reserved.
Ajawatanawong, Pravech; Atkinson, Gemma C; Watson-Haigh, Nathan S; Mackenzie, Bryony; Baldauf, Sandra L
2012-07-01
Analyses of multiple sequence alignments generally focus on well-defined conserved sequence blocks, while the rest of the alignment is largely ignored or discarded. This is especially true in phylogenomics, where large multigene datasets are produced through automated pipelines. However, some of the most powerful phylogenetic markers have been found in the variable length regions of multiple alignments, particularly insertions/deletions (indels) in protein sequences. We have developed Sequence Feature and Indel Region Extractor (SeqFIRE) to enable the automated identification and extraction of indels from protein sequence alignments. The program can also extract conserved blocks and identify fast evolving sites using a combination of conservation and entropy. All major variables can be adjusted by the user, allowing them to identify the sets of variables most suited to a particular analysis or dataset. Thus, all major tasks in preparing an alignment for further analysis are combined in a single flexible and user-friendly program. The output includes a numbered list of indels, alignments in NEXUS format with indels annotated or removed and indel-only matrices. SeqFIRE is a user-friendly web application, freely available online at www.seqfire.org/.
FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolleman, Jerven T.; Mungall, Christopher J.; Strozzi, Francesco
Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. In this paper, we have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned “omics” areas. Using the same data formatmore » to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe – and potentially merge – sequence annotations from multiple sources. Finally, data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.« less
Křenek, Pavel; Benešová, Yvonne; Bienertová-Vašků, Julie; Vašků, Anna
2018-04-01
Vitamin D receptor polymorphisms have been the target of many studies focusing on multiple sclerosis. However, previously reported results have been inconclusive. The objective of this study was to investigate the association between five vitamin D receptor polymorphisms (EcoRV, FokI, ApaI, TaqI, and BsmI) and multiple sclerosis susceptibility and its course. The study was carried out as a case-control and genotype-phenotype study, consisted of 296 Czech multiple sclerosis patients and 135 healthy controls. Genotyping was carried out using polymerase chain reaction and restriction analysis. In multiple sclerosis men, allele and/or genotype distributions differed in EcoRV, TaqI, BsmI, and ApaI polymorphisms as compared to controls (EcoRV, p a = 0.02; Taq, p g = 0.02, p a = 0.02; BsmI, p g = 0.02, p a = 0.04; ApaI, p g = 0.008, p a = 0.005). In multiple sclerosis women, differences in the frequency of alleles and genotypes were found to be significant in ApaI (controls vs multiple sclerosis women: p g = 0.01, p a = 0.05). Conclusive results were observed between multiple sclerosis women in the case of EcoRV [differences in Expanded Disability Status Scale (p = 0.05); CT genotype was found to increase the risk of primary progressive multiple sclerosis 5.5 times (CT vs CC+TT p corr = 0.01, sensitivity 0.833, specificity 0.525, power test 0.823)] and FokI [borderline difference in Multiple Sclerosis Severity Score (p = 0.05)]. Our results indicate that the distribution of investigated vitamin D receptor polymorphisms is a risk factor for multiple sclerosis susceptibility and progression in the Czech population. The association between disease risk and polymorphisms was found to be stronger in men. The association of disease progression with polymorphisms was observed only in women.
Analysis on the use of Multi-Sequence MRI Series for Segmentation of Abdominal Organs
NASA Astrophysics Data System (ADS)
Selver, M. A.; Selvi, E.; Kavur, E.; Dicle, O.
2015-01-01
Segmentation of abdominal organs from MRI data sets is a challenging task due to various limitations and artefacts. During the routine clinical practice, radiologists use multiple MR sequences in order to analyze different anatomical properties. These sequences have different characteristics in terms of acquisition parameters (such as contrast mechanisms and pulse sequence designs) and image properties (such as pixel spacing, slice thicknesses and dynamic range). For a complete understanding of the data, computational techniques should combine the information coming from these various MRI sequences. These sequences are not acquired in parallel but in a sequential manner (one after another). Therefore, patient movements and respiratory motions change the position and shape of the abdominal organs. In this study, the amount of these effects is measured using three different symmetric surface distance metrics performed to three dimensional data acquired from various MRI sequences. The results are compared to intra and inter observer differences and discussions on using multiple MRI sequences for segmentation and the necessities for registration are presented.
Status of duckweed genomics and transcriptomics.
Wang, W; Messing, J
2015-01-01
Duckweeds belong to the smallest flowering plants that undergo fast vegetative growth in an aquatic environment. They are commonly used in wastewater treatment and animal feed. Whereas duckweeds have been studied at the biochemical level, their reduced morphology and wide environmental adaption had not been subjected to molecular analysis until recently. Here, we review the progress that has been made in using a DNA barcode system and the sequences of chloroplast and mitochondrial genomes to identify duckweed species at the species or population level. We also review analysis of the nuclear genome sequence of Spirodela that provides new insights into fundamental biological questions. Indeed, reduced gene families and missing genes are consistent with its compact morphogenesis, aquatic floating and suppression of juvenile-to-adult transition. Furthermore, deep RNA sequencing of Spirodela at the onset of dormancy and Landoltia in exposure of nutrient deficiency illustrate the molecular network for environmental adaption and stress response, constituting major progress towards a post-genome sequencing phase, where further functional genomic details can be explored. Rapid advances in sequencing technologies could continue to promote a proliferation of genome sequences for additional ecotypes as well as for other duckweed species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Bardy, Fabrice; Dillon, Harvey; Van Dun, Bram
2014-04-01
Rapid presentation of stimuli in an evoked response paradigm can lead to overlap of multiple responses and consequently difficulties interpreting waveform morphology. This paper presents a deconvolution method allowing overlapping multiple responses to be disentangled. The deconvolution technique uses a least-squared error approach. A methodology is proposed to optimize the stimulus sequence associated with the deconvolution technique under low-jitter conditions. It controls the condition number of the matrices involved in recovering the responses. Simulations were performed using the proposed deconvolution technique. Multiple overlapping responses can be recovered perfectly in noiseless conditions. In the presence of noise, the amount of error introduced by the technique can be controlled a priori by the condition number of the matrix associated with the used stimulus sequence. The simulation results indicate the need for a minimum amount of jitter, as well as a sufficient number of overlap combinations to obtain optimum results. An aperiodic model is recommended to improve reconstruction. We propose a deconvolution technique allowing multiple overlapping responses to be extracted and a method of choosing the stimulus sequence optimal for response recovery. This technique may allow audiologists, psychologists, and electrophysiologists to optimize their experimental designs involving rapidly presented stimuli, and to recover evoked overlapping responses. Copyright © 2013 International Federation of Clinical Neurophysiology. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, C.-W.; Stark, W.
2005-01-01
This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.
Figueroa, Melania; Upadhyaya, Narayana M; Sperschneider, Jana; Park, Robert F; Szabo, Les J; Steffenson, Brian; Ellis, Jeff G; Dodds, Peter N
2016-01-01
The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort toward controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr) genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr) proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Toward this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens, including the related flax rust fungus. Upregulation of gene expression in haustoria and evidence for diversifying selection are two useful parameters to identify candidate Avr genes. Recently, we have also applied machine learning approaches to agnostically predict candidate effectors. Here, we review progress in stem rust pathogenomics and approaches currently underway to identify Avr genes recognized by wheat Sr genes.
DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules.
Eernisse, D J
1992-04-01
DNA Translator and Aligner are molecular phylogenetics HyperCard stacks for Macintosh computers. They manipulate sequence data to provide graphical gene mapping, conversions, translations and manual multiple-sequence alignment editing. DNA Translator is able to convert documented GenBank or EMBL documented sequences into linearized, rescalable gene maps whose gene sequences are extractable by clicking on the corresponding map button or by selection from a scrolling list. Provided gene maps, complete with extractable sequences, consist of nine metazoan, one yeast, and one ciliate mitochondrial DNAs and three green plant chloroplast DNAs. Single or multiple sequences can be manipulated to aid in phylogenetic analysis. Sequences can be translated between nucleic acids and proteins in either direction with flexible support of alternate genetic codes and ambiguous nucleotide symbols. Multiple aligned sequence output from diverse sources can be converted to Nexus, Hennig86 or PHYLIP format for subsequent phylogenetic analysis. Input or output alignments can be examined with Aligner, a convenient accessory stack included in the DNA Translator package. Aligner is an editor for the manual alignment of up to 100 sequences that toggles between display of matched characters and normal unmatched sequences. DNA Translator also generates graphic displays of amino acid coding and codon usage frequency relative to all other, or only synonymous, codons for approximately 70 select organism-organelle combinations. Codon usage data is compatible with spreadsheet or UWGCG formats for incorporation of additional molecules of interest. The complete package is available via anonymous ftp and is free for non-commercial uses.
Can you sequence ecology? Metagenomics of adaptive diversification.
Marx, Christopher J
2013-01-01
Few areas of science have benefited more from the expansion in sequencing capability than the study of microbial communities. Can sequence data, besides providing hypotheses of the functions the members possess, detect the evolutionary and ecological processes that are occurring? For example, can we determine if a species is adapting to one niche, or if it is diversifying into multiple specialists that inhabit distinct niches? Fortunately, adaptation of populations in the laboratory can serve as a model to test our ability to make such inferences about evolution and ecology from sequencing. Even adaptation to a single niche can give rise to complex temporal dynamics due to the transient presence of multiple competing lineages. If there are multiple niches, this complexity is augmented by segmentation of the population into multiple specialists that can each continue to evolve within their own niche. For a known example of parallel diversification that occurred in the laboratory, sequencing data gave surprisingly few obvious, unambiguous signs of the ecological complexity present. Whereas experimental systems are open to direct experimentation to test hypotheses of selection or ecological interaction, the difficulty in "seeing ecology" from sequencing for even such a simple system suggests translation to communities like the human microbiome will be quite challenging. This will require both improved empirical methods to enhance the depth and time resolution for the relevant polymorphisms and novel statistical approaches to rigorously examine time-series data for signs of various evolutionary and ecological phenomena within and between species.
Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D.; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario
2016-01-01
The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842
Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario
2016-04-19
The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma.Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines.We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK.Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%.Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression.Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants.In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression.
Bouwman, Aniek C; Veerkamp, Roel F
2014-10-03
The aim of this study was to determine the consequences of splitting sequencing effort over multiple breeds for imputation accuracy from a high-density SNP chip towards whole-genome sequence. Such information would assist for instance numerical smaller cattle breeds, but also pig and chicken breeders, who have to choose wisely how to spend their sequencing efforts over all the breeds or lines they evaluate. Sequence data from cattle breeds was used, because there are currently relatively many individuals from several breeds sequenced within the 1,000 Bull Genomes project. The advantage of whole-genome sequence data is that it carries the causal mutations, but the question is whether it is possible to impute the causal variants accurately. This study therefore focussed on imputation accuracy of variants with low minor allele frequency and breed specific variants. Imputation accuracy was assessed for chromosome 1 and 29 as the correlation between observed and imputed genotypes. For chromosome 1, the average imputation accuracy was 0.70 with a reference population of 20 Holstein, and increased to 0.83 when the reference population was increased by including 3 other dairy breeds with 20 animals each. When the same amount of animals from the Holstein breed were added the accuracy improved to 0.88, while adding the 3 other breeds to the reference population of 80 Holstein improved the average imputation accuracy marginally to 0.89. For chromosome 29, the average imputation accuracy was lower. Some variants benefitted from the inclusion of other breeds in the reference population, initially determined by the MAF of the variant in each breed, but even Holstein specific variants did gain imputation accuracy from the multi-breed reference population. This study shows that splitting sequencing effort over multiple breeds and combining the reference populations is a good strategy for imputation from high-density SNP panels towards whole-genome sequence when reference populations are small and sequencing effort is limiting. When sequencing effort is limiting and interest lays in multiple breeds or lines this provides imputation of each breed.
Gardner, Shea N; Wagner, Mark C
2005-01-01
Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization) software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed) are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As more sequence data becomes available for multiple strains and isolates of a species, automated, computational approaches such as those described here will be essential to make sense of large amounts of information, and to guide and optimize efforts in the laboratory. The software and source code for SPR Opt is publicly available and free for non-profit use at . PMID:15904493
LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Task 1.4.2 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slezak, T; Borucki, M; Lam, M
Good progress has been made on both bacterial and viral sequencing by the TMTI centers. While access to appropriate samples is a limiting factor to throughput, excellent progress has been made with respect to getting agreements in place with key sources of relevant materials. Sharing of sequenced genomes funded by TMTI has been extremely limited to date. The April 2010 exercise should force a resolution to this, but additional managerial pressures may be needed to ensure that rapid sharing of TMTI-funded sequencing occurs, regardless of collaborator constraints concerning ultimate publication(s). Policies to permit TMTI-internal rapid sharing of sequenced genomes shouldmore » be written into all TMTI agreements with collaborators now being negotiated. TMTI needs to establish a Web-based system for tracking samples destined for sequencing. This includes metadata on sample origins and contributor, information on sample shipment/receipt, prioritization by TMTI, assignment to one or more sequencing centers (including possible TMTI-sponsored sequencing at a contributor site), and status history of the sample sequencing effort. While this system could be a component of the AFRL system, it is not part of any current development effort. Policy and standardized procedures are needed to ensure appropriate verification of all TMTI samples prior to the investment in sequencing. PCR, arrays, and classical biochemical tests are examples of potential verification methods. Verification is needed to detect miss-labeled, degraded, mixed or contaminated samples. Regular QC exercises are needed to ensure that the TMTI-funded centers are meeting all standards for producing quality genomic sequence data.« less
ERIC Educational Resources Information Center
Hodson, D.
1984-01-01
Investigated the effect on student performance of changes in question structure and sequence on a GCE 0-level multiple-choice chemistry test. One finding noted is that there was virtually no change in test reliability on reducing the number of options (from five to per test item). (JN)
USDA-ARS?s Scientific Manuscript database
Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence d...
Iterative pass optimization of sequence data
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
EMICORON: A multi-targeting G4 ligand with a promising preclinical profile.
Porru, Manuela; Zizza, Pasquale; Franceschin, Marco; Leonetti, Carlo; Biroccio, Annamaria
2017-05-01
During the last decade, guanine G-rich sequences folding into G-quadruplex (G4) structures have received a lot of attention and their biological role is now a matter of large debate. Rising amounts of experimental evidence have validated several G-rich motifs as molecular targets in cancer treatment. Despite that an increasing number of small molecules has been reported to possess excellent G4 stabilizing properties, none of them has progressed through the drug-development pipeline due to their poor drug-like properties. In this context, the identification of G4 ligands with more favorable pharmacological properties and with a well-defined target activity could be fruitful for anticancer therapy application. This manuscript outlines the current state of knowledge regarding EMICORON, a G4-interactive molecule structurally and biologically similar, on the one side, to coronene and, on the other side, to a bay-monosubstituted perylene. Overall this work evidences that EMICORON, a new promising G4 ligand, possesses a marked antitumoral activity both standing alone and in combination with chemotherapeutics. Moreover, EMICORON represents a good example of multimodal class of antitumoral drug, able to simultaneously affect multiple targets participating in several distinct signaling pathways, thus simplifying the treatment modalities and improving the selectivity against cancer cells. Due to the importance of G4 forming sequences in crucial biological processes participating in tumor progression, their successful targeting with small molecules could represent a very important innovation in the development of effective therapeutic strategies against cancer. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.
Progress towards mapping the constitutional t(11:22) breakpoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnoski, B.L.; Emanuel, B.S.; Bell, C.J.
1994-09-01
The reciprocal t(11;22)(q23;q11) is the most frequent, recurrent, non-Robertsonian, constitutional translocation in humans. Balanced carriers of this rearrangement are phenotypically normal, but are at risk for producing abnormal offspring with the Supernumerary der(22)t(11;22) Syndrome. Further, a recent report of association between t(11;22) balanced translocation carriers and breast cancer, suggests the involvement of genes on 11q and/or 22q in breast cancer tumorigenesis. Studies are in progress to examine the similarity between 11q23 and 22q11 breakpoints in multiple families with the constitutional t(11;22). A 750 kb YAC, which contains markers known to flank the 11q23 breakpoint, was identified in CEPH/Genethon database. FISHmore » with this YAC to two independent t(11;22) cell lines demonstrates signal on both derivative chromosomes. Numerous YACs containing BCRL2, the closest marker proximal to the breakpoint, were identified. Analysis of these YACs to determine which contain the actual breakpoint sequences is complicated by the presence of a duplicated segment of 22q11 which contains a GGTL and a BCRL locus. Sequences homologous to these loci are present at several other locations in 22q11. The BCRL positive YACs were analyzed by Southern hybridization under conditions which distinguish the four members of the BCR/BCRL family. FISH of total yeast DNA plus YAC DNA labeled by nick translation, or biotin-labeled inter-Alu PCR products confirmed the localization of these YACs to 22q11. Additional FISH with these YACS to metaphase spreads prepared from balanced t(11;22) carriers confirm that these clones span the breakpoint, and will allow rapid isolation and definition of the genetic region adjacent to the t(11;22) breakpoint.« less
Faraji, Farhoud; Hu, Ying; Wu, Gang; Goldberger, Natalie E.; Walker, Renard C.; Zhang, Jinghui; Hunter, Kent W.
2014-01-01
Metastasis is the result of stochastic genomic and epigenetic events leading to gene expression profiles that drive tumor dissemination. Here we exploit the principle that metastatic propensity is modified by the genetic background to generate prognostic gene expression signatures that illuminate regulators of metastasis. We also identify multiple microRNAs whose germline variation is causally linked to tumor progression and metastasis. We employ network analysis of global gene expression profiles in tumors derived from a panel of recombinant inbred mice to identify a network of co-expressed genes centered on Cnot2 that predicts metastasis-free survival. Modulating Cnot2 expression changes tumor cell metastatic potential in vivo, supporting a functional role for Cnot2 in metastasis. Small RNA sequencing of the same tumor set revealed a negative correlation between expression of the Mir216/217 cluster and tumor progression. Expression quantitative trait locus analysis (eQTL) identified cis-eQTLs at the Mir216/217 locus, indicating that differences in expression may be inherited. Ectopic expression of Mir216/217 in tumor cells suppressed metastasis in vivo. Finally, small RNA sequencing and mRNA expression profiling data were integrated to reveal that miR-3470a/b target a high proportion of network transcripts. In vivo analysis of Mir3470a/b demonstrated that both promote metastasis. Moreover, Mir3470b is a likely regulator of the Cnot2 network as its overexpression down-regulated expression of network hub genes and enhanced metastasis in vivo, phenocopying Cnot2 knockdown. The resulting data from this strategy identify Cnot2 as a novel regulator of metastasis and demonstrate the power of our systems-level approach in identifying modifiers of metastasis. PMID:24322557
APOL1 Nephropathy: A Population Genetics and Evolutionary Medicine Detective Story.
Kruzel-Davila, Etty; Wasser, Walter G; Skorecki, Karl
2017-11-01
Common DNA sequence variants rarely have a high-risk association with a common disease. When such associations do occur, evolutionary forces must be sought, such as in the association of apolipoprotein L1 (APOL1) gene risk variants with nondiabetic kidney diseases in populations of African ancestry. The variants originated in West Africa and provided pathogenic resistance in the heterozygous state that led to high allele frequencies owing to an adaptive evolutionary selective sweep. However, the homozygous state is disadvantageous and is associated with a markedly increased risk of a spectrum of kidney diseases encompassing hypertension-attributed kidney disease, focal segmental glomerulosclerosis, human immunodeficiency virus nephropathy, sickle cell nephropathy, and progressive lupus nephritis. This scientific success story emerged with the help of the tools developed over the past 2 decades in human genome sequencing and population genomic databases. In this introductory article to a timely issue dedicated to illuminating progress in this area, we describe this unique population genetics and evolutionary medicine detective story. We emphasize the paradox of the inheritance mode, the missing heritability, and unresolved associations, including cardiovascular risk and diabetic nephropathy. We also highlight how genetic epidemiology elucidates mechanisms and how the principles of evolution can be used to unravel conserved pathways affected by APOL1 that may lead to novel therapies. The APOL1 gene provides a compelling example of a common variant association with common forms of nondiabetic kidney disease occurring in a continental population isolate with subsequent global admixture. Scientific collaboration using multiple experimental model systems and approaches should further clarify pathomechanisms further, leading to novel therapies. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhou, Carol L Ecale
2015-01-01
In order to better define regions of similarity among related protein structures, it is useful to identify the residue-residue correspondences among proteins. Few codes exist for constructing a one-to-many multiple sequence alignment derived from a set of structure or sequence alignments, and a need was evident for creating such a tool for combining pairwise structure alignments that would allow for insertion of gaps in the reference structure. This report describes a new Python code, CombAlign, which takes as input a set of pairwise sequence alignments (which may be structure based) and generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA). The use and utility of CombAlign was demonstrated by generating gapped MSSAs using sets of pairwise structure-based sequence alignments between structure models of the matrix protein (VP40) and pre-small/secreted glycoprotein (sGP) of Reston Ebolavirus and the corresponding proteins of several other filoviruses. The gapped MSSAs revealed structure-based residue-residue correspondences, which enabled identification of structurally similar versus differing regions in the Reston proteins compared to each of the other corresponding proteins. CombAlign is a new Python code that generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA) given a set of pairwise sequence alignments (which may be structure based). CombAlign has utility in assisting the user in distinguishing structurally conserved versus divergent regions on a reference protein structure relative to other closely related proteins. CombAlign was developed in Python 2.6, and the source code is available for download from the GitHub code repository.
GASP: Gapped Ancestral Sequence Prediction for proteins
Edwards, Richard J; Shields, Denis C
2004-01-01
Background The prediction of ancestral protein sequences from multiple sequence alignments is useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum Parsimony or Maximum Likelihood methods but many current implementations are unable to process residues with gaps, which may represent insertion/deletion (indel) events or sequence fragments. Results Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps in the phylogeny before using a likelihood-based approach centred on amino acid substitution matrices to assign ancestral amino acids. Important outgroup information is used by first working down from the tips of the tree to the root, using descendant data only to assign probabilities, and then working back up from the root to the tips using descendant and outgroup data to make predictions. GASP was tested on a number of simulated datasets based on real phylogenies. Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with GASP performing better in some cases and worse in others. Adding simple insertions and deletions to the simulated data did not have a detrimental effect on GASP accuracy. Conclusions GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences from multiple protein alignments of any size. Although not as accurate in all cases as some of the more sophisticated maximum likelihood approaches, it can process a wide range of input phylogenies and will predict ancestral sequences for gapped and ungapped residues alike. PMID:15350199
Rapid Detection of Powassan Virus in a Patient With Encephalitis by Metagenomic Sequencing.
Piantadosi, Anne; Kanjilal, Sanjat; Ganesh, Vijay; Khanna, Arjun; Hyle, Emily P; Rosand, Jonathan; Bold, Tyler; Metsky, Hayden C; Lemieux, Jacob; Leone, Michael J; Freimark, Lisa; Matranga, Christian B; Adams, Gordon; McGrath, Graham; Zamirpour, Siavash; Telford, Sam; Rosenberg, Eric; Cho, Tracey; Frosch, Matthew P; Goldberg, Marcia B; Mukerji, Shibani S; Sabeti, Pardis C
2018-02-10
We describe a patient with severe and progressive encephalitis of unknown etiology. We performed rapid metagenomic sequencing from cerebrospinal fluid and identified Powassan virus, an emerging tick-borne flavivirus that has been increasingly detected in the United States.
Qi, Zi-hua; Li, Chuan-fu; Ma, Xiang-xing; Yang, Hui; Jiang, Bao-dong; Zhang, Kai; Yu, De-xin
2012-04-01
To evaluate the value of magnetic resonance dynamic contrast-enhanced (MR-DCE) and magnetic resonance diffusion-weighted imaging (MR-DWI) in the differentiation of benign and malignant musculoskeletal tumors. Sixty-three patients with pathologically confirmed musculoskeletal tumors were examined with MR-DCE and MR-DWI. Using single shot spin echo planar imaging sequence and different b values of 400, 600, 800 and 1000 s/mm(2), we obtained the apparent diffusion coefficient (ADC) of the lesions. ADC values were measured before and after MR-DCE, with a b value of 600 s/mm(2). The 3D fast acquired multiple phase enhanced fast spoiled gradient recalled echo sequence was obtained for multi-slice of the entire lesion. The time-signal intensity curve (TIC), dynamic contrast-enhanced parameters, maximum slope of increase (MSI), positive enhancement integral, signal enhancement ratio, and time to peak (T(peak)) were also recorded. ADC showed no significant difference between benign and malignant tumors when the b value was 400, 600, 800, or 1000 s/mm(2), and it was not significantly different between benign and malignant tumors in both pre-MR-DCE and post-MR-DCE with b value of 600 s/mm(2). TIC were classified into four types type1 showed rapid progression and gradual drainage; type2 showed rapid progression but had no or slight progression; type 3 showed gradual progression; and type 4 had no or slight progression. Most lesions of type1 or type2 were malignant, whereas most lesions of type 3 or type 4 were benign. When using type1 and type 2 as the standards of malignancy, the diagnostic sensitivity and specificity was 87.23% and 50.00%, respectively. The types of TIC showed significant difference between benign and malignant musculoskeletal tumors(χ(2)=17.009,P=0.001). When using MSI 366.62 ± 174.84 as the standard of malignancy, the diagnostic sensitivity and specificity was 86.78% and 78.67%, respectively. When using T(peak)≤70s as the standard of malignancy, the diagnostic sensitivity and specificity was 82.89%and 85.78%, respectively. Positive enhancement integral and signal enhancement ratio showed no significant difference between benign and malignant musculoskeletal tumors. TIC, MSI and T(peak) of MR-DCE are valuable in differentiating benign from malignant musculoskeletal tumors. T(peak) has the highest diagnostic specificity, and TIC has the highest diagnostic sensitivity. The mean ADC value are no significant difference between benign and malignant tumors.
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Jr., Richard A.
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted.more » PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Furthermore, our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.« less
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies
Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Jr., Richard A.; ...
2017-07-18
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted.more » PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Furthermore, our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.« less
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies
Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Richard A.; Brown, Steven D.
2017-01-01
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences. PMID:28769883
Sequence Diversity Diagram for comparative analysis of multiple sequence alignments.
Sakai, Ryo; Aerts, Jan
2014-01-01
The sequence logo is a graphical representation of a set of aligned sequences, commonly used to depict conservation of amino acid or nucleotide sequences. Although it effectively communicates the amount of information present at every position, this visual representation falls short when the domain task is to compare between two or more sets of aligned sequences. We present a new visual presentation called a Sequence Diversity Diagram and validate our design choices with a case study. Our software was developed using the open-source program called Processing. It loads multiple sequence alignment FASTA files and a configuration file, which can be modified as needed to change the visualization. The redesigned figure improves on the visual comparison of two or more sets, and it additionally encodes information on sequential position conservation. In our case study of the adenylate kinase lid domain, the Sequence Diversity Diagram reveals unexpected patterns and new insights, for example the identification of subgroups within the protein subfamily. Our future work will integrate this visual encoding into interactive visualization tools to support higher level data exploration tasks.
2014-01-01
Background The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. Results The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. Conclusions The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org. PMID:25237393
de Masson, Adele; O'Malley, John T; Elco, Christopher P; Garcia, Sarah S; Divito, Sherrie J; Lowry, Elizabeth L; Tawa, Marianne; Fisher, David C; Devlin, Phillip M; Teague, Jessica E; Leboeuf, Nicole R; Kirsch, Ilan R; Robins, Harlan; Clark, Rachael A; Kupper, Thomas S
2018-05-09
Mycosis fungoides (MF), the most common cutaneous T cell lymphoma (CTCL) is a malignancy of skin-tropic memory T cells. Most MF cases present as early stage (stage I A/B, limited to the skin), and these patients typically have a chronic, indolent clinical course. However, a small subset of early-stage cases develop progressive and fatal disease. Because outcomes can be so different, early identification of this high-risk population is an urgent unmet clinical need. We evaluated the use of next-generation high-throughput DNA sequencing of the T cell receptor β gene ( TCRB ) in lesional skin biopsies to predict progression and survival in a discovery cohort of 208 patients with CTCL (177 with MF) from a 15-year longitudinal observational clinical study. We compared these data to the results in an independent validation cohort of 101 CTCL patients (87 with MF). The tumor clone frequency (TCF) in lesional skin, measured by high-throughput sequencing of the TCRB gene, was an independent prognostic factor of both progression-free and overall survival in patients with CTCL and MF in particular. In early-stage patients, a TCF of >25% in the skin was a stronger predictor of progression than any other established prognostic factor (stage IB versus IA, presence of plaques, high blood lactate dehydrogenase concentration, large-cell transformation, or age). The TCF therefore may accurately predict disease progression in early-stage MF. Early identification of patients at high risk for progression could help identify candidates who may benefit from allogeneic hematopoietic stem cell transplantation before their disease becomes treatment-refractory. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Empirical Refinements of a Molecular Genetics Learning Progression: The Molecular Constructs
ERIC Educational Resources Information Center
Todd, Amber; Kenyon, Lisa
2016-01-01
This article describes revisions to four of the eight constructs of the Duncan molecular genetics learning progression [Duncan, Rogat, & Yarden, (2009)]. As learning progressions remain hypothetical models until validated by multiple rounds of empirical studies, these revisions are an important step toward validating the progression. Our…
ERIC Educational Resources Information Center
Penrod, Becky; Gardella, Laura; Fernand, Jonathan
2012-01-01
Few studies have examined the effects of the high-probability instructional sequence in the treatment of food selectivity, and results of these studies have been mixed (e.g., Dawson et al., 2003; Patel et al., 2007). The present study extended previous research on the high-probability instructional sequence by combining this procedure with…
ERIC Educational Resources Information Center
Niaz, Mansoor
The main objective of this study is to construct models based on strategies students use to solve chemistry problems and to show that these models form sequences of progressive transitions similar to what Lakatos (1970) in the history of science refers to as progressive 'problemshifts' that increase the explanatory' heuristic power of the models.…
Aging as an Epigenetic Phenomenon
Ashapkin, Vasily V.; Kutueva, Lyudmila I.; Vanyushin, Boris F.
2017-01-01
Introduction: Hypermethylation of genes associated with promoter CpG islands, and hypomethylation of CpG poor genes, repeat sequences, transposable elements and intergenic genome sections occur during aging in mammals. Methylation levels of certain CpG sites display strict correlation to age and could be used as “epigenetic clock” to predict biological age. Multi-substrate deacetylases SIRT1 and SIRT6 affect aging via locus-specific modulations of chromatin structure and activity of multiple regulatory proteins involved in aging. Random errors in DNA methylation and other epigenetic marks during aging increase the transcriptional noise, and thus lead to enhanced phenotypic variation between cells of the same tissue. Such variation could cause progressive organ dysfunction observed in aged individuals. Multiple experimental data show that induction of NF-κB regulated gene sets occurs in various tissues of aged mammals. Upregulation of multiple miRNAs occurs at mid age leading to downregulation of enzymes and regulatory proteins involved in basic cellular functions, such as DNA repair, oxidative phosphorylation, intermediate metabolism, and others. Conclusion: Strong evidence shows that all epigenetic systems contribute to the lifespan control in various organisms. Similar to other cell systems, epigenome is prone to gradual degradation due to the genome damage, stressful agents, and other aging factors. But unlike mutations and other kinds of the genome damage, age-related epigenetic changes could be fully or partially reversed to a “young” state. PMID:29081695
Walzer, Stefan; Chouaid, Christos; Lister, Johanna; Gultyaev, Dmitry; Vergnenegre, Alain; de Marinis, Filippo; Meng, Jie; de Castro Carpeno, Javier; Crott, Ralph; Kleman, Martin; Ngoh, Charles
2015-01-01
In recent years, the treatment landscape in advanced non-squamous non-small-cell lung cancer (nsNSCLC) has changed. New therapies (e.g., bevacizumab indicated in first line) have become available and other therapies (e.g., pemetrexed in first line and second line) moved into earlier lines in the treatment paradigm. While there has been an expansion of the available treatment options, it is still a key research question which therapy sequence results in the best survival outcomes for patients with nsNSCLC. A therapy-sequencing disease model that approximates treatment outcomes in up to five lines of treatment was developed for patients with nsNSCLC. The primary source of data for progression-free survival (PFS) and time to death was published pivotal trial data. All patients were treatment-naïve and in the PFS state, received first-line treatment with either bevacizumab-based therapy or doublet chemotherapy (including the option of pemetrexed + cisplatin). Patients would then progress to a subsequent line of therapy, remain in PFS or die. In case of progression, it was assumed that each survivor would receive a subsequent line of therapy, based on EMA licensed therapies. Weibull distribution curves were fitted to the data. All bevacizumab-based first-line therapy sequences analyzed achieved total PFS of around 15 months. Bevacizumab + carboplatin + paclitaxel (first line) → pemetrexed (second line) → erlotinib (third line) → docetaxel (fourth line) resulted in total mean PFS time of 15.7 months, for instance. Sequences with pemetrexed in combination with cisplatin in first line achieved total PFS times between 12.6 and 12.8 months with a slightly higher total PFS time achieved when assuming pemetrexed continuation therapy in maintenance after pemetrexed + cisplatin in first-line induction. Overall survival results followed the same trend as PFS. The model suggests that treatment-sequencing strategies starting with a bevacizumab-based combination in first line yield better survival outcomes than those starting with pemetrexed-based combinations, a result that is attributable to the possibility of one further line of treatment with first-line bevacizumab-based treatment sequences.
Wright, Nicholas J.D.; Alston, Gregory L.
2015-01-01
Objective. To design and assess a horizontally integrated biological sciences course sequence and to determine its effectiveness in imparting the foundational science knowledge necessary to successfully progress through the pharmacy school curriculum and produce competent pharmacy school graduates. Design. A 2-semester course sequence integrated principles from several basic science disciplines: biochemistry, molecular biology, cellular biology, anatomy, physiology, and pathophysiology. Each is a 5-credit course taught 5 days per week, with 50-minute class periods. Assessment. Achievement of outcomes was determined with course examinations, student lecture, and an annual skills mastery assessment. The North American Pharmacist Licensure Examination (NAPLEX) results were used as an indicator of competency to practice pharmacy. Conclusion. Students achieved course objectives and program level outcomes. The biological sciences integrated course sequence was successful in providing students with foundational basic science knowledge required to progress through the pharmacy program and to pass the NAPLEX. The percentage of the school’s students who passed the NAPLEX was not statistically different from the national percentage. PMID:26430276
Sequence Segmentation with changeptGUI.
Tasker, Edward; Keith, Jonathan M
2017-01-01
Many biological sequences have a segmental structure that can provide valuable clues to their content, structure, and function. The program changept is a tool for investigating the segmental structure of a sequence, and can also be applied to multiple sequences in parallel to identify a common segmental structure, thus providing a method for integrating multiple data types to identify functional elements in genomes. In the previous edition of this book, a command line interface for changept is described. Here we present a graphical user interface for this package, called changeptGUI. This interface also includes tools for pre- and post-processing of data and results to facilitate investigation of the number and characteristics of segment classes.
PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences
Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong
2015-01-01
Abstract We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate—slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory. PMID:25549288
A longitudinal study of the control of renal and uterine hemodynamic changes of pregnancy.
Ogueh, Onome; Clough, Angela; Hancock, Maggie; Johnson, Mark R
2011-01-01
We have determined the sequence and extent of maternal renal and uterine adaptation to pregnancy and examined the role of hormonal factors in their regulation. Renal bipolar diameter (RBD), renal artery resistance index (RARI), uterine artery pulsatility index (UAPI), and plasma relaxin, human chorionic gonadotropin (hCG), progesterone, estradiol, urea, and creatinine were measured longitudinally in women with normal spontaneous singleton pregnancies, in vitro fertilization (IVF) singleton pregnancies, ovum donation (OD) singleton pregnancies, and multiple pregnancies from prepregnancy to postpartum. There was a progressive increase in the RBD and the RARI and a decrease in the UAPI during pregnancy. These changes reversed toward prepregnancy levels by 6 weeks post delivery. There was no difference in the rate of change of RBD, RARI, and UAPI between spontaneous singleton, IVF singleton, OD singleton, and multiple pregnancies (p < 0.05), but relaxin was directly correlated to the RARI (r = 0.654, p = 0.015), and progesterone was inversely correlated to uterine artery PI (r = 0.554, p = 0.049). These data show that renal size and resistance to blood flow increase with advancing gestation, whereas the uterine artery resistance declined with gestation. These changes may be influenced by relaxin and progesterone.
Methods for MHC genotyping in non-model vertebrates.
Babik, W
2010-03-01
Genes of the major histocompatibility complex (MHC) are considered a paradigm of adaptive evolution at the molecular level and as such are frequently investigated by evolutionary biologists and ecologists. Accurate genotyping is essential for understanding of the role that MHC variation plays in natural populations, but may be extremely challenging. Here, I discuss the DNA-based methods currently used for genotyping MHC in non-model vertebrates, as well as techniques likely to find widespread use in the future. I also highlight the aspects of MHC structure that are relevant for genotyping, and detail the challenges posed by the complex genomic organization and high sequence variation of MHC loci. Special emphasis is placed on designing appropriate PCR primers, accounting for artefacts and the problem of genotyping alleles from multiple, co-amplifying loci, a strategy which is frequently necessary due to the structure of the MHC. The suitability of typing techniques is compared in various research situations, strategies for efficient genotyping are discussed and areas of likely progress in future are identified. This review addresses the well established typing methods such as the Single Strand Conformation Polymorphism (SSCP), Denaturing Gradient Gel Electrophoresis (DGGE), Reference Strand Conformational Analysis (RSCA) and cloning of PCR products. In addition, it includes the intriguing possibility of direct amplicon sequencing followed by the computational inference of alleles and also next generation sequencing (NGS) technologies; the latter technique may, in the future, find widespread use in typing complex multilocus MHC systems. © 2009 Blackwell Publishing Ltd.
Somaiah, Neeta; Beird, Hannah C; Barbo, Andrea; Song, Juhee; Mills Shaw, Kenna R.; Wang, Wei-Lien; Eterovic, Karina; Chen, Ken; Lazar, Alexander; Conley, Anthony P.; Ravi, Vinod; Hwu, Patrick; Futreal, Andrew; Simon, George; Meric-Bernstam, Funda; Hong, David
2018-01-01
Well-differentiated/dedifferentiated liposarcoma is a common soft tissue sarcoma with approximately 1500 new cases per year. Surgery is the mainstay of treatment but recurrences are frequent and systemic options are limited. ‘Tumor genotyping’ is becoming more common in clinical practice as it offers the hope of personalized targeted therapy. We wanted to evaluate the results and the clinical utility of available next-generation sequencing panels in WD/DD liposarcoma. Patients who had their tumor sequenced by either FoundationOne (n = 13) or the institutional T200/T200.1 panels (n = 7) were included in this study. Significant copy number alterations were identified, but mutations were infrequent. Out of the 27 mutations detected in 7 samples, 8 (CTNNB1, MECOM, ZNF536, EGFR, EML4, CSMD3, PBRM1, PPP1R3A) were identified as deleterious (on Condel, PolyPhen and SIFT) and a truncating mutation was found in NF2. Of these, EGFR and NF2 are potential driver mutations and have not been reported previously in liposarcoma. MDM2 and CDK4 amplification was universally present in all the tested samples and multiple other recurrent genes with high amplification or high deletion were detected. Many of these targets are potentially actionable. Eight patients went on to receive an MDM2 inhibitor with a median time to progression of 23 months (95% CI: 10-83 months). PMID:29731991
[Sequencing technology in gene diagnosis and its application].
Yibin, Guo
2014-11-01
The study of gene mutation is one of the hot topics in the field of life science nowadays, and the related detection methods and diagnostic technology have been developed rapidly. Sequencing technology plays an indispensable role in the definite diagnosis and classification of genetic diseases. In this review, we summarize the research progress in sequencing technology, evaluate the advantages and disadvantages of 1(st) ~3(rd) generation of sequencing technology, and describe its application in gene diagnosis. Also we made forecasts and prospects on its development trend.
Chen, DaYang; Zhen, HeFu; Qiu, Yong; Liu, Ping; Zeng, Peng; Xia, Jun; Shi, QianYu; Xie, Lin; Zhu, Zhu; Gao, Ya; Huang, GuoDong; Wang, Jian; Yang, HuanMing; Chen, Fang
2018-03-21
Research based on a strategy of single-cell low-coverage whole genome sequencing (SLWGS) has enabled better reproducibility and accuracy for detection of copy number variations (CNVs). The whole genome amplification (WGA) method and sequencing platform are critical factors for successful SLWGS (<0.1 × coverage). In this study, we compared single cell and multiple cells sequencing data produced by the HiSeq2000 and Ion Proton platforms using two WGA kits and then comprehensively evaluated the GC-bias, reproducibility, uniformity and CNV detection among different experimental combinations. Our analysis demonstrated that the PicoPLEX WGA Kit resulted in higher reproducibility, lower sequencing error frequency but more GC-bias than the GenomePlex Single Cell WGA Kit (WGA4 kit) independent of the cell number on the HiSeq2000 platform. While on the Ion Proton platform, the WGA4 kit (both single cell and multiple cells) had higher uniformity and less GC-bias but lower reproducibility than those of the PicoPLEX WGA Kit. Moreover, on these two sequencing platforms, depending on cell number, the performance of the two WGA kits was different for both sensitivity and specificity on CNV detection. The results can help researchers who plan to use SLWGS on single or multiple cells to select appropriate experimental conditions for their applications.
Fan, Jean; Lee, Hae-Ock; Lee, Soohyun; Ryu, Da-Eun; Lee, Semin; Xue, Catherine; Kim, Seok Jin; Kim, Kihyun; Barkas, Nikolas; Park, Peter J; Park, Woong-Yang; Kharchenko, Peter V
2018-06-13
Characterization of intratumoral heterogeneity is critical to cancer therapy, as presence of phenotypically diverse cell populations commonly fuels relapse and resistance to treatment. Although genetic variation is a well-studied source of intratumoral heterogeneity, the functional impact of most genetic alterations remains unclear. Even less understood is the relative importance of other factors influencing heterogeneity, such as epigenetic state or tumor microenvironment. To investigate the relationship between genetic and transcriptional heterogeneity in a context of cancer progression, we devised a computational approach called HoneyBADGER to identify copy number variation and loss-of-heterozygosity in individual cells from single-cell RNA-sequencing data. By integrating allele and normalized expression information, HoneyBADGER is able to identify and infer the presence of subclone-specific alterations in individual cells and reconstruct underlying subclonal architecture. Examining several tumor types, we show that HoneyBADGER is effective at identifying deletion, amplifications, and copy-neutral loss-of-heterozygosity events, and is capable of robustly identifying subclonal focal alterations as small as 10 megabases. We further apply HoneyBADGER to analyze single cells from a progressive multiple myeloma patient to identify major genetic subclones that exhibit distinct transcriptional signatures relevant to cancer progression. Surprisingly, other prominent transcriptional subpopulations within these tumors did not line up with the genetic subclonal structure, and were likely driven by alternative, non-clonal mechanisms. These results highlight the need for integrative analysis to understand the molecular and phenotypic heterogeneity in cancer. Published by Cold Spring Harbor Laboratory Press.
Liu, Gary W; Livesay, Brynn R; Kacherovsky, Nataly A; Cieslewicz, Maryelise; Lutz, Emi; Waalkes, Adam; Jensen, Michael C; Salipante, Stephen J; Pun, Suzie H
2015-08-19
Peptide ligands are used to increase the specificity of drug carriers to their target cells and to facilitate intracellular delivery. One method to identify such peptide ligands, phage display, enables high-throughput screening of peptide libraries for ligands binding to therapeutic targets of interest. However, conventional methods for identifying target binders in a library by Sanger sequencing are low-throughput, labor-intensive, and provide a limited perspective (<0.01%) of the complete sequence space. Moreover, the small sample space can be dominated by nonspecific, preferentially amplifying "parasitic sequences" and plastic-binding sequences, which may lead to the identification of false positives or exclude the identification of target-binding sequences. To overcome these challenges, we employed next-generation Illumina sequencing to couple high-throughput screening and high-throughput sequencing, enabling more comprehensive access to the phage display library sequence space. In this work, we define the hallmarks of binding sequences in next-generation sequencing data, and develop a method that identifies several target-binding phage clones for murine, alternatively activated M2 macrophages with a high (100%) success rate: sequences and binding motifs were reproducibly present across biological replicates; binding motifs were identified across multiple unique sequences; and an unselected, amplified library accurately filtered out parasitic sequences. In addition, we validate the Multiple Em for Motif Elicitation tool as an efficient and principled means of discovering binding sequences.
A Multiple-Track Nursing Sequence: Supplement to Research Report No. 1.
ERIC Educational Resources Information Center
Gilpatrick, Eleanor
Following a survey of 2,361 practical nurses in New York City municipal hospitals in 1968, a specific multiple-track nursing sequence was developed to meet manpower shortages and upgrade licensed practical nurses (LPN's) to registered nurses (RN's) and nurse's aides (NA's) to LPN's. The two models designed were for use in New York City but it is…
NASA Astrophysics Data System (ADS)
Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng
2016-06-01
Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.
Chaw, R. Crystal; Collin, Matthew; Wimmer, Marjorie; Helmrick, Kara-Leigh; Hayashi, Cheryl Y.
2017-01-01
Spiders swath their eggs with silk to protect developing embryos and hatchlings. Egg case silks, like other fibrous spider silks, are primarily composed of proteins called spidroins (spidroin = spider-fibroin). Silks, and thus spidroins, are important throughout the lives of spiders, yet the evolution of spidroin genes has been relatively understudied. Spidroin genes are notoriously difficult to sequence because they are typically very long (≥ 10 kb of coding sequence) and highly repetitive. Here, we investigate the evolution of spider silk genes through long-read sequencing of Bacterial Artificial Chromosome (BAC) clones. We demonstrate that the silver garden spider Argiope argentata has multiple egg case spidroin loci with a loss of function at one locus. We also use degenerate PCR primers to search the genomic DNA of congeneric species and find evidence for multiple egg case spidroin loci in other Argiope spiders. Comparative analyses show that these multiple loci are more similar at the nucleotide level within a species than between species. This pattern is consistent with concerted evolution homogenizing gene copies within a genome. More complicated explanations include convergent evolution or recent independent gene duplications within each species. PMID:29127108
ERIC Educational Resources Information Center
Shanty, Nenden Octavarulia; Hartono, Yusuf; Putri, Ratu Ilma Indra; de Haan, Dede
2011-01-01
This study aimed at investigating the progress of students' learning on multiplication fractions with natural numbers through the five activity levels based on Realistic Mathematics Education (RME) approach proposed by Streefland. Design research was chosen to achieve this research goal. In design research, the Hypothetical Learning Trajectory…
Cao, Qizhi; Didelot, Xavier; Wu, Zhongbiao; Li, Zongwei; He, Lihua; Li, Yunsheng; Ni, Ming; You, Yuanhai; Lin, Xi; Li, Zhen; Gong, Yanan; Zheng, Minqiao; Zhang, Minli; Liu, Jie; Wang, Weijun; Bo, Xiaochen; Falush, Daniel; Wang, Shengqi; Zhang, Jianzhong
2015-04-01
To study the detailed nature of genomic microevolution during mixed infection with multiple Helicobacter pylori strains in an individual. We sampled 18 isolates from a single biopsy from a patient with chronic gastritis and nephritis. Whole-genome sequencing was applied to these isolates, and statistical genetic tools were used to investigate their evolutionary history. The genomes fall into two clades, reflecting colonisation of the stomach by two distinct strains, and these lineages have accumulated diversity during an estimated 2.8 and 4.2 years of evolution. We detected about 150 clear recombination events between the two clades. Recombination between the lineages is a continuous ongoing process and was detected on both clades, but the effect of recombination in one clade was nearly an order of magnitude higher than in the other. Imputed ancestral sequences also showed evidence of recombination between the two strains prior to their diversification, and we estimate that they have both been infecting the same host for at least 12 years. Recombination tracts between the lineages were, on average, 895 bp in length, and showed evidence for the interspersion of recipient sequences that has been observed in in vitro experiments. The complex evolutionary history of a phage-related protein provided evidence for frequent reinfection of both clades by a single phage lineage during the past 4 years. Whole genome sequencing can be used to make detailed conclusions about the mechanisms of genetic change of H. pylori based on sampling bacteria from a single gastric biopsy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Demeure, Michael J; Aziz, Meraj; Rosenberg, Richard; Gurley, Steven D; Bussey, Kimberly J; Carpten, John D
2014-06-01
Recent advances in the treatment of cancer have focused on targeting genomic aberrations with selective therapeutic agents. In radioiodine resistant aggressive papillary thyroid cancers, there remain few effective therapeutic options. A 62-year-old man who underwent multiple operations for papillary thyroid cancer and whose metastases progressed despite standard treatments provided tumor tissue. We analyzed tumor and whole blood DNA by whole genome sequencing, achieving 80× or greater coverage over 94 % of the exome and 90 % of the genome. We determined somatic mutations and structural alterations. We found a total of 57 somatic mutations in 55 genes of the cancer genome. There was notably a lack of mutations in NRAS and BRAF, and no RET/PTC rearrangement. There was a mutation in the TRAPP oncogene and a loss of heterozygosity of the p16, p18, and RB1 tumor suppressor genes. The oncogenic driver for this tumor is a translocation involving the genes for anaplastic lymphoma receptor tyrosine kinase (ALK) and echinoderm microtubule associated protein like 4 (EML4). The EML4-ALK translocation has been reported in approximately 5 % of lung cancers, as well as in pediatric neuroblastoma, and is a therapeutic target for crizotinib. This is the first report of the whole genomic sequencing of a papillary thyroid cancer in which we identified an EML4-ALK translocation of a TRAPP oncogene mutation. These findings suggest that this tumor has a more distinct oncogenesis than BRAF mutant papillary thyroid cancer. Whole genome sequencing can elucidate an oncogenic context and expose potential therapeutic vulnerabilities in rare cancers.
Balakirev, Evgeniy S; Saveliev, Pavel A; Ayala, Francisco J
2017-01-01
The complete mitochondrial (mt) genome is sequenced in 2 individuals of the Cherskii's sculpin Cottus czerskii . A surprisingly high level of sequence divergence (10.3%) has been detected between the 2 genomes of C czerskii studied here and the GenBank mt genome of C czerskii (KJ956027). At the same time, a surprisingly low level of divergence (1.4%) has been detected between the GenBank C czerskii (KJ956027) and the Amur sculpin Cottus szanaga (KX762049, KX762050). We argue that the observed discrepancies are due to incorrect taxonomic identification so that the GenBank accession number KJ956027 represents actually the mt genome of C szanaga erroneously identified as C czerskii . Our results are of consequence concerning the GenBank database quality, highlighting the potential negative consequences of entry errors, which once they are introduced tend to be propagated among databases and subsequent publications. We illustrate the premise with the data on recombinant mt genome of the Siberian taimen Hucho taimen (NCBI Reference Sequence Database NC_016426.1; GenBank accession number HQ897271.1), bearing 2 introgressed fragments (≈0.9 kb [kilobase]) from 2 lenok subspecies, Brachymystax lenok and Brachymystax lenok tsinlingensis , submitted to GenBank on June 12, 2011. Since the time of submission, the H taimen recombinant mt genome leading to incorrect phylogenetic inferences was propagated in multiple subsequent publications despite the fact that nonrecombinant H taimen genomes were also available (submitted to GenBank on August 2, 2014; KJ711549, KJ711550). Other examples of recombinant sequences persisting in GenBank are also considered. A GenBank Entry Error Depositary is urgently needed to monitor and avoid a progressive accumulation of wrong biological information.
Dessimoz, Christophe; Zoller, Stefan; Manousaki, Tereza; Qiu, Huan; Meyer, Axel; Kuraku, Shigehiro
2011-09-01
Recent development of deep sequencing technologies has facilitated de novo genome sequencing projects, now conducted even by individual laboratories. However, this will yield more and more genome sequences that are not well assembled, and will hinder thorough annotation when no closely related reference genome is available. One of the challenging issues is the identification of protein-coding sequences split into multiple unassembled genomic segments, which can confound orthology assignment and various laboratory experiments requiring the identification of individual genes. In this study, using the genome of a cartilaginous fish, Callorhinchus milii, as test case, we performed gene prediction using a model specifically trained for this genome. We implemented an algorithm, designated ESPRIT, to identify possible linkages between multiple protein-coding portions derived from a single genomic locus split into multiple unassembled genomic segments. We developed a validation framework based on an artificially fragmented human genome, improvements between early and recent mouse genome assemblies, comparison with experimentally validated sequences from GenBank, and phylogenetic analyses. Our strategy provided insights into practical solutions for efficient annotation of only partially sequenced (low-coverage) genomes. To our knowledge, our study is the first formulation of a method to link unassembled genomic segments based on proteomes of relatively distantly related species as references.
Zoller, Stefan; Manousaki, Tereza; Qiu, Huan; Meyer, Axel; Kuraku, Shigehiro
2011-01-01
Recent development of deep sequencing technologies has facilitated de novo genome sequencing projects, now conducted even by individual laboratories. However, this will yield more and more genome sequences that are not well assembled, and will hinder thorough annotation when no closely related reference genome is available. One of the challenging issues is the identification of protein-coding sequences split into multiple unassembled genomic segments, which can confound orthology assignment and various laboratory experiments requiring the identification of individual genes. In this study, using the genome of a cartilaginous fish, Callorhinchus milii, as test case, we performed gene prediction using a model specifically trained for this genome. We implemented an algorithm, designated ESPRIT, to identify possible linkages between multiple protein-coding portions derived from a single genomic locus split into multiple unassembled genomic segments. We developed a validation framework based on an artificially fragmented human genome, improvements between early and recent mouse genome assemblies, comparison with experimentally validated sequences from GenBank, and phylogenetic analyses. Our strategy provided insights into practical solutions for efficient annotation of only partially sequenced (low-coverage) genomes. To our knowledge, our study is the first formulation of a method to link unassembled genomic segments based on proteomes of relatively distantly related species as references. PMID:21712341
GeneSilico protein structure prediction meta-server.
Kurowski, Michal A; Bujnicki, Janusz M
2003-07-01
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.
GeneSilico protein structure prediction meta-server
Kurowski, Michal A.; Bujnicki, Janusz M.
2003-01-01
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta. PMID:12824313
Bianchi, Giada; Kyle, Robert A.; Larson, Dirk R.; Witzig, Thomas E.; Kumar, Shaji; Dispenzieri, Angela; Morice, William G.; Rajkumar, S. Vincent
2012-01-01
Smoldering multiple myeloma (SMM) carries a 50% risk of progression to multiple myeloma (MM) or related malignancy within the first 5 years following diagnosis. The goal of this study was to determine if high levels of circulating plasma cells (PCs) are predictive of SMM transformation within the first 2–3 years from diagnosis. Ninety-one patients diagnosed with SMM at Mayo Clinic from January 1994 through January 2007 who had testing for circulating PCs using an immunofluorescent assay and adequate follow up to ascertain disease progression, were studied. High level of circulating PCs was defined as absolute peripheral blood PCs >5000 ×106/L and/or > 5% cytoplasmic immunoglobulin (Ig) positive PCs per 100 peripheral blood mononuclear cells. Patients with high circulating PCs (14 of 91 patients, 15%) were significantly more likely to progress to active disease within 2 years compared with patients without high circulating PCs, 71% versus 25%, respectively, P=0.001. Corresponding rates for progression within 3 years were 86% versus 35%, respectively, P<0.001. Overall survival (OS) after both SMM diagnosis and MM diagnosis was also significantly different. High levels of circulating PCs identify SMM patients with an elevated risk of progression within the first 2 to 3 years following diagnosis. PMID:22902364
Mahoney, J. Matthew; Titiz, Ali S.; Hernan, Amanda E.; Scott, Rod C.
2016-01-01
Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation. PMID:26866597
Adhikari, Badri; Hou, Jie; Cheng, Jianlin
2018-03-01
In this study, we report the evaluation of the residue-residue contacts predicted by our three different methods in the CASP12 experiment, focusing on studying the impact of multiple sequence alignment, residue coevolution, and machine learning on contact prediction. The first method (MULTICOM-NOVEL) uses only traditional features (sequence profile, secondary structure, and solvent accessibility) with deep learning to predict contacts and serves as a baseline. The second method (MULTICOM-CONSTRUCT) uses our new alignment algorithm to generate deep multiple sequence alignment to derive coevolution-based features, which are integrated by a neural network method to predict contacts. The third method (MULTICOM-CLUSTER) is a consensus combination of the predictions of the first two methods. We evaluated our methods on 94 CASP12 domains. On a subset of 38 free-modeling domains, our methods achieved an average precision of up to 41.7% for top L/5 long-range contact predictions. The comparison of the three methods shows that the quality and effective depth of multiple sequence alignments, coevolution-based features, and machine learning integration of coevolution-based features and traditional features drive the quality of predicted protein contacts. On the full CASP12 dataset, the coevolution-based features alone can improve the average precision from 28.4% to 41.6%, and the machine learning integration of all the features further raises the precision to 56.3%, when top L/5 predicted long-range contacts are evaluated. And the correlation between the precision of contact prediction and the logarithm of the number of effective sequences in alignments is 0.66. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Pineda, Evan Jorge; Waas, Anthony M.
2013-01-01
A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, referred to as enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Consistent characteristic lengths are introduced into the formulation to govern the evolution of the failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs are derived. The theory is implemented into a commercial finite element code. The model is verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared against the experimental results.
Fane, Anne; Sarovich, Derek S.; Price, Erin P.; Rush, Catherine M.; Govan, Brenda L.; Parker, Elizabeth; Mayo, Mark; Currie, Bart J.; Ketheesan, Natkunam
2017-01-01
Neurologic melioidosis is a serious, potentially fatal form of Burkholderia pseudomallei infection. Recently, we reported that a subset of clinical isolates of B. pseudomallei from Australia have heightened virulence and potential for dissemination to the central nervous system. In this study, we demonstrate that this subset has a B. mallei–like sequence variation of the actin-based motility gene, bimA. Compared with B. pseudomallei isolates having typical bimA alleles, isolates that contain the B. mallei–like variation demonstrate increased persistence in phagocytic cells and increased virulence with rapid systemic dissemination and replication within multiple tissues, including the brain and spinal cord, in an experimental model. These findings highlight the implications of bimA variation on disease progression of B. pseudomallei infection and have considerable clinical and public health implications with respect to the degree of neurotropic threat posed to human health. PMID:28418830
Parallel independent evolution of pathogenicity within the genus Yersinia
Reuter, Sandra; Connor, Thomas R.; Barquist, Lars; Walker, Danielle; Feltwell, Theresa; Harris, Simon R.; Fookes, Maria; Hall, Miquette E.; Petty, Nicola K.; Fuchs, Thilo M.; Corander, Jukka; Dufour, Muriel; Ringwood, Tamara; Savin, Cyril; Bouchier, Christiane; Martin, Liliane; Miettinen, Minna; Shubin, Mikhail; Riehm, Julia M.; Laukkanen-Ninios, Riikka; Sihvonen, Leila M.; Siitonen, Anja; Skurnik, Mikael; Falcão, Juliana Pfrimer; Fukushima, Hiroshi; Scholz, Holger C.; Prentice, Michael B.; Wren, Brendan W.; Parkhill, Julian; Carniel, Elisabeth; Achtman, Mark; McNally, Alan; Thomson, Nicholas R.
2014-01-01
The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens. PMID:24753568
[Disciplinar thematic integration in medicine: a proposal from histology and embryology].
Bassan, N D; D'Ottavio, A E
2013-01-01
This paper intends to clarify a concept with multiple meanings and a complex reality. It starts providing varied histological and embryological examples apt to contribute the stimulation of teacher and student imaginations in favor of a crucial skill, as thematic integration is, into the present and changing curricula in Medicine in particular and Health Sciences in general. In this sense, it offers linear and branched sequences as well as consolidation graphics which focusing in both disciplines may also include other basic ones, key for clinic diagnosis, among the competences to be developed. After registering some preliminary results revealing the need of its continuous and progressive training along the complete medical career, its own integrative value and the integrative one for their teachers due to its natural link with other basic ones is outlined, its relevance for undergraduate is reaffirmed and possible future variations for them are previewed, considering the present exponential growth of science and technology.
Androgen Receptor Gene Polymorphisms and Alterations in Prostate Cancer: Of Humanized Mice and Men
Robins, Diane M.
2011-01-01
Germline polymorphisms and somatic mutations of the androgen receptor (AR) have been intensely investigated in prostate cancer but even with genomic approaches their impact remains controversial. To assess the functional significance of AR genetic variation, we converted the mouse gene to the human sequence by germline recombination and engineered alleles to query the role of a polymorphic glutamine (Q) tract implicated in cancer risk. In a prostate cancer model, AR Q tract length influences progression and castration response. Mutation profiling in mice provides direct evidence that somatic AR variants are selected by therapy, a finding validated in human metastases from distinct treatment groups. Mutant ARs exploit multiple mechanisms to resist hormone ablation, including alterations in ligand specificity, target gene selectivity, chaperone interaction and nuclear localization. Regardless of their frequency, these variants permute normal function to reveal novel means to target wild type AR and its key interacting partners. PMID:21689727
Sporadic inclusion body myositis: the genetic contributions to the pathogenesis
2014-01-01
Sporadic inclusion body myositis (sIBM) is the commonest idiopathic inflammatory muscle disease in people over 50 years old. It is characterized by slowly progressive muscle weakness and atrophy, with typical pathological changes of inflammation, degeneration and mitochondrial abnormality in affected muscle fibres. The cause(s) of sIBM are still unknown, but are considered complex, with the contribution of multiple factors such as environmental triggers, ageing and genetic susceptibility. This review summarizes the current understanding of the genetic contributions to sIBM and provides some insights for future research in this mysterious disease with the advantage of the rapid development of advanced genetic technology. An international sIBM genetic study is ongoing and whole-exome sequencing will be applied in a large cohort of sIBM patients with the aim of unravelling important genetic risk factors for sIBM. PMID:24948216
Morris, Jodie L; Fane, Anne; Sarovich, Derek S; Price, Erin P; Rush, Catherine M; Govan, Brenda L; Parker, Elizabeth; Mayo, Mark; Currie, Bart J; Ketheesan, Natkunam
2017-05-01
Neurologic melioidosis is a serious, potentially fatal form of Burkholderia pseudomallei infection. Recently, we reported that a subset of clinical isolates of B. pseudomallei from Australia have heightened virulence and potential for dissemination to the central nervous system. In this study, we demonstrate that this subset has a B. mallei-like sequence variation of the actin-based motility gene, bimA. Compared with B. pseudomallei isolates having typical bimA alleles, isolates that contain the B. mallei-like variation demonstrate increased persistence in phagocytic cells and increased virulence with rapid systemic dissemination and replication within multiple tissues, including the brain and spinal cord, in an experimental model. These findings highlight the implications of bimA variation on disease progression of B. pseudomallei infection and have considerable clinical and public health implications with respect to the degree of neurotropic threat posed to human health.
Punctuated Evolution of Prostate Cancer Genomes
Baca, Sylvan C.; Prandi, Davide; Lawrence, Michael S.; Mosquera, Juan Miguel; Romanel, Alessandro; Drier, Yotam; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y.; Ghandi, Mahmoud; Van Allen, Eliezer; Kryukov, Gregory V.; Sboner, Andrea; Theurillat, Jean-Philippe; Soong, T. David; Nickerson, Elizabeth; Auclair, Daniel; Tewari, Ashutosh; Beltran, Himisha; Onofrio, Robert C.; Boysen, Gunther; Guiducci, Candace; Barbieri, Christopher E.; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L.; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Winckler, Wendy; Cipicchio, Michelle; Ardlie, Kristin; Kantoff, Philip W.; Berger, Michael F.; Gabriel, Stacey B.; Golub, Todd R.; Meyerson, Matthew; Lander, Eric S.; Elemento, Olivier; Getz, Gad; Demichelis, Francesca; Rubin, Mark A.; Garraway, Levi A.
2013-01-01
SUMMARY The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term “chromoplexy”, frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis. PMID:23622249
Punctuated evolution of prostate cancer genomes.
Baca, Sylvan C; Prandi, Davide; Lawrence, Michael S; Mosquera, Juan Miguel; Romanel, Alessandro; Drier, Yotam; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y; Ghandi, Mahmoud; Van Allen, Eliezer; Kryukov, Gregory V; Sboner, Andrea; Theurillat, Jean-Philippe; Soong, T David; Nickerson, Elizabeth; Auclair, Daniel; Tewari, Ashutosh; Beltran, Himisha; Onofrio, Robert C; Boysen, Gunther; Guiducci, Candace; Barbieri, Christopher E; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Winckler, Wendy; Cipicchio, Michelle; Ardlie, Kristin; Kantoff, Philip W; Berger, Michael F; Gabriel, Stacey B; Golub, Todd R; Meyerson, Matthew; Lander, Eric S; Elemento, Olivier; Getz, Gad; Demichelis, Francesca; Rubin, Mark A; Garraway, Levi A
2013-04-25
The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term "chromoplexy," frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.
Rapid Detection of Powassan Virus in a Patient With Encephalitis by Metagenomic Sequencing
Piantadosi, Anne; Kanjilal, Sanjat; Ganesh, Vijay; Khanna, Arjun; Hyle, Emily P; Rosand, Jonathan; Bold, Tyler; Metsky, Hayden C; Lemieux, Jacob; Leone, Michael J; Freimark, Lisa; Matranga, Christian B; Adams, Gordon; McGrath, Graham; Zamirpour, Siavash; Telford, Sam; Rosenberg, Eric; Cho, Tracey; Frosch, Matthew P; Goldberg, Marcia B; Mukerji, Shibani S; Sabeti, Pardis C
2018-01-01
Abstract We describe a patient with severe and progressive encephalitis of unknown etiology. We performed rapid metagenomic sequencing from cerebrospinal fluid and identified Powassan virus, an emerging tick-borne flavivirus that has been increasingly detected in the United States. PMID:29020227
Pilutti, Lara A; Paulseth, John E; Dove, Carin; Jiang, Shucui; Rathbone, Michel P; Hicks, Audrey L
2016-01-01
Background: There is evidence of the benefits of exercise training in multiple sclerosis (MS); however, few studies have been conducted in individuals with progressive MS and severe mobility impairment. A potential exercise rehabilitation approach is total-body recumbent stepper training (TBRST). We evaluated the safety and participant-reported experience of TBRST in people with progressive MS and compared the efficacy of TBRST with that of body weight-supported treadmill training (BWSTT) on outcomes of function, fatigue, and health-related quality of life (HRQOL). Methods: Twelve participants with progressive MS (Expanded Disability Status Scale scores, 6.0-8.0) were randomized to receive TBRST or BWSTT. Participants completed three weekly sessions (30 minutes) of exercise training for 12 weeks. Primary outcomes included safety assessed as adverse events and patient-reported exercise experience assessed as postexercise response and evaluation of exercise equipment. Secondary outcomes included the Multiple Sclerosis Functional Composite, the Modified Fatigue Impact Scale, and the Multiple Sclerosis Quality of Life-54 questionnaire scores. Assessments were conducted at baseline and after 12 weeks. Results: Safety was confirmed in both exercise groups. Participants reported enjoying both exercise modalities; however, TBRST was reviewed more favorably. Both interventions reduced fatigue and improved HRQOL (P ≤ .05); there were no changes in function. Conclusions: Both TBRST and BWSTT seem to be safe, well tolerated, and enjoyable for participants with progressive MS with severe disability. Both interventions may also be efficacious for reducing fatigue and improving HRQOL. TBRST should be further explored as an exercise rehabilitation tool for patients with progressive MS.
Meah, Farah A; DiMeglio, Linda A; Greenbaum, Carla J; Blum, Janice S; Sosenko, Jay M; Pugliese, Alberto; Geyer, Susan; Xu, Ping; Evans-Molina, Carmella
2016-06-01
The incidence of type 1 diabetes is increasing at a rate of 3-5% per year. Genetics cannot fully account for this trend, suggesting an influence of environmental factors. The accelerator hypothesis proposes an effect of metabolic factors on type 1 diabetes risk. To test this in the TrialNet Pathway to Prevention (PTP) cohort, we analysed the influence of BMI, weight status and insulin resistance on progression from single to multiple islet autoantibodies (Aab) and progression from normoglycaemia to diabetes. HOMA1-IR was used to estimate insulin resistance in Aab-positive PTP participants. Cox proportional hazards models were used to evaluate the effects of BMI, BMI percentile (BMI%), weight status and HOMA1-IR on the progression of autoimmunity or the development of diabetes. Data from 1,310 single and 1,897 multiple Aab-positive PTP participants were included. We found no significant relationships between BMI, BMI%, weight status or HOMA1-IR and the progression from one to multiple Aabs. Similarly, among all Aab-positive participants, no significant relationships were found between BMI, weight status or HOMA1-IR and progression to diabetes. Diabetes risk was modestly increased with increasing BMI% among the entire cohort, in obese participants 13-20 years of age and with increasing HOMA1-IR in adult Aab-positive participants. Analysis of the accelerator hypothesis in the TrialNet PTP cohort does not suggest a broad influence of metabolic variables on diabetes risk. Efforts to identify other potentially modifiable environmental factors should continue.
Surface immobilized azomethine for multiple component exchange.
Lerond, Michael; Bélanger, Daniel; Skene, W G
2017-09-27
Diazonium chemistry concomitant with in situ electrochemical reduction was used to graft an aryl aldehyde to indium-tin oxide (ITO) coated glass substrates. This served as an anchor for preparing electroactive azomethines that were covalently bonded to the transparent electrode. The immobilized azomethines could undergo multiple step-wise component exchanges with different arylamines. The write-erase-write sequences were electrochemically confirmed. The azomethines could also be reversibly hydrolyzed. This was exploited for multiple azomethine-hydrolysis cycles resulting in discrete electroactive immobilized azomethines. The erase-rewrite sequences were also electrochemically confirmed.
Shen, Hong-Bin; Yi, Dong-Liang; Yao, Li-Xiu; Yang, Jie; Chou, Kuo-Chen
2008-10-01
In the postgenomic age, with the avalanche of protein sequences generated and relatively slow progress in determining their structures by experiments, it is important to develop automated methods to predict the structure of a protein from its sequence. The membrane proteins are a special group in the protein family that accounts for approximately 30% of all proteins; however, solved membrane protein structures only represent less than 1% of known protein structures to date. Although a great success has been achieved for developing computational intelligence techniques to predict secondary structures in both globular and membrane proteins, there is still much challenging work in this regard. In this review article, we firstly summarize the recent progress of automation methodology development in predicting protein secondary structures, especially in membrane proteins; we will then give some future directions in this research field.
SEAN: SNP prediction and display program utilizing EST sequence clusters.
Huntley, Derek; Baldo, Angela; Johri, Saurabh; Sergot, Marek
2006-02-15
SEAN is an application that predicts single nucleotide polymorphisms (SNPs) using multiple sequence alignments produced from expressed sequence tag (EST) clusters. The algorithm uses rules of sequence identity and SNP abundance to determine the quality of the prediction. A Java viewer is provided to display the EST alignments and predicted SNPs.
Development of In Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury
2014-02-01
multiple concussive traumatic brain injuries are at high risk for delayed, progressive neurological and psychiatric deterioration 1-9. This syndrome is...personnel 13, 14 and others who have sustained multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently...11 Appendices……………………………………………………………………………... 12 4 INTRODUCTION: Athletes in contact sports who have sustained multiple concussive traumatic
Genomic Sequencing: Assessing The Health Care System, Policy, And Big-Data Implications
Phillips, Kathryn A.; Trosman, Julia; Kelley, Robin K.; Pletcher, Mark J.; Douglas, Michael P.; Weldon, Christine B.
2014-01-01
New genomic sequencing technologies enable the high-speed analysis of multiple genes simultaneously, including all of those in a person's genome. Sequencing is a prominent example of a “big data” technology because of the massive amount of information it produces and its complexity, diversity, and timeliness. Our objective in this article is to provide a policy primer on sequencing and illustrate how it can affect health care system and policy issues. Toward this end, we developed an easily applied classification of sequencing based on inputs, methods, and outputs. We used it to examine the implications of sequencing for three health care system and policy issues: making care more patient-centered, developing coverage and reimbursement policies, and assessing economic value. We conclude that sequencing has great promise but that policy challenges include how to optimize patient engagement as well as privacy, develop coverage policies that distinguish research from clinical uses and account for bioinformatics costs, and determine the economic value of sequencing through complex economic models that take into account multiple findings and downstream costs. PMID:25006153
Genomic sequencing: assessing the health care system, policy, and big-data implications.
Phillips, Kathryn A; Trosman, Julia R; Kelley, Robin K; Pletcher, Mark J; Douglas, Michael P; Weldon, Christine B
2014-07-01
New genomic sequencing technologies enable the high-speed analysis of multiple genes simultaneously, including all of those in a person's genome. Sequencing is a prominent example of a "big data" technology because of the massive amount of information it produces and its complexity, diversity, and timeliness. Our objective in this article is to provide a policy primer on sequencing and illustrate how it can affect health care system and policy issues. Toward this end, we developed an easily applied classification of sequencing based on inputs, methods, and outputs. We used it to examine the implications of sequencing for three health care system and policy issues: making care more patient-centered, developing coverage and reimbursement policies, and assessing economic value. We conclude that sequencing has great promise but that policy challenges include how to optimize patient engagement as well as privacy, develop coverage policies that distinguish research from clinical uses and account for bioinformatics costs, and determine the economic value of sequencing through complex economic models that take into account multiple findings and downstream costs. Project HOPE—The People-to-People Health Foundation, Inc.
Brewer, Michael J; Armstrong, J Scott; Parker, Roy D
2013-06-01
The ability to monitor verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), and the progression of cotton, Gossypium hirsutum L., boll responses to feeding and associated cotton boll rot provided opportunity to assess if single in-season measurements had value in evaluating at-harvest damage to bolls and if multiple in-season measurements enhanced their combined use. One in-season verde plant bug density measurement, three in-season plant injury measurements, and two at-harvest damage measurements were taken in 15 cotton fields in South Texas, 2010. Linear regression selected two measurements as potentially useful indicators of at-harvest damage: verde plant bug density (adjusted r2 = 0.68; P = 0.0004) and internal boll injury of the carpel wall (adjusted r2 = 0.72; P = 0.004). Considering use of multiple measurements, a stepwise multiple regression of the four in-season measurements selected a univariate model (verde plant bug density) using a 0.15 selection criterion (adjusted r2 = 0.74; P = 0.0002) and a bivariate model (verde plant bug density-internal boll injury) using a 0.25 selection criterion (adjusted r2 = 0.76; P = 0.0007) as indicators of at-harvest damage. In a validation using cultivar and water regime treatments experiencing low verde plant bug pressure in 2011 and 2012, the bivariate model performed better than models using verde plant bug density or internal boll injury separately. Overall, verde plant bug damaging cotton bolls exemplified the benefits of using multiple in-season measurements in pest monitoring programs, under the challenging situation when at-harvest damage results from a sequence of plant responses initiated by in-season insect feeding.
Henneges, Carsten; Reed, Catherine; Chen, Yun-Fei; Dell'Agnello, Grazia; Lebrec, Jeremie
2016-01-01
Improved understanding of the pattern of cognitive decline in Alzheimer's disease (AD) would be useful to assist primary care physicians in explaining AD progression to patients and caregivers. To identify the sequence in which cognitive abilities decline in community-dwelling patients with AD. Baseline data were analyzed from 1,495 patients diagnosed with probable AD and a Mini-Mental State Examination (MMSE) score ≤ 26 enrolled in the 18-month observational GERAS study. Proportional odds logistic regression models were applied to model MMSE subscores (orientation, registration, attention and concentration, recall, language, and drawing) and the corresponding subscores of the cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog), using MMSE total score as the index of disease progression. Probabilities of impairment start and full impairment were estimated at each MMSE total score level. From the estimated probabilities for each MMSE subscore as a function of the MMSE total score, the first aspect of cognition to start being impaired was recall, followed by orientation in time, attention and concentration, orientation in place, language, drawing, and registration. For full impairment in subscores, the sequence was recall, drawing, attention and concentration, orientation in time, orientation in place, registration, and language. The sequence of cognitive decline for the corresponding ADAS-cog subscores was remarkably consistent with this pattern. The sequence of cognitive decline in AD can be visualized in an animation using probability estimates for key aspects of cognition. This might be useful for clinicians to set expectations on disease progression for patients and caregivers.
Sequence stratigraphic principles applied to the Miocene Hawthorn Group, west-central Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, V.L.; Randazzo, A.F.
1993-03-01
Sequence boundaries for the Miocene Hawthorn Group in the ROMP 20 drill core from Osprey, Sarasota County, FL were generally delineated by lithologic variations recognized from core slabs, thin section analysis, and geophysical logs. At least six depositional sequences representing third order sea level fluctuations were identified. Depositional environments were determined on the basis of the characteristic lithologic constituents including rip-up clasts, pellets, fossils, laminations, burrow, degree of induration, and grain sorting. The sequence boundaries appear to have formed when the rate of the eustatic fall exceeded basin subsidence rates producing a relative sea level fall at a depositional shorelinemore » break. As a result of the basinward facies shift associated with this sequence type, peritidal facies may directly overlie deeper water facies. Subaerial exposure and erosion can be expected. The sequence of facies representing progressively deeper water depositional environments, followed by a progressive shallowing, were present between bounding surfaces. Among the six sequences recognized, four were clearly delineated as representative of regression, subaerial exposure, and subsequent transgression. Two sequences were less clearly defined and probably represent transitional facies which had exposure surfaces developed. Comparison of the petrologically established sequence stratigraphy with published sea level curves resulted in a strong correlation between the number of sequences recognized and the number of coastal on-lap/off-lap cycles depicted for the early to middle Miocene. This correlation suggests that petrologic examination of core slabs, with supplemental thin section data, can provide useful information regarding the recognition of stratigraphic sequences and relative sea level fluctuations, particularly, in situations where seismic data may not be available.« less
An image-based model of brain volume biomarker changes in Huntington's disease.
Wijeratne, Peter A; Young, Alexandra L; Oxtoby, Neil P; Marinescu, Razvan V; Firth, Nicholas C; Johnson, Eileanoir B; Mohan, Amrita; Sampaio, Cristina; Scahill, Rachael I; Tabrizi, Sarah J; Alexander, Daniel C
2018-05-01
Determining the sequence in which Huntington's disease biomarkers become abnormal can provide important insights into the disease progression and a quantitative tool for patient stratification. Here, we construct and present a uniquely fine-grained model of temporal progression of Huntington's disease from premanifest through to manifest stages. We employ a probabilistic event-based model to determine the sequence of appearance of atrophy in brain volumes, learned from structural MRI in the Track-HD study, as well as to estimate the uncertainty in the ordering. We use longitudinal and phenotypic data to demonstrate the utility of the patient staging system that the resulting model provides. The model recovers the following order of detectable changes in brain region volumes: putamen, caudate, pallidum, insula white matter, nonventricular cerebrospinal fluid, amygdala, optic chiasm, third ventricle, posterior insula, and basal forebrain. This ordering is mostly preserved even under cross-validation of the uncertainty in the event sequence. Longitudinal analysis performed using 6 years of follow-up data from baseline confirms efficacy of the model, as subjects consistently move to later stages with time, and significant correlations are observed between the estimated stages and nonimaging phenotypic markers. We used a data-driven method to provide new insight into Huntington's disease progression as well as new power to stage and predict conversion. Our results highlight the potential of disease progression models, such as the event-based model, to provide new insight into Huntington's disease progression and to support fine-grained patient stratification for future precision medicine in Huntington's disease.
Coupling detrended fluctuation analysis for multiple warehouse-out behavioral sequences
NASA Astrophysics Data System (ADS)
Yao, Can-Zhong; Lin, Ji-Nan; Zheng, Xu-Zhou
2017-01-01
Interaction patterns among different warehouses could make the warehouse-out behavioral sequences less predictable. We firstly take a coupling detrended fluctuation analysis on the warehouse-out quantity, and find that the multivariate sequences exhibit significant coupling multifractal characteristics regardless of the types of steel products. Secondly, we track the sources of multifractal warehouse-out sequences by shuffling and surrogating original ones, and we find that fat-tail distribution contributes more to multifractal features than the long-term memory, regardless of types of steel products. From perspective of warehouse contribution, some warehouses steadily contribute more to multifractal than other warehouses. Finally, based on multiscale multifractal analysis, we propose Hurst surface structure to investigate coupling multifractal, and show that multiple behavioral sequences exhibit significant coupling multifractal features that emerge and usually be restricted within relatively greater time scale interval.
WEB-server for search of a periodicity in amino acid and nucleotide sequences
NASA Astrophysics Data System (ADS)
E Frenkel, F.; Skryabin, K. G.; Korotkov, E. V.
2017-12-01
A new web server (http://victoria.biengi.ac.ru/splinter/login.php) was designed and developed to search for periodicity in nucleotide and amino acid sequences. The web server operation is based upon a new mathematical method of searching for multiple alignments, which is founded on the position weight matrices optimization, as well as on implementation of the two-dimensional dynamic programming. This approach allows the construction of multiple alignments of the indistinctly similar amino acid and nucleotide sequences that accumulated more than 1.5 substitutions per a single amino acid or a nucleotide without performing the sequences paired comparisons. The article examines the principles of the web server operation and two examples of studying amino acid and nucleotide sequences, as well as information that could be obtained using the web server.
2010-01-01
Changes to the glycosylation profile on HIV gp120 can influence viral pathogenesis and alter AIDS disease progression. The characterization of glycosylation differences at the sequence level is inadequate as the placement of carbohydrates is structurally complex. However, no structural framework is available to date for the study of HIV disease progression. In this study, we propose a novel machine-learning based framework for the prediction of AIDS disease progression in three stages (RP, SP, and LTNP) using the HIV structural gp120 profile. This new intelligent framework proves to be accurate and provides an important benchmark for predicting AIDS disease progression computationally. The model is trained using a novel HIV gp120 glycosylation structural profile to detect possible stages of AIDS disease progression for the target sequences of HIV+ individuals. The performance of the proposed model was compared to seven existing different machine-learning models on newly proposed gp120-Benchmark_1 dataset in terms of error-rate (MSE), accuracy (CCI), stability (STD), and complexity (TBM). The novel framework showed better predictive performance with 67.82% CCI, 30.21 MSE, 0.8 STD, and 2.62 TBM on the three stages of AIDS disease progression of 50 HIV+ individuals. This framework is an invaluable bioinformatics tool that will be useful to the clinical assessment of viral pathogenesis. PMID:21143806
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert DeSalle
2004-09-10
This project seeks to use the genomes of two close relatives, A. actinomycetemcomitans and H. aphrophilus, to understand the evolutionary changes that take place in a genome to make it more or less virulent. Our primary specific aim of this project was to sequence, annotate, and analyze the genomes of Actinobacillus actinomycetemcomitans (CU1000, serotype f) and Haemophilus aphrophilus. With these genome sequences we have then compared the whole genome sequences to each other and to the current Aa (HK1651 www.genome.ou.edu) genome project sequence along with other fully sequenced Pasteurellaceae to determine inter and intra species differences that may account formore » the differences and similarities in disease. We also propose to create and curate a comprehensive database where sequence information and analysis for the Pasteurellaceae (family that includes the genera Actinobacillus and Haemophilus) are readily accessible. And finally we have proposed to develop phylogenetic techniques that can be used to efficiently and accurately examine the evolution of genomes. Below we report on progress we have made on these major specific aims. Progress on the specific aims is reported below under two major headings--experimental approaches and bioinformatics and systematic biology approaches.« less
Oshiki, Mamoru; Segawa, Takahiro; Ishii, Satoshi
2018-02-02
Various microorganisms play key roles in the Nitrogen (N) cycle. Quantitative PCR (qPCR) and PCR-amplicon sequencing of the N cycle functional genes allow us to analyze the abundance and diversity of microbes responsible in the N transforming reactions in various environmental samples. However, analysis of multiple target genes can be cumbersome and expensive. PCR-independent analysis, such as metagenomics and metatranscriptomics, is useful but expensive especially when we analyze multiple samples and try to detect N cycle functional genes present at relatively low abundance. Here, we present the application of microfluidic qPCR chip technology to simultaneously quantify and prepare amplicon sequence libraries for multiple N cycle functional genes as well as taxon-specific 16S rRNA gene markers for many samples. This approach, named as N cycle evaluation (NiCE) chip, was evaluated by using DNA from pure and artificially mixed bacterial cultures and by comparing the results with those obtained by conventional qPCR and amplicon sequencing methods. Quantitative results obtained by the NiCE chip were comparable to those obtained by conventional qPCR. In addition, the NiCE chip was successfully applied to examine abundance and diversity of N cycle functional genes in wastewater samples. Although non-specific amplification was detected on the NiCE chip, this could be overcome by optimizing the primer sequences in the future. As the NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes, this tool should advance our ability to explore N cycling in various samples. Importance. We report a novel approach, namely Nitrogen Cycle Evaluation (NiCE) chip by using microfluidic qPCR chip technology. By sequencing the amplicons recovered from the NiCE chip, we can assess diversities of the N cycle functional genes. The NiCE chip technology is applicable to analyze the temporal dynamics of the N cycle gene transcriptions in wastewater treatment bioreactors. The NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes. While there is a room for future improvement, this tool should significantly advance our ability to explore the N cycle in various environmental samples. Copyright © 2018 American Society for Microbiology.
Biclustering as a method for RNA local multiple sequence alignment.
Wang, Shu; Gutell, Robin R; Miranker, Daniel P
2007-12-15
Biclustering is a clustering method that simultaneously clusters both the domain and range of a relation. A challenge in multiple sequence alignment (MSA) is that the alignment of sequences is often intended to reveal groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can impact the alignment; precisely the kind of dual situation biclustering is intended to address. We define a representation of the MSA problem enabling the application of biclustering algorithms. We develop a computer program for local MSA, BlockMSA, that combines biclustering with divide-and-conquer. BlockMSA simultaneously finds groups of similar sequences and locally aligns subsequences within them. Further alignment is accomplished by dividing both the set of sequences and their contents. The net result is both a multiple sequence alignment and a hierarchical clustering of the sequences. BlockMSA was tested on the subsets of the BRAliBase 2.1 benchmark suite that display high variability and on an extension to that suite to larger problem sizes. Also, alignments were evaluated of two large datasets of current biological interest, T box sequences and Group IC1 Introns. The results were compared with alignments computed by ClustalW, MAFFT, MUCLE and PROBCONS alignment programs using Sum of Pairs (SPS) and Consensus Count. Results for the benchmark suite are sensitive to problem size. On problems of 15 or greater sequences, BlockMSA is consistently the best. On none of the problems in the test suite are there appreciable differences in scores among BlockMSA, MAFFT and PROBCONS. On the T box sequences, BlockMSA does the most faithful job of reproducing known annotations. MAFFT and PROBCONS do not. On the Intron sequences, BlockMSA, MAFFT and MUSCLE are comparable at identifying conserved regions. BlockMSA is implemented in Java. Source code and supplementary datasets are available at http://aug.csres.utexas.edu/msa/
A Code Division Multiple Access Communication System for the Low Frequency Band.
1983-04-01
frequency channels spread-spectrum communication / complex sequences, orthogonal codes impulsive noise 20. ABSTRACT (Continue an reverse side It...their transmissions with signature sequences. Our LF/CDMA scheme is different in that each user’s signature sequence set consists of M orthogonal ...signature sequences. Our LF/CDMA scheme is different in that each user’s signature sequence set consists of M orthogonal sequences and thus log 2 M
The need for an assembly pilot project
USDA-ARS?s Scientific Manuscript database
Progress has been rapid since the June 2008 start of the cacao genome sequencing project with the completion of the physical map and the accumulation of approximately 10x coverage of the genome with Titanium 454 sequence data of Matina1-6, the highly homozygous Amelonado tree chosen for the project....
Sequence for the Training of Eye-Hand Coordination Needed for the Organization of Handwriting Tasks
ERIC Educational Resources Information Center
Trester, Mary Fran
1971-01-01
Suggested is a sequence of 11 class activities, progressing from gross to fine motor skills, to assist the development of skills required to perform handwriting tasks successfully, for use particularly with children who lack fine motor control and eye-hand coordination. (KW)
Teaching Measurement to Children: Grades K-6. Revised Edition.
ERIC Educational Resources Information Center
Borelli, Michael L.; Morelli, Sandra Z.
Objectives are listed describing the progression which students follow in learning to measure. These objectives follow a sequence that corresponds closely with the intellectual sequence found in students' learning. Grade-level recommendation charts follow the objectives. Topics dealt with are length, distance, area, volume, capacity, mass, and…
48 CFR 452.237-76 - Progress Reporting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of the contract performance. The progress report shall be brief and factual and shall be prepared in... report, sequence number of report, and period of performance being reported; (3) Contractor's name and... task or other logical segment of work on which effort was expended during the report period. The...
Saccharomycotina and Taphrinomycotina – progress in circumscription of genera
USDA-ARS?s Scientific Manuscript database
Much progress has been made in understanding relationships among the yeasts. DNA barcoding (D1/D2, ITS) has provided a rapid means for species identification and phylogenetic analysis of gene sequences has shown that the Ascomycota is comprised of three major lineages, i.e, Saccharomycotina (buddin...