Science.gov

Sample records for progressive neurovascular inflammatory

  1. Whole genome assessment of the retinal response to diabetes reveals a progressive neurovascular inflammatory response

    PubMed Central

    Brucklacher, Robert M; Patel, Kruti M; VanGuilder, Heather D; Bixler, Georgina V; Barber, Alistair J; Antonetti, David A; Lin, Cheng-Mao; LaNoue, Kathryn F; Gardner, Thomas W; Bronson, Sarah K; Freeman, Willard M

    2008-01-01

    Background Despite advances in the understanding of diabetic retinopathy, the nature and time course of molecular changes in the retina with diabetes are incompletely described. This study characterized the functional and molecular phenotype of the retina with increasing durations of diabetes. Results Using the streptozotocin-induced rat model of diabetes, levels of retinal permeability, caspase activity, and gene expression were examined after 1 and 3 months of diabetes. Gene expression changes were identified by whole genome microarray and confirmed by qPCR in the same set of animals as used in the microarray analyses and subsequently validated in independent sets of animals. Increased levels of vascular permeability and caspase-3 activity were observed at 3 months of diabetes, but not 1 month. Significantly more and larger magnitude gene expression changes were observed after 3 months than after 1 month of diabetes. Quantitative PCR validation of selected genes related to inflammation, microvasculature and neuronal function confirmed gene expression changes in multiple independent sets of animals. Conclusion These changes in permeability, apoptosis, and gene expression provide further evidence of progressive retinal malfunction with increasing duration of diabetes. The specific gene expression changes confirmed in multiple sets of animals indicate that pro-inflammatory, anti-vascular barrier, and neurodegenerative changes occur in tandem with functional increases in apoptosis and vascular permeability. These responses are shared with the clinically documented inflammatory response in diabetic retinopathy suggesting that this model may be used to test anti-inflammatory therapeutics. PMID:18554398

  2. Age-related alterations in retinal neurovascular and inflammatory transcripts

    PubMed Central

    Van Kirk, Colleen A.; VanGuilder, Heather D.; Young, Megan; Farley, Julie A.; Sonntag, William E.

    2011-01-01

    Purpose Vision loss is one of the most common complications of aging, even in individuals with no diagnosed ocular disease. Increasing age induces structural alterations and functional impairments in retinal neurons and microvasculature linked to the activation of proinflammatory signaling pathways. Commonalities between the effects of aging and those observed with diabetes, including visual impairment, vascular dysfunction, and increased inflammatory response, have led to the hypothesis that diabetes-associated pathologies reflect an “advanced aging” phenotype. The goal of this study was to investigate the effects of aging on retinal mRNA expression of neurovascular and inflammatory transcripts previously demonstrated to be regulated with diabetes. Methods The relative expression of 36 genes of interest previously identified as consistently regulated with diabetes was assessed in retinas of Young (3 month), Adult (12 month), and Aged (26 month) Fischer 344 x Brown Norway (F1) hybrid rats using quantitative PCR. Serum samples obtained at sacrifice were assayed to determine serum glucose levels. Results Eleven inflammation- and microvascular-related genes previously demonstrated to be upregulated in young diabetic rats (complement component 1 s subcomponent [C1s], chitinase 3-like 1 [Chi3L1], endothelin 2 [Edn2], guanylate nucleotide binding protein 2 [Gbp2], glial fibrillary acidic protein [Gfap], intracellular adhesion molecule 1 [Icam1], janus kinase 3 [Jak3], lipopolysaccharide-induced TNF factor [Litaf], complement 1-inhibitor [Serping1], signal transducer and activator of transcription 3 [Stat3], tumor necrosis factor receptor subfamily member 12a [Tnfrsf12a]) demonstrated progressively increasing retinal expression in aged normoglycemic rats. Additionally, two neuronal function–related genes (glutamate receptor ionotropic NMDA 2A [Grin2a] and polycomb group ring finger 1 [Pcgf1]) and one inflammation-related gene (pigment epithelium-derived growth

  3. Sulforaphane induces neurovascular protection against a systemic inflammatory challenge via both Nrf2-dependent and independent pathways.

    PubMed

    Holloway, Paul M; Gillespie, Scarlett; Becker, Felix; Vital, Shantel A; Nguyen, Victoria; Alexander, J Steven; Evans, Paul C; Gavins, Felicity N E

    2016-10-01

    Sepsis is often characterized by an acute brain inflammation and dysfunction, which is associated with increased morbidity and mortality worldwide. Preventing cerebral leukocyte recruitment may provide the key to halt progression of systemic inflammation to the brain. Here we investigated the influence of the anti-inflammatory and anti-oxidant compound, sulforaphane (SFN) on lipopolysaccharide (LPS)-induced cellular interactions in the brain. The inflammatory response elicited by LPS was blunted by SFN administration (5 and 50mg/kg i.p.) 24h prior to LPS treatment in WT animals, as visualized and quantified using intravital microscopy. This protective effect of SFN was lost in Nrf2-KO mice at the lower dose tested, however 50mg/kg SFN revealed a partial effect, suggesting SFN works in part independently of Nrf2 activity. In vitro, SFN reduced neutrophil recruitment to human brain endothelial cells via a down regulation of E-selectin and vascular cell adhesion molecule 1 (VCAM-1). Our data confirm a fundamental dose-dependent role of SFN in limiting cerebral inflammation. Furthermore, our data demonstrate that not only is Nrf2 in part essential in mediating these neuroprotective effects, but they occur via down-regulation of E-selectin and VCAM-1. In conclusion, SFN may provide a useful therapeutic drug to reduce cerebral inflammation in sepsis.

  4. Chronic progressive external ophthalmoplegia with inflammatory myopathy.

    PubMed

    Chen, Ting; Pu, Chuanqiang; Shi, Qiang; Wang, Qian; Cong, Lu; Liu, Jiexiao; Luo, Hongyu; Fei, Lingna; Tang, Wei; Yu, Shanshan

    2014-01-01

    Chronic progressive external ophthalmoplegia is one of mitochondrial disorders, characterized by ptosis, limitation of eye movement, variably severe bulbar muscle weakness and proximal limb weakness. Chronic progressive external ophthalmoplegia complicated with acquired disease is extremely rare. We report a 44 years old male patient with more than 20 years of chronic progressive bilateral ptosis and limitation of eye movements manifested dysarthria, dysphagia and neck muscle weakness for 3 years. The first muscle biopsy showed red-ragged fibers and cytochrome c oxidase negative fibers as well as inflammatory cells infiltration. Electron microscopy revealed paracrystalline inclusions. Mitochondrial genetic analysis demonstrated a large-scale mtDNA deletion of m.8470_13446del4977. The patient was treated with prednisone. In a three-year follow-up study, the second biopsy was performed. Before the treatment, except bilateral ptosis and external ophthalmopelgia, this patient presented bulbar muscle weakness and neck muscle weakness. After treated with prednisone, the symptoms of dysphagia, dysarthria and neck muscle weakness were significantly improved, and the second biopsy showed only mitochondrial myopathy pathology but the inflammations disappeared. Here, we report a patient with chronic progressive external ophthalmoplegia complicated with inflammatory myopathy and after treated with prednisone as myositis, he had a significant therapeutic effect. PMID:25674260

  5. Progressive inflammatory subglottic narrowing responsive to steroids

    PubMed Central

    Phelan, Peter; Hey, Edmund

    1983-01-01

    Four children aged between 2½ and 13½ years developed insidious subglottic stenosis of unknown cause over 3-12 months. In all, the initial diagnosis was asthma which resulted in inappropriate treatment. Endoscopically there was circumferential subglottic narrowing, and biopsy in 3 showed non-specific inflammatory changes. Corticosteroid therapy led to rapid and complete resolution. PMID:6838258

  6. Anti-inflammatory agents from plants: progress and potential.

    PubMed

    Recio, M C; Andujar, I; Rios, J L

    2012-01-01

    The identification of substances that can promote the resolution of inflammation in a way that is homeostatic, modulatory, efficient, and well-tolerated by the body is of fundamental importance. Traditional medicines have long provided front-line pharmacotherapy for many millions of people worldwide. Medicinal extracts are a rich source of therapeutic leads for the pharmaceutical industry. The use of medicinal plant therapies to treat chronic illness, including rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), is thus widespread and on the rise.The aim of this review is to present recent progress in clinical anti-inflammatory studies of plant extracts and compound leads such as green tea polyphenols, curcumin, resveratrol, boswellic acid, and cucurbitacins, among others, against chronic inflammatory diseases, mainly RA and IBD. In this context, the present paper also highlights the most promising experimental data on those plant extracts and pure compounds active in animal models of the aforementioned diseases.

  7. Anti-inflammatory agents from plants: progress and potential.

    PubMed

    Recio, M C; Andujar, I; Rios, J L

    2012-01-01

    The identification of substances that can promote the resolution of inflammation in a way that is homeostatic, modulatory, efficient, and well-tolerated by the body is of fundamental importance. Traditional medicines have long provided front-line pharmacotherapy for many millions of people worldwide. Medicinal extracts are a rich source of therapeutic leads for the pharmaceutical industry. The use of medicinal plant therapies to treat chronic illness, including rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), is thus widespread and on the rise.The aim of this review is to present recent progress in clinical anti-inflammatory studies of plant extracts and compound leads such as green tea polyphenols, curcumin, resveratrol, boswellic acid, and cucurbitacins, among others, against chronic inflammatory diseases, mainly RA and IBD. In this context, the present paper also highlights the most promising experimental data on those plant extracts and pure compounds active in animal models of the aforementioned diseases. PMID:22414101

  8. Strong Impact of Chronic Cerebral Hypoperfusion on Neurovascular Unit, Cerebrovascular Remodeling, and Neurovascular Trophic Coupling in Alzheimer's Disease Model Mouse.

    PubMed

    Shang, Jingwei; Yamashita, Toru; Zhai, Yun; Nakano, Yumiko; Morihara, Ryuta; Fukui, Yusuke; Hishikawa, Nozomi; Ohta, Yasuyuki; Abe, Koji

    2016-03-01

    Although chronic cerebral hypoperfusion (CCH) may affect Alzheimer's disease (AD) pathogenesis, the mechanism remains elusive. In the present study, we investigated the role of CCH on an AD mouse model in neurovascular unit, cerebrovascular remodeling, and neurovascular trophic coupling. Moreover, examined protective effect of galantamine. Alzheimer's disease transgenic mice (APP23) were subjected to bilateral common carotid arteries stenosis with ameroid constrictors for slowly progressive cerebral hypoperfusion. CCH exacerbated neuronal loss and decrease of α7 subunit of nicotinic acetylcholine receptors (α7-nAChRs) expression in hippocampus and thalamus at 12 months. Meanwhile, CCH greatly induced advanced glycation end products expression, and blood-brain barrier leakage through observing IgG and MMP9 expressions. Furthermore, a significant number of dramatic enlarged cerebral vessels with remodeling, BDNF/TrkB decreased in neurovascular trophic coupling. The present study demonstrated that CCH strongly enhanced primary AD pathology including neurodegeneration, neurovascular unit disruption, cerebrovascular remodeling and neurovascular trophic coupling damage in AD mice, and that galantamine treatment greatly ameliorated such neuropathologic abnormalities. PMID:27060955

  9. Progressive multifocal leukoencephalopathy and immune reconstitution inflammatory syndrome (IRIS).

    PubMed

    Bauer, Jan; Gold, Ralf; Adams, Ortwin; Lassmann, Hans

    2015-12-01

    Progressive multifocal leukoencephalopathy is a viral encephalitis induced by the John Cunningham (JC) virus, an ubiquitous neurotropic papovavirus of the genus polyomavirus that in healthy people in latency resides in kidney and bone marrow cells. Activation and entry into the CNS were first seen in patients with malignancies of the hematopoietic system and an impaired immune system. During the 1980 and the 1990s with the appearance of human immunodeficiency virus infection in humans, PML was found to be the most important opportunistic infection of the central nervous system. As a result of highly efficient immunosuppressive and immunomodulatory treatments, in recent years, the number of PML cases again increased. PML is prevented by an intact cellular immune response and accordingly immune reconstitution can terminate established disease in the CNS. However, forced immune reconstitution can lead to massive destruction of virus-infected cells. This may result in clinical exacerbation associated with high morbidity and mortality and referred to as PML with immune reconstitution inflammatory syndrome (PML-IRIS). In the present review, we discuss virological properties and routes of infection in the CNS, but mostly focus on the pathology of PML and PML-IRIS and on the role of the immune system in these disorders. We show that PML and PML-IRIS result from predominant JC virus infection of oligodendrocytes and, to a lesser extent, of infected neurons. Inflammation in these encephalitides seems to be driven by a dominant cytotoxic T cell response which is massively exaggerated during IRIS. PMID:26323992

  10. Role of Inflammasome Activation in the Pathophysiology of Vascular Diseases of the Neurovascular Unit

    PubMed Central

    Mohamed, Islam N.; Ishrat, Tauheed; Fagan, Susan C.

    2015-01-01

    Abstract Significance: Inflammation is the standard double-edged defense mechanism that aims at protecting the human physiological homeostasis from devastating threats. Both acute and chronic inflammation have been implicated in the occurrence and progression of vascular diseases. Interference with components of the immune system to improve patient outcome after ischemic injury has been uniformly unsuccessful. There is a need for a deeper understanding of the innate immune response to injury in order to modulate, rather than to block inflammation and improve the outcome for vascular diseases. Recent Advances: Nucleotide-binding oligomerization domain-like receptors or NOD-like receptor proteins (NLRPs) can be activated by sterile and microbial inflammation. NLR family plays a major role in activating the inflammasome. Critical Issues: The aim of this work is to review recent findings that provided insights into key inflammatory mechanisms and define the place of the inflammasome, a multi-protein complex involved in instigating inflammation in neurovascular diseases, including retinopathy, neurodegenerative diseases, and stroke. Future Directions: The significant contribution of NLRP-inflammasome activation to vascular disease of the neurovascular unit in the brain and retina suggests that therapeutic strategies focused on specific targeting of inflammasome components could significantly improve the outcomes of these diseases. Antioxid. Redox Signal. 22, 1188–1206. PMID:25275222

  11. APOE Stabilization by Exercise Prevents Aging Neurovascular Dysfunction and Complement Induction

    PubMed Central

    Soto, Ileana; Graham, Leah C.; Richter, Hannah J.; Simeone, Stephen N.; Radell, Jake E.; Grabowska, Weronika; Funkhouser, W. Keith; Howell, Megan C.; Howell, Gareth R.

    2015-01-01

    Aging is the major risk factor for neurodegenerative diseases such as Alzheimer's disease, but little is known about the processes that lead to age-related decline of brain structures and function. Here we use RNA-seq in combination with high resolution histological analyses to show that aging leads to a significant deterioration of neurovascular structures including basement membrane reduction, pericyte loss, and astrocyte dysfunction. Neurovascular decline was sufficient to cause vascular leakage and correlated strongly with an increase in neuroinflammation including up-regulation of complement component C1QA in microglia/monocytes. Importantly, long-term aerobic exercise from midlife to old age prevented this age-related neurovascular decline, reduced C1QA+ microglia/monocytes, and increased synaptic plasticity and overall behavioral capabilities of aged mice. Concomitant with age-related neurovascular decline and complement activation, astrocytic Apoe dramatically decreased in aged mice, a decrease that was prevented by exercise. Given the role of APOE in maintaining the neurovascular unit and as an anti-inflammatory molecule, this suggests a possible link between astrocytic Apoe, age-related neurovascular dysfunction and microglia/monocyte activation. To test this, Apoe-deficient mice were exercised from midlife to old age and in contrast to wild-type (Apoe-sufficient) mice, exercise had little to no effect on age-related neurovascular decline or microglia/monocyte activation in the absence of APOE. Collectively, our data shows that neurovascular structures decline with age, a process that we propose to be intimately linked to complement activation in microglia/monocytes. Exercise prevents these changes, but not in the absence of APOE, opening up new avenues for understanding the complex interactions between neurovascular and neuroinflammatory responses in aging and neurodegenerative diseases such as Alzheimer’s disease. PMID:26512759

  12. Hyperperfusion in progressive multifocal leukoencephalopathy is associated with disease progression and absence of immune reconstitution inflammatory syndrome

    PubMed Central

    Khoury, Michael N.; Gheuens, Sarah; Ngo, Long; Wang, Xiaoen; Alsop, David C.

    2013-01-01

    We sought to characterize perfusion patterns of progressive multifocal leukoencephalopathy lesions by arterial spin labelling perfusion magnetic resonance imaging and to analyse their association with immune reconstitution inflammatory syndrome, and survival. A total of 22 patients with progressive multifocal leukoencephalopathy underwent a clinical evaluation and magnetic resonance imaging of the brain within 190 days of symptom onset. The presence of immune reconstitution inflammatory syndrome was determined based on clinical and laboratory criteria. Perfusion within progressive multifocal leukoencephalopathy lesions was determined by arterial spin labelling magnetic resonance imaging. We observed intense hyperperfusion within and at the edge of progressive multifocal leukoencephalopathy lesions in a subset of subjects. This hyperperfusion was quantified by measuring the fraction of lesion volume showing perfusion in excess of twice normal appearing grey matter. Hyperperfused lesion fraction was significantly greater in progressive multifocal leukoencephalopathy progressors than in survivors (12.8% versus 3.4% P = 0.02) corresponding to a relative risk of progression for individuals with a hyperperfused lesion fraction ≥ 4.0% of 9.1 (95% confidence interval of 1.4–59.5). The presence of hyperperfusion was inversely related to the occurrence of immune reconstitution inflammatory syndrome at the time of scan (P = 0.03). Indeed, within 3 months after symptom onset, hyperperfusion had a positive predictive value of 88% for absence of immune reconstitution inflammatory syndrome. Arterial spin labelling magnetic resonance imaging recognized regions of elevated perfusion within lesions of progressive multifocal leukoencephalopathy. These regions might represent virologically active areas operating in the absence of an effective adaptive immune response and correspond with a worse prognosis. PMID:24088807

  13. Susceptibility-weighted Imaging in Neurovascular Disease.

    PubMed

    Heyn, Chris; Alcaide-Leon, Paula; Bharatha, Aditya; Sussman, Marshall S; Kucharczyk, Walter; Mandell, Daniel M

    2016-04-01

    Susceptibility-weighted imaging (SWI) has become an important imaging sequence in the evaluation of patients with neurovascular disease. In this review, we provide a general overview of the physics of SWI and describe how image contrast is produced with this technique. We provide a general approach and differential diagnosis for 2 commonly encountered radiographic patterns seen with SWI in neurovascular disease. Finally, we discuss specific neurovascular applications of SWI, including its application in acute stroke, vascular malformations, venous thrombosis, and evaluation of cerebral microbleeds.

  14. Neurovascular coupling: a parallel implementation

    PubMed Central

    Dormanns, Katharina; Brown, Richard G.; David, Tim

    2015-01-01

    A numerical model of neurovascular coupling (NVC) is presented based on neuronal activity coupled to vasodilation/contraction models via the astrocytic mediated perivascular K+ and the smooth muscle cell (SMC) Ca2+ pathway termed a neurovascular unit (NVU). Luminal agonists acting on P2Y receptors on the endothelial cell (EC) surface provide a flux of inositol trisphosphate (IP3) into the endothelial cytosol. This concentration of IP3 is transported via gap junctions between EC and SMC providing a source of sarcoplasmic derived Ca2+ in the SMC. The model is able to relate a neuronal input signal to the corresponding vessel reaction (contraction or dilation). A tissue slice consisting of blocks, each of which contain an NVU is connected to a space filling H-tree, simulating a perfusing arterial tree (vasculature) The model couples the NVUs to the vascular tree via a stretch mediated Ca2+ channel on both the EC and SMC. The SMC is induced to oscillate by increasing an agonist flux in the EC and hence increased IP3 induced Ca2+ from the SMC stores with the resulting calcium-induced calcium release (CICR) oscillation inhibiting NVC thereby relating blood flow to vessel contraction and dilation following neuronal activation. The coupling between the vasculature and the set of NVUs is relatively weak for the case with agonist induced where only the Ca2+ in cells inside the activated area becomes oscillatory however, the radii of vessels both inside and outside the activated area oscillate (albeit small for those outside). In addition the oscillation profile differs between coupled and decoupled states with the time required to refill the cytosol with decreasing Ca2+ and increasing frequency with coupling. The solution algorithm is shown to have excellent weak and strong scaling. Results have been generated for tissue slices containing up to 4096 blocks. PMID:26441619

  15. [Surgical management of trigeminal neuralgia, hemifacial spasm, paroxysmal tinnitus and nystagmus by neurovascular decompression].

    PubMed

    Isu, T; Abe, H; Nakagawa, Y; Aida, T; Tsuru, M; Ito, T; Murai, H

    1983-11-01

    Trigeminal neuralgia, facial spasm, tinnitus, vertigo, and glossopharyngeal neuralgia are believed to be the symptoms complex of hyperactive dysfunction of the cranial nerve caused by vascular cross compression at the root entry (exit) zone of the appropriate nerve. Posterior cranial fossa approach for the neurovascular decompression was enhanced by Jannetta et al (1975). From their experiences of surgery, they emphasized that these symptoms were relieved by surgery. In this report, we will discuss the etiology of the disease, the neurotological examination, the angiographic findings, the operative findings and results in a series of 10 patients who have undergone neurovascular decompression. The series consisted of 4 cases with trigeminal neuralgia, 5 cases with facial spasm, and 1 case with paroxysmal tinnitus accompanied by facial spasm. The postoperative progress in these all patients was excellent and relieved of the symptoms. There was neither mortality nor any significant complication. We stress that the neurovascular decompression surgery is now well justified as the definite treatment for the trigeminal neuralgia and facial spasm, because the surgery can be performed easily and safely by the neurosurgeons. The indication of the neurovascular decompression for the acoustic nerve and glossopharyngeal nerve is still controversial. In our own case, tinnitus was paroxysmal and complicated with facial spasm, not synchronous with facial spasm, but with nystagmus. This selective synchronism between tinnitus and nystagmus is a particular feature of our clinical instance. This particular clinical experience may provide some highly significant suggestions in considering the applicability of neurovascular decompression to the acoustic nerve. PMID:6671636

  16. [Surgical treatment of trigeminal neuralgia--neurovascular decompression established by Jannetta].

    PubMed

    Isu, T; Abe, H; Nakagawa, Y; Mitsumori, K; Nakagawa, T; Sakuragi, M; Tsuru, M; Ito, T

    1985-01-01

    The etiology of trigeminal neuralgia has been unknown. However, recently, trigeminal neuralgia is believed to be caused by vascular cross compression at the root entry zone of the trigeminal nerve. Posterior cranial fossa approach for the neurovascular decompression was enhanced by Jannetta et al. They emphasized that the pain was relieved by surgery. In this report, we will discuss the operative findings and results in a series of 8 patients who have undergone neurovascular decompression. The postoperative progress in all of these patients was excellent and relieved of the pain. There was neither mortality nor any significant complication. We stress that the neurovascular decompression surgery is now well justified as the definite treatment for the trigeminal neuralgia. PMID:3988235

  17. Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer’s disease

    PubMed Central

    Sagare, Abhay P.; Bell, Robert D.; Zlokovic, Berislav V.

    2015-01-01

    The evidence that neurovascular dysfunction is an integral part of Alzheimer’s disease (AD) pathogenesis has continued to emerge in the last decade. Changes in the brain vasculature have been shown to contribute to the onset and progression of the pathological processes associated with AD, such as microvascular reductions, blood brain barrier (BBB) breakdown and faulty clearance of amyloid β-peptide (Aβ) from the brain. Herein, we review the role of the neurovascular unit and molecular mechanisms in cerebral vascular cells behind the pathogenesis of AD. In particular, we focus on molecular pathways within cerebral vascular cells and the systemic circulation that contribute to BBB dysfunction, brain hypoperfusion and impaired clearance of Aβ from the brain. We aim to provide a summary of recent research findings implicated in neurovascular defects and faulty amyloid-β vasular clearance contributing to AD pathogenesis. PMID:22751174

  18. 21 CFR 882.5950 - Neurovascular embolization device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neurovascular embolization device. 882.5950... (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5950 Neurovascular embolization device. (a) Identification. A neurovascular embolization device is an intravascular...

  19. Progressive inflammatory pathology in the retina of aluminum-fed 5xFAD transgenic mice.

    PubMed

    Pogue, A I; Dua, P; Hill, J M; Lukiw, W J

    2015-11-01

    At least 57 murine transgenic models for Alzheimer's disease (Tg-AD) have been developed to overexpress the 42 amino acid amyloid-beta (Aβ42) peptide in the central nervous system (CNS). These 'humanized murine Tg-AD models' have greatly expanded our understanding of the contribution of Aβ42 peptide-mediated pro-inflammatory neuropathology to the AD process. A number of independent laboratories using different amyloid-overexpressing Tg-AD models have shown that supplementation of murine Tg-AD diets and/or drinking water with aluminum significantly enhances Aβ42 peptide-mediated inflammatory pathology and AD-type cognitive change compared to animals receiving control diets. In humans AD-type pathology appears to originate in the limbic system and progressively spreads into primary processing and sensory regions such as the retina. In these studies, for the first time, we assess the propagation of Aβ42 and inflammatory signals into the retina of 5xFAD Tg-AD amyloid-overexpressing mice whose diets were supplemented with aluminum. The two most interesting findings were (1) that similar to other Tg-AD models, there was a significantly accelerated development of Aβ42 and inflammatory pathology in 5xFAD Tg-AD mice fed aluminum; and (2) in aluminum-supplemented animals, markers for inflammatory pathology appeared in both the brain and the retina as evidenced by an evolving presence of Aβ42 peptides, and accompanied by inflammatory markers - cyclooxygenase-2 (COX-2) and C-reactive protein (CRP). The results indicate that in the 5xFAD Tg-AD model aluminum not only enhances an Aβ42-mediated inflammatory degeneration of the brain but also appears to induce AD-type pathology in an anatomically-linked primary sensory area that involves vision.

  20. Drug abuse and the neurovascular unit.

    PubMed

    Egleton, Richard D; Abbruscato, Thomas

    2014-01-01

    Drug abuse continues to create a major international epidemic affecting society. A great majority of past drug abuse research has focused mostly on the mechanisms of addiction and the specific effects of substance use disorders on brain circuits and pathways that modulate reward, motivation, craving, and decision making. Few studies have focused on the neurobiology of acute and chronic substance abuse as it relates to the neurovascular unit (brain endothelial cell, neuron, astrocyte, microglia, and pericyte). Increasing research indicates that all cellular components of the neurovascular unit play a pivotal role in both the process of addiction and how drug abuse affects the brain response to diseases. This review will focus on the specific effects of opioids, amphetamines, alcohol, and nicotine on the neurovascular unit and its role in addiction and adaption to brain diseases. Elucidation of the role of the neurovascular unit on the neurobiology associated with drug addiction will help to facilitate the development of better therapeutic approaches for drug-dependent individuals.

  1. Investigating the Limits of Neurovascular Coupling.

    PubMed

    Denfield, George H; Fahey, Paul G; Reimer, Jacob; Tolias, Andreas S

    2016-09-01

    O'Herron et al. (2016) perform two-photon imaging of vascular and neural responses in cat and rodent primary visual cortex to investigate the limits of neurovascular coupling. Their results suggest important constraints on making inferences about neuronal responses from hemodynamic activity. PMID:27608758

  2. Matriptase promotes inflammatory cell accumulation and progression of established epidermal tumors

    PubMed Central

    Sales, Katiuchia Uzzun; Friis, Stine; Abusleme, Loreto; Moutsopoulos, Niki M.; Bugge, Thomas H.

    2014-01-01

    Deregulation of matriptase is a consistent feature of human epithelial cancers and correlates with poor disease outcome. We have previously shown that matriptase promotes multi-stage squamous cell carcinogenesis in transgenic mice through dual activation of pro-hepatocyte growth factor-cMet-Akt-mTor proliferation/survival signaling and PAR-2-Gαi-NFκB inflammatory signaling. Matriptase was congenitally and constitutively deregulated in our prior studies, and therefore it was unclear if aberrant matriptase signaling supports only initiation of tumor formation or if it is also critical for the progression of established tumors. To determine this, we here have generated triple-transgenic mice with constitutive deregulation of matriptase and simultaneous inducible expression of the cognate matriptase inhibitor, hepatocyte growth factor inhibitor (HAI)-2. As expected, constitutive expression of HAI-2 suppressed the formation of matriptase-dependent tumors in 7,12-Dimethylbenz(a)anthracene (DMBA)-treated mouse skin. Interestingly, however, the induction of HAI-2 expression in already established tumors markedly impaired malignant progression and caused regression of individual tumors. Tumor regression correlated with reduced accumulation of tumor-associated inflammatory cells, likely caused by diminished expression of pro-tumorigenic inflammatory cytokines. The data suggest that matriptase-dependent signaling may be a therapeutic target for both squamous cell carcinoma chemoprevention and for the treatment of established tumors. PMID:25486433

  3. Progress with anti-tumor necrosis factor therapeutics for the treatment of inflammatory bowel disease.

    PubMed

    Fernandes, Carlos; Allocca, Mariangela; Danese, Silvio; Fiorino, Gionata

    2015-01-01

    Anti-tumor necrosis factor (TNF) therapy is a valid, effective and increasingly used option in inflammatory bowel disease management. Nevertheless, further knowledge and therapeutic indications regarding these drugs are still evolving. Anti-TNF therapy may be essential to achieve recently proposed end points, namely mucosal healing, prevention of bowel damage and prevention of patient's disability. Anti-TNF drugs are also suggested to be more effective in early disease, particularly in early Crohn's disease. Moreover, its efficacy for prevention of postoperative recurrence in Crohn's disease is still debated. Costs and adverse effects, the relevance of drug monitoring and the possibility of anti-TNF therapy withdrawal in selected patients are still debated issues. This review aimed to describe and discuss the most relevant data about the progress with anti-TNF therapy for the management of inflammatory bowel disease.

  4. Senescent cells as a source of inflammatory factors for tumor progression

    PubMed Central

    Davalos, Albert R.; Coppe, Jean-Philippe; Campisi, Judith

    2010-01-01

    Cellular senescence, which is associated with aging, is a process by which cells enter a state of permanent cell cycle arrest, therefore constituting a potent tumor suppressive mechanism. Recent studies show that, despite the beneficial effects of cellular senescence, senescent cells can also exert harmful effects on the tissue microenvironment. The most significant of these effects is the acquisition of a senescent-associated secretory phenotype (SASP), which entails a striking increase in the secretion of pro-inflammatory cytokines. Here, we summarize our knowledge of the SASP and the impact it has on tissue microenvironments and ability to stimulate tumor progression. PMID:20390322

  5. Involvement of astrocytes in neurovascular communication.

    PubMed

    Nuriya, M; Hirase, H

    2016-01-01

    The vascular interface of the brain is distinct from that of the peripheral tissue in that astrocytes, the most numerous glial cell type in the gray matter, cover the vasculature with their endfeet. This morphological feature of the gliovascular junction has prompted neuroscientists to suggest possible functional roles of astrocytes including astrocytic modulation of the vasculature. Additionally, astrocytes develop an intricate morphology that intimately apposes neuronal synapses, making them an ideal cellular mediator of neurovascular coupling. In this article, we first introduce the classical anatomical and physiological findings that led to the proposal of various gliovascular interaction models. Next, we touch on the technological advances in the past few decades that enabled investigations and evaluations of neuro-glio-vascular interactions in situ. We then review recent experimental findings on the roles of astrocytes in neurovascular coupling from the viewpoints of intra- and intercellular signalings in astrocytes. PMID:27130410

  6. Neurovascular Compression After the Latarjet Procedure.

    PubMed

    Galvin, Joseph W; Romanowski, James R; Boykin, Robert E; Eichinger, Josef K; Lafosse, Laurent

    2015-12-01

    The Latarjet procedure is an established and effective option for the treatment of recurrent anterior shoulder instability. Symptomatic compression of the vasculature around the shoulder and adjacent brachial plexus is uncommon and may be difficult to diagnose and treat. The purpose of this report is to describe a patient with neurovascular compression of the axillary artery and brachial plexus after an open Latarjet procedure. This is the first known report of documented combined vascular and neurologic thoracic outlet syndrome after a Latarjet procedure. Evaluation of this suspected problem requires a detailed clinical examination and a dynamic angiogram to verify which neurovascular structures are compressed. Treatment includes decompression of the brachial plexus and axillary vasculature by releasing tethering scar tissue or the remaining pectoralis minor that is creating a constricting sling effect. An arthroscopic approach provides for a careful and specific decompression. Additionally, the authors provide a review of the literature for neurologic complications and management for these complications.

  7. Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses.

    PubMed

    Kim, S B; Bozeman, R G; Kaisani, A; Kim, W; Zhang, L; Richardson, J A; Wright, W E; Shay, J W

    2016-06-30

    Proton radiotherapy is becoming more common as protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared with conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole-body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIRs), which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence-associated gene (P19Arf), are markedly increased. Following these changes, loss of Casein kinase Iα and induction of chronic DNA damage and TP53 mutations are increased compared with X-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid-ethyl amide (CDDO-EA), reduces proton irradiation-associated SIR and tumorigenesis. Thus exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA.

  8. Radiation Promotes Colorectal Cancer Initiation and Progression by Inducing Senescence-Associated Inflammatory Responses

    PubMed Central

    Kim, Sang Bum; Bozeman, Ronald; Kaisani, Aadil; Kim, Wanil; Zhang, Lu; Richardson, James A.; Wright, Woodring E.; Shay, Jerry W.

    2015-01-01

    Proton radiotherapy is becoming more common since protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared to conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIR) which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence associated gene (P19Arf) are markedly increased. Following these changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. PMID:26477319

  9. Hemifacial Spasm and Neurovascular Compression

    PubMed Central

    Lu, Alex Y.; Yeung, Jacky T.; Gerrard, Jason L.; Michaelides, Elias M.; Sekula, Raymond F.; Bulsara, Ketan R.

    2014-01-01

    Hemifacial spasm (HFS) is characterized by involuntary unilateral contractions of the muscles innervated by the ipsilateral facial nerve, usually starting around the eyes before progressing inferiorly to the cheek, mouth, and neck. Its prevalence is 9.8 per 100,000 persons with an average age of onset of 44 years. The accepted pathophysiology of HFS suggests that it is a disease process of the nerve root entry zone of the facial nerve. HFS can be divided into two types: primary and secondary. Primary HFS is triggered by vascular compression whereas secondary HFS comprises all other causes of facial nerve damage. Clinical examination and imaging modalities such as electromyography (EMG) and magnetic resonance imaging (MRI) are useful to differentiate HFS from other facial movement disorders and for intraoperative planning. The standard medical management for HFS is botulinum neurotoxin (BoNT) injections, which provides low-risk but limited symptomatic relief. The only curative treatment for HFS is microvascular decompression (MVD), a surgical intervention that provides lasting symptomatic relief by reducing compression of the facial nerve root. With a low rate of complications such as hearing loss, MVD remains the treatment of choice for HFS patients as intraoperative technique and monitoring continue to improve. PMID:25405219

  10. Hemifacial spasm and neurovascular compression.

    PubMed

    Lu, Alex Y; Yeung, Jacky T; Gerrard, Jason L; Michaelides, Elias M; Sekula, Raymond F; Bulsara, Ketan R

    2014-01-01

    Hemifacial spasm (HFS) is characterized by involuntary unilateral contractions of the muscles innervated by the ipsilateral facial nerve, usually starting around the eyes before progressing inferiorly to the cheek, mouth, and neck. Its prevalence is 9.8 per 100,000 persons with an average age of onset of 44 years. The accepted pathophysiology of HFS suggests that it is a disease process of the nerve root entry zone of the facial nerve. HFS can be divided into two types: primary and secondary. Primary HFS is triggered by vascular compression whereas secondary HFS comprises all other causes of facial nerve damage. Clinical examination and imaging modalities such as electromyography (EMG) and magnetic resonance imaging (MRI) are useful to differentiate HFS from other facial movement disorders and for intraoperative planning. The standard medical management for HFS is botulinum neurotoxin (BoNT) injections, which provides low-risk but limited symptomatic relief. The only curative treatment for HFS is microvascular decompression (MVD), a surgical intervention that provides lasting symptomatic relief by reducing compression of the facial nerve root. With a low rate of complications such as hearing loss, MVD remains the treatment of choice for HFS patients as intraoperative technique and monitoring continue to improve.

  11. Surgical management of malignant cerebral edema secondary to immune reconstitution inflammatory syndrome from natalizumab-associated progressive multifocal encephalopathy.

    PubMed

    Tan, Lee A; Lopes, Demetrius K

    2015-10-01

    We report a rare multiple sclerosis (MS) patient who developed malignant cerebral edema related to progressive multifocal encephalopathy (PML) immune reconstitution inflammatory syndrome (IRIS) after natalizumab discontinuation. The patient subsequently required a decompressive hemicraniectomy to reduce intracranial pressure and to avoid uncal herniation. PML is a demyelinating disease of the central nervous system (CNS) which affects oligodendrocytes and is caused by reactivation of latent John Cunningham virus. Natalizumab is a known risk factor (1 in 1000) for MS patients treated with this drug. Discontinuation of natalizumab treatment decreases the risk of PML progression, but a massive inflammatory response can occur after cell-mediated immune surveillance is reestablished in the CNS, causing immune reconstitution inflammatory syndrome (IRIS). Treatment of IRIS usually consists of steroids and plasma exchange to lessen the immune response, however, mortality has been reported at up to 29.4%, despite aggressive medical treatment. We discuss our management strategy with a review of the pertinent literature. PMID:26115897

  12. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice

    SciTech Connect

    Straub, Adam C.; Stolz, Donna B.; Vin, Harina; Ross, Mark A.; Soucy, Nicole V.; Klei, Linda R.; Barchowsky, Aaron

    2007-08-01

    The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei, L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic.

  13. Rapidly progressive asymmetrical weakness in Charcot-Marie-Tooth disease type 4J resembles chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Cottenie, Ellen; Menezes, Manoj P; Rossor, Alexander M; Morrow, Jasper M; Yousry, Tarek A; Dick, David J; Anderson, Janice R; Jaunmuktane, Zane; Brandner, Sebastian; Blake, Julian C; Houlden, Henry; Reilly, Mary M

    2013-05-01

    Charcot-Marie-Tooth disease type 4J (CMT4J), a rare form of demyelinating CMT, caused by recessive mutations in the phosphoinositide phosphatase FIG4 gene, is characterised by progressive proximal and distal weakness and evidence of chronic denervation in both proximal and distal muscles. We describe a patient with a previous diagnosis of CMT1 who presented with a two year history of rapidly progressive weakness in a single limb, resembling an acquired inflammatory neuropathy. Nerve conduction studies showed an asymmetrical demyelinating neuropathy with conduction block and temporal dispersion. FIG4 sequencing identified a compound heterozygous I41T/K278YfsX5 genotype. CMT4J secondary to FIG4 mutations should be added to the list of inherited neuropathies that need to be considered in suspected cases of inflammatory demyelinating neuropathy, especially if there is a background history of a more slowly progressive neuropathy.

  14. THE ROLE OF TUMOR PROGRESSION LOCUS 2 (TPL-2) PROTEIN KINASE IN GLIAL INFLAMMATORY RESPONSE

    PubMed Central

    Hirschhorn, Joshua; Mohanty, Sangeeta; Bhat, Narayan R.

    2013-01-01

    Tumor progression locus 2 (Tpl2)/Cot kinase is a newer member of MAP3K family that is now known for its essential role in TNFα expression in macrophages, but its proinflammatory signaling, if any, in glia is unknown. When cultures of murine microglia and astrocytes were exposed to lipopolysaccharide, there was a rapid activation (i.e., phosphorylation) of Tpl2 in parallel to the activation of down-stream effector MAPKs i.e., ERK, p38 MAPK and JNK. Pre-incubation of the cultures with a Tpl2 inhibitor selectively suppressed the activation of the primary down-stream target i.e., ERK relative to p38 MAPK and JNK. That Tpl2 activation was functionally involved in glial inflammatory response was indicated by a reduced release of the cytokines i.e., TNFα and the expression of inducible nitric oxide synthase (iNOS) in the presence of the kinase inhibitor. Further, overexpression of a wild-type Tpl2 construct in C-6 glia resulted in an enhanced transcriptional activation of iNOS while transfection with a dominant negative form of Tpl-2 had the opposite effect. The findings assign an important proinflammatory signaling function for Tpl2 pathway in glial cells. PMID:24188160

  15. Plant-Derived Anti-Inflammatory Compounds: Hopes and Disappointments regarding the Translation of Preclinical Knowledge into Clinical Progress

    PubMed Central

    Fürst, Robert; Zündorf, Ilse

    2014-01-01

    Many diseases have been described to be associated with inflammatory processes. The currently available anti-inflammatory drug therapy is often not successful or causes intolerable side effects. Thus, new anti-inflammatory substances are still urgently needed. Plants were the first source of remedies in the history of mankind. Since their chemical characterization in the 19th century, herbal bioactive compounds have fueled drug development. Also, nowadays, new plant-derived agents continuously enrich our drug arsenal (e.g., vincristine, galantamine, and artemisinin). The number of new, pharmacologically active herbal ingredients, in particular that of anti-inflammatory compounds, rises continuously. The major obstacle in this field is the translation of preclinical knowledge into evidence-based clinical progress. Human trials of good quality are often missing or, when available, are frequently not suitable to really prove a therapeutical value. This minireview will summarize the current situation of 6 very prominent plant-derived anti-inflammatory compounds: curcumin, colchicine, resveratrol, capsaicin, epigallocatechin-3-gallate (EGCG), and quercetin. We will highlight their clinical potential and/or pinpoint an overestimation. Moreover, we will sum up the planned trials in order to provide insights into the inflammatory disorders that are hypothesized to be beneficially influenced by the compound. PMID:24987194

  16. Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress.

    PubMed

    Fürst, Robert; Zündorf, Ilse

    2014-01-01

    Many diseases have been described to be associated with inflammatory processes. The currently available anti-inflammatory drug therapy is often not successful or causes intolerable side effects. Thus, new anti-inflammatory substances are still urgently needed. Plants were the first source of remedies in the history of mankind. Since their chemical characterization in the 19th century, herbal bioactive compounds have fueled drug development. Also, nowadays, new plant-derived agents continuously enrich our drug arsenal (e.g., vincristine, galantamine, and artemisinin). The number of new, pharmacologically active herbal ingredients, in particular that of anti-inflammatory compounds, rises continuously. The major obstacle in this field is the translation of preclinical knowledge into evidence-based clinical progress. Human trials of good quality are often missing or, when available, are frequently not suitable to really prove a therapeutical value. This minireview will summarize the current situation of 6 very prominent plant-derived anti-inflammatory compounds: curcumin, colchicine, resveratrol, capsaicin, epigallocatechin-3-gallate (EGCG), and quercetin. We will highlight their clinical potential and/or pinpoint an overestimation. Moreover, we will sum up the planned trials in order to provide insights into the inflammatory disorders that are hypothesized to be beneficially influenced by the compound. PMID:24987194

  17. Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice.

    PubMed

    Kamat, P K; Kalani, A; Givvimani, S; Sathnur, P B; Tyagi, S C; Tyagi, N

    2013-11-12

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia are associated with neurovascular diseases. H2S, a metabolite of Hcy, has potent anti-oxidant and anti-inflammatory activities; however, the effect of H2S has not been explored in Hcy (IC)-induced neurodegeneration and neurovascular dysfunction in mice. Therefore, the present study was designed to explore the neuroprotective role of H2S on Hcy-induced neurodegeneration and neurovascular dysfunction. To test this hypothesis we employed wild-type (WT) males ages 8-10 weeks, WT+artificial cerebrospinal fluid (aCSF), WT+Hcy (0.5 μmol/μl) intracerebral injection (IC, one time only prior to NaHS treatment), WT+Hcy+NaHS (sodium hydrogen sulfide, precursor of H2S, 30 μmol/kg, body weight). NaHS was injected i.p. once daily for the period of 7 days after the Hcy (IC) injection. Hcy treatment significantly increased malondialdehyde, nitrite level, acetylcholinestrase activity, tumor necrosis factor-alpha, interleukin-1 beta, glial fibrillary acidic protein, inducible nitric oxide synthase, endothelial nitric oxide synthase and decreased glutathione level indicating oxidative-nitrosative stress and neuroinflammation as compared to control and aCSF-treated groups. Further, increased expression of neuron-specific enolase, S100B and decreased expression of (post-synaptic density-95, synaptosome-associated protein-97) synaptic protein indicated neurodegeneration. Brain sections of Hcy-treated mice showed damage in the cortical area and periventricular cells. Terminal deoxynucleotidyl transferase-mediated, dUTP nick-end labeling-positive cells and Fluro Jade-C staining indicated apoptosis and neurodegeneration. The increased expression of matrix metalloproteinase (MMP) MMP9, MMP2 and decreased expression of tissue inhibitor of metalloproteinase (TIMP) TIMP-1, TIMP-2, tight junction proteins (zonula occulden 1) in Hcy-treated group indicate neurovascular remodeling. Interestingly, NaHS treatment significantly

  18. Postischemic inflammatory syndrome: a critical mechanism of progression in diabetic nephropathy.

    PubMed

    Kelly, K J; Burford, James L; Dominguez, Jesus H

    2009-10-01

    Diabetes is a major epidemic, and diabetic nephropathy is the most common cause of end-stage renal disease. Two critical components of diabetic nephropathy are persistent inflammation and chronic renal ischemia from widespread vasculopathy. Moreover, acute ischemic renal injury is common in diabetes, potentially causing chronic kidney disease or end-stage renal disease. Accordingly, we tested the hypothesis that acute renal ischemia accelerates nephropathy in diabetes by activating proinflammatory pathways. Lean and obese-diabetic ZS rats (F(1) hybrids of spontaneously hypertensive heart failure and Zucker fatty diabetic rats) were subjected to bilateral renal ischemia or sham surgery before the onset of proteinuria. The postischemic state in rats with obesity-diabetes was characterized by progressive chronic renal failure, increased proteinuria, and renal expression of proinflammatory mediators. Leukocyte number in obese-diabetic rat kidney was markedly increased for months after ischemia. Intrarenal blood flow velocity was decreased after ischemia in lean control and obese-diabetic rats, although it recovered in lean rats. At 2 mo after ischemia, blood flow velocity decreased further in sham-surgery and postischemia obese-diabetic rats, so that RBC flow velocity was only 39% of control in the obese-diabetic rats after ischemia. In addition, microvascular density remained depressed at 2 mo in kidneys of obese-diabetic rats after ischemia. Abnormal microvascular permeability and increases in interstitial fibrosis and apoptotic renal cell death were also more pronounced after ischemia in obese-diabetic rats. These data support the hypothesis that acute renal ischemia in obesity-diabetes severely aggravates chronic inflammation and vasculopathy, creating a self-perpetuating postischemia inflammatory syndrome, which accelerates renal failure.

  19. Neurovascular and neurometabolic derailment in aging and Alzheimer's disease

    PubMed Central

    Lourenço, Cátia F.; Ledo, Ana; Dias, Cândida; Barbosa, Rui M.; Laranjinha, João

    2015-01-01

    The functional and structural integrity of the brain requires local adjustment of blood flow and regulated delivery of metabolic substrates to meet the metabolic demands imposed by neuronal activation. This process—neurovascular coupling—and ensued alterations of glucose and oxygen metabolism—neurometabolic coupling—are accomplished by concerted communication between neural and vascular cells. Evidence suggests that neuronal-derived nitric oxide (•NO) is a key player in both phenomena. Alterations in the mechanisms underlying the intimate communication between neural cells and vessels ultimately lead to neuronal dysfunction. Both neurovascular and neurometabolic coupling are perturbed during brain aging and in age-related neuropathologies in close association with cognitive decline. However, despite decades of intense investigation, many aspects remain poorly understood, such as the impact of these alterations. In this review, we address neurovascular and neurometabolic derailment in aging and Alzheimer's disease (AD), discussing its significance in connection with •NO-related pathways. PMID:26074816

  20. Progressive loss of nigrostriatal dopaminergic neurons induced by inflammatory responses to fipronil.

    PubMed

    Park, Jae Hyeon; Park, Youn Sun; Koh, Hyun Chul

    2016-09-01

    Inflammatory responses are involved in mechanisms of neuronal cell damage in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). We investigated the mechanisms whereby inflammatory responses contribute to loss of dopaminergic neurons in fipronil (FPN)-treated rats. After stereotaxic injection of FPN in the substantia nigra (SN), the number of tyrosine hydroxylase (TH)-positive neurons and the levels of TH expression in the SN decreased at 7days, and a significant decrease was observed at 14days with a subsequent reduction in striatal TH expression. Decreases in dopamine (DA) levels, however, began at 3days post-injection, preceding the changes in TH expression. In contrast, glial fibrillary acidic protein (GFAP) expression was significantly increased at 3days and persisted for up to 14days post-lesion; these changes in GFAP expression appeared to be inversely correlated with TH expression. Furthermore, we found that FPN administration induced an inflammatory response characterized by increased levels of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α), which was mediated by activated microglia following infusion of FPN unilaterally into the SN. Intranigral injection of FPN underwent an inflammatory response with a resultant ongoing loss of dopaminergic neurons, indicating that pesticides may have important implication for the study of PD.

  1. [Trigeminalgia caused by neurovascular compression in 12 years old girl].

    PubMed

    Steczkowska, Małgorzata; Herman-Sucharska, Izabela; Gleń, Agnieszka; Gergont, Aleksandra; Skowronek-Bała, Barbara

    2007-01-01

    Trigeminalgia is one of the most frequent clinical problems, common in adults but also found in children. In this paper we described a case of 12 years old girl with symptomatic trigeminalgia caused by neurovascular compression, hospitalized in the Department of Pediatric Neurology Jagiellonian University in Kraków. It creates a very difficult diagnostic problem. The girl was first unsuccessfully treated with carbamazepine and afterwards the surgery of neurovascular decompression was performed. We emphasis the crucial role of MR and MRA in cases refractory to classic pharmacotherapy.

  2. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression.

    PubMed

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K Craig; Liu, Bo

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P < 0.05). Immunohistochemistry analyses revealed that Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB-mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms. PMID:26483397

  3. Progression of benign prostatic hyperplasia is associated with pro-inflammatory mediators and chronic activation of prostate-infiltrating lymphocytes

    PubMed Central

    Sundberg, Berit; Mattsson, Jonas; Henningsohn, Lars; Levitsky, Victor; Uhlin, Michael

    2016-01-01

    Benign prostatic hyperplasia (BPH) is a common chronic non-malignant condition whose prevalence substantially increases with age. Immune cell infiltration and pro-inflammatory mediators have been implicated in the pathogenesis. Here, we characterized 21 extracellular markers on prostate-infiltrating lymphocytes (PILs) and analyzed expression of 26 soluble proteins in prostate tissue obtained from BPH patients (n = 31). These data were correlated with clinical parameters and compared with peripheral blood mononuclear cells (PBMCs) (n = 10). Increased frequencies of T cells expressing co-inhibitory receptors LAG-3, PD-1, TIM-3 or CTLA-4, and co-stimulatory receptors CD28, OX40 or 4-1BB were observed in BPH tissue compared to PBMCs. These findings are consistent with chronic activation and possible functional exhaustion of PILs that may be further augmented by several identified pro-inflammatory factors, such as IL-8 and MCP-1, promoting inflammation and chemotaxis of immune cells to the prostate. Prostate size and plasma prostate-specific antigen levels positively correlated with IL-8 and MCP-1 concentrations, and frequencies of T cells expressing CTLA-4 and TIM-3. It remains to be established whether the link between inflammation and BPH progression supported by our findings reflects a progressive failure of the immune system leading to decreased immune surveillance and development of prostate cancer. PMID:26993768

  4. Progression of benign prostatic hyperplasia is associated with pro-inflammatory mediators and chronic activation of prostate-infiltrating lymphocytes.

    PubMed

    Norström, Melissa M; Rådestad, Emelie; Sundberg, Berit; Mattsson, Jonas; Henningsohn, Lars; Levitsky, Victor; Uhlin, Michael

    2016-04-26

    Benign prostatic hyperplasia (BPH) is a common chronic non-malignant condition whose prevalence substantially increases with age. Immune cell infiltration and pro-inflammatory mediators have been implicated in the pathogenesis. Here, we characterized 21 extracellular markers on prostate-infiltrating lymphocytes (PILs) and analyzed expression of 26 soluble proteins in prostate tissue obtained from BPH patients (n = 31). These data were correlated with clinical parameters and compared with peripheral blood mononuclear cells (PBMCs) (n = 10). Increased frequencies of T cells expressing co-inhibitory receptors LAG-3, PD-1, TIM-3 or CTLA-4, and co-stimulatory receptors CD28, OX40 or 4-1BB were observed in BPH tissue compared to PBMCs. These findings are consistent with chronic activation and possible functional exhaustion of PILs that may be further augmented by several identified pro-inflammatory factors, such as IL-8 and MCP-1, promoting inflammation and chemotaxis of immune cells to the prostate. Prostate size and plasma prostate-specific antigen levels positively correlated with IL-8 and MCP-1 concentrations, and frequencies of T cells expressing CTLA-4 and TIM-3. It remains to be established whether the link between inflammation and BPH progression supported by our findings reflects a progressive failure of the immune system leading to decreased immune surveillance and development of prostate cancer. PMID:26993768

  5. Anti-inflammatory nutritional intervention in patients with relapsing-remitting and primary-progressive multiple sclerosis: A pilot study.

    PubMed

    Riccio, Paolo; Rossano, Rocco; Larocca, Marilena; Trotta, Vincenzo; Mennella, Ilario; Vitaglione, Paola; Ettorre, Michele; Graverini, Antonio; De Santis, Alessandro; Di Monte, Elisabetta; Coniglio, Maria Gabriella

    2016-03-01

    The aim of this work was to assess the influence of nutritional intervention on inflammatory status and wellness in people with multiple sclerosis. To this end, in a seven-month pilot study we investigated the effects of a calorie-restricted, semi-vegetarian diet and administration of vitamin D and other dietary supplements (fish oil, lipoic acid, omega-3 polyunsaturated fatty acids, resveratrol and multivitamin complex) in 33 patients with relapsing-remitting multiple sclerosis and 10 patients with primary-progressive multiple sclerosis. At 0/3/6 months, patients had neurological examination, filled questionnaires and underwent anthropometric measurements and biochemical analyses. Serum fatty acids and vitamin D levels were measured as markers of dietary compliance and nutritional efficacy of treatment, whereas serum gelatinase levels were analyzed as markers of inflammatory status. All patients had insufficient levels of vitamin D at baseline, but their values did not ameliorate following a weekly administration of 5000  IU, and rather decreased over time. Conversely, omega-3 polyunsaturated fatty acids increased already after three months, even under dietary restriction only. Co-treatment with interferon-beta in relapsing-remitting multiple sclerosis was irrelevant to vitamin D levels. After six months nutritional treatment, no significant changes in neurological signs were observed in any group. However, serum levels of the activated isoforms of gelatinase matrix metalloproteinase-9 decreased by 59% in primary-progressive multiple sclerosis and by 51% in relapsing-remitting multiple sclerosis patients under nutritional intervention, including dietary supplements. This study indicates that a healthy nutritional intervention is well accepted by people with multiple sclerosis and may ameliorate their physical and inflammatory status.

  6. Anti-inflammatory nutritional intervention in patients with relapsing-remitting and primary-progressive multiple sclerosis: A pilot study.

    PubMed

    Riccio, Paolo; Rossano, Rocco; Larocca, Marilena; Trotta, Vincenzo; Mennella, Ilario; Vitaglione, Paola; Ettorre, Michele; Graverini, Antonio; De Santis, Alessandro; Di Monte, Elisabetta; Coniglio, Maria Gabriella

    2016-03-01

    The aim of this work was to assess the influence of nutritional intervention on inflammatory status and wellness in people with multiple sclerosis. To this end, in a seven-month pilot study we investigated the effects of a calorie-restricted, semi-vegetarian diet and administration of vitamin D and other dietary supplements (fish oil, lipoic acid, omega-3 polyunsaturated fatty acids, resveratrol and multivitamin complex) in 33 patients with relapsing-remitting multiple sclerosis and 10 patients with primary-progressive multiple sclerosis. At 0/3/6 months, patients had neurological examination, filled questionnaires and underwent anthropometric measurements and biochemical analyses. Serum fatty acids and vitamin D levels were measured as markers of dietary compliance and nutritional efficacy of treatment, whereas serum gelatinase levels were analyzed as markers of inflammatory status. All patients had insufficient levels of vitamin D at baseline, but their values did not ameliorate following a weekly administration of 5000  IU, and rather decreased over time. Conversely, omega-3 polyunsaturated fatty acids increased already after three months, even under dietary restriction only. Co-treatment with interferon-beta in relapsing-remitting multiple sclerosis was irrelevant to vitamin D levels. After six months nutritional treatment, no significant changes in neurological signs were observed in any group. However, serum levels of the activated isoforms of gelatinase matrix metalloproteinase-9 decreased by 59% in primary-progressive multiple sclerosis and by 51% in relapsing-remitting multiple sclerosis patients under nutritional intervention, including dietary supplements. This study indicates that a healthy nutritional intervention is well accepted by people with multiple sclerosis and may ameliorate their physical and inflammatory status. PMID:26785711

  7. Anti-inflammatory nutritional intervention in patients with relapsing-remitting and primary-progressive multiple sclerosis: A pilot study

    PubMed Central

    Rossano, Rocco; Larocca, Marilena; Trotta, Vincenzo; Mennella, Ilario; Vitaglione, Paola; Ettorre, Michele; Graverini, Antonio; De Santis, Alessandro; Di Monte, Elisabetta; Coniglio, Maria Gabriella

    2016-01-01

    The aim of this work was to assess the influence of nutritional intervention on inflammatory status and wellness in people with multiple sclerosis. To this end, in a seven-month pilot study we investigated the effects of a calorie-restricted, semi-vegetarian diet and administration of vitamin D and other dietary supplements (fish oil, lipoic acid, omega-3 polyunsaturated fatty acids, resveratrol and multivitamin complex) in 33 patients with relapsing-remitting multiple sclerosis and 10 patients with primary-progressive multiple sclerosis. At 0/3/6 months, patients had neurological examination, filled questionnaires and underwent anthropometric measurements and biochemical analyses. Serum fatty acids and vitamin D levels were measured as markers of dietary compliance and nutritional efficacy of treatment, whereas serum gelatinase levels were analyzed as markers of inflammatory status. All patients had insufficient levels of vitamin D at baseline, but their values did not ameliorate following a weekly administration of 5000  IU, and rather decreased over time. Conversely, omega-3 polyunsaturated fatty acids increased already after three months, even under dietary restriction only. Co-treatment with interferon-beta in relapsing-remitting multiple sclerosis was irrelevant to vitamin D levels. After six months nutritional treatment, no significant changes in neurological signs were observed in any group. However, serum levels of the activated isoforms of gelatinase matrix metalloproteinase-9 decreased by 59% in primary-progressive multiple sclerosis and by 51% in relapsing-remitting multiple sclerosis patients under nutritional intervention, including dietary supplements. This study indicates that a healthy nutritional intervention is well accepted by people with multiple sclerosis and may ameliorate their physical and inflammatory status. PMID:26785711

  8. Antioxidant modulation of skin inflammation: preventing inflammatory progression by inhibiting neutrophil influx

    PubMed Central

    McGilvray, Ian D.; Rotstein, Ori D.

    1999-01-01

    Objective To test the hypothesis that antioxidants might affect local inflammation by impairing inflammatory cell influx. Design A laboratory study using a Swiss–Webster mouse model of local inflammation. Setting A university-affiliated hospital. Methods Intradermal injection of 30 μg of S. minnesota endotoxin (LPS) to Swiss–Webster mice initiates a local inflammatory reaction characterized by an early rise in vascular permeability and a later influx of neutrophils. Animals were pretreated intraperitoneally with either pyrrolidine dithiocarbamate (PDTC, 2 mmol/kg), which inhibits free radical generation, or dimethylthiourea (DMTU, 450 mg/kg), a free radical scavenger. Main outcome measures Histologic findings of tissue samples taken at sites of injection; local changes in tissue vascular permeability (PI) determined by iodine-125 albumin injection before sacrifice; neutrophil accumulation quantified by tissue myeloperoxidase levels; tissue levels of the endothelial adhesion molecules intercellular adhesion molecule-1 protein (ICAM-1) and vascular cell adhesion molecule-1 protein (VCAM-1) assessed by immunohistochemistry and Western blot, respectively. Results Neither antioxidant had a significant effect on the early increase in PI, but both decreased the late rise in PI and reduced neutrophil influx. Both ICAM-1 and VCAM-1 were upregulated in response to LPS; however, only the increase in VCAM-1 was attenuated by antioxidant pretreatment. Conclusion These data suggest that antioxidants disrupt the propagation phase of an inflammatory response, possibly by altering neutrophil migration. PMID:10223071

  9. Houshiheisan compound prescription protects neurovascular units after cerebral ischemia

    PubMed Central

    Wang, Haizheng; Wang, Lei; Zhang, Nan; Zhang, Qi; Zhao, Hui; Zhang, Qiuxia

    2014-01-01

    Houshiheisan is composed of wind-dispelling (chrysanthemun flower, divaricate saposhnikovia root, Manchurian wild ginger, cassia twig, Szechwan lovage rhizome, and platycodon root) and deficiency-nourishing (ginseng, Chinese angelica, large-head atractylodes rhizome, Indian bread, and zingiber) drugs. In this study, we assumed these drugs have protective effects against cerebral ischemia, on neurovascular units. Houshiheisan was intragastrically administered in a rat model of focal cerebral ischemia. Hematoxylin-eosin staining, transmission electron microscopy, immunofluorescence staining, and western blot assays showed that Houshiheisan reduced pathological injury to the ischemic penumbra, protected neurovascular units, visibly up-regulated neuronal nuclear antigen expression, and down-regulated amyloid precursor protein and amyloid-β 42 expression. Wind-dispelling and deficiency-nourishing drugs maintained NeuN expression to varying degrees, but did not affect amyloid precursor protein or amyloid-β 42 expression in the ischemic penumbra. Our results suggest that the compound prescription Houshiheisan effectively suppresses abnormal amyloid precursor protein accumulation, reduces amyloid substance deposition, maintains stabilization of the internal environment of neurovascular units, and minimizes injury to neurovascular units in the ischemic penumbra. PMID:25206882

  10. Neurovascular injuries in the wrists and hands of athletes.

    PubMed

    Rettig, A C

    1990-04-01

    Neurovascular syndromes in the wrist and hand are uncommon occurrences in the athlete. They are usually related to repetitive use of the wrist such as in racquet sports or sports with repetitive impact to the hands such as handball and catching. Common syndromes are discussed with regard to anatomy, pathophysiology, diagnosis, treatment, and return to sport.

  11. Inflammatory mediators in the development and progression of benign prostatic hyperplasia.

    PubMed

    De Nunzio, Cosimo; Presicce, Fabrizio; Tubaro, Andrea

    2016-09-30

    Benign prostatic hyperplasia (BPH) is the most common urological disease in elderly men. Epidemiological data suggest a causal link between this condition and prostatic inflammation. The prostate is an immune-competent organ characterized by the presence of a complex immune system. Several stimuli, including infectious agents, urinary reflux, metabolic syndrome, the ageing process, and autoimmune response, have been described as triggers for the dysregulation of the prostatic immune system via different molecular pathways involving the development of inflammatory infiltrates. From a pathophysiological standpoint, subsequent tissue damage and chronic tissue healing could result in the development of BPH nodules.

  12. Inflammatory mediators in the development and progression of benign prostatic hyperplasia.

    PubMed

    De Nunzio, Cosimo; Presicce, Fabrizio; Tubaro, Andrea

    2016-09-30

    Benign prostatic hyperplasia (BPH) is the most common urological disease in elderly men. Epidemiological data suggest a causal link between this condition and prostatic inflammation. The prostate is an immune-competent organ characterized by the presence of a complex immune system. Several stimuli, including infectious agents, urinary reflux, metabolic syndrome, the ageing process, and autoimmune response, have been described as triggers for the dysregulation of the prostatic immune system via different molecular pathways involving the development of inflammatory infiltrates. From a pathophysiological standpoint, subsequent tissue damage and chronic tissue healing could result in the development of BPH nodules. PMID:27686153

  13. Neurophysiological, metabolic and cellular compartments that drive neurovascular coupling and neuroimaging signals

    PubMed Central

    Moreno, Andrea; Jego, Pierrick; de la Cruz, Feliberto; Canals, Santiago

    2013-01-01

    Complete understanding of the mechanisms that coordinate work and energy supply of the brain, the so called neurovascular coupling, is fundamental to interpreting brain energetics and their influence on neuronal coding strategies, but also to interpreting signals obtained from brain imaging techniques such as functional magnetic resonance imaging. Interactions between neuronal activity and cerebral blood flow regulation are largely compartmentalized. First, there exists a functional compartmentalization in which glutamatergic peri-synaptic activity and its electrophysiological events occur in close proximity to vascular responses. Second, the metabolic processes that fuel peri-synaptic activity are partially segregated between glycolytic and oxidative compartments. Finally, there is cellular segregation between astrocytic and neuronal compartments, which has potentially important implications on neurovascular coupling. Experimental data is progressively showing a tight interaction between the products of energy consumption and neurotransmission-driven signaling molecules that regulate blood flow. Here, we review some of these issues in light of recent findings with special attention to the neuron-glia interplay on the generation of neuroimaging signals. PMID:23543907

  14. Neurophysiological, metabolic and cellular compartments that drive neurovascular coupling and neuroimaging signals.

    PubMed

    Moreno, Andrea; Jego, Pierrick; de la Cruz, Feliberto; Canals, Santiago

    2013-01-01

    Complete understanding of the mechanisms that coordinate work and energy supply of the brain, the so called neurovascular coupling, is fundamental to interpreting brain energetics and their influence on neuronal coding strategies, but also to interpreting signals obtained from brain imaging techniques such as functional magnetic resonance imaging. Interactions between neuronal activity and cerebral blood flow regulation are largely compartmentalized. First, there exists a functional compartmentalization in which glutamatergic peri-synaptic activity and its electrophysiological events occur in close proximity to vascular responses. Second, the metabolic processes that fuel peri-synaptic activity are partially segregated between glycolytic and oxidative compartments. Finally, there is cellular segregation between astrocytic and neuronal compartments, which has potentially important implications on neurovascular coupling. Experimental data is progressively showing a tight interaction between the products of energy consumption and neurotransmission-driven signaling molecules that regulate blood flow. Here, we review some of these issues in light of recent findings with special attention to the neuron-glia interplay on the generation of neuroimaging signals. PMID:23543907

  15. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging

    PubMed Central

    Bell, Robert D.; Winkler, Ethan A.; Sagare, Abhay P.; Singh, Itender; LaRue, Barb; Deane, Rashid; Zlokovic, Berislav V.

    2010-01-01

    SUMMARY Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow and cerebral blood flow responses to brain activation which ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericytes loss results in a progressive age-dependent vascular-mediated neurodegeneration. PMID:21040844

  16. Prospective Association Between Inflammatory Markers and Progression of Coronary Artery Calcification in Adults With and Without Type 1 Diabetes

    PubMed Central

    Alman, Amy C.; Kinney, Gregory L.; Tracy, Russell P.; Maahs, David M.; Hokanson, John E.; Rewers, Marian J.; Snell-Bergeon, Janet K.

    2013-01-01

    OBJECTIVE The role of inflammation in the increased risk of cardiovascular disease in type 1 diabetes is unclear. We examined the association of inflammation and progression of coronary artery calcification (CAC)—a marker of subclinical atherosclerosis—in adults with and without type 1 diabetes. RESEARCH DESIGN AND METHODS A nested case-control study was performed within the prospective cohort of the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study. Participants underwent two CAC measurements ∼2.5 years apart. Case subjects (n = 204) were those with significant progression of CAC. Control subjects (n = 258) were frequency-matched to case subjects on diabetes status, sex, age, and baseline CAC status. Inflammatory marker assessments were performed on stored blood samples from baseline. A principal components analysis (PCA) was performed and a composite score derived from that analysis. The composite score was constructed by assigning a value of 1 for each PCA component where at least one of the markers exceeded the 75th percentile (range 0–4). Conditional logistic regression was used for the matching strategy. RESULTS The first two components of the PCA were modestly (odds ratio 1.38 [95% CI 1.08–1.77] and 1.27 [1.02–1.59], respectively) associated with CAC progression after adjustment for other risk factors. The composite score was more strongly associated with CAC progression for those with elevated markers in three or four of the principal components compared with those with none. CONCLUSIONS Measures of inflammation were associated with progression of CAC in a population of adults with and without type 1 diabetes. PMID:23340891

  17. Modulation of glioma risk and progression by dietary nutrients and anti-inflammatory agents

    PubMed Central

    Kyritsis, Athanassios P.; Bondy, Melissa L.; Levin, Victor A.

    2011-01-01

    Gliomas are tumors of glial origin formed in the central nervous system and exhibit profound morphological and genetic heterogeneity. The etiology of this heterogeneity involves an interaction between genetic alterations and environmental risk factors. Scientific evidence suggests that certain natural dietary components, such as phytoestrogens, flavonoids, polyunsaturated fatty acids and vitamins may exert a protective effect against gliomas by changing the nature of the interaction between genetics and environment. Similarly, certain anti-inflammatory drugs and dietary modifications, such as methionine restriction and the adoption of low-calorie or ketogenic diets, may take advantage of glioma and normal glial cells’ differential requirements for glucose, methionine, and ketone bodies and may therefore be effective as part of preventive or treatment strategies for gliomas. Treatment trials of glioma patients and chemoprevention trials of individuals with a known genetic predisposition to glioma using the most promising of these agents, such as the anti-inflammatory drugs curcumin and gamma-linolenic acid, are needed to validate or refute these agents’ putative role in gliomas. PMID:21302177

  18. Anti-inflammatory/antioxidant use in long-term maintenance cancer therapy: a new therapeutic approach to disease progression and recurrence

    PubMed Central

    2014-01-01

    The chronic, progressive clinical characteristics of many adult solid tumor malignancies suggest that a more effective therapeutic approach to cancer management may require long-term intervention using nontoxic systemic agents that block critical components of abnormal tumor physiology. Two highly promising systemic targets common to the development, progression and recurrence of many common cancers are dysregulated inflammatory and oxidation/reduction (redox) pathways. Compelling clinical data support the use of anti-inflammatory and antioxidant agents as a therapeutic modality for long-term use in patients diagnosed with several common cancers, including colon cancer and breast cancer. The therapeutic paradigm presented in this paper is the product of a synthesis of what is currently understood about the biological effects of inflammation and oxidative stress that contribute to tumorigenesis, disease progression and recurrence as well as results obtained from research on the use of prophylactics with anti-inflammatory or antioxidant properties in cancer prevention and treatment. PMID:24587831

  19. Have genomic discoveries in inflammatory bowel disease translated into clinical progress?

    PubMed

    Weizman, Adam V; Silverberg, Mark S

    2012-04-01

    Inflammatory bowel disease (IBD) is a heterogeneous disease that can be challenging to diagnose and manage. As a result, significant efforts have been made in attempting to identify clinical, genomic, and serologic markers of disease that can aid in patient assessment and treatment. Recent genomic discoveries have the potential to change clinical practice by identifying those susceptible to IBD, predict natural history and guide choice of therapy. Panels of genetic and genomic markers are more likely to emerge as clinical tools, as opposed to individual allelic variants. Serology and biomarkers are already being used and guiding management but await integration with genomic panels before achieving their maximal potential. This article reviews the current state of IBD genetics and evolving molecular approaches that may have potential clinical impact.

  20. Telmisartan inhibits hyperalgesia and inflammatory progression in a diabetic neuropathic pain model of Wistar rats

    PubMed Central

    Al-Rejaie, Salim S.; Abuohashish, Hatem M.; Ahmed, Mohammed M.; Arrejaie, Aws S.; Aleisa, Abdulaziz M.; AlSharari, Shakir D.

    2015-01-01

    Objective: To evaluate the potential therapeutic value of telmisartan (TMT) against diabetic neuropathy (DN) and associated pain in Wistar rats. Methods: Peripheral DN was induced by a single intraperitoneal streptozotocin injection (55 mg/kg), and 3 weeks later TMT treatment was started (5 and 10 mg/kg/day), and continued for 4 weeks. Mechanical nociceptive threshold, motor coordination, and thermal nociceptive threshold tests were performed before and after TMT treatment. In serum, glucose, pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6 were assessed. Nerve growth factor (NGF) levels and histopathological changes were estimated in the sciatic nerve. This study was conducted at the Experimental Animal Care Center, Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia between January 2013 and May 2014. Results: We observed a significant reduction in mechanical nociceptive threshold, motor coordination, and thermal nociceptive threshold in diabetic animals. The TMT treatment significantly enhanced the reduced mechanical nociceptive threshold. The untreated diabetic animals revealed a significant decrease in sciatic NGF, which was markedly attenuated by TMT. The elevated serum levels of cytokines in diabetic animals were inhibited by the TMT treatments. Histopathological evaluation showed obvious nerve degeneration in the diabetic group that was eliminated in the TMT treated diabetic groups. Conclusion: Telmisartan has a potential neuro-protective effect on peripheral DN; this is mediated through its anti-inflammatory effects and its dual properties as an angiotensin receptor blocker, and a partial peroxisome proliferator activator receptor-g ligand. PMID:25864063

  1. Treatment of complex neurovascular lesions: an interdisciplinary angio suite approach

    PubMed Central

    Breyer, Tobias; Wrede, Karsten H.; Stein, Klaus-Peter; Wanke, Isabel; Grams, Astrid E.; Gizewski, Elke R.; Schlamann, Marc; Forsting, Michael; Sandalcioglu, I. Erol; Sure, Ulrich

    2014-01-01

    Objective: The objective of this study was to analyse our initial experience using an interdisciplinary angio suite approach to neurosurgical treatment of complex neurovascular lesions and expound technical feasibility and possible applications. Subjects: Six out of 451 patients with cranial or spinal neurovascular lesions were surgically treated in the angio suite (biplane angiographic system) during a 28-month observation period. Clinical baseline data, radiological and intraoperative findings as well as clinical and radiological outcome were assessed. Results: A ventral spinal perimedullary arteriovenous malformation, a ventral spinal perimedullary fistula, two diffuse frontal dural arteriovenous fistulas, a multifocal temporal arteriovenous malformation and a partially embolized fronto-temporo-basal dural arteriovenous fistula were successfully treated with angiographically confirmed complete occlusion and unimpaired neurological condition of the patients at the 12-month follow up. Conclusion: This study demonstrates the feasibility of this approach and points out possible indications, namely ventrally located spinal lesions and diffuse, deep seated cranial lesions. PMID:24409203

  2. Calcium dynamics in astrocyte processes during neurovascular coupling

    PubMed Central

    Otsu, Yo; Couchman, Kiri; Lyons, Declan G; Collot, Mayeul; Agarwal, Amit; Mallet, Jean-Maurice; Pfrieger, Frank W; Bergles, Dwight E; Charpak, Serge

    2015-01-01

    Enhanced neuronal activity in the brain triggers a local increase in blood flow, termed functional hyperemia, via several mechanisms, including calcium (Ca2+) signaling in astrocytes. However, recent in vivo studies have questioned the role of astrocytes in functional hyperemia because of the slow and sparse dynamics of their somatic Ca2+ signals and the absence of glutamate metabotropic receptor 5 in adults. Here, we reexamined their role in neurovascular coupling by selectively expressing a genetically encoded Ca2+ sensor in astrocytes of the olfactory bulb. We show that in anesthetized mice, the physiological activation of olfactory sensory neuron (OSN) terminals reliably triggers Ca2+ increases in astrocyte processes but not in somata. These Ca2+ increases systematically precede the onset of functional hyperemia by 1–2 s, reestablishing astrocytes as potential regulators of neurovascular coupling. PMID:25531572

  3. Analysis and Visualization of Nerve Vessel Contacts for Neurovascular Decompression

    NASA Astrophysics Data System (ADS)

    Süßmuth, Jochen; Piazza, Alexander; Enders, Frank; Naraghi, Ramin; Greiner, Günther; Hastreiter, Peter

    Neurovascular compression syndromes are caused by a pathological contact between cranial nerves and vascular structures at the surface of the brainstem. Aiming at improved pre-operative analysis of the target structures, we propose calculating distance fields to provide quantitative information of the important nerve-vessel contacts. Furthermore, we suggest reconstructing polygonal models for the nerves and vessels. Color-coding with the respective distance information is used for enhanced visualization. Overall, our new strategy contributes to a significantly improved clinical understanding.

  4. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease.

    PubMed

    Pisanu, Augusta; Lecca, Daniela; Mulas, Giovanna; Wardas, Jadwiga; Simbula, Gabriella; Spiga, Saturnino; Carta, Anna R

    2014-11-01

    Neuroinflammatory changes play a pivotal role in the progression of Parkinson's disease (PD) pathogenesis. Recent findings have suggested that activated microglia may polarize similarly to peripheral macrophages in the central nervous system (CNS), assuming a pro-inflammatory M1 phenotype or the alternative anti-inflammatory M2 phenotype via cytokine production. A skewed M1 activation over M2 has been related to disease progression in Alzheimer disease, and modulation of microglia polarization may be a therapeutic target for neuroprotection. By using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-probenecid (MPTPp) mouse model of progressive PD, we investigated dynamic changes in the production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and anti-inflammatory cytokines, such as transforming growth factor (TGF)-β and IL-10, within Iba-1-positive cells in the substantia nigra compacta (SNc). In addition, to further characterize changes in the M2 phenotype, we measured CD206 in microglia. Moreover, in order to target microglia polarization, we evaluated the effect of the peroxisome-proliferator-activated receptor (PPAR)-γ agonist rosiglitazone, which has been shown to exert neuroprotective effects on nigral dopaminergic neurons in PD models, and acts as a modulator of cytokine production and phenotype in peripheral macrophages. Chronic treatment with MPTPp induced a progressive degeneration of SNc neurons. The neurotoxin treatment was associated with a gradual increase in both TNF-α and IL-1β colocalization with Iba-1-positive cells, suggesting an increase in pro-inflammatory microglia. In contrast, TGF-β colocalization was reduced by the neurotoxin treatment, while IL-10 was mostly unchanged. Administration of rosiglitazone during the full duration of MPTPp treatment reverted both TNF-α and IL-1β colocalization with Iba-1 to control levels. Moreover, rosiglitazone induced an increase in TGF-β and IL-10

  5. Neurovascular coupling: in vivo optical techniques for functional brain imaging

    PubMed Central

    2013-01-01

    Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology. PMID:23631798

  6. Supra and infralevator neurovascular pathways to the penile corpora cavernosa

    PubMed Central

    BENOIT, G.; DROUPY, S.; QUILLARD, J.; PARADIS, V.; GIULIANO, F.

    1999-01-01

    The aim of this study was to provide a comprehensive description of both penile innervation and vascularisation. Eighty-five male cadavers were examined through gross and microscopic anatomical analysis. The pelvic nerve plexus had both parasympathetic and sympathetic roots. It was distributed to the external urethral sphincter giving rise to cavernous nerves which anastomosed in 70% of the cases with the pudendal nerve in the penile root. Accessory pudendal arteries were present in the pelvis in 70% of the cases, anastomosing in 70% of the cases with the cavernous arteries that originated from the pudendal arteries. Transalbugineal anastomoses were always seen between the cavernous artery and the spongiosal arterial network. There were 2 venous pathways, 1 in the pelvis and 1 in the perineum with a common origin from the deep dorsal penile vein. It is concluded that there are 2 neurovascular pathways destined for the penis that are topographically distinct. One is located in the pelvis and the other in the perineum. We were unable to determine the functional balance between these 2 anastomosing pathways but experimental data have shown that they are both involved in penile erection. These 2 neurovascular pathways, above and below the levator ani, together with their anastomoses, form a neurovascular loop around the levator ani. PMID:10634698

  7. Neurovascular coupling: in vivo optical techniques for functional brain imaging.

    PubMed

    Liao, Lun-De; Tsytsarev, Vassiliy; Delgado-Martínez, Ignacio; Li, Meng-Lin; Erzurumlu, Reha; Vipin, Ashwati; Orellana, Josue; Lin, Yan-Ren; Lai, Hsin-Yi; Chen, You-Yin; Thakor, Nitish V

    2013-04-30

    Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.

  8. Complex rostral neurovascular system in a giant pliosaur

    NASA Astrophysics Data System (ADS)

    Foffa, Davide; Sassoon, Judyth; Cuff, Andrew R.; Mavrogordato, Mark N.; Benton, Michael J.

    2014-05-01

    Pliosaurs were a long-lived, ubiquitous group of Mesozoic marine predators attaining large body sizes (up to 12 m). Despite much being known about their ecology and behaviour, the mechanisms they adopted for prey detection have been poorly investigated and represent a mystery to date. Complex neurovascular systems in many vertebrate rostra have evolved for prey detection. However, information on the occurrence of such systems in fossil taxa is extremely limited because of poor preservation potential. The neurovascular complex from the snout of an exceptionally well-preserved pliosaur from the Kimmeridgian (Late Jurassic, c. 170 Myr ago) of Weymouth Bay (Dorset, UK) is described here for the first time. Using computed tomography (CT) scans, the extensive bifurcating neurovascular channels could be traced through the rostrum to both the teeth and the foramina on the dorsal and lateral surface of the snout. The structures on the surface of the skull and the high concentrations of peripheral rami suggest that this could be a sensory system, perhaps similar to crocodile pressure receptors or shark electroreceptors.

  9. Progress in searching for susceptibility gene for inflammatory bowel disease by positional cloning

    PubMed Central

    Zheng, Chang-Qing; Hu, Gang-Zheng; Zeng, Zhao-Shu; Lin, Lian-Jie; Gu, Gin-Ge

    2003-01-01

    Inflammatory bowel disease (IBD) includes two clinical subtypes: Crohn disease (CD) and ulcerative colitis (UC). The general prevalence is about 1.0%-2.0% in Western countries. It is predominantly regarded as a multifactorial disorder involving environmental factors and polygenic defects. The view was confirmed by a lot of evidences from clinical attributions and animal models, especially from epidemiological investigations. So the etiological study of IBD has been focused on searching for susceptibility genes by positional cloning, which consists of two steps: linkage analysis and association analysis. Linkage analysis has been an important method of searching for susceptibility genes to polygenic diseases as well as single-gene disorders. IBD, as a polygenic disease, has been widely investigated by linkage analysis for susceptibility gene since 1996. The paper reviewed 38 articles, which covered almost all original researches in relation to IBD and linkage analysis. So far, several loci, such as 16q, 12q, 6p and 3p, have been identified by the studies. The most striking is 16q12 (IBD1), which linked only with CD not UC in the majority of studies. Association analysis, as one essential step for positional cloning, is usually carried out by genotyping candidate genes selected by means of linkage analysis or other methods, for figuring out the frequencies of alleles and comparing the frequencies between IBD group and healthy control group to identify the specific allele. It has been established that IBD is implicated in immune disorder. So the studies were centered on the genes of NOD2/CARD15, HLA-II, cytokine, cytokine receptor and adhesion molecule. This paper reviewed 14 original articles on association between NOD2 and IBD that have been published since 2001. All results, with the exception of one report from a Japanese group, provide evidences that the three kinds of variants of NOD2 are susceptibility factors for IBD. This article also comprehensively analyzed

  10. Growth Differentiation Factor‐15 Deficiency Inhibits Atherosclerosis Progression by Regulating Interleukin‐6–Dependent Inflammatory Response to Vascular Injury

    PubMed Central

    Bonaterra, Gabriel A.; Zügel, Stefanie; Thogersen, Joel; Walter, Sabrina A.; Haberkorn, Uwe; Strelau, Jens; Kinscherf, Ralf

    2012-01-01

    Background Growth differentiation factor (GDF)‐15 is a distant and divergent member of the transforming growth factor‐β superfamily (TGF‐β) . There is growing evidence indicating the involvement of GDF‐15 in various pathologies. Expression of GDF‐15 is induced under conditions of inflammation and increased GDF‐15 serum levels are suggested as a risk factor for cardiovascular diseases. Methods and Results We show here that GDF‐15 and proinflammatory cytokine interleukin (IL)‐6 levels are highly increased (5‐fold) in cultured oxidized low‐density lipoproteins–stimulated peritoneal macrophages derived from GDF‐15+/+/apolipoprotein (apo) E−/−, mice. Notably, IL‐6 induction on oxidized low‐density lipoproteins stimulation is completely abolished in the absence of GDF‐15. Consistent with our in vitro data GDF‐15 mRNA expression and protein levels are upregulated (2.5‐ to 6‐fold) in the atherosclerotic vessel wall of GDF‐15+/+/apoE−/− mice after a cholesterol‐enriched diet. GDF‐15 deficiency inhibits lumen stenosis (52%) and 18FDG uptake (34%) in the aortic arch despite increased serum triglyceride/cholesterol levels and elevated body weight. Immunohistomorphometric investigations of atherosclerotic lesions reveal a decreased percentage of inflammatory CD11b+ (57%) or IL‐6+, leukocytes, and apoptotic cells (74%) after 20 weeks. However, the total number of macrophages and cell density in atherosclerotic lesions of the innominate artery are increased in GDF‐15−/−/apoE−/− mice. Conclusions Our data suggest that GDF‐15 is involved in orchestrating atherosclerotic lesion progression by regulating apoptotic cell death and IL‐6–dependent inflammatory responses to vascular injury. PMID:23316317

  11. Nuclear export inhibitors avert progression in preclinical models of inflammatory demyelination.

    PubMed

    Haines, Jeffery D; Herbin, Olivier; de la Hera, Belén; Vidaurre, Oscar G; Moy, Gregory A; Sun, Qingxiang; Fung, Ho Yee Joyce; Albrecht, Stefanie; Alexandropoulos, Konstantina; McCauley, Dilara; Chook, Yuh Min; Kuhlmann, Tanja; Kidd, Grahame J; Shacham, Sharon; Casaccia, Patrizia

    2015-04-01

    Axonal damage has been associated with aberrant protein trafficking. We examined a newly characterized class of compounds that target nucleo-cytoplasmic shuttling by binding to the catalytic groove of the nuclear export protein XPO1 (also known as CRM1, chromosome region maintenance protein 1). Oral administration of reversible CRM1 inhibitors in preclinical murine models of demyelination significantly attenuated disease progression, even when started after the onset of paralysis. Clinical efficacy was associated with decreased proliferation of immune cells, characterized by nuclear accumulation of cell cycle inhibitors, and preservation of cytoskeletal integrity even in demyelinated axons. Neuroprotection was not limited to models of demyelination, but was also observed in another mouse model of axonal damage (that is, kainic acid injection) and detected in cultured neurons after knockdown of Xpo1, the gene encoding CRM1. A proteomic screen for target molecules revealed that CRM1 inhibitors in neurons prevented nuclear export of molecules associated with axonal damage while retaining transcription factors modulating neuroprotection.

  12. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer

    PubMed Central

    Antonio, Nicole; Bønnelykke-Behrndtz, Marie Louise; Ward, Laura Chloe; Collin, John; Christensen, Ib Jarle; Steiniche, Torben; Schmidt, Henrik; Feng, Yi; Martin, Paul

    2015-01-01

    There is a long-standing association between wound healing and cancer, with cancer often described as a “wound that does not heal”. However, little is known about how wounding, such as following surgery, biopsy collection or ulceration, might impact on cancer progression. Here, we use a translucent zebrafish larval model of RasG12V-driven neoplasia to image the interactions between inflammatory cells drawn to a wound, and to adjacent pre-neoplastic cells. We show that neutrophils are rapidly diverted from a wound to pre-neoplastic cells and these interactions lead to increased proliferation of the pre-neoplastic cells. One of the wound-inflammation-induced trophic signals is prostaglandin E2 (PGE2). In an adult model of chronic wounding in zebrafish, we show that repeated wounding with subsequent inflammation leads to a greater incidence of local melanoma formation. Our zebrafish studies led us to investigate the innate immune cell associations in ulcerated melanomas in human patients. We find a strong correlation between neutrophil presence at sites of melanoma ulceration and cell proliferation at these sites, which is associated with poor prognostic outcome. PMID:26136213

  13. Protection after stroke: cellular effectors of neurovascular unit integrity

    PubMed Central

    Posada-Duque, Rafael Andres; Barreto, George E.; Cardona-Gomez, Gloria Patricia

    2014-01-01

    Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs), which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood flow regulation, oxidative stress, inflammation and the loss of neural connections. Currently, no gold standard treatments are available outside the acute therapeutic window to improve outcome in stroke patients. Some promising candidate targets have been identified for the improvement of long-term recovery after stroke, such as Rho GTPases, cell adhesion proteins, kinases, and phosphatases. Previous studies by our lab indicated that Rho GTPases (Rac and RhoA) are involved in both tissue damage and survival, as these proteins are essential for the morphology and movement of neurons, astrocytes and endothelial cells, thus playing a critical role in the balance between cell survival and death. Treatment with a pharmacological inhibitor of RhoA/ROCK blocks the activation of the neurodegeneration cascade. In addition, Rac and synaptic adhesion proteins (p120 catenin and N-catenin) play critical roles in protection against cerebral infarction and in recovery by supporting the neurovascular unit and cytoskeletal remodeling activity to maintain the integrity of the brain parenchyma. Interestingly, neuroprotective agents, such as atorvastatin, and CDK5 silencing after cerebral ischemia and in a glutamate-induced excitotoxicity model may act on the same cellular effectors to recover neurovascular unit integrity. Therefore, future efforts must focus on individually targeting the structural and functional roles of each effector of neurovascular unit and the interactions in neural and non-neural cells in the post-ischemic brain and address how to promote the recovery or prevent the loss of homeostasis in the short, medium and long term. PMID:25177270

  14. Protection after stroke: cellular effectors of neurovascular unit integrity.

    PubMed

    Posada-Duque, Rafael Andres; Barreto, George E; Cardona-Gomez, Gloria Patricia

    2014-01-01

    Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs), which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood flow regulation, oxidative stress, inflammation and the loss of neural connections. Currently, no gold standard treatments are available outside the acute therapeutic window to improve outcome in stroke patients. Some promising candidate targets have been identified for the improvement of long-term recovery after stroke, such as Rho GTPases, cell adhesion proteins, kinases, and phosphatases. Previous studies by our lab indicated that Rho GTPases (Rac and RhoA) are involved in both tissue damage and survival, as these proteins are essential for the morphology and movement of neurons, astrocytes and endothelial cells, thus playing a critical role in the balance between cell survival and death. Treatment with a pharmacological inhibitor of RhoA/ROCK blocks the activation of the neurodegeneration cascade. In addition, Rac and synaptic adhesion proteins (p120 catenin and N-catenin) play critical roles in protection against cerebral infarction and in recovery by supporting the neurovascular unit and cytoskeletal remodeling activity to maintain the integrity of the brain parenchyma. Interestingly, neuroprotective agents, such as atorvastatin, and CDK5 silencing after cerebral ischemia and in a glutamate-induced excitotoxicity model may act on the same cellular effectors to recover neurovascular unit integrity. Therefore, future efforts must focus on individually targeting the structural and functional roles of each effector of neurovascular unit and the interactions in neural and non-neural cells in the post-ischemic brain and address how to promote the recovery or prevent the loss of homeostasis in the short, medium and long term.

  15. Digital tomosynthesis: technique modifications and clinical applications for neurovascular anatomy

    SciTech Connect

    Maravilla, K.R.; Murry, R.C. Jr.; Diehl, J.; Suss, R.; Allen, L.; Chang, K.; Crawford, J.; McCoy, R.

    1984-09-01

    Digital tomosynthesis studies (DTS) using a linear tomographic motion can provide good quality clinical images when combined with subtraction angiotomography. By modifying their hardware system and the computer software algorithms, the authors were able to reconstruct tomosynthesis images using an isocentric rotation (IR) motion. Applying a combination of linear tomographic and IR techniques in clinical cases, they performed DTS studies in six patients, five with aneurysms and one with a hypervascular tumor. The results showed detailed definitions of the pathologic entities and the regional neurovascular anatomy. Based on this early experience, DTS would seem to be a useful technique for the preoperative surgical planning of vascular abnormalities.

  16. Endothelial Dysfunction and Amyloid-β-Induced Neurovascular Alterations.

    PubMed

    Koizumi, Kenzo; Wang, Gang; Park, Laibaik

    2016-03-01

    Alzheimer's disease (AD) and cerebrovascular diseases share common vascular risk factors that have disastrous effects on cerebrovascular regulation. Endothelial cells, lining inner walls of cerebral blood vessels, form a dynamic interface between the blood and the brain and are critical for the maintenance of neurovascular homeostasis. Accordingly, injury in endothelial cells is regarded as one of the earliest symptoms of impaired vasoregulatory mechanisms. Extracellular buildup of amyloid-β (Aβ) is a central pathogenic factor in AD. Aβ exerts potent detrimental effects on cerebral blood vessels and impairs endothelial structure and function. Recent evidence implicates vascular oxidative stress and activation of the non-selective cationic channel transient receptor potential melastatin (TRPM)-2 on endothelial cells in the mechanisms of Aβ-induced neurovascular dysfunction. Thus, Aβ triggers opening of TRPM2 channels in endothelial cells leading to intracellular Ca(2+) overload and vasomotor dysfunction. The cerebrovascular dysfunction may contribute to AD pathogenesis by reducing the cerebral blood supply, leading to increased susceptibility to vascular insufficiency, and by promoting Aβ accumulation. The recent realization that vascular factors contribute to AD pathobiology suggests new targets for the prevention and treatment of this devastating disease. PMID:26328781

  17. Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people

    PubMed Central

    Hurwitz, Shelley; Salat, David H.; Greve, Douglas N.; Fisher, Naomi D.L.

    2013-01-01

    Objective: To investigate the relationship between neurovascular coupling and cognitive function in elderly individuals with vascular risk factors and to determine whether neurovascular coupling could be modified by cocoa consumption. Methods: Sixty older people (aged 72.9 ± 5.4 years) were studied in a parallel-arm, double-blind clinical trial of neurovascular coupling and cognition in response to 24 hours and 30 days of cocoa consumption. Cognitive measures included Mini-Mental State Examination and Trail Making Test A and B. Neurovascular coupling was measured from the beat-to-beat blood flow velocity responses in the middle cerebral arteries to the N-Back Task. In a subset of MRI-eligible participants, cerebral white matter structural integrity was also measured. Results: Neurovascular coupling was associated with Trails B scores (p = 0.002) and performance on the 2-Back Task. Higher neurovascular coupling was also associated with significantly higher fractional anisotropy in cerebral white matter hyperintensities (p = 0.02). Finally, 30 days of cocoa consumption was associated with increased neurovascular coupling (5.6% ± 7.2% vs −2.4% ± 4.8%; p = 0.001) and improved Trails B times (116 ± 78 seconds vs 167 ± 110 seconds; p = 0.007) in those with impaired neurovascular coupling at baseline. Conclusion: There is a strong correlation between neurovascular coupling and cognitive function, and both can be improved by regular cocoa consumption in individuals with baseline impairments. Better neurovascular coupling is also associated with greater white matter structural integrity. PMID:23925758

  18. [The neurovascular unit in health and ischemic stroke].

    PubMed

    Ago, Tetsuro

    2016-04-01

    The neurovascular unit (NVU), a minimal unit to exert neurological functions, is composed of neurons, astrocytes, endothelial cells, pericytes, and extracellular matrix proteins forming basal membranes. The cell components interact with one another and function cooperatively under both physiological and pathological conditions. Pericytes and astrocytes participate crucially in the formation and maintenance of the blood-brain barrier (BBB), the tight junction formed by endothelial cells, and regulate cerebral blood flow in response to neurological activities. The BBB actively regulate molecular import and export. The concept of the NVU is also useful for understanding pathogenesis and exploring therapeutic targets in various CNS disorders. In this review, recent research advances regarding the NVU and its components in health and ischemic stroke are summarized. PMID:27333744

  19. Assessment of endothelial and neurovascular function in human skin microcirculation.

    PubMed

    Roustit, Matthieu; Cracowski, Jean-Luc

    2013-07-01

    Peripheral microvascular dysfunction has been described in many physiological and pathological conditions. Owing to its accessibility, the cutaneous microcirculation provides a unique index of microvascular function. Skin microvascular function has therefore been proposed as a prognostic marker or for evaluating the effect of drugs on the microcirculation. Various reactivity tests, coupled with techniques measuring skin blood flux, are used to non-invasively explore both endothelial and neurovascular microvascular functioning in humans. We review the advantages and limitations of the main reactivity tests, including post-occlusive reactive hyperemia, local thermal hyperemia, pressure-induced vasodilation, and iontophoresis of vasodilators, combined with measurement techniques such as laser Doppler and laser speckle contrast imaging. Recent advances in our comprehension of the physiological pathways underlying these reactivity tests, as well as technological developments in microcirculation imaging, have provided reliable and reproducible tools for studying the microcirculation.

  20. A neurovascular blood-brain barrier in vitro model.

    PubMed

    Zehendner, Christoph M; White, Robin; Hedrich, Jana; Luhmann, Heiko J

    2014-01-01

    The cerebral microvasculature possesses certain cellular features that constitute the blood-brain barrier (BBB) (Abbott et al., Neurobiol Dis 37:13-25, 2010). This dynamic barrier separates the brain parenchyma from peripheral blood flow and is of tremendous clinical importance: for example, BBB breakdown as in stroke is associated with the development of brain edema (Rosenberg and Yang, Neurosurg Focus 22:E4, 2007), inflammation (Kuhlmann et al., Neurosci Lett 449:168-172, 2009; Coisne and Engelhardt, Antioxid Redox Signal 15:1285-1303, 2011), and increased mortality. In vivo, the BBB consists of brain endothelial cells (BEC) that are embedded within a precisely regulated environment containing astrocytes, pericytes, smooth muscle cells, and glial cells. These cells experience modulation by various pathways of intercellular communication and by pathophysiological processes, e.g., through neurovascular coupling (Attwell et al., Nature 468:232-243, 2010), cortical spreading depression (Gursoy-Ozdemir et al., J Clin Invest 113:1447-1455, 2004), or formation of oxidative stress (Yemisci et al., Nat Med 15:1031-1037, 2009). Hence, this interdependent assembly of cells is referred to as the neurovascular unit (NVU) (Zlokovic, Nat Med 16:1370-1371, 2010; Zlokovic, Neuron 57:178-201, 2008). Experimental approaches to investigate the BBB in vitro are highly desirable to study the cerebral endothelium in health and disease. However, due to the complex interactions taking place within the NVU in vivo, it is difficult to mimic this interplay in vitro.Here, we describe a murine blood-brain barrier coculture model consisting of cortical organotypic slice cultures and brain endothelial cells that includes most of the cellular components of the NVU including neurons, astrocytes, and brain endothelial cells. This model allows the experimental analysis of several crucial BBB parameters such as transendothelial electrical resistance or tight junction protein localization by

  1. OCT/PS-OCT imaging of brachial plexus neurovascular structures

    NASA Astrophysics Data System (ADS)

    Raphael, David T.; Zhang, Jun; Zhang, Yaoping; Chen, Zhongping; Miller, Carol; Zhou, Li

    2004-07-01

    Introduction: Optical coherence tomography (OCT) allows high-resolution imaging (less than 10 microns) of tissue structures. A pilot study with OCT and polarization-sensitive OCT (PS-OCT) was undertaken to image ex-vivo neurovascular structures (vessels, nerves) of the canine brachial plexus. Methods: OCT is an interferometry-based optical analog of B-mode ultrasound, which can image through non-transparent biological tissues. With approval of the USC Animal Care and Use Committee, segments of the supra- and infraclavicular brachial plexus were excised from euthanized adult dogs, and the ex-vivo specimens were placed in cold pH-buffered physiologic solution. An OCT beam, in micrometer translational steps, scanned the fixed-position bisected specimens in transverse and longitudinal views. Two-dimensional images were obtained from identified arteries and nerves, with specific sections of interest stained with hematoxylin-eosin for later imaging through a surgical microscope. Results: with the beam scan direction transverse to arteries, the resulting OCT images showed an identifiable arterial lumen and arterial wall tissue layers. By comparison, transverse beam OCT images of nerves revealed a multitude of smaller nerve bundles contained within larger circular-shaped fascicles. PS-OCT imaging was helpful in showing the characteristic birefringence exhibited by arrayed neural structures. Discussion: High-resolution OCT imaging may be useful in the optical identification of neurovascular structures during attempted regional nerve blockade. If incorporated into a needle-shaped catheter endoscope, such a technology could prevent intraneural and intravascular injections immediately prior to local anesthetic injection. The major limitation of OCT is that it can form a coherent image of tissue structures only to a depth of 1.5 - 2 mm.

  2. Neurovascular unit on a chip: implications for translational applications.

    PubMed

    Alcendor, Donald J; Block, Frank E; Cliffel, David E; Daniels, John Scott; Ellacott, Kate L J; Goodwin, Cody R; Hofmeister, Lucas H; Li, Deyu; Markov, Dmitry A; May, Jody C; McCawley, Lisa J; McLaughlin, BethAnn; McLean, John A; Niswender, Kevin D; Pensabene, Virginia; Seale, Kevin T; Sherrod, Stacy D; Sung, Hak-Joon; Tabb, David L; Webb, Donna J; Wikswo, John P

    2013-01-01

    The blood-brain barrier (BBB) dynamically controls exchange between the brain and the body, but this interaction cannot be studied directly in the intact human brain or sufficiently represented by animal models. Most existing in vitro BBB models do not include neurons and glia with other BBB elements and do not adequately predict drug efficacy and toxicity. Under the National Institutes of Health Microtissue Initiative, we are developing a three-dimensional, multicompartment, organotypic microphysiological system representative of a neurovascular unit of the brain. The neurovascular unit system will serve as a model to study interactions between the central nervous system neurons and the cerebral spinal fluid (CSF) compartment, all coupled to a realistic blood-surrogate supply and venous return system that also incorporates circulating immune cells and the choroid plexus. Hence all three critical brain barriers will be recapitulated: blood-brain, brain-CSF, and blood-CSF. Primary and stem cell-derived human cells will interact with a variety of agents to produce critical chemical communications across the BBB and between brain regions. Cytomegalovirus, a common herpesvirus, will be used as an initial model of infections regulated by the BBB. This novel technological platform, which combines innovative microfluidics, cell culture, analytical instruments, bioinformatics, control theory, neuroscience, and drug discovery, will replicate chemical communication, molecular trafficking, and inflammation in the brain. The platform will enable targeted and clinically relevant nutritional and pharmacologic interventions for or prevention of such chronic diseases as obesity and acute injury such as stroke, and will uncover potential adverse effects of drugs. If successful, this project will produce clinically useful technologies and reveal new insights into how the brain receives, modifies, and is affected by drugs, other neurotropic agents, and diseases. PMID:24564885

  3. SY 05-1 FIBRO-INFLAMMATORY CHANGES DURING PROGRESSION OF SYSTOLIC/DIASTOLIC DYSFUNCTION IN THE HYPERTENSIVE HEART.

    PubMed

    Kai, Hisashi

    2016-09-01

    There is increasing evidence that fibro-inflammatory changes play a role in variety of cardiovascular diseases. We created new rat models to investigate the role of fibro-inflammatory changes in the pathophysiology of systolic and diastolic dysfunction in hypertensive heart. (1) a model of a blood pressure (BP) surge was created by performing abdominal aortic constriction in Wistar-Kyoto rats. Aortic constriction rapidly increased BP and the high BP levels sustained. A BP surge transiently induced MCP-1 and TGF-beta induction, angiotensin converting enzyme activation, and macrophage infiltration, followed by left ventricular (LV) hypertrophy and perivascular reactive fibrosis. Echocardiography showed diastolic, but not systolic, LV dysfunction in this model. A sub-depressor dose of candesartan, angiotensin II type-1 receptor antagonist, prevented the fibro-inflammatory changes, cardiac remodeling, and diastolic LV dysfunction. (2) A model of hypertension with large short-term BP variability (BPV) by performing sino-aortic denervation (SAD) in spontaneously hypertensive rats (SHRs). In this model, SAD exaggerated BPV without affecting mean BP and the activity of sympathetic nerve system and systemic renin-angiotension-aldosterone system. Large BPV induced chronic fibro-inflammatory changes (macrophage infiltration, MCP-1, TGF-beta, and angiotensinogen upregulations) and aggravated hypertensive LV hypertrophy and reparative myocardial fibrosis, resulting in systolic LV dysfunction. A sub-depressor dose of candesartan prevented the large BPV-induced fibro-inflammatory changes and cardiac remodeling, as well as systolic LV dysfunction, without changing BPV itself. In conclusion, a BP surge induces transient fibro-inflammatory changes leading to cardiac hypertrophy with diastolic dysfunction. In contrast, large short-term BPV caused the local angiotensin-mediated chronic fibro-inflammatory changes which aggravates hypertensive cardiac remodeling and myaocardial damages

  4. Impact of the inflammatory microenvironment on T-cell phenotype in the progression from reflux oesophagitis to Barrett oesophagus and oesophageal adenocarcinoma.

    PubMed

    Kavanagh, Maria E; Conroy, Melissa J; Clarke, Niamh E; Gilmartin, Niamh T; O'Sullivan, Katie E; Feighery, Ronan; MacCarthy, Finbar; O'Toole, Dermot; Ravi, Narayanasamy; Reynolds, John V; O'Sullivan, Jacintha; Lysaght, Joanne

    2016-01-01

    The incidence of oesophageal adenocarcinoma (OAC), arising from reflux-induced Barrett oesophagus (BO), is increasing dramatically. T-cells have recently been implicated in the initiation of oesophagitis; however, their role in the progression from oesophagitis to BO and OAC has not been fully elucidated. Previous studies have examined the secreted cytokines from oesophageal tissue during disease progression but this study is the first to examine the activation phenotype and the inflammatory profile of CD4(+) and CD8(+) T-cells in human oesophagitis, BO and OAC tissue. Results demonstrated significantly higher levels of IL-4 producing CD4(+) T-cells and secreted levels of IL-6, confirming a Th2 phenotype in BO. In OAC tissue, both pro- and anti-inflammatory cytokines were secreted, with significantly higher levels of IL-6, IL-1β, TNF-α, IFN-γ, IL-2 and IL-10 compared with normal oesophageal tissue. In addition, CD4(+) T-cells infiltrating OAC tissue displayed a decreased activation profile, with significantly lower CD45RO and CD69 expression compared with normal tissue. Data from this study suggest that factors in the tissue microenvironment may alter T-cell phenotype and function early during oesophageal disease progression and may represent targets for immune intervention.

  5. Inflammatory Myopathies.

    PubMed

    Atluri, Rama Bandlamudi

    2016-01-01

    Idiopathic inflammatory myopathies are relatively rare diseases. Polymyositis and dermatomyositis are more common in women than men (2:1 ratio), while inclusion body myositis is twice as common in men. Inflammatory myopathies are a heterogeneous group of chronic systemic autoimmune diseases with an annual incidence of two to five cases per million, characterized by muscle inflammation and progressive muscle weakness. There are three major diseases which includes Dermatomyositis (DM) including a distinct juvenile subtype (JDM), Polymyositis (PM), and Inclusion Body Myositis. DM is a compliment mediated microangiopathy affecting skin and muscle. PM and IBM are T-cell mediated disorders, where CD8 positive cytotoxic T cells invade muscle fibers expressing MHC class I antigens, this leading to fiber necrosis. In IBM, vacuolar formation with amyloid deposits are also present. This article summarizes the clinical, histochemical and immunological features as well as the treatment options of the inflammatory myopathies. PMID:27311223

  6. Neurovascular unit impairment in early Alzheimer's disease measured with magnetic resonance imaging.

    PubMed

    van de Haar, Harm J; Jansen, Jacobus F A; van Osch, Matthias J P; van Buchem, Mark A; Muller, Majon; Wong, Sau May; Hofman, Paul A M; Burgmans, Saartje; Verhey, Frans R J; Backes, Walter H

    2016-09-01

    The neurovascular unit, which protects neuronal cells and supplies them with essential molecules, plays an important role in the pathophysiology of Alzheimer's Disease (AD). The aim of this study was to noninvasively investigate 2 linked functional elements of the neurovascular unit, blood-brain barrier (BBB) permeability and cerebral blood flow (CBF), in patients with early AD and healthy controls. Therefore, both dynamic contrast-enhanced magnetic resonance imaging and arterial spin labeling magnetic resonance imaging were applied to measure BBB permeability and CBF, respectively. The patients with early AD showed significantly lower CBF and local blood volume in the gray matter, compared with controls. In the patients, we also found that a reduction in CBF is correlated with an increase in leakage rate. This finding supports the hypothesis that neurovascular damage, and in particular impairment of the neurovascular unit constitutes the pathophysiological link between CBF reduction and BBB impairment in AD. PMID:27459939

  7. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer's disease.

    PubMed

    Sweeney, Melanie D; Sagare, Abhay P; Zlokovic, Berislav V

    2015-07-01

    Alzheimer's disease (AD) is the most common form of age-related dementias. In addition to genetics, environment, and lifestyle, growing evidence supports vascular contributions to dementias including dementia because of AD. Alzheimer's disease affects multiple cell types within the neurovascular unit (NVU), including brain vascular cells (endothelial cells, pericytes, and vascular smooth muscle cells), glial cells (astrocytes and microglia), and neurons. Thus, identifying and integrating biomarkers of the NVU cell-specific responses and injury with established AD biomarkers, amyloid-β (Aβ) and tau, has a potential to contribute to better understanding of the disease process in dementias including AD. Here, we discuss the existing literature on cerebrospinal fluid biomarkers of the NVU cell-specific responses during early stages of dementia and AD. We suggest that the clinical usefulness of established AD biomarkers, Aβ and tau, could be further improved by developing an algorithm that will incorporate biomarkers of the NVU cell-specific responses and injury. Such biomarker algorithm could aid in early detection and intervention as well as identify novel treatment targets to delay disease onset, slow progression, and/or prevent AD.

  8. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    PubMed Central

    Niendorf, Thoralf; Pohlmann, Andreas; Reimann, Henning M.; Waiczies, Helmar; Peper, Eva; Huelnhagen, Till; Seeliger, Erdmann; Schreiber, Adrian; Kettritz, Ralph; Strobel, Klaus; Ku, Min-Chi; Waiczies, Sonia

    2015-01-01

    Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed. PMID:26617515

  9. Iron transport across the blood-brain barrier; Development, neurovascular regulation and cerebral amyloid angiopathy

    PubMed Central

    McCarthy, Ryan C; Kosman, Daniel J

    2014-01-01

    There are two barriers for iron entry into the brain: 1) the brain-cerebrospinal fluid (CSF) barrier and 2) the blood-brain barrier (BBB). Here, we review the literature on developmental iron accumulation by the brain, focusing on the transport of iron through the brain microvascular endothelial cells (BMVEC) of the BBB. We review the iron trafficking proteins which may be involved in the iron flux across BMVEC and discuss the plausible mechanisms of BMVEC iron uptake and efflux. We suggest a model for how BMVEC iron uptake and efflux are regulated and a mechanism by which the majority of iron is trafficked across the developing BBB under the direct guidance of neighboring astrocytes. Thus, we place brain iron uptake in the context of the neurovascular unit of the adult brain. Last, we propose that BMVEC iron is involved in the aggregation of amyloid-β peptides leading to the progression of cerebral amyloid angiopathy which often occurs prior to dementia and the onset of Alzheimer's disease. PMID:25355056

  10. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology.

    PubMed

    Niendorf, Thoralf; Pohlmann, Andreas; Reimann, Henning M; Waiczies, Helmar; Peper, Eva; Huelnhagen, Till; Seeliger, Erdmann; Schreiber, Adrian; Kettritz, Ralph; Strobel, Klaus; Ku, Min-Chi; Waiczies, Sonia

    2015-01-01

    Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed.

  11. Regulation of Neurovascular Coupling in Autoimmunity to Water and Ion Channels

    PubMed Central

    Jukkola, Peter; Gu, Chen

    2014-01-01

    Much progress has been made in understanding autoimmune channelopathies, but the underlying pathogenic mechanisms are not always clear due to broad expression of some channel proteins. Recent studies show that autoimmune conditions that interfere with neurovascular coupling in the central nervous system (CNS) can lead to neurodegeneration. Cerebral blood flow that meets neuronal activity and metabolic demand is tightly regulated by local neural activity. This process of reciprocal regulation involves coordinated actions of a number of cell types, including neurons, glia, and vascular cells. In particular, astrocytic endfeet cover more than 90% of brain capillaries to assist blood-brain barrier (BBB) function, and wrap around synapses and nodes of Ranvier to communicate with neuronal activity. In this review, we highlight four types of channel proteins that are expressed in astrocytes, regarding their structures, biophysical properties, expression and distribution patterns, and related diseases including autoimmune disorders. Water channel aquaporin 4 (AQP4) and inwardly-rectifying potassium (Kir4.1) channels are concentrated in astrocytic endfeet, whereas some voltage-gated Ca2+ and two-pore-domain K+ channels are expressed throughout the cell body of reactive astrocytes. More channel proteins are found in astrocytes under normal and abnormal conditions. This research field will contribute to a better understanding of pathogenic mechanisms underlying autoimmune disorders. PMID:25462580

  12. Dexamethasone Rescues Neurovascular Unit Integrity from Cell Damage Caused by Systemic Administration of Shiga Toxin 2 and Lipopolysaccharide in Mice Motor Cortex

    PubMed Central

    Pinto, Alipio; Jacobsen, Mariana; Geoghegan, Patricia A.; Cangelosi, Adriana; Cejudo, María Laura; Tironi-Farinati, Carla; Goldstein, Jorge

    2013-01-01

    Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) causes hemorrhagic colitis and hemolytic uremic syndrome (HUS) that can lead to fatal encephalopathies. Neurological abnormalities may occur before or after the onset of systemic pathological symptoms and motor disorders are frequently observed in affected patients and in studies with animal models. As Stx2 succeeds in crossing the blood-brain barrier (BBB) and invading the brain parenchyma, it is highly probable that the observed neurological alterations are based on the possibility that the toxin may trigger the impairment of the neurovascular unit and/or cell damage in the parenchyma. Also, lipopolysaccharide (LPS) produced and secreted by enterohemorrhagic Escherichia coli (EHEC) may aggravate the deleterious effects of Stx2 in the brain. Therefore, this study aimed to determine (i) whether Stx2 affects the neurovascular unit and parenchymal cells, (ii) whether the contribution of LPS aggravates these effects, and (iii) whether an inflammatory event underlies the pathophysiological mechanisms that lead to the observed injury. The administration of a sub-lethal dose of Stx2 was employed to study in detail the motor cortex obtained from a translational murine model of encephalopathy. In the present paper we report that Stx2 damaged microvasculature, caused astrocyte reaction and neuronal degeneration, and that this was aggravated by LPS. Dexamethasone, an anti-inflammatory, reversed the pathologic effects and proved to be an important drug in the treatment of acute encephalopathies. PMID:23894578

  13. Neurovascular Coupling is Impaired in Slow Walkers: The MOBILIZE Boston Study

    PubMed Central

    Sorond, Farzaneh A.; Kiely, Dan K.; Galica, Andrew; Moscufo, Nicola; Serrador, Jorge M.; Iloputaife, Ike; Egorova, Svetlana; Dell'Oglio, Elisa; Meier, Dominik; Newton, Elizabeth; Milberg, William P.; Guttmann, Charles; Lipsitz, Lewis A.

    2011-01-01

    Objective Neurovascular coupling may be involved in compensatory mechanisms responsible for preservation of gait speed in elderly people with cerebrovascular disease. Our study examines the association between neurovascular coupling in the middle cerebral artery and gait speed in elderly individuals with impaired cerebral vasoreactivity. Methods Twenty-two fast and 20 slow walkers in the lowest quartile of cerebral vasoreactivity were recruited from the MOBILIZE Boston Study. Neurovascular coupling was assessed in bilateral middle cerebral arteries by measuring cerebral blood flow during the N-Back Task. Cerebral white matter hyperintensities were measured for each group using magnetic resonance imaging. Results Neurovascular coupling was attenuated in slow compared to fast walkers (2.8% [CI95%: −0.9–6.6] vs. 8.2% [CI95%: 4.7–11.8]; p=0.02). The odds of being a slow walker were 6.4 (CI95%: 1.7–24.9, p=0.007) if there was a high burden of white matter hyperintensity, however, this risk increased to 14.5 (CI95%: 2.3–91.1, p=0.004) if neurovascular coupling was also attenuated. Interpretation Our results suggest that intact neurovascular coupling may help preserve mobility in elderly people with cerebral microvascular disease. PMID:21674588

  14. Neurovascular Bundle Decompression without Excessive Dissection for Tarsal Tunnel Syndrome

    PubMed Central

    KIM, Kyongsong; ISU, Toyohiko; MORIMOTO, Daijiro; SASAMORI, Toru; SUGAWARA, Atsushi; CHIBA, Yasuhiro; ISOBE, Masahiro; KOBAYASHI, Shiro; MORITA, Akio

    2014-01-01

    Tarsal tunnel syndrome (TTS) is an entrapment neuropathy of the posterior tibial nerve and its branches in the tarsal tunnel. We present our less invasive surgical treatment of TTS in 69 patients (116 feet) and their clinical outcomes. The mean follow-up period was 64.6 months. With the patient under local anesthesia we use a microscope to perform sharp dissection of the flexor retinaculum and remove the connective tissues surrounding the posterior tibial nerve and vessels. To prevent postoperative adhesion and delayed neuropathy, decompression is performed to achieve symptom improvement without excessive dissection. Decompression is considered complete when the patient reports intraoperative symptom abatement and arterial pulsation is sufficient. The sensation of numbness and/or pain and of foreign substance adhesion was reduced in 92% and 95% of our patients, respectively. In self-assessments, 47 patients (68%) reported the treatment outcome as satisfactory, 15 (22%) as acceptable, and 7 (10%) were dissatisfied. Of 116 feet, 4 (3%) required re-operation, initial decompression was insufficient in 2 feet and further decompression was performed; in the other 2 feet improvement was achieved by decompression of the distal tarsal tunnel. Our surgical method involves neurovascular bundle decompression to obtain sufficient arterial pulsation. As we use local anesthesia, we can confirm symptom improvement intraoperatively, thereby avoiding unnecessary excessive dissection. Our method is simple, safe, and without detailed nerve dissection and it prevents postoperative adhesion. PMID:25367582

  15. Neuro-vascular link: from genetic insights to therapeutic perspectives.

    PubMed

    Carmeliet, P

    2008-01-01

    Understanding the molecular basis of the formation of blood vessels (angiogenesis) and nerves (neurogenesis) is of great medical relevance. It is well known that dysregulation of angiogenesis leads to tissue ischemia, cancer, inflammation and other disorders, while a dysfunction of the nerve system contributes to motorneuron disorders like amyotrophic lateral sclerosis (ALs) and other neurodegenerative diseases. The observations of Andreas Vesalius--Belgian anatomist of the 16th century--that patterning ofvessels and nerves show more than remarkable similarities, are currently revisited in exciting studies. Indeed, often, vessels and nerves even track alongside each other. Recent genetic studies revealed that vessels and nerves share many more common principles and signals for navigation, proliferation and survival than previously suspected. For instance, gene inactivation studies in mice and zebrafish showed that axon guidance signals regulate vessel navigation. Conversely, prototypic angiogenic factors such as VEGF control neurogenesis and regulate axon and neuron guidance, independently of their angiogenic activity. The next coming years promise to become an exciting journey to further unravel the molecular basis and explore the therapeutic potential of the neurovascular link. PMID:20120252

  16. Gaining Surgical Access for Repositioning the Inferior Alveolar Neurovascular Bundle

    PubMed Central

    Al-Siweedi, Saif Yousif Abdullah; Nambiar, P.; Shanmuhasuntharam, P.; Ngeow, W. C.

    2014-01-01

    This study is aimed at determining anatomical landmarks that can be used to gain access to the inferior alveolar neurovascular (IAN) bundle. Scanned CBCT (i-CAT machine) data of sixty patients and reconstructions performed using the SimPlant dental implant software were reviewed. Outcome variables were the linear distances of the mandibular canal to the inferior border and the buccal cortex of the mandible, measured immediately at the mental foramen (D1) and at 10, 20, 30, and 40 mm (D2–D5) distal to it. Predictor variables were age, ethnicity, and gender of subjects. Apicobasal assessment of the canal reveals that it is curving downward towards the inferior mandibular border until 20 mm (D3) distal to the mental foramen where it then curves upwards, making an elliptic-arc curve. The mandibular canal also forms a buccolingually oriented elliptic arc in relation to the buccal cortex. Variations due to age, ethnicity, and gender were evident and this study provides an accurate anatomic zone for gaining surgical access to the IAN bundle. The findings indicate that the buccal cortex-IAN distance was greatest at D3. Therefore, sites between D2 and D5 can be used as favorable landmarks to access the IAN bundle with the least complications to the patient. PMID:24892077

  17. Neurovascular factors in resting-state functional MRI

    PubMed Central

    Liu, Thomas T.

    2013-01-01

    There has been growing interest in the use of resting-state functional magnetic resonance imaging (rsfMRI) for the assessment of disease and treatment, and a number of studies have reported significant diseaserelated changes in resting-state blood oxygenation level dependent (BOLD) signal amplitude and functional connectivity. rsfMRI is particularly suitable for clinical applications because the approach does not require the patient to perform a task and scans can be obtained in a relatively short amount of time. However, the mechanisms underlying resting-state BOLD activity are not well understood and thus the interpretation of changes in resting state activity is not always straightforward. The BOLD signal represents the hemodynamic response to neural activity, and changes in resting-state activity can reflect a complex combination of neural, vascular, and metabolic factors. This paper examines the role of neurovascular factors in rsfMRI and reviews approaches for the interpretation and analysis of resting state measures in the presence of confounding factors. PMID:23644003

  18. Advanced and standardized evaluation of neurovascular compression syndromes

    NASA Astrophysics Data System (ADS)

    Hastreiter, Peter; Vega Higuera, Fernando; Tomandl, Bernd; Fahlbusch, Rudolf; Naraghi, Ramin

    2004-05-01

    Caused by a contact between vascular structures and the root entry or exit zone of cranial nerves neurovascular compression syndromes are combined with different neurological diseases (trigeminal neurolagia, hemifacial spasm, vertigo, glossopharyngeal neuralgia) and show a relation with essential arterial hypertension. As presented previously, the semi-automatic segmentation and 3D visualization of strongly T2 weighted MR volumes has proven to be an effective strategy for a better spatial understanding prior to operative microvascular decompression. After explicit segmentation of coarse structures, the tiny target nerves and vessels contained in the area of cerebrospinal fluid are segmented implicitly using direct volume rendering. However, based on this strategy the delineation of vessels in the vicinity of the brainstem and those at the border of the segmented CSF subvolume are critical. Therefore, we suggest registration with MR angiography and introduce consecutive fusion after semi-automatic labeling of the vascular information. Additionally, we present an approach of automatic 3D visualization and video generation based on predefined flight paths. Thereby, a standardized evaluation of the fused image data is supported and the visualization results are optimally prepared for intraoperative application. Overall, our new strategy contributes to a significantly improved 3D representation and evaluation of vascular compression syndromes. Its value for diagnosis and surgery is demonstrated with various clinical examples.

  19. Microstructured Thin Film Nitinol for a Neurovascular Flow-Diverter.

    PubMed

    Chen, Yanfei; Howe, Connor; Lee, Yongkuk; Cheon, Seongsik; Yeo, Woon-Hong; Chun, Youngjae

    2016-01-01

    A cerebral aneurysm occurs as a result of a weakened blood vessel, which allows blood to flow into a sac or a ballooned section. Recent advancement shows that a new device, 'flow-diverter', can divert blood flow away from the aneurysm sac. People found that a flow-diverter based on thin film nitinol (TFN), works very effectively, however there are no studies proving the mechanical safety in irregular, curved blood vessels. Here, we study the mechanical behaviors and structural safety of a novel microstructured TFN membrane through the computational and experimental studies, which establish the fundamental aspects of stretching and bending mechanics of the structure. The result shows a hyper-elastic behavior of the TFN with a negligible strain change up to 180° in bending and over 500% in radial stretching, which is ideal in the use in neurovascular curved arteries. The simulation determines the optimal joint locations between the TFN and stent frame. In vitro experimental test qualitatively demonstrates the mechanical flexibility of the flow-diverter with multi-modal bending. In vivo micro X-ray and histopathology study demonstrate that the TFN can be conformally deployed in the curved blood vessel of a swine model without any significant complications or abnormalities. PMID:27009500

  20. Microstructured Thin Film Nitinol for a Neurovascular Flow-Diverter

    PubMed Central

    Chen, Yanfei; Howe, Connor; Lee, Yongkuk; Cheon, Seongsik; Yeo, Woon-Hong; Chun, Youngjae

    2016-01-01

    A cerebral aneurysm occurs as a result of a weakened blood vessel, which allows blood to flow into a sac or a ballooned section. Recent advancement shows that a new device, ‘flow-diverter’, can divert blood flow away from the aneurysm sac. People found that a flow-diverter based on thin film nitinol (TFN), works very effectively, however there are no studies proving the mechanical safety in irregular, curved blood vessels. Here, we study the mechanical behaviors and structural safety of a novel microstructured TFN membrane through the computational and experimental studies, which establish the fundamental aspects of stretching and bending mechanics of the structure. The result shows a hyper-elastic behavior of the TFN with a negligible strain change up to 180° in bending and over 500% in radial stretching, which is ideal in the use in neurovascular curved arteries. The simulation determines the optimal joint locations between the TFN and stent frame. In vitro experimental test qualitatively demonstrates the mechanical flexibility of the flow-diverter with multi-modal bending. In vivo micro X-ray and histopathology study demonstrate that the TFN can be conformally deployed in the curved blood vessel of a swine model without any significant complications or abnormalities. PMID:27009500

  1. Microstructured Thin Film Nitinol for a Neurovascular Flow-Diverter.

    PubMed

    Chen, Yanfei; Howe, Connor; Lee, Yongkuk; Cheon, Seongsik; Yeo, Woon-Hong; Chun, Youngjae

    2016-03-24

    A cerebral aneurysm occurs as a result of a weakened blood vessel, which allows blood to flow into a sac or a ballooned section. Recent advancement shows that a new device, 'flow-diverter', can divert blood flow away from the aneurysm sac. People found that a flow-diverter based on thin film nitinol (TFN), works very effectively, however there are no studies proving the mechanical safety in irregular, curved blood vessels. Here, we study the mechanical behaviors and structural safety of a novel microstructured TFN membrane through the computational and experimental studies, which establish the fundamental aspects of stretching and bending mechanics of the structure. The result shows a hyper-elastic behavior of the TFN with a negligible strain change up to 180° in bending and over 500% in radial stretching, which is ideal in the use in neurovascular curved arteries. The simulation determines the optimal joint locations between the TFN and stent frame. In vitro experimental test qualitatively demonstrates the mechanical flexibility of the flow-diverter with multi-modal bending. In vivo micro X-ray and histopathology study demonstrate that the TFN can be conformally deployed in the curved blood vessel of a swine model without any significant complications or abnormalities.

  2. Microstructured Thin Film Nitinol for a Neurovascular Flow-Diverter

    NASA Astrophysics Data System (ADS)

    Chen, Yanfei; Howe, Connor; Lee, Yongkuk; Cheon, Seongsik; Yeo, Woon-Hong; Chun, Youngjae

    2016-03-01

    A cerebral aneurysm occurs as a result of a weakened blood vessel, which allows blood to flow into a sac or a ballooned section. Recent advancement shows that a new device, ‘flow-diverter’, can divert blood flow away from the aneurysm sac. People found that a flow-diverter based on thin film nitinol (TFN), works very effectively, however there are no studies proving the mechanical safety in irregular, curved blood vessels. Here, we study the mechanical behaviors and structural safety of a novel microstructured TFN membrane through the computational and experimental studies, which establish the fundamental aspects of stretching and bending mechanics of the structure. The result shows a hyper-elastic behavior of the TFN with a negligible strain change up to 180° in bending and over 500% in radial stretching, which is ideal in the use in neurovascular curved arteries. The simulation determines the optimal joint locations between the TFN and stent frame. In vitro experimental test qualitatively demonstrates the mechanical flexibility of the flow-diverter with multi-modal bending. In vivo micro X-ray and histopathology study demonstrate that the TFN can be conformally deployed in the curved blood vessel of a swine model without any significant complications or abnormalities.

  3. Breaking boundaries—coagulation and fibrinolysis at the neurovascular interface

    PubMed Central

    Bardehle, Sophia; Rafalski, Victoria A.; Akassoglou, Katerina

    2015-01-01

    Blood proteins at the neurovascular unit (NVU) are emerging as important molecular determinants of communication between the brain and the immune system. Over the past two decades, roles for the plasminogen activation (PA)/plasmin system in fibrinolysis have been extended from peripheral dissolution of blood clots to the regulation of central nervous system (CNS) functions in physiology and disease. In this review, we discuss how fibrin and its proteolytic degradation affect neuroinflammatory, degenerative and repair processes. In particular, we focus on novel functions of fibrin—the final product of the coagulation cascade and the main substrate of plasmin—in the activation of immune responses and trafficking of immune cells into the brain. We also comment on the suitability of the coagulation and fibrinolytic systems as potential biomarkers and drug targets in diseases, such as multiple sclerosis (MS), Alzheimer’s disease (AD) and stroke. Studying coagulation and fibrinolysis as major molecular pathways that regulate cellular functions at the NVU has the potential to lead to the development of novel strategies for the detection and treatment of neurologic diseases. PMID:26441525

  4. Ageing is a process where the growth effect of neuronal noradrenaline changes progressively in favour of the flow mediated, neurodegenerative and inflammatory effect of plasma noradrenaline.

    PubMed

    Crotty, T P

    2016-08-01

    The noradrenaline stimulus has two components, one excitor, the other inhibitory. Neuronal noradrenaline is the excitor component and plasma noradrenaline is the inhibitory. The balance of effect between the two, the noradrenergic balance, is the controlled variable of the sympathetic system and determines the effect of noradrenaline. Neuronal noradrenaline stimulates tissues by diffusion from their sympathetic nerve endings, plasma noradrenaline does so by diffusion from their microcirculations. Changes in microcirculatory flow, by altering the flow mediated effect of plasma noradrenaline, are mainly responsible for altering the noradrenergic balance in the peripheral tissues; changes in CSF flow are speculated to be mainly responsible for doing the same in the brain, by altering the balance between synaptic noradrenaline in the brain and nonsynaptic noradrenaline in the subarachnoid CSF. When plasma noradrenaline alters the noradrenergic balance it triggers afferent sympathetic activity that alerts hypothalamic neurons to the event and they restore the balance and tissue homeostasis, within milliseconds, by adjusting the level of efferent sympathetic activity they project back to the affected tissue. Because the restoration is so rapid the effect of plasma noradrenaline is normally unobservable and dismissed as not having occurred. Because the hypothalamus is not involved with the responses of isolated canine lateral saphenous vein segments to noradrenaline, the effects of plasma noradrenaline in that preparation are not countered by reactive efferent activity and, consequently, are readily apparent in it. Quantitatively, they have been found to be a function of microcirculatory flow and noradrenaline concentration and, qualitatively, to be inhibitory, dilator, pro inflammatory and neurodegenerative. In life, due to a progressive increase in plasma noradrenaline concentration and, more so, in microcirculatory flow, the noradrenergic balance moves progressively in

  5. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    PubMed

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment.

  6. Progression of radiographic changes in the temporomandibular joints of patients with rheumatoid arthritis in relation to inflammatory markers and mediators in the blood.

    PubMed

    Voog, Ulle; Alstergren, Per; Eliasson, Sören; Leibur, Edvitar; Kallikorm, Riina; Kopp, Sigvard

    2004-02-01

    The aim of this study was to investigate longitudinal radiographic changes in the temporomandibular joint (TMJ) with clinical involvement of rheumatoid arthritis (RA) and its relation to the blood level of inflammatory mediators and markers. Sixteen patients were investigated by computed tomography on two occasions 25-46 months apart. The radiographs were assessed independently for changes in presence of erosions, sclerosis, flattening, osteophytes, and subchondral pseudocysts. The serum (S) or plasma (P) concentrations of C-reactive protein (CRP), thrombocyte particle concentration, scrotonin (S-5-HT and P-5-HT), tumor necrosis factor alpha, interleukin-1 receptor antagonist, tumor necrosis factor soluble receptor type II, interleukin-1 soluble receptor type II (P-IL-1sRII) and interleukin 6 as well as the erythrocyte sedimentation rate (ESR) were measured. The radiographic status showed no consistent or significant change during the observation period, but the individual variation was considerable. The radiographic signs of erosion and sclerosis varied most. Regression of erosions was associated with high S-5-HT and P-IL-1sRII, while progression of erosions was associated with high P-5-HT. Regression of sclerosis was associated with an increase in P-5-HT and high ESR. Progression of flattening was associated with high CRP. In conclusion, this study indicates that the progression of radiographic changes that occurs in the TMJ of patients with well-controlled RA during a period of 25-46 months seems to be related to the blood levels of CRP, 5-HT, and IL-1sRII. However, only minor progression can be expected to occur, and with considerable individual variation. PMID:15124777

  7. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature

    PubMed Central

    Newman, Eric A

    2013-01-01

    The retinal vasculature supplies cells of the inner and middle layers of the retina with oxygen and nutrients. Photic stimulation dilates retinal arterioles producing blood flow increases, a response termed functional hyperemia. Despite recent advances, the neurovascular coupling mechanisms mediating the functional hyperemia response in the retina remain unclear. In this review, the retinal functional hyperemia response is described, and the cellular mechanisms that may mediate the response are assessed. These neurovascular coupling mechanisms include neuronal stimulation of glial cells, leading to the release of vasoactive arachidonic acid metabolites onto blood vessels, release of potassium from glial cells onto vessels, and production and release of nitric oxide (NO), lactate, and adenosine from neurons and glia. The modulation of neurovascular coupling by oxygen and NO are described, and changes in functional hyperemia that occur with aging and in diabetic retinopathy, glaucoma, and other pathologies, are reviewed. Finally, outstanding questions concerning retinal blood flow in health and disease are discussed. PMID:23963372

  8. [Current concepts of perinatal ischemic injury in the brain neurovascular unit: molecular targets for neuroprotection].

    PubMed

    Morgun, A V; Kuvacheva, N V; Taranushenko, T E; Khilazheva, E D; Malinovskaia, N A; Gorina, Ia V; Pozhilenkova, E A; Frolova, O V; Salmina, A B

    2013-01-01

    Perinatal hypoxic-ischemic brain injury is a relevant medical and social problem. Among many pathological processes in the neonatal period perinatal hypoxic-ischemic injury is a major cause of further hemorrhage, necrotic and atrophic changes in the brain. This review presents recent data on the basic mechanisms of the hypoxic-ischemic brain injury along the concept of neurovascular unit (neurons, astrocytes, endothelial cells, pericytes) with the focus on alterations in cell-to-cell communication. Pathological changes caused by ischemia-hypoxia are considered within two phases of injury (ischemic phase and reperfusion phase). The review highlights changes in each individual component of the neurovascular unit and their interactions. Molecular targets for pharmacological improvement of intercellular communication within neurovascular unit as a therapeutic strategy in perinatal brain injury are discussed.

  9. Neurovascular changes in acute, sub-acute and chronic mouse models of Parkinson's disease.

    PubMed

    Sarkar, Sumit; Raymick, James; Mann, Dushyant; Bowyer, John F; Hanig, Joseph P; Schmued, Larry C; Paule, Merle G; Chigurupati, Srinivasulu

    2014-02-01

    Although selective neurodegeneration of nigro-striatal dopaminergic neurons is widely accepted as a cause of Parkinson's disease (PD), the role of vascular components in the brain in PD pathology is not well understood. However, the neurodegeneration seen in PD is known to be associated with neuroinflammatory-like changes that can affect or be associated with brain vascular function. Thus, dysfunction of the capillary endothelial cell component of neurovascular units present in the brain may contribute to the damage to dopaminergic neurons that occurs in PD. An animal model of PD employing acute, sub-acute and chronic exposures of mice to methyl-phenyl-tetrahydropyridine (MPTP) was used to determine the extent to which brain vasculature may be damaged in PD. Fluoro-Turquoise gelatin labeling of microvessels and endothelial cells was used to determine the extent of vascular damage produced by MPTP. In addition, tyrosine hydroxylase (TH) and NeuN were employed to detect and quantify dopaminergic neuron damage in the striatum (CPu) and substantia nigra (SNc). Gliosis was evaluated through GFAP immunohistochemistry. MPTP treatment drastically reduced TH immunoreactive neurons in the SNc (20.68 ± 2.83 in acute; 22.98 ± 2.14 in sub-acute; 10.20 ± 2.24 in chronic vs 34.88 ± 2.91 in controls; p<0.001). Similarly, TH immunoreactive terminals were dramatically reduced in the CPu of MPTP treated mice. Additionally, all three MPTP exposures resulted in a decrease in the intensity, length, and number of vessels in both CPu and SNc. Degenerative vascular changes such as endothelial cell 'clusters' were also observed after MPTP suggesting that vasculature damage may be modifying the availability of nutrients and exposing blood cells and/or toxic substances to neurons and glia. In summary, vascular damage and degeneration could be an additional exacerbating factor in the progression of PD, and therapeutics that protect and insure vascular integrity may be novel treatments for

  10. Technetium 99m-methylene diphosphonate bone scans in children with reflex neurovascular dystrophy

    SciTech Connect

    Laxer, R.M.; Allen, R.C.; Malleson, P.N.; Morrison, R.T.; Petty, R.E.

    1985-03-01

    Eleven children with reflex neurovascular dystrophy were investigated by technetium-labeled methylene diphosphonate bone scanning. Eight of 12 scans demonstrated abnormal findings, four showing diffusely decreased uptake and four diffusely increased uptake of the radionuclide in the affected site. Three scans showed normal findings initially, as did one previously abnormal scan when repeated in the asymptomatic patient 6 months later. Diffusely abnormal findings can be helpful in the diagnosis of childhood reflex neurovascular dystrophy, but a normal scan does not exclude the diagnosis.

  11. A neurovascular transmission model for acupuncture-induced nitric oxide.

    PubMed

    Hsiao, Sheng-Hsiung; Tsai, Li-Jen

    2008-09-01

    Acupuncture is the practice of inserting needles into the body to reduce pain or induce anesthesia. More broadly, acupuncture is a family of procedures involving the stimulation of anatomical locations on or in the skin by a variety of techniques. Employing acupuncture to treat human disease or maintain bodily condition has been practiced for thousands of years. However, the mechanism(s) of action of acupuncture at the various meridians are poorly understood. Most studies have indicated that acupuncture is able to increase blood flow. The acupuncture points have high electrical conductance and a relationship of the acupuncture points and meridians with the connective tissue planes and the perivascular space has also been suggested. Several studies employing the human and animal models have shown that acupuncture enhances the generation of nitric oxide (NO) and increases local circulation. Specifically, electroacupuncture (EA) seems to prevent the reduction in NO production from endothelial NO synthetase (eNOS) and neuronal NO synthase (nNOS) that is associated with hypertension and this process involves a stomach-meridian organ but not a non-stomach-meridian organ such as the liver. How can we explain the phenomena of EA and meridian effect? Here, we proposed a neurovascular transmission model for acupuncture induced NO. In this proposed model, the acupuncture stimulus is able to influence connective tissue via mechanical force transfer to the extracellular matrix (ECM). Through the ECM, the mechanotransduction stimulus can be translated or travel from the acupuncture points, which involve local tissue and cells. Cells in the local tissue that have received mechanotransduction induce different types of NO production that can induce changes in blood flow and local circulation. The local mechanical stress produced is coupled to a cyclic strain of the blood vessels and this could then change the frequency of resonance. According to the resonance theory, an oscillatory

  12. Chromoplectic TPM3–ALK rearrangement in a patient with inflammatory myofibroblastic tumor who responded to ceritinib after progression on crizotinib

    PubMed Central

    Mansfield, A. S.; Murphy, S. J.; Harris, F. R.; Robinson, S. I.; Marks, R. S.; Johnson, S. H.; Smadbeck, J. B.; Halling, G. C.; Yi, E. S.; Wigle, D.; Vasmatzis, G.; Jen, J.

    2016-01-01

    Background Inflammatory myofibroblastic tumors (IMTs) are rare sarcomas that can occur at any age. Surgical resection is the primary treatment for patients with localized disease; however, these tumors frequently recur. Less commonly, patients with IMTs develop or present with metastatic disease. There is no standard of care for these patients and traditional cytotoxic therapy is largely ineffective. Most IMTs are associated with oncogenic ALK, ROS1 or PDGFRβ fusions and may benefit from targeted therapy. Patient and methods We sought to understand the genomic abnormalities of a patient who presented for management of metastatic IMT after progression of disease on crizotinib and a significant and durable partial response to the more potent ALK inhibitor ceritinib. Results The residual IMT was resected based on the recommendations of a multidisciplinary tumor sarcoma tumor board and analyzed by whole-genome mate pair sequencing. Analysis of the residual, resected tumor identified a chromoplectic TPM3–ALK rearrangement that involved many other known oncogenes and was confirmed by rtPCR. Conclusions In our analysis of the treatment-resistant, residual IMT, we identified a complex pattern of genetic rearrangements consistent with chromoplexy. Although it is difficult to know for certain if these chromoplectic rearrangements preceded treatment, their presence suggests that chromoplexy has a role in the oncogenesis of IMTs. Furthermore, this patient's remarkable response suggests that ceritinib should be considered as an option after progression on crizotinib for patients with metastatic or unresectable IMT and ALK mutations. PMID:27742657

  13. TGF-β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II–infused mice

    PubMed Central

    Wang, Yu; Ait-Oufella, Hafid; Herbin, Olivier; Bonnin, Philippe; Ramkhelawon, Bhama; Taleb, Soraya; Huang, Jin; Offenstadt, Georges; Combadière, Christophe; Rénia, Laurent; Johnson, Jason L.; Tharaux, Pierre-Louis; Tedgui, Alain; Mallat, Ziad

    2010-01-01

    Complicated abdominal aortic aneurysm (AAA) is a major cause of mortality in elderly men. Ang II–dependent TGF-β activity promotes aortic aneurysm progression in experimental Marfan syndrome. However, the role of TGF-β in experimental models of AAA has not been comprehensively assessed. Here, we show that systemic neutralization of TGF-β activity breaks the resistance of normocholesterolemic C57BL/6 mice to Ang II–induced AAA formation and markedly increases their susceptibility to the disease. These aneurysms displayed a large spectrum of complications on echography, including fissuration, double channel formation, and rupture, leading to death from aneurysm complications. The disease was refractory to inhibition of IFN-γ, IL-4, IL-6, or TNF-α signaling. Genetic deletion of T and B cells or inhibition of the CX3CR1 pathway resulted in partial protection. Interestingly, neutralization of TGF-β activity enhanced monocyte invasiveness, and monocyte depletion markedly inhibited aneurysm progression and complications. Finally, TGF-β neutralization increased MMP-12 activity, and MMP-12 deficiency prevented aneurysm rupture. These results clearly identify a critical role for TGF-β in the taming of the innate immune response and the preservation of vessel integrity in C57BL/6 mice, which contrasts with its reported pathogenic role in Marfan syndrome. PMID:20101093

  14. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases

    PubMed Central

    Kell, Douglas B

    2009-01-01

    Background The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. Review We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox

  15. Ganoderma lucidum Combined with the EGFR Tyrosine Kinase Inhibitor, Erlotinib Synergize to Reduce Inflammatory Breast Cancer Progression.

    PubMed

    Suárez-Arroyo, Ivette J; Rios-Fuller, Tiffany J; Feliz-Mosquea, Yismeilin R; Lacourt-Ventura, Mercedes; Leal-Alviarez, Daniel J; Maldonado-Martinez, Gerónimo; Cubano, Luis A; Martínez-Montemayor, Michelle M

    2016-01-01

    The high incidence of resistance to Tyrosine Kinase Inhibitors (TKIs) targeted against EGFR and downstream pathways has increased the necessity to identify agents that may be combined with these therapies to provide a sustained response for breast cancer patients. Here, we investigate the therapeutic potential of Ganoderma lucidum extract (GLE) in breast cancer, focusing on the regulation of the EGFR signaling cascade when treated with the EGFR TKI, Erlotinib. SUM-149, or intrinsic Erlotinib resistant MDA-MB-231 cells, and a successfully developed Erlotinib resistant cell line, rSUM-149 were treated with increasing concentrations of Erlotinib, GLE, or their combination (Erlotinib/GLE) for 72h. Treatment effects were tested on cell viability, cell proliferation, cell migration and invasion. To determine tumor progression, severe combined immunodeficient mice were injected with SUM-149 cells and then treated with Erlotinib/GLE or Erlotinib for 13 weeks. We assessed the protein expression of ERK1/2 and AKT in in vitro and in vivo models. Our results show that GLE synergizes with Erlotinib to sensitize SUM-149 cells to drug treatment, and overcomes intrinsic and developed Erlotinib resistance. Also, Erlotinib/GLE decreases SUM-149 cell viability, proliferation, migration and invasion. GLE increases Erlotinib sensitivity by inactivating AKT and ERK signaling pathways in our models. We conclude that a combinatorial therapeutic approach may be the best way to increase prognosis in breast cancer patients with EGFR overexpressing tumors. PMID:26958085

  16. SENP1-mediated NEMO deSUMOylation in adipocytes limits inflammatory responses and type-1 diabetes progression.

    PubMed

    Shao, Lan; Zhou, Huanjiao Jenny; Zhang, Haifeng; Qin, Lingfeng; Hwa, John; Yun, Zhong; Ji, Weidong; Min, Wang

    2015-01-01

    Adipocyte dysfunction correlates with the development of diabetes. Here we show that mice with a adipocyte-specific deletion of the SUMO-specific protease SENP1 gene develop symptoms of type-1 diabetes mellitus (T1DM), including hyperglycaemia and glucose intolerance with mild insulin resistance. Peri-pancreatic adipocytes from SENP1-deficient mice exhibit heightened NF-κB activity and production of proinflammatory cytokines, which induce CCL5 expression in adjacent pancreatic islets and direct cytotoxic effects on pancreatic islets. Mechanistic studies show that SENP1 deletion in adipocytes enhances SUMOylation of the NF-κB essential molecule, NEMO, at lysine 277/309, leading to increased NF-κB activity, cytokine production and pancreatic inflammation. We further show that NF-κB inhibitors could inhibit pre-diabetic cytokine production, β-cell damages and ameliorate the T1DM phenotype in SENP1-deficient mice. Feeding a high-fat diet augments both type-1 and type-2 diabetes phenotypes in SENP1-deficient mice, consistent with the effects on adipocyte-derived NF-κB and cytokine signalling. Our study reveals previously unrecognized mechanism regulating the onset and progression of T1DM associated with adipocyte dysfunction. PMID:26596471

  17. SENP1-mediated NEMO deSUMOylation in adipocytes limits inflammatory responses and type-1 diabetes progression

    PubMed Central

    Shao, Lan; Zhou, Huanjiao Jenny; Zhang, Haifeng; Qin, Lingfeng; Hwa, John; Yun, Zhong; Ji, Weidong; Min, Wang

    2015-01-01

    Adipocyte dysfunction correlates with the development of diabetes. Here we show that mice with a adipocyte-specific deletion of the SUMO-specific protease SENP1 gene develop symptoms of type-1 diabetes mellitus (T1DM), including hyperglycaemia and glucose intolerance with mild insulin resistance. Peri-pancreatic adipocytes from SENP1-deficient mice exhibit heightened NF-κB activity and production of proinflammatory cytokines, which induce CCL5 expression in adjacent pancreatic islets and direct cytotoxic effects on pancreatic islets. Mechanistic studies show that SENP1 deletion in adipocytes enhances SUMOylation of the NF-κB essential molecule, NEMO, at lysine 277/309, leading to increased NF-κB activity, cytokine production and pancreatic inflammation. We further show that NF-κB inhibitors could inhibit pre-diabetic cytokine production, β-cell damages and ameliorate the T1DM phenotype in SENP1-deficient mice. Feeding a high-fat diet augments both type-1 and type-2 diabetes phenotypes in SENP1-deficient mice, consistent with the effects on adipocyte-derived NF-κB and cytokine signalling. Our study reveals previously unrecognized mechanism regulating the onset and progression of T1DM associated with adipocyte dysfunction. PMID:26596471

  18. Ganoderma lucidum Combined with the EGFR Tyrosine Kinase Inhibitor, Erlotinib Synergize to Reduce Inflammatory Breast Cancer Progression

    PubMed Central

    Suárez-Arroyo, Ivette J.; Rios-Fuller, Tiffany J.; Feliz-Mosquea, Yismeilin R.; Lacourt-Ventura, Mercedes; Leal-Alviarez, Daniel J.; Maldonado-Martinez, Gerónimo; Cubano, Luis A.; Martínez-Montemayor, Michelle M.

    2016-01-01

    The high incidence of resistance to Tyrosine Kinase Inhibitors (TKIs) targeted against EGFR and downstream pathways has increased the necessity to identify agents that may be combined with these therapies to provide a sustained response for breast cancer patients. Here, we investigate the therapeutic potential of Ganoderma lucidum extract (GLE) in breast cancer, focusing on the regulation of the EGFR signaling cascade when treated with the EGFR TKI, Erlotinib. SUM-149, or intrinsic Erlotinib resistant MDA-MB-231 cells, and a successfully developed Erlotinib resistant cell line, rSUM-149 were treated with increasing concentrations of Erlotinib, GLE, or their combination (Erlotinib/GLE) for 72h. Treatment effects were tested on cell viability, cell proliferation, cell migration and invasion. To determine tumor progression, severe combined immunodeficient mice were injected with SUM-149 cells and then treated with Erlotinib/GLE or Erlotinib for 13 weeks. We assessed the protein expression of ERK1/2 and AKT in in vitro and in vivo models. Our results show that GLE synergizes with Erlotinib to sensitize SUM-149 cells to drug treatment, and overcomes intrinsic and developed Erlotinib resistance. Also, Erlotinib/GLE decreases SUM-149 cell viability, proliferation, migration and invasion. GLE increases Erlotinib sensitivity by inactivating AKT and ERK signaling pathways in our models. We conclude that a combinatorial therapeutic approach may be the best way to increase prognosis in breast cancer patients with EGFR overexpressing tumors. PMID:26958085

  19. Ganoderma lucidum Combined with the EGFR Tyrosine Kinase Inhibitor, Erlotinib Synergize to Reduce Inflammatory Breast Cancer Progression.

    PubMed

    Suárez-Arroyo, Ivette J; Rios-Fuller, Tiffany J; Feliz-Mosquea, Yismeilin R; Lacourt-Ventura, Mercedes; Leal-Alviarez, Daniel J; Maldonado-Martinez, Gerónimo; Cubano, Luis A; Martínez-Montemayor, Michelle M

    2016-01-01

    The high incidence of resistance to Tyrosine Kinase Inhibitors (TKIs) targeted against EGFR and downstream pathways has increased the necessity to identify agents that may be combined with these therapies to provide a sustained response for breast cancer patients. Here, we investigate the therapeutic potential of Ganoderma lucidum extract (GLE) in breast cancer, focusing on the regulation of the EGFR signaling cascade when treated with the EGFR TKI, Erlotinib. SUM-149, or intrinsic Erlotinib resistant MDA-MB-231 cells, and a successfully developed Erlotinib resistant cell line, rSUM-149 were treated with increasing concentrations of Erlotinib, GLE, or their combination (Erlotinib/GLE) for 72h. Treatment effects were tested on cell viability, cell proliferation, cell migration and invasion. To determine tumor progression, severe combined immunodeficient mice were injected with SUM-149 cells and then treated with Erlotinib/GLE or Erlotinib for 13 weeks. We assessed the protein expression of ERK1/2 and AKT in in vitro and in vivo models. Our results show that GLE synergizes with Erlotinib to sensitize SUM-149 cells to drug treatment, and overcomes intrinsic and developed Erlotinib resistance. Also, Erlotinib/GLE decreases SUM-149 cell viability, proliferation, migration and invasion. GLE increases Erlotinib sensitivity by inactivating AKT and ERK signaling pathways in our models. We conclude that a combinatorial therapeutic approach may be the best way to increase prognosis in breast cancer patients with EGFR overexpressing tumors.

  20. Preliminary methods for wearable neuro-vascular assessment with non-invasive, active sensing.

    PubMed

    Carek, Andrew M; Töreyin, Hakan; Hersek, Sinan; Inan, Omer T

    2015-01-01

    In this study, a non-invasive and active sensing scheme that is ultimately aimed to be integrated in a wearable system for neuro-vascular health assessment is presented with preliminary results. With this system, vascular tone is modulated by local heating and cooling of the palm, and the resulting changes in local hemodynamics are monitored via impedance plethysmography (IPG) and photoplethysmography (PPG) sensors interfaced with custom analog electronics. Proof-of-concept measurements were conducted on three subjects using hot packs/ice bags to modulate the palmar skin temperature. From ensemble averaged and smoothed versions of pulsatile IPG and PPG signals, the effects of local changes in skin temperature on a series of parameters associated with neuro-vascular mechanisms (heart rate, blood volume, blood flow rate, blood volume pulse inflection point area ratio, and local pulse transit time) have been observed. The promising experimental results suggest that, with different active temperature modulation schemes (consisting of heating/cooling cycles covering different temperature ranges at different rates), it would be possible to enhance the depth and specificity of the information associated with neuro-vascular health by using biosensors that can fit inside a wearable device (such as a sleeve). This study sets the foundation for future studies on designing and testing such a wearable neuro-vascular health assessment system employing active sensing. PMID:26736951

  1. Towards a bimodal proximity sensor for in situ neurovascular bundle detection during dental implant surgery

    PubMed Central

    Weber, Jessie R.; Baribeau, François; Grenier, Paul; Émond, Frédéric; Dubois, Sylvain; Duchesne, François; Girard, Marc; Pope, Timothy; Gallant, Pascal; Mermut, Ozzy; Moghadam, Hassan Ghaderi

    2013-01-01

    Proof of concept results are presented towards an in situ bimodal proximity sensor for neurovascular bundle detection during dental implant surgery using combined near infrared absorption (NIR) and optical coherence tomography (OCT) techniques. These modalities are shown to have different sensitivity to the proximity of optical contrast from neurovascular bundles. NIR AC and DC signals from the pulsing of an artery enable qualitative ranging of the bundle in the millimeter range, with best sensitivity around 0.5-3mm distance in a custom phantom setup. OCT provides structural mapping of the neurovascular bundle at sub-millimeter distances in an ex vivo human jaw bone. Combining the two techniques suggests a novel ranging system for the surgeon that could be implemented in a “smart drill.” The proximity to the neurovascular bundle can be tracked in real time in the range of a few millimeters with NIR signals, after which higher resolution imaging OCT to provide finer ranging in the sub-millimeter distances. PMID:24466473

  2. Glossopharyngeal neuralgia caused by a complex neurovascular conflict: Case report and review of the literature

    PubMed Central

    Alafaci, Concetta; Granata, Francesca; Cutugno, Mariano; Marino, Daniele; Conti, Alfredo; Tomasello, Francesco

    2015-01-01

    Background: Glossopharyngeal neuralgia (GN) is a rare condition characterized by severe, paroxysmal episodes of pain mainly localized to the external ear canal, pharynx, and tongue, usually caused by a neurovascular conflict between postero-inferior cerebellar artery (PICA) and IX cranial nerve. Sometimes there is also a compression of X c.n. Case Description: We present a case of a 71-year-old female with a 3-year history of intense pain localized in the pharynx and posterior portion of the tongue. Preoperative magnetic resonance imaging (MRI) documented a neurovascular conflict between a loop of PICA and IX left c.n. Surgery was performed through a retrosigmoid craniectomy. The intraoperative findings documented a loop of PICA compressing IX, X, and XI c.n. Microvascular decompression (MVD) of IX c.n. was performed using the interposing technique. No rhizotomy and MVD of the X c.n. was performed. Postoperative course showed the regression of all symptoms. Conclusions: The surgical treatment of patients with GN caused by complex neurovascular conflicts can be safely performed with the classical MVD of IX c.n. A double MVD of both IX and X c.n. has a role only in patients presenting symptoms from both nerves. Rhizotomy, in our opinion, has to be avoided in all cases. The authors review the literature concerning GN caused by complex neurovascular conflicts. PMID:25709856

  3. Neurovascular cross talk in diabetic retinopathy: Pathophysiological roles and therapeutic implications.

    PubMed

    Moran, Elizabeth P; Wang, Zhongxiao; Chen, Jing; Sapieha, Przemyslaw; Smith, Lois E H; Ma, Jian-Xing

    2016-09-01

    Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in developed countries, and its prevalence will increase as the global incidence of diabetes grows exponentially. DR begins with an early nonproliferative stage in which retinal blood vessels and neurons degenerate as a consequence of chronic hyperglycemia, resulting in vasoregression and persistent retinal ischemia, metabolic disequilibrium, and inflammation. This is conducive to overcompensatory pathological neovascularization associated with advanced proliferative DR. Although DR is considered a microvascular complication, the retinal microvasculature is intimately associated with and governed by neurons and glia; neurodegeneration, neuroinflammation, and dysregulation of neurovascular cross talk are responsible in part for vascular abnormalities in both early nonproliferative DR and advanced proliferative DR. Neuronal activity directly regulates microvascular dilation and blood flow in the process of neurovascular coupling. Retinal neurons also secrete guidance cues in response to injury, ischemia, or metabolic stress that may either promote or suppress vascular outgrowth, either alleviating or exacerbating DR, contingent on the stage of disease and retinal microenvironment. Neurodegeneration, impaired neurovascular coupling, and dysregulation of neuronal guidance cues are key events in the pathogenesis of DR, and correcting these events may prevent or delay development of advanced DR. The review discusses the mechanisms of neurovascular cross talk and its dysregulation in DR, and their potential therapeutic implications. PMID:27473938

  4. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    PubMed Central

    Muñoz, Manuel F.; Puebla, Mariela; Figueroa, Xavier F.

    2015-01-01

    Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30) and channels formed by pannexins (Panx-1). The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO) can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS) and neuronal NOS (nNOS) are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in this process

  5. Pyrroloquinoline Quinone Decelerates Rheumatoid Arthritis Progression by Inhibiting Inflammatory Responses and Joint Destruction via Modulating NF-κB and MAPK Pathways.

    PubMed

    Liu, Zhongbing; Sun, Chi; Tao, Ran; Xu, Xinbao; Xu, Libin; Cheng, Hongbing; Wang, Youhua; Zhang, Dongmei

    2016-02-01

    Pyrroloquinoline quinone (PQQ) is a naturally occurring redox cofactor that acts as an essential nutrient and antioxidant and has been reported to exert potent immunosuppressive effects. However, the therapeutically potential of PQQ on rheumatoid arthritis (RA) has not been explored. In the present study, the anti-inflammatory effects of PQQ were investigated in interleukin (IL)-1β-treated SW982 cells, a RA-like fibroblast-like synoviocytes (FLSs) injury model. Our observations showed that pretreatment with PQQ significantly inhibited the expression of matrix metalloproteinase (MMP)-1 and MMP-3 and suppressed the production of proinflammatory mediators such as TNF-α and IL-6 in IL-1β-treated SW982 cells. The nuclear translocation of nuclear factor kappa B (NF-κB) and the phosphorylation level of p65, p38, and JNK MAP kinase pathways were also inhibited by PQQ in IL-1β-stimulated SW982 cells. To further confirm the therapeutic effects of PQQ on RA in vivo, a collagen-induced arthritis (CIA) model was used. Mice treated with PQQ demonstrated marked attenuation of arthritic symptoms based on histopathology and clinical arthritis scores. These results collectively suggested that PQQ might be a promising therapeutic agent for alleviating the progress of RA.

  6. Neurovascular changes in acute, sub-acute and chronic mouse models of Parkinson's disease.

    PubMed

    Sarkar, Sumit; Raymick, James; Mann, Dushyant; Bowyer, John F; Hanig, Joseph P; Schmued, Larry C; Paule, Merle G; Chigurupati, Srinivasulu

    2014-02-01

    Although selective neurodegeneration of nigro-striatal dopaminergic neurons is widely accepted as a cause of Parkinson's disease (PD), the role of vascular components in the brain in PD pathology is not well understood. However, the neurodegeneration seen in PD is known to be associated with neuroinflammatory-like changes that can affect or be associated with brain vascular function. Thus, dysfunction of the capillary endothelial cell component of neurovascular units present in the brain may contribute to the damage to dopaminergic neurons that occurs in PD. An animal model of PD employing acute, sub-acute and chronic exposures of mice to methyl-phenyl-tetrahydropyridine (MPTP) was used to determine the extent to which brain vasculature may be damaged in PD. Fluoro-Turquoise gelatin labeling of microvessels and endothelial cells was used to determine the extent of vascular damage produced by MPTP. In addition, tyrosine hydroxylase (TH) and NeuN were employed to detect and quantify dopaminergic neuron damage in the striatum (CPu) and substantia nigra (SNc). Gliosis was evaluated through GFAP immunohistochemistry. MPTP treatment drastically reduced TH immunoreactive neurons in the SNc (20.68 ± 2.83 in acute; 22.98 ± 2.14 in sub-acute; 10.20 ± 2.24 in chronic vs 34.88 ± 2.91 in controls; p<0.001). Similarly, TH immunoreactive terminals were dramatically reduced in the CPu of MPTP treated mice. Additionally, all three MPTP exposures resulted in a decrease in the intensity, length, and number of vessels in both CPu and SNc. Degenerative vascular changes such as endothelial cell 'clusters' were also observed after MPTP suggesting that vasculature damage may be modifying the availability of nutrients and exposing blood cells and/or toxic substances to neurons and glia. In summary, vascular damage and degeneration could be an additional exacerbating factor in the progression of PD, and therapeutics that protect and insure vascular integrity may be novel treatments for

  7. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit

    PubMed Central

    Ridder, Dirk A.; Wenzel, Jan; Müller, Kristin; Töllner, Kathrin; Tong, Xin-Kang; Assmann, Julian C.; Stroobants, Stijn; Weber, Tobias; Niturad, Cristina; Fischer, Lisanne; Lembrich, Beate; Wolburg, Hartwig; Grand’Maison, Marilyn; Papadopoulos, Panayiota; Korpos, Eva; Truchetet, Francois; Rades, Dirk; Sorokin, Lydia M.; Schmidt-Supprian, Marc; Bedell, Barry J.; Pasparakis, Manolis; Balschun, Detlef; D’Hooge, Rudi; Löscher, Wolfgang; Hamel, Edith

    2015-01-01

    Inactivating mutations of the NF-κB essential modulator (NEMO), a key component of NF-κB signaling, cause the genetic disease incontinentia pigmenti (IP). This leads to severe neurological symptoms, but the mechanisms underlying brain involvement were unclear. Here, we show that selectively deleting Nemo or the upstream kinase Tak1 in brain endothelial cells resulted in death of endothelial cells, a rarefaction of brain microvessels, cerebral hypoperfusion, a disrupted blood–brain barrier (BBB), and epileptic seizures. TAK1 and NEMO protected the BBB by activating the transcription factor NF-κB and stabilizing the tight junction protein occludin. They also prevented brain endothelial cell death in a NF-κB–independent manner by reducing oxidative damage. Our data identify crucial functions of inflammatory TAK1–NEMO signaling in protecting the brain endothelium and maintaining normal brain function, thus explaining the neurological symptoms associated with IP. PMID:26347470

  8. Neurovascular Compression Caused by Popliteus Muscle Enlargement Without Discrete Trauma

    PubMed Central

    2016-01-01

    Popliteal entrapment syndrome caused by isolated popliteus muscle enlargement is very rare, although its occurrence has been reported after discrete trauma. However, popliteal artery stenosis with combined peroneal and proximal tibial neuropathy caused by popliteus muscle enlargement without preceding trauma has not been reported. A 57-year-old man presented with a tingling sensation and pain in his left calf. He had no previous history of an injury. The symptoms were similar to those of lumbosacral radiculopathy. Calf pain became worse despite treatment, and the inability to flex his toes progressed. Computed tomography angiography and magnetic resonance imaging of the lower extremity showed popliteal artery stenosis caused by popliteus muscle enlargement and surrounding edema. An electrodiagnostic study confirmed combined peroneal and proximal tibial neuropathy at the popliteal fossa. Urgent surgical decompression was performed because of the progressive neurologic deficit and increasing neuropathic pain. The calf pain disappeared immediately after surgery, and he was discharged after the neurologic functions improved. PMID:27446794

  9. Identification of a neurovascular signaling pathway regulating seizures in mice

    PubMed Central

    Fredriksson, Linda; Stevenson, Tamara K; Su, Enming J; Ragsdale, Margaret; Moore, Shannon; Craciun, Stefan; Schielke, Gerald P; Murphy, Geoffrey G; Lawrence, Daniel A

    2015-01-01

    Objective A growing body of evidence suggests that increased blood–brain barrier (BBB) permeability can contribute to the development of seizures. The protease tissue plasminogen activator (tPA) has been shown to promote BBB permeability and susceptibility to seizures. In this study, we examined the pathway regulated by tPA in seizures. Methods An experimental model of kainate-induced seizures was used in genetically modified mice, including mice deficient in tPA (tPA−/−), its inhibitor neuroserpin (Nsp−/−), or both (Nsp:tPA−/−), and in mice conditionally deficient in the platelet-derived growth factor receptor alpha (PDGFRα). Results Compared to wild-type (WT) mice, Nsp−/− mice have significantly reduced latency to seizure onset and generalization; whereas tPA−/− mice have the opposite phenotype, as do Nsp:tPA−/− mice. Furthermore, interventions that maintain BBB integrity delay seizure propagation, whereas osmotic disruption of the BBB in seizure-resistant tPA−/− mice dramatically reduces the time to seizure onset and accelerates seizure progression. The phenotypic differences in seizure progression between WT, tPA−/−, and Nsp−/− mice are also observed in electroencephalogram recordings in vivo, but absent in ex vivo electrophysiological recordings where regulation of the BBB is no longer necessary to maintain the extracellular environment. Finally, we demonstrate that these effects on seizure progression are mediated through signaling by PDGFRα on perivascular astrocytes. Interpretation Together, these data identify a specific molecular pathway involving tPA-mediated PDGFRα signaling in perivascular astrocytes that regulates seizure progression through control of the BBB. Inhibition of PDGFRα signaling and maintenance of BBB integrity might therefore offer a novel clinical approach for managing seizures. PMID:26273685

  10. Sensory-Evoked Intrinsic Imaging Signals in the Olfactory Bulb Are Independent of Neurovascular Coupling

    PubMed Central

    Vincis, Roberto; Lagier, Samuel; Van De Ville, Dimitri; Rodriguez, Ivan; Carleton, Alan

    2016-01-01

    Summary Functional brain-imaging techniques used in humans and animals, such as functional MRI and intrinsic optical signal (IOS) imaging, are thought to largely rely on neurovascular coupling and hemodynamic responses. Here, taking advantage of the well-described micro-architecture of the mouse olfactory bulb, we dissected the nature of odor-evoked IOSs. Using in vivo pharmacology in transgenic mouse lines reporting activity in different cell types, we show that parenchymal IOSs are largely independent of neurotransmitter release and neurovascular coupling. Furthermore, our results suggest that odor-evoked parenchymal IOSs originate from changes in light scattering of olfactory sensory neuron axons, mostly due to water movement following action potential propagation. Our study sheds light on a direct correlate of neuronal activity, which may be used for large-scale functional brain imaging. PMID:26146075

  11. EMCCD-Based High Resolution Dynamic X-Ray Detector for Neurovascular Interventions

    PubMed Central

    Sharma, P.; Vasan, S.N. Swetadri; Jain, A.; Panse, A.; Titus, A.H.; Cartwright, A. N.; Bednarek, D. R; Rudin, S.

    2012-01-01

    We have designed and developed from the discrete component level a high resolution dynamic detector for neurovascular interventions. The heart of the detector is a 1024 × 1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm2, bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm micro-columnar CsI(TI) scintillator via a 3.3:1 fiber optic taper (FOT). The detector provides x-ray images of 9 cycles/mm resolution at 15 frames/sec and real time live video at 30 frames/sec with binning at a lower resolution, both independent of gain applied to EMCCD, as needed for region-of-interest (ROI) image guidance during neurovascular interventions. PMID:22256144

  12. Cerebellopontine angle and internal auditory canal: neurovascular anatomy on gas CT cisternograms

    SciTech Connect

    Bird, C.R.; Hasso, A.N.; Drayer, B.P.; Hinshaw, D.B. Jr.; Thompson, J.R.

    1985-03-01

    The authors reviewed 103 normal gas CT cisternograms to delineate the appearance of normal neurovascular structures in the cerebellopontine angle (CPA) and internal auditory canal (IAC). Cranial nerves VII and VIII were identified in the CPA in 97% of cases, either separately (53%) or as a bundle (44%). Intracanalicular branches of the VIIIth cranial nerve were identified in 20% of cases, and cranial nerve V was visualized in the CPA in 14%. The characteristic vascular loop, usually the anterior inferior cerebellar artery, was visible in 35% of cases, and, in 22% of visualized cases, was in an intracanalicular location. In 10% of cases, greater than 66% of the IAC was occupied by the neurovascular bundle. Familiarity with the normal anatomy and variations seen on gas CT cisternograms is necessary to prevent false-positive interpretations.

  13. Neurovascular and Immuno-Imaging: From Mechanisms to Therapies. Proceedings of the Inaugural Symposium

    PubMed Central

    Akassoglou, Katerina; Agalliu, Dritan; Chang, Christopher J.; Davalos, Dimitrios; Grutzendler, Jaime; Hillman, Elizabeth M. C.; Khakh, Baljit S.; Kleinfeld, David; McGavern, Dorian B.; Nelson, Sarah J.; Zlokovic, Berislav V.

    2016-01-01

    Breakthrough advances in intravital imaging have launched a new era for the study of dynamic interactions at the neurovascular interface in health and disease. The first Neurovascular and Immuno-Imaging Symposium was held at the Gladstone Institutes, University of California, San Francisco in March, 2015. This highly interactive symposium brought together a group of leading researchers who discussed how recent studies have unraveled fundamental biological mechanisms in diverse scientific fields such as neuroscience, immunology, and vascular biology, both under physiological and pathological conditions. These Proceedings highlight how advances in imaging technologies and their applications revolutionized our understanding of the communication between brain, immune, and vascular systems and identified novel targets for therapeutic intervention in neurological diseases. PMID:26941593

  14. Early effects of high-fat diet on neurovascular function and focal ischemic brain injury.

    PubMed

    Li, Weiguo; Prakash, Roshini; Chawla, Dhruv; Du, Wenting; Didion, Sean P; Filosa, Jessica A; Zhang, Quanguang; Brann, Darrell W; Lima, Victor V; Tostes, Rita C; Ergul, Adviye

    2013-06-01

    Obesity is a risk factor for stroke, but the early effects of high-fat diet (HFD) on neurovascular function and ischemic stroke outcomes remain unclear. The goal of this study was to test the hypotheses that HFD beginning early in life 1) impairs neurovascular coupling, 2) causes cerebrovascular dysfunction, and 3) worsens short-term outcomes after cerebral ischemia. Functional hyperemia and parenchymal arteriole (PA) reactivity were measured in rats after 8 wk of HFD. The effect of HFD on basilar artery function after middle cerebral artery occlusion (MCAO) and associated O-GlcNAcylation were assessed. Neuronal cell death, infarct size, hemorrhagic transformation (HT) frequency/severity, and neurological deficit were evaluated after global ischemia and transient MCAO. HFD caused a 10% increase in body weight and doubled adiposity without a change in lipid profile, blood glucose, and blood pressure. Functional hyperemia and PA relaxation were decreased with HFD. Basilar arteries from stroked HFD rats were more sensitive to contractile factors, and acetylcholine-mediated relaxation was impaired. Vascular O-GlcNAcylated protein content was increased with HFD. This group also showed greater mortality rate, infarct volume, HT occurrence rate, and HT severity and poor functional outcome compared with the control diet group. These results indicate that HFD negatively affects neurovascular coupling and cerebrovascular function even in the absence of dyslipidemia. These early cerebrovascular changes may be the cause of greater cerebral injury and poor outcomes of stroke in these animals. PMID:23576615

  15. Curcumin in inflammatory diseases.

    PubMed

    Shehzad, Adeeb; Rehman, Gauhar; Lee, Young Sup

    2013-01-01

    Curcumin (diferuloylmethane), a yellow coloring agent extracted from turmeric is also used as a remedy for the treatment and prevention of inflammatory diseases. Acute and chronic inflammation is a major factor in the progression of obesity, type II diabetes, arthritis, pancreatitis, cardiovascular, neurodegenerative and metabolic diseases, as well as certain types of cancer. Turmeric has a long history of use in Ayurvedic medicine for the treatment of inflammatory disorders. Recent studies on the efficacy and therapeutic applicability of turmeric have suggested that the active ingredient of tumeric is curcumin. Further, compelling evidence has shown that curcumin has the ability to inhibit inflammatory cell proliferation, invasion, and angiogenesis through multiple molecular targets and mechanisms of action. Curcumin is safe, non-toxic, and mediates its anti-inflammatory effects through the down-regulation of inflammatory transcription factors, cytokines, redox status, protein kinases, and enzymes that all promote inflammation. In addition, curcumin induces apoptosis through mitochondrial and receptor-mediated pathways, as well as activation of caspase cascades. In the current study, the anti-inflammatory effects of curcumin were evaluated relative to various chronic inflammatory diseases. Based on the available pharmacological data obtained from in vitro and in vivo research, as well as clinical trials, an opportunity exists to translate curcumin into clinics for the prevention of inflammatory diseases in the near future. PMID:23281076

  16. Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: Possible link to blood–brain barrier dysfunction

    PubMed Central

    Winkler, Maren K. L.; Chassidim, Yoash; Lublinsky, Svetlana; Revankar, Gajanan S.; Major, Sebastian; Kang, Eun-Jeung; Oliveira-Ferreira, Ana I.; Woitzik, Johannes; Sandow, Nora; Scheel, Michael; Friedman, Alon; Dreier, Jens P.

    2013-01-01

    SUMMARY Spreading depolarization describes a sustained neuronal and astroglial depolarization with abrupt ion translocation between intraneuronal and extracellular space leading to a cytotoxic edema and silencing of spontaneous activity. Spreading depolarizations occur abundantly in acutely injured human brain and are assumed to facilitate neuronal death through toxic effects, increased metabolic demand, and inverse neurovascular coupling. Inverse coupling describes severe hypoperfusion in response to spreading depolarization. Ictal epileptic events are less frequent than spreading depolarizations in acutely injured human brain but may also contribute to lesion progression through increased metabolic demand. Whether abnormal neurovascular coupling can occur with ictal epileptic events is unknown. Herein we describe a patient with aneurysmal subarachnoid hemorrhage in whom spreading depolarizations and ictal epileptic events were measured using subdural opto-electrodes for direct current electrocorticography and regional cerebral blood flow recordings with laser-Doppler flowmetry. Simultaneously, changes in tissue partial pressure of oxygen were recorded with an intraparenchymal oxygen sensor. Isolated spreading depolarizations and clusters of recurrent spreading depolarizations with persistent depression of spontaneous activity were recorded over several days followed by a status epilepticus. Both spreading depolarizations and ictal epileptic events where accompanied by hyperemic blood flow responses at one optode but mildly hypoemic blood flow responses at another. Of note, quantitative analysis of Gadolinium-diethylene-triamine-pentaacetic acid (DTPA)–enhanced magnetic resonance imaging detected impaired blood–brain barrier integrity in the region where the optode had recorded the mildly hypoemic flow responses. The data suggest that abnormal flow responses to spreading depolarizations and ictal epileptic events, respectively, may be associated with blood

  17. Acute Resveratrol Consumption Improves Neurovascular Coupling Capacity in Adults with Type 2 Diabetes Mellitus

    PubMed Central

    Wong, Rachel H.X.; Raederstorff, Daniel; Howe, Peter R.C.

    2016-01-01

    Background: Poor cerebral perfusion may contribute to cognitive impairment in type 2 diabetes mellitus (T2DM). We conducted a randomized controlled trial to test the hypothesis that resveratrol can enhance cerebral vasodilator function and thereby alleviate the cognitive deficits in T2DM. We have already reported that acute resveratrol consumption improved cerebrovascular responsiveness (CVR) to hypercapnia. We now report the effects of resveratrol on neurovascular coupling capacity (CVR to cognitive stimuli), cognitive performance and correlations with plasma resveratrol concentrations. Methods: Thirty-six T2DM adults aged 40–80 years were randomized to consume single doses of resveratrol (0, 75, 150 and 300 mg) at weekly intervals. Transcranial Doppler ultrasound was used to monitor changes in blood flow velocity (BFV) during a cognitive test battery. The battery consisted of dual-tasking (finger tapping with both Trail Making task and Serial Subtraction 3 task) and a computerized multi-tasking test that required attending to four tasks simultaneously. CVR to cognitive tasks was calculated as the per cent increase in BFV from pre-test basal to peak mean blood flow velocity and also as the area under the curve for BFV. Results: Compared to placebo, 75 mg resveratrol significantly improved neurovascular coupling capacity, which correlated with plasma total resveratrol levels. Enhanced performance on the multi-tasking test battery was also evident following 75 mg and 300 mg of resveratrol. Conclusion: a single 75 mg dose of resveratrol was able to improve neurovascular coupling and cognitive performance in T2DM. Evaluation of benefits of chronic resveratrol supplementation is now warranted. PMID:27420093

  18. Neurovascular and neuroimaging effects of the hallucinogenic serotonin receptor agonist psilocin in the rat brain.

    PubMed

    Spain, Aisling; Howarth, Clare; Khrapitchev, Alexandre A; Sharp, Trevor; Sibson, Nicola R; Martin, Chris

    2015-12-01

    The development of pharmacological magnetic resonance imaging (phMRI) has presented the opportunity for investigation of the neurophysiological effects of drugs in vivo. Psilocin, a hallucinogen metabolised from psilocybin, was recently reported to evoke brain region-specific, phMRI signal changes in humans. The present study investigated the effects of psilocin in a rat model using phMRI and then probed the relationship between neuronal and haemodynamic responses using a multimodal measurement preparation. Psilocin (2 mg/kg or 0.03 mg/kg i.v.) or vehicle was administered to rats (N=6/group) during either phMRI scanning or concurrent imaging of cortical blood flow and recording of local field potentials. Compared to vehicle controls psilocin (2 mg/kg) evoked phMRI signal increases in a number of regions including olfactory and limbic areas and elements of the visual system. PhMRI signal decreases were seen in other regions including somatosensory and motor cortices. Investigation of neurovascular coupling revealed that whilst neuronal responses (local field potentials) to sensory stimuli were decreased in amplitude by psilocin administration, concurrently measured haemodynamic responses (cerebral blood flow) were enhanced. The present findings show that psilocin evoked region-specific changes in phMRI signals in the rat, confirming recent human data. However, the results also suggest that the haemodynamic signal changes underlying phMRI responses reflect changes in both neuronal activity and neurovascular coupling. This highlights the importance of understanding the neurovascular effects of pharmacological manipulations for interpreting haemodynamic neuroimaging data. PMID:26192543

  19. Impaired neurovascular coupling in the APPxPS1 mouse model of Alzheimer's disease.

    PubMed

    Rancillac, Armelle; Geoffroy, Helene; Rossier, Jean

    2012-12-01

    The tight coupling between neuronal activity and the local increase of blood flow termed neurovascular coupling is essential for normal brain function. This mechanism of regulation is compromised in Alzheimer's Disease (AD). In order to determine whether a purely vascular dysfunction or a neuronal alteration of blood vessels diameter control could be responsible for the impaired neurovascular coupling observed in AD, blood vessels reactivity in response to different pharmacological stimulations was examined in double transgenic APPxPS1 mice model of AD. Blood vessels movements were monitored using infrared videomicroscopy ex vivo, in cortical slices of 8 month-old APPxPS1 and wild type (WT) mice. We quantified vasomotor responses induced either by direct blood vessel stimulation with a thromboxane A2 analogue, the U46619 (9,11-dideoxy-11a,9a-epoxymethanoprostaglandin F2α) or via the stimulation of interneurons with the nicotinic acetylcholine receptor (nAChRs) agonist DMPP (1,1-Dimethyl-4- phenylpiperazinium iodide). Using both types of stimulation, no significant differences were detected for the amplitude of blood vessel diameter changes between the transgenic APPxPS1 mice model of AD and WT mice, although the kinetics of recovery were slower in APPxPS1 mice. We find that activation of neocortical interneurons with DMPP induced both vasodilation via Nitric Oxide (NO) release and constriction via Neuropeptide Y (NPY) release. However, we observed a smaller proportion of reactive blood vessels following a neuronal activation in transgenic mice compared with WT mice. Altogether, these results suggest that in this mouse model of AD, deficiency in the cortical neurovascular coupling essentially results from a neuronal rather than a vascular dysfunction.

  20. A Critical Role for the Vascular Endothelium in Functional Neurovascular Coupling in the Brain

    PubMed Central

    Chen, Brenda R.; Kozberg, Mariel G.; Bouchard, Matthew B.; Shaik, Mohammed A.; Hillman, Elizabeth M. C.

    2014-01-01

    Background The functional modulation of blood flow in the brain is critical for brain health and is the basis of contrast in functional magnetic resonance imaging. There is evident coupling between increases in neuronal activity and increases in local blood flow; however, many aspects of this neurovascular coupling remain unexplained by current models. Based on the rapid dilation of distant pial arteries during cortical functional hyperemia, we hypothesized that endothelial signaling may play a key role in the long‐range propagation of vasodilation during functional hyperemia in the brain. Although well characterized in the peripheral vasculature, endothelial involvement in functional neurovascular coupling has not been demonstrated. Methods and Results We combined in vivo exposed‐cortex multispectral optical intrinsic signal imaging (MS‐OISI) with a novel in vivo implementation of the light‐dye technique to record the cortical hemodynamic response to somatosensory stimulus in rats before and after spatially selective endothelial disruption. We demonstrate that discrete interruption of endothelial signaling halts propagation of stimulus‐evoked vasodilation in pial arteries, and that wide‐field endothelial disruption in pial arteries significantly attenuates the hemodynamic response to stimulus, particularly the early, rapid increase and peak in hyperemia. Conclusions Involvement of endothelial pathways in functional neurovascular coupling provides new explanations for the spatial and temporal features of the hemodynamic response to stimulus and could explain previous results that were interpreted as evidence for astrocyte‐mediated control of functional hyperemia. Our results unify many aspects of blood flow regulation in the brain and body and prompt new investigation of direct links between systemic cardiovascular disease and neural deficits. PMID:24926076

  1. The Brain’s Heart – Therapeutic Opportunities for Patent Foramen Ovale (PFO) and Neurovascular Disease

    PubMed Central

    Ning, MingMing; Lo, Eng H.; Ning, Pei-Chen; Xu, Su-Yu; McMullin, David; Demirjian, Zareh; Inglessis, Ignacio; Dec, G William; Palacios, Igor; Buonanno, Ferdinando S.

    2013-01-01

    Patent foramen ovale (PFO), a common congenital cardiac abnormality, is a connection between the right and left atria in the heart. As a “back door to the brain”, PFO can serve as a conduit for paradoxical embolism, allowing venous thrombi to enter the arterial circulation, avoiding filtration by the lungs, and causing ischemic stroke. PFO-related strokes affect more than 150,000 people per year in the US, and PFO is present in up to 60% of migraine patients with aura, and in one out of four normal individuals. So, in such a highly prevalent condition, what are the best treatment and prevention strategies? Emerging studies show PFO-related neurovascular disease to be a multi-organ condition with varying individual risk factors that may require individualized therapeutic approaches – opening the field for new pharmacologic and therapeutic targets. The anatomy of PFO suggests that, in addition to thrombi, it can also allow harmful circulatory factors to travel directly from the venous to the arterial circulation, a concept important in finding novel therapeutic targets for PFO-related neurovascular injury. Here, we: 1) review emerging data on PFO-related injuries and clinical trials; 2) discuss potential mechanisms of PFO-related neurovascular disease in the context of multi-organ interaction and heart-brain signaling; and 3) discuss novel therapeutic targets and research frontiers. Clinical studies and molecular mapping of the circulatory landscape of this multi-organ disease will both be necessary in order to better individualize clinical treatment for a condition affecting more than a quarter of the world’s population. PMID:23528225

  2. The brain's heart - therapeutic opportunities for patent foramen ovale (PFO) and neurovascular disease.

    PubMed

    Ning, Mingming; Lo, Eng H; Ning, Pei-Chen; Xu, Su-Yu; McMullin, David; Demirjian, Zareh; Inglessis, Ignacio; Dec, G William; Palacios, Igor; Buonanno, Ferdinando S

    2013-08-01

    Patent foramen ovale (PFO), a common congenital cardiac abnormality, is a connection between the right and left atria in the heart. As a "back door to the brain", PFO can serve as a conduit for paradoxical embolism, allowing venous thrombi to enter the arterial circulation, avoiding filtration by the lungs, and causing ischemic stroke. PFO-related strokes affect more than 150,000 people per year in the US, and PFO is present in up to 60% of migraine patients with aura, and in one out of four normal individuals. So, in such a highly prevalent condition, what are the best treatment and prevention strategies? Emerging studies show PFO-related neurovascular disease to be a multi-organ condition with varying individual risk factors that may require individualized therapeutic approaches - opening the field for new pharmacologic and therapeutic targets. The anatomy of PFO suggests that, in addition to thrombi, it can also allow harmful circulatory factors to travel directly from the venous to the arterial circulation, a concept important in finding novel therapeutic targets for PFO-related neurovascular injury. Here, we: 1) review emerging data on PFO-related injuries and clinical trials; 2) discuss potential mechanisms of PFO-related neurovascular disease in the context of multi-organ interaction and heart-brain signaling; and 3) discuss novel therapeutic targets and research frontiers. Clinical studies and molecular mapping of the circulatory landscape of this multi-organ disease will both be necessary in order to better individualize clinical treatment for a condition affecting more than a quarter of the world's population.

  3. Volumetric BOLD fMRI simulation: from neurovascular coupling to multivoxel imaging

    PubMed Central

    2012-01-01

    Background The blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) modality has been numerically simulated by calculating single voxel signals. However, the observation on single voxel signals cannot provide information regarding the spatial distribution of the signals. Specifically, a single BOLD voxel signal simulation cannot answer the fundamental question: is the magnetic resonance (MR) image a replica of its underling magnetic susceptibility source? In this paper, we address this problem by proposing a multivoxel volumetric BOLD fMRI simulation model and a susceptibility expression formula for linear neurovascular coupling process, that allow us to examine the BOLD fMRI procedure from neurovascular coupling to MR image formation. Methods Since MRI technology only senses the magnetism property, we represent a linear neurovascular-coupled BOLD state by a magnetic susceptibility expression formula, which accounts for the parameters of cortical vasculature, intravascular blood oxygenation level, and local neuroactivity. Upon the susceptibility expression of a BOLD state, we carry out volumetric BOLD fMRI simulation by calculating the fieldmap (established by susceptibility magnetization) and the complex multivoxel MR image (by intravoxel dephasing). Given the predefined susceptibility source and the calculated complex MR image, we compare the MR magnitude (phase, respectively) image with the predefined susceptibility source (the calculated fieldmap) by spatial correlation. Results The spatial correlation between the MR magnitude image and the magnetic susceptibility source is about 0.90 for the settings of TE = 30 ms, B0 = 3 T, voxel size = 100 micron, vessel radius = 3 micron, and blood volume fraction = 2%. Using these parameters value, the spatial correlation between the MR phase image and the susceptibility-induced fieldmap is close to 1.00. Conclusion Our simulation results show that the MR magnitude image is not an exact

  4. Neurovascular and neuroimaging effects of the hallucinogenic serotonin receptor agonist psilocin in the rat brain.

    PubMed

    Spain, Aisling; Howarth, Clare; Khrapitchev, Alexandre A; Sharp, Trevor; Sibson, Nicola R; Martin, Chris

    2015-12-01

    The development of pharmacological magnetic resonance imaging (phMRI) has presented the opportunity for investigation of the neurophysiological effects of drugs in vivo. Psilocin, a hallucinogen metabolised from psilocybin, was recently reported to evoke brain region-specific, phMRI signal changes in humans. The present study investigated the effects of psilocin in a rat model using phMRI and then probed the relationship between neuronal and haemodynamic responses using a multimodal measurement preparation. Psilocin (2 mg/kg or 0.03 mg/kg i.v.) or vehicle was administered to rats (N=6/group) during either phMRI scanning or concurrent imaging of cortical blood flow and recording of local field potentials. Compared to vehicle controls psilocin (2 mg/kg) evoked phMRI signal increases in a number of regions including olfactory and limbic areas and elements of the visual system. PhMRI signal decreases were seen in other regions including somatosensory and motor cortices. Investigation of neurovascular coupling revealed that whilst neuronal responses (local field potentials) to sensory stimuli were decreased in amplitude by psilocin administration, concurrently measured haemodynamic responses (cerebral blood flow) were enhanced. The present findings show that psilocin evoked region-specific changes in phMRI signals in the rat, confirming recent human data. However, the results also suggest that the haemodynamic signal changes underlying phMRI responses reflect changes in both neuronal activity and neurovascular coupling. This highlights the importance of understanding the neurovascular effects of pharmacological manipulations for interpreting haemodynamic neuroimaging data.

  5. Neurovascular and neuroimaging effects of the hallucinogenic serotonin receptor agonist psilocin in the rat brain

    PubMed Central

    Spain, Aisling; Howarth, Clare; Khrapitchev, Alexandre A.; Sharp, Trevor; Sibson, Nicola R.; Martin, Chris

    2015-01-01

    The development of pharmacological magnetic resonance imaging (phMRI) has presented the opportunity for investigation of the neurophysiological effects of drugs in vivo. Psilocin, a hallucinogen metabolised from psilocybin, was recently reported to evoke brain region-specific, phMRI signal changes in humans. The present study investigated the effects of psilocin in a rat model using phMRI and then probed the relationship between neuronal and haemodynamic responses using a multimodal measurement preparation. Psilocin (2 mg/kg or 0.03 mg/kg i.v.) or vehicle was administered to rats (N = 6/group) during either phMRI scanning or concurrent imaging of cortical blood flow and recording of local field potentials. Compared to vehicle controls psilocin (2 mg/kg) evoked phMRI signal increases in a number of regions including olfactory and limbic areas and elements of the visual system. PhMRI signal decreases were seen in other regions including somatosensory and motor cortices. Investigation of neurovascular coupling revealed that whilst neuronal responses (local field potentials) to sensory stimuli were decreased in amplitude by psilocin administration, concurrently measured haemodynamic responses (cerebral blood flow) were enhanced. The present findings show that psilocin evoked region-specific changes in phMRI signals in the rat, confirming recent human data. However, the results also suggest that the haemodynamic signal changes underlying phMRI responses reflect changes in both neuronal activity and neurovascular coupling. This highlights the importance of understanding the neurovascular effects of pharmacological manipulations for interpreting haemodynamic neuroimaging data. PMID:26192543

  6. Neurovascular embolization: in vitro evaluation of a mechanical detachable platinum coil system.

    PubMed

    Murphy, K J; Mandai, S; Gailloud, P; Clint, H; Szopinski, K; Quie, H; Martin, J B; Rüfenacht, D A

    2000-12-01

    The authors evaluated a mechanically detachable platinum coil system intended for neurovascular use. The introduction characteristics, ease of delivery, ease of retrieval, and detachability were studied with fluoroscopic guidance with in vitro silicone models. All the coils passed easily through the microcatheter. The detachment maneuver occurred within 20 seconds with 20 or fewer rotations of the pusher wire. One of 229 coils detached prematurely but only after deliberate and extreme manipulation. The detachment system is safe, reliable, and consistent and will be useful for interventional neuroradiologists.

  7. Towards spatial frequency domain optical imaging of neurovascular coupling in a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Lin, Alexander J.; Konecky, Soren D.; Rice, Tyler B.; Green, Kim N.; Choi, Bernard; Durkin, Anthony J.; Tromberg, Bruce J.

    2012-02-01

    Early neurovascular coupling (NVC) changes in Alzheimer's disease can potentially provide imaging biomarkers to assist with diagnosis and treatment. Previous efforts to quantify NVC with intrinsic signal imaging have required assumptions of baseline optical pathlength to calculate changes in oxy- and deoxy-hemoglobin concentrations during evoked stimuli. In this work, we present an economical spatial frequency domain imaging (SFDI) platform utilizing a commercially available LED projector, camera, and off-the-shelf optical components suitable for imaging dynamic optical properties. The fast acquisition platform described in this work is validated on silicone phantoms and demonstrated in neuroimaging of a mouse model.

  8. Effects of inducible nitric oxide synthase inhibition or norepinephrine on the neurovascular coupling in an endotoxic rat shock model

    PubMed Central

    2009-01-01

    Introduction The inducible nitric oxide synthase (iNOS) plays a crucial role in early sepsis-related microcirculatory dysfunction. Compared to a catecholamine therapy we tested effects of a specific iNOS-inhibitor (1400W) on the microcirculatory function in the brain. Methods Seventy SD-rats (280-310 g) were divided into 1 control and 6 sepsis groups. Sepsis groups received 1 or 5 mg/kg lipopolysaccharide (LPS) intravenously to induce a moderate or severe sepsis syndrome. Thirty minutes later rats were further randomized into subgroups receiving moderate volume therapy alone or additionally continuous norepinephrine (NE) or 1400W infusion. Separately, effects of 1400W on neurofunctional parameters were investigated in 3 rats without sepsis induction. Performing electric forepaw-stimulation evoked potentials (N2-P1 amplitude, P1-latency) and local hemodynamic responses were recorded with surface electrodes and laser Doppler over the somatosensory cortex at baseline and repeatedly after LPS administration. Cytokine levels (tumor necrosis factor-alpha (TNFα), interleukin-6 (IL6), interferon-gamma (IFNγ)) and cell destruction markers (neuron-specific enolase (NSE), S-100 calcium binding protein B (S100B)) were obtained at the end of experiments. Results During sepsis progression resting cerebral blood flow increased and functionally activated hemodynamic responses decreased in a dose-dependent manner. Whereas 1400W and NE improved blood pressure, only 1400W stabilized resting flow levels. However, both regimens were ineffective on the functionally coupled flow responses and destruction markers were similar between groups. Conclusions NE and 1400W appeared to be ineffective in mitigating the effects of sepsis on the neurovascular coupling. Other regimens are needed to protect the cerebral microcirculation under septic conditions. PMID:19709421

  9. Cocaine attenuates blood flow but not neuronal responses to stimulation while preserving neurovascular coupling for resting brain activity.

    PubMed

    Chen, W; Liu, P; Volkow, N D; Pan, Y; Du, C

    2016-10-01

    Cocaine affects neuronal activity and constricts cerebral blood vessels, making it difficult to determine whether cocaine-induced changes in cerebral blood flow (CBF) reflect neuronal activation or its vasoactive effects. Here we assessed the effects of acute cocaine on both resting-state and stimulation responses to investigate cocaine's effects on neurovascular coupling and to differentiate its effects on neuronal activity from its vasoactive actions. We concurrently measured cortical field potentials via thinned-skull electroencephalography recordings and CBF with laser Doppler flowmetry in the rat's somatosensory cortex for both resting state and forepaw stimulation before and following cocaine administration (1 mg kg(-1), intravenously). Results show both resting-state field potentials and CBF were depressed after cocaine administration (19.8±4.7% and 52.1±13.4%, respectively) and these changes were strongly correlated with each other (r=0.81, P<0.001), indicating that cocaine did not affect neurovascular coupling at rest and that the reduction in resting CBF reflected reduction in synchronized spontaneous neuronal activity rather than vasoconstriction. In contrast, the forepaw stimulation-evoked neuronal activity was not changed by cocaine (P=0.244), whereas the CBF to the stimulation was reduced 49.9±2.6% (P=0.028) gradually recovering ∼20 min after cocaine injection, indicating that neurovascular coupling during stimulation was temporarily disrupted by cocaine. Neurovascular uncoupling by cocaine during stimulation but not during rest indicates that distinct processes might underlie neurovascular regulation for both stimulation and spontaneous activity. The greater reductions by cocaine to the stimulation-induced CBF increases than to the background CBF should be considered when interpreting functional MRI studies comparing activation responses between controls and cocaine abusers. Neurovascular uncoupling could contribute to cocaine

  10. Cocaine attenuates blood flow but not neuronal responses to stimulation while preserving neurovascular coupling for resting brain activity

    PubMed Central

    Chen, Wei; Liu, Peng; Volkow, Nora D.; Pan, Yingtian; Du, Congwu

    2016-01-01

    Cocaine affects neuronal activity and constricts cerebral blood vessels, making it difficult to determine whether cocaine-induced changes in cerebral blood flow (CBF) reflect neuronal activation or its vasoactive effects. Here we assessed the effects of acute cocaine on both resting-state and stimulation responses to investigate cocaine’s effects on neurovascular coupling and to differentiate its effects on neuronal activity from its vasoactive actions. We concurrently measured cortical field potentials via thinned skull EEG recordings and CBF with laser Doppler flowmetry in the rat’s somatosensory cortex for both resting state and forepaw stimulation prior to and following cocaine administration (1mg/kg, i.v.). Results show both resting-state field potentials and CBF were depressed after cocaine administration (19.8±4.7% and 52.1±13.4%, respectively) and these changes were strongly correlated with each other (r=0.81, p<0.001) indicating that cocaine did not affect neurovascular coupling at rest and that the reduction in resting CBF reflected reduction in synchronized spontaneous neuronal activity rather than vasoconstriction. In contrast, the forepaw-stimulation-evoked neuronal activity was not changed by cocaine (p=0.244) whereas the CBF to the stimulation was reduced 49.9±2.6% (p=0.028) gradually recovering ~20min post cocaine injection, indicating that neurovascular coupling during stimulation was temporarily disrupted by cocaine. Neurovascular uncoupling by cocaine during stimulation but not during rest indicates that distinct processes might underlie regulation of neurovascular coupling for spontaneous than for stimulation-induced activity. The greater reductions by cocaine to the stimulation-induced CBF increases than to the background CBF should be considered when interpreting fMRI studies comparing activation responses between controls and cocaine abusers. Neurovascular uncoupling could contribute to cocaine’s neurotoxicity particularly for

  11. A novel in vitro model to study pericytes in the neurovascular unit of the developing cortex.

    PubMed

    Zehendner, Christoph M; Wedler, Hannah E; Luhmann, Heiko J

    2013-01-01

    Cortical function is impaired in various disorders of the central nervous system including Alzheimer's disease, autism and schizophrenia. Some of these disorders are speculated to be associated with insults in early brain development. Pericytes have been shown to regulate neurovascular integrity in development, health and disease. Hence, precisely controlled mechanisms must have evolved in evolution to operate pericyte proliferation, repair and cell fate within the neurovascular unit (NVU). It is well established that pericyte deficiency leads to NVU injury resulting in cognitive decline and neuroinflammation in cortical layers. However, little is known about the role of pericytes in pathophysiological processes of the developing cortex. Here we introduce an in vitro model that enables to precisely study pericytes in the immature cortex and show that moderate inflammation and hypoxia result in caspase-3 mediated pericyte loss. Using heterozygous EYFP-NG2 mouse mutants we performed live imaging of pericytes for several days in vitro. In addition we show that pericytes maintain their capacity to proliferate which may allow cell-based therapies like reprogramming of pericytes into induced neuronal cells in the presented approach.

  12. A modular approach to create a neurovascular unit-on-a-chip.

    PubMed

    Achyuta, Anil Kumar H; Conway, Amy J; Crouse, Richard B; Bannister, Emilee C; Lee, Robin N; Katnik, Christopher P; Behensky, Adam A; Cuevas, Javier; Sundaram, Shivshankar S

    2013-02-21

    In this work, we describe the fabrication and working of a modular microsystem that recapitulates the functions of the "Neurovascular Unit". The microdevice comprised a vertical stack of a poly(dimethylsiloxane) (PDMS) neural parenchymal chamber separated by a vascular channel via a microporous polycarbonate (PC) membrane. The neural chamber housed a mixture of neurons (~4%), astrocytes (~95%), and microglia (~1%). The vascular channel was lined with a layer of rat brain microvascular endothelial cell line (RBE4). Cellular components in the neural chamber and vascular channel showed viability (>90%). The neural cells fired inhibitory as well as excitatory potentials following 10 days of culture. The endothelial cells showed diluted-acetylated low density lipoprotein (dil-a-LDL) uptake, expressed von Willebrand factor (vWF) and zonula occludens (ZO-1) tight junctions, and showed decreased Alexafluor™-conjugated dextran leakage across their barriers significantly compared with controls (p < 0.05). When the vascular layer was stimulated with TNF-α for 6 h, about 75% of resident microglia and astrocytes on the neural side were activated significantly (p < 0.05 compared to controls) recapitulating tissue-mimetic responses resembling neuroinflammation. The impact of this microsystem lies in the fact that this biomimetic neurovascular platform might not only be harnessed for obtaining mechanistic insights for neurodegenerative disorders, but could also serve as a potential screening tool for central nervous system (CNS) therapeutics in toxicology and neuroinfectious diseases. PMID:23108480

  13. Neurovascular coupling in normal aging: A combined optical, ERP and fMRI study

    PubMed Central

    Fabiani, Monica; Gordon, Brian A.; Maclin, Edward L.; Pearson, Melanie A.; Brumback-Peltz, Carrie R.; Low, Kathy A.; McAuley, Edward; Sutton, Bradley P.; Kramer, Arthur F.; Gratton, Gabriele

    2013-01-01

    Brain aging is characterized by changes in both hemodynamic and neuronal responses, which may be influenced by the cardiorespiratory fitness of the individual. To investigate the relationship between neuronal and hemodynamic changes, we studied the brain activity elicited by visual stimulation (checkerboard reversals at different frequencies) in younger adults and in older adults varying in physical fitness. Four functional brain measures were used to compare neuronal and hemodynamic responses obtained from BA17: two reflecting neuronal activity (the event-related optical signal, EROS, and the C1 response of the ERP), and two reflecting functional hemodynamic changes (functional magnetic resonance imaging, fMRI, and near-infrared spectroscopy, NIRS). The results indicated that both younger and older adults exhibited a quadratic relationship between neuronal and hemodynamic effects, with reduced increases of the hemodynamic response at high levels of neuronal activity. Although older adults showed reduced activation, similar neurovascular coupling functions were observed in the two age groups when fMRI and deoxy-hemoglobin measures were used. However, the coupling between oxy-and deoxy-hemoglobin changes decreased with age and increased with increasing fitness. These data indicate that departures from linearity in neurovascular coupling may be present when using hemodynamic measures to study neuronal function. PMID:23664952

  14. The Changing Landscape of Voltage-Gated Calcium Channels in Neurovascular Disorders and in Neurodegenerative Diseases

    PubMed Central

    Cataldi, Mauro

    2013-01-01

    It is a common belief that voltage-gated calcium channels (VGCC) cannot carry toxic amounts of Ca2+ in neurons. Also, some of them as L-type channels are essential for Ca2+-dependent regulation of prosurvival gene-programs. However, a wealth of data show a beneficial effect of drugs acting on VGCCs in several neurodegenerative and neurovascular diseases. In the present review, we explore several mechanisms by which the “harmless” VGCCs may become “toxic” for neurons. These mechanisms could explain how, though usually required for neuronal survival, VGCCs may take part in neurodegeneration. We will present evidence showing that VGCCs can carry toxic Ca2+ when: a) their density or activity increases because of aging, chronic hypoxia or exposure to β-amyloid peptides or b) Ca2+-dependent action potentials carry high Ca2+ loads in pacemaker neurons. Besides, we will examine conditions in which VGCCs promote neuronal cell death without carrying excess Ca2+. This can happen, for instance, when they carry metal ions into the neuronal cytoplasm or when a pathological decrease in their activity weakens Ca2+-dependent prosurvival gene programs. Finally, we will explore the role of VGCCs in the control of nonneuronal cells that take part to neurodegeneration like those of the neurovascular unit or of microglia. PMID:24179464

  15. Modified Bilateral Neurovascular Cheek Flap: Functional Reconstruction of Extensive Lower Lip Defects

    PubMed Central

    2016-01-01

    Background: Reconstruction of extensive lower lip defects is challenging, and functional outcomes are difficult to achieve. Methods: A modified bilateral neurovascular cheek (MBNC) flap has been described. The data of patients with cancer of the lower lip treated with wide excision and reconstructed with the MBNC flap in the Plastic Surgery Unit, Srinagarind Hospital, Khon Kaen University, from 1966 to 2012 were reviewed. Results: Of the total of 143 patients included, 90.91% were women, and their age ranged from 32 to 100 years. All defects involved 70% or greater of the lower lip, which included oral commissure, buccal mucosa, or cheek skin and upper lip. All 20 patients who were followed up demonstrated good outcomes of intercommissural distance, interlabial distance, sulcus depth, and 2-point discrimination compared with normal lip parameters according to age group and satisfaction with treatment. Conclusions: Reconstruction of extensive lower lip defects with the MBNC flap provided good oral competence and functional outcomes. The flap provided adequate lip height and width, with proper position of oral commissure and vermilion reconstruction. The awareness about neurovascular anatomy of the lip and cheek and gentle dissection preserve the lip function. The flap overcomes the drawbacks of Karapandzic technique, which is microstomia, and of Bernard technique, which is a tight adynamic lower lip. It can be used in defects of more than two-thirds of the lip, extending to the cheek, commissural reconstruction, and secondary reconstruction. PMID:27579245

  16. Myositis autoantibodies in Korean patients with inflammatory myositis: Anti-140-kDa polypeptide antibody is primarily associated with rapidly progressive interstitial lung disease independent of clinically amyopathic dermatomyositis

    PubMed Central

    2010-01-01

    Background To investigate the association between myositis autoantibodies and clinical subsets of inflammatory myositis in Korean patients. Methods Immunoprecipitation was performed using the sera of classic polymyositis (PM) (n = 11) and dermatomyositis (DM) (n = 38) patients who met the Bohan and Peter criteria for definite inflammatory myositis. A panel of defined myositis autoantibodies was surveyed to investigate the association between each autoantibody and clinical subsets of inflammatory myositis. Results Either MSAs, anti-p140, or anti-p155/140 antibodies were found in 63.3% (31/49) of the study subjects. Anti-140-kDa-polypeptide (anti-p140) (18.4%, 9/49) and anti-155/140-kDa polypeptide (anti-p155/140) (16.3%, 8/49) antibodies were the most common, followed by anti-Mi2 (14.3%, 7/49), anti-ARS (12.2%, 6/49) and anti-SRP (2.0%, 1/49) antibodies. All MSAs and anti-p140 and anti-p155/140 antibodies were mutually exclusive. Anti-p140 (23.7%, 9/38), anti-p155/140 (21.1%, 8/38), and anti-Mi2 (18.4%, 3/38) antibodies were found exclusively in DM patients. Anti-p140 antibody was associated with rapidly progressive interstitial lung disease (ILD) (p = 0.001), with a sensitivity of 100.0% (4/4) and a specificity of 85.3% (29/34) in DM patients. Anti-p155/140 antibody was associated with cancer-associated DM (p = 0.009), with a sensitivity of 55.6% (5/9) and a specificity of 89.7% (26/29). Cancer-associated survival was significantly worse when anti-p155/140 antibody was present (19.2 ± 7.6 vs. 65.0 ± 3.5 months, p = 0.032). Finally, anti-ARS antibodies were associated with stable or slowly progressive ILD in PM and DM patients (p = 0.005). Conclusions Anti-p140 and anti-p155/140 antibodies were commonly found autoantibodies in Korean patients with inflammatory myositis. Despite the lack of clinically amyopathic DM patients in the study subjects, a strong association was observed between anti-p140 antibody and rapidly progressive ILD. Anti-p155/140 antibody was

  17. Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of Alzheimer's disease

    PubMed Central

    2011-01-01

    Alzheimer's disease (AD) is an age-related disorder characterized by progressive cognitive decline and dementia. Alzheimer's disease is an increasingly prevalent disease with 5.3 million people in the United States currently affected. This number is a 10 percent increase from previous estimates and is projected to sharply increase to 8 million by 2030; it is the sixth-leading cause of death. In the United States the direct and indirect costs of Alzheimer's and other dementias to Medicare, Medicaid and businesses amount to more than $172 billion each year. Despite intense research efforts, effective disease-modifying therapies for this devastating disease remain elusive. At present, the few agents that are FDA-approved for the treatment of AD have demonstrated only modest effects in modifying clinical symptoms for relatively short periods and none has shown a clear effect on disease progression. New therapeutic approaches are desperately needed. Although the idea that vascular defects are present in AD and may be important in disease pathogenesis was suggested over 25 years ago, little work has focused on an active role for cerebrovascular mechanisms in the pathogenesis of AD. Nevertheless, increasing literature supports a vascular-neuronal axis in AD as shared risk factors for both AD and atherosclerotic cardiovascular disease implicate vascular mechanisms in the development and/or progression of AD. Also, chronic inflammation is closely associated with cardiovascular disease, as well as a broad spectrum of neurodegenerative diseases of aging including AD. In this review we summarize data regarding, cardiovascular risk factors and vascular abnormalities, neuro- and vascular-inflammation, and brain endothelial dysfunction in AD. We conclude that the endothelial interface, a highly synthetic bioreactor that produces a large number of soluble factors, is functionally altered in AD and contributes to a noxious CNS milieu by releasing inflammatory and neurotoxic species

  18. Anatomy of Mandibular Vital Structures. Part I: Mandibular Canal and Inferior Alveolar Neurovascular Bundle in Relation with Dental Implantology

    PubMed Central

    Wang, Hom-Lay; Sabalys, Gintautas

    2010-01-01

    ABSTRACT Objectives It is critical to determine the location and configuration of the mandibular canal and related vital structures during the implant treatment. The purpose of the present study was to review the literature concerning the mandibular canal and inferior alveolar neurovascular bundle anatomical variations related to the implant surgery. Material and Methods Literature was selected through the search of PubMed, Embase and Cochrane electronic databases. The keywords used for search were mandibular canal, inferior alveolar nerve, and inferior alveolar neurovascular bundle. The search was restricted to English language articles, published from 1973 to November 2009. Additionally, a manual search in the major anatomy, dental implant, prosthetic and periodontal journals and books were performed. Results In total, 46 literature sources were obtained and morphological aspects and variations of the anatomy related to implant treatment in posterior mandible were presented as two entities: intraosseous mandibular canal and associated inferior alveolar neurovascular bundle. Conclusions A review of morphological aspects and variations of the anatomy related to mandibular canal and mandibular vital structures are very important especially in implant therapy since inferior alveolar neurovascular bundle exists in different locations and possesses many variations. Individual, gender, age, race, assessing technique used and degree of edentulous alveolar bone atrophy largely influence these variations. It suggests that osteotomies in implant dentistry should not be developed in the posterior mandible until the position of the mandibular canal is established. PMID:24421958

  19. Athermal early retrograde release of the neurovascular bundle during nerve-sparing robotic-assisted laparoscopic radical prostatectomy.

    PubMed

    Coughlin, Geoffrey; Dangle, Pankaj P; Palmer, Kenneth J; Samevedi, Srinivas; Patel, Vipul R

    2009-03-01

    While cancer control is the primary objective of radical prostatectomy, maintenance of sexual function is a priority for the majority of men presenting with prostate cancer. Preservation of the neurovascular bundles is the challenging and critical step of radical prostatectomy with regards to maintenance of potency. The objective of this study is to describe the surgical steps of our hybrid technique: athermal early retrograde release of the neurovascular bundle during nerve-sparing robotic-assisted laparoscopic radical prostatectomy. This technique involves releasing the neurovascular bundle in a retrograde direction from the apex toward the base of the prostate, during an antegrade prostatectomy. It is a hybrid of the traditional open and the laparoscopic approaches to nerve sparing. With this approach we are able to clearly delineate the path of the bundle and avoid inadvertently injuring it when controlling the prostatic pedicle. Our hybrid nerve-sparing technique combines aspects of the traditional open anatomical approach with those of the laparoscopic antegrade approach. The benefits of robotic technology allow a retrograde neurovascular bundle dissection to be performed during an antegrade radical prostatectomy. PMID:27628447

  20. The establishment of endovascular aneurysm coiling at a neurovascular unit: report of experience during early years.

    PubMed

    Norbäck, O; Gál, G; Johansson, M; Solander, S; Tovi, M; Persson, L; Ronne-Engström, E; Enblad, P

    2005-02-01

    The treatment of cerebral aneurysms is changing from surgical clipping to endovascular coiling (EVC) in many neurovascular centres. The aim of this study was to evaluate the technical results and clinical outcome at 6 months in a consecutive series of subarachnoid hemorrhage (SAH) patients treated with EVC, in a situation when the EVC had been established very rapidly as the first line of treatment at a neurovascular centre. The patient material comprised 239 SAH patients (155 women and 84 men, mean age 55 years, age range 16-81) allocated to EVC as the first line of treatment in the acute stage (within 3 weeks of rupture) between September 1996 and December 2000. Clinical grade on admission was Hunt & Hess (H&H) I and II in 42%, H&H III in 25% and H&H grade IV and V in 33% of the patients. The aneurysm was located in the anterior circulation in 82% of the cases. EVC was performed on days 0-3 in 77% of the cases. EVC of the target aneurysm was able to be completed in 222 patients (93%). Complete occlusion was achieved in 126 patients (53%). Procedural complications occurred in 39 patients (16%). Favourable clinical outcome was observed in 57%, severe disability in 28% and poor outcome in 14% of the patients. Favourable outcome was achieved in 77% of H&H I and II patients and in 43% of H&H III-V patients. The multivariate logistic regression analysis revealed that younger age, good neurological grade on admission, absence of intracerebral hematoma and intraventricular hematoma respectively, ICA-PcomA aneurysm location, later treatment and absence of complications were significant predictors of favourable outcome. After interventional training and installation of the X-ray system, the introduction and establishment of EVC at a neurovascular unit can be done in a short period of time and with favourable results. Future studies must concentrate on identifying factors of importance for the choice of interventional or surgical therapy. The results of this study indicate

  1. Single-Dose and Fractionated Irradiation Promote Initiation and Progression of Atherosclerosis and Induce an Inflammatory Plaque Phenotype in ApoE{sup -/-} Mice

    SciTech Connect

    Hoving, Saske; Heeneman, Sylvia; Gijbels, Marion J.J.; Poele, Johannes A.M. te; Russell, Nicola S.; Daemen, Mat J.A.P.; Stewart, Fiona A.

    2008-07-01

    Purpose: Increased risk of atherosclerosis and stroke has been demonstrated in patients receiving radiotherapy for Hodgkin's lymphoma and head-and-neck cancer. We previously showed that 14 Gy to the carotid arteries of hypercholesterolemic ApoE{sup -/-} mice resulted in accelerated development of macrophage-rich, inflammatory atherosclerotic lesions. Here we investigate whether clinically relevant fractionated irradiation schedules and lower single doses also predispose to an inflammatory plaque phenotype. Methods and Materials: ApoE{sup -/-} mice were given 8 or 14 Gy, or 20 x 2.0 Gy in 4 weeks to the neck, and the carotid arteries were subsequently examinated for presence of atherosclerotic lesions, plaque size, and phenotype. Results: At 4 weeks, early atherosclerotic lesions were found in 44% of the mice after single doses of 14 Gy but not in age-matched controls. At 22 to 30 weeks after irradiation there was a twofold increase in the mean number of carotid lesions (8-14 Gy and 20 x 2.0 Gy) and total plaque burden (single doses only), compared with age-matched controls. The majority of lesions seen at 30 to 34 weeks after fractionated irradiation or 14-Gy single doses were granulocyte rich (100% and 63%, respectively), with thrombotic features (90% and 88%), whereas these phenotypes were much less common in age-matched controls or after a single dose of 8 Gy. Conclusions: We showed that fractionated irradiation accelerated the development of atherosclerosis in ApoE{sup -/-} mice and predisposed to the formation of an inflammatory, thrombotic plaque phenotype.

  2. Development and pathological changes of neurovascular unit regulated by hypoxia response in the retina.

    PubMed

    Kurihara, T

    2016-01-01

    Retina is a highly vascularized tissue with a high oxygen and metabolic demand receiving light located in the back of the eye. The development and the maintenance of the retinal vasculature are important to regulate the homeostasis in the tissue. α Subunits of hypoxia-inducible factor (HIF) are key molecules in hypoxia response inducing genes required for cell survival such as vascular endothelial growth factor under hypoxia. Neurons, glia, and vascular endothelium cells interdependently form neurovascular unit in the retina tightly regulated by hypoxia response via HIF expression. A corruption of the precise hypoxia response in the developmental or matured retinal tissue may lead congenital vascular anomalies or adult neovascular ocular diseases. To regulate hypoxia response through HIF activity would be an ideal therapeutic target for these vision-threatening eye diseases. PMID:27130417

  3. Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery

    PubMed Central

    Islam, Md. Mirazul; Mohamed, Zahurin

    2015-01-01

    The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery. PMID:26579539

  4. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    PubMed Central

    Ran, Qi-shan; Yu, Yun-hu; Fu, Xiao-hong; Wen, Yuan-chao

    2015-01-01

    The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling pathway using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial progenitor cells. Suppression of the Notch signaling pathway with Notch1 or Jagged1 siRNAs reduced the migratory capacity, invasiveness and angiogenic ability of endothelial progenitor cells. Activation of the Notch signaling pathway in vivo in a rat model of mild traumatic brain injury promoted neurovascular repair. These findings suggest that the activation of the Notch signaling pathway promotes blood vessel formation and tissue repair after brain trauma. PMID:26487853

  5. [Clinical thinking about treating acute ischemic stroke by targeting the neurovascular unit of Chinese medicine].

    PubMed

    Lei, Ya-Ling; Liu, Qing; Luo, Yi

    2013-09-01

    Neurovascular unit (NVU) concept proposed for the treatment of acute ischemic stroke (AIS) provides a new target, i.e., we should target as an integrity including neurons, glia, and microcirculation, thus supplementing limitations of previous treatment targeting neurons or blood vessels alone. Meanwhile, many clinical trials have failed after NVU protection against AIS drug research has developed at home and abroad. Chinese medicine has multi-component, multi-target, and overall regulation advantages, and is in line with clinical requirement for overall treatment targeting multiple targets of NVU. Currently clinical studies of Chinese medicine treatment of AIS targeting NVU are few. Standardized and systematic clinical efficacy evaluation is lack. Clinical studies for improving AIS-NVU injured blood markers by Chinese medicine are rarer. We hope to pave the way for performing clinical studies on Chinese medicine treatment of AIS targeting NVU.

  6. Investigating Human Neurovascular Coupling Using Functional Neuroimaging: A Critical Review of Dynamic Models

    PubMed Central

    Huneau, Clément; Benali, Habib; Chabriat, Hugues

    2015-01-01

    The mechanisms that link a transient neural activity to the corresponding increase of cerebral blood flow (CBF) are termed neurovascular coupling (NVC). They are possibly impaired at early stages of small vessel or neurodegenerative diseases. Investigation of NVC in humans has been made possible with the development of various neuroimaging techniques based on variations of local hemodynamics during neural activity. Specific dynamic models are currently used for interpreting these data that can include biophysical parameters related to NVC. After a brief review of the current knowledge about possible mechanisms acting in NVC we selected seven models with explicit integration of NVC found in the literature. All these models were described using the same procedure. We compared their physiological assumptions, mathematical formalism, and validation. In particular, we pointed out their strong differences in terms of complexity. Finally, we discussed their validity and their potential applications. These models may provide key information to investigate various aspects of NVC in human pathology. PMID:26733782

  7. Development and pathological changes of neurovascular unit regulated by hypoxia response in the retina.

    PubMed

    Kurihara, T

    2016-01-01

    Retina is a highly vascularized tissue with a high oxygen and metabolic demand receiving light located in the back of the eye. The development and the maintenance of the retinal vasculature are important to regulate the homeostasis in the tissue. α Subunits of hypoxia-inducible factor (HIF) are key molecules in hypoxia response inducing genes required for cell survival such as vascular endothelial growth factor under hypoxia. Neurons, glia, and vascular endothelium cells interdependently form neurovascular unit in the retina tightly regulated by hypoxia response via HIF expression. A corruption of the precise hypoxia response in the developmental or matured retinal tissue may lead congenital vascular anomalies or adult neovascular ocular diseases. To regulate hypoxia response through HIF activity would be an ideal therapeutic target for these vision-threatening eye diseases.

  8. Hemostatic hydrodissection of the neurovascular bundles during robotic assisted laparoscopic radical prostatectomy: safety and efficacy trial

    NASA Astrophysics Data System (ADS)

    Parekattil, Sijo J.; Dahm, Philipp; Vieweg, Johannes W.

    2009-02-01

    Preservation of continence and potency after Robotic Assisted Laparoscopic Radical Prostatectomy (RALP) are two key outcome measures that patients consider when comparing different treatment options for localized prostate cancer. Ensuring that positive surgical margins are as low as possible provides oncologic control. Various techniques to optimize these outcomes have been employed. This study presents the early outcomes for Hemostatic Hydrodissection of the Neurovascular Bundles during 86 consecutive RALPs. Positive margin rates were 12.5% overall (9% for pT2 and 28.6% for pT3); continence at 6 months was 100%, at 3 months 90% and at 1 month 66%. In patients with no preoperative erectile dysfunction (preoperative SHIM of 25), 79% had return of erections sufficient for intercourse by 6 months. 2 of these patients were able to have intercourse 2 weeks after surgery. These preliminary findings appear promising.

  9. Imaging the Perivascular Space as a Potential Biomarker of Neurovascular and Neurodegenerative Diseases.

    PubMed

    Ramirez, Joel; Berezuk, Courtney; McNeely, Alicia A; Gao, Fuqiang; McLaurin, JoAnne; Black, Sandra E

    2016-03-01

    Although the brain lacks conventional lymphatic vessels found in peripheral tissue, evidence suggests that the space surrounding the vasculature serves a similar role in the clearance of fluid and metabolic waste from the brain. With aging, neurodegeneration, and cerebrovascular disease, these microscopic perivascular spaces can become enlarged, allowing for visualization and quantification on structural MRI. The purpose of this review is to: (i) describe some of the recent pre-clinical findings from basic science that shed light on the potential neurophysiological mechanisms driving glymphatic and perivascular waste clearance, (ii) review some of the pathobiological etiologies that may lead to MRI-visible enlarged perivascular spaces (ePVS), (iii) describe the possible clinical implications of ePVS, (iv) evaluate existing qualitative and quantitative techniques used for measuring ePVS burden, and (v) propose future avenues of research that may improve our understanding of this potential clinical neuroimaging biomarker for fluid and metabolic waste clearance dysfunction in neurodegenerative and neurovascular diseases.

  10. Sensitivity evaluation of DSA-based parametric imaging using Doppler ultrasound in neurovascular phantoms

    NASA Astrophysics Data System (ADS)

    Balasubramoniam, A.; Bednarek, D. R.; Rudin, S.; Ionita, C. N.

    2016-03-01

    An evaluation of the relation between parametric imaging results obtained from Digital Subtraction Angiography (DSA) images and blood-flow velocity measured using Doppler ultrasound in patient-specific neurovascular phantoms is provided. A silicone neurovascular phantom containing internal carotid artery, middle cerebral artery and anterior communicating artery was embedded in a tissue equivalent gel. The gel prevented movement of the vessels when blood mimicking fluid was pumped through it to obtain Colour Doppler images. The phantom was connected to a peristaltic pump, simulating physiological flow conditions. To obtain the parametric images, water was pumped through the phantom at various flow rates (100, 120 and 160 ml/min) and 10 ml contrast boluses were injected. DSA images were obtained at 10 frames/sec from the Toshiba C-arm and DSA image sequences were input into LabVIEW software to get parametric maps from time-density curves. The parametric maps were compared with velocities determined by Doppler ultrasound at the internal carotid artery. The velocities measured by the Doppler ultrasound were 38, 48 and 65 cm/s for flow rates of 100, 120 and 160 ml/min, respectively. For the 20% increase in flow rate, the percentage change of blood velocity measured by Doppler ultrasound was 26.3%. Correspondingly, there was a 20% decrease of Bolus Arrival Time (BAT) and 14.3% decrease of Mean Transit Time (MTT), showing strong inverse correlation with Doppler measured velocity. The parametric imaging parameters are quite sensitive to velocity changes and are well correlated to the velocities measured by Doppler ultrasound.

  11. Neurovascular compression in the thoracic outlet: changing management over 50 years.

    PubMed Central

    Urschel, H C; Razzuk, M A

    1998-01-01

    SUMMARY BACKGROUND DATA: During the past five decades, significant improvements have been made in the diagnosis and treatment of thoracic outlet syndrome (TOS) secondary to sports activities, breast implants, or median sternotomy. METHODS, RESULTS, AND CONCLUSIONS: Of more than 15,000 patients evaluated for TOS, 3914 underwent primary neurovascular decompression procedures and 1221 underwent second surgical procedures for recurrent symptoms. Of 2210 consecutive patients, 250 had symptoms of upper plexus compression only (median nerve), 1508 had symptoms of lower plexus compression only (ulnar nerve), and 452 patients had symptoms of both. Ulnar and median nerve conduction velocities confirmed the clinical diagnosis. Transaxillary first rib removal alone for neurovascular decompression relieved both upper and lower plexus symptoms (without a combined transaxillary and supraclavicular approach). There are two reasons for this: most upper compression mechanisms attach to the first rib, and the median nerve is also supplied by C8 and T1 as well as C5, C6, and C7 nerve roots. Axillary subclavian artery aneurysm or occlusion was treated successfully in 240 patients. Dorsal sympathectomy was performed concomitantly in 71 patients for occlusion or embolectomy. It was combined with first rib resection in 1974 patients for sympathetic maintained pain syndrome and causalgia that did not improve with conservative therapy. Of 264 patients with effort thrombosis (Paget-Schroetter syndrome), 211 were treated by urokinase thrombolysis and prompt first rib resection with excellent long-term results. Recurrent TOS symptoms required a second procedure using the posterior approach in 1221 patients with brachial plexus neurolysis and dorsal sympathectomy. The use of hyaluronic acid significantly reduced recurrent scarring. PMID:9790350

  12. Acute two-photon imaging of the neurovascular unit in the cortex of active mice

    PubMed Central

    Tran, Cam Ha T.; Gordon, Grant R.

    2015-01-01

    In vivo two-photon scanning fluorescence imaging is a powerful technique to observe physiological processes from the millimeter to the micron scale in the intact animal. In neuroscience research, a common approach is to install an acute cranial window and head bar to explore neocortical function under anesthesia before inflammation peaks from the surgery. However, there are few detailed acute protocols for head-restrained and fully awake animal imaging of the neurovascular unit during activity. This is because acutely performed awake experiments are typically untenable when the animal is naïve to the imaging apparatus. Here we detail a method that achieves acute, deep-tissue two-photon imaging of neocortical astrocytes and microvasculature in behaving mice. A week prior to experimentation, implantation of the head bar alone allows mice to train for head-immobilization on an easy-to-learn air-supported ball treadmill. Following just two brief familiarization sessions to the treadmill on separate days, an acute cranial window can subsequently be installed for immediate imaging. We demonstrate how running and whisking data can be captured simultaneously with two-photon fluorescence signals with acceptable movement artifacts during active motion. We also show possible applications of this technique by (1) monitoring dynamic changes to microvascular diameter and red blood cells in response to vibrissa sensory stimulation, (2) examining responses of the cerebral microcirculation to the systemic delivery of pharmacological agents using a tail artery cannula during awake imaging, and (3) measuring Ca2+ signals from synthetic and genetically encoded Ca2+ indicators in astrocytes. This method will facilitate acute two-photon fluorescence imaging in awake, active mice and help link cellular events within the neurovascular unit to behavior. PMID:25698926

  13. Magnetic resonance imaging of ischemia viability thresholds and the neurovascular unit.

    PubMed

    Barber, Philip A

    2013-05-27

    Neuroimaging has improved our understanding of the evolution of stroke at discreet time points helping to identify irreversibly damaged and potentially reversible ischemic brain. Neuroimaging has also contributed considerably to the basic premise of acute stroke therapy which is to salvage some portion of the ischemic region from evolving into infarction, and by doing so, maintaining brain function and improving outcome. The term neurovascular unit (NVU) broadens the concept of the ischemic penumbra by linking the microcirculation with neuronal-glial interactions during ischemia reperfusion. Strategies that attempt to preserve the individual components (endothelium, glia and neurons) of the NVU are unlikely to be helpful if blood flow is not fully restored to the microcirculation. Magnetic resonance imaging (MRI) is the foremost imaging technology able to bridge both basic science and the clinic via non-invasive real time high-resolution anatomical delineation of disease manifestations at the molecular and ionic level. Current MRI based technologies have focused on the mismatch between perfusion-weighted imaging (PWI) and diffusion weighted imaging (DWI) signals to estimate the tissue that could be saved if reperfusion was achieved. Future directions of MRI may focus on the discordance of recanalization and reperfusion, providing complimentary pathophysiological information to current compartmental paradigms of infarct core (DWI) and penumbra (PWI) with imaging information related to cerebral blood flow, BBB permeability, inflammation, and oedema formation in the early acute phase. In this review we outline advances in our understanding of stroke pathophysiology with imaging, transcending animal stroke models to human stroke, and describing the potential translation of MRI to image important interactions relevant to acute stroke at the interface of the neurovascular unit.

  14. Modeling neuro-vascular coupling in rat cerebellum: characterization of deviations from linearity.

    PubMed

    Rasmussen, Tina; Holstein-Rathlou, Niels-Henrik; Lauritzen, Martin

    2009-03-01

    We investigated the quantitative relation between neuronal activity and blood flow by means of a general parametric mathematical model which described the neuro-vascular system as being dynamic, linear, time-invariant, and subjected to additive noise. The model was constructed from measurements by means of system identification methods and validated across experiments. We sought to cover the system response to multiple stimulation frequencies and durations by a single model. We used the model to investigate the transport delay, the linear order, the deviations from linearity, and conditions for linearizability. We exercised the model on data from rat cerebellar cortex. In anesthetized rats, stimulation of the inferior olive caused climbing fiber activity and blood flow changes. Field potential amplitudes were used as an indicator of neuronal activity and blood flow was measured by laser-Doppler flowmetry. In one set of experiments, stimulation frequencies were in the range 2-20 Hz and the stimulation durations were 60 s and 600 s. The transport delay was estimated to be nearly zero, the linear order to be two. The deviations from linearity were consistently characterized as frequency saturation and dips in blood flow responses to stimulation for 60 s, and overgrowth of blood flow responses to stimulation for 600 s. In another set of experiments, stimulation frequencies were in the range 0.5-10 Hz and the stimulation duration was 15 s. The neuro-vascular system could be approximated by the linear model when the stimulation frequencies were restricted to the range 0.5-7 Hz. In conclusion, our model could predict blood flow responses to stimuli of low frequency and short duration. PMID:19027074

  15. Mechanistic Mathematical Modeling Tests Hypotheses of the Neurovascular Coupling in fMRI

    PubMed Central

    Lundengård, Karin; Cedersund, Gunnar; Sten, Sebastian; Leong, Felix; Smedberg, Alexander; Elinder, Fredrik

    2016-01-01

    Functional magnetic resonance imaging (fMRI) measures brain activity by detecting the blood-oxygen-level dependent (BOLD) response to neural activity. The BOLD response depends on the neurovascular coupling, which connects cerebral blood flow, cerebral blood volume, and deoxyhemoglobin level to neuronal activity. The exact mechanisms behind this neurovascular coupling are not yet fully investigated. There are at least three different ways in which these mechanisms are being discussed. Firstly, mathematical models involving the so-called Balloon model describes the relation between oxygen metabolism, cerebral blood volume, and cerebral blood flow. However, the Balloon model does not describe cellular and biochemical mechanisms. Secondly, the metabolic feedback hypothesis, which is based on experimental findings on metabolism associated with brain activation, and thirdly, the neurotransmitter feed-forward hypothesis which describes intracellular pathways leading to vasoactive substance release. Both the metabolic feedback and the neurotransmitter feed-forward hypotheses have been extensively studied, but only experimentally. These two hypotheses have never been implemented as mathematical models. Here we investigate these two hypotheses by mechanistic mathematical modeling using a systems biology approach; these methods have been used in biological research for many years but never been applied to the BOLD response in fMRI. In the current work, model structures describing the metabolic feedback and the neurotransmitter feed-forward hypotheses were applied to measured BOLD responses in the visual cortex of 12 healthy volunteers. Evaluating each hypothesis separately shows that neither hypothesis alone can describe the data in a biologically plausible way. However, by adding metabolism to the neurotransmitter feed-forward model structure, we obtained a new model structure which is able to fit the estimation data and successfully predict new, independent validation data

  16. Mechanistic Mathematical Modeling Tests Hypotheses of the Neurovascular Coupling in fMRI.

    PubMed

    Lundengård, Karin; Cedersund, Gunnar; Sten, Sebastian; Leong, Felix; Smedberg, Alexander; Elinder, Fredrik; Engström, Maria

    2016-06-01

    Functional magnetic resonance imaging (fMRI) measures brain activity by detecting the blood-oxygen-level dependent (BOLD) response to neural activity. The BOLD response depends on the neurovascular coupling, which connects cerebral blood flow, cerebral blood volume, and deoxyhemoglobin level to neuronal activity. The exact mechanisms behind this neurovascular coupling are not yet fully investigated. There are at least three different ways in which these mechanisms are being discussed. Firstly, mathematical models involving the so-called Balloon model describes the relation between oxygen metabolism, cerebral blood volume, and cerebral blood flow. However, the Balloon model does not describe cellular and biochemical mechanisms. Secondly, the metabolic feedback hypothesis, which is based on experimental findings on metabolism associated with brain activation, and thirdly, the neurotransmitter feed-forward hypothesis which describes intracellular pathways leading to vasoactive substance release. Both the metabolic feedback and the neurotransmitter feed-forward hypotheses have been extensively studied, but only experimentally. These two hypotheses have never been implemented as mathematical models. Here we investigate these two hypotheses by mechanistic mathematical modeling using a systems biology approach; these methods have been used in biological research for many years but never been applied to the BOLD response in fMRI. In the current work, model structures describing the metabolic feedback and the neurotransmitter feed-forward hypotheses were applied to measured BOLD responses in the visual cortex of 12 healthy volunteers. Evaluating each hypothesis separately shows that neither hypothesis alone can describe the data in a biologically plausible way. However, by adding metabolism to the neurotransmitter feed-forward model structure, we obtained a new model structure which is able to fit the estimation data and successfully predict new, independent validation data

  17. Neurovascular study of the trigeminal nerve at 3 t MRI.

    PubMed

    Docampo, Jorge; Gonzalez, Nadia; Muñoz, Alexandra; Bravo, Fernando; Sarroca, Daniel; Morales, Carlos

    2015-02-01

    This study aimed to show a novel visualization method to investigate neurovascular compression of the trigeminal nerve (TN) using a volume-rendering fusion imaging technique of 3D fast imaging employing steady-state acquisition (3D FIESTA) and coregistered 3D time of flight MR angiography (3D TOF MRA) sequences, which we called "neurovascular study of the trigeminal nerve". We prospectively studied 30 patients with unilateral trigeminal neuralgia (TN) and 50 subjects without symptoms of TN (control group), on a 3 Tesla scanner. All patients were assessed using 3D FIESTA and 3D TOF MRA sequences centered on the pons, as well as a standard brain protocol including axial T1, T2, FLAIR and GRE sequences to exclude other pathologies that could cause TN. Post-contrast T1-weighted sequences were also performed. All cases showing arterial imprinting on the trigeminal nerve (n = 11) were identified on the ipsilateral side of the pain. No significant relationship was found between the presence of an artery in contact with the trigeminal nerve and TN. Eight cases were found showing arterial contact on the ipsilateral side of the pain and five cases of arterial contact on the contralateral side. The fusion imaging technique of 3D FIESTA and 3D TOF MRA sequences, combining the high anatomical detail provided by the 3D FIESTA sequence with the 3D TOF MRA sequence and its capacity to depict arterial structures, results in a tool that enables quick and efficient visualization and assessment of the relationship between the trigeminal nerve and the neighboring vascular structures.

  18. Low prevalence of human herpesvirus-6 and varicella zoster virus in blood of multiple sclerosis patients, irrespective of inflammatory status or disease progression.

    PubMed

    Hon, Gloudina M; Erasmus, Rajiv T; Matsha, Tandi

    2014-08-01

    Herpesviruses, including human herpesvirus-6 and varicella zoster virus, have been implicated in the disease aetiology of multiple sclerosis. These viruses are capable of reactivation, reminiscent of the relapsing-remitting nature of multiple sclerosis. However, viral DNA has also been reported present in healthy controls, often at similar prevalence rates. This study aimed to determine whether prevalence could be associated with different stages of activity of the disease as well as the inflammatory status of the patients. Polymerase chain reaction assays were used to screen for human herpesvirus-6 and varicella zoster virus DNA in blood from 31 Caucasian patients with multiple sclerosis and 30 healthy age, sex and race matched control subjects. The patients were screened for inflammation using C-reactive protein as a marker and were also categorized according to their remitting/relapsing status. Results were positive for human herpesvirus-6 in blood from only one patient (3.2%) and human herpesvirus-6 DNA was not present in any control subjects. Varicella zoster virus was not detected in either the patients or control subjects. Similar to some other studies we saw an absence or very low viral positivity in blood from both patients and controls. These findings were irrespective of relapse episodes, increased inflammatory status or duration of the disease. Results therefore do not support a causative role for either human herpesvirus-6 or varicella zoster virus in the disease aetiology of multiple sclerosis, but rather that prevalence in patients may be linked to that of the general population.

  19. Inflammatory networks underlying colorectal cancer.

    PubMed

    Lasry, Audrey; Zinger, Adar; Ben-Neriah, Yinon

    2016-03-01

    Inflammation is emerging as one of the hallmarks of cancer, yet its role in most tumors remains unclear. Whereas a minority of solid tumors are associated with overt inflammation, long-term treatment with non-steroidal anti-inflammatory drugs is remarkably effective in reducing cancer rate and death. This indicates that inflammation might have many as-yet-unrecognized facets, among which an indolent course might be far more prevalent than previously appreciated. In this Review, we explore the various inflammatory processes underlying the development and progression of colorectal cancer and discuss anti-inflammatory means for its prevention and treatment.

  20. Progression of luminal breast tumors is promoted by ménage à trois between the inflammatory cytokine TNFα and the hormonal and growth-supporting arms of the tumor microenvironment.

    PubMed

    Weitzenfeld, Polina; Meron, Nurit; Leibovich-Rivkin, Tal; Meshel, Tsipi; Ben-Baruch, Adit

    2013-01-01

    Breast cancer progression is strongly linked to inflammatory processes, aggravating disease course. The impacts of the inflammatory cytokine TNF α on breast malignancy are not fully substantiated, and they may be affected by cooperativity between TNF α and other protumoral mediators. Here, we show that together with representatives of other important arms of the tumor microenvironment, estrogen (hormonal) and EGF (growth-supporting), TNF α potently induced metastasis-related properties and functions in luminal breast tumor cells, representing the most common type of breast cancer. Jointly, TNFα + Estrogen + EGF had a stronger effect on breast cancer cells than each element alone, leading to the following: (1) extensive cell spreading and formation of FAK/paxillin-enriched cellular protrusions; (2) elevated proportion of tumor cells coexpressing high levels of CD44 and β 1 and VLA6; (3) EMT and cell migration; (4) resistance to chemotherapy; (5) release of protumoral factors (CXCL8, CCL2, MMPs). Importantly, the tumor cells used in this study are known to be nonmetastatic under all conditions; nevertheless, they have acquired high metastasizing abilities in vivo in mice, following a brief stimulation by TNFα + Estrogen + EGF. These dramatic findings indicate that TNF α can turn into a strong prometastatic factor, suggesting a paradigm shift in which clinically approved inhibitors of TNFα would be applied in breast cancer therapy. PMID:24369447

  1. Progression of luminal breast tumors is promoted by ménage à trois between the inflammatory cytokine TNFα and the hormonal and growth-supporting arms of the tumor microenvironment.

    PubMed

    Weitzenfeld, Polina; Meron, Nurit; Leibovich-Rivkin, Tal; Meshel, Tsipi; Ben-Baruch, Adit

    2013-01-01

    Breast cancer progression is strongly linked to inflammatory processes, aggravating disease course. The impacts of the inflammatory cytokine TNF α on breast malignancy are not fully substantiated, and they may be affected by cooperativity between TNF α and other protumoral mediators. Here, we show that together with representatives of other important arms of the tumor microenvironment, estrogen (hormonal) and EGF (growth-supporting), TNF α potently induced metastasis-related properties and functions in luminal breast tumor cells, representing the most common type of breast cancer. Jointly, TNFα + Estrogen + EGF had a stronger effect on breast cancer cells than each element alone, leading to the following: (1) extensive cell spreading and formation of FAK/paxillin-enriched cellular protrusions; (2) elevated proportion of tumor cells coexpressing high levels of CD44 and β 1 and VLA6; (3) EMT and cell migration; (4) resistance to chemotherapy; (5) release of protumoral factors (CXCL8, CCL2, MMPs). Importantly, the tumor cells used in this study are known to be nonmetastatic under all conditions; nevertheless, they have acquired high metastasizing abilities in vivo in mice, following a brief stimulation by TNFα + Estrogen + EGF. These dramatic findings indicate that TNF α can turn into a strong prometastatic factor, suggesting a paradigm shift in which clinically approved inhibitors of TNFα would be applied in breast cancer therapy.

  2. Blood circulating microparticle species in relapsing–remitting and secondary progressive multiple sclerosis. A case–control, cross sectional study with conventional MRI and advanced iron content imaging outcomes

    PubMed Central

    Alexander, J.S.; Chervenak, R.; Weinstock-Guttman, B.; Tsunoda, I.; Ramanathan, M.; Martinez, N.E.; Omura, S.; Sato, F.; Chaitanya, G.V.; Minagar, A.; McGee, J.; Jennings, M.H.; Monceaux, C.; Becker, F.; Cvek, U.; Trutschl, M.; Zivadinov, R.

    2015-01-01

    Background Although multiple sclerosis (MS) is thought to represent an excessive and inappropriate immune response to several central nervous system (CNS) autoantigens, increasing evidence also suggests that MS may also be a neurovascular inflammatory disease, characterized by endothelial activation and shedding of cell membrane microdomains known as ‘microparticles’ into the circulation. Objective To investigate the relationships between these endothelial biomarkers and MS. Methods We examined the relative abundance of CD31+/PECAM-1, CD51+CD61+ (αV–β3) and CD54+ (ICAM-1) bearing microparticles in sera of healthy individuals, patients with relapsing–remitting MS, and secondary-progressive MS. We also investigated the correlation among circulating levels of different microparticle species in MS with conventional MRI (T2- and T1-lesion volumes and brain atrophy), as well as novel MR modalities [assessment of iron content on susceptibility-weighted imaging (SWI)-filtered phase]. Results Differences in circulating microparticle levels were found among MS groups, and several microparticle species (CD31+/CD51+/CD61+/CD54+) were found to correlate with conventional MRI and SWI features of MS. Conclusion These results indicate that circulating microparticles’ profiles in MS may support mechanistic roles for microvascular stress and injury which is an underlying contributor not only to MS initiation and progression, but also to pro-inflammatory responses. PMID:26073484

  3. Effects of removing inferior alveolar neurovascular structures on mandibular growth and the eruption of permanent dentition in puppies.

    PubMed

    Harputluoğlu, S

    1990-08-01

    Investigation was performed on the effects of removing the inferior alveolar neurovascular structures on the permanent dentition and mandibular growth. Five puppies with erupted deciduous teeth had the inferior alveolar neurovascular structures removed unilaterally. When the test animals were 28 weeks old, examination revealed that the deciduous teeth on the side operated had exfoliated but permanent teeth did not replace them. On the other hand, the permanent teeth on the side not operated on replaced the exfoliated deciduous teeth. After a second period of 28 weeks, the germs of the permanent teeth on the side operated on were still buried in the mandibular bone, and the permanent teeth on the side not operated on erupted normally. Mandibular measurements demonstrated that translative and transformative growth and developmental processes were normal in both the sides operated on and the sides not operated on. PMID:2290639

  4. Skimmin, a Coumarin from Hydrangea paniculata, Slows down the Progression of Membranous Glomerulonephritis by Anti-Inflammatory Effects and Inhibiting Immune Complex Deposition

    PubMed Central

    Xin, Hongqi; Li, Yan; Zhang, Dongming; Shi, Jing; Yang, Jingzhi

    2013-01-01

    Skimmin is one of the major pharmacologically active molecules present in Hydrangea paniculata, a medical herb used in the traditional Chinese medicine as an anti-inflammatory agent. In the current study, we attempted to investigate its renoprotective activity and underlying mechanisms in a rat model of membranous glomerulonephritis induced by cationic bovine serum albumin (c-BSA). Sprague-Dawley (SD) rats were divided into five groups, including normal control, model control, Mycophenolate Mofetil-treated group, and two skimming-treated groups (15 mg/kg and 30 mg/kg). Our research showed that treatment with skimmin significantly reduced the levels of blood urea nitrogen (BUN), urinary albumin excretion (UAE), and serum creatinine (Scr) as compared with model control after experimental induction of membranous glomerulonephritis (P < 0.01). Moreover, glomerular hypercellularity, tubulointerstitial injury, and glomerular deposition of IgG were less intense after skimmin treatment. By immunochemistry analysis, we demonstrated that skimmin could significantly inhibit interleukin-1β (IL1β) and IL-6 expression (P < 0.05), reduce the loss of nephrin and podocin, and suppress the infiltration of renal interstitium by CD3-positive T cell and CD20-positive B cell. These results suggest that treatment with skimmin can significantly improve renal function and suppress the IgG deposition as well as the development of glomerular lesions in a rat model of membranous glomerulonephritis. PMID:23990847

  5. Chronic Trypanosoma cruzi infection potentiates adipose tissue macrophage polarization toward an anti-inflammatory M2 phenotype and contributes to diabetes progression in a diet-induced obesity model.

    PubMed

    Cabalén, María E; Cabral, María F; Sanmarco, Liliana M; Andrada, Marta C; Onofrio, Luisina I; Ponce, Nicolás E; Aoki, María P; Gea, Susana; Cano, Roxana C

    2016-03-22

    Chronic obesity and Chagas disease (caused by the protozoan Trypanosoma cruzi) represent serious public health concerns. The interrelation between parasite infection, adipose tissue, immune system and metabolism in an obesogenic context, has not been entirely explored. A novel diet-induced obesity model (DIO) was developed in C57BL/6 wild type mice to examine the effect of chronic infection (DIO+I) on metabolic parameters and on obesity-related disorders. Dyslipidemia, hyperleptinemia, and cardiac/hepatic steatosis were strongly developed in DIO mice. Strikingly, although these metabolic alterations were collectively improved by infection, plasmatic apoB100 levels remain significantly increased in DIO+I, suggesting the presence of pro-atherogenic small and dense LDL particles. Moreover, acute insulin resistance followed by chronic hyperglycemia with hypoinsulinemia was found, evidencing an infection-related-diabetes progression. These lipid and glucose metabolic changes seemed to be highly dependent on TLR4 expression since TLR4-/- mice were protected from obesity and its complications. Notably, chronic infection promoted a strong increase in MCP-1 producing macrophages with a M2 (F4/80+CD11c-CD206+) phenotype associated to oxidative stress in visceral adipose tissue of DIO+I mice. Importantly, infection reduced lipid content but intensified inflammatory infiltrates in target tissues. Thus, parasite persistence in an obesogenic environment and the resulting host immunometabolic dysregulation may contribute to diabetes/atherosclerosis progression. PMID:26921251

  6. Chronic Trypanosoma cruzi infection potentiates adipose tissue macrophage polarization toward an anti-inflammatory M2 phenotype and contributes to diabetes progression in a diet-induced obesity model

    PubMed Central

    Cabalén, María E.; Cabral, María F.; Sanmarco, Liliana M.; Andrada, Marta C.; Onofrio, Luisina I.; Ponce, Nicolás E.; Aoki, María P.; Gea, Susana; Cano, Roxana C.

    2016-01-01

    Chronic obesity and Chagas disease (caused by the protozoan Trypanosoma cruzi) represent serious public health concerns. The interrelation between parasite infection, adipose tissue, immune system and metabolism in an obesogenic context, has not been entirely explored. A novel diet-induced obesity model (DIO) was developed in C57BL/6 wild type mice to examine the effect of chronic infection (DIO+I) on metabolic parameters and on obesity-related disorders. Dyslipidemia, hyperleptinemia, and cardiac/hepatic steatosis were strongly developed in DIO mice. Strikingly, although these metabolic alterations were collectively improved by infection, plasmatic apoB100 levels remain significantly increased in DIO+I, suggesting the presence of pro-atherogenic small and dense LDL particles. Moreover, acute insulin resistance followed by chronic hyperglycemia with hypoinsulinemia was found, evidencing an infection-related-diabetes progression. These lipid and glucose metabolic changes seemed to be highly dependent on TLR4 expression since TLR4−/− mice were protected from obesity and its complications. Notably, chronic infection promoted a strong increase in MCP-1 producing macrophages with a M2 (F4/80+CD11c-CD206+) phenotype associated to oxidative stress in visceral adipose tissue of DIO+I mice. Importantly, infection reduced lipid content but intensified inflammatory infiltrates in target tissues. Thus, parasite persistence in an obesogenic environment and the resulting host immunometabolic dysregulation may contribute to diabetes/atherosclerosis progression. PMID:26921251

  7. Chronic Trypanosoma cruzi infection potentiates adipose tissue macrophage polarization toward an anti-inflammatory M2 phenotype and contributes to diabetes progression in a diet-induced obesity model.

    PubMed

    Cabalén, María E; Cabral, María F; Sanmarco, Liliana M; Andrada, Marta C; Onofrio, Luisina I; Ponce, Nicolás E; Aoki, María P; Gea, Susana; Cano, Roxana C

    2016-03-22

    Chronic obesity and Chagas disease (caused by the protozoan Trypanosoma cruzi) represent serious public health concerns. The interrelation between parasite infection, adipose tissue, immune system and metabolism in an obesogenic context, has not been entirely explored. A novel diet-induced obesity model (DIO) was developed in C57BL/6 wild type mice to examine the effect of chronic infection (DIO+I) on metabolic parameters and on obesity-related disorders. Dyslipidemia, hyperleptinemia, and cardiac/hepatic steatosis were strongly developed in DIO mice. Strikingly, although these metabolic alterations were collectively improved by infection, plasmatic apoB100 levels remain significantly increased in DIO+I, suggesting the presence of pro-atherogenic small and dense LDL particles. Moreover, acute insulin resistance followed by chronic hyperglycemia with hypoinsulinemia was found, evidencing an infection-related-diabetes progression. These lipid and glucose metabolic changes seemed to be highly dependent on TLR4 expression since TLR4-/- mice were protected from obesity and its complications. Notably, chronic infection promoted a strong increase in MCP-1 producing macrophages with a M2 (F4/80+CD11c-CD206+) phenotype associated to oxidative stress in visceral adipose tissue of DIO+I mice. Importantly, infection reduced lipid content but intensified inflammatory infiltrates in target tissues. Thus, parasite persistence in an obesogenic environment and the resulting host immunometabolic dysregulation may contribute to diabetes/atherosclerosis progression.

  8. A longitudinal analysis of the effect of mass drug administration on acute inflammatory episodes and disease progression in lymphedema patients in Leogane, Haiti.

    PubMed

    Eddy, Brittany A; Blackstock, Anna J; Williamson, John M; Addiss, David G; Streit, Thomas G; Beau de Rochars, Valery M; Fox, Leanne M

    2014-01-01

    We conducted a longitudinal analysis of 117 lymphedema patients in a filariasis-endemic area of Haiti during 1995-2008. No difference in lymphedema progression between those who received or did not receive mass drug administration (MDA) was found on measures of foot (P = 0.24), ankle (P = 0.87), or leg (P = 0.46) circumference; leg volume displacement (P = 0.09), lymphedema stage (P = 0.93), or frequency of adenolymphangitis (ADL) episodes (P = 0.57). Rates of ADL per year were greater after initiation of MDA among both groups (P < 0.01). Nevertheless, patients who received MDA reported improvement in four areas of lymphedema-related quality of life (P ≤ 0.01). Decreases in foot and ankle circumference and ADL episodes were observed during the 1995-1998 lymphedema management study (P ≤ 0.01). This study represents the first longitudinal, quantitative, leg-specific analysis examining the clinical effect of diethylcarbamazine on lymphedema progression and ADL episodes. PMID:24218408

  9. Microstructural abnormalities of the trigeminal nerve by diffusion-tensor imaging in trigeminal neuralgia without neurovascular compression.

    PubMed

    Neetu, Soni; Sunil, Kumar; Ashish, Awasthi; Jayantee, Kalita; Usha Kant, Misra

    2016-02-01

    Microstructural changes of the trigeminal nerve in trigeminal neuralgia due to neurovascular compression have been reported by using diffusion tensor imaging. Other aetiologies such as primary demyelinating lesions, brain stem infarction and nerve root infiltration by tumour affecting the trigeminal pathway may also present as trigeminal neuralgia. The aim of this study was to evaluate the microstructural tissue abnormalities in the trigeminal nerve in symptomatic trigeminal neuralgia not related to neurovascular compression using diffusion tensor imaging. Mean values of the quantitative diffusion parameters of trigeminal nerve, fractional anisotropy and apparent diffusion coefficient, were measured in a group of four symptomatic trigeminal neuralgia patients without neurovascular compression who showed focal non-enhancing T2-hyperintense lesions in the pontine trigeminal pathway. These diffusion parameters were compared between the affected and unaffected sides in the same patient and with four age-matched healthy controls. Cranial magnetic resonance imaging revealed hyperintense lesions in the dorsolateral part of the pons along the central trigeminal pathway on T2-fluid-attenuated inversion recovery sequences. The mean fractional anisotropy value on the affected side was significantly decreased (P = 0.001) compared to the unaffected side and healthy controls. Similarly, the mean apparent diffusion coefficient value was significantly higher (P = 0.001) on the affected side compared to the unaffected side and healthy controls. The cause of trigeminal neuralgia in our patients was abnormal pontine lesions affecting the central trigeminal pathway. The diffusion tensor imaging results suggest that microstructural tissue abnormalities of the trigeminal nerve also exist even in non-neurovascular compression-related trigeminal neuralgia.

  10. Inflammatory mechanisms of endometritis.

    PubMed

    Woodward, E M; Troedsson, M H T

    2015-07-01

    Transient post breeding endometritis is a normal physiological reaction in the mare, as it is believed that an inflammatory response is necessary for the effective removal of contaminating bacteria and excess spermatozoa introduced into the uterus. While most mares can clear endometritis within a reasonable amount of time, persistent endometritis caused by either bacteria or spermatozoa can threaten the success of a pregnancy. A subpopulation of mares is susceptible to persistent endometritis, and these mares are a concern in equine reproductive medicine. Research has identified several factors that contribute to susceptibility; however, the exact mechanisms of the progression of the disease are still being elucidated. Current research focuses on endometrial gene expression during endometritis in an attempt to understand the timing of specific inflammatory processes involved with the development of susceptibility to persistent endometritis. With an increased understanding of the mechanisms involved with the disease, current treatments can be improved upon, and new treatments can be developed to target affected pathways. PMID:25537084

  11. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina.

    PubMed

    Riva, Charles E; Logean, Eric; Falsini, Benedetto

    2005-03-01

    The retina and optic nerve are both optically accessible parts of the central nervous system. They represent, therefore, highly valuable tissues for studies of the intrinsic physiological mechanism postulated more than 100 years ago by Roy and Sherrington, by which neural activity is coupled to blood flow and metabolism. This article describes a series of animal and human studies that explored the changes in hemodynamics and oxygenation in the retina and optic nerve in response to increased neural activity, as well as the mechanisms underlying these changes. It starts with a brief review of techniques used to assess changes in neural activity, hemodynamics, metabolism and tissue concentration of various potential mediators and modulators of the coupling. We then review: (a) the characteristics of the flicker-induced hemodynamical response in different regions of the eye, starting with the optic nerve, the region predominantly studied; (b) the effect of varying the stimulus parameters, such as modulation depth, frequency, luminance, color ratio, area of stimulation, site of measurement and others, on this response; (c) data on activity-induced intrinsic reflectance and functional magnetic resonance imaging signals from the optic nerve and retina. The data undeniably demonstrate that visual stimulation is a powerful modulator of retinal and optic nerve blood flow. Exploring the relationship between vasoactivity and metabolic changes on one side and corresponding neural activity changes on the other confirms the existence of a neurovascular/neurometabolic coupling in the neural tissue of the eye fundus and reveals that the mechanism underlying this coupling is complex and multi-factorial. The importance of fully exploiting the potential of the activity-induced vascular changes in the assessment of the pathophysiology of ocular diseases motivated studies aimed at identifying potential mediators and modulators of the functional hyperemia, as well as conditions

  12. Astrocyte Ca2+ Signaling Drives Inversion of Neurovascular Coupling after Subarachnoid Hemorrhage.

    PubMed

    Pappas, Anthony C; Koide, Masayo; Wellman, George C

    2015-09-30

    Physiologically, neurovascular coupling (NVC) matches focal increases in neuronal activity with local arteriolar dilation. Astrocytes participate in NVC by sensing increased neurotransmission and releasing vasoactive agents (e.g., K(+)) from perivascular endfeet surrounding parenchymal arterioles. Previously, we demonstrated an increase in the amplitude of spontaneous Ca(2+) events in astrocyte endfeet and inversion of NVC from vasodilation to vasoconstriction in brain slices obtained from subarachnoid hemorrhage (SAH) model rats. However, the role of spontaneous astrocyte Ca(2+) signaling in determining the polarity of the NVC response remains unclear. Here, we used two-photon imaging of Fluo-4-loaded rat brain slices to determine whether altered endfoot Ca(2+) signaling underlies SAH-induced inversion of NVC. We report a time-dependent emergence of endfoot high-amplitude Ca(2+) signals (eHACSs) after SAH that were not observed in endfeet from unoperated animals. Furthermore, the percentage of endfeet with eHACSs varied with time and paralleled the development of inversion of NVC. Endfeet with eHACSs were present only around arterioles exhibiting inversion of NVC. Importantly, depletion of intracellular Ca(2+) stores using cyclopiazonic acid abolished SAH-induced eHACSs and restored arteriolar dilation in SAH brain slices to two mediators of NVC (a rise in endfoot Ca(2+) and elevation of extracellular K(+)). These data indicate a causal link between SAH-induced eHACSs and inversion of NVC. Ultrastructural examination using transmission electron microscopy indicated that a similar proportion of endfeet exhibiting eHACSs also exhibited asymmetrical enlargement. Our results demonstrate that subarachnoid blood causes a delayed increase in the amplitude of spontaneous intracellular Ca(2+) release events leading to inversion of NVC. Significance statement: Aneurysmal subarachnoid hemorrhage (SAH)--strokes involving cerebral aneurysm rupture and release of blood onto the

  13. The absolute CBF response to activation is preserved during elevated perfusion: Implications for neurovascular coupling measures.

    PubMed

    Whittaker, Joseph R; Driver, Ian D; Bright, Molly G; Murphy, Kevin

    2016-01-15

    Functional magnetic resonance imaging (fMRI) techniques in which the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) response to a neural stimulus are measured, can be used to estimate the fractional increase in the cerebral metabolic rate of oxygen consumption (CMRO2) that accompanies evoked neural activity. A measure of neurovascular coupling is obtained from the ratio of fractional CBF and CMRO2 responses, defined as n, with the implicit assumption that relative rather than absolute changes in CBF and CMRO2 adequately characterise the flow-metabolism response to neural activity. The coupling parameter n is important in terms of its effect on the BOLD response, and as potential insight into the flow-metabolism relationship in both normal and pathological brain function. In 10 healthy human subjects, BOLD and CBF responses were measured to test the effect of baseline perfusion (modulated by a hypercapnia challenge) on the coupling parameter n during graded visual stimulation. A dual-echo pulsed arterial spin labelling (PASL) sequence provided absolute quantification of CBF in baseline and active states as well as relative BOLD signal changes, which were used to estimate CMRO2 responses to the graded visual stimulus. The absolute CBF response to the visual stimuli were constant across different baseline CBF levels, meaning the fractional CBF responses were reduced at the hyperperfused baseline state. For the graded visual stimuli, values of n were significantly reduced during hypercapnia induced hyperperfusion. Assuming the evoked neural responses to the visual stimuli are the same for both baseline CBF states, this result has implications for fMRI studies that aim to measure neurovascular coupling using relative changes in CBF. The coupling parameter n is sensitive to baseline CBF, which would confound its interpretation in fMRI studies where there may be significant differences in baseline perfusion between groups. The absolute change in

  14. Neurovascular protection of cilostazol in stroke-prone spontaneous hypertensive rats associated with angiogenesis and pericyte proliferation.

    PubMed

    Omote, Yoshio; Deguchi, Kentaro; Kono, Syoichiro; Liu, Ning; Liu, Wentao; Kurata, Tomoko; Yamashita, Toru; Ikeda, Yoshio; Abe, Koji

    2014-03-01

    Stroke is the major cause of death and decrease in the activities of daily living. This study sought to evaluate the effects of commonly used antiplatelet drugs on spontaneous cerebral infarction in relation to neurovascular protection associated with angiogenesis and pericyte proliferation. Stroke-prone spontaneously hypertensive rats (SHR-SP) were treated with vehicle, aspirin, clopidogrel, or cilostazol from 8 to 10 weeks of age. The interaction of neurovascular components among endothelial cells, pericytes, and astrocytic endfeet were immunohistochemically examined in brain sections. Angiogenesis associated with vascular endothelial growth factor receptor 2 (VEGFR2) and pericyte proliferation were also examined immunohistochemically. The expression and activity of matrix metalloproteinase 9 (MMP-9) were assessed immunohistochemically and by gelatin zymography. Among the antiplatelet drugs, cilostazol preserved the neurovascular unit (NVU) by preventing astrocytic endfeet or pericytes from pathological detachment found in the vehicle and aspirin treatment. Cilostazol also inhibited the expression and activity of MMP-9, which led to protection of the NVU. Furthermore, in the periinfarct area, cilostazol increased VEGFR2 expression, promoting angiogenesis through proliferation of pericytes. The present study showed a strong protection of NVU integrity by cilostazol and the promotion of angiogenesis by stimulating both endothelial VEGFR2 expression and pericyte proliferation. In addition to the antioxidative effect, these pleiotropic effects of cilostazol contribute to reduce spontaneous infarct volume and preserve motor and cognitive function in SHR-SP.

  15. Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7 T.

    PubMed

    Huber, Laurentius; Goense, Jozien; Kennerley, Aneurin J; Ivanov, Dimo; Krieger, Steffen N; Lepsien, Jöran; Trampel, Robert; Turner, Robert; Möller, Harald E

    2014-08-15

    Decreases in stimulus-dependent blood oxygenation level dependent (BOLD) signal and their underlying neurovascular origins have recently gained considerable interest. In this study a multi-echo, BOLD-corrected vascular space occupancy (VASO) functional magnetic resonance imaging (fMRI) technique was used to investigate neurovascular responses during stimuli that elicit positive and negative BOLD responses in human brain at 7 T. Stimulus-induced BOLD, cerebral blood volume (CBV), and cerebral blood flow (CBF) changes were measured and analyzed in 'arterial' and 'venous' blood compartments in macro- and microvasculature. We found that the overall interplay of mean CBV, CBF and BOLD responses is similar for tasks inducing positive and negative BOLD responses. Some aspects of the neurovascular coupling however, such as the temporal response, cortical depth dependence, and the weighting between 'arterial' and 'venous' contributions, are significantly different for the different task conditions. Namely, while for excitatory tasks the BOLD response peaks at the cortical surface, and the CBV change is similar in cortex and pial vasculature, inhibitory tasks are associated with a maximum negative BOLD response in deeper layers, with CBV showing strong constriction of surface arteries and a faster return to baseline. The different interplays of CBV, CBF and BOLD during excitatory and inhibitory responses suggests different underlying hemodynamic mechanisms.

  16. Simultaneous real-time 3D photoacoustic tomography and EEG for neurovascular coupling study in an animal model of epilepsy

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Xiao, Jiaying; Jiang, Huabei

    2014-08-01

    Objective. Neurovascular coupling in epilepsy is poorly understood; its study requires simultaneous monitoring of hemodynamic changes and neural activity in the brain. Approach. Here for the first time we present a combined real-time 3D photoacoustic tomography (PAT) and electrophysiology/electroencephalography (EEG) system for the study of neurovascular coupling in epilepsy, whose ability was demonstrated with a pentylenetetrazol (PTZ) induced generalized seizure model in rats. Two groups of experiments were carried out with different wavelengths to detect the changes of oxy-hemoglobin (HbO2) and deoxy-hemoglobin (HbR) signals in the rat brain. We extracted the average PAT signals of the superior sagittal sinus (SSS), and compared them with the EEG signal. Main results. Results showed that the seizure process can be divided into three stages. A ‘dip’ lasting for 1-2 min in the first stage and the following hyperfusion in the second stage were observed. The HbO2 signal and the HbR signal were generally negatively correlated. The change of blood flow was also estimated. All the acquired results here were in accordance with other published results. Significance. Compared to other existing functional neuroimaging tools, the method proposed here enables reliable tracking of hemodynamic signal with both high spatial and high temporal resolution in 3D, so it is more suitable for neurovascular coupling study of epilepsy.

  17. Eicosanoid Profiling in an Orthotopic Model of Lung Cancer Progression by Mass Spectrometry Demonstrates Selective Production of Leukotrienes by Inflammatory Cells of the Microenvironment

    PubMed Central

    Poczobutt, Joanna M.; Gijon, Miguel; Amin, Jay; Hanson, Dwight; Li, Howard; Walker, Deandra; Weiser-Evans, Mary; Lu, Xian; Murphy, Robert C.; Nemenoff, Raphael A.

    2013-01-01

    Eicosanoids are bioactive lipid mediators derived from arachidonic acid1 (AA), which is released by cytosolic phospholipase A2 (cPLA2). AA is metabolized through three major pathways, cyclooxygenase (COX), lipoxygenase (LO) and cytochrome P450, to produce a family of eicosanoids, which individually have been shown to have pro- or anti-tumorigenic activities in cancer. However, cancer progression likely depends on complex changes in multiple eicosanoids produced by cancer cells and by tumor microenvironment and a systematic examination of the spectrum of eicosanoids in cancer has not been performed. We used liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) to quantitate eicosanoids produced during lung tumor progression in an orthotopic immunocompetent mouse model of lung cancer, in which Lewis lung carcinoma (LLC) cells are injected into lungs of syngeneic mice. The presence of tumor increased products of both the cyclooxygenase and the lipoxygenase pathways in a time-dependent fashion. Comparing tumors grown in cPLA2 knockout vs wild-type mice, we demonstrated that prostaglandins (PGE2, PGD2 and PGF2a) were produced by both cancer cells and the tumor microenvironment (TME), but leukotriene (LTB4, LTC4, LTD4, LTE4) production required cPLA2 expression in the TME. Using flow cytometry, we recovered tumor-associated neutrophils and 2 types of tumor-associated macrophages from tumor-bearing lungs and we defined their distinct eicosanoid profiles by LC/MS/MS. The combination of flow cytometry and LC/MS/MS unravels the complexity of eicosanoid production in lung cancer and provides a rationale to develop therapeutic strategies that target select cell populations to inhibit specific classes of eicosanoids. PMID:24244531

  18. Three-Dimensional Blood-Brain Barrier Model for in vitro Studies of Neurovascular Pathology

    NASA Astrophysics Data System (ADS)

    Cho, Hansang; Seo, Ji Hae; Wong, Keith H. K.; Terasaki, Yasukazu; Park, Joseph; Bong, Kiwan; Arai, Ken; Lo, Eng H.; Irimia, Daniel

    2015-10-01

    Blood-brain barrier (BBB) pathology leads to neurovascular disorders and is an important target for therapies. However, the study of BBB pathology is difficult in the absence of models that are simple and relevant. In vivo animal models are highly relevant, however they are hampered by complex, multi-cellular interactions that are difficult to decouple. In vitro models of BBB are simpler, however they have limited functionality and relevance to disease processes. To address these limitations, we developed a 3-dimensional (3D) model of BBB on a microfluidic platform. We verified the tightness of the BBB by showing its ability to reduce the leakage of dyes and to block the transmigration of immune cells towards chemoattractants. Moreover, we verified the localization at endothelial cell boundaries of ZO-1 and VE-Cadherin, two components of tight and adherens junctions. To validate the functionality of the BBB model, we probed its disruption by neuro-inflammation mediators and ischemic conditions and measured the protective function of antioxidant and ROCK-inhibitor treatments. Overall, our 3D BBB model provides a robust platform, adequate for detailed functional studies of BBB and for the screening of BBB-targeting drugs in neurological diseases.

  19. Upregulation of neurovascular communication through filamin abrogation promotes ectopic periventricular neurogenesis

    PubMed Central

    Houlihan, Shauna L; Lanctot, Alison A; Guo, Yan; Feng, Yuanyi

    2016-01-01

    Neuronal fate-restricted intermediate progenitors (IPs) are derived from the multipotent radial glia (RGs) and serve as the direct precursors for cerebral cortical neurons, but factors that control their neurogenic plasticity remain elusive. Here we report that IPs’ neuron production is enhanced by abrogating filamin function, leading to the generation of periventricular neurons independent of normal neocortical neurogenesis and neuronal migration. Loss of Flna in neural progenitor cells (NPCs) led RGs to undergo changes resembling epithelial-mesenchymal transition (EMT) along with exuberant angiogenesis that together changed the microenvironment and increased neurogenesis of IPs. We show that by collaborating with β-arrestin, Flna maintains the homeostatic signaling between the vasculature and NPCs, and loss of this function results in escalated Vegfa and Igf2 signaling, which exacerbates both EMT and angiogenesis to further potentiate IPs’ neurogenesis. These results suggest that the neurogenic potential of IPs may be boosted in vivo by manipulating Flna-mediated neurovascular communication. DOI: http://dx.doi.org/10.7554/eLife.17823.001 PMID:27664421

  20. Three-Dimensional Blood-Brain Barrier Model for in vitro Studies of Neurovascular Pathology

    PubMed Central

    Cho, Hansang; Seo, Ji Hae; Wong, Keith H. K.; Terasaki, Yasukazu; Park, Joseph; Bong, Kiwan; Arai, Ken; Lo, Eng H.; Irimia, Daniel

    2015-01-01

    Blood–brain barrier (BBB) pathology leads to neurovascular disorders and is an important target for therapies. However, the study of BBB pathology is difficult in the absence of models that are simple and relevant. In vivo animal models are highly relevant, however they are hampered by complex, multi-cellular interactions that are difficult to decouple. In vitro models of BBB are simpler, however they have limited functionality and relevance to disease processes. To address these limitations, we developed a 3-dimensional (3D) model of BBB on a microfluidic platform. We verified the tightness of the BBB by showing its ability to reduce the leakage of dyes and to block the transmigration of immune cells towards chemoattractants. Moreover, we verified the localization at endothelial cell boundaries of ZO-1 and VE-Cadherin, two components of tight and adherens junctions. To validate the functionality of the BBB model, we probed its disruption by neuro-inflammation mediators and ischemic conditions and measured the protective function of antioxidant and ROCK-inhibitor treatments. Overall, our 3D BBB model provides a robust platform, adequate for detailed functional studies of BBB and for the screening of BBB-targeting drugs in neurological diseases. PMID:26503597

  1. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states.

    PubMed

    Lecrux, C; Hamel, E

    2016-10-01

    Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574304

  2. A 3D neurovascular bundles segmentation method based on MR-TRUS deformable registration

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Jani, Ashesh B.; Mao, Hui; Ogunleye, Tomi; Curran, Walter J.; Liu, Tian

    2015-03-01

    In this paper, we propose a 3D neurovascular bundles (NVB) segmentation method for ultrasound (US) image by integrating MR and transrectal ultrasound (TRUS) images through MR-TRUS deformable registration. First, 3D NVB was contoured by a physician in MR images, and the 3D MRdefined NVB was then transformed into US images using a MR-TRUS registration method, which models the prostate tissue as an elastic material, and jointly estimates the boundary deformation and the volumetric deformations under the elastic constraint. This technique was validated with a clinical study of 6 patients undergoing radiation therapy (RT) treatment for prostate cancer. The accuracy of our approach was assessed through the locations of landmarks, as well as previous ultrasound Doppler images of patients. MR-TRUS registration was successfully performed for all patients. The mean displacement of the landmarks between the post-registration MR and TRUS images was less than 2 mm, and the average NVB volume Dice Overlap Coefficient was over 89%. This NVB segmentation technique could be a useful tool as we try to spare the NVB in prostate RT, monitor NVB response to RT, and potentially improve post-RT potency outcomes.

  3. Neurovascular complications due to the Hippocrates method for reducing anterior shoulder dislocations.

    PubMed

    Regauer, Markus; Polzer, Hans; Mutschler, Wolf

    2014-01-18

    In spite of the fact that the Hippocrates method hardly has been evaluated in a scientific manner and numerous associated iatrogenic complications have been reported, this method remains to be one of the most common techniques for reducing anterior shoulder dislocations. We report the case of a 69-year-old farmer under coumarin anticoagulant therapy who sustained acute first time anterior dislocation of his dominant right shoulder. By using the Hippocrates method with the patient under general anaesthesia, the brachial vein was injured and an increasing hematoma subsequently caused brachial plexus paresis by pressure. After surgery for decompression and vascular suturing, symptoms declined rapidly, but brachial plexus paresis still was not fully reversible after 3 mo of follow-up. The hazardousness of using the Hippocrates method can be explained by traction on the outstretched arm with force of the operator's body weight, direct trauma to the axillary region by the physician's heel, and the topographic relations of neurovascular structures and the dislocated humeral head. As there is a variety of alternative reduction techniques which have been evaluated scientifically and proofed to be safe, we strongly caution against the use of the Hippocrates method as a first line technique for reducing anterior shoulder dislocations, especially in elder patients with fragile vessels or under anticoagulant therapy, and recommend the scapular manipulation technique or the Milch technique, for example, as a first choice. PMID:24649415

  4. Imaging the Perivascular Space as a Potential Biomarker of Neurovascular and Neurodegenerative Diseases.

    PubMed

    Ramirez, Joel; Berezuk, Courtney; McNeely, Alicia A; Gao, Fuqiang; McLaurin, JoAnne; Black, Sandra E

    2016-03-01

    Although the brain lacks conventional lymphatic vessels found in peripheral tissue, evidence suggests that the space surrounding the vasculature serves a similar role in the clearance of fluid and metabolic waste from the brain. With aging, neurodegeneration, and cerebrovascular disease, these microscopic perivascular spaces can become enlarged, allowing for visualization and quantification on structural MRI. The purpose of this review is to: (i) describe some of the recent pre-clinical findings from basic science that shed light on the potential neurophysiological mechanisms driving glymphatic and perivascular waste clearance, (ii) review some of the pathobiological etiologies that may lead to MRI-visible enlarged perivascular spaces (ePVS), (iii) describe the possible clinical implications of ePVS, (iv) evaluate existing qualitative and quantitative techniques used for measuring ePVS burden, and (v) propose future avenues of research that may improve our understanding of this potential clinical neuroimaging biomarker for fluid and metabolic waste clearance dysfunction in neurodegenerative and neurovascular diseases. PMID:26993511

  5. Iptakalim protects against ischemic injury by improving neurovascular unit function in the mouse brain.

    PubMed

    Ji, Juan; Yan, Hui; Chen, Zheng-Zhen; Zhao, Zhan; Yang, Dan-Dan; Sun, Xiu-Lan; Shi, Yong-Ping

    2015-07-01

    It has been reported that the novel ATP-sensitive potassium (K-ATP) channel opener iptakalim (IPT) decreases ischemic neuronal damage in rats. However, the mechanisms underlying neuroprotection are still to be fully elucidated. The results of this study showed that mice with ischemia induced by middle cerebral artery occlusion exhibited higher mortality and more neurological deficits, as well as larger infarct volume, compared with sham mice. Moreover, it was found that ischemia activated astrocytes surrounding CA1 neurons with an increased expression of D-serine, induced greater microglial activation accompanied by higher tumor necrosis factor alpha (TNF-α) production, and caused higher expressions of matrix metalloproteinase 9 (MMP-9) in the endothelial cells of mice. Pretreatment with IPT significantly attenuated the neurological deficits and decreased the infarct volume in mice. IPT treatment could decrease MMP-9 secretion, inhibit astrocytic activation with decreasing D-serine and elevating connexin43 expression. Microglial activation was also inhibited and TNF-α production was decreased by IPT. Taken together, a K-ATP channel opener may improve the function of neurovascular unit and protect against ischemic injury. These findings suggest that targeting K-ATP channels provides a promising therapeutic approach for stroke. PMID:25998857

  6. Molecular contributions to neurovascular unit dysfunctions after brain injuries: lessons for target-specific drug development

    PubMed Central

    Jullienne, Amandine; Badaut, Jérôme

    2014-01-01

    The revised ‘expanded’ neurovascular unit (eNVU) is a physiological and functional unit encompassing endothelial cells, pericytes, smooth muscle cells, astrocytes and neurons. Ischemic stroke and traumatic brain injury are acute brain injuries directly affecting the eNVU with secondary damage, such as blood–brain barrier (BBB) disruption, edema formation and hypoperfusion. BBB dysfunctions are observed at an early postinjury time point, and are associated with eNVU activation of proteases, such as tissue plasminogen activator and matrix metalloproteinases. BBB opening is accompanied by edema formation using astrocytic AQP4 as a key protein regulating water movement. Finally, nitric oxide dysfunction plays a dual role in association with BBB injury and dysregulation of cerebral blood flow. These mechanisms are discussed including all targets of eNVU encompassing endothelium, glial cells and neurons, as well as larger blood vessels with smooth muscle. In fact, the feeding blood vessels should also be considered to treat stroke and traumatic brain injury. This review underlines the importance of the eNVU in drug development aimed at improving clinical outcome after stroke and traumatic brain injury. PMID:24489483

  7. SIV-induced impairment of neurovascular repair: a potential role for VEGF

    PubMed Central

    Ebenezer, Gigi J.; McArthur, Justin C.; Polydefkis, Michael; Dorsey, Jamie L.; O'Donnell, Ryan; Hauer, Peter; Adams, Robert J.

    2013-01-01

    Peripheral nerves and blood vessels travel together closely during development but little is known about their interactions post-injury. The SIV-infected pigtailed macaque model of human immunodeficiency virus (HIV) recapitulates peripheral nervous system pathology of HIV infection. In this study, we assessed the effect of SIV infection on neurovascular regrowth using a validated excisional axotomy model. Six uninfected and five SIV-infected macaques were studied 14 and 70 days after axotomy to characterize regenerating vessels and axons. Blood vessel extension preceded the appearance of regenerating nerve fibers suggesting that vessels serve as scaffolding to guide regenerating axons through extracellular matrix. Vascular endothelial growth factor (VEGF) was expressed along vascular silhouettes by endothelial cells, pericytes, and perivascular cells. VEGF expression correlated with dermal nerve (r=0.68, p= 0.01) and epidermal nerve fiber regrowth (r=0.63, p=0.02). No difference in blood vessel growth was observed between SIV-infected and control macaques. In contrast, SIV-infected animals demonstrated altered length, pruning and arborization of nerve fibers as well as alteration of VEGF expression. These results reinforce earlier human primate findings that vessel growth precedes and influences axonal regeneration. The consistency of these observations across human and non-human primates validates the use of the pigtailed-macaque as a preclinical model. PMID:22549763

  8. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states.

    PubMed

    Lecrux, C; Hamel, E

    2016-10-01

    Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  9. Pro-Inflammatory Endothelial Activation Detected by Molecular Imaging in Obese Non-Human Primates Coincides with the Onset of Insulin Resistance and Progressively Increases with Duration of Insulin Resistance

    PubMed Central

    Chadderdon, Scott M.; Belcik, J. Todd; Bader, Lindsay; Kirigiti, Melissa A.; Peters, Dawn M.; Kievit, Paul; Grove, Kevin L.; Lindner, Jonathan R.

    2014-01-01

    Background Inflammation and insulin resistance (IR) are associated processes that potentiate risk for cardiovascular disease in obesity. The temporal relation between IR and inflammation is not completely characterized. We hypothesized that endothelial cell adhesion molecule (ECAM) expression in large arteries is an early event that coincides with diet-induced obesity and IR in primates. Methods and Results Ten adult male rhesus macaques were studied at baseline and every 4-6 months on high-fat diet (HFD) for 2 years. Truncal fat, carotid intima-media thickness (IMT), plasma inflammatory biomarkers, and carotid P-selectin and VCAM-1 expression by contrast-enhanced ultrasound molecular imaging were assessed. Intravenous glucose tolerance test (IVGTT) was performed at baseline, 4 and 18 months. HFD produced a rapid increase (p<0.01) in weight, truncal fat, and degree of IR indicated by the insulin area-under-the-curve and glucose disappearance rate on IVGTT; all of which worsened minimally thereafter. Molecular imaging detected a progressive increase in ECAM expression over time (5-7-fold greater than control agent signal at 2 yrs, p<0.01). Changes in IMT were not detected until 2 years and, while there was a trend toward an increase in plasma markers of inflammation (MCP-1, CRP), the pattern of increase varied considerably over time. Conclusions In primates with diet-induced obesity, endothelial inflammatory activation is an early event that occurs coincident with the development of IR and long before any measurable change carotid IMT. Endothelial activation is more related to the duration rather than severity of IR and is not mirrored by changes in plasma biomarkers. PMID:24163066

  10. Keratoconus: an inflammatory disorder?

    PubMed Central

    Galvis, V; Sherwin, T; Tello, A; Merayo, J; Barrera, R; Acera, A

    2015-01-01

    Keratoconus has been classically defined as a progressive, non-inflammatory condition, which produces a thinning and steepening of the cornea. Its pathophysiological mechanisms have been investigated for a long time. Both genetic and environmental factors have been associated with the disease. Recent studies have shown a significant role of proteolytic enzymes, cytokines, and free radicals; therefore, although keratoconus does not meet all the classic criteria for an inflammatory disease, the lack of inflammation has been questioned. The majority of studies in the tears of patients with keratoconus have found increased levels of interleukin-6 (IL-6), tumor necrosis factor-α(TNF-α), and matrix metalloproteinase (MMP)-9. Eye rubbing, a proven risk factor for keratoconus, has been also shown recently to increase the tear levels of MMP-13, IL-6, and TNF-α. In the tear fluid of patients with ocular rosacea, IL-1α and MMP-9 have been reported to be significantly elevated, and cases of inferior corneal thinning, resembling keratoconus, have been reported. We performed a literature review of published biochemical changes in keratoconus that would support that this could be, at least in part, an inflammatory condition. PMID:25931166

  11. Active, passive, and motor imagery paradigms: component analysis to assess neurovascular coupling.

    PubMed

    Salinet, Angela S M; Robinson, Thompson G; Panerai, Ronney B

    2013-05-15

    The association between neural activity and cerebral blood flow (CBF) has been used to assess neurovascular coupling (NVC) in health and diseases states, but little attention has been given to the contribution of simultaneous changes in peripheral covariates. We used an innovative approach to assess the contributions of arterial blood pressure (BP), PaCO2, and the stimulus itself to changes in CBF velocities (CBFv) during active (MA), passive (MP), and motor imagery (MI) paradigms. Continuous recordings of CBFv, beat-to-beat BP, heart rate, and breath-by-breath end-tidal CO2 (EtCO2) were performed in 17 right-handed subjects before, during, and after motor-cognitive paradigms performed with the right arm. A multivariate autoregressive-moving average model was used to calculate the separate contributions of BP, EtCO2, and the neural activation stimulus (represented by a metronome on-off signal) to the CBFv response during paradigms. Differences were found in the bilateral CBFv responses to MI compared with MA and MP, due to the contributions of stimulation (P < 0.05). BP was the dominant contributor to the initial peaked CBFv response in all paradigms with no significant differences between paradigms, while the contribution of the stimulus explained the plateau phase and extended duration of the CBFv responses. Separating the neural activation contribution from the influences of other covariates, it was possible to detect differences between three paradigms often used to assess disease-related NVC. Apparently similar CBFv responses to different motor-cognitive paradigms can be misleading due to the contributions from peripheral covariates and could lead to inaccurate assessment of NVC, particularly during MI.

  12. Neurovascular bundle dissection for Nesbit procedure in congenital penile curvature patients: medial or lateral?

    PubMed

    Akbulut, Fatih; Akman, Tolga; Salabas, Emre; Dincer, Murat; Ortac, Mazhar; Kadioglu, Ates

    2014-01-01

    The objective of this study was to compare the outcomes of the modified Nesbit procedure using different techniques for dissecting the neurovascular bundle (NVB) to correct ventral congenital penile curvatures (CPCs). The bundle was mobilized using the medial and lateral dissection technique in 21 (Group 1) and 13 (Group 2) patients, respectively. In the medial technique, Buck's fascia is opened at the dorsal side of the penis, the deep dorsal vein is removed at the most prominent site of the curvature and a diamond-shaped tunica albuginea (TA) is excised from the midline of the penis. In the lateral technique, the bundle is mobilized using a longitudinal lateral incision of the Buck's fascia above the urethra at the 5 and 7 o'clock positions via a bilateral approach. The localization and degree of curvature was evaluated using the combined intracavernous injection stimulation test or from the patients' photographs. The mean patient age and degree of curvature were similar between groups. The mean operation time was longer for Group 2 (P = 0.01). In Group 1, nine patients (42.8%) required one diamond excision, 10 (47.6%) required two diamond excisions and two (9.5%) required more than two excisions; in Group 2, six patients (46.2%) required two diamond excisions and seven patients (53.8%) required more than two diamond excisions (P = 0.019). The differences in penile shortening, penile straightening and numbness of the glans penis were not statistically significant. Medial dissection of the bundle for the modified Nesbit procedure reduces the number of diamond-shaped removals of TA and thus shortens operation time in comparison with its lateral counterpart. PMID:24625879

  13. Effect of acute nitrate supplementation on neurovascular coupling and cognitive performance in hypoxia.

    PubMed

    Lefferts, Wesley K; Hughes, William E; White, Corey N; Brutsaert, Tom D; Heffernan, Kevin S

    2016-02-01

    The matching of oxygen supply to neural demand (i.e., neurovascular coupling (NVC)) is an important determinant of cognitive performance. The impact of hypoxia on NVC remains poorly characterized. NVC is partially modulated by nitric oxide (NO), which may initially decrease in hypoxia. This study investigated the effect of acute NO-donor (nitrate) supplementation on NVC and cognitive function in hypoxia. Twenty healthy men participated in this randomized, double-blind, crossover design study. Following normoxic cognitive/NVC testing, participants consumed either nitrate (NIT) or a NIT-depleted placebo (PLA). Participants then underwent 120 min of hypoxia (11.6% ± 0.1% O2) and all cognitive/NVC testing was repeated. NVC was assessed as change in middle cerebral artery (MCA) blood flow during a cognitive task (incongruent Stroop) using transcranial Doppler. Additional computerized cognitive testing was conducted separately to assess memory, executive function, attention, sensorimotor, and social cognition domains. Salivary nitrite significantly increased following supplementation in hypoxia for NIT (+2.6 ± 1.0 arbitrary units (AU)) compared with PLA (+0.2 ± 0.3 AU; p < 0.05). Memory performance (-6 ± 13 correct) significantly decreased (p < 0.05) in hypoxia while all other cognitive domains were unchanged in hypoxia for both PLA and NIT conditions (p > 0.05). MCA flow increased during Stroop similarly in normoxia (PLA +5 ± 6 cm·s(-1), NIT +7 ± 7 cm·s(-1)) and hypoxia (PLA +5 ± 9 cm·s(-1), NIT +6 ± 7 cm·s(-1)) (p < 0.05) and this increase was not altered by PLA or NIT (p > 0.05). In conclusion, acute hypoxia resulted in significant reductions in memory concomitant with preservation of executive function, attention, and sensorimotor function. Hypoxia had no effect on NVC. Acute NIT supplementation had no effect on NVC or cognitive performance in hypoxia. PMID:26751937

  14. Citalopram Enhances Neurovascular Regeneration and Sensorimotor Functional Recovery after Ischemic Stroke in Mice

    PubMed Central

    Espinera, Alyssa R.; Ogle, Molly E.; Gu, Xiaohuan; Wei, Ling

    2013-01-01

    Recent clinical trials have demonstrated that treatment with selective serotonin reuptake inhibitors (SSRIs) after stroke enhances motor functional recovery; however, the underlying mechanisms remain to be further elucidated. We hypothesized that daily administration of the clinical drug citalopram would produce these functional benefits via enhancing neurovascular repair in the ischemic peri-infarct region. To test this hypothesis, focal ischemic stroke was induced in male C57/B6 mice by permanent ligation of distal branches of the middle cerebral artery to the barrel cortex and 7-min occlusion of the bilateral common carotid arteries. Citalopram (10 mg/kg, i.p.) was injected 24 hrs after stroke and daily thereafter. To label proliferating cells, bromo-deoxyuridine was injected daily beginning 3 days after stroke. Immunohistochemical and functional assays were performed to elucidate citalopram-mediated cellular and sensorimotor changes after stroke. Citalopram treatment had no significant effect on infarct formation or edema 3 days after stroke; however, citalopram-treated mice had better functional recovery than saline-treated controls 3 and 14 days after stroke in the adhesive removal test. Increased expression of brain derived neurotrophic factor was detected in the peri-infarct region 7 days after stroke in citalopram-treated animals. The number of proliferating neural progenitor cells and the distance of neuroblast migration from the sub-ventricular zone towards the ischemic cortex were significantly greater in citalopram-treated mice at 7 days after stroke. Immunohistochemical staining and co-localization analysis showed that citalopram-treated animals generated more new neurons and microvessels in the peri-infarct region 21 and 28 days after stroke. Taken together, these results suggest that citalopram promotes post-stroke sensorimotor recovery likely via enhancing neurogenesis, neural cell migration and the microvessel support in the peri-infarct region of

  15. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor

    PubMed Central

    Brown, Jacquelyn A.; Pensabene, Virginia; Markov, Dmitry A.; Allwardt, Vanessa; Neely, M. Diana; Shi, Mingjian; Britt, Clayton M.; Hoilett, Orlando S.; Yang, Qing; Brewer, Bryson M.; Samson, Philip C.; McCawley, Lisa J.; May, James M.; Webb, Donna J.; Li, Deyu; Bowman, Aaron B.; Reiserer, Ronald S.; Wikswo, John P.

    2015-01-01

    The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier. PMID:26576206

  16. Effect of acute nitrate supplementation on neurovascular coupling and cognitive performance in hypoxia.

    PubMed

    Lefferts, Wesley K; Hughes, William E; White, Corey N; Brutsaert, Tom D; Heffernan, Kevin S

    2016-02-01

    The matching of oxygen supply to neural demand (i.e., neurovascular coupling (NVC)) is an important determinant of cognitive performance. The impact of hypoxia on NVC remains poorly characterized. NVC is partially modulated by nitric oxide (NO), which may initially decrease in hypoxia. This study investigated the effect of acute NO-donor (nitrate) supplementation on NVC and cognitive function in hypoxia. Twenty healthy men participated in this randomized, double-blind, crossover design study. Following normoxic cognitive/NVC testing, participants consumed either nitrate (NIT) or a NIT-depleted placebo (PLA). Participants then underwent 120 min of hypoxia (11.6% ± 0.1% O2) and all cognitive/NVC testing was repeated. NVC was assessed as change in middle cerebral artery (MCA) blood flow during a cognitive task (incongruent Stroop) using transcranial Doppler. Additional computerized cognitive testing was conducted separately to assess memory, executive function, attention, sensorimotor, and social cognition domains. Salivary nitrite significantly increased following supplementation in hypoxia for NIT (+2.6 ± 1.0 arbitrary units (AU)) compared with PLA (+0.2 ± 0.3 AU; p < 0.05). Memory performance (-6 ± 13 correct) significantly decreased (p < 0.05) in hypoxia while all other cognitive domains were unchanged in hypoxia for both PLA and NIT conditions (p > 0.05). MCA flow increased during Stroop similarly in normoxia (PLA +5 ± 6 cm·s(-1), NIT +7 ± 7 cm·s(-1)) and hypoxia (PLA +5 ± 9 cm·s(-1), NIT +6 ± 7 cm·s(-1)) (p < 0.05) and this increase was not altered by PLA or NIT (p > 0.05). In conclusion, acute hypoxia resulted in significant reductions in memory concomitant with preservation of executive function, attention, and sensorimotor function. Hypoxia had no effect on NVC. Acute NIT supplementation had no effect on NVC or cognitive performance in hypoxia.

  17. The tissue-type plasminogen activator-plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans.

    PubMed

    Sashindranath, Maithili; Sales, Eunice; Daglas, Maria; Freeman, Roxann; Samson, Andre L; Cops, Elisa J; Beckham, Simone; Galle, Adam; McLean, Catriona; Morganti-Kossmann, Cristina; Rosenfeld, Jeffrey V; Madani, Rime; Vassalli, Jean-Dominique; Su, Enming J; Lawrence, Daniel A; Medcalf, Robert L

    2012-11-01

    The neurovascular unit provides a dynamic interface between the circulation and central nervous system. Disruption of neurovascular integrity occurs in numerous brain pathologies including neurotrauma and ischaemic stroke. Tissue plasminogen activator is a serine protease that converts plasminogen to plasmin, a protease that dissolves blood clots. Besides its role in fibrinolysis, tissue plasminogen activator is abundantly expressed in the brain where it mediates extracellular proteolysis. However, proteolytically active tissue plasminogen activator also promotes neurovascular disruption after ischaemic stroke; the molecular mechanisms of this process are still unclear. Tissue plasminogen activator is naturally inhibited by serine protease inhibitors (serpins): plasminogen activator inhibitor-1, neuroserpin or protease nexin-1 that results in the formation of serpin:protease complexes. Proteases and serpin:protease complexes are cleared through high-affinity binding to low-density lipoprotein receptors, but their binding to these receptors can also transmit extracellular signals across the plasma membrane. The matrix metalloproteinases are the second major proteolytic system in the mammalian brain, and like tissue plasminogen activators are pivotal to neurological function but can also degrade structures of the neurovascular unit after injury. Herein, we show that tissue plasminogen activator potentiates neurovascular damage in a dose-dependent manner in a mouse model of neurotrauma. Surprisingly, inhibition of activity following administration of plasminogen activator inhibitor-1 significantly increased cerebrovascular permeability. This led to our finding that formation of complexes between tissue plasminogen activator and plasminogen activator inhibitor-1 in the brain parenchyma facilitates post-traumatic cerebrovascular damage. We demonstrate that following trauma, the complex binds to low-density lipoprotein receptors, triggering the induction of matrix

  18. Positive Outcome After a Small-Caliber Gunshot Fracture of the Upper Cervical Spine without Neurovascular Damage

    PubMed Central

    Walter, Thula; Schwabe, Philipp; Schaser, Klaus-Dieter; Maurer, Martin

    2016-01-01

    Summary Background Gunshot wounds to the cervical spine most frequently concur with serious injuries to the spinal cord and cervical vessels and often have a fatal outcome. Case Report We describe the case of a 35-year-old male with a complex fracture of the C2 vertebra body and a mandibular fracture after a penetration gunshot to the cervical spine. Computed tomography (CT) at admission revealed the exact extent of the fractures and the small caliber bullet lodged next to the C2 vertebra. In this rare and extremely lucky case no collateral vascular or neurological damage was detected. Eighteen months after surgical bullet removal and posterior C1–C3 fusion complete bone healing of the C2 vertebra was achieved and there were no secondary neurovascular deficits. Conclusions Immediate surgical C1–C3 fixation resulted in an excellent outcome without secondary neurovascular deficits in this rare case of traumatic complex C2 vertebral fracture caused by a gunshot injury. PMID:27081417

  19. The effects of sodium-2-mercaptoethanesulfonate application on the neural and neurovascular tissues: An experimental animal study

    PubMed Central

    Ant, Ayca; Karamert, Recep; Kulduk, Gamze; Ekinci, Özgür; Tutar, Hakan; Göksu, Nebil

    2015-01-01

    Background: Sodium-2-mercaptoethanesulfonate (MESNA) is a protective agent that is also used as “a chemical dissector” in various surgical fields. The aim of this study is to evaluate the toxic effects of MESNA on neural and neurovascular structures based on a morphological analysis and examine its safety in neurotological applications. Methods: Three groups of guinea pigs were used as subjects. MESNA solution (50 and 100%) and saline solution were applied to the subarachnoid space over the brain tissue via a middle fossa approach of study and control groups, respectively. Effects of MESNA were assessed by means of light microscope. McNemar Chi-square test was used to evaluate the histopathological findings. Statistical significance of P < 0.05 was taken as criterion. Results: No morphological changes were observed on vascular and neural structures in the study groups in both concentrations, compared to the control group. Conclusions: On a morphological basis, a single application of MESNA does not cause any morphological changes that indicate a toxicity in neural and neurovascular structures. PMID:26487975

  20. Other noninfectious inflammatory disorders.

    PubMed

    Rovira, Álex; Auger, Cristina; Rovira, Antoni

    2016-01-01

    Idiopathic inflammatory-demyelinating diseases (IIDDs) represent a broad spectrum of central nervous system (CNS) disorders, including monophasic, multiphasic, and progressive disorders that range from highly localized forms to multifocal or diffuse variants. In addition to the classic multiple sclerosis (MS) phenotypes, several MS variants have been described, which can be differentiated on the basis of severity, clinical course, and lesion distribution. Other forms of IIDD are now recognized as distinct entities and not MS variants, such as acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. The CNS can also be affected by a variety of inflammatory diseases. These include primary angiitis of the CNS (PACNS), a rare disorder specifically targeting the CNS vasculature, and various systemic conditions which, among other organs and systems, can also affect the CNS, such as systemic vasculitis and sarcoidosis. The diagnosis of PACNS is difficult, as this condition may be confused with reversible cerebral vasoconstriction syndrome (RCVS), a term comprising a group of conditions characterized by prolonged but reversible vasoconstriction of the cerebral arteries. Magnetic resonance imaging of the brain and spine is the radiologic technique of choice for diagnosing these disorders, and, together with the clinical and laboratory findings, enables a prompt and accurate diagnosis. PMID:27432677

  1. Autoantibodies in inflammatory arthritis.

    PubMed

    Conigliaro, P; Chimenti, M S; Triggianese, P; Sunzini, F; Novelli, L; Perricone, C; Perricone, R

    2016-07-01

    Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease characterized by extensive synovitis resulting in erosions of articular cartilage and marginal bone with joint destruction. The lack of immunological tolerance in RA represents the first step toward the development of autoimmunity. Susceptible individuals, under the influence of environmental factors, such as tobacco smoke, and silica exposure, develop autoimmune phenomena that result in the presence of autoantibodies. HLA and non-HLA haplotypes play a major role in determining the development of specific autoantibodies differentiating anti-citrullinated antibodies (ACPA)-positive and negative RA patients. Rheumatoid factor (RF) and ACPA are the serological markers for RA, and during the preclinical immunological phase, autoantibody titers increase with a progressive spread of ACPA antigens repertoire. The presence of ACPA represents an independent risk factor for developing RA in patients with undifferentiated arthritis or arthralgia. Moreover, anti-CarP antibodies have been identified in patients with RA as well as in individuals before the onset of clinical symptoms of RA. Several autoantibodies mainly targeting post-translational modified proteins have been investigated as possible biomarkers to improve the early diagnosis, prognosis and response to therapy in RA patients. Psoriatic arthritis (PsA) is distinguished from RA by infrequent positivity for RF and ACPA, together with other distinctive clinical features. Actually, specific autoantibodies have not been described. Recently, anti-CarP antibodies have been reported in sera from PsA patients with active disease. Further investigations on autoantibodies showing high specificity and sensibility as well as relevant correlation with disease severity, progression, and response to therapy are awaited in inflammatory arthritides.

  2. Peroxynitrite decomposition catalyst prevents matrix metalloproteinase-9 activation and neurovascular injury after hemoglobin injection into the caudate nucleus of rats.

    PubMed

    Ding, R; Feng, L; He, L; Chen, Y; Wen, P; Fu, Z; Lin, C; Yang, S; Deng, X; Zeng, J; Sun, G

    2015-06-25

    Hemoglobin (Hb) is a major constituent of blood and a potent mediator of oxidative or nitrative stress after intracerebral hemorrhage (ICH). Our previous study demonstrated that Hb could induce abundant peroxynitrite (ONOO(-)) formation in vivo, which may be involved in the blood-brain barrier (BBB) disruption, however, the drug intervention is absent and also the underlying mechanism. Using an experimental stroke model by injecting Hb into the caudate nucleus of male Sprague-Dawley rats, we assessed the role of ONOO(-) decomposition catalyst, 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) [FeTPPS] in the activation of MMP-9 and Hb-induced neurovascular injuries. 3-Nitrotyrosine (3-NT, as an index of ONOO(-) formation) and NF-κB expression was measured by western blot (WB) and immunohistochemistry (IHC)/immunofluorescence (IF). Activity of MMP was evaluated by in situ zymography. Neurovascular injury was assessed using zonula occludens-1 (ZO-1) by WB and IF, fibronectin (FN) and neuron-specific nuclear protein (NeuN) IHC. Perihematomal cell death was determined by TUNEL assay. Behavioral outcome was measured by modified neurological severity score (mNSS) test. At the injured striata, profuse 3-NT was produced and mainly expressed in neutrophils and microglia/macrophages. 3-NT formation significantly colocalized with nuclear factor-κB (NF-κB) expression. In situ zymography showed that gelatinase activity was mostly co-localized with neurons and blood vessel walls and partly with neutrophils and microglia/macrophages. Enhanced 3-NT production, NF-κB induction and MMP-9 activation were obviously reduced after FeTPPS treatment. Hb-induced injury to tight junction protein (ZO-1), basal lamina of FN-immunopositive microvasculature and neural cells was evidently ameliorated by FeTPPS. In addition, apoptotic cell numbers as well as behavioral deficits were also improved. The present study shows that the administration of the ONOO(-) decomposition

  3. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain

    PubMed Central

    Shih, Andy Y; Driscoll, Jonathan D; Drew, Patrick J; Nishimura, Nozomi; Schaffer, Chris B; Kleinfeld, David

    2012-01-01

    The cerebral vascular system services the constant demand for energy during neuronal activity in the brain. Attempts to delineate the logic of neurovascular coupling have been greatly aided by the advent of two-photon laser scanning microscopy to image both blood flow and the activity of individual cells below the surface of the brain. Here we provide a technical guide to imaging cerebral blood flow in rodents. We describe in detail the surgical procedures required to generate cranial windows for optical access to the cortex of both rats and mice and the use of two-photon microscopy to accurately measure blood flow in individual cortical vessels concurrent with local cellular activity. We further provide examples on how these techniques can be applied to the study of local blood flow regulation and vascular pathologies such as small-scale stroke. PMID:22293983

  4. Secretion of Shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor

    PubMed Central

    Zhao, Hu; Feng, Jifan; Seidel, Kerstin; Shi, Songtao; Klein, Ophir; Sharpe, Paul; Chai, Yang

    2014-01-01

    Mesenchymal stem cells (MSCs) are typically defined by their in vitro characteristics, and as a consequence the in vivo identity of MSCs and their niches are poorly understood. To address this issue, we used lineage tracing in a mouse incisor model and identified the neurovascular bundle (NVB) as an MSC niche. We found that NVB sensory nerves secrete Shh protein, which activates Gli1 expression in periarterial cells that contribute to all mesenchymal derivatives. These periarterial cells do not express classical MSC markers used to define MSCs in vitro. In contrast, NG2+ pericytes represent an MSC subpopulation derived from Gli1+ cells; they express classical MSC markers and contribute little to homeostasis but are actively involved in injury repair. Likewise, incisor Gli1+ cells but not NG2+ cells exhibit typical MSC characteristics in vitro. Collectively, we demonstrate that MSCs originate from periarterial cells and are regulated by Shh secretion from a NVB. PMID:24506883

  5. Helium preconditioning protects the brain against hypoxia/ischemia injury via improving the neurovascular niche in a neonatal rat model.

    PubMed

    Li, Yi; Zhang, Peixi; Liu, Ying; Liu, Wenwu; Yin, Na

    2016-11-01

    This study aimed to investigate whether helium preconditioning (He-PC) is able to exert neuroprotective effects via improving focal neurovascular niche in a neonatal rat hypoxia/ischemia (HI) brain injury model. Seven day old rat pups were divided into control group, HI group and He-PC group. HI was induced by exposure to 8% oxygen for 90min one day after preconditioning with 70% helium-30% oxygen for three 5-min periods. At 3 and 7 days, the brain was collected for the detection of inflammation related factors (tumor necrosis factor α [TNF-α], interleukin-1β [IL-1β], IL-10) and growth/neurotrophic factors (brain-derived neurotrophic factor [BDNF], basic fibroblast growth factor [bFGF] and nerve growth factor [NGF]); at 7 days, neurobehaviors were evaluated, and the brain was collected for the detection of mRNA expression of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) by PCR, protein expression of angiogenesis related molecules (VEGF, Ang-1, Tie-2 and Flt-1) by Western blotting and microvessel density (MCD) by immunohistochemistry for vWF. Results showed He-PC was able to reduce TNF-α and IL-1β, further increase IL-10, BDNF, bFGF and NGF, elevate the mRNA expression of VEGF and Ang-1, increase the protein expression of VEGF, Ang-1, Tie-2 and Flt-1, promote angiogenesis and improve neurobehaviors as compared to HI group. These findings suggest that He-PC may improve the post-stroke neurovascular niche to exert neuroprotective effects on neonatal HI brain injury. PMID:27515290

  6. Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke.

    PubMed

    Zhang, Wenting; Wang, Hailian; Zhang, Hui; Leak, Rehana K; Shi, Yejie; Hu, Xiaoming; Gao, Yanqin; Chen, Jun

    2015-10-01

    Stroke is a devastating neurological disease with no satisfactory therapies to preserve long-term neurological function, perhaps due to the sole emphasis on neuronal survival in most preclinical studies. Recent studies have revealed the importance of protecting multiple cell types in the injured brain, such as oligodendrocytes and components of the neurovascular unit, before long-lasting recovery of function can be achieved. For example, revascularization in the ischemic penumbra is critical to provide various neurotrophic factors that enhance the survival and activity of neurons and other progenitor cells, such as oligodendrocyte precursor cells. In the present study, we hypothesized that chronic dietary supplementation with fish oil promotes post-stroke angiogenesis, neurogenesis, and oligodendrogenesis, thereby leading to long-term functional improvements. Mice received dietary supplementation with n-3 PUFA-enriched fish oil for three months before and up to one month after stroke. As expected, dietary n-3 PUFAs significantly increased levels of n-3 PUFAs in the brain and improved long-term behavioral outcomes after cerebral ischemia. n-3 PUFAs also robustly improved revascularization and angiogenesis and boosted the survival of NeuN/BrdU labeled newborn neurons up to 35days after stroke injury. Furthermore, these pro-neurogenic effects were accompanied by robust oligodendrogenesis. Thus, this is the first study to demonstrate that chronic dietary intake of n-3 PUFAs is an effective prophylactic measure not only to protect against ischemic injury for the long term but also to actively promote neurovascular restorative dynamics and brain repair. PMID:25771800

  7. Helium preconditioning protects the brain against hypoxia/ischemia injury via improving the neurovascular niche in a neonatal rat model.

    PubMed

    Li, Yi; Zhang, Peixi; Liu, Ying; Liu, Wenwu; Yin, Na

    2016-11-01

    This study aimed to investigate whether helium preconditioning (He-PC) is able to exert neuroprotective effects via improving focal neurovascular niche in a neonatal rat hypoxia/ischemia (HI) brain injury model. Seven day old rat pups were divided into control group, HI group and He-PC group. HI was induced by exposure to 8% oxygen for 90min one day after preconditioning with 70% helium-30% oxygen for three 5-min periods. At 3 and 7 days, the brain was collected for the detection of inflammation related factors (tumor necrosis factor α [TNF-α], interleukin-1β [IL-1β], IL-10) and growth/neurotrophic factors (brain-derived neurotrophic factor [BDNF], basic fibroblast growth factor [bFGF] and nerve growth factor [NGF]); at 7 days, neurobehaviors were evaluated, and the brain was collected for the detection of mRNA expression of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) by PCR, protein expression of angiogenesis related molecules (VEGF, Ang-1, Tie-2 and Flt-1) by Western blotting and microvessel density (MCD) by immunohistochemistry for vWF. Results showed He-PC was able to reduce TNF-α and IL-1β, further increase IL-10, BDNF, bFGF and NGF, elevate the mRNA expression of VEGF and Ang-1, increase the protein expression of VEGF, Ang-1, Tie-2 and Flt-1, promote angiogenesis and improve neurobehaviors as compared to HI group. These findings suggest that He-PC may improve the post-stroke neurovascular niche to exert neuroprotective effects on neonatal HI brain injury.

  8. Reduction of lipoxidative load by secretory phospholipase A2 inhibition protects against neurovascular injury following experimental stroke in rat

    PubMed Central

    Hoda, Md Nasrul; Singh, Inderjit; Singh, Avtar K; Khan, Mushfiquddin

    2009-01-01

    Background In animal models, ischemia reperfusion (IR) injury triggers membrane lipid degradation and accumulation of lipoxidative exacerbations in neurovascular unit, leading to blood brain barrier (BBB) damage and neurologic deficits. In this study, we investigated whether impeding membrane lipid breakdown by inhibiting secretory phospholipase A2 (sPLA2) activity reduces BBB leakage, leading to neuroprotection and functional recovery. Methods Focal cerebral IR injury was induced by middle cerebral artery occlusion (MCAO) in adult male rats. A sPLA2 inhibitor, 7,7-dimethyleicosadienoic acid (DEDA), was administered following IR injury. DEDA-treated animals were compared with vehicle-treated in terms of BBB leakage, edema, infarct volume, and neurological deficit. Membrane lipid degradation and the expression/activity of sPLA2 were also assessed. The role of one of the sPLA2 products, arachidonic acid (AA), on the morphology of the differentiated neuronal cell PC12 was examined by light microscopy. Results Treatment with DEDA after IR injury not only reduced BBB leakage but also decreased infarct volume and improved neurologic function. The treatment attenuated both the activity of sPLA2 and the levels of sPLA2-derived oxidized products. The metabolites of lipid oxidation/peroxidation, including the protein carbonyl, were reduced as well. The treatment also restored the levels of glutathione, indicating attenuation of oxidative stress. In vitro treatment of PC12 cells with DEDA did not restore the AA-mediated inhibition of neurite formation and the levels of glutathione, indicating that effect of DEDA is up stream to AA release. Conclusion sPLA2-derived oxidative products contribute to significant neurovascular damage, and treatment with sPLA2 inhibitor DEDA ameliorates secondary injury by reducing exacerbations from lipoxidative stress. PMID:19678934

  9. Functional MRI during Hyperbaric Oxygen: Effects of Oxygen on Neurovascular Coupling and BOLD fMRI signals

    PubMed Central

    Cardenas, Damon P.; Muir, Eric R.; Huang, Shiliang; Boley, Angela; Lodge, Daniel; Duong, Timothy Q.

    2015-01-01

    Hyperbaric oxygen (HBO) therapy is used to treat a number of ailments. Improved understanding of how HBO affects neuronal activity, cerebral blood flow (CBF) and blood-oxygenation-level dependent (BOLD) changes could shed light on the role of oxygen in neurovascular coupling and help guide HBO treatments. The goal of this study was to test two hypotheses: i) activation-induced CBF fMRI response is not dependent on hemoglobin deoxygenation, and ii) activation-induced BOLD fMRI is markedly attenuated under HBO. CBF and BOLD fMRI of forepaw stimulation in anesthetized rats under HBO at 3 atmospheres absolute (ATA) was compared with normobaric air. Robust BOLD and CBF fMRI were detected under HBO. Inflow effects and spin-density changes did not contribute significantly to the BOLD fMRI signal under HBO. Analysis of the T2*-weighted signal at normobaric air and 1, 2 and 3ATA oxygen in the tissue and the superior sagittal sinus showed a strong dependence on increasing inhaled [O2]. Spontaneous electrophysiological activity and evoked local-field potentials were reduced under HBO. The differences between normobaric air and HBO in basal and evoked electrical activity could not fully account for the strong BOLD responses under HBO. We concluded that activation-induced CBF regulation in the brain does not operate through an oxygen-sensing mechanism and that stimulus-evoked BOLD responses and the venous T2*-weighted signals still have room to increase under 3ATA HBO. To our knowledge, this is the first fMRI study under HBO, providing insights into the effects of HBO on neural activity, neurovascular coupling, tissue oxygenation, and the BOLD signal. PMID:26143203

  10. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats.

    PubMed

    Wei, Zheng Zachory; Gu, Xiaohuan; Ferdinand, Anwar; Lee, Jin Hwan; Ji, Xiaoya; Ji, Xun Ming; Yu, Shan Ping; Wei, Ling

    2015-01-01

    Neonatal stroke is a major cause of mortality and long-term morbidity in infants and children. Currently, very limited therapeutic strategies are available to protect the developing brain against ischemic damage and promote brain repairs for pediatric patients. Moreover, children who experienced neonatal stroke often have developmental social behavior problems. Cellular therapy using bone marrow mesenchymal stem cells (BMSCs) has emerged as a regenerative therapy after stroke. In the present investigation, neonatal stroke of postnatal day 7 (P7) rat pups was treated with noninvasive and brain-specific intranasal delivery of BMSCs at 6 h and 3 days after stroke (1 × 10(6)cells/animal). Prior to transplantation, BMSCs were subjected to hypoxic preconditioning to enhance their tolerance and regenerative properties. The effects on regenerative activities and stroke-induced sensorimotor and social behavioral deficits were specifically examined at P24 of juvenile age. The BMSC treatment significantly reduced infarct size and blood-brain barrier disruption, promoted angiogenesis, neurogenesis, neurovascular repair, and improved local cerebral blood flow in the ischemic cortex. BMSC-treated rats showed better sensorimotor and olfactory functional recovery than saline-treated animals, measured by the adhesive removal test and buried food finding test. In social behavioral tests, we observed functional and social behavioral deficits in P24 rats subjected to stroke at P7, while the BMSC treatment significantly improved the performance of stroke animals. Overall, intranasal BMSC transplantation after neonatal stroke shows neuroprotection and great potential as a regenerative therapy to enhance neurovascular regeneration and improve functional recovery observed at the juvenile stage of development. PMID:25647744

  11. Functional MRI during hyperbaric oxygen: Effects of oxygen on neurovascular coupling and BOLD fMRI signals.

    PubMed

    Cardenas, Damon P; Muir, Eric R; Huang, Shiliang; Boley, Angela; Lodge, Daniel; Duong, Timothy Q

    2015-10-01

    Hyperbaric oxygen (HBO) therapy is used to treat a number of ailments. Improved understanding of how HBO affects neuronal activity, cerebral blood flow (CBF) and blood-oxygenation-level dependent (BOLD) changes could shed light on the role of oxygen in neurovascular coupling and help guide HBO treatments. The goal of this study was to test two hypotheses: i) activation-induced CBF fMRI response is not dependent on hemoglobin deoxygenation, and ii) activation-induced BOLD fMRI is markedly attenuated under HBO. CBF and BOLD fMRI of forepaw stimulation in anesthetized rats under HBO at 3 atmospheres absolute (ATA) were compared with normobaric air. Robust BOLD and CBF fMRI were detected under HBO. Inflow effects and spin-density changes did not contribute significantly to the BOLD fMRI signal under HBO. Analysis of the T2(⁎)-weighted signal at normobaric air and 1, 2 and 3ATA oxygen in the tissue and the superior sagittal sinus showed a strong dependence on increasing inhaled [O2]. Spontaneous electrophysiological activity and evoked local-field potentials were reduced under HBO. The differences between normobaric air and HBO in basal and evoked electrical activity could not fully account for the strong BOLD responses under HBO. We concluded that activation-induced CBF regulation in the brain does not operate through an oxygen-sensing mechanism and that stimulus-evoked BOLD responses and the venous T2(⁎)-weighted signals still have room to increase under 3ATA HBO. To our knowledge, this is the first fMRI study under HBO, providing insights into the effects of HBO on neural activity, neurovascular coupling, tissue oxygenation, and the BOLD signal.

  12. Chronic inflammatory demyelinating polyradiculoneuropathy.

    PubMed

    Van den Bergh, Peter Y K; Rajabally, Yusuf A

    2013-06-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is the most common autoimmune neuropathy. The diagnosis depends on the clinical presentation with a progressive or relapsing course over at least 2 months and electrophysiological evidence of primary demyelination. Whereas typical CIDP is quite easily recognizable because virtually no other neuropathies present with both distal and proximal motor and sensory deficit, atypical CIDP, focal and multifocal variants in particular, may represent a difficult diagnostic challenge. CIDP very likely is an underdiagnosed condition as suggested also by a positive correlation between prevalence rates and sensitivity of electrophysiological criteria. Since no 'gold standard' diagnostic marker exists, electrophysiological criteria have been optimized to be at the same time as sensitive and as specific as possible. Additional supportive laboratory features, such as increased spinal fluid protein, MRI abnormalities of nerve segments, and in selected cases nerve biopsy lead to the correct diagnosis in the large majority of the cases. Objective clinical improvement following immune therapy is also a useful parameter to confirm the diagnosis. The pathogenesis and pathophysiology of CIDP remain poorly understood, but the available evidence for an inflammatory origin is quite convincing. Steroids, intravenous immunoglobulin (IVIG), and plasma exchange (PE) have been proven to be effective treatments. IVIG usually leads to rapid improvement, which is useful in severely disabled patients. Repeat treatment over regular time intervals for many years is often necessary. The effect of steroids is slower and the side-effect profile may be problematic, but they may induce disease remission more frequently than IVIG. An important and as of yet uncompletely resolved issue is the evaluation of long-term outcome to determine whether the disease is still active and responsive to treatment.

  13. Chronic inflammatory demyelinating polyneuropathy

    MedlinePlus

    Polyneuropathy - chronic inflammatory; CIDP; Chronic inflammatory polyneuropathy; Guillain-Barré - CIDP ... CIDP is one cause of damage to nerves outside the brain or spinal cord ( peripheral neuropathy ). Polyneuropathy ...

  14. Effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculation in endotoxinemic rats

    PubMed Central

    2012-01-01

    Background In sepsis syndromes the severity of the inflammation triggers microvascular dysfunction and early organ failure. We studied the effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculatory integrity in an endotoxinemic rat model. Methods In both control and endotoxinemic (5 mg/kg lipopolysaccharide i.v.) rats, the effect of cervical bilateral vagotomy with or without left-sided distal vagus nerve stimulation were compared to non-vagotomized, nonstimulated group (sham). Neurovascular coupling was analyzed by electrical forepaw stimulation, EEG, and cortical laser-Doppler flow recording. Resting cerebral blood flow, evoked potentials and hemodynamic responses, were obtained over a period of 4.5 hours. Regulation of the nitric oxide system (iNOS expression and nitrite/nitrate measurements), cytokines (IFN-γ, TNF-α, IL-6, IL-10), hypoxic and apoptosis signaling molecules (HIF-2α, Bax) were measured at the end of experiments. Results In endotoxinemic rats, vagus nerve stimulation tended to increase anti-inflammatory cytokine levels and resulted in a stabile hemodynamic response (28 ± 13%; versus baseline). Vagotomized animals incurred a pro-inflammatory response (7 ± 4%; P < 0.0001 versus baseline) and produced more HIF-2α than vagotomized vagus nerve stimulated (VNS) animals. Evoked potential amplitudes were stabilized in VNS (15 ± 7 μV; n.s. versus baseline) as compared to vagotomised rats (8 ± 5 μV; P < 0.001 versus baseline). However, no effects were observed on apoptosis markers or nitric oxide levels. Conclusions Vagus nerve stimulation in endotoxinemic rats had a positive effect on neurovascular coupling and stabilized evoked potentials. PMID:22830560

  15. Inflammatory disease processes and interactions with nutrition.

    PubMed

    Calder, P C; Albers, R; Antoine, J-M; Blum, S; Bourdet-Sicard, R; Ferns, G A; Folkerts, G; Friedmann, P S; Frost, G S; Guarner, F; Løvik, M; Macfarlane, S; Meyer, P D; M'Rabet, L; Serafini, M; van Eden, W; van Loo, J; Vas Dias, W; Vidry, S; Winklhofer-Roob, B M; Zhao, J

    2009-05-01

    Inflammation is a stereotypical physiological response to infections and tissue injury; it initiates pathogen killing as well as tissue repair processes and helps to restore homeostasis at infected or damaged sites. Acute inflammatory reactions are usually self-limiting and resolve rapidly, due to the involvement of negative feedback mechanisms. Thus, regulated inflammatory responses are essential to remain healthy and maintain homeostasis. However, inflammatory responses that fail to regulate themselves can become chronic and contribute to the perpetuation and progression of disease. Characteristics typical of chronic inflammatory responses underlying the pathophysiology of several disorders include loss of barrier function, responsiveness to a normally benign stimulus, infiltration of inflammatory cells into compartments where they are not normally found in such high numbers, and overproduction of oxidants, cytokines, chemokines, eicosanoids and matrix metalloproteinases. The levels of these mediators amplify the inflammatory response, are destructive and contribute to the clinical symptoms. Various dietary components including long chain omega-3 fatty acids, antioxidant vitamins, plant flavonoids, prebiotics and probiotics have the potential to modulate predisposition to chronic inflammatory conditions and may have a role in their therapy. These components act through a variety of mechanisms including decreasing inflammatory mediator production through effects on cell signaling and gene expression (omega-3 fatty acids, vitamin E, plant flavonoids), reducing the production of damaging oxidants (vitamin E and other antioxidants), and promoting gut barrier function and anti-inflammatory responses (prebiotics and probiotics). However, in general really strong evidence of benefit to human health through anti-inflammatory actions is lacking for most of these dietary components. Thus, further studies addressing efficacy in humans linked to studies providing greater

  16. The “Neurovascular Unit approach” to Evaluate Mechanisms of Dysfunctional Autoregulation in Asphyxiated Newborns in the era of Hypothermia Therapy

    PubMed Central

    Chalak, Lina F.; Tarumi, Takashi; Zhang, Rong

    2014-01-01

    Despite improvements in obstetrical and neonatal care, and introduction of hypothermia as a neuroprotective therapy, perinatal brain injury remains a frequent cause of cerebral palsy, mental retardation and epilepsy. The recognition of dysfunction of cerebral autoregulation is essential for a real time measure of efficacy to identify those who are at highest risk for brain injury. This article will focus on the “neurovascular unit” approach to the care of asphyxiated neonates to review 1) potential mechanisms of dysfunctional cerebral blood flow (CBF) regulation, 2) optimal monitoring methodology such as NIRS (near infrared spectroscopy), and TCD (transcutaneous Doppler), and 3) clinical implications of monitoring in the neonatal intensive care setting in asphyxiated newborns undergoing hypothermia and rewarming. Critical knowledge of the functional regulation of the neurovascular unit may lead to improved ability to predict outcomes in real time during hypothermia, as well as differentiate nonresponders who might benefit from additional therapies. PMID:25062804

  17. Inflammatory myofibroblastic tumor

    PubMed Central

    Palaskar, Sangeeta; Koshti, Supriya; Maralingannavar, Mahesh; Bartake, Anirudha

    2011-01-01

    Inflammatory myofibroblastic tumor is an uncommon lesion of unknown cause. It encompasses a spectrum of myofibroblastic proliferation along with varying amount of inflammatory infiltrate. A number of terms have been applied to the lesion, namely, inflammatory pseudotumor, fibrous xanthoma, plasma cell granuloma, pseudosarcoma, lymphoid hamartoma, myxoid hamartoma, inflammatory myofibrohistiocytic proliferation, benign myofibroblatoma, and most recently, inflammatory myofibroblastic tumor. The diverse nomenclature is mostly descriptive and reflects the uncertainty regarding true biologic nature of these lesions. Recently, the concept of this lesion being reactive has been challenged based on the clinical demonstration of recurrences and metastasis and cytogenetic evidence of acquired clonal chromosomal abnormalities. We hereby report a case of inflammatory pseudotumor and review its inflammatory versus neoplastic behavior. PMID:22346151

  18. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    PubMed

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking.

  19. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    PubMed

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking. PMID:27416522

  20. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") exposure.

    PubMed

    Coman, Daniel; Sanganahalli, Basavaraju G; Jiang, Lihong; Hyder, Fahmeed; Behar, Kevin L

    2015-10-01

    (+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is an abused psychostimulant that produces strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCPs), primarily a type specific to skeletal muscle (UCP-3) and absent from the brain, although other UCP types are expressed in the brain (e.g. thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights into MDMA action, we measured spatial distributions of systemically administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA(4-))). The MDMA-induced temperature rise was greater in the cortex than in the subcortex (1.6 ± 0.4 °C versus 1.3 ± 0.4 °C) and occurred more rapidly (2.0 ± 0.2 °C/h versus 1.5 ± 0.2 °C/h). MDMA-induced temperature changes and dynamics in the cortex and body were correlated, although the body temperature exceeded the cortex temperature before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in the cortex and subcortex (i.e. thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in the cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to the cortex, a biphasic relationship was seen in the subcortex (i.e. thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature above 37 °C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions

  1. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA,‘ecstasy’) exposure

    PubMed Central

    Coman, Daniel; Sanganahalli, Basavaraju G.; Jiang, Lihong; Hyder, Fahmeed; Behar, Kevin L.

    2015-01-01

    (+/−)3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is an abused psychostimulant producing strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCP), primarily a type specific to skeletal muscle (UCP-3) and which is absent in brain, although other UCP types are expressed in brain (e.g., thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights of MDMA action, we measured spatial distributions of systemically-administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation of Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA4−)). The MDMA-induced temperature rise in cortex was greater than in subcortex (1.6±0.4°C vs. 1.3±0.4°C) and occurred more rapidly (2.0±0.2°C/h vs. 1.5±0.2°C/h). MDMA-induced temperature changes and dynamics in cortex and body were correlated, although body temperature exceeded cortex before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in cortex and subcortex (i.e., thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to cortex, a biphasic relationship was seen in subcortex (i.e., thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature >37°C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions. Considering that MDMA effects on CBF and heat dissipation (as well as

  2. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") exposure.

    PubMed

    Coman, Daniel; Sanganahalli, Basavaraju G; Jiang, Lihong; Hyder, Fahmeed; Behar, Kevin L

    2015-10-01

    (+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is an abused psychostimulant that produces strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCPs), primarily a type specific to skeletal muscle (UCP-3) and absent from the brain, although other UCP types are expressed in the brain (e.g. thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights into MDMA action, we measured spatial distributions of systemically administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA(4-))). The MDMA-induced temperature rise was greater in the cortex than in the subcortex (1.6 ± 0.4 °C versus 1.3 ± 0.4 °C) and occurred more rapidly (2.0 ± 0.2 °C/h versus 1.5 ± 0.2 °C/h). MDMA-induced temperature changes and dynamics in the cortex and body were correlated, although the body temperature exceeded the cortex temperature before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in the cortex and subcortex (i.e. thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in the cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to the cortex, a biphasic relationship was seen in the subcortex (i.e. thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature above 37 °C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions

  3. Anatomy of Mandibular Vital Structures. Part II: Mandibular Incisive Canal, Mental Foramen and Associated Neurovascular Bundles in Relation with Dental Implantology

    PubMed Central

    Wang, Hom-Lay; Sabalys, Gintautas

    2010-01-01

    ABSTRACT Objectives The purpose of the present study was to review the literature of how to identify the mental foramen, mandibular incisive canal and associated neurovascular bundles during implant surgery and how to detect and avoid the damage of these vital structures during implant therapy. Material and Methods Literature was selected through a search of PubMed, Embase and Cochrane electronic databases. The keywords used for search were mandibular incisive canal, mental foramen, mental nerve, anterior mental loop. The search was restricted to English language articles, published from 1979 to November 2009. Additionally, a manual search in the major anatomy, dental implant, and periodontal journals and books was performed. Results In total, 47 literature sources were obtained and reviewed. The morphology and variations of the mandibular incisive canal, mental foramen and associated neurovascular bundles were presented as two entities. It suggested that clinicians should carefully assess these vital structures to avoid nerve/artery damage. Conclusions The mandibular incisive canal, mental foramen and associated neurovascular bundles exist in different locations and possess many variations. Individual, gender, age, race, assessing technique used and degree of edentulous alveolar bone atrophy largely influence these variations. It suggests that the clinicians should carefully identify these anatomical landmarks, by analyzing all influencing factors, prior to their implant surgical operation. PMID:24421959

  4. Inflammatory Mediators of Hepatic Steatosis

    PubMed Central

    Hijona, Elizabeth; Hijona, Lander; Arenas, Juan I.; Bujanda, Luis

    2010-01-01

    Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming a world-wide public health problem. NAFLD represents a spectrum of disease ranging from “simple steatosis”, which is considered relatively benign, to nonalcoholic steatohepatitis and to NAFLD-associated cirrhosis and end-stage liver disease. The etiology of NAFLD and its progression is complex and remains incompletely understood. The progression of the disease involves many factors. Apart from the two hits, the accumulation of TG and the development of fibrosis and necroinflammatory processes, exit numerous molecules associated with these two hits. Among them we can highlight the pro-inflammatory molecules and adiponectins. This review focuses on the growing evidence from both experimental and human studies suggesting a central role of cytokines in the pathogenesis of NAFLD. We review the role of cytokines as key regulators of insulin sensitivity and hepatic lipid overloading, liver injury and inflammation, and fibrosis with an emphasis on potential therapeutic implications. PMID:20300479

  5. Virtual stenting workflow with vessel-specific initialization and adaptive expansion for neurovascular stents and flow diverters.

    PubMed

    Paliwal, Nikhil; Yu, Hongyu; Xu, Jinhui; Xiang, Jianping; Siddiqui, Adnan H; Yang, Xinjian; Li, Haiyun; Meng, Hui

    2016-10-01

    Endovascular intervention using traditional neurovascular stents and densely braided flow diverters (FDs) have become the preferred treatment strategies for traditionally challenging intracranial aneurysms. Modeling stent and FD deployment in patient-specific aneurysms and its flow modification results prior to the actual intervention can potentially predict the patient outcome and treatment optimization. We present a clinically focused, streamlined virtual stenting workflow that efficiently simulates stent and FD treatment in patient-specific aneurysms based on expanding a simplex mesh structure. The simplex mesh is generated using an innovative vessel-specific initialization technique, which uses the patient's parent artery diameter to identify the initial position of the simplex mesh inside the artery. A novel adaptive expansion algorithm enables the acceleration of deployment process by adjusting the expansion forces based on the distance of the simplex mesh from the parent vessel. The virtual stenting workflow was tested by modeling the treatment of two patient-specific aneurysms using the Enterprise stent and the Pipeline Embolization Device (commercial FD). Both devices were deployed in the aneurysm models in a few seconds. Computational fluid dynamics analyses of pre- and post-treatment aneurysmal hemodynamics show flow reduction in the aneurysmal sac in treated aneurysms, with the FD diverting more flow than the Enterprise stent. The test results show that this workflow can rapidly simulate clinical deployment of stents and FDs, hence paving the way for its future clinical implementation.

  6. Relation of haemostatic function, neurovascular impairment, and vibration exposure in workers with different stages of vibration induced white finger.

    PubMed Central

    Bovenzi, M; Giansante, C; Fiorito, A; Calabrese, S

    1985-01-01

    Haemostatic function and neurovascular symptoms were investigated in 67 workers exposed to vibration and 46 comparable referents. Of these 65.6% of vibration workers complained of neurological disturbances (stages 0T, 0N of Taylor's classification for vibration induced white finger (VWF) and 20.9% suffered from Raynaud's phenomenon (stages 1-2-3). The severity of the staging symptoms showed a close relation with an index of vibration dose computed on the basis of vibration measurement and individual exposure time. Indices of platelet aggregation, both in vitro and in vivo, antithrombin III, fibrinogen and fibrinopeptide A levels were not different in the exposed workers compared with the referents. No relation was found between haemostatic parameters and the severity of VWF. Exposed workers responded to a cooling procedure with a more pronounced vasoconstriction in the digital vessels than the referents, as indicated by delayed recovery time of finger skin temperature after the cold test. These findings suggest that both in the early stages (0T, 0N) and in more severe stages of VWF (stages 1-2) cold induced hyperreactivity in the digital vessels and Raynaud's syndrome are vascular disorders of functional origin occurring without any prethrombotic alterations. PMID:3978045

  7. Mechanism of Mitochondrial Connexin43′s Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury

    PubMed Central

    Hou, Shuai; Shen, Ping-Ping; Zhao, Ming-Ming; Liu, Xiu-Ping; Xie, Hong-Yan; Deng, Fang; Feng, Jia-Chun

    2016-01-01

    We observed mitochondrial connexin43 (mtCx43) expression under cerebral ischemia-reperfusion (I/R) injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO). Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride staining, and cell apoptosis was observed by transferase dUTP nick end labeling. We used transmission electron microscopy to observe mitochondrial morphology and determined superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. MtCx43, p-mtCx43, protein kinase C (PKC), and p-PKC expression were detected by Western blot. Compared with those in the IR group, cerebral infarction volumes in the carbenoxolone (CBX) and diazoxide (DZX) groups were obviously smaller, and the apoptosis indices were down-regulated. Mitochondrial morphology was damaged after I/R, especially in the IR and 5-hydroxydecanoic acid (5-HD) groups. Similarly, decreased SOD activity and increased MDA were observed after MCAO; CBX, DZX, and phorbol-12-myristate-13-acetate (PMA) reduced mitochondrial functional injury. Expression of mtCx43 and p-mtCx43 and the p-Cx43/Cx43 ratio were significantly lower in the IR group than in the sham group. These abnormalities were ameliorated by CBX, DZX, and PMA. MtCx43 may protect the neurovascular unit from acute cerebral IR injury via PKC activation induced by mitoKATP channel agonists. PMID:27164087

  8. Virtual Stenting Workflow with Vessel-Specific Initialization and Adaptive Expansion for Neurovascular Stents and Flow Diverters

    PubMed Central

    Xu, Jinhui; Xiang, Jianping; Siddiqui, Adnan; Yang, Xinjian; Li, Haiyun; Meng, Hui

    2016-01-01

    Endovascular intervention using traditional neurovascular stents and densely braided flow diverters (FDs) have become the preferred treatment strategies for traditionally challenging intracranial aneurysms (IAs). Modeling stent and FD deployment in patient-specific aneurysms and its flow modification results prior to the actual intervention can potentially predict the patient outcome and treatment optimization. We present a clinically focused, streamlined virtual stenting workflow that efficiently simulates stent and FD treatment in patient-specific aneurysms based on expanding a simplex mesh structure. The simplex mesh is generated using an innovative vessel-specific initialization technique, which uses the patient’s parent artery diameter to identify the initial position of the simplex mesh inside the artery. A novel adaptive expansion algorithm enables the acceleration of deployment process by adjusting the expansion forces based on the distance of the simplex mesh from the parent vessel. The virtual stenting workflow was tested by modeling the treatment of two patient-specific aneurysms using the Enterprise stent and the Pipeline Embolization Device (commercial FD). Both devices were deployed in the aneurysm models in a few seconds. Computational fluid dynamics analyses of pre- and post-treatment aneurysmal hemodynamics show flow reduction in the aneurysmal sac in treated aneurysms, with the FD diverting more flow than the Enterprise stent. The test results show that this workflow can rapidly simulate clinical deployment of stents and FDs, hence paving the way for its future clinical implementation. PMID:26899135

  9. Methyl salicylate 2-O-β-d-lactoside alleviates the pathological progression of pristane-induced systemic lupus erythematosus-like disease in mice via suppression of inflammatory response and signal transduction

    PubMed Central

    He, Yang-Yang; Yan, Yu; Zhang, Hui-Fang; Lin, Yi-Huang; Chen, Yu-Cai; Yan, Yi; Wu, Ping; Fang, Jian-Song; Yang, Shu-Hui; Du, Guan-Hua

    2016-01-01

    Systemic lupus erythematosus (SLE), with a high incidence rate and insufficient therapy worldwide, is a complex disease involving multiple organs characterized primarily by inflammation due to deposition of immunocomplexes formed by production of autoantibodies. The mechanism of SLE remains unclear, and the disease still cannot be cured. We used pristane to induce SLE in female BALB/c mice. Methyl salicylate 2-O-β-d-lactoside (MSL; 200, 400, and 800 mg/kg) was orally administered 45 days after pristane injection for 4.5 months. The results showed that MSL antagonized the increasing levels of multiple types of antibodies and cytokines in lupus mice. MSL was found to suppress joint swelling and have potent inhibitory effect on arthritis-like symptoms. MSL also significantly decreased the spleen index and expression of inflammatory markers in the lupus mice. MSL protected the kidneys of lupus mice from injury through inhibiting the expression of inflammatory cytokines and reducing the IgG and C3 immunocomplex deposits. Further Western blot assays revealed that the downregulation of the intracellular inflammatory signals of NFκB and JAK/STAT3 might be the potential molecular mechanisms of the pharmacological activity of MSL against SLE in vivo. These findings may demonstrate that MSL has the potential to be a useful and highly effective treatment for SLE. PMID:27729775

  10. Inflammatory myopathies and lymphoma.

    PubMed

    Stübgen, Joerg-Patrick

    2016-10-15

    The inflammatory myopathies comprise a group of immune-mediated muscle diseases. Lymphoma is a term for a variety of lymphatic system malignancies. Autoimmune diseases and lymphoproliferative malignancies share a complex bidirectional relationship. A causal relationship between inflammatory mypathies and lymphoma has not been established. The diagnosis/treatment of inflammatory myopathy usually precedes the detection/diagnosis of lymphoma. Immune system dysregulation presumably underlies the evolution of lymphoma in patients with inflammatory myopathies. Inflammatory activity with chronic B-cell activation and/or antigen stimulation is deemed the major risk factor for lymphoma in patients with autoimmunity. A "paraneoplastic" phenomenon or the effects of immunosuppressive therapy may be alternative immune-based mechanisms. In chronic lymphocytic leukemia immune system disturbance rarely results in non-hematological autoimmune disease, including inflammatory myopathies. PMID:27653927

  11. Rosacea: Molecular Mechanisms and Management of a Chronic Cutaneous Inflammatory Condition

    PubMed Central

    Woo, Yu Ri; Lim, Ji Hong; Cho, Dae Ho; Park, Hyun Jeong

    2016-01-01

    Rosacea is a chronic cutaneous inflammatory disease that affects the facial skin. Clinically, rosacea can be categorized into papulopustular, erythematotelangiectatic, ocular, and phymatous rosacea. However, the phenotypic presentations of rosacea are more heterogeneous. Although the pathophysiology of rosacea remains to be elucidated, immunologic alterations and neurovascular dysregulation are thought to have important roles in initiating and strengthening the clinical manifestations of rosacea. In this article, we present the possible molecular mechanisms of rosacea based on recent laboratory and clinical studies. We describe the genetic predisposition for rosacea along with its associated diseases, triggering factors, and suggested management options in detail based on the underlying molecular biology. Understanding the molecular pathomechanisms of rosacea will likely aid toward better comprehending its complex pathogenesis. PMID:27649161

  12. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression

    PubMed Central

    Gao, Hui-Ming; Hong, Jau-Shyong

    2016-01-01

    Neurodegenerative diseases are a group of chronic, progressive disorders characterized by the gradual loss of neurons in discrete areas of the central nervous system (CNS). The mechanism(s) underlying their progressive nature remains unknown but a timely and well-controlled inflammatory reaction is essential for the integrity and proper function of the CNS. Substantial evidence has documented a common inflammatory mechanism in various neurodegenerative diseases. We hypothesize that in the diseased CNS, interactions between damaged neurons and dysregulated, overactivated microglia create a vicious self-propagating cycle causing uncontrolled, prolonged inflammation that drives the chronic progression of neurodegenerative diseases. We further propose that dynamic modulation of this inflammatory reaction by interrupting the vicious cycle might become a disease-modifying therapeutic strategy for neurodegenerative diseases. PMID:18599350

  13. Cytomembrane ATP-sensitive K+ channels in neurovascular unit targets of ischemic stroke in the recovery period

    PubMed Central

    Zhang, Yang; Pan, Sipei; Zheng, Xiaolu; Wan, Qi

    2016-01-01

    The present study was to analyze the mechanism of cytomembrane ATP-sensitive K+ channels (KATP) in the neurovascular unit treatment of ischemic stroke in the recovery period. A total of 24 healthy adult male Wistar rats of 5–8 weeks age, weighing 160–200 g were randomly divided into the control (sham-operation group), model, KATP blocker and KATP opener groups (n=6 rats per group). Nylon cerebral artery occlusion was conducted using nylon monofilament coated with Poly-L-lysine, which was used to produce a cerebral infarction model. After feeding normally for 3 days, 5-hydroxydecanoate (40 mg/Kg), and diazoxide (40 mg/Kg) were injected to the abdominal cavity in the blocker, and opener groups, respectively. The control received an equivalent normal saline that was injected into the sham-operation and model groups. The animals were mutilated and samples were collected after 3 days. RT-PCR was used to detect the expression levels of the three subunits of KATP, i.e., kir6.1, and sulfonylurea receptor (SUR) 1 and SUR2 mRNA, as well as to calculate infarct size in tetrazolium chloride staining. The expression level of mRNA in the opener group were significantly higher, followed by the model and blocker groups, with the control group being the lowest (P<0.05). Infarct size in the opener group was markedly smaller than the model and blocker groups, and infarct size in the blocker group was significantly larger (P<0.05). Thus, the target treatment on KATP may improve the prognosis of ischemic stroke during the recovery period. PMID:27446320

  14. Neuronal-Derived Nitric Oxide and Somatodendritically Released Vasopressin Regulate Neurovascular Coupling in the Rat Hypothalamic Supraoptic Nucleus

    PubMed Central

    Du, Wenting; Stern, Javier E.

    2015-01-01

    The classical model of neurovascular coupling (NVC) implies that activity-dependent axonal glutamate release at synapses evokes the production and release of vasoactive signals from both neurons and astrocytes, which dilate arterioles, increasing in turn cerebral blood flow (CBF) to areas with increased metabolic needs. However, whether this model is applicable to brain areas that also use less conventional neurotransmitters, such as neuropeptides, is currently unknown. To this end, we studied NVC in the rat hypothalamic magnocellular neurosecretory system (MNS) of the supraoptic nucleus (SON), in which dendritic release of neuropeptides, including vasopressin (VP), constitutes a key signaling modality influencing neuronal and network activity. Using a multidisciplinary approach, we investigated vasopressin-mediated vascular responses in SON arterioles of hypothalamic brain slices of Wistar or VP-eGFP Wistar rats. Bath-applied VP significantly constricted SON arterioles (Δ−41 ± 7%) via activation of the V1a receptor subtype. Vasoconstrictions were also observed in response to single VP neuronal stimulation (Δ−18 ± 2%), an effect prevented by V1a receptor blockade (V2255), supporting local dendritic VP release as the key signal mediating activity-dependent vasoconstrictions. Conversely, osmotically driven magnocellular neurosecretory neuronal population activity leads to a predominant nitric oxide-mediated vasodilation (Δ19 ± 2%). Activity-dependent vasodilations were followed by a VP-mediated vasoconstriction, which acted to limit the magnitude of the vasodilation and served to reset vascular tone following activity-dependent vasodilation. Together, our results unveiled a unique and complex form of NVC in the MNS, supporting a competitive balance between nitric oxide and activity-dependent dendritic released VP, in the generation of proper NVC responses. PMID:25834057

  15. Advances in inflammatory bowel diseases in children.

    PubMed

    Michail, S; Ramsy, M; Soliman, E

    2012-06-01

    Inflammatory bowel disease (IBD) is a chronic gastrointestinal condition that burdens the lives of many children around the world. It is characterized by chronic gastrointestinal inflammation. Crohn's disease (CD), ulcerative colitis and IBD-unknown are the three types of this disease. The management of children with inflammatory bowel disease is complex and requires skill, knowledge and experience with current advances in the field. Over the past several years, there have been a number of achievements and progress made in the care and management of this disorder. The diagnostic tools have greatly improved. The therapeutic armamentarium has expanded. The genetics of IBD has become more detailed and the role of the gut microbiome has been better defined. The evolution of biological agents has revolutionized the way we approach this disease. This review highlights the recent advances in pediatric inflammatory bowel disease and provides an overview for clinicians caring for children with this disorder. PMID:22555319

  16. Long-term probucol therapy continues to suppress markers of neurovascular inflammation in a dietary induced model of cerebral capillary dysfunction

    PubMed Central

    2014-01-01

    Background Probucol has been shown to prevent cerebral capillary disturbances characterized by blood-to-brain extravasation of plasma derived proteins and neurovascular inflammation in mice maintained on western-styled diets for 12 weeks. However the effect of probucol on capillary integrity in aging models with capillary dysfunction is not known. Methods Wild-type C57BL6 mice were randomized to a low-fat (LF); saturated-fat (SFA); or SFA + Probucol diet for up to12 months of intervention. Results Mice fed the LF diet had substantially greater parenchymal abundance of plasma derived IgG and apo B lipoproteins at 12 months, compared to LF mice at 3 months of intervention. Markers of neurovascular inflammation were also greater at 12 months in LF fed mice compared to LF mice at 3 months. The SFA diet exacerbated the aging induced parenchymal abundance of IgG and of apo B lipoproteins and neurovascular inflammation at 12 months. The SFA effects were associated with increased production of intestinal lipoprotein amyloid-β (Aβ). The co-provision of probucol with the SFA completely abolished heightened inflammation at 12 months. Probucol attenuated SFA-induced capillary permeability but had only a modest inhibitory effect on parenchymal retention of apoB lipoproteins. The improvements in markers of inflammation and capillary integrity because of probucol correlated with enterocytic genesis of chylomicron Aβ. Conclusion In this long-term feeding study, probucol profoundly suppressed dietary SFA induced disturbances in capillary integrity but had a more modest effect on age-associated changes. PMID:24890126

  17. Progressive multiple sclerosis

    PubMed Central

    Ontaneda, Daniel; Fox, Robert J.

    2015-01-01

    Purpose to Review To highlight the pathological features and clinical aspects of progressive multiple sclerosis (PMS). To highlight results of clinical trial experience to date and review ongoing clinical trials and perspective new treatment options. Explain the challenges of clinical trial design in PMS. Recent Findings MS has been identified as a chronic immune mediated disease, and the progressive phase of the disease appears to have significant neurodegenerative mechanisms. The classification of the course of PMS has been re-organized into categories of active vs. inactive inflammatory disease and the presence vs. absence of gradual disease progression. This differentiation allows clearer conceptualization of PMS and possibly even more efficient recruitment of PMS subjects into clinical trials. Clinical trial experience to date in PMS has been negative with anti-inflammatory medications used in relapsing MS. Simvastatin was recently tested in a phase II trial and showed a 43% reduction on annualized atrophy progression in secondary progressive MS. Ongoing PMS trials are currently being conducted with the phosphodiesterase inhibitor ibudilast, S1P modulator siponimod, and anti-B-cell therapy ocrelizumab. Several efforts for development of outcome measures in PMS are ongoing. Summary PMS represents a significant challenge, as the pathogenesis of the disease is not well understood, no validated outcome metrics have been established, and clinical trial experience to date has been disappointing. Advances in the understanding of the disease and lessons learned in previous clinical trials are paving the way for successful development of disease modifying agents for this disease. PMID:25887766

  18. Inflammatory Bowel Disease.

    PubMed

    2016-01-01

    Inflammation response plays an important role in host survival, and it also leads to acute and chronic inflammatory diseases such as rheumatoid arthritis, bowel diseases, allergic rhinitis, asthma, atopic dermatitis and various neurodegenerative diseases. During the course of inflammation, the ROS level increases. In addition to ROS, several inflammatory mediators produced at the site lead to numerous cell-mediated damages. Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a chronic intestinal disorder resulting from a dysfunctional epithelial, innate and adaptive immune response to intestinal microorganisms. The methods involving indomethacin-induced enterocolitis in rats with macroscopic changes of IBD, myeloperoxidase assay, microscopic (histologic) characters and biochemical parameters are discussed.

  19. Catheter venography for the assessment of internal jugular veins and azygous vein: position statement by expert panel of the International Society for Neurovascular Disease.

    PubMed

    Simka, Marian; Hubbard, David; Siddiqui, Adnan H; Dake, Michael D; Sclafani, Salvatore J A; Al-Omari, Mamoon; Eisele, Carlos G; Haskal, Ziv J; Ludyga, Tomasz; Miloševič, Zoran V; Sievert, Horst; Stehling, Michael K; Zapf, Stefan; Zorc, Marjeta

    2013-05-01

    This document by an expert panel of the International Society for Neurovascular Disease is aimed at presenting current technique and interpretation of catheter venography of the internal jugular veins, azygous vein and other veins draining the central nervous system. Although interventionalists agree on general rules, significant differences exist in terms of details of venographic technique and interpretations of angiographic pictures. It is also suggested that debatable findings should be investigated using multimodal diagnostics. Finally, the authors recommend that any publication on chronic cerebrospinal venous insufficiency should include detailed description of venographic technique used, to facilitate a comparison of published results in this area.

  20. Selenium and inflammatory bowel disease.

    PubMed

    Kudva, Avinash K; Shay, Ashley E; Prabhu, K Sandeep

    2015-07-15

    Dietary intake of the micronutrient selenium is essential for normal immune functions. Selenium is cotranslationally incorporated as the 21st amino acid, selenocysteine, into selenoproteins that function to modulate pathways involved in inflammation. Epidemiological studies have suggested an inverse association between selenium levels and inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis that can potentially progress to colon cancer. However, the underlying mechanisms are not well understood. Here we summarize the current literature on the pathophysiology of IBD, which is multifactorial in origin with unknown etiology. We have focused on a few selenoproteins that mediate gastrointestinal inflammation and activate the host immune response, wherein macrophages play a pivotal role. Changes in cellular oxidative state coupled with altered expression of selenoproteins in macrophages drive the switch from a proinflammatory phenotype to an anti-inflammatory phenotype to efficiently resolve inflammation in the gut and restore epithelial barrier integrity. Such a phenotypic plasticity is accompanied by changes in cytokines, chemokines, and bioactive metabolites, including eicosanoids that not only mitigate inflammation but also partake in restoring gut homeostasis through diverse pathways involving differential regulation of transcription factors such as nuclear factor-κB and peroxisome proliferator-activated receptor-γ. The role of the intestinal microbiome in modulating inflammation and aiding in selenium-dependent resolution of gut injury is highlighted to provide novel insights into the beneficial effects of selenium in IBD.

  1. Pelvic Inflammatory Disease

    MedlinePlus

    Pelvic inflammatory disease (PID) is an infection and inflammation of the uterus, ovaries, and other female reproductive organs. It causes scarring ... United States. Gonorrhea and chlamydia, two sexually transmitted diseases, are the most common causes of PID. Other ...

  2. Anti-inflammatory Diets.

    PubMed

    Sears, Barry

    2015-01-01

    Chronic disease is driven by inflammation. This article will provide an overview on how the balance of macronutrients and omega-6 and omega-3 fatty acids in the diet can alter the expression of inflammatory genes. In particular, how the balance of the protein to glycemic load of a meal can alter the generation of insulin and glucagon and the how the balance of omega-6 and omega-3 fatty acids can effect eicosanoid formation. Clinical results on the reduction of inflammation following anti-inflammatory diets are discussed as well as the molecular targets of anti-inflammatory nutrition. To overcome silent inflammation requires an anti-inflammatory diet (with omega-3s and polyphenols, in particular those of Maqui). The most important aspect of such an anti-inflammatory diet is the stabilization of insulin and reduced intake of omega-6 fatty acids. The ultimate treatment lies in reestablishing hormonal and genetic balance to generate satiety instead of constant hunger. Anti-inflammatory nutrition, balanced 40:30:30 with caloric restriction, should be considered as a form of gene silencing technology, in particular the silencing of the genes involved in the generation of silent inflammation. To this anti-inflammatory diet foundation supplemental omega-3 fatty acids at the level of 2-3 g of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) per day should be added. Finally, a diet rich in colorful, nonstarchy vegetables would contribute adequate amounts of polyphenols to help not only to inhibit nuclear factor (NF)-κB (primary molecular target of inflammation) but also activate AMP kinase. Understanding the impact of an anti-inflammatory diet on silent inflammation can elevate the diet from simply a source of calories to being on the cutting edge of gene-silencing technology. PMID:26400429

  3. Biometric study of the relationships between palmar neurovascular structures, the flexor retinaculum and the distal wrist crease

    PubMed Central

    OLAVE, E.; DEL SOL, M.; GABRIELLI, C.; MANDIOLA, E.; RODRIGUES, C. F. S.

    2001-01-01

    During surgical exposure of the carpal tunnel it is possible to injure the neurovascular structures closely related to the flexor retinaculum, such as the superficial palmar arch and the communicating branch between the ulnar and median nerves. Because of the importance of these structures and with the purpose of increasing knowledge of anatomical details concerning to their location, a biometric study was performed on the retinaculum and the communicating branch, and between the communicating branch and the distal wrist crease, as well as between the retinaculum and the superficial palmar arch. We dissected 56 hands from 28 Brazilian formalin-preserved cadavers of both sexes (24 male) at the Federal University of São Paulo–Escola Paulista de Medicina, Brazil. The communicating branch was observed in 96.4% of cases and the superficial palmar arch in 78.6%. The communicating branch was found between the common palmar digital nerve of the 4th interosseous space (from the ulnar nerve) to the homonymous nerve of the 3rd interosseous space (from the median nerve). In males, the distance between the distal wrist crease and the site where the communicating branch originates from the ulnar component had an average of 33.9±5.5 mm on the right side and 30.2±8.2 mm on the left. The distance between the distal wrist crease and the junction of the communicating branch with the common palmar digital nerve of the 3rd interosseous space was 43.6±6.9 mm on the right and 40.2±6.2 mm on the left side. Conversely, in 14.8% of cases (1 female), the communicating branch was observed to emerge from the common palmar digital nerve of the 3rd interosseous space. The distance between the retinaculum and the superficial palmar arch in the axial line of the 4th metacarpal bone was on average 7.3±4.3 mm on the right and 8.3±3.5 mm on the left side. At the same level, the distance between the retinaculum and the communicating branch was 6.2±3.7 mm on the right side and 5.1±2.8 mm on

  4. Demonstration of Brain Tumor-Induced Neurovascular Uncoupling in Resting-State fMRI at Ultrahigh Field.

    PubMed

    Agarwal, Shruti; Sair, Haris I; Airan, Raag; Hua, Jun; Jones, Craig K; Heo, Hye-Young; Olivi, Alessandro; Lindquist, Martin A; Pekar, James J; Pillai, Jay J

    2016-05-01

    To demonstrate in a small case series for the first time the phenomenon of brain tumor-related neurovascular uncoupling (NVU) in resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) at ultrahigh field (7T). Two de novo (i.e., untreated) brain tumor patients underwent both BOLD resting-state fMRI (rsfMRI) on a 7T MRI system and motor task-based BOLD fMRI at 3T. Ipsilesional (i.e., ipsilateral to tumor or IL) and contralesional (i.e., contralateral to tumor or CL) region of interest (ROI) analysis was performed on both 3T motor task-related general linear model-derived activation maps and on 7T rsfMRI independent component analysis (ICA)-derived sensorimotor network maps for each case. Asymmetry scores (ASs) were computed based on numbers of suprathreshold voxels in the IL and CL ROIs. In each patient, ASs derived from ROI analysis of suprathreshold voxels in IL and CL ROIs in task-related activation maps and rsfMRI ICA-derived sensorimotor component maps indicate greater number of suprathreshold voxels in contralesional than ipsilesional sensorimotor cortex in both maps. In patient 1, an AS of 0.2 was obtained from the suprathreshold Z-score spectrum (voxels with Z-scores >5.0) of the task-based activation map and AS of 1.0 was obtained from the suprathreshold Z-score spectrum (Z-scores >5.0) of the ICA-derived sensorimotor component map. Similarly, in patient 2, an AS of 1.0 was obtained from the suprathreshold Z-score spectrum (Z-scores >5.0) of the task-based activation map and an AS of 1.0 was obtained from the suprathreshold Z-score spectrum (Z-scores >5.0) of the ICA-derived sensorimotor component map. Overall, decreased BOLD signal was noted in IL compared with CL ROIs on both task-based activation maps and ultrahigh field resting-state maps, indicating the presence of NVU. We have demonstrated evidence of NVU on ultrahigh field 7T rsfMRI comparable with the findings on standard 3T motor task-based fMRI in both cases

  5. SU-D-9A-06: 3D Localization of Neurovascular Bundles Through MR-TRUS Registration in Prostate Radiotherapy

    SciTech Connect

    Yang, X; Rossi, P; Ogunleye, T; Jani, A; Curran, W; Liu, T

    2014-06-01

    Purpose: Erectile dysfunction (ED) is the most common complication of prostate-cancer radiotherapy (RT) and the major mechanism is radiation-induced neurovascular bundle (NVB) damage. However, the localization of the NVB remains challenging. This study's purpose is to accurately localize 3D NVB by integrating MR and transrectal ultrasound (TRUS) images through MR-TRUS fusion. Methods: T1 and T2-weighted MR prostate images were acquired using a Philips 1.5T MR scanner and a pelvic phase-array coil. The 3D TRUS images were captured with a clinical scanner and a 7.5 MHz biplane probe. The TRUS probe was attached to a stepper; the B-mode images were captured from the prostate base to apex at a 1-mm step and the Doppler images were acquired in a 5-mm step. The registration method modeled the prostate tissue as an elastic material, and jointly estimated the boundary condition (surface deformation) and the volumetric deformations under elastic constraint. This technique was validated with a clinical study of 7 patients undergoing RT treatment for prostate cancer. The accuracy of our approach was assessed through the locations of landmarks, as well as previous ultrasound Doppler images of patients. Results: MR-TRUS registration was successfully performed for all patients. The mean displacement of the landmarks between the post-registration MR and TRUS images was 1.37±0.42 mm, which demonstrated the precision of the registration based on the biomechanical model; and the NVB volume Dice Overlap Coefficient was 92.1±3.2%, which demonstrated the accuracy of the NVB localization. Conclusion: We have developed a novel approach to improve 3D NVB localization through MR-TRUS fusion for prostate RT, demonstrated its clinical feasibility, and validated its accuracy with ultrasound Doppler data. This technique could be a useful tool as we try to spare the NVB in prostate RT, monitor NBV response to RT, and potentially improve post-RT potency outcomes.

  6. Assessment of neurovascular dynamics during transient ischemic attack by the novel integration of micro-electrocorticography electrode array with functional photoacoustic microscopy.

    PubMed

    Liu, Yu-Hang; Liao, Lun-De; Tan, Stacey Sze Hui; Kwon, Ki Yong; Ling, Ji Min; Bandla, Aishwarya; Shih, Yen-Yu Ian; Tan, Eddie Tung Wee; Li, Wen; Ng, Wai Hoe; Lai, Hsin-Yi; Chen, You-Yin; Thakor, Nitish V

    2015-10-01

    This study developed a novel system combining a 16-channel micro-electrocorticography (μECoG) electrode array and functional photoacoustic microscopy (fPAM) to examine changes in neurovascular functions following transient ischemic attack (TIA) in rats. To mimic the pathophysiology of TIA, a modified photothrombotic ischemic model was developed by using 3 min illumination of 5 mW continuous-wave (CW) green laser light focusing on a distal branch of the middle cerebral artery (MCA). Cerebral blood volume (CBV), hemoglobin oxygen saturation (SO2), somatosensory evoked potentials (SSEPs) and alpha-to-delta ratio (ADR) were measured pre- and post-ischemia over a focal cortical region (i.e., 1.5×1.5 mm(2)). Unexpectedly, the SO2, peak-to-peak amplitude (PPA) of SSEPs and ADR recovered and achieved levels greater than the baseline values at the 4th hour post-ischemia induction without any intervention, whereas the CBV value only partially recovered. In other words, transient ischemia led to increased neural activity when the relative CBV was reduced, which may further compromise neural integrity or lead to subsequent vascular disease. This novel μECoG-fPAM system complements currently available imaging techniques and represents a promising technology for studying neurovascular coupling in animal models.

  7. P2RX7 sensitizes Mac-1/ICAM-1-dependent leukocyte-endothelial adhesion and promotes neurovascular injury during septic encephalopathy

    PubMed Central

    Wang, Huan; Hong, Ling-Juan; Huang, Ji-Yun; Jiang, Quan; Tao, Rong-Rong; Tan, Chao; Lu, Nan-Nan; Wang, Cheng-Kun; Ahmed, Muhammad M; Lu, Ying-Mei; Liu, Zhi-Rong; Shi, Wei-Xing; Lai, En-Yin; Wilcox, Christopher S; Han, Feng

    2015-01-01

    Septic encephalopathy (SE) is a critical factor determining sepsis mortality. Vascular inflammation is known to be involved in SE, but the molecular events that lead to the development of encephalopathy remain unclear. Using time-lapse in vivo two-photon laser scanning microscopy, we provide the first direct evidence that cecal ligation and puncture in septic mice induces microglial trafficking to sites adjacent to leukocyte adhesion on inflamed cerebral microvessels. Our data further demonstrate that septic injury increased the chemokine CXCL1 level in brain endothelial cells by activating endothelial P2RX7 and eventually enhanced the binding of Mac-1 (CD11b/CD18)-expressing leukocytes to endothelial ICAM-1. In turn, leukocyte adhesion upregulated endothelial CX3CL1, thereby triggering microglia trafficking to the injured site. The sepsis-induced increase in endothelial CX3CL1 was abolished in CD18 hypomorphic mutant mice. Inhibition of the P2RX7 pathway not only decreased endothelial ICAM-1 expression and leukocyte adhesion but also prevented microglia overactivation, reduced brain injury, and consequently doubled the early survival of septic mice. These results demonstrate the role of the P2RX7 pathway in linking neurovascular inflammation to brain damage in vivo and provide a rationale for targeting endothelial P2RX7 for neurovascular protection during SE. PMID:25998681

  8. Assessment of neurovascular dynamics during transient ischemic attack by the novel integration of micro-electrocorticography electrode array with functional photoacoustic microscopy.

    PubMed

    Liu, Yu-Hang; Liao, Lun-De; Tan, Stacey Sze Hui; Kwon, Ki Yong; Ling, Ji Min; Bandla, Aishwarya; Shih, Yen-Yu Ian; Tan, Eddie Tung Wee; Li, Wen; Ng, Wai Hoe; Lai, Hsin-Yi; Chen, You-Yin; Thakor, Nitish V

    2015-10-01

    This study developed a novel system combining a 16-channel micro-electrocorticography (μECoG) electrode array and functional photoacoustic microscopy (fPAM) to examine changes in neurovascular functions following transient ischemic attack (TIA) in rats. To mimic the pathophysiology of TIA, a modified photothrombotic ischemic model was developed by using 3 min illumination of 5 mW continuous-wave (CW) green laser light focusing on a distal branch of the middle cerebral artery (MCA). Cerebral blood volume (CBV), hemoglobin oxygen saturation (SO2), somatosensory evoked potentials (SSEPs) and alpha-to-delta ratio (ADR) were measured pre- and post-ischemia over a focal cortical region (i.e., 1.5×1.5 mm(2)). Unexpectedly, the SO2, peak-to-peak amplitude (PPA) of SSEPs and ADR recovered and achieved levels greater than the baseline values at the 4th hour post-ischemia induction without any intervention, whereas the CBV value only partially recovered. In other words, transient ischemia led to increased neural activity when the relative CBV was reduced, which may further compromise neural integrity or lead to subsequent vascular disease. This novel μECoG-fPAM system complements currently available imaging techniques and represents a promising technology for studying neurovascular coupling in animal models. PMID:26149348

  9. Parkinson’s disease and enhanced inflammatory response

    PubMed Central

    Stojkovska, Iva; Wagner, Brandon M

    2015-01-01

    Parkinson’s disease (PD) is the first and second most prevalent motor and neurodegenerative disease, respectively. The clinical symptoms of PD result from a loss of midbrain dopaminergic (DA) neurons. However, the molecular cause of DA neuron loss remains elusive. Mounting evidence implicates enhanced inflammatory response in the development and progression of PD pathology. This review examines current research connecting PD and inflammatory response. PMID:25769314

  10. Idiopathic Inflammatory Myopathies

    PubMed Central

    Dimachkie, Mazen M.; Barohn, Richard J.

    2012-01-01

    The idiopathic inflammatory myopathies are a group of rare disorders including polymyositis (PM), dermatomyositis (DM), and autoimmune necrotizing myopathies (NMs). The idiopathic inflammatory myopathies share many similarities. They present acutely, subacutely, or chronically with marked proximal and symmetric muscle weakness, except for associated distal and asymmetric weakness in inclusion body myositis. The idiopathic inflammatory myopathies also share a variable degree of creatine kinase (CK) elevation and a nonspecifically abnormal electromyogram demonstrating an irritative myopathy. The muscle pathology demonstrates inflammatory exudates of variable distribution within the muscle fascicle. Despite these similarities, the idiopathic inflammatory myopathies are a heterogeneous group. The overlap syndrome (OS) refers to the association of PM, DM, or NM with connective tissue disease, such as scleroderma or systemic lupus erythematosus. In addition to elevated antinuclear antibodies (ANA), patients with OS may be weaker in the proximal arms than the legs mimicking the pattern seen in some muscular dystrophies. In this review, we focus on DM, PM, and NM and examine current and promising therapies. PMID:23117947

  11. Idiopathic inflammatory myopathies.

    PubMed

    Dimachkie, Mazen M; Barohn, Richard J

    2012-07-01

    The idiopathic inflammatory myopathies are a group of rare disorders including polymyositis (PM), dermatomyositis (DM), and autoimmune necrotizing myopathies (NMs). The idiopathic inflammatory myopathies share many similarities. They present acutely, subacutely, or chronically with marked proximal and symmetric muscle weakness, except for associated distal and asymmetric weakness in inclusion body myositis. The idiopathic inflammatory myopathies also share a variable degree of creatine kinase (CK) elevation and a nonspecifically abnormal electromyogram demonstrating an irritative myopathy. The muscle pathology demonstrates inflammatory exudates of variable distribution within the muscle fascicle. Despite these similarities, the idiopathic inflammatory myopathies are a heterogeneous group. The overlap syndrome (OS) refers to the association of PM, DM, or NM with connective tissue disease, such as scleroderma or systemic lupus erythematosus. In addition to elevated antinuclear antibodies (ANA), patients with OS may be weaker in the proximal arms than the legs mimicking the pattern seen in some muscular dystrophies. In this review, we focus on DM, PM, and NM and examine current and promising therapies.

  12. Acacia ferruginea inhibits tumor progression by regulating inflammatory mediators-(TNF-a, iNOS, COX-2, IL-1β, IL-6, IFN-γ, IL-2, GM-CSF) and pro-angiogenic growth factor- VEGF.

    PubMed

    Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran

    2013-01-01

    The aim of the present investigation was to evaluate the effect of A ferruginea extract on Dalton's lymphoma ascites (DLA) induced tumours in BALB/c mice. Experimental animals received A ferruginea extract (10 mg/ kg.b.wt) intraperitoneally for 14 consecutive days after DLA tumor challenge. Treatment with extract significantly increased the life span, total white blood cell (WBC) count and haemoglobin (Hb) content and decreased the level of serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (γ-GT) and nitric oxide (NO) in DLA bearing ascites tumor models. In addition, administration of extract significantly decreased the tumour volume and body weight in a DLA bearing solid tumor model. The levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and granulocyte monocyte-colony stimulating factor (GM-CSF), as well as pro-angiogenic growth factors such as vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS) were elevated in solid tumour controls, but significantly reduced by A ferruginea administration. On the other hand, the extract stimulated the production of interleukin-2 (IL-2) and interferon-gamma (IFN-γ) in animals with DLA induced solid tumours. Increase in CD4+ T-cell population suggested strong immunostimulant activity for this extract. GC/MS and LC/MS analysis showed quinone, quinoline, imidazolidine, pyrrolidine, cyclopentenone, thiazole, pyrazole, catechin and coumarin derivatives as major compounds present in the A ferruginea methanolic extract. Thus, the outcome of the present study suggests that A ferruginea extract has immunomodulatory and tumor inhibitory activities and has the potential to be developed as a natural anticancer agent. PMID:23886206

  13. Inflammatory bowel disease

    PubMed Central

    Beattie, R M; Croft, N M; Fell, J M; Afzal, N A; Heuschkel, R B

    2006-01-01

    Twenty five per cent of inflammatory bowel disease presents in childhood. Growth and nutrition are key issues in the management with the aim of treatment being to induce and then maintain disease remission with minimal side effects. Only 25% of Crohn's disease presents with the classic triad of abdominal pain, weight loss, and diarrhoea. Most children with ulcerative colitis have blood in the stool at presentation. Inflammatory markers are usually although not invariably raised at presentation (particularly in Crohn's disease). Full investigation includes upper gastrointestinal endoscopy and ileocolonoscopy. Treatment requires multidisciplinary input as part of a clinical network led by a paediatrician with special expertise in the management of the condition. PMID:16632672

  14. Inflammatory and toxic myopathy.

    PubMed

    Teener, James W

    2012-11-01

    Although muscle diseases are relatively rare, several treatable myopathies must be recognized by the clinician to maximize the possibility of restoring strength in affected patients. The inflammatory myopathies, including polymyositis, dermatomyositis, inflammatory necrotizing myopathy, and myositis in association with mixed connective tissue disease, typically respond well to immunosuppressive treatment. Inclusion body myositis, a myopathy that has features of both inflammation and primary degeneration, may not be treatable at this time, but treatments are actively being sought. Muscle dysfunction caused by toxins must also be recognized because removal of the offending toxin usually results in restoration of normal muscle function. Important muscle toxins include cholesterol-lowering medications, colchicine, zidovudine, corticosteroids, emetine, and ethanol.

  15. Inflammatory status in human hepatic cirrhosis

    PubMed Central

    Martínez-Esparza, María; Tristán-Manzano, María; Ruiz-Alcaraz, Antonio J; García-Peñarrubia, Pilar

    2015-01-01

    This review focuses on new findings about the inflammatory status involved in the development of human liver cirrhosis induced by the two main causes, hepatitis C virus (HCV) infection and chronic alcohol abuse, avoiding results obtained from animal models. When liver is faced to a persistent and/or intense local damage the maintained inflammatory response gives rise to a progressive replacement of normal hepatic tissue by non-functional fibrotic scar. The imbalance between tissue regeneration and fibrosis will determine the outcome toward health recovery or hepatic cirrhosis. In all cases progression toward liver cirrhosis is caused by a dysregulation of mechanisms that govern the balance between activation/homeostasis of the immune system. Detecting differences between the inflammatory status in HCV-induced vs alcohol-induced cirrhosis could be useful to identify specific targets for preventive and therapeutic intervention in each case. Thus, although survival of patients with alcoholic cirrhosis seems to be similar to that of patients with HCV-related cirrhosis (HCV-C), there are important differences in the altered cellular and molecular mechanisms implicated in the progression toward human liver cirrhosis. The predominant features of HCV-C are more related with those that allow viral evasion of the immune defenses, especially although not exclusively, inhibition of interferons secretion, natural killer cells activation and T cell-mediated cytotoxicity. On the contrary, the inflammatory status of alcohol-induced cirrhosis is determined by the combined effect of direct hepatotoxicity of ethanol metabolites and increases of the intestinal permeability, allowing bacteria and bacterial products translocation, into the portal circulation, mesenteric lymph nodes and peritoneal cavity. This phenomenon generates a stronger pro-inflammatory response compared with HCV-related cirrhosis. Hence, therapeutic intervention in HCV-related cirrhosis must be mainly focused to

  16. Oesophageal inflammatory paediatric chylothorax

    PubMed Central

    Aherne, Thomas; Cullen, Paul; Mortell, Alan; McGuinness, Jonathan

    2014-01-01

    Paediatric chylothoraces are rare, particularly outside the operative setting. Cases of spontaneous chylothorax are often demanding diagnostically and frequently associated with patient morbidity. We present a challenging case of paediatric chylothorax associated with inflammatory oesophageal perforation likely related to foreign body ingestion. PMID:24920516

  17. [Diagnostic tools in inflammatory bowel diseases].

    PubMed

    Bouhnik, Yoram

    2005-05-15

    The two major inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (UC), represent clinicopathologic entities that traditionally have been diagnosed on the basis of a combination of clinical, radiologic, endoscopic, and histologic features. The presence of an inflammatory syndrome associated with typical clinical manifestations must lead to perform endoscopic examinations. Ileocolonoscopy plays an integral role in establishing the diagnosis, excluding other etiologies, distinguishing Crohn's disease from ulcerative colitis, defining the patterns, extent, and activity of mucosal inflammation, and obtaining mucosal tissue for histologic evaluation of inflammatory bowel disease. Small bowel follow through is still a major examination. However, the role of CT and MRI (using enteroclysis) in the imaging of inflammatory bowel disease has also increased in importance. Capsule endoscopy could be a valuable diagnostic tool in patients with suspected Crohn's disease that has not been confirmed using standard imaging techniques. Serum perinuclear antineutrophil cytoplasmic antibodies (pANCA) and anti-Saccharomyces cerevisiae antibodies (ASCA) have recently been added to our diagnostic armamentarium. Serology may prove to be useful in predicting the evolution of indeterminate colitis. Substantial progress could come from the improving of serologic and genetic tests in the future. PMID:16052968

  18. Reflectance confocal microscopy for inflammatory skin diseases.

    PubMed

    Ardigò, M; Prow, T; Agozzino, M; Soyer, P; Berardesca, E

    2015-10-01

    Reflectance confocal microscopy evaluation of inflammatory skin diseases represents a relatively new indication that, during the last 5 years, has shown an increasing interest with consequent progressive increment of publications in literature. The success of RCM in this filed of dermatology is directly related to the high needing of non-invasive techniques able to reduce the number of skin biopsies and support the clinical diagnosis and patient's management. RCM demonstrated to visualize microscopic descriptors of inflammatory and pigmentary skin conditions with good reproducibility between observer and high grade of correspondence with optical histology. Moreover, RCM has shown to provide sufficient data to support clinical diagnosis and differential diagnosis of inflammatory and pigmentary skin diseases. Recently, several works published in literature have opened the prospective to use RCM also for therapeutic follow-up in order to monitor the improvement of the microscopic parameters and help to prevent treatment side effects. In this review article we present some examples of RCM application in inflammatory and pigmentary diseases. PMID:26333554

  19. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease

    PubMed Central

    Ackers-Johnson, Matthew; Talasila, Amarnath; Sage, Andrew P; Long, Xiaochun; Bot, Ilze; Morrell, Nicholas W; Bennett, Martin R; Miano, Joseph M.; Sinha, Sanjay

    2015-01-01

    Objective Atherosclerosis, the cause of 50% of deaths in westernised societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local pro-inflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. Approach and Results We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic ApoE−/− mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. Conclusions We propose myocardin as a guardian of the contractile, non-inflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease. PMID:25614278

  20. Inflammatory myopathy in a captive Bengal tiger.

    PubMed

    Duncan, I D; Stewart, J D; Carpenter, S

    1982-12-01

    A 9-year-old female Bengal tiger (Panthera tigris tigris) was presented with a history of progressive hindlimb weakness and muscle atrophy. Serum muscle enzyme activities were high, and electrophysiologic examination suggested an underlying myopathic process. Muscle biopsy revealed an inflammatory myopathy, with multifocal collections of inflammatory cells. There was severe muscle fiber necrosis with some evidence of regeneration. The cellular infiltrate consisted predominantly of macrophages, with a few lymphocytes and plasma cells. Evidence of parasitism or viral infection was not detected. Despite prolonged corticosteroid therapy, there was no clinical improvement or notable decrease in serum muscle enzymes activities. The tiger was euthanatized, and necropsy revealed generalized muscle inflammation, with no other pertinent findings.

  1. Inflammatory cytokines in atherosclerosis: current therapeutic approaches.

    PubMed

    Tousoulis, Dimitris; Oikonomou, Evangelos; Economou, Evangelos K; Crea, Filippo; Kaski, Juan Carlos

    2016-06-01

    The notion of atherosclerosis as a chronic inflammatory disease has intensified research on the role of cytokines and the way these molecules act and interact to initiate and sustain inflammation in the microenvironment of an atherosclerotic plaque. Cytokines are expressed by all types of cells involved in the pathogenesis of atherosclerosis, act on a variety of targets exerting multiple effects, and are largely responsible for the crosstalk among endothelial, smooth muscle cells, leucocytes, and other vascular residing cells. It is now understood that widely used drugs such as statins, aspirin, methotrexate, and colchicine act in an immunomodulatory way that may beneficially affect atherogenesis and/or cardiovascular disease progression. Moreover, advancement in pharmaceutical design has enabled the production of highly specific antibodies against key molecules involved in the perpetuation of the inflammatory cascade, raising hope for advances in the treatment of atherosclerosis. This review describes the actions and effects of these agents, their potential clinical significance, and future prospects. PMID:26843277

  2. Inflammatory myopathy in a captive Bengal tiger.

    PubMed

    Duncan, I D; Stewart, J D; Carpenter, S

    1982-12-01

    A 9-year-old female Bengal tiger (Panthera tigris tigris) was presented with a history of progressive hindlimb weakness and muscle atrophy. Serum muscle enzyme activities were high, and electrophysiologic examination suggested an underlying myopathic process. Muscle biopsy revealed an inflammatory myopathy, with multifocal collections of inflammatory cells. There was severe muscle fiber necrosis with some evidence of regeneration. The cellular infiltrate consisted predominantly of macrophages, with a few lymphocytes and plasma cells. Evidence of parasitism or viral infection was not detected. Despite prolonged corticosteroid therapy, there was no clinical improvement or notable decrease in serum muscle enzymes activities. The tiger was euthanatized, and necropsy revealed generalized muscle inflammation, with no other pertinent findings. PMID:7174435

  3. The Complexity of Sporadic Alzheimer's Disease Pathogenesis: The Role of RAGE as Therapeutic Target to Promote Neuroprotection by Inhibiting Neurovascular Dysfunction

    PubMed Central

    Perrone, Lorena; Sbai, Oualid; Nawroth, Peter P.; Bierhaus, Angelika

    2012-01-01

    Alzheimer's disease (AD) is the most common cause of dementia. Amyloid plaques and neurofibrillary tangles are prominent pathological features of AD. Aging and age-dependent oxidative stress are the major nongenetic risk factors for AD. The beta-amyloid peptide (Aβ), the major component of plaques, and advanced glycation end products (AGEs) are key activators of plaque-associated cellular dysfunction. Aβ and AGEs bind to the receptor for AGEs (RAGE), which transmits the signal from RAGE via redox-sensitive pathways to nuclear factor kappa-B (NF-κB). RAGE-mediated signaling is an important contributor to neurodegeneration in AD. We will summarize the current knowledge and ongoing studies on RAGE function in AD. We will also present evidence for a novel pathway induced by RAGE in AD, which leads to the expression of thioredoxin interacting protein (TXNIP), providing further evidence that pharmacological inhibition of RAGE will promote neuroprotection by blocking neurovascular dysfunction in AD. PMID:22482078

  4. Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer's disease.

    PubMed

    Calderón-Garcidueñas, Lilian; Reynoso-Robles, Rafael; Vargas-Martínez, Javier; Gómez-Maqueo-Chew, Aline; Pérez-Guillé, Beatriz; Mukherjee, Partha S; Torres-Jardón, Ricardo; Perry, George; Gónzalez-Maciel, Angélica

    2016-04-01

    Millions of urban children are chronically exposed to high concentrations of air pollutants, i.e., fine particulate matter (PM2.5) and ozone, associated with increased risk for Alzheimer's disease. Compared with children living with clear air those in Mexico City (MC) exhibit systemic, brain and intrathecal inflammation, low CSF Aβ42, breakdown of the BBB, attention and short-term memory deficits, prefrontal white matter hyperintensities, damage to epithelial and endothelial barriers, tight junction and neural autoantibodies, and Alzheimer and Parkinson's hallmarks. The prefrontal white matter is a target of air pollution. We examined by light and electron microscopy the prefrontal white matter of MC dogs (n: 15, age 3.17±0.74 years), children and teens (n: 34, age: 12.64±4.2 years) versus controls. Major findings in MC residents included leaking capillaries and small arterioles with extravascular lipids and erythrocytes, lipofuscin in pericytes, smooth muscle and endothelial cells (EC), thickening of cerebrovascular basement membranes with small deposits of amyloid, patchy absence of the perivascular glial sheet, enlarged Virchow-Robin spaces and nanosize particles (20-48nm) in EC, basement membranes, axons and dendrites. Tight junctions, a key component of the neurovascular unit (NVU) were abnormal in MC versus control dogs (χ(2)<0.0001), and white matter perivascular damage was significantly worse in MC dogs (p=0.002). The integrity of the NVU, an interactive network of vascular, glial and neuronal cells is compromised in MC young residents. Characterizing the early NVU damage and identifying biomarkers of neurovascular dysfunction may provide a fresh insight into Alzheimer pathogenesis and open opportunities for pediatric neuroprotection. PMID:26829765

  5. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury

    PubMed Central

    Zhang, Yanlu; Chopp, Michael; Meng, Yuling; Katakowski, Mark; Xin, Hongqi; Mahmood, Asim; Xiong, Ye

    2015-01-01

    Object Transplanted multipotent mesenchymal stromal cells (MSCs) improve functional recovery in rats after traumatic brain injury (TBI). Here, we test a novel hypothesis that systemic administration of cell-free exosomes generated from MSCs promotes functional recovery and neurovascular remodeling in rats after TBI. Methods Wistar rats were subjected to TBI followed by tail vein injection of 100 μg protein of exosomes derived from MSCs or an equal volume of vehicle phosphate-buffered saline (n = 8/group) 24 hours later. To evaluate cognitive and sensorimotor functional recovery, the modified Morris water maze, neurological severity score and footfault tests were performed. Animals were sacrificed at 35 days after TBI. Histopathological and immunohistochemical analyses were performed for measurements of lesion volume, neurovascular remodeling (angiogenesis and neurogenesis), and neuroinflammation. Results Compared with saline-treated controls, exosome-treated TBI rats showed significant improvement in spatial learning at 34-35 days measured by the Morris water maze test (p < 0.05), and sensorimotor functional recovery, i.e., reduced neurological deficits and footfault frequency, observed at 14-35 days post injury (p < 0.05). Exosome treatment significantly increased the number of newborn endothelial cells in the lesion boundary zone and dentate gyrus, and significantly increased the number of newborn immature and mature neurons in the dentate gyrus as well as reduced neuroinflammation. Conclusions We, for the first time, demonstrate that MSC-generated exosomes effectively improve functional recovery, at least in part, by promoting endogenous angiogenesis and neurogenesis and reducing inflammation in rats after TBI. Thus, MSC-generated exosomes may provide a novel cell-free therapy for TBI and possibly other neurological diseases. PMID:25594326

  6. Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer's disease.

    PubMed

    Calderón-Garcidueñas, Lilian; Reynoso-Robles, Rafael; Vargas-Martínez, Javier; Gómez-Maqueo-Chew, Aline; Pérez-Guillé, Beatriz; Mukherjee, Partha S; Torres-Jardón, Ricardo; Perry, George; Gónzalez-Maciel, Angélica

    2016-04-01

    Millions of urban children are chronically exposed to high concentrations of air pollutants, i.e., fine particulate matter (PM2.5) and ozone, associated with increased risk for Alzheimer's disease. Compared with children living with clear air those in Mexico City (MC) exhibit systemic, brain and intrathecal inflammation, low CSF Aβ42, breakdown of the BBB, attention and short-term memory deficits, prefrontal white matter hyperintensities, damage to epithelial and endothelial barriers, tight junction and neural autoantibodies, and Alzheimer and Parkinson's hallmarks. The prefrontal white matter is a target of air pollution. We examined by light and electron microscopy the prefrontal white matter of MC dogs (n: 15, age 3.17±0.74 years), children and teens (n: 34, age: 12.64±4.2 years) versus controls. Major findings in MC residents included leaking capillaries and small arterioles with extravascular lipids and erythrocytes, lipofuscin in pericytes, smooth muscle and endothelial cells (EC), thickening of cerebrovascular basement membranes with small deposits of amyloid, patchy absence of the perivascular glial sheet, enlarged Virchow-Robin spaces and nanosize particles (20-48nm) in EC, basement membranes, axons and dendrites. Tight junctions, a key component of the neurovascular unit (NVU) were abnormal in MC versus control dogs (χ(2)<0.0001), and white matter perivascular damage was significantly worse in MC dogs (p=0.002). The integrity of the NVU, an interactive network of vascular, glial and neuronal cells is compromised in MC young residents. Characterizing the early NVU damage and identifying biomarkers of neurovascular dysfunction may provide a fresh insight into Alzheimer pathogenesis and open opportunities for pediatric neuroprotection.

  7. Genetics of Inflammatory Bowel Diseases.

    PubMed

    McGovern, Dermot P B; Kugathasan, Subra; Cho, Judy H

    2015-10-01

    In this review, we provide an update on genome-wide association studies (GWAS) in inflammatory bowel disease (IBD). In addition, we summarize progress in defining the functional consequences of associated alleles for coding and noncoding genetic variation. In the small minority of loci where major association signals correspond to nonsynonymous variation, we summarize studies defining their functional effects and implications for therapeutic targeting. Importantly, the large majority of GWAS-associated loci involve noncoding variation, many of which modulate levels of gene expression. Recent expression quantitative trait loci (eQTL) studies have established that the expression of most human genes is regulated by noncoding genetic variations. Significant advances in defining the epigenetic landscape have demonstrated that IBD GWAS signals are highly enriched within cell-specific active enhancer marks. Studies in European ancestry populations have dominated the landscape of IBD genetics studies, but increasingly, studies in Asian and African-American populations are being reported. Common variation accounts for only a modest fraction of the predicted heritability and the role of rare genetic variation of higher effects (ie, odds ratios markedly deviating from 1) is increasingly being identified through sequencing efforts. These sequencing studies have been particularly productive in more severe very early onset cases. A major challenge in IBD genetics will be harnessing the vast array of genetic discovery for clinical utility through emerging precision medical initiatives. In this article, we discuss the rapidly evolving area of direct-to-consumer genetic testing and the current utility of clinical exome sequencing, especially in very early onset, severe IBD cases. We summarize recent progress in the pharmacogenetics of IBD with respect to partitioning patient responses to anti-TNF and thiopurine therapies. Highly collaborative studies across research centers and

  8. Anti-inflammatory therapies for cardiovascular disease

    PubMed Central

    Ridker, Paul M.; Lüscher, Thomas F.

    2014-01-01

    Atherothrombosis is no longer considered solely a disorder of lipoprotein accumulation in the arterial wall. Rather, the initiation and progression of atherosclerotic lesions is currently understood to have major inflammatory influences that encompass components of both the innate and acquired immune systems. Promising clinical data for ‘upstream’ biomarkers of inflammation such as interleukin-6 (IL-6) as well as ‘downstream’ biomarkers such as C-reactive protein, observations regarding cholesterol crystals as an activator of the IL-1β generating inflammasome, and recent Mendelian randomization data for the IL-6 receptor support the hypothesis that inflammatory mediators of atherosclerosis may converge on the central IL-1, tumour necrosis factor (TNF-α), IL-6 signalling pathway. On this basis, emerging anti-inflammatory approaches to vascular protection can be categorized into two broad groups, those that target the central IL-6 inflammatory signalling pathway and those that do not. Large-scale Phase III trials are now underway with agents that lead to marked reductions in IL-6 and C-reactive protein (such as canakinumab and methotrexate) as well as with agents that impact on diverse non-IL-6-dependent pathways (such as varespladib and darapladib). Both approaches have the potential to benefit patients and reduce vascular events. However, care should be taken when interpreting these trials as outcomes for agents that target IL-6 signalling are unlikely to be informative for therapies that target alternative pathways, and vice versa. As the inflammatory system is redundant, compensatory, and crucial for survival, evaluation of risks as well as benefits must drive the development of agents in this class. PMID:24864079

  9. [Inflammatory abdominal aortic aneurysm].

    PubMed

    Ziaja, K; Sedlak, L; Urbanek, T; Kostyra, J; Ludyga, T

    2000-01-01

    The reported incidence of inflammatory abdominal aortic aneurysm (IAAA) is from 2% to 14% of patients with abdominal aortic aneurysm and the etiology of this disease is still discussed--according to the literature several pathogenic theories have been proposed. From 1992 to 1997 32 patients with IAAA were operated on. The patients were mostly symptomatic--abdominal pain was present in 68.75% cases, back pain in 31.25%, fever in 12.5% and weight loss in 6.25% of the operated patients. In all the patients ultrasound examination was performed, in 4 patients CT and in 3 cases urography. All the patients were operated on and characteristic signs of inflammatory abdominal aortic aneurysm like: thickened aortic wall, perianeurysmal infiltration or retroperitoneal fibrosis with involvement of retroperitoneal structures were found. In all cases surgery was performed using transperitoneal approach; in three cases intraoperatively contiguous abdominal organs were injured, which was connected with their involvement into periaortic inflammation. In 4 cases clamping of the aorta was done at the level of the diaphragmatic hiatus. 3 patients (9.37%) died (one patient with ruptured abdominal aortic aneurysm). Authors present diagnostic procedures and the differences in the surgical tactic, emphasizing the necessity of the surgical therapy in patients with inflammatory abdominal aortic aneurysm.

  10. Inflammatory bowel disease revisited: newer drugs.

    PubMed

    Hanauer, S B

    1990-01-01

    The development of new drug therapy is an evolutionary process progressing from clinical success with current treatments through an understanding of interactions in the immune and inflammatory events that culminate in the tissue injury of IBD. The basic immunoinflammatory response is reviewed, with identification of the recognized and potential sites of activity of current therapies. Potential sites and implications for future interventions by newer therapies are discussed as we anticipate the discovery of the etiology and eventual cure for ulcerative colitis and Crohn's disease. PMID:1978406

  11. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype.

    PubMed

    Mathey, Emily K; Park, Susanna B; Hughes, Richard A C; Pollard, John D; Armati, Patricia J; Barnett, Michael H; Taylor, Bruce V; Dyck, P James B; Kiernan, Matthew C; Lin, Cindy S-Y

    2015-09-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an inflammatory neuropathy, classically characterised by a slowly progressive onset and symmetrical, sensorimotor involvement. However, there are many phenotypic variants, suggesting that CIDP may not be a discrete disease entity but rather a spectrum of related conditions. While the abiding theory of CIDP pathogenesis is that cell-mediated and humoral mechanisms act together in an aberrant immune response to cause damage to peripheral nerves, the relative contributions of T cell and autoantibody responses remain largely undefined. In animal models of spontaneous inflammatory neuropathy, T cell responses to defined myelin antigens are responsible. In other human inflammatory neuropathies, there is evidence of antibody responses to Schwann cell, compact myelin or nodal antigens. In this review, the roles of the cellular and humoral immune systems in the pathogenesis of CIDP will be discussed. In time, it is anticipated that delineation of clinical phenotypes and the underlying disease mechanisms might help guide diagnostic and individualised treatment strategies for CIDP.

  12. Functional endothelial progenitor cells selectively recruit neurovascular protective monocyte-derived F4/80(+) /Ly6c(+) macrophages in a mouse model of retinal degeneration.

    PubMed

    Fukuda, Shinichi; Nagano, Masumi; Yamashita, Toshiharu; Kimura, Kenichi; Tsuboi, Ikki; Salazar, Georgina; Ueno, Shinji; Kondo, Mineo; Kunath, Tilo; Oshika, Tetsuro; Ohneda, Osamu

    2013-10-01

    Retinitis pigmentosa is a group of inherited eye disorders that result in profound vision loss with characteristic retinal neuronal degeneration and vasculature attenuation. In a mouse model of retinitis pigmentosa, endothelial progenitor cells (EPC) from bone marrow rescued the vasculature and photoreceptors. However, the mechanisms and cell types underlying these protective effects were uncertain. We divided EPC, which contribute to angiogenesis, into two subpopulations based on their aldehyde dehydrogenase (ALDH) activity and observed that EPC with low ALDH activity (Alde-Low) had greater neuroprotection and vasoprotection capabilities after injection into the eyes of an rd1 mouse model of retinitis pigmentosa compared with EPC with high ALDH activity (Alde-High). Of note, Alde-Low EPC selectively recruited F4/80(+) /Ly6c(+) monocyte-derived macrophages from bone marrow into retina through CCL2 secretion. In addition, the mRNA levels of CCR2, the neurotrophic factors TGF-β1 and IGF-1, and the anti-inflammatory mediator interleukin-10 were higher in migrated F4/80(+) /Ly6c(+) monocyte-derived macrophages as compared with F4/80(+) /Ly6c(-) resident retinal microglial cells. These results suggest a novel therapeutic approach using EPC to recruit neuroprotective macrophages that delay the progression of neural degenerative disease.

  13. [Mitochondria and oxidative stress participation in renal inflammatory process].

    PubMed

    Manucha, Walter

    2014-01-01

    The apoptosis and renal fibrosis are processes inherent to the chronic kidney disease, and consequently a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with chronic renal disease associated to an increase of the oxidative stress. The injured tubular cells linked to the interstitial macrophages and myofibroblasts produce cytokines and growth factors that encourage an inflammatory condition, inducing the apoptosis of the tubular cells and enabling the accumulation of the extracellular matrix. The angiotensin II has a central role in the renal fibrogenesis leading to a rapid progression of the chronic kidney disease. The growing levels of the angiotensin II induce pro-inflammatory cytokines, the activation of NF-kB, adhesion molecules,chemokines, growth factors, and oxidative stress. The current evidence suggests that the angiotensin II increases the mitochondrial oxidative stress, regulates the induction of the apoptosis and conditions the inflammatory process. Therefore the mitochondria and the oxidative stress would play a determinant role in the renal inflammatory process. Finally, this review summarizes our present knowledge regarding the possible mechanisms that would contribute to the apoptosis conditioned by inflammation and/or oxidative stress during the chronic renal disease. Additionally, a new concept of the anti-inflammatory tools is proposed to regulate the mitochondrial oxidative stress that would directly affect the inflammatory process and apoptosis. This concept could have positive consequences on the treatment of renal inflammatory pathologies and related diseases.

  14. Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon cancer.

    PubMed

    Ghanghas, Preety; Jain, Shelly; Rana, Chandan; Sanyal, S N

    2016-03-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are emerging as novel chemopreventive agents against a variety of cancers owing to their capability in blocking the tumor development by cellular proliferation and by promoting apoptosis. Inflammation is principal cause of colon carcinogenesis. A missing link between inflammation and cancer could be the activation of NF-κB, which is a hallmark of inflammatory response, and is commonly detected in malignant tumors. Therefore, targeting pro-inflammatory cyclooxygenase enzymes and transcription factors will be profitable as a mechanism to inhibit tumor growth. In the present study, we have studied the role of various pro-inflammatory enzymes and transcription factors in the development of the 1,2-dimethylhydrazine dihydrochloride (DMH)-induced colorectal cancer and also observed the role of three NSAIDs, viz., Celecoxib, Etoricoxib and Diclofenac. Carcinogenic changes were observed in morphological and histopathological studies, whereas protein regulations of various biomolecules were identified by immunofluorescence analysis. Apoptotic studies was done by TUNEL assay and Hoechst/PI co-staining of the isolated colonocytes. It was found that DMH-treated animals were having an over-expression of pro-inflammatory enzymes, aberrant nuclear localization of activated cell survival transcription factor, NF-κB and suppression of anti-inflammatory transcription factor PPAR-γ, thereby suggesting a marked role of inflammation in the tumor progression. However, co-administration of NSAIDs has significantly reduced the inflammatory potential of the growing neoplasm. PMID:26898448

  15. Chronic inflammatory systemic diseases

    PubMed Central

    Straub, Rainer H.; Schradin, Carsten

    2016-01-01

    It has been recognized that during chronic inflammatory systemic diseases (CIDs) maladaptations of the immune, nervous, endocrine and reproductive system occur. Maladaptation leads to disease sequelae in CIDs. The ultimate reason of disease sequelae in CIDs remained unclear because clinicians do not consider bodily energy trade-offs and evolutionary medicine. We review the evolution of physiological supersystems, fitness consequences of genes involved in CIDs during different life-history stages, environmental factors of CIDs, energy trade-offs during inflammatory episodes and the non-specificity of CIDs. Incorporating bodily energy regulation into evolutionary medicine builds a framework to better understand pathophysiology of CIDs by considering that genes and networks used are positively selected if they serve acute, highly energy-consuming inflammation. It is predicted that genes that protect energy stores are positively selected (as immune memory). This could explain why energy-demanding inflammatory episodes like infectious diseases must be terminated within 3–8 weeks to be adaptive, and otherwise become maladaptive. Considering energy regulation as an evolved adaptive trait explains why many known sequelae of different CIDs must be uniform. These are, e.g. sickness behavior/fatigue/depressive symptoms, sleep disturbance, anorexia, malnutrition, muscle wasting—cachexia, cachectic obesity, insulin resistance with hyperinsulinemia, dyslipidemia, alterations of steroid hormone axes, disturbances of the hypothalamic-pituitary-gonadal (HPG) axis, hypertension, bone loss and hypercoagulability. Considering evolved energy trade-offs helps us to understand how an energy imbalance can lead to the disease sequelae of CIDs. In the future, clinicians must translate this knowledge into early diagnosis and symptomatic treatment in CIDs. PMID:26817483

  16. Vitamin D and inflammatory bowel disease.

    PubMed

    Ardizzone, Sandro; Cassinotti, Andrea; Bevilacqua, Maurizio; Clerici, Mario; Porro, Gabriele Bianchi

    2011-01-01

    Crohn's disease (CD) and ulcerative colitis (UC) are the main forms of inflammatory bowel disease (IBD), chronic relapsing-remitting inflammatory conditions of uncertain origin affecting the gastrointestinal tract. Much effort has recently been made both in defining the mechanisms underlying the development of IBD, and in broadening the spectrum of effective treatment. Substantial progress has been made in characterising immune-cell populations and inflammatory mediators in IBD. 1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], the bioactive form of Vitamin D(3), besides having well-known control findings of calcium and phosphorus metabolism, bone formation and mineralization, also has a role in the maintenance of immune- omeostasis. The immune-regulatory role of vitamin D affects both the innate and adaptive immune system contributing to the immune-tolerance of self-structures. Impaired vitamin D supply/regulation, amongst other factors, leads to the development of autoimmune processes in animal models of various autoimmune diseases, including IBD. The administration of vitamin D in these animals leads to improvement of immune-mediated symptoms. Future studies now need to focus on the potential of vitamin D and its derivatives as therapeutic adjuncts in the treatment of IBD. PMID:21419280

  17. Inflammatory Bowel Disease

    PubMed Central

    Corridoni, Daniele; Arseneau, Kristen O.; Cominelli, Fabio

    2014-01-01

    Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are chronic, relapsing inflammatory condition of the gastrointestinal tract. CD and UC have distinct pathologic and clinical characteristics and despite the extensive amount of research conducted over the past decades, their pathogenesis remains still poorly understood. So far, the accepted dogma is that IBD results from dysregulated mucosal immune response to environmental factors in genetical susceptible hosts. Various components are implicated in the pathogenesis of IBD, including genetic susceptibility, environmental and microbial factors, intestinal epithelial cells and components of innate and adaptive immune system. Given the complexity of IBD, several different animal models of IBD have been developed during the last years. Animal models are very important tools to study the involvement of various factors in the pathogenesis of IBD and, importantly, to test new therapeutic options. This review examines some of the key components that have been found to be closely associated to IBD and describe the distinct features of some of the most important IBD models. PMID:24938525

  18. Idiopathic Inflammatory Myopathies

    PubMed Central

    Barohn, Richard J.; Amato, Anthony

    2014-01-01

    The idiopathic inflammatory myopathies (IIM) consist of rare heterogenous autoimmune disorders that present with marked proximal and symmetric muscle weakness, except for distal and asymmetric weakness in inclusion body myositis (IBM). Besides frequent creatine kinase (CK) elevation, the electromyogram confirms the presence of an irritative myopathy. Extramuscular involvement affects a significant number of cases with interstitial lung disease (ILD), cutaneous in dermatomyositis (DM), systemic or joint manifestations and increased risk of malignancy especially in DM. Myositis specific autoantibodies influence phenotype of the IIM. Jo-1 antibodies are frequently associated with ILD and the newly described HMG-CoA reductase antibodies are characteristic of autoimmune necrotizing myopathy (NM). Muscle pathology ranges from inflammatory exudates of variable distribution, to intact muscle fiber invasion, necrosis, phagocytosis and in the case of IBM rimmed vacuoles and protein deposits. Despite many similarities, the IIM are a quite heterogeneous from the histopathological and pathogenetic standpoints in addition to some clinical and treatment-response difference. The field has witnessed significant advances in our understanding of pathophysiology and treatment of these rare disorders. In this review, we focus on DM, polymyositis (PM) and NM and examine current and promising therapies. The reader interested in more details on IBM is referred to the corresponding chapter in this issue. PMID:25037081

  19. Chemokines in tumor development and progression

    SciTech Connect

    Mukaida, Naofumi; Baba, Tomohisa

    2012-01-15

    Chemokines were originally identified as mediators of the inflammatory process and regulators of leukocyte trafficking. Subsequent studies revealed their essential roles in leukocyte physiology and pathology. Moreover, chemokines have profound effects on other types of cells associated with the inflammatory response, such as endothelial cells and fibroblasts. Thus, chemokines are crucial for cancer-related inflammation, which can promote tumor development and progression. Increasing evidence points to the vital effects of several chemokines on the proliferative and invasive properties of tumor cells. The wide range of activities of chemokines in tumorigenesis highlights their roles in tumor development and progression.

  20. Incidence and location of positive surgical margins following open, pure laparoscopic, and robotic-assisted radical prostatectomy and its relation with neurovascular preservation: a single-institution experience.

    PubMed

    Villamil, W; Billordo Peres, N; Martinez, P; Giudice, C; Liyo, J; García Marchiñena, P; Jurado, A; Damia, O

    2013-03-01

    To evaluate whether robotic-assisted radical prostatectomy (dvRP) provides adequate local control of the disease, incidence of positive surgical margins (PSMs) obtained with dvRP was compared with that of laparoscopic radical prostatectomy (LRP) and with that of open radical retropubic prostatectomy (RRP) performed in a single institution by the same surgeons. We also studied whether neurovascular bundle preservation modified PSM rates. The records were retrospectively reviewed from electronic medical data, and three groups of 100 patients were organized. Group 1 included 100 patients who underwent RRP prior to the incorporation of minimally invasive techniques. Group 2 included the first 100 patients who underwent LRP, and group 3 was made up of the first 100 patients who underwent dvRP. All surgical specimens were analyzed by the same pathologist. We used the technique described by Patel et al. for dvRP. LRP was performed using a five-trocar extraperitoneal approach as previously published by the authors. RRP was performed using retrograde dissection as described by Walsh et al. The final decision of preserving neurovascular bundles was made during surgery. Using D'Amico's risk classification, the dvRP group had a lower percentage of patients with low risk (dvRP versus LRP p = 0.017; dvRP versus RRP p = 0.0108). No statistically significant differences were found within high- and intermediate-risk groups. A higher percentage of patients with pT3 disease was found in the dvRP group compared with the RRP group (p = 0.0408). There were no statistically significant differences regarding PSMs among groups (RRP: 25, LRP: 14, dvRP: 18), although when we compared the total number of PSMs we found that the dvRP group had 18 PSMs versus 21 and 50 PSMs for LRP and RRP, respectively. All three groups had more PSMs located posterolaterally. There was a higher percentage of nerve-sparing procedures in the dvRP group (dvRP: 91 patients, LRP: 47 patients, RRP: 5

  1. Progressive cerebral atrophy in neuromyelitis optica.

    PubMed

    Warabi, Yoko; Takahashi, Toshiyuki; Isozaki, Eiji

    2015-12-01

    We report two cases of neuromyelitis optica patients with progressive cerebral atrophy. The patients exhibited characteristic clinical features, including elderly onset, secondary progressive tetraparesis and cognitive impairment, abnormally elevated CSF protein and myelin basic protein levels, and extremely highly elevated serum anti-AQP-4 antibody titer. Because neuromyelitis optica pathology cannot switch from an inflammatory phase to the degenerative phase until the terminal phase, neuromyelitis optica rarely appears as a secondary progressive clinical course caused by axonal degeneration. However, severe intrathecal inflammation and massive destruction of neuroglia could cause a secondary progressive clinical course associated with cerebral atrophy in neuromyelitis optica patients.

  2. The role of anti-inflammatory agents in age-related macular degeneration (AMD) treatment

    PubMed Central

    Wang, Y; Wang, V M; Chan, C-C

    2011-01-01

    Although age-related macular degeneration (AMD) is not a classic inflammatory disease like uveitis, inflammation has been found to have an important role in disease pathogenesis and progression. Innate immunity and autoimmune components, such as complement factors, chemokines, cytokines, macrophages, and ocular microglia, are believed to be heavily involved in AMD development. Targeting these specific inflammatory molecules has recently been explored in an attempt to better understand and treat AMD. Although antivascular endothelial growth factor therapy is the first line of defence against neovascular AMD, anti-inflammatory agents such as corticosteroids, nonsteroidal anti-inflammatory drugs (NSAIDs), immunosuppressive agents (eg, methotrexate and rapamycin), and biologics (eg, infliximab, daclizumab, and complement inhibitors) may provide an adjunct or alternative mechanism to suppress the inflammatory processes driving AMD progression. Further investigation is required to evaluate the long-term safety and efficacy of these drugs for both neovascular and non-neovascular AMD. PMID:21183941

  3. Inflammatory bowel disease.

    PubMed Central

    Van Rosendaal, G M

    1989-01-01

    An increasing number of options are available for the treatment of inflammatory bowel disease; the selection depends on the extent and severity of the disease. Experience with sulfasalazine and corticosteroids has led to a proliferation of 5-aminosalicylic acid (5-ASA) compounds and experimentation with alternative corticosteroid preparations. Given rectally 5-ASA is particularly effective in the treatment of distal ulcerative colitis, and experience is accumulating with several oral formulations. Metronidazole is useful in some cases, and immunosuppressive agents have a role in some patients with chronic refractory disease. A variety of measures, such as nutritional therapy, surgery and psychosocial support, are important elements of therapy. Further therapeutic innovations are expected as the etiology and pathogenesis are clarified. PMID:2568163

  4. Inflammatory Bowel Disease

    PubMed Central

    Kaser, Arthur; Zeissig, Sebastian; Blumberg, Richard S.

    2015-01-01

    Insights into inflammatory bowel disease (IBD) are advancing rapidly owing to immunologic investigations of a plethora of animal models of intestinal inflammation, ground-breaking advances in the interrogation of diseases that are inherited as complex genetic traits, and the development of culture-independent methods to define the composition of the intestinal microbiota. These advances are bringing a deeper understanding to the genetically determined interplay between the commensal microbiota, intestinal epithelial cells, and the immune system and the manner in which this interplay might be modified by relevant environmental factors in the pathogenesis of IBD. This review examines these interactions and, where possible, potential lessons from IBD-directed, biologic therapies that may allow for elucidation of pathways that are central to disease pathogenesis in humans. PMID:20192811

  5. Treatment of inflammatory myopathies

    PubMed Central

    Cordeiro, A C; Isenberg, D A

    2006-01-01

    Idiopathic inflammatory myopathies, notably polymyositis and dermatomyositis are comparatively uncommon diseases and few randomised, double blind placebo controlled trials have been done. Final validation of measures to assess outcome and response to treatment is awaited. Corticosteroids are an effective initial treatment, although rarely tested in randomised controlled trials. Unfortunately, not all patients respond to them and many develop undesirable side effects. There is thus a need for second line agents notably immunosuppressives or intravenous immunoglobulin. There are no defined guidelines or best treatment protocols agreed internationally and so the medical approach must be individualised, based on the severity of clinical presentation, disease duration, presence of extramuscular features, and prior therapy and contraindications to particular agents. There is still a significant percentage of non‐responders (around 25%) and clinical relapses. Novel therapeutic approaches are now directed towards cytokine modulation and the use of monoclonal antibodies targeting B and T cells. PMID:16822917

  6. Treatment of inflammatory myopathies.

    PubMed

    Cordeiro, A C; Isenberg, D A

    2006-07-01

    Idiopathic inflammatory myopathies, notably polymyositis and dermatomyositis are comparatively uncommon diseases and few randomised, double blind placebo controlled trials have been done. Final validation of measures to assess outcome and response to treatment is awaited. Corticosteroids are an effective initial treatment, although rarely tested in randomised controlled trials. Unfortunately, not all patients respond to them and many develop undesirable side effects. There is thus a need for second line agents notably immunosuppressives or intravenous immunoglobulin. There are no defined guidelines or best treatment protocols agreed internationally and so the medical approach must be individualised, based on the severity of clinical presentation, disease duration, presence of extramuscular features, and prior therapy and contraindications to particular agents. There is still a significant percentage of non-responders (around 25%) and clinical relapses. Novel therapeutic approaches are now directed towards cytokine modulation and the use of monoclonal antibodies targeting B and T cells.

  7. [Chronic inflammatory demyelinating polyradiculoneuropathy].

    PubMed

    Franques, J; Azulay, J-P; Pouget, J; Attarian, S

    2010-06-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a demyelinating chronic neuropathy of immune origin whose diagnosis is based upon clinical, biological and electrophysiological data; previously critical to the diagnosis the nerve biopsy is now restricted to the rare situations where accurate diagnosis cannot be reached using these data alone. CIDP are mainly idiopathic, but a few associated diseases must be sought for as they require specific attention. Such associated diseases must particularly be discussed when the manifestations are severe or resistant to immunomodulating or immunosuppressive agents. Indeed, idiopathic CIDP are usually responsive to these treatments. The effectiveness of these treatments is limited by the importance of the secondary axonal loss. The dependence or the resistance may sometimes justify the association of several immunomodulating treatments. A single randomized controlled trial support the use of cytotoxic drugs and none with rituximab.

  8. Inflammatory and toxic myopathies.

    PubMed

    Dalakas, M C

    1992-10-01

    The major advances in the immunopathogenesis and treatment of inflammatory myopathies, and the main criteria that distinguish polymyositis (PM) from dermatomyositis (DM) or inclusion-body myositis (IBM) are presented. The origin and implications of the amyloid and ubiquitin deposits found within the vacuolated fibers of patients with IBM are considered. The pathogenesis of human immunodeficiency virus (HIV) and human T-cell lymphotrophic virus (HTLV)-I-associated PM is presented, and the role of retroviruses in triggering PM, even in the absence of detectable viral genome within the muscle fibers, is discussed. In addition, three toxic myopathies with distinct morphologic, biochemical, or molecular characteristics, caused by zidovudine [azidothymidine (AZT) myopathy], the cholesterol-lowering-agent myopathy (CLAM), and the combination of blocking agents with corticosteroids are presented.

  9. Chronic inflammatory demyelinating polyradiculoneuropathy in a patient with Crohn's disease.

    PubMed

    Ohyagi, Masaki; Ohkubo, Takuya; Yagi, Yousuke; Ishibashi, Satoru; Akiyama, Junko; Nagahori, Masakazu; Watanabe, Mamoru; Yokota, Takanori; Mizusawa, Hidehiro

    2013-01-01

    Crohn's disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract that is frequently accompanied by systemic complications. Neuropathologies have not been well investigated as extraintestinal manifestations of CD. We herein report the case of a 36-year-old man with CD who presented with progressive weakness and numbness. A neurological examination and the results of a nerve conduction study and a sural nerve biopsy led to a diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Plasma exchanges were initially effective; however, the effects gradually declined starting 10 days after the plasma exchange (PE). These results suggest that humoral factors may play an important role in CIDP associated with CD.

  10. Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood–brain barrier function in wild-type mice

    PubMed Central

    2013-01-01

    Background Emerging evidence suggests that disturbances in the blood–brain barrier (BBB) may be pivotal to the pathogenesis and pathology of vascular-based neurodegenerative disorders. Studies suggest that heightened systemic and central inflammations are associated with BBB dysfunction. This study investigated the effect of the anti-inflammatory nutraceuticals garlic extract-aged (GEA), alpha lipoic acid (ALA), niacin, and nicotinamide (NA) in a murine dietary-induced model of BBB dysfunction. Methods C57BL/6 mice were fed a diet enriched in saturated fatty acids (SFA, 40% fat of total energy) for nine months to induce systemic inflammation and BBB disturbances. Nutraceutical treatment groups included the provision of either GEA, ALA, niacin or NA in the positive control SFA-group and in low-fat fed controls. Brain parenchymal extravasation of plasma derived immunoglobulin G (IgG) and large macromolecules (apolipoprotein (apo) B lipoproteins) measured by quantitative immunofluorescent microscopy, were used as markers of disturbed BBB integrity. Parenchymal glial fibrillar acidic protein (GFAP) and cyclooxygenase-2 (COX-2) were considered in the context of surrogate markers of neurovascular inflammation and oxidative stress. Total anti-oxidant status and glutathione reductase activity were determined in plasma. Results Brain parenchymal abundance of IgG and apoB lipoproteins was markedly exaggerated in mice maintained on the SFA diet concomitant with significantly increased GFAP and COX-2, and reduced systemic anti-oxidative status. The nutraceutical GEA, ALA, niacin, and NA completely prevented the SFA-induced disturbances of BBB and normalized the measures of neurovascular inflammation and oxidative stress. Conclusions The anti-inflammatory nutraceutical agents GEA, ALA, niacin, or NA are potent inhibitors of dietary fat-induced disturbances of BBB induced by systemic inflammations. PMID:23782872

  11. Vitamin D in inflammatory diseases

    PubMed Central

    Wöbke, Thea K.; Sorg, Bernd L.; Steinhilber, Dieter

    2014-01-01

    Changes in vitamin D serum levels have been associated with inflammatory diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis (MS), atherosclerosis, or asthma. Genome- and transcriptome-wide studies indicate that vitamin D signaling modulates many inflammatory responses on several levels. This includes (i) the regulation of the expression of genes which generate pro-inflammatory mediators, such as cyclooxygenases or 5-lipoxygenase, (ii) the interference with transcription factors, such as NF-κB, which regulate the expression of inflammatory genes and (iii) the activation of signaling cascades, such as MAP kinases which mediate inflammatory responses. Vitamin D targets various tissues and cell types, a number of which belong to the immune system, such as monocytes/macrophages, dendritic cells (DCs) as well as B- and T cells, leading to individual responses of each cell type. One hallmark of these specific vitamin D effects is the cell-type specific regulation of genes involved in the regulation of inflammatory processes and the interplay between vitamin D signaling and other signaling cascades involved in inflammation. An important task in the near future will be the elucidation of the regulatory mechanisms that are involved in the regulation of inflammatory responses by vitamin D on the molecular level by the use of techniques such as chromatin immunoprecipitation (ChIP), ChIP-seq, and FAIRE-seq. PMID:25071589

  12. Neurovascular Network Explorer 1.0: a database of 2-photon single-vessel diameter measurements with MATLAB(®) graphical user interface.

    PubMed

    Sridhar, Vishnu B; Tian, Peifang; Dale, Anders M; Devor, Anna; Saisan, Payam A

    2014-01-01

    We present a database client software-Neurovascular Network Explorer 1.0 (NNE 1.0)-that uses MATLAB(®) based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches.

  13. Neurovascular Network Explorer 1.0: a database of 2-photon single-vessel diameter measurements with MATLAB(®) graphical user interface.

    PubMed

    Sridhar, Vishnu B; Tian, Peifang; Dale, Anders M; Devor, Anna; Saisan, Payam A

    2014-01-01

    We present a database client software-Neurovascular Network Explorer 1.0 (NNE 1.0)-that uses MATLAB(®) based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches. PMID:24904401

  14. Neurovascular Network Explorer 1.0: a database of 2-photon single-vessel diameter measurements with MATLAB® graphical user interface

    PubMed Central

    Sridhar, Vishnu B.; Tian, Peifang; Dale, Anders M.; Devor, Anna; Saisan, Payam A.

    2014-01-01

    We present a database client software—Neurovascular Network Explorer 1.0 (NNE 1.0)—that uses MATLAB® based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches. PMID:24904401

  15. Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury

    PubMed Central

    Hsueh, Yuan-Yu; Chang, Ya-Ju; Huang, Chia-Wei; Handayani, Fitri; Chiang, Yi-Lun; Fan, Shih-Chen; Ho, Chien-Jung; Kuo, Yu-Min; Yang, Shang-Hsun; Chen, Yuh-Ling; Lin, Sheng-Che; Huang, Chao-Ching; Wu, Chia-Ching

    2015-01-01

    Perinatal cerebral hypoxic-ischemic (HI) injury damages the architecture of neurovascular units (NVUs) and results in neurological disorders. Here, we differentiated adipose-derived stem cells (ASCs) toward the progenitor of endothelial progenitor cells (EPCs) and neural precursor cells (NPCs) via microenvironmental induction and investigated the protective effect by transplanting ASCs, EPCs, NPCs, or a combination of EPCs and NPCs (E+N) into neonatal HI injured rat pups. The E+N combination produced significant reduction in brain damage and cell apoptosis and the most comprehensive restoration in NVUs regarding neuron number, normal astrocytes, and vessel density. Improvements in cognitive and motor functions were also achieved in injured rats with E+N therapy. Synergistic interactions to facilitate transmigration under in vitro hypoxic microenvironment were discovered with involvement of the neuropilin-1 (NRP1) signal in EPCs and the C-X-C chemokine receptor 4 (CXCR4) and fibroblast growth factor receptor 1 (FGFR1) signals in NPCs. Therefore, ASCs exhibit great potential for cell sources in endothelial and neural lineages to prevent brain from HI damage. PMID:26447335

  16. Wnt/β-catenin coupled with HIF-1α/VEGF signaling pathways involved in galangin neurovascular unit protection from focal cerebral ischemia

    PubMed Central

    Wu, Chuanhong; Chen, Jianxin; Chen, Chang; Wang, Wei; Wen, Limei; Gao, Kuo; Chen, Xiuping; Xiong, Sihuai; Zhao, Huihui; Li, Shaojing

    2015-01-01

    Microenvironmental regulation has become a promising strategy for complex disease treatment. The neurovascular unit (NVU), as the key structural basis to maintain an optimal brain microenvironment, has emerged as a new paradigm to understand the pathology of stroke. In this study, we investigated the effects of galangin, a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, on NVU microenvironment improvement and associated signal pathways in rats impaired by middle cerebral artery occlusion (MCAO). Galangin ameliorated neurological scores, cerebral infarct volume and cerebral edema and reduced the concentration of Evans blue (EB) in brain tissue. NVU ultrastructural changes were also improved by galangin. RT-PCR and western blot revealed that galangin protected NVUs through the Wnt/β-catenin pathway coupled with HIF-1α and vascular endothelial growth factor (VEGF). VEGF and β-catenin could be the key nodes of these two coupled pathways. In conclusion, Galangin might function as an anti-ischemic stroke drug by improving the microenvironment of NVUs. PMID:26537366

  17. Idiopathic inflammatory myositis.

    PubMed

    Tieu, Joanna; Lundberg, Ingrid E; Limaye, Vidya

    2016-02-01

    Knowledge on idiopathic inflammatory myopathy (IIM) has evolved with the identification of myositis-associated and myositis-specific antibodies, development of histopathological classification and the recognition of how these correlate with clinical phenotype and response to therapy. In this paper, we outline key advances in diagnosis and histopathology, including the more recent identification of antibodies associated with immune-mediated necrotising myopathy (IMNM) and inclusion body myositis (IBM). Ongoing longitudinal observational cohorts allow further classification of these patients with IIM, their predicted clinical course and response to specific therapies. Registries have been developed worldwide for this purpose. A challenging aspect in IIM, a multisystem disease with multiple clinical subtypes, has been defining disease status and clinically relevant improvement. Tools for assessing activity and damage are now recognised to be important in determining disease activity and guiding therapeutic decision-making. The International Myositis Assessment and Clinical Studies (IMACS) group has developed such tools for use in research and clinical settings. There is limited evidence for specific treatment strategies in IIM. With significant development in the understanding of IIM and improved classification, longitudinal observational cohorts and trials using validated outcome measures are necessary, to provide important information for evidence-based care in the clinical setting. PMID:27421222

  18. Imaging inflammatory acne: lesion detection and tracking

    NASA Astrophysics Data System (ADS)

    Cula, Gabriela O.; Bargo, Paulo R.; Kollias, Nikiforos

    2010-02-01

    It is known that effectiveness of acne treatment increases when the lesions are detected earlier, before they could progress into mature wound-like lesions, which lead to scarring and discoloration. However, little is known about the evolution of acne from early signs until after the lesion heals. In this work we computationally characterize the evolution of inflammatory acne lesions, based on analyzing cross-polarized images that document acne-prone facial skin over time. Taking skin images over time, and being able to follow skin features in these images present serious challenges, due to change in the appearance of skin, difficulty in repositioning the subject, involuntary movement such as breathing. A computational technique for automatic detection of lesions by separating the background normal skin from the acne lesions, based on fitting Gaussian distributions to the intensity histograms, is presented. In order to track and quantify the evolution of lesions, in terms of the degree of progress or regress, we designed a study to capture facial skin images from an acne-prone young individual, followed over the course of 3 different time points. Based on the behavior of the lesions between two consecutive time points, the automatically detected lesions are classified in four categories: new lesions, resolved lesions (i.e. lesions that disappear completely), lesions that are progressing, and lesions that are regressing (i.e. lesions in the process of healing). The classification our methods achieve correlates well with visual inspection of a trained human grader.

  19. Altered glycolipid and glycerophospholipid signaling drive inflammatory cascades in adrenomyeloneuropathy.

    PubMed

    Ruiz, Montserrat; Jové, Mariona; Schlüter, Agatha; Casasnovas, Carlos; Villarroya, Francesc; Guilera, Cristina; Ortega, Francisco J; Naudí, Alba; Pamplona, Reinald; Gimeno, Ramón; Fourcade, Stéphane; Portero-Otín, Manuel; Pujol, Aurora

    2015-12-15

    X-linked adrenomyeloneuropathy (AMN) is an inherited neurometabolic disorder caused by malfunction of the ABCD1 gene, characterized by slowly progressing spastic paraplegia affecting corticospinal tracts, and adrenal insufficiency. AMN is the most common phenotypic manifestation of adrenoleukodystrophy (X-ALD). In some cases, an inflammatory cerebral demyelination occurs associated to poor prognosis in cerebral AMN (cAMN). Though ABCD1 codes for a peroxisomal transporter of very long-chain fatty acids, the molecular mechanisms that govern disease onset and progression, or its transformation to a cerebral, inflammatory demyelinating form, remain largely unknown. Here we used an integrated -omics approach to identify novel biomarkers and altered network dynamic characteristic of, and possibly driving, the disease. We combined an untargeted metabolome assay of plasma and peripheral blood mononuclear cells (PBMC) of AMN patients, which used liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-Q-TOF), with a functional genomics analysis of spinal cords of Abcd1(-) mouse. The results uncovered altered nodes in lipid-driven proinflammatory cascades, such as glycosphingolipid and glycerophospholipid synthesis, governed by the β-1,4-galactosyltransferase (B4GALT6), the phospholipase 2γ (PLA2G4C) and the choline/ethanolamine phosphotransferase (CEPT1) enzymes. Confirmatory investigations revealed a non-classic, inflammatory profile, consisting on the one hand of raised plasma levels of several eicosanoids derived from arachidonic acid through PLA2G4C activity, together with also the proinflammatory cytokines IL6, IL8, MCP-1 and tumor necrosis factor-α. In contrast, we detected a more protective, Th2-shifted response in PBMC. Thus, our findings illustrate a previously unreported connection between ABCD1 dysfunction, glyco- and glycerolipid-driven inflammatory signaling and a fine-tuned inflammatory response underlying a disease considered non-inflammatory

  20. Altered glycolipid and glycerophospholipid signaling drive inflammatory cascades in adrenomyeloneuropathy.

    PubMed

    Ruiz, Montserrat; Jové, Mariona; Schlüter, Agatha; Casasnovas, Carlos; Villarroya, Francesc; Guilera, Cristina; Ortega, Francisco J; Naudí, Alba; Pamplona, Reinald; Gimeno, Ramón; Fourcade, Stéphane; Portero-Otín, Manuel; Pujol, Aurora

    2015-12-15

    X-linked adrenomyeloneuropathy (AMN) is an inherited neurometabolic disorder caused by malfunction of the ABCD1 gene, characterized by slowly progressing spastic paraplegia affecting corticospinal tracts, and adrenal insufficiency. AMN is the most common phenotypic manifestation of adrenoleukodystrophy (X-ALD). In some cases, an inflammatory cerebral demyelination occurs associated to poor prognosis in cerebral AMN (cAMN). Though ABCD1 codes for a peroxisomal transporter of very long-chain fatty acids, the molecular mechanisms that govern disease onset and progression, or its transformation to a cerebral, inflammatory demyelinating form, remain largely unknown. Here we used an integrated -omics approach to identify novel biomarkers and altered network dynamic characteristic of, and possibly driving, the disease. We combined an untargeted metabolome assay of plasma and peripheral blood mononuclear cells (PBMC) of AMN patients, which used liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-Q-TOF), with a functional genomics analysis of spinal cords of Abcd1(-) mouse. The results uncovered altered nodes in lipid-driven proinflammatory cascades, such as glycosphingolipid and glycerophospholipid synthesis, governed by the β-1,4-galactosyltransferase (B4GALT6), the phospholipase 2γ (PLA2G4C) and the choline/ethanolamine phosphotransferase (CEPT1) enzymes. Confirmatory investigations revealed a non-classic, inflammatory profile, consisting on the one hand of raised plasma levels of several eicosanoids derived from arachidonic acid through PLA2G4C activity, together with also the proinflammatory cytokines IL6, IL8, MCP-1 and tumor necrosis factor-α. In contrast, we detected a more protective, Th2-shifted response in PBMC. Thus, our findings illustrate a previously unreported connection between ABCD1 dysfunction, glyco- and glycerolipid-driven inflammatory signaling and a fine-tuned inflammatory response underlying a disease considered non-inflammatory.

  1. [Progresses in antiinflamatory treatment in cataract surgery].

    PubMed

    Stefan, C; Pop, Adina; Cojocaru, Inga

    2011-01-01

    Anti-inflamatory medication is commonly used to reduce inflammation, edema and symptoms associated with allergies, trauma and infections diseases. Topical nonsteroidial anti-inflammatory (NSAIDs) and topical corticosteroids are overview of the role of topical NSAIDs and the progress of their use in eye surgery

  2. A progressive pruritic rash with blisters.

    PubMed

    Overcash, Michael D; Ewald, Matt

    2016-05-01

    This article describes a patient with a progressive pruritic rash and fluid-filled blisters. A punch biopsy later confirmed the diagnosis of bullous pemphigoid, an inflammatory condition that most commonly occurs in older adults and is treated with corticosteroids. PMID:27124233

  3. Inflammatory markers in ST-elevation acute myocardial infarction.

    PubMed

    Seropian, Ignacio M; Sonnino, Chiara; Van Tassell, Benjamin W; Biasucci, Luigi M; Abbate, Antonio

    2016-08-01

    After acute myocardial infarction, ventricular remodeling is characterized by changes at the molecular, structural, geometrical and functional level that determine progression to heart failure. Inflammation plays a key role in wound healing and scar formation, affecting ventricular remodeling. Several, rather different, components of the inflammatory response were studied as biomarkers in ST-elevation acute myocardial infarction. Widely available and inexpensive tests, such as leukocyte count at admission, as well as more sophisticated immunoassays provide powerful predictors of adverse outcome in patients with ST-elevation acute myocardial infarction. We review the value of inflammatory markers in ST-elevation acute myocardial infarction and their association with ventricular remodeling, heart failure and sudden death. In conclusion, the use of these biomarkers may identify subjects at greater risk of adverse events and perhaps provide an insight into the mechanisms of disease progression.

  4. Chlamydial pelvic inflammatory disease.

    PubMed

    Paavonen, J; Lehtinen, M

    1996-01-01

    Pelvic inflammatory disease (PID) is the most important complication present in the female lower genital tract, causing major medical, social and economic problems. Although PID can be caused by multiple microorganisms, it results most frequently from the ascent of sexually transmitted Chlamydia.trachomatis or Neisseria gonorrhoeae infections from the cervix to the upper genital tract. The importance of cervical chlamydial infection in the pathogenesis of PID is well recognized. Recent data from many developed countries have shown a striking decrease in the incidence of gonococcal infections, while the rates of chlamydial infections remain high in most countries. Complications of PID are common and usually irreversible. Emerging evidence suggests that universal or selected screening of defined populations for cervical chlamydial infection leads to a dramatic reduction in the incidence of PID. Recent technological advances should further enhance efforts to prevent chlamydial infection and PID. Gene amplification-based diagnostic tests, screening by testing first-void urine, and single dose antimicrobial therapy greatly facilitate chlamydia control programmes. Thus, screening for chlamydia is the key approach in the secondary prevention of PID. The obvious challenge is to make screening for chlamydia the standard for health care for young, sexually active individuals. Since PID is the most important consequence of sexually transmitted bacterial infections, it is also imperative to develop better treatments to prevent the long-term sequelae of this disease. The development and implementation of new and effective intervention programmes for prevention and control of PID is one of the major challenges for the year 2000 and beyond. PMID:9111185

  5. Glycosaminoglycan sulodexide modulates inflammatory pathways in chronic venous disease.

    PubMed

    Mannello, F; Ligi, D; Raffetto, J D

    2014-06-01

    Inflammation represents an important epiphenomenon in the etiopathogenesis of chronic venous disease, a worldwide debilitating condition affecting millions of subjects. The pathophysiology of chronic venous disease (CVD) is based on the hemodynamic abnormalities in conjunction to alterations in cellular and extracellular matrix biocompounds. The endothelial dysfunction results from early perturbation in the endothelium linked to glycocalyx injury and promoted by inflammatory cells and mediators (such as matrix metalloproteinases and interleukins), which lead to progressive dilation of the vein resulting in chronic venous insufficiency. Activated leukocytes during the inflammatory process release enzymes, free radicals, chemokines and inflammatory cytokines in the vessel microenvironment, which are responsible for the changes of the venous wall and venous valve, reflux and venous hypertension, and the development/progression of tissue destruction and skin changes. Sulodexide, a highly purified mixture of glycosaminoglycans composed by 80% fast moving heparin and 20% of dermatan sulphate, exhibits anti-thrombotic and profibrinolytic properties, restoring also the essential endothelial glycocalyx. Glycosaminoglycan sulodexide has been also characterized to reduce the release of inflammatory cytokines/chemokines and to inhibit the matrix metalloproteinases-related proteolytic cascades, counteracting endothelial dysfunctions. The pleiotropic effects of sulodexide set the basis for a very promising agent in treating the spectrum of CVD.

  6. Resolvins and omega three polyunsaturated fatty acids: Clinical implications in inflammatory diseases and cancer

    PubMed Central

    Moro, Kazuki; Nagahashi, Masayuki; Ramanathan, Rajesh; Takabe, Kazuaki; Wakai, Toshifumi

    2016-01-01

    Inflammation is a central process in several disorders and contributes to cancer progression. Inflammation involves a complex cascade of pro-inflammatory and anti-inflammatory signaling events with protein and lipid mediators. Recent advances in lipid detection have revealed the importance of lipid mediators in inflammation. Omega three polyunsaturated fatty acids (ω-3 PUFA) are found naturally in fish oil and have been extensively studied in multiple inflammatory diseases with improved outcomes. Resolvins are thought to be the active metabolites of ω-3 PUFA, and are responsible for facilitating the resolving phase of acute inflammation. Clinically, resolvins have been associated with resolution of acute kidney injury and acute lung injury, micro and macro vascular response to injury, and inhibition of microglia-activated inflammation in neurodegenerative disorders. In addition to inflammatory diseases, ω-3 PUFA and resolvins appear to modulate cancer progression. ω-3 PUFA intake has been associated with reduced inflammation in colorectal cancer, and favorable phenotype in breast cancer. Resolvins offer promising therapeutic potential as they may modulate inflammation with minimal side-effects, in contrast to currently available anti-inflammatory medications. This review describes the roles of ω-3 PUFA and resolvins in the inflammatory cascade, various inflammatory diseases, and specific cancers. Additionally, it will discuss the clinical therapeutic potential of resolvins as targets in inflammatory diseases and cancers. PMID:27458590

  7. Chronic inflammatory demyelinating polyradiculoneuropathy associated intracranial hypertension.

    PubMed

    Altinkaya, Ayca; Topcular, Baris; Sakalli, Nazan Karagoz; Kuscu, Demet Yandim; Kirbas, Dursun

    2013-06-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an acquired immune-mediated demyelinating neuropathy. In this report, we detail the course of a 58-year-old male patient who had headache and double vision followed by progressive paresthesia and difficulty in walking. The patient had bilateral papilledema and mild leg weakness, absent ankle jerks and loss of sensation in distal parts of his lower and upper extremities. His electromyography (EMG) was concordant with CIDP and lumbar puncture revealed high opening pressure. The polyradiculoneuropathy as well as the papilledema and elevated cerebrospinal fluid (CSF) pressure improved under steroids. The improvement in intracranial hypertension (IHT) and papilledema under steroid treatment suggests that the IHT in this patient might be associated with CIDP.

  8. Treatment of chronic inflammatory demyelinating polyradiculoneuropathy.

    PubMed

    Lehmann, Helmar C; Hughes, Richard A C; Hartung, Hans-Peter

    2013-01-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a sporadically occurring, acquired neuropathic condition of autoimmune origin with chronic progressive or relapsing-remitting disease course. CIDP is a treatable disorder; a variety of immunosuppressive and immunomodulatory agents are available to modify, impede, and even reverse the neurological deficits and sequelae that manifest in the course of the disease. However, in many cases CIDP is not curable. Challenges that remain in the treatment of CIDP patients are well recognized and include a remarkably individual heterogeneity in terms of disease course and treatment response as well as a lack of objective and feasible measures to predict and monitor the responsiveness to the available therapies. In this chapter an overview of the currently used drugs in the treatment of CIDP patients is given and some important and controversial issues that arise in the context of care for CIDP patients are discussed.

  9. Review of Anti-Inflammatory Herbal Medicines.

    PubMed

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  10. Microbiome, Metabolome and Inflammatory Bowel Disease.

    PubMed

    Ahmed, Ishfaq; Roy, Badal C; Khan, Salman A; Septer, Seth; Umar, Shahid

    2016-01-01

    Inflammatory Bowel Disease (IBD) is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn's Disease (CD) or Ulcerative Colitis (UC), two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis. PMID:27681914

  11. Microbiome, Metabolome and Inflammatory Bowel Disease

    PubMed Central

    Ahmed, Ishfaq; Roy, Badal C.; Khan, Salman A.; Septer, Seth; Umar, Shahid

    2016-01-01

    Inflammatory Bowel Disease (IBD) is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD) or Ulcerative Colitis (UC), two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis.

  12. Review of Anti-Inflammatory Herbal Medicines

    PubMed Central

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  13. Microbiome, Metabolome and Inflammatory Bowel Disease

    PubMed Central

    Ahmed, Ishfaq; Roy, Badal C.; Khan, Salman A.; Septer, Seth; Umar, Shahid

    2016-01-01

    Inflammatory Bowel Disease (IBD) is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD) or Ulcerative Colitis (UC), two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis. PMID:27681914

  14. Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention.

    PubMed

    Umar, Asad; Steele, Vernon E; Menter, David G; Hawk, Ernest T

    2016-02-01

    Various clinical and epidemiologic studies show that nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin and cyclooxygenase inhibitors (COXIBs) help prevent cancer. Since eicosanoid metabolism is the main inhibitory targets of these drugs the resulting molecular and biological impact is generally accepted. As our knowledge base and technology progress we are learning that additional targets may be involved. This review attempts to summarize these new developments in the field. PMID:26970125

  15. Study in mice shows that an aggressive type of breast cancer is linked to an inflammatory protein

    Cancer.gov

    Aberrant expression of an inflammatory protein, nitric oxide synthase 2 (NOS2), may enhance the progression and metastasis of an aggressive and less common form of breast cancer, known as the estrogen receptor-negative type of disease.

  16. [Acute-Onset Chronic Inflammatory Demyelinating Polyradiculoneuropathy].

    PubMed

    Kanbayashi, Takamichi; Sonoo, Masahiro

    2015-11-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is characterized by an insidious onset showing progression over two months. However, up to 16% of CIDP patients may show acute presentation similar to Guillain-Barré syndrome (GBS). Such cases are termed acute-onset CIDP (A-CIDP). Distinguishing A-CIDP from GBS, especially the acute inflammatory demyelinating polyneuropathy (AIDP) subtype, is critical because therapeutic strategies and outcomes may differ between the two syndromes. Regarding clinical features, A-CIDP is less likely to have autonomic nervous system involvement, facial weakness, a preceding infectious illness, or the need for mechanical ventilation, in comparison with AIDP. Electrophysiological features are usually quite similar between the two, although follow-up studies may elucidate key differences. Around 8%-16% of GBS patients may show clinical deterioration shortly after improvement or stabilization following initial immunological therapy. Such a situation is termed treatment-related fluctuation (TRF; GBS-TRF). The distinction between GBS-TRF and A-CIDP is an important clinical issue because maintenance treatment is often required in CIDP. The diagnosis of A-CIDP should be considered when the condition of a patient with GBS deteriorates after nine weeks from onset, or when deterioration occurs three times or more.

  17. Inflammatory pseudotumour of the temporomandibular joint.

    PubMed

    Ghavami, Y; Yau, A Y; Ziai, K; Maducdoc, M M; Djalilian, H R

    2015-01-01

    Head and neck inflammatory pseudotumors (IPs) are rare, idiopathic, non-neoplastic lesions that most commonly affect the orbit, but may involve other areas such as the larynx, oropharynx, paranasal sinuses, and meninges. We report the case of a 55-year-old man who presented with progressive left-sided hearing loss, aural fullness, and otalgia. Computed tomography and magnetic resonance imaging (MRI) detected a soft-tissue mass in the left temporomandibular joint (TMJ). Histopathologic examination showed overlying squamous epithelium with hyperkeratosis, parakeratosis, subepithelial fibrosis, and chronic inflammatory infiltrate, which were consistent with an IP. Radiologic images and MRI indicated an ill-defined soft tissue involving the roof and posterior aspect of the TMJ, extending into the anterior external auditory canal. Our case was treated with a 2-week course of high dose prednisone (1 mg/kg) and a 2-week taper with resolution of symptoms. Two years after treatment, the patient shows no evidence of recurrence on MRI. PMID:26891541

  18. Complications of inflammatory bowel disease.

    PubMed

    Gasche, C

    2000-01-01

    Complications in inflammatory bowel disease determine the severity of disease as well as the complexities of medical or surgical treatment opportunities. Therefore, in known inflammatory bowel disease, the prevention, the early detection and the adequate therapeutic response to certain complications are important goals in the follow-up of inflammatory bowel disease patients. Disease complications are separated into intestinal and extraintestinal complications. Intestinal complications are somewhat disease specific, which means that they occur exclusively in either Crohn's disease or ulcerative colitis (e.g., enteric fistulas are particularly found in Crohn's disease and toxic megacolon in ulcerative colitis). Most extraintestinal complications occur in both forms of inflammatory bowel disease (e.g., anemia, thromboembolic events or osteoporosis). The current knowledge on pathogenesis, diagnostic tools, prevention and treatment of certain intestinal and extraintestinal complications is reviewed. PMID:10690585

  19. Macrophage polarization in inflammatory diseases.

    PubMed

    Liu, Yan-Cun; Zou, Xian-Biao; Chai, Yan-Fen; Yao, Yong-Ming

    2014-01-01

    Diversity and plasticity are two hallmarks of macrophages. M1 macrophages (classically activated macrophages) are pro-inflammatory and have a central role in host defense against infection, while M2 macrophages (alternatively activated macrophages) are associated with responses to anti-inflammatory reactions and tissue remodeling, and they represent two terminals of the full spectrum of macrophage activation. Transformation of different phenotypes of macrophages regulates the initiation, development, and cessation of inflammatory diseases. Here we reviewed the characters and functions of macrophage polarization in infection, atherosclerosis, obesity, tumor, asthma, and sepsis, and proposed that targeting macrophage polarization and skewing their phenotype to adapt to the microenvironment might hold great promise for the treatment of inflammatory diseases.

  20. Update on idiopathic inflammatory myopathies.

    PubMed

    Briani, C; Doria, A; Sarzi-Puttini, P; Dalakas, M C

    2006-05-01

    The inflammatory myopathies are a group of acquired diseases, characterized by an inflammatory infiltrate of the skeletal muscle. On the basis of clinical, immuno-pathological and demographic features, three major diseases can be identified: dermatomyositis (DM); polymyositis (PM); and inclusion body myositis (IBM). New diagnostic criteria have recently been introduced, which are crucial for discriminating between the three different subsets of inflammatory myopathies and for excluding other disorders. DM is a complement-mediated microangiopathy affecting skin and muscle. PM and IBM are T cell-mediated disorders, where CD8-positive cytotoxic T cells invade muscle fibres expressing MHC class I antigens, thus leading to fibre necrosis. In IBM, vacuolar formation with amyloid deposits are also present. This article summarizes the main clinical, laboratory, electrophysiological, immunological and histologic features as well as the therapeutic options of the inflammatory myopathies.

  1. Inflammatory mediators in acute pancreatitis.

    PubMed

    Bhatia, M; Brady, M; Shokuhi, S; Christmas, S; Neoptolemos, J P; Slavin, J

    2000-02-01

    Inflammatory mediators play a key role in acute pancreatitis and the resultant multiple organ dysfunction syndrome, which is the primary cause of death in this condition. Recent studies have confirmed the critical role played by inflammatory mediators such as TNF-alpha, IL-1beta, IL-6, IL-8, PAF, IL-10, C5a, ICAM-1, and substance P. The systemic effects of acute pancreatitis have many similarities to those of other conditions such as septicaemia, severe burns, and trauma. The delay between the onset of inflammation in the pancreas and the development of the systemic response makes acute pancreatitis an ideal experimental and clinical model with which to study the role of inflammatory mediators and to test novel therapies. Elucidation of the key mediators involved in the pathogenesis of acute pancreatitis will facilitate the development of clinically effective anti-inflammatory therapy.

  2. Outcomes of Stent-assisted Coil Embolization of Wide-necked Intracranial Aneurysms Using the Solitaire™ AB Neurovascular Remodeling Device

    PubMed Central

    Jeong, Hae Woong

    2015-01-01

    Objective This retrospective study presents our experience with respect to the clinical and angiographic outcomes of patients treated with stent-assisted coil embolization using Solitaire™ AB stents. Materials and Methods From March 2011 to December 2014, 50 patients with 55 wide-necked and/or complex intracranial aneurysms were evaluated. Four patients presented with an acute subarachnoid hemorrhage. Stent deployment was performed with a standard coiling procedure in 49 aneurysms. Three patients underwent bailout stenting, 2 patients were treated by temporary stenting and one patient was treated only by stenting without coiling for dissecting aneurysm. Results Successful placement of the Solitaire AB stent was achieved in all the cases. Based on the postprocedural angiographic results, a Raymond 1 was obtained in 32 (59%) of 54 aneurysms, excluded by one case of dissecting aneurysm, and a Raymond 2 in 13 (24%), and a Raymond 3 in 9 (17%). There was one thromboembolic (2%) and three hemorrhagic complications (6%). However, procedure-related morbidity or mortality was not found. Annual follow-up angiographic results from the embolization were obtained in 40 (74.1%) of 54 cases. These results were represented as Raymond 1 in 27 (67.5%), class 2 in 9 (22.5%), and class 3 in 4 (10%) cases. Angiographic improvement associated with progressive thrombosis of the aneurysm was obtained in 10 aneurysms. Four aneurysms were recanalized without requiring additional treatment. In-stent stenosis was found in one aneurysm, but stent migration was not seen on follow-up angiography. Conclusion Stent-assisted coil embolization using the Solitaire AB stent for treating wide-necked and/or complex intracranial aneurysms was found to be safe and effective immediately post-embolization and after follow-up. Long-term follow-up will be required to identify the effect of the Solitaire AB stent on recanalization rates. PMID:27066440

  3. Inflammatory Mediators in Intervertebral Disk Degeneration and Discogenic Pain

    PubMed Central

    Wuertz, Karin; Haglund, Lisbet

    2013-01-01

    Although degeneration of the intervertebral disk has historically been described as a misbalance between anabolic and catabolic factors, the role of inflammatory mediators has long been neglected. However, past research clearly indicates that inflammatory mediators such as interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α are expressed at higher levels in “diseased” intervertebral disks. Both disk cells as well as invading macrophages can be the source of the detected cytokines. Importantly, occurrence of inflammatory mediators in the disk can worsen the progress of degeneration by inducing the expression of matrix degrading enzymes as well as by inhibiting extracellular matrix synthesis. In addition, inflammatory mediators play a crucial role in pain development during intervertebral disk herniation (i.e., sciatica) and disk degeneration (i.e., discogenic pain). This review provides information on the most relevant inflammatory mediators during different types of disk diseases and explains how these factors can induce disk degeneration and the development of discogenic and sciatic/radiculopathic pain. PMID:24436868

  4. Alzheimer's disease and type 2 diabetes via chronic inflammatory mechanisms.

    PubMed

    Mushtaq, Gohar; Khan, Jalaluddin A; Kumosani, Taha A; Kamal, Mohammad A

    2015-01-01

    Recent evidence has indicated that type 2 diabetes mellitus (T2DM) increases the risk of developing Alzheimer's disease (AD). Therefore, it is crucial to investigate the potential common processes that could explain this relation between AD and T2DM. In the recent decades, an abundance of evidence has emerged demonstrating that chronic inflammatory processes may be the major factors contributing to the development and progression of T2DM and AD. In this article, we have discussed the molecular underpinnings of inflammatory process that contribute to the pathogenesis of T2DM and AD and how they are linked to these two diseases. In depth understanding of the inflammatory mechanisms through which AD and T2DM are associated to each other may help the researchers to develop novel and more effective strategies to treat together AD and T2DM. Several treatment options have been identified which spurn the inflammatory processes and discourage the production of inflammatory mediators, thereby preventing or slowing down the onset of T2DM and AD.

  5. Saturated fatty acids trigger TLR4-mediated inflammatory response.

    PubMed

    Rocha, D M; Caldas, A P; Oliveira, L L; Bressan, J; Hermsdorff, H H

    2016-01-01

    Toll-like receptors (TLR) mediate infection-induced inflammation and sterile inflammation by endogenous molecules. Among the TLR family, TLR4 is the best understood. However, while its downstream signaling pathways have been well defined, not all ligands of TLR4 are currently known. Current evidence suggests that saturated fatty acids (SFA) act as non-microbial TLR4 agonists, and trigger its inflammatory response. Thus, our present review provides a new perspective on the potential mechanism by which SFAs could modulate TLR4-induced inflammatory responses: (1) SFAs can be recognized by CD14-TLR4-MD2 complex and trigger inflammatory pathways, similar to lipopolysaccharide (LPS). (2) SFAs lead to modification of gut microbiota with an overproduction of LPS after a high-fat intake, enhancing this natural TLR4 ligand. (3) In addition, this metabolic endotoxemia leads to an oxidative stress thereby producing atherogenic lipids - oxLDL and oxidized phospholipids - which trigger CD36-TLR4-TLR6 inflammatory response. (4) Also, the high SFA consumption increases the lipemia and the mmLDL and oxLDL formation through oxidative modifications of LDL. The mmLDL, unlike oxLDL, is involved in activation of the CD14-TLR4-MD2 inflammatory pathway. Those molecules can induce TLR4 inflammatory response by MyD88-dependent and/or MyD88-independent pathways that, in turn, promotes the expression of proinflammatory transcript factors such as factor nuclear kappa B (NF-κB), which plays a crucial role in the induction of inflammatory mediators (cytokines, chemokines, or costimulatory molecules) implicated in the development and progression of many chronic diseases. PMID:26687466

  6. Molecular cues guiding inflammatory responses.

    PubMed

    Barreiro, Olga; Martín, Pilar; González-Amaro, Roberto; Sánchez-Madrid, Francisco

    2010-05-01

    Alarm signals generated at inflammatory foci reach the vascular lumen to attract immune cells towards the affected tissue. Different leucocyte subsets decipher and integrate these complex signals in order to make adequate decisions for their migration towards the inflamed tissue. Soluble cues (cytokines and chemokines) and membrane receptors in both endothelium and leucocytes orchestrate the coordinated recruitment of specific inflammatory cell subsets. All these molecules are spatio-temporally organized in specialized structures at the luminal side of endothelium and the leucocyte membrane or are generated as chemical gradients in the damaged tissue. Thus, the repertoire of chemokines and their receptors as well as adhesion molecules expressed by each leucocyte subset determine their recruitment for participation in specific inflammatory pathologies. Whenever inflammatory signals are altered or misprocessed, inflammation can become chronic, causing extensive tissue damage. To combat chronic inflammation and autoimmune diseases, novel therapeutic strategies attempt to silence the predominant signals in each inflammatory scenario. In this review, we provide a general overview of all these aspects related to the molecular regulation of leucocyte guidance in inflammatory responses.

  7. Immunopathogenesis of inflammatory myopathies.

    PubMed

    Dalakas, M C

    1995-05-01

    Immune-mediated mechanisms appear to play a primary role in the pathogenesis of polymyositis (PM) and dermatomyositis (DM). The serum of patients with active DM has high levels of circulating complement fragments C3b, C4b, and C5b-9 membranolytic attack complex (MAC) and demonstrates a very high C3 uptake in an vitro assay system. The MAC and the immune complex-specific C3bNEO fragment are deposited on the endomysial capillaries early in the disease and lead sequentially to loss of capillaries, muscle ischemia, muscle fiber necrosis, and perifascicular atrophy. In contrast, in PM the muscle fiber injury is initiated by sensitized CD8+ cytotoxic T cells that recognize heretofore unknown and probably endogenous muscle antigens in the context of major histocompatibility complex (MHC) class I expression. A restricted (oligoclonal) pattern of T-cell receptor with prominence of Va1, Vb6, and Vb15 genes is noted within the endomysial infiltrates suggesting that the T-cell response is antigen driven. In both PM and DM, intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 are upregulated in the endomysial endothelial cells and function as ligands for the leukocyte integrins leukocyte function-associated antigen (LFA)-1 and very late activating antigen (VLA)-4, allowing activated lymphocytes to adhere to the endothelial cells and migrate to the muscle fibers. Among viruses, only the retroviruses human immunodeficiency virus (HIV) and human T-cell lymphotropic virus (HTLV)-1 have been convincingly shown to trigger PM, which is mediated by nonviral-specific, cytotoxic CD8+ cells. The treatment of inflammatory myopathies remains empirical. Many patients respond to steroids to some degree and for some period of time. Azathioprine, methotrexate, cyclosporine, cyclophosphamide, and plasmapheresis can be of mild to moderate benefit. High-dose intravenous immunoglobulin (IVIg) is a promising therapeutic modality for some patients resistant to

  8. Inflammatory bowel disease: the role of inflammatory cytokine gene polymorphisms.

    PubMed Central

    Balding, Joanna; Livingstone, Wendy J; Conroy, Judith; Mynett-Johnson, Lesley; Weir, Donald G; Mahmud, Nasir; Smith, Owen P

    2004-01-01

    The mechanisms responsible for development of inflammatory bowel disease (IBD) have not been fully elucidated, although the main cause of disease pathology is attributed to up-regulated inflammatory processes. The aim of this study was to investigate frequencies of polymorphisms in genes encoding pro-inflammatory and anti-inflammatory markers in IBD patients and controls. We determined genotypes of patients with IBD (n= 172) and healthy controls (n= 389) for polymorphisms in genes encoding various cytokines (interleukin (IL)-1beta, IL-6, tumour necrosis factor (TNF), IL-10, IL-1 receptor antagonist). Association of these genotypes to disease incidence and pathophysiology was investigated. No strong association was found with occurrence of IBD. Variation was observed between the ulcerative colitis study group and the control population for the TNF-alpha-308 polymorphism (p= 0.0135). There was also variation in the frequency of IL-6-174 and TNF-alpha-308 genotypes in the ulcerative colitis group compared with the Crohn's disease group (p= 0.01). We concluded that polymorphisms in inflammatory genes are associated with variations in IBD phenotype and disease susceptibility. Whether the polymorphisms are directly involved in regulating cytokine production, and consequently pathophysiology of IBD, or serve merely as markers in linkage disequilibrium with susceptibility genes remains unclear. PMID:15223609

  9. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells

    PubMed Central

    Jin, Rong; Yang, Guojun; Li, Guohong

    2010-01-01

    Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Experimentally and clinically, the brain responds to ischemic injury with an acute and prolonged inflammatory process, characterized by rapid activation of resident cells (mainly microglia), production of proinflammatory mediators, and infiltration of various types of inflammatory cells (including neutrophils, different subtypes of T cells, monocyte/macrophages, and other cells) into the ischemic brain tissue. These cellular events collaboratively contribute to ischemic brain injury. Despite intense investigation, there are still numerous controversies concerning the time course of the recruitment of inflammatory cells in the brain and their pathogenic roles in ischemic brain injury. In this review, we provide an overview of the time-dependent recruitment of different inflammatory cells following focal cerebral I/R. We discuss how these cells contribute to ischemic brain injury and highlight certain recent findings and currently unanswered questions about inflammatory cells in the pathophysiology of ischemic stroke. PMID:20130219

  10. Statins and progressive renal disease.

    PubMed

    Buemi, Michele; Senatore, Massimino; Corica, Francesco; Aloisi, Carmela; Romeo, Adolfo; Cavallaro, Emanuela; Floccari, Fulvio; Tramontana, Domenico; Frisina, Nicola

    2002-01-01

    Thanks to the administration of hypocholesterolemic drugs, important advances have been made in the treatment of patients with progressive renal disease. In vitro and in vivo findings demonstrate that statins, the inhibitors of HMG-CoA reductase, can provide protection against kidney diseases characterized by inflammation and/or enhanced proliferation of epithelial cells occurring in rapidly progressive glomerulonephritis, or by increased proliferation of mesangial cells occurring in IgA nephropathy. Many of the beneficial effects obtained occur independent of reduced cholesterol levels because statins can directly inhibit the proliferation of different cell types (e.g., mesangial, renal tubular, and vascular smooth muscle cells), and can also modulate the inflammatory response, thus inhibiting macrophage recruitment and activation, as well as fibrosis. The mechanisms underlying the action of statins are not yet well understood, although recent data in the literature indicate that they can directly affect the proliferation/apoptosis balance, the down-regulation of inflammatory chemokines, and the cytogenic messages mediated by the GTPases Ras superfamily. Therefore, as well as reducing serum lipids, statins and other lipid-lowering agents may directly influence intracellular signaling pathways involved in the prenylation of low molecular weight proteins that play a crucial role in cell signal transduction and cell activation. Statins appear to have important potential in the treatment of progressive renal disease, although further studies are required to confirm this in humans.

  11. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases

    PubMed Central

    Vegeto, Elisabetta; Benedusi, Valeria; Maggi, Adriana

    2008-01-01

    Recent studies highlight the prominent role played by estrogens in protecting the central nervous system (CNS) against the noxious consequences of a chronic inflammatory reaction. The neurodegenerative process of several CNS diseases, including Multiple Sclerosis, Alzheimer’s and Parkinson’s Diseases, is associated with the activation of microglia cells, which drive the resident inflammatory response. Chronically stimulated during neurodegeneration, microglia cells are thought to provide detrimental effects on surrounding neurons. The inhibitory activity of estrogens on neuroinflammation and specifically on microglia might thus be considered as a beneficial therapeutic opportunity for delaying the onset or progression of neurodegenerative diseases; in addition, understanding the peculiar activity of this female hormone on inflammatory signalling pathways will possibly lead to the development of selected anti-inflammatory molecules. This review summarises the evidence for the involvement of microglia in neuroinflammation and the anti-inflammatory activity played by estrogens specifically in microglia. PMID:18522863

  12. Pregnancy and inflammatory bowel disease.

    PubMed

    Zeldis, J B

    1989-08-01

    Conclusions about the relationship between the pathophysiology and treatment of inflammatory bowel disease and the physiology and management of pregnancy are based on the results of several large physician surveys and retrospective chart reviews. Patients with active disease fare worse than those with inactive disease. There is little evidence that pregnancy affects the course of inflammatory bowel disease or that inactive inflammatory bowel disease affects the course of pregnancy. Judicious medical therapy is effective in controlling inflammatory bowel disease during pregnancy. Sulfasalazine or steroid therapy should not be withdrawn in a patient who needs it to achieve or maintain a quiescent state of inflammatory bowel disease during the course of pregnancy. Immunosuppressive therapy should be avoided. Aggressive medical therapy with total parenteral nutrition in a team approach with a gastroenterologist, surgeon, and perinatologist usually avoids the need for surgical intervention during pregnancy with a good fetal outcome in a patient whose disease is active. Contraception against pregnancy need only be considered in those patients whose disease is so severe that operative therapy is imminent.

  13. Vinpocetine reduces lipopolysaccharide-induced inflammatory pain and neutrophil recruitment in mice by targeting oxidative stress, cytokines and NF-κB.

    PubMed

    Ruiz-Miyazawa, Kenji W; Pinho-Ribeiro, Felipe A; Zarpelon, Ana C; Staurengo-Ferrari, Larissa; Silva, Rangel L; Alves-Filho, Jose C; Cunha, Thiago M; Cunha, Fernando Q; Casagrande, Rubia; Verri, Waldiceu A

    2015-07-25

    In response to lipopolysaccharide (LPS), tissue resident macrophages and recruited neutrophils produce inflammatory mediators through activation of Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway. These mediators include inflammatory cytokines and reactive oxygen species that, in turn, sensitize nociceptors and lead to inflammatory pain. Vinpocetine is a nootropic drug widely used to treat cognitive and neurovascular disorders, and more recently its anti-inflammatory properties through inhibition of NF-κB activation have been described. In the present study, we used the intraplantar and intraperitoneal LPS stimulus in mice to investigate the effects of vinpocetine pre-treatment (3, 10, or 30mg/kg by gavage) in hyperalgesia, leukocyte recruitment, oxidative stress, and pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-33). LPS-induced NF-κB activation and cytokine production were investigated using RAW 264.7 macrophage cell in vitro. Vinpocetine (30mg/kg) significantly reduces hyperalgesia to mechanical and thermal stimuli, and myeloperoxidase (MPO) activity (a neutrophil marker) in the plantar paw skin, and also inhibits neutrophil and mononuclear cell recruitment, superoxide anion and nitric oxide production, oxidative stress, and cytokine production (TNF-α, IL-1β and IL-33) in the peritoneal cavity. At least in part, these effects seem to be mediated by direct effects of vinpocetine on macrophages, since it inhibited the production of the same cytokines (TNF-α, IL-1β and IL-33) and the NF-κB activation in LPS-stimulated RAW 264.7 macrophages. Our results suggest that vinpocetine represents an important therapeutic approach to treat inflammation and pain induced by a gram-negative bacterial component by targeting NF-κB activation and NF-κB-related cytokine production in macrophages.

  14. Transcriptional Control of Inflammatory Responses

    PubMed Central

    Smale, Stephen T.; Natoli, Gioacchino

    2014-01-01

    The inflammatory response requires the activation of a complex transcriptional program that is both cell-type- and stimulus-specific and involves the dynamic regulation of hundreds of genes. In the context of an inflamed tissue, extensive changes in gene expression occur in both parenchymal cells and infiltrating cells of the immune system. Recently, basic transcriptional mechanisms that control inflammation have been clarified at a genome scale, particularly in macrophages and conventional dendritic cells. The regulatory logic of distinct groups of inflammatory genes can be explained to some extent by identifiable sequence-encoded features of their chromatin organization, which impact on transcription factor (TF) accessibility and impose different requirements for gene activation. Moreover, it has become apparent that the interplay between TFs activated by inflammatory stimuli and master regulators exerts a crucial role in controlling cell-type-specific transcriptional outputs. PMID:25213094

  15. A novel pathway by which the environmental toxin 4-Nonylphenol may promote an inflammatory response in inflammatory bowel disease

    PubMed Central

    Kim, Albert; Jung, Byeong Ho; Cadet, Patrick

    2014-01-01

    Background 4-Nonylphenol is a ubiquitous environmental toxin that is formed as a byproduct in the manufacturing and/or sewage treatment of regular household items. Previous work in our lab has implicated 4-NP in the progression of autoimmune diseases such as inflammatory bowel disease in which macrophages mistakenly attack the intestinal linings, causing chronic inflammation. Several key pro-and anti-inflammatory molecules have been shown to be involved in the manifestation of this disease, including IL-23A, COX-2, IL-8, TLR-4, and IL-10. Material/Methods 4-NP’s effects on these known mediators of IBD were effectively analyzed using a novel model for IBD, by which 4-NP may promote an inflammatory response. Data were collected using DNA Microarray, RT-PCR, and ELISA, after 48 hour treatment of U937 histiocytic lymphocyte cells and COLO320DM human intestinal epithelial cells with 1 nM and 5 nM concentrations of 4-NP. Results Significant dysregulation of the expression of both pro- and anti-inflammatory genes was observed in U937 cells that would promote and prolong inflammation. However, TLR-4, IL-8, and COX-2 gene expressions showed unprecedented effects in COLO320DM cells suggesting that these genes mediate apoptotic processes within the gastrointestinal tract. Conclusions Overall, our results suggest that 4-NP administration engenders immune responses linked to apoptotic processes via dysregulation of macrophage signaling. In sum, 4-NP appears to increases the risk of developing inflammatory bowel disease by promoting or prolonging adverse progression of inflammation in the gastrointestinal tract. PMID:24717721

  16. There Is No Correlation Between Erectile Dysfunction and Dose to Penile Bulb and Neurovascular Bundles Following Real-Time Low-Dose-Rate Prostate Brachytherapy

    SciTech Connect

    Solan, Amy N. Cesaretti, Jamie A.; Stone, Nelson N.; Stock, Richard G.

    2009-04-01

    Purpose: We evaluated the relationship between the onset of erectile dysfunction and dose to the penile bulb and neurovascular bundles (NVBs) after real-time ultrasound-guided prostate brachytherapy. Methods and Materials: One hundred forty-seven patients who underwent prostate brachytherapy met the following eligibility criteria: (1) treatment with {sup 125}I brachytherapy to a prescribed dose of 160 Gy with or without hormones without supplemental external beam radiation therapy, (2) identification as potent before the time of implantation based on a score of 2 or higher on the physician-assigned Mount Sinai Erectile Function Score and a score of 16 or higher on the abbreviated International Index of Erectile Function patient assessment, and (3) minimum follow-up of 12 months. Median follow-up was 25.7 months (range, 12-47 months). Results: The 3-year actuarial rate of impotence was 23% (34 of 147 patients). An additional 43% of potent patients (49 of 113 patients) were using a potency aid at last follow-up. The penile bulb volume receiving 100% of the prescription dose (V{sub 100}) ranged from 0-0.05 cc (median, 0 cc), with a dose to the hottest 5% (D{sub 5}) range of 12.5-97.9 Gy (median, 40.8 Gy). There was no correlation between penile bulb D{sub 5} or V{sub 100} and postimplantation impotency on actuarial analysis. For the combined right and left NVB structures, V{sub 100} range was 0.3-5.1 cc (median, 1.8 cc), and V{sub 150} range was 0-1.5 cc (median, 0.31 cc). There was no association between NVB V{sub 100} or V{sub 150} and postimplantation impotency on actuarial analysis. Conclusion: Penile bulb doses are low after real-time ultrasound-guided prostate brachytherapy. We found no correlation between dose to either the penile bulb or NVBs and the development of postimplantation impotency.

  17. Estimation of nitric oxide as an inflammatory marker in periodontitis

    PubMed Central

    Menaka, K. B.; Ramesh, Amitha; Thomas, Biju; Kumari, N. Suchetha

    2009-01-01

    Nitric oxide (NO) is not only important in host defense and homeostasis but it is also regarded as harmful and has been implicated in the pathogenesis of a wide variety of inflammatory and autoimmune diseases. The presence of NO in periodontal disease may reflect the participation of an additional mediator of bone resorption responsible for disease progression. The aim of this study was to assess the level of NO in serum in chronic periodontitis, and correlate these levels with the severity of periodontal disease. Sixty subjects participated in the study and were divided into two groups. NO levels were assayed by measuring the accumulation of stable oxidative metabolite, nitrite with Griess reaction. Results showed subjects with periodontitis had significantly high nitrite in serum than healthy subjects. NO production is increased in periodontal disease, this will enable us to understand its role in disease progression and selective inhibition of NO may be of therapeutic utility in limiting the progression of periodontitis. PMID:20407654

  18. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.

    PubMed

    Aroor, Annayya R; McKarns, Susan; Demarco, Vincent G; Jia, Guanghong; Sowers, James R

    2013-11-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance.

  19. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.

    PubMed

    Aroor, Annayya R; McKarns, Susan; Demarco, Vincent G; Jia, Guanghong; Sowers, James R

    2013-11-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. PMID:23932846

  20. Preclinical Assessment of Inflammatory Pain.

    PubMed

    Muley, Milind M; Krustev, Eugene; McDougall, Jason J

    2016-02-01

    While acute inflammation is a natural physiological response to tissue injury or infection, chronic inflammation is maladaptive and engenders a considerable amount of adverse pain. The chemical mediators responsible for tissue inflammation act on nociceptive nerve endings to lower neuronal excitation threshold and sensitize afferent firing rate leading to the development of allodynia and hyperalgesia, respectively. Animal models have aided in our understanding of the pathophysiological mechanisms responsible for the generation of chronic inflammatory pain and allowed us to identify and validate numerous analgesic drug candidates. Here we review some of the commonly used models of skin, joint, and gut inflammatory pain along with their relative benefits and limitations. In addition, we describe and discuss several behavioral and electrophysiological approaches used to assess the inflammatory pain in these preclinical models. Despite significant advances having been made in this area, a gap still exists between fundamental research and the implementation of these findings into a clinical setting. As such we need to characterize inherent pathophysiological pathways and develop new endpoints in these animal models to improve their predictive value of human inflammatory diseases in order to design safer and more effective analgesics.

  1. Inflammatory process in Alzheimer's Disease

    PubMed Central

    Meraz-Ríos, Marco A.; Toral-Rios, Danira; Franco-Bocanegra, Diana; Villeda-Hernández, Juana; Campos-Peña, Victoria

    2013-01-01

    Alzheimer Disease (AD) is a neurodegenerative disorder and the most common form of dementia. Histopathologically is characterized by the presence of two major hallmarks, the intracellular neurofibrillary tangles (NFTs) and extracellular neuritic plaques (NPs) surrounded by activated astrocytes and microglia. NFTs consist of paired helical filaments of truncated tau protein that is abnormally hyperphosphorylated. The main component in the NP is the amyloid-β peptide (Aβ), a small fragment of 40–42 amino acids with a molecular weight of 4 kD. It has been proposed that the amyloid aggregates and microglia activation are able to favor the neurodegenerative process observed in AD patients. However, the role of inflammation in AD is controversial, because in early stages the inflammation could have a beneficial role in the pathology, since it has been thought that the microglia and astrocytes activated could be involved in Aβ clearance. Nevertheless the chronic activation of the microglia has been related with an increase of Aβ and possibly with tau phosphorylation. Studies in AD brains have shown an upregulation of complement molecules, pro-inflammatory cytokines, acute phase reactants and other inflammatory mediators that could contribute with the neurodegenerative process. Clinical trials and animal models with non-steroidal anti-inflammatory drugs (NSAIDs) indicate that these drugs may decrease the risk of developing AD and apparently reduce Aβ deposition. Finally, further studies are needed to determine whether treatment with anti-inflammatory strategies, may decrease the neurodegenerative process that affects these patients. PMID:23964211

  2. Managing Inflammatory Manifestations in Patients with Chronic Granulomatous Disease.

    PubMed

    Magnani, Alessandra; Mahlaoui, Nizar

    2016-10-01

    Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by lack of phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which results in inflammatory dysregulation and increased susceptibility to infections. Patients with CGD may develop severe obstructive disorders of the digestive tract as a result of their dysregulated inflammatory response. Despite a growing focus on inflammatory manifestations in CGD, the literature data on obstructive complications are far less extensive than those on infectious complications. Diagnosis and management of patients with concomitant predispositions to infections and hyperinflammation are particularly challenging. Although the inflammatory and granulomatous manifestations of CGD usually respond rapidly to steroid treatment, second-line therapies (immunosuppressants and biologics) may be required in refractory cases. Indeed, immunosuppressants (such as anti-tumor necrosis factor agents, thalidomide, and anakinra) have shown some efficacy, but the value of this approach is controversial, given the questionable risk-to-benefit ratio and the small numbers of patients treated to date. Significant progress in allogeneic hematopoietic stem cell transplantation (the only curative treatment for CGD) has been made through better supportive care and implementation of improved, reduced-intensity conditioning regimens. Gene therapy may eventually be an option for patients lacking a suitable donor; clinical trials with new, safer vectors are ongoing at a few centers. PMID:27299584

  3. Resistin in idiopathic inflammatory myopathies

    PubMed Central

    2012-01-01

    Introduction The purpose of this study was to evaluate and compare the serum levels and local expression of resistin in patients with idiopathic inflammatory myopathies to controls, and to determine the relationship between resistin levels, inflammation and disease activity. Methods Serum resistin levels were determined in 42 patients with inflammatory myopathies and 27 healthy controls. The association among resistin levels, inflammation, global disease activity and muscle strength was examined. The expression of resistin in muscle tissues from patients with inflammatory myopathies and healthy controls was evaluated. Gene expression and protein release from resistin-stimulated muscle and mononuclear cells were assessed. Results In patients with inflammatory myopathies, the serum levels of resistin were significantly higher than those observed in controls (8.53 ± 6.84 vs. 4.54 ± 1.08 ng/ml, P < 0.0001) and correlated with C-reactive protein (CRP) levels (r = 0.328, P = 0.044) and myositis disease activity assessment visual analogue scales (MYOACT) (r = 0.382, P = 0.026). Stronger association was observed between the levels of serum resistin and CRP levels (r = 0.717, P = 0.037) as well as MYOACT (r = 0.798, P = 0.007), and there was a trend towards correlation between serum resistin and myoglobin levels (r = 0.650, P = 0.067) in anti-Jo-1 positive patients. Furthermore, in patients with dermatomyositis, serum resistin levels significantly correlated with MYOACT (r = 0.667, P = 0.001), creatine kinase (r = 0.739, P = 0.001) and myoglobin levels (r = 0.791, P = 0.0003) and showed a trend towards correlation with CRP levels (r = 0.447, P = 0.067). Resistin expression in muscle tissue was significantly higher in patients with inflammatory myopathies compared to controls, and resistin induced the expression of interleukins (IL)-1β and IL-6 and monocyte chemoattractant protein (MCP)-1 in mononuclear cells but not in myocytes. Conclusions The results of this study

  4. Oral pathology in inflammatory bowel disease.

    PubMed

    Muhvić-Urek, Miranda; Tomac-Stojmenović, Marija; Mijandrušić-Sinčić, Brankica

    2016-07-01

    The incidence of inflammatory bowel diseases (IBD) - Crohn's disease (CD) and ulcerative colitis (UC) - has been increasing on a global scale, and progressively, more gastroenterologists will be included in the diagnosis and treatment of IBD. Although IBD primarily affects the intestinal tract, extraintestinal manifestations of the disease are often apparent, including in the oral cavity, especially in CD. Specific oral manifestations in patients with CD are as follows: indurate mucosal tags, cobblestoning and mucogingivitis, deep linear ulcerations and lip swelling with vertical fissures. The most common non-specific manifestations, such as aphthous stomatitis and angular cheilitis, occur in both diseases, while pyostomatitis vegetans is more pronounced in patients with UC. Non-specific lesions in the oral cavity can also be the result of malnutrition and drugs. Malnutrition, followed by anemia and mineral and vitamin deficiency, affects the oral cavity and teeth. Furthermore, all of the drug classes that are applied to the treatment of inflammatory bowel diseases can lead to alterations in the oral cavity due to the direct toxic effects of the drugs on oral tissues, as well as indirect immunosuppressive effects with a risk of developing opportunistic infections or bone marrow suppression. There is a higher occurrence of malignant diseases in patients with IBD, which is related to the disease itself and to the IBD-related therapy with a possible oral pathology. Treatment of oral lesions includes treatment of the alterations in the oral cavity according to the etiology together with treatment of the primary intestinal disease, which requires adequate knowledge and a strong cooperation between gastroenterologists and specialists in oral medicine. PMID:27433081

  5. Oral pathology in inflammatory bowel disease

    PubMed Central

    Muhvić-Urek, Miranda; Tomac-Stojmenović, Marija; Mijandrušić-Sinčić, Brankica

    2016-01-01

    The incidence of inflammatory bowel diseases (IBD) - Crohn’s disease (CD) and ulcerative colitis (UC) - has been increasing on a global scale, and progressively, more gastroenterologists will be included in the diagnosis and treatment of IBD. Although IBD primarily affects the intestinal tract, extraintestinal manifestations of the disease are often apparent, including in the oral cavity, especially in CD. Specific oral manifestations in patients with CD are as follows: indurate mucosal tags, cobblestoning and mucogingivitis, deep linear ulcerations and lip swelling with vertical fissures. The most common non-specific manifestations, such as aphthous stomatitis and angular cheilitis, occur in both diseases, while pyostomatitis vegetans is more pronounced in patients with UC. Non-specific lesions in the oral cavity can also be the result of malnutrition and drugs. Malnutrition, followed by anemia and mineral and vitamin deficiency, affects the oral cavity and teeth. Furthermore, all of the drug classes that are applied to the treatment of inflammatory bowel diseases can lead to alterations in the oral cavity due to the direct toxic effects of the drugs on oral tissues, as well as indirect immunosuppressive effects with a risk of developing opportunistic infections or bone marrow suppression. There is a higher occurrence of malignant diseases in patients with IBD, which is related to the disease itself and to the IBD-related therapy with a possible oral pathology. Treatment of oral lesions includes treatment of the alterations in the oral cavity according to the etiology together with treatment of the primary intestinal disease, which requires adequate knowledge and a strong cooperation between gastroenterologists and specialists in oral medicine. PMID:27433081

  6. Distinct inflammatory and cytopathic characteristics of Escherichia coli isolates from inflammatory bowel disease patients.

    PubMed

    Jensen, Stina Rikke; Mirsepasi-Lauridsen, Hengameh Chloé; Thysen, Anna Hammerich; Brynskov, Jørn; Krogfelt, Karen A; Petersen, Andreas Munk; Pedersen, Anders Elm; Brix, Susanne

    2015-12-01

    Escherichia coli (E. coli) may be implicated in the pathogenesis of inflammatory bowel disease (IBD), as implied from a higher prevalence of mucosa-associated E. coli in the gut of IBD-affected individuals. However, it is unclear whether different non-diarrheagenic E. coli spp. segregate from each other in their ability to promote intestinal inflammation. Herein we compared the inflammation-inducing properties of non-diarrheagenic LF82, 691-04A, E. coli Nissle 1917 (ECN) and eleven new intestinal isolates from different locations in five IBD patients and one healthy control. Viable E. coli were cultured with human monocyte-derived dendritic cells (moDCs) and monolayers of intestinal epithelial cells (IECs), followed by analysis of secreted cytokines, intracellular levels of reactive oxygen species and cellular death. The IBD-associated E. coli LF82 induced the same dose-dependent inflammatory cytokine profile as ECN and ten of the new E. coli isolates displayed as high level IL-12p70, IL-1β, IL-23 and TNF-α from moDCs irrespective of their site of isolation (ileum/colon/faeces), disease origin (diseased/non-diseased) or known virulence factors. Contrarily, 691-04A and one new IBD E. coli isolate induced a different cellular phenotype with enhanced killing of moDCs and IECs, coupled to elevated IL-18. The cytopathic nature of 691-04A and one other IBD E. coli isolate suggests that colonization with specific non-diarrheagenic E. coli could promote intestinal barrier leakage and profound intestinal inflammation, while LF82, ECN and the remaining non-diarrheagenic E. coli isolates hold notorious pro-inflammatory characteristics that can progress inflammation in case of intestinal barrier leakage. PMID:26522075

  7. Distinct inflammatory and cytopathic characteristics of Escherichia coli isolates from inflammatory bowel disease patients.

    PubMed

    Jensen, Stina Rikke; Mirsepasi-Lauridsen, Hengameh Chloé; Thysen, Anna Hammerich; Brynskov, Jørn; Krogfelt, Karen A; Petersen, Andreas Munk; Pedersen, Anders Elm; Brix, Susanne

    2015-12-01

    Escherichia coli (E. coli) may be implicated in the pathogenesis of inflammatory bowel disease (IBD), as implied from a higher prevalence of mucosa-associated E. coli in the gut of IBD-affected individuals. However, it is unclear whether different non-diarrheagenic E. coli spp. segregate from each other in their ability to promote intestinal inflammation. Herein we compared the inflammation-inducing properties of non-diarrheagenic LF82, 691-04A, E. coli Nissle 1917 (ECN) and eleven new intestinal isolates from different locations in five IBD patients and one healthy control. Viable E. coli were cultured with human monocyte-derived dendritic cells (moDCs) and monolayers of intestinal epithelial cells (IECs), followed by analysis of secreted cytokines, intracellular levels of reactive oxygen species and cellular death. The IBD-associated E. coli LF82 induced the same dose-dependent inflammatory cytokine profile as ECN and ten of the new E. coli isolates displayed as high level IL-12p70, IL-1β, IL-23 and TNF-α from moDCs irrespective of their site of isolation (ileum/colon/faeces), disease origin (diseased/non-diseased) or known virulence factors. Contrarily, 691-04A and one new IBD E. coli isolate induced a different cellular phenotype with enhanced killing of moDCs and IECs, coupled to elevated IL-18. The cytopathic nature of 691-04A and one other IBD E. coli isolate suggests that colonization with specific non-diarrheagenic E. coli could promote intestinal barrier leakage and profound intestinal inflammation, while LF82, ECN and the remaining non-diarrheagenic E. coli isolates hold notorious pro-inflammatory characteristics that can progress inflammation in case of intestinal barrier leakage.

  8. The circadian clock regulates inflammatory arthritis

    PubMed Central

    Hand, Laura E.; Hopwood, Thomas W.; Dickson, Suzanna H.; Walker, Amy L.; Loudon, Andrew S. I.; Ray, David W.; Bechtold, David A.; Gibbs, Julie E.

    2016-01-01

    There is strong diurnal variation in the symptoms and severity of chronic inflammatory diseases, such as rheumatoid arthritis. In addition, disruption of the circadian clock is an aggravating factor associated with a range of human inflammatory diseases. To investigate mechanistic links between the biological clock and pathways underlying inflammatory arthritis, mice were administered collagen (or saline as a control) to induce arthritis. The treatment provoked an inflammatory response within the limbs, which showed robust daily variation in paw swelling and inflammatory cytokine expression. Inflammatory markers were significantly repressed during the dark phase. Further work demonstrated an active molecular clock within the inflamed limbs and highlighted the resident inflammatory cells, fibroblast-like synoviocytes (FLSs), as a potential source of the rhythmic inflammatory signal. Exposure of mice to constant light disrupted the clock in peripheral tissues, causing loss of the nighttime repression of local inflammation. Finally, the results show that the core clock proteins cryptochrome (CRY) 1 and 2 repressed inflammation within the FLSs, and provide novel evidence that a CRY activator has anti-inflammatory properties in human cells. We conclude that under chronic inflammatory conditions, the clock actively represses inflammatory pathways during the dark phase. This interaction has exciting potential as a therapeutic avenue for treatment of inflammatory disease.—Hand, L. E., Hopwood, T. W., Dickson, S. H., Walker, A. L., Loudon, A. S. I., Ray, D. W., Bechtold, D. A., Gibbs, J. E. The circadian clock regulates inflammatory arthritis. PMID:27488122

  9. [Inflammatory pseudotumors of the kidney. Report of 2 cases].

    PubMed

    Dakir, Mohamed; Taha, Abdellatif; Sarf, Ismail; Attar, Hicham; Aboutaieb, Rachid; Meziane, Fathi

    2003-02-01

    Inflammatory pseudotumours of the kidney are rare and raise a problem of differential diagnosis with renal cancer. The authors discuss the diagnostic difficulties of this disease in the light of two patients, aged 32 years and 60 years, admitted for left low back pain (2 cases), large kidney (1 case) and haematuria (1 case). The combination of renal ultrasound and CT suggested a renal tumour or a renal cyst, and MRI suggested a necrotic tumour. Surgical exploration led to tumour excision in one case and surgical biopsy in the other case due to the unresectable appearance of the tumour. Histological examination revealed an inflammatory mass with no signs of malignancy in the two cases. A favourable course was observed in both cases with a normal kidney on subsequent CT. The preoperative diagnosis of pseudotumour remains difficult, despite progress in medical imaging and often requires surgical exploration. The diagnosis is based on a correlation of radiological and histological findings.

  10. The treatment of inflammatory polyneuropathy by plasma exchange.

    PubMed Central

    Gross, M L; Legg, N J; Lockwood, M C; Pallis, C

    1982-01-01

    Observations are reported on six patients with inflammatory polyneuropathy who were treated by plasma exchange. In four cases the polyneuropathy was acute and in two it was chronic or relapsing. Two acute cases and one chronic relapsing case had plasma exchange during a rapidly progressive phase of the disease, and showed a prompt and substantial recovery of function. The other three patients were exchanged when disease activity had reached a plateau. Only minor degrees of improvement were seen in two of these cases. One patient showed an initial mild deterioration before subsequent recovery. There were no significant side effects. These findings are discussed in relation to the pathogenesis and clinical management of inflammatory polyneuropathy. PMID:7130991

  11. Anterior segment fluorescein angiography in inflammatory diseases of the cornea.

    PubMed

    Saari, K M

    1979-10-01

    To study the vascular changes in inflammatory diseases of the cornea 22 patients with various corneal inflammations were examined by means of anterior segment fluorescein angiography. Simple avascular central and marginal corneal ulcers stained with fluorescein in the late phase of angiography. An inflamed limbus and an early microscopic pannus adjacent to the ulcer were seeen in simple corneal ulcers. Progressive pannus with pronounced fluorescein leakage was observed in chronic corneal ulcer, disciform keratitis, Mooren's ulcer, and complicated acute keratoconus. In sclerokeratouveitis and in gutter associated with rheumatoid arthritis the corneal vessels showed less leakage. The iris vessels showed fluorescein leakage as a sign of irritative iritis during the active stage of simple and chronic corneal ulcers, in disciform keratitis, Mooren's ulcer, and in graft rejection. It is concluded that anterior segment fluorescein angiography gives valuable information of the vascular architecture, flow and leakage in inflammatory diseases of the cornea.

  12. Inflammatory myofibroblastic tumour of liver masquerading as hilar cholangiocarcinoma

    PubMed Central

    Subash, R; Arunkumar, ML; Iyoob, VA; Bonny, N

    2011-01-01

    There is a wide variety of inflammatory and benign neoplastic disorders of the biliary system that mimic cholangiocarcinoma in terms of clinical manifestations and imaging findings. Inflammatory myofibroblastic tumour of the bilary tract is one such condition, which is extremely rare but benign. Like cholangiocarcinoma this condition presents as painless progressive obstructive jaundice and it is often difficult to differentiate between the two prior to laparotomy, with the usual investigative modalities. Diagnosis is usually established by the characteristic histopathology findings in biopsy specimen. Newer diagnostic modalities directed at obtaining preoperative biopsy of the lesion appear promising in differentiating benign from malignant biliary lesions, but their routine use is yet to become standardised. Until then, awareness of doctors about the existence of such benign entities might prompt a less aggressive treatment approach while dealing with atypical hilar lesions of liver. PMID:24950398

  13. Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments.

    PubMed

    Liu, Allan Yi; Zheng, Hong; Ouyang, Gaoliang

    2014-07-01

    The behavior and fate of cells in tissues largely rely upon their cross-talk with the tissue microenvironment including neighboring cells, the extracellular matrix (ECM), and soluble cues from the local and systemic environments. Dysregulation of tissue microenvironment can drive various inflammatory diseases and tumors. The ECM is a crucial component of tissue microenvironment. ECM proteins can not only modulate tissue microenvironment but also regulate the behavior of surrounding cells and the homeostasis of tissues. As a nonstructural ECM protein, periostin is generally present at low levels in most adult tissues; however, periostin is often highly expressed at sites of injury or inflammation and in tumors within adult organisms. Current evidence demonstrates that periostin actively contributes to tissue injury, inflammation, fibrosis and tumor progression. Here, we summarize the roles of periostin in inflammatory and tumor microenvironments.

  14. Inflammatory Bowel Disease (IBD) and Pregnancy

    MedlinePlus

    ... Inflammatory Bowel Disease? Inflammatory bowel disease (IBD) includes Crohn’s disease (CD) and ulcerative colitis (UC). Symptoms include abdominal ... become pregnant? Women with ulcerative colitis and inactive Crohn’s disease are as likely to become pregnant as women ...

  15. Pelvic Inflammatory Disease (PID) Treatment and Care

    MedlinePlus

    ... Herpes Gonorrhea Hepatitis HIV/AIDS & STDs Human Papillomavirus (HPV) Pelvic Inflammatory Disease ... is pelvic inflammatory disease treated? Several types of antibiotics can cure PID. Antibiotic treatment does not, however, reverse any ...

  16. Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis

    PubMed Central

    Lu, Ching-Hua; Allen, Kezia; Oei, Felicia; Leoni, Emanuela; Kuhle, Jens; Tree, Timothy; Fratta, Pietro; Sharma, Nikhil; Sidle, Katie; Howard, Robin; Orrell, Richard; Fish, Mark; Greensmith, Linda; Pearce, Neil; Gallo, Valentina

    2016-01-01

    Objective: To evaluate the combined blood expression of neuromuscular and inflammatory biomarkers as predictors of disease progression and prognosis in amyotrophic lateral sclerosis (ALS). Methods: Logistic regression adjusted for markers of the systemic inflammatory state and principal component analysis were carried out on plasma levels of creatine kinase (CK), ferritin, and 11 cytokines measured in 95 patients with ALS and 88 healthy controls. Levels of circulating biomarkers were used to study survival by Cox regression analysis and correlated with disease progression and neurofilament light chain (NfL) levels available from a previous study. Cytokines expression was also tested in blood samples longitudinally collected for up to 4 years from 59 patients with ALS. Results: Significantly higher levels of CK, ferritin, tumor necrosis factor (TNF)–α, and interleukin (IL)–1β, IL-2, IL-8, IL-12p70, IL-4, IL-5, IL-10, and IL-13 and lower levels of interferon (IFN)–γ were found in plasma samples from patients with ALS compared to controls. IL-6, TNF-α, and IFN-γ were the most highly regulated markers when all explanatory variables were jointly analyzed. High ferritin and IL-2 levels were predictors of poor survival. IL-5 levels were positively correlated with CK, as was TNF-α with NfL. IL-6 was strongly associated with CRP levels and was the only marker showing increasing expression towards end-stage disease in the longitudinal analysis. Conclusions: Neuromuscular pathology in ALS involves the systemic regulation of inflammatory markers mostly active on T-cell immune responses. Disease stratification based on the prognostic value of circulating inflammatory markers could improve clinical trials design in ALS. PMID:27308305

  17. 9 CFR 381.86 - Inflammatory processes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Inflammatory processes. 381.86 Section... Carcasses and Parts § 381.86 Inflammatory processes. Any organ or other part of a carcass which is affected by an inflammatory process shall be condemned and, if there is evidence of general...

  18. Modeling the effects of systemic mediators on the inflammatory phase of wound healing.

    PubMed

    Cooper, Racheal L; Segal, Rebecca A; Diegelmann, Robert F; Reynolds, Angela M

    2015-02-21

    The normal wound healing response is characterized by a progression from clot formation, to an inflammatory phase, to a repair phase, and finally, to remodeling. In many chronic wounds there is an extended inflammatory phase that stops this progression. In order to understand the inflammatory phase in more detail, we developed an ordinary differential equation model that accounts for two systemic mediators that are known to modulate this phase, estrogen (a protective hormone during wound healing) and cortisol (a hormone elevated after trauma that slows healing). This model describes the interactions in the wound between wound debris, pathogens, neutrophils and macrophages and the modulation of these interactions by estrogen and cortisol. A collection of parameter sets, which qualitatively match published data on the dynamics of wound healing, was chosen using Latin Hypercube Sampling. This collection of parameter sets represents normal healing in the population as a whole better than one single parameter set. Including the effects of estrogen and cortisol is a necessary step to creating a patient specific model that accounts for gender and trauma. Utilization of math modeling techniques to better understand the wound healing inflammatory phase could lead to new therapeutic strategies for the treatment of chronic wounds. This inflammatory phase model will later become the inflammatory subsystem of our full wound healing model, which includes fibroblast activity, collagen accumulation and remodeling. PMID:25446708

  19. Diet and Inflammatory Bowel Disease.

    PubMed

    Knight-Sepulveda, Karina; Kais, Susan; Santaolalla, Rebeca; Abreu, Maria T

    2015-08-01

    Patients with inflammatory bowel disease (IBD) are increasingly becoming interested in nonpharmacologic approaches to managing their disease. One of the most frequently asked questions of IBD patients is what they should eat. The role of diet has become very important in the prevention and treatment of IBD. Although there is a general lack of rigorous scientific evidence that demonstrates which diet is best for certain patients, several diets-such as the low-fermentable oligosaccharide, disaccharide, monosaccharide, and polyol diet; the specific carbohydrate diet; the anti-inflammatory diet; and the Paleolithic diet-have become popular. This article discusses the diets commonly recommended to IBD patients and reviews the supporting data. PMID:27118948

  20. Diet and Inflammatory Bowel Disease

    PubMed Central

    Knight-Sepulveda, Karina; Kais, Susan; Santaolalla, Rebeca

    2015-01-01

    Patients with inflammatory bowel disease (IBD) are increasingly becoming interested in nonpharmacologic approaches to managing their disease. One of the most frequently asked questions of IBD patients is what they should eat. The role of diet has become very important in the prevention and treatment of IBD. Although there is a general lack of rigorous scientific evidence that demonstrates which diet is best for certain patients, several diets—such as the low-fermentable oligosaccharide, disaccharide, monosaccharide, and polyol diet; the specific carbohydrate diet; the anti-inflammatory diet; and the Paleolithic diet—have become popular. This article discusses the diets commonly recommended to IBD patients and reviews the supporting data. PMID:27118948

  1. Costs in inflammatory bowel diseases

    PubMed Central

    Witczak, Izabela

    2016-01-01

    Variables influencing total direct medical costs in inflammatory bowel diseases include country, diagnosis (generally, patients with Crohn's disease generated higher costs compared with patients with ulcerative colitis), and year since diagnosis. In all studies the mean costs were higher than the median costs, which indicates that a relatively small group of the most severely ill patients significantly affect the total cost of treatment of these diseases. A major component of direct medical costs was attributed to hospitalisation, ranging from 49% to 80% of the total. The costs of surgery constituted 40–61% of inpatient costs. Indirect costs in inflammatory bowel diseases, unappreciated and often underestimated (considered by few authors and as a loss of work), are in fact important and may even exceed direct medical costs. PMID:27110304

  2. Inflammatory breast cancer: an overview.

    PubMed

    van Uden, D J P; van Laarhoven, H W M; Westenberg, A H; de Wilt, J H W; Blanken-Peeters, C F J M

    2015-02-01

    Inflammatory breast cancer (IBC) is the most aggressive entity of breast cancer. Management involves coordination of multidisciplinary management and usually includes neoadjuvant chemotherapy, ablative surgery if a tumor-free resection margin is expected and locoregional radiotherapy. This multimodal therapeutic approach has significantly improved patient survival. However, the median overall survival among women with IBC is still poor. By elucidating the biologic characteristics of IBC, new treatment options may become available. We performed a comprehensive review of the English-language literature on IBC through computerized literature searches. The objective of the current review is to present an overview of the literature related to the biology, imaging and multidisciplinary treatment of inflammatory breast cancer.

  3. Lung xenotransplantation: recent progress and current status.

    PubMed

    Harris, Donald G; Quinn, Kevin J; Dahi, Siamak; Burdorf, Lars; Azimzadeh, Agnes M; Pierson, Richard N

    2014-01-01

    Xenotransplantation has undergone important progress in controlling initial hyperacute rejection in many preclinical models, with some cell, tissue, and organ xenografts advancing toward clinical trials. However, acute injury, driven primarily by innate immune and inflammatory responses, continues to limit results in lung xenograft models. The purpose of this article is to review the current status of lung xenotransplantation--including the seemingly unique challenges posed by this organ-and summarize proven and emerging means of overcoming acute lung xenograft injury.

  4. The choroid plexus response to a repeated peripheral inflammatory stimulus

    PubMed Central

    2009-01-01

    Background Chronic systemic inflammation triggers alterations in the central nervous system that may relate to the underlying inflammatory component reported in neurodegenerative disorders such as multiple sclerosis and Alzheimer's disease. However, it is far from being understood whether and how peripheral inflammation contributes to induce brain inflammatory response in such illnesses. As part of the barriers that separate the blood from the brain, the choroid plexus conveys inflammatory immune signals into the brain, largely through alterations in the composition of the cerebrospinal fluid. Results In the present study we investigated the mouse choroid plexus gene expression profile, using microarray analyses, in response to a repeated inflammatory stimulus induced by the intraperitoneal administration of lipopolysaccharide every two weeks for a period of three months; mice were sacrificed 3 and 15 days after the last lipopolysaccharide injection. The data show that the choroid plexus displays a sustained response to the repeated inflammatory stimuli by altering the expression profile of several genes. From a total of 24,000 probes, 369 are up-regulated and 167 are down-regulated 3 days after the last lipopolysaccharide injection, while at 15 days the number decreases to 98 and 128, respectively. The pathways displaying the most significant changes include those facilitating entry of cells into the cerebrospinal fluid, and those participating in the innate immune response to infection. Conclusion These observations contribute to a better understanding of the brain response to peripheral inflammation and pave the way to study their impact on the progression of several disorders of the central nervous system in which inflammation is known to be implicated. PMID:19922669

  5. Associations between periodontitis and systemic inflammatory diseases: response to treatment.

    PubMed

    El-Shinnawi, Una; Soory, Mena

    2013-09-01

    There is a significant prevalence of subjects with periodontitis presenting with other inflammatory conditions such as coronary heart disease, insulin resistance and arthritis. This pattern of disease presentation underscores the importance of inflammatory loading from chronic diseases, in driving their pathogeneses in a multidirectional manner. Pro-inflammatory cytokines and other agents play an important role in this process; for example, a single nucleotide polymorphism of the TNF-α gene is associated with significant periodontal attachment loss in patients with coronary heart disease. Changes in gene expression associated with inflammation and lipid metabolism in response to oral infection with the periodontal pathogen Porphyromonas gingivalis (Pg) have been demonstrated in mouse models, independent of the demonstration of atherosclerotic lesions. Insulin resistance is considered to be a chronic low-grade inflammatory condition, associated with altered glucose tolerance, hypertriglyceridemia, central obesity and coronary heart disease. It is accompanied by elevated levels of IL-1, IL-6 and TNF-α also relevant to the progression of periodontitis. There is evidence that uncontrolled periodontal disease contributes to maintenance of systemic diseases, including rheumatoid arthritis (RA), with increased risk of periodontitis in subjects with RA. The periodontal pathogen Pg is significant in contributing to citrullination of proteins resulting in immune dysregulation and autoimmune responses, seen in RA. However, they are both multifactorial chronic diseases with complex etiopathogeneses that affect their presentation. Consistent but weak associations are seen for surrogate markers of periodontitis such as tooth loss, with multiple systemic conditions. Effective treatment of periodontitis would be important in reducing systemic inflammatory loading from chronic local inflammation and in achieving systemic health. Lack of a consistent cause and effect relationship

  6. Inflammatory diseases modelling in zebrafish

    PubMed Central

    Morales Fénero, Camila Idelí; Colombo Flores, Alicia Angelina; Câmara, Niels Olsen Saraiva

    2016-01-01

    The ingest of diets with high content of fats and carbohydrates, low or no physical exercise and a stressful routine are part of the everyday lifestyle of most people in the western world. These conditions are triggers for different diseases with complex interactions between the host genetics, the metabolism, the immune system and the microbiota, including inflammatory bowel diseases (IBD), obesity and diabetes. The incidence of these disorders is growing worldwide; therefore, new strategies for its study are needed. Nowadays, the majority of researches are in use of murine models for understand the genetics, physiopathology and interaction between cells and signaling pathways to find therapeutic solutions to these diseases. The zebrafish, a little tropical water fish, shares 70% of our genes and conserves anatomic and physiological characteristics, as well as metabolical pathways, with mammals, and is rising as a new complementary model for the study of metabolic and inflammatory diseases. Its high fecundity, fast development, transparency, versatility and low cost of maintenance makes the zebrafish an interesting option for new researches. In this review, we offer a discussion of the existing genetic and induced zebrafish models of two important Western diseases that have a strong inflammatory component, the IBD and the obesity. PMID:26929916

  7. [Inflammatory Bowel Disease Competence Network].

    PubMed

    Schreiber, Stefan; Hartmann, Heinz; Kruis, Wolfgang; Kucharzik, Torsten; Mudter, Jonas; Siegmund, Britta; Stallmach, Andreas; Witte, Christine; Fitzke, Klaus; Bokemeyer, Bernd

    2016-04-01

    The Inflammatory Bowel Disease Competence Network is a network of more than 500 physicians and scientists from university clinics, hospitals and gastroenterology practices. The focus extends from the two major forms of inflammatory bowel diseases, Crohn's disease and ulcerative colitis, into other chronic inflammatory conditions affecting the intestine, including coeliac disease and microscopic colitis. The network translates basic science discoveries (in particular in the molecular epidemiology research) into innovative diagnostics and therapy. Through its strong networking structures it supports a continuous process to improve quality and standardisation in patient care that is implemented in close interaction with European networks addressing this disease group.Optimisation of patient care based on scientifically proven evidence is a main focus of the network. Therefore, it supports and coordinates translational research and infrastructure projects that investigate aetiology, improvement of diagnostic methods, and development of new or improved use of established therapies. Members participate in various training projects, thus ensuring the rapid transfer of research results into clinical practice.The competence network cooperates with the main patient organisations to engage patients in all levels of activities. The network and the patient organisations have interest in promoting public awareness about the disease entities, because their importance and burden is underestimated in non-specialised medical fields and among the general public.

  8. Quality Improvement in Inflammatory Bowel Disease

    PubMed Central

    Siegel, Corey A.

    2013-01-01

    Chronic illnesses such as inflammatory bowel disease (IBD) present a unique opportunity to define and improve the quality of care. Processes of care can be complex, and outcomes of care may vary across different healthcare delivery settings. Patients with IBD are managed over long periods of time and often by the same physician within a single care delivery system. Both patients with Crohn’s disease and ulcerative colitis have variable courses of disease progression that require changes in therapy over time. These factors necessitate multiple areas of potential assessment and improvement of processes and outcomes of care. A current initiative is the development of quality measures. The American Gastroenterological Association has developed accountability measures for the Physician Quality Reporting System, and the Crohn’s and Colitis Foundation of America has developed a set of top 10 recommended processes and outcomes of measurement for high-quality care of patients with IBD. In addition, the pediatric ImproveCareNow collaborative network has collected improvement data from dozens of pediatric centers over the past 5 years and has demonstrated improvement in overall disease activity in their cohort through iterative quality improvement processes. Future directions for quality indicators for adults with IBD will involve implementation of quality-measure reporting, both for purposes of reimbursement as well as improvement of care. These strategies will need to be closely monitored to evaluate the effect of improvement programs on outcomes. PMID:23943663

  9. Transjugular Portal Venous Stenting in Inflammatory Extrahepatic Portal Vein Stenosis

    SciTech Connect

    Schaible, Rolf; Textor, Jochen; Decker, Pan; Strunk, Holger; Schild, Hans

    2002-12-15

    We report the case of a 37-year-old man with necrotizing pancreatitis associated with inflammatory extrahepatic portal vein stenosis and progressive ascites. Four months after the acute onset, when no signs of infection were present, portal decompression was performed to treat refractory ascites. Transjugulartranshepatic venoplasty failed to dilate the stenosis in the extrahepatic portion of the portal vein sufficiently. Therefore a Wallstent was implanted, resulting in almost normal diameter of the vessel. In follow-up imaging studies the stent and the portal vein were still patent 12 months after the intervention and total resolution of the ascites was observed.

  10. Microbiota regulation of inflammatory bowel disease and colorectal cancer

    PubMed Central

    Liu, Zhanju; Cao, Anthony T.; Cong, Yingzi

    2013-01-01

    The host and microbiota have evolved mechanisms for coexistence over millions of years. Accumulating evidence indicates that a dynamic mutualism between the host and the commensal microbiota has important implications for health, and microbial colonization contributes to the maintenance of intestinal immune homeostasis. However, alterations in communication between the mucosal immune system and gut microbial communities have been implicated as the core defect that leads to chronic intestinal inflammation and cancer development. We will discuss the recent progress on how gut microbiota regulates intestinal homeostasis and the pathogenesis of inflammatory bowel disease and colorectal cancer. PMID:24071482

  11. Child neurology: chronic inflammatory demyelinating polyradiculoneuropathy in children.

    PubMed

    Markowitz, Jennifer A; Jeste, Shafali S; Kang, Peter B

    2008-12-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an autoimmune disorder characterized by patchy demyelination of nerve roots and distal nerves. The course may be monophasic progressive or relapsing-remitting. CIDP is less common in children than in adults. As in adults, children with CIDP present with proximal and distal weakness and loss of deep tendon reflexes. Children are most often brought to medical attention due to gait disturbance and falling. As in adults, immunomodulatory treatment is the mainstay of therapy. Based on the small number of case series available, children with CIDP seem have a more favorable long-term course than adults.

  12. Inflammatory Biomarkers Profile as Microenvironmental Expression in Keratoconus.

    PubMed

    Ionescu, Catalina; Corbu, Catalina Gabriela; Tanase, Cristiana; Jonescu-Cuypers, Christian; Nicula, Cristina; Dascalescu, Dana; Cristea, Miruna; Voinea, Liliana-Mary

    2016-01-01

    Keratoconus is a degenerative disorder with progressive stromal thinning and transformation of the normal corneal architecture towards ectasia that results in decreased vision due to irregular astigmatism and irreversible tissue scarring. The pathogenesis of keratoconus still remains unclear. Hypotheses that this condition has an inflammatory etiopathogenetic component apart from the genetic and environmental factors are beginning to escalate in the research domain. This paper covers the most relevant and recent published papers regarding the biomarkers of inflammation, their signaling pathway, and the potentially new therapeutic options in keratoconus. PMID:27563164

  13. Inflammatory Biomarkers Profile as Microenvironmental Expression in Keratoconus

    PubMed Central

    Jonescu-Cuypers, Christian; Nicula, Cristina; Voinea, Liliana-Mary

    2016-01-01

    Keratoconus is a degenerative disorder with progressive stromal thinning and transformation of the normal corneal architecture towards ectasia that results in decreased vision due to irregular astigmatism and irreversible tissue scarring. The pathogenesis of keratoconus still remains unclear. Hypotheses that this condition has an inflammatory etiopathogenetic component apart from the genetic and environmental factors are beginning to escalate in the research domain. This paper covers the most relevant and recent published papers regarding the biomarkers of inflammation, their signaling pathway, and the potentially new therapeutic options in keratoconus. PMID:27563164

  14. [Αnti-Inflammatory medication as adjunctive antidepressive treatment].

    PubMed

    Boufidou, F; Nikolaou, C

    2016-01-01

    Mounting data of evidence that have emerged during the last twenty years, point towards the existence of an inflammatory mechanism underlying the pathophysiology of depressive disorder. These data have inspired a number of clinical studies characterized by the administration of inflammatory response altering medication in addition to conventional medication in depressive disorder patients. The drugs were either Non Steroid Anti-inflammatory Drugs (NSAIDs) or Tumor Necrosis Factor-alpha (TNFa) inhibitors and were selected among those that are already in use for various diseases related to the immune system. The choice of these specific immunomodulatory agents for the co-administration with conventional antidepressive medication was based on a number of laboratory data and clinical evidence. A total of seven relevant clinical trials have been conducted, all of them with promising results that have been published between 2006 and 2013. However, only four out of them were eligibly designed regarding the homogeneity of the study groups, randomization, double-blinding and placebo controlling. These three studies showed clinical advantages of the adjunctive medication as estimated by significant drops in Hamilton scores. Of interest are the findings of the most recent and largest clinical trial of the TNF-a antagonist infliximab which show that treatment with anti-inflammatory agents may be beneficial only in depressive patients with raised levels of baseline inflammatory markers. A limitation of the studies was that, since no guidelines currently exist for anti-inflammatory agents and depression, adjunctive medication could have been under or overdosed. Other limitations were the follow-up period that was rather small and the number of the participants that was also small. Recently, a lot of progress has been made in identifying therapeutic targets along metabolic pathways in the brain relevant to depression, which could be manipulated by immune mediators. In fact

  15. Elevated immune-inflammatory signaling in mood disorders: a new therapeutic target?

    PubMed Central

    McNamara, Robert K; Lotrich, Francis E

    2012-01-01

    Converging translational evidence has implicated elevated immune-inflammatory signaling activity in the pathoetiology of mood disorders, including major depressive disorder and bipolar disorder. This is supported in part by cross-sectional evidence for increased levels of proinflammatory eicosanoids, cytokines and acute-phase proteins during mood episodes, and prospective longitudinal evidence for the emergence of mood symptoms in response to chronic immune-inflammatory activation. In addition, mood-stabilizer and atypical antipsychotic medications downregulate initial components of the immune-inflammatory signaling pathway, and adjunctive treatment with anti-inflammatory agents augment the therapeutic efficacy of antidepressant, mood stabilizer and atypical antipsychotic medications. Potential pathogenic mechanisms linked with elevated immune-inflammatory signaling include perturbations in central serotonin neurotransmission and progressive white matter pathology. Both heritable genetic factors and environmental factors including dietary fatty-acid composition may act in concert to sustain elevated immune-inflammatory signaling. Collectively, these data suggest that elevated immune-inflammatory signaling is a mechanism that is relevant to the pathoetiology of mood disorders, and may therefore represent a new therapeutic target for the development of more effective treatments. PMID:23039393

  16. Poly(NIPAm-AMPS) nanoparticles for targeted delivery of anti-inflammatory cell penetrating peptides

    NASA Astrophysics Data System (ADS)

    Bartlett, Rush Lloyd, II

    Inflammatory diseases such as osteoarthritis and rheumatoid arthritis cause $127.8 billion in US healthcare expenditures each year and are the cause of disability for 27% of disabled persons in the United States. Current treatment options rarely halt disease progression and often result in significant unwanted and debilitating side effects. Our laboratory has previously developed a family of cell penetrating peptides (CPPs) which inhibit the activity of mitogen activated protein kinase activate protein kinase 2 (MK2). MK2 mediates the inflammatory response by activating Tristetraprline (TTP). Once activated, TTP rapidly stabilizes AU rich regions of pro-inflammatory cytokine mRNA which allows translation of pro-inflammatory cytokines to occur. Blocking MK2 with our labs CPPs yields a decrease in inflammatory activity but CPPs by are highly non specific and prone to rapid enzymatic degradation in vivo.. In order to increase the potency of MK2 inhibiting CPPs we have developed a novel nanoparticle drug carrier composed of poly(N-isopropylacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid). This drug carrier has been shown to have preliminary efficacy in vitro and ex vivo for suppressing pro-inflammatory cytokine production when releasing CPPs. This thesis will present progress made on three aims: Specific Aim 1) Create and validate a NIPAm based drug delivery system that mimics the binding and release previously observed between cell penetrating peptides and glycosaminoglycans. Specific Aim 2) Engineer degradability into poly(NIPAm-AMPS) nanoparticles to enable more drug to be released and qualify that system in vitro. Specific Aim 3) Validate poly(NIPAm-AMPS) nanoparticles for targeted drug delivery in an ex vivo inflammatory model. Overall we have developed a novel anionic nanoparticle system that is biocompatible and efficient at loading and releasing cell penetrating peptides to inflamed tissue. Once loaded with a CPP the nanoparticle drug complex is

  17. Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both.

    PubMed

    Koschmieder, S; Mughal, T I; Hasselbalch, H C; Barosi, G; Valent, P; Kiladjian, J-J; Jeryczynski, G; Gisslinger, H; Jutzi, J S; Pahl, H L; Hehlmann, R; Maria Vannucchi, A; Cervantes, F; Silver, R T; Barbui, T

    2016-05-01

    The Philadelphia-negative myeloproliferative neoplasms (MPNs) are clonal disorders involving hematopoietic stem and progenitor cells and are associated with myeloproliferation, splenomegaly and constitutional symptoms. Similar signs and symptoms can also be found in patients with chronic inflammatory diseases, and inflammatory processes have been found to play an important role in the pathogenesis and progression of MPNs. Signal transduction pathways involving JAK1, JAK2, STAT3 and STAT5 are causally involved in driving both the malignant cells and the inflammatory process. Moreover, anti-inflammatory and immune-modulating drugs have been used successfully in the treatment of MPNs. However, to date, many unresoved issues remain. These include the role of somatic mutations that are present in addition to JAK2V617F, CALR and MPL W515 mutations, the interdependency of malignant and nonmalignant cells and the means to eradicate MPN-initiating and -maintaining cells. It is imperative for successful therapeutic approaches to define whether the malignant clone or the inflammatory cells or both should be targeted. The present review will cover three aspects of the role of inflammation in MPNs: inflammatory states as important differential diagnoses in cases of suspected MPN (that is, in the absence of a clonal marker), the role of inflammation in MPN pathogenesis and progression and the use of anti-inflammatory drugs for MPNs. The findings emphasize the need to separate the inflammatory processes from the malignancy in order to improve our understanding of the pathogenesis, diagnosis and treatment of patients with Philadelphia-negative MPNs. PMID:26854026

  18. Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both.

    PubMed

    Koschmieder, S; Mughal, T I; Hasselbalch, H C; Barosi, G; Valent, P; Kiladjian, J-J; Jeryczynski, G; Gisslinger, H; Jutzi, J S; Pahl, H L; Hehlmann, R; Maria Vannucchi, A; Cervantes, F; Silver, R T; Barbui, T

    2016-05-01

    The Philadelphia-negative myeloproliferative neoplasms (MPNs) are clonal disorders involving hematopoietic stem and progenitor cells and are associated with myeloproliferation, splenomegaly and constitutional symptoms. Similar signs and symptoms can also be found in patients with chronic inflammatory diseases, and inflammatory processes have been found to play an important role in the pathogenesis and progression of MPNs. Signal transduction pathways involving JAK1, JAK2, STAT3 and STAT5 are causally involved in driving both the malignant cells and the inflammatory process. Moreover, anti-inflammatory and immune-modulating drugs have been used successfully in the treatment of MPNs. However, to date, many unresoved issues remain. These include the role of somatic mutations that are present in addition to JAK2V617F, CALR and MPL W515 mutations, the interdependency of malignant and nonmalignant cells and the means to eradicate MPN-initiating and -maintaining cells. It is imperative for successful therapeutic approaches to define whether the malignant clone or the inflammatory cells or both should be targeted. The present review will cover three aspects of the role of inflammation in MPNs: inflammatory states as important differential diagnoses in cases of suspected MPN (that is, in the absence of a clonal marker), the role of inflammation in MPN pathogenesis and progression and the use of anti-inflammatory drugs for MPNs. The findings emphasize the need to separate the inflammatory processes from the malignancy in order to improve our understanding of the pathogenesis, diagnosis and treatment of patients with Philadelphia-negative MPNs.

  19. Stop chronic kidney disease progression: Time is approaching

    PubMed Central

    Sharaf El Din, Usama Abdel Azim; Salem, Mona Mansour; Abdulazim, Dina Ossama

    2016-01-01

    Progression of chronic kidney disease (CKD) is inevitable. However, the last decade has witnessed tremendous achievements in this field. Today we are optimistic; the dream of withholding this progression is about to be realistic. The recent discoveries in the field of CKD management involved most of the individual diseases leading the patients to end-stage renal disease. Most of these advances involved patients suffering diabetic kidney disease, chronic glomerulonephritis, polycystic kidney disease, renal amyloidosis and chronic tubulointerstitial disease. The chronic systemic inflammatory status and increased oxidative stress were also investigated. This inflammatory status influences the anti-senescence Klotho gene expression. The role of Klotho in CKD progression together with its therapeutic value are explored. The role of gut as a major source of inflammation, the pathogenesis of intestinal mucosal barrier damage, the role of intestinal alkaline phosphatase and the dietary and therapeutic implications add a novel therapeutic tool to delay CKD progression. PMID:27152262

  20. Stop chronic kidney disease progression: Time is approaching.

    PubMed

    Sharaf El Din, Usama Abdel Azim; Salem, Mona Mansour; Abdulazim, Dina Ossama

    2016-05-01

    Progression of chronic kidney disease (CKD) is inevitable. However, the last decade has witnessed tremendous achievements in this field. Today we are optimistic; the dream of withholding this progression is about to be realistic. The recent discoveries in the field of CKD management involved most of the individual diseases leading the patients to end-stage renal disease. Most of these advances involved patients suffering diabetic kidney disease, chronic glomerulonephritis, polycystic kidney disease, renal amyloidosis and chronic tubulointerstitial disease. The chronic systemic inflammatory status and increased oxidative stress were also investigated. This inflammatory status influences the anti-senescence Klotho gene expression. The role of Klotho in CKD progression together with its therapeutic value are explored. The role of gut as a major source of inflammation, the pathogenesis of intestinal mucosal barrier damage, the role of intestinal alkaline phosphatase and the dietary and therapeutic implications add a novel therapeutic tool to delay CKD progression. PMID:27152262

  1. B cells and antibodies in progressive multiple sclerosis: Contribution to neurodegeneration and progression.

    PubMed

    Fraussen, Judith; de Bock, Laura; Somers, Veerle

    2016-09-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination, axonal degeneration and gliosis. The progressive form of MS is an important research topic as not much is known about its underlying mechanisms and no therapy is available. Although progressive MS is traditionally considered to be driven by neurodegeneration, compartmentalized CNS inflammation is currently accepted as one of the driving processes behind neurodegeneration and progression. In this review, the involvement of B cells and antibodies in progressive MS is discussed. The identification of meningeal ectopic B cell follicles in secondary progressive MS (SPMS) patients and the successful use of B cell-depleting therapy in primary progressive MS (PPMS) patients have underlined the importance of B cells in progressive MS. Proof is also available for the role of antibodies in neurodegeneration and progression in MS. Here, oligoclonal immunoglobulin M (IgM) production and autoreactive antibodies are described, with a focus on antibodies directed against sperm-associated antigen 16 (SPAG16). Further research into the role of B cells and autoantibodies in MS progression can lead to novel prognostic and theranostic opportunities.

  2. Overview of inflammatory bowel disease.

    PubMed

    Myer, S A

    1984-03-01

    Ulcerative colitis and Crohn's disease have been on the increase in terms of incidence, prevalence, and virulence. The young adult population is affected most frequently and most severely. The cause of inflammatory bowel disease is unknown, but many misconceptions exist about its etiology. Nurses need to be familiar with the similarities and differences between the two illnesses, the treatment, and the prognosis in order to be effective care givers. Good health care can make a significant contribution to the quality of life the patient subsequently has. PMID:6560534

  3. [Inflammatory bowel disease and pregnancy].

    PubMed

    Parfenov, A I

    2012-01-01

    Inflammatory bowel disease (IBD) in pregnant women in their characteristics do not differ from general population, unless they had operations on the pelvic organs. Women with a first pregnancy, regardless of the activity of IBD have an increased risk of adverse pregnancy and high risk births. Most treatment methods are compatible with pregnancy and breastfeeding. Women affected by IBD should discuss their plans for pregnancy with the doctor first in order to know the possible dangers. Every patient in the IBD during pregnancy must be observed by a gastroenterologist, accoucheur and pediatrician to ensure peace of mother and child.

  4. The evolution of inflammatory mediators

    PubMed Central

    Rowley, Andrew F.

    1996-01-01

    Invertebrates do not display the level of sophistication in immune reactivity characteristic of mammals and other ‘higher’ vertebrates. Their great number and diversity of forms, however, reflect their evolutionary success and hence they must have effective mechanisms of defence to deal with parasites and pathogens and altered self tissues. Inflammation appears to be an important first line defence in all invertebrates and vertebrates. This brief review deals with the inflammatory responses of invertebrates and fish concentrating on the cell types involved and the mediators of inflammation, in particular, eicosanoids, cytokines and adhesion molecules. PMID:18475690

  5. PPARγ in Inflammatory Bowel Disease

    PubMed Central

    Annese, Vito; Rogai, Francesca; Settesoldi, Alessia; Bagnoli, Siro

    2012-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is member of a family of nuclear receptors that interacts with nuclear proteins acting as coactivators and corepressors. The colon is a major tissue which expresses PPARγ in epithelial cells and, to a lesser degree, in macrophages and lymphocytes and plays a role in the regulation of intestinal inflammation. Indeed, both natural and synthetic PPARγ ligands have beneficial effects in different models of experimental colitis, with possible implication in the therapy of inflammatory bowel disease (IBD). This paper will specifically focus on potential role of PPARγ in the predisposition and physiopathology of IBD and will analyze its possible role in medical therapy. PMID:22997506

  6. Inflammatory Mechanisms in Hidradenitis Suppurativa.

    PubMed

    Kelly, G; Prens, Errol P

    2016-01-01

    Hidradenitis suppurativa (HS) is a chronic relapsing disease of follicular occlusion that causes immense clinical and psychosocial morbidity when refractory to treatment. HS is no longer considered a disease of primary infectious etiology, although bacteria play a role. There is increasing evidence that HS is associated with immune dysregulation, based on its clinical association with other immune-mediated disorders, by its response to biologic therapy in the clinical arena, and from molecular research. This article summarizes what is known in relation to the inflammatory pathways in HS.

  7. [Approach to juxtarenal inflammatory aneurysms].

    PubMed

    Scuro, A; Barzaghi, M E; Griso, A; Ferrari Ruffino, S; Kontothanassis, D; Mirandola, M; Leonardi, G; D'Agata, M

    2004-01-01

    The incidence of inflammatory abdominal aortic aneurysm (IAAA) in a late review of the literature is estimated about 2-15% overall aortic aneurysms. In our data this type of aneurysm is 3.6 overall aortic aneurysms treated. In the majority of the cases, IAAA is juxtarenal or infrarenal. Ethiopathogenesis of IAAA till today is not certain. Recent hypothesis on IAAA attribute the same ethiopathogenesis in both atherosclerotic and inflammatory aneurysm. The interaction of genetic, environmental and infective factors should be able to determine an autoimmune inflammatory reaction of variable severity. 80% of the patients suffering from IAAA present abdominal or lumbar pain, loss of weight and increase of the RC sedimentation velocity. The IAAA's natural history goes to rupture. Entrapment of nearstanding organs totally involved in the fibrotic process is the most frequent complication. Usually there is a compression of the ureter and the duodenum with consequenced hydroureteronephrosis and bowel obstruction. Preoperative diagnosis is possible; CT scan and MRI guarantee and accuracy about 90%. Intraoperatively the external wall of IAAA appears whitish and translucent and always there are tenacious adhesion given by the avventital wounds inflammation. Confirm is given by the histological examination of the aneurysmatic wall and peravventitial tissues. Our experience and a late review of the literature concorde that surgical indication for the treatment of IAAA is the same for the atherosclerotic one. This conviction is supported by the fact that the diagnostic methodical evolution and the improvement in mininvasive surgical technique lowered perioperating morbility and mortaliy. We prefer, according with many authors, retroperitoneal approach to juxtarenal IAAA, instead of standardized transperitoneal access with xifo-pubical or transversal under costal incision. This approach offers some advantages as easier exposition of aorta, whose postero-lateral wall is hardly ever

  8. Longitudinal study of circulating protein biomarkers in inflammatory bowel disease

    PubMed Central

    Viennois, Emilie; Baker, Mark T.; Xiao, Bo; Wang, Lixin; Laroui, Hamed; Merlin, Didier

    2014-01-01

    Inflammatory bowel diseases (IBD) are chronic and progressive inflammatory disorders of the gastrointestinal tract. In IBD, protein serological biomarkers could be relevant tools for assessing disease activity, performing early-stage diagnosis and managing the treatment. Using the interleukin-10 knockout (IL-10−/−) mouse, a model that develops a time-dependent IBD-like disorder that predominates in the colon; we performed longitudinal studies of circulating protein biomarkers in IBD. Circulating protein profiles in serum samples collected from 30-, 93-, and 135-day-old IL-10−/− mice were investigated using two-dimensional differential gel electrophoresis and MALDI TOF/TOF tandem mass spectrometry. A total of 15 different proteins were identified and confirmed by ELISA and Western blot to be differentially accumulated in serum samples from mid- to late-stage IL-10−/− mice compared to early non-inflamed IL-10−/− mice. The use of another model of colitis and an extra-intestinal inflammation model validated this biomarker panel and demonstrated that comprised some global inflammatory markers, some intestinal inflammation-specific markers and some chronic intestinal inflammation markers. Statistical analyses using misclassification error rate charts validated the use of these identified proteins as powerful biomarkers of colitis. Unlike standard biomarker screening studies, our analyses identified a panel of proteins that allowed the definition of protein signatures that reflect colitis status. PMID:25230104

  9. Spontaneous and transgenic rodent models of inflammatory bowel disease

    PubMed Central

    Jurjus, Abdo

    2015-01-01

    Inflammatory Bowel Disease (IBD) is a multifactorial disorder with many different putative influences mediating disease onset, severity, progression and diminution. Spontaneous natural IBD is classically expressed as Crohn's Disease (CD) and Ulcerative Colitis (UC) commonly found in primates; lymphoplasmocytic enteritis, eosinophilic gastritis and colitis, and ulcerative colitis with neuronal hyperplasia in dogs; and colitis in horses. Spontaneous inflammatory bowel disease has been noted in a number of rodent models which differ in genetic strain background, induced mutation, microbiota influences and immunopathogenic pathways. Histological lesions in Crohn's Disease feature noncaseating granulomatous inflammation while UC lesions typically exhibit ulceration, lamina propria inflammatory infiltrates and lack of granuloma development. Intestinal inflammation caused by CD and UC is also associated with increased incidence of intestinal neoplasia. Transgenic murine models have determined underlying etiological influences and appropriate therapeutic targets in IBD. This literature review will discuss current opinion and findings in spontaneous IBD, highlight selected transgenic rodent models of IBD and discuss their respective pathogenic mechanisms. It is very important to provide accommodation of induced putative deficits in activities of daily living and to assess discomfort and pain levels in the face of significant morbidity and/or mortality in these models. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis, and evaluating ways in which they influence disease expression represent potential investigative approaches with the greatest potential for new discoveries. PMID:26155200

  10. Inflammatory and atherosclerotic interactions in the depleted uremic patient.

    PubMed

    Stenvinkel, P

    2001-01-01

    Despite the improvements in dialysis technology, the cardiovascular mortality rate is still unacceptably high among dialysis patients. It is obvious that traditional risk factors, such as hypertension, chronic heart failure (CHF), dyslipidemia and diabetes mellitus, may account for a large part of the increased cardiovascular mortality rate in these patients. However, based on recent research it could be speculated that other, non-traditional risk factors might also contribute to the high cardiovascular mortality rate in dialysis patients. Chronic inflammation, as evidenced by increased levels of pro-inflammatory cytokines and C-reactive protein (CRP), is a common feature in dialysis patients and is associated with an increased cardiovascular morbidity and mortality. Indeed, elevated levels of pro-inflammatory cytokines (such as TNF-alpha, IL-1 and IL-6) may cause malnutrition and progressive atherosclerotic cardiovascular disease by several pathogenetic mechanisms, which will be discussed in this review. Based on the strong associations observed between malnutrition, inflammation and atherosclerosis in patients with chronic renal failure (CRF) we have proposed that these features constitute a specific syndrome (MIA), which carries a high mortality rate. As elevated levels of pro-inflammatory cytokines may play a central part in the vicious circle of malnutrition, inflammation and atherosclerosis, further research is needed to investigate whether or not different anti-cytokine treatment strategies may improve survival in dialysis patients.

  11. Inflammatory, immune, and viral aspects of inclusion-body myositis.

    PubMed

    Dalakas, Marinos C

    2006-01-24

    Muscle biopsies from patients with sporadic inclusion-body myositis (sIBM) consistently demonstrate that the inflammatory T cells almost invariably invade intact (not vacuolated) fibers, whereas the vacuolated fibers are rarely invaded by T cells. This indicates two concurrently ongoing processes, an autoimmune mediated by cytotoxic T cells and a degenerative manifested by the vacuolated muscle fibers and deposits of amyloid-related proteins. The autoimmune features of IBM are highlighted by the strong association of the disease with: a) HLA I, II antigens, in frequency identical to classic autoimmune diseases; b) other autoimmune disorders in up to 32% of the patients, autoantibodies, paraproteinemias, or immunodeficiency; c) HIV and HTLV-I infection with increasingly recognized frequency (up to 13 known cases); and d) antigen-specific, cytotoxic, and clonally expanded CD8+ autoinvasive T cells with rearranged T-cell receptor genes that persist over time, even in different muscles, and invade muscle fibers expressing MHC-I antigen and costimulatory molecules. In contrast to IBM, in various dystrophies the inflammatory cells are clonally diverse and the muscle fibers do not express MHC-I or costimulatory molecules in the pattern seen in IBM. Like other chronic autoimmune conditions with coexisting inflammatory and degenerative features (i.e., primary progressive MS), IBM is resistant to conventional immunotherapies. Recent data suggest that strong anti-T cell therapies can be promising and they are the focus of ongoing research.

  12. EDITORIAL: Catalysing progress Catalysing progress

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-01-01

    Examples of the merits of blue-sky research in the history of science are legion. The invention of the laser, celebrating its 50th anniversary this year, is an excellent example. When it was invented it was considered to be 'a solution waiting for a problem', and yet the level to which it has now infiltrated our day-to-day technological landscape speaks volumes. At the same time it is also true to say that the direction of research is also at times rightly influenced by the needs and concerns of the general public. Over recent years, growing concerns about the environment have had a noticeable effect on research in nanotechnology, motivating work on a range of topics from green nanomaterial synthesis [1] to high-efficiency solar cells [2] and hydrogen storage [3]. The impact of the world's energy consumption on the welfare of the planet is now an enduring and well founded concern. In the face of an instinctive reluctance to curtail habits of comfort and convenience and the appendages of culture and consumerism, research into renewable and more efficient energy sources seem an encouraging approach to alleviating an impending energy crisis. Fuel cells present one alternative to traditional combustion cells that have huge benefits in terms of the efficiency of energy conversion and the limited harmful emissions. In last week's issue of Nanotechnology, Chuan-Jian Zhong and colleagues at the State University of New York at Binghamton in the USA presented an overview of research on nanostructured catalysts in fuel cells [4]. The topical review includes insights into the interactions between nanoparticles and between nanoparticles and their substrate as well as control over the composition and nanostructure of catalysts. The review also serves to highlight how the flourishing of nanotechnology research has heralded great progress in the exploitation of catalysts with nanostructures ingeniously controlled to maximize surface area and optimize energetics for synthesis

  13. EDITORIAL: Catalysing progress Catalysing progress

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-01-01

    Examples of the merits of blue-sky research in the history of science are legion. The invention of the laser, celebrating its 50th anniversary this year, is an excellent example. When it was invented it was considered to be 'a solution waiting for a problem', and yet the level to which it has now infiltrated our day-to-day technological landscape speaks volumes. At the same time it is also true to say that the direction of research is also at times rightly influenced by the needs and concerns of the general public. Over recent years, growing concerns about the environment have had a noticeable effect on research in nanotechnology, motivating work on a range of topics from green nanomaterial synthesis [1] to high-efficiency solar cells [2] and hydrogen storage [3]. The impact of the world's energy consumption on the welfare of the planet is now an enduring and well founded concern. In the face of an instinctive reluctance to curtail habits of comfort and convenience and the appendages of culture and consumerism, research into renewable and more efficient energy sources seem an encouraging approach to alleviating an impending energy crisis. Fuel cells present one alternative to traditional combustion cells that have huge benefits in terms of the efficiency of energy conversion and the limited harmful emissions. In last week's issue of Nanotechnology, Chuan-Jian Zhong and colleagues at the State University of New York at Binghamton in the USA presented an overview of research on nanostructured catalysts in fuel cells [4]. The topical review includes insights into the interactions between nanoparticles and between nanoparticles and their substrate as well as control over the composition and nanostructure of catalysts. The review also serves to highlight how the flourishing of nanotechnology research has heralded great progress in the exploitation of catalysts with nanostructures ingeniously controlled to maximize surface area and optimize energetics for synthesis

  14. YKL-40/CHI3L1 drives inflammation on the road of tumor progression.

    PubMed

    Libreros, Stephania; Iragavarapu-Charyulu, Vijaya

    2015-12-01

    Inflammation plays a vital role at different stages of tumor progression. The development of tumors is affected by inflammatory mediators produced by the tumor and the host. YKL-40/chitinase-3-like-1 protein is often up-regulated in inflammation-associated diseases. With the use of chronic inflammatory disease systems, we describe the role of YKL-40/chitinase-3-like-1 protein in enhancing the inflammatory response and its implications in tumorigenesis. We also discuss how pre-existing inflammation enhances tumor growth and metastasis. In this mini-review, we highlight the effect of YKL-40/chitinase-3-like-1 protein-associated inflammation in promoting tumor progression. PMID:26310833

  15. [Role of HMGB1 in Inflammatory-mediated Injury Caused by Digestive System Diseases and Its Repair].

    PubMed

    Wang, Fucai; Xie, Yong

    2015-08-01

    High mobility group box 1 protein (HMGB1), a damage-associated molecular pattern, exists ubiquitously in the cells of mammals. It contributes to maintaining the structure of nucleosome and modulating transcription of gene in nuclei. Extracellular HMGB1 plays two-way roles in promoting inflammatory and tissue repair. Released actively as well as passively following cytokine stimulation during cell death, HMGB1 may act as a late inflammatory factor and an endogenous damage-associated molecular pattern recognized by its receptors. And it may mediate the occurrence, development and outcome of the inflammatory injury of digestive system diseases, such as gastric mucosal injury, inflammatory bowel-disease, liver injury, pancreatitis, and so on. This review mainly concerns the research progresses of HMGB1 in the inflammatory injury of digestive system diseases. At the same time, HMGB1 itself, or as a therapeutic target, can promote tissue repair.

  16. Anti-inflammatory Actions of Adjunctive Tetracyclines and Other Agents in Periodontitis and Associated Comorbidities

    PubMed Central

    Tilakaratne, Aruni; Soory, Mena

    2014-01-01

    The non-antimicrobial properties of tetracyclines such as anti-inflammatory, proanabolic and anti-catabolic actions make them effective pharmaceuticals for the adjunctive management of chronic inflammatory diseases. An over-exuberant inflammatory response to an antigenic trigger in periodontitis and other chronic inflammatory diseases could contribute to an autoimmune element in disease progression. Their adjunctive use in managing periodontitis could have beneficial effects in curbing excessive inflammatory loading from commonly associated comorbidities such as CHD, DM and arthritis. Actions of tetracyclines and their derivatives include interactions with MMPs, tissue inhibitors of MMPs, growth factors and cytokines. They affect the sequence of inflammation with implications on immunomodulation, cell proliferation and angiogenesis; these actions enhance their scope, in treating a range of disease entities. Non-antimicrobial chemically modified tetracyclines (CMTs) sustain their diverse actions in organ systems which include anti-inflammatory, anti-apoptotic, anti-proteolytic actions, inhibition of angiogenesis and tumor metastasis. A spectrum of biological actions in dermatitis, periodontitis, atherosclerosis, diabetes, arthritis, inflammatory bowel disease, malignancy and prevention of bone resorption is particularly relevant to minocycline. Experimental models of ischemia indicate their specific beneficial effects. Parallel molecules with similar functions, improved Zn binding and solubility have been developed for reducing excessive MMP activity. Curbing excessive MMP activity is particularly relevant to periodontitis, and comorbidities addressed here, where specificity is paramount. Unique actions of tetracyclines in a milieu of excessive inflammatory stimuli make them effective therapeutic adjuncts in the management of chronic inflammatory disorders. These beneficial actions of tetracyclines are relevant to the adjunctive management of periodontitis subjects

  17. MPNs as Inflammatory Diseases: The Evidence, Consequences, and Perspectives

    PubMed Central

    Hasselbalch, Hans Carl; Bjørn, Mads Emil

    2015-01-01

    In recent years the evidence is increasing that chronic inflammation may be an important driving force for clonal evolution and disease progression in the Philadelphia-negative myeloproliferative neoplasms (MPNs), essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF). Abnormal expression and activity of a number of proinflammatory cytokines are associated with MPNs, in particular MF, in which immune dysregulation is pronounced as evidenced by dysregulation of several immune and inflammation genes. In addition, chronic inflammation has been suggested to contribute to the development of premature atherosclerosis and may drive the development of other cancers in MPNs, both nonhematologic and hematologic. The MPN population has a substantial inflammation-mediated comorbidity burden. This review describes the evidence for considering the MPNs as inflammatory diseases, A Human Inflammation Model of Cancer Development, and the role of cytokines in disease initiation and progression. The consequences of this model are discussed, including the increased risk of second cancers and other inflammation-mediated diseases, emphasizing the urgent need for rethinking our therapeutic approach. Early intervention with interferon-alpha2, which as monotherapy has been shown to be able to induce minimal residual disease, in combination with potent anti-inflammatory agents such as JAK-inhibitors is foreseen as the most promising new treatment modality in the years to come. PMID:26604428

  18. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions.

  19. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions. PMID:26221780

  20. Development of Point of Care Testing Device for Neurovascular Coupling From Simultaneous Recording of EEG and NIRS During Anodal Transcranial Direct Current Stimulation

    PubMed Central

    Jindal, Utkarsh; Sood, Mehak; Dutta, Anirban; Chowdhury, Shubhajit Roy

    2015-01-01

    This paper presents a point of care testing device for neurovascular coupling (NVC) from simultaneous recording of electroencephalogram (EEG) and near infrared spectroscopy (NIRS) during anodal transcranial direct current stimulation (tDCS). Here, anodal tDCS modulated cortical neural activity leading to hemodynamic response can be used to identify the impaired cerebral microvessels functionality. The impairments in the cerebral microvessels functionality may lead to impairments in the cerebrovascular reactivity (CVR), where severely reduced CVR predicts the chances of transient ischemic attack and ipsilateral stroke. The neural and hemodynamic responses to anodal tDCS were studied through joint imaging with EEG and NIRS, where NIRS provided optical measurement of changes in tissue oxy-(\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$HbO2)$ \\end{document} and deoxy-(\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Hb$ \\end{document}) hemoglobin concentration and EEG captured alterations in the underlying neuronal current generators. Then, a cross-correlation method for the assessment of NVC underlying the site of anodal tDCS is presented. The feasibility studies on healthy subjects and stroke survivors showed detectable changes in the EEG and the NIRS responses to a 0.526 A/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\mathrm{m}^{2}$ \\end{document} of anodal tDCS. The NIRS system

  1. Chronic Calcium Channel Inhibitor Verapamil Antagonizes TNF-α-Mediated Inflammatory Reaction and Protects Against Inflammatory Arthritis in Mice.

    PubMed

    Wang, Wenhan; Li, Zhong; Meng, Qingjuan; Zhang, Pei; Yan, Pengcheng; Zhang, Zhenbiao; Zhang, Hao; Pan, Jingrui; Zhai, Yujia; Liu, Yaoge; Wang, Xiaokai; Li, Weiwei; Zhao, Yunpeng

    2016-10-01

    It is well established that the tumor necrosis factor-α (TNF-α) plays a dominant role in rheumatoid arthritis (RA). Calcium channel is recently reported to be closely associated with various inflammatory diseases. However, whether chronic calcium channel blocker verapamil plays a role in RA still remains unknown. To investigate the role of verapamil in antagonizing TNF-α-mediated inflammation reaction and the underlying mechanisms, bone marrow-derived macrophages (BMDM) cells were cultured with stimulation of TNF-α, in the presence or absence of verapamil. Inflammation-associated cytokines, including IL-1, IL-6, inducible nitric oxide synthase 2 (NOS-2), and cyclooxygenase-2 (COX-2), were assessed, and verapamil suppressed TNF-α-induced expression of inflammatory cytokines. Furthermore, collagen-induced arthritis (CIA) mice models were established, and arthritis progression was evaluated by clinical and histological signs of arthritis. Treatment of verapamil attenuated inflammation as well as joint destruction in arthritis models. In addition, activity of NF-kB signaling pathway was determined both in vitro and in mice arthritis models, and verapamil inhibited TNF-α-induced activation of NF-kB signaling both in vitro and in mice models. Collectively, chronic calcium channel blocker verapamil may shed light on treatment of inflammatory arthritis and provide a potential therapeutic instrument for RA in the future. PMID:27438468

  2. Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions

    PubMed Central

    2016-01-01

    Diabetic macular edema (DME) and diabetic retinopathy (DR) are complications affecting about 25% of all patients with long-standing type 1 and type 2 diabetes mellitus and are a major cause of significant decrease in vision and quality of life. Age-related macular degeneration (AMD) is not uncommon, and diabetes mellitus affects the incidence and progression of AMD through altering hemodynamics, increasing oxidative stress, accumulating advanced glycation end products, etc. Recent studies suggest that DME, DR and AMD are inflammatory conditions characterized by a breakdown of the blood-retinal barrier, inflammatory processes and an increase in vascular permeability. Key factors that seem to have a dominant role in DME, DR and AMD are angiotensin II, prostaglandins and the vascular endothelial growth factor and a deficiency of anti-inflammatory bioactive lipids. The imbalance between pro- and anti-inflammatory eicosanoids and enhanced production of pro-angiogenic factors may initiate the onset and progression of DME, DR and AMD. This implies that bioactive lipids that possess anti-inflammatory actions and suppress the production of angiogenic factors could be employed in the prevention and management of DME, DR and AMD.

  3. Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions

    PubMed Central

    2016-01-01

    Diabetic macular edema (DME) and diabetic retinopathy (DR) are complications affecting about 25% of all patients with long-standing type 1 and type 2 diabetes mellitus and are a major cause of significant decrease in vision and quality of life. Age-related macular degeneration (AMD) is not uncommon, and diabetes mellitus affects the incidence and progression of AMD through altering hemodynamics, increasing oxidative stress, accumulating advanced glycation end products, etc. Recent studies suggest that DME, DR and AMD are inflammatory conditions characterized by a breakdown of the blood-retinal barrier, inflammatory processes and an increase in vascular permeability. Key factors that seem to have a dominant role in DME, DR and AMD are angiotensin II, prostaglandins and the vascular endothelial growth factor and a deficiency of anti-inflammatory bioactive lipids. The imbalance between pro- and anti-inflammatory eicosanoids and enhanced production of pro-angiogenic factors may initiate the onset and progression of DME, DR and AMD. This implies that bioactive lipids that possess anti-inflammatory actions and suppress the production of angiogenic factors could be employed in the prevention and management of DME, DR and AMD. PMID:27695506

  4. NASH is an Inflammatory Disorder: Pathogenic, Prognostic and Therapeutic Implications

    PubMed Central

    van Rooyen, Derrick; Gan, Lay; Chitturi, Shivrakumar

    2012-01-01

    While non-alcoholic fatty liver disease (NAFLD) is highly prevalent (15% to 45%) in modern societies, only 10% to 25% of cases develop hepatic fibrosis leading to cirrhosis, end-stage liver disease or hepatocellular carcinoma. Apart from pre-existing fibrosis, the strongest predictor of fibrotic progression in NAFLD is steatohepatitis or non-alcoholic steatohepatitis (NASH). The critical features other than steatosis are hepatocellular degeneration (ballooning, Mallory hyaline) and mixed inflammatory cell infiltration. While much is understood about the relationship of steatosis to metabolic factors (over-nutrition, insulin resistance, hyperglycemia, metabolic syndrome, hypoadiponectinemia), less is known about inflammatory recruitment, despite its importance for the perpetuation of liver injury and fibrogenesis. In this review, we present evidence that liver inflammation has prognostic significance in NAFLD. We then consider the origins and components of liver inflammation in NASH. Hepatocytes injured by toxic lipid molecules (lipotoxicity) play a central role in the recruitment of innate immunity involving Toll-like receptors (TLRs), Kupffer cells (KCs), lymphocytes and neutrophils and possibly inflammasome. The key pro-inflammatory signaling pathways in NASH are nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK). The downstream effectors include adhesion molecules, chemokines, cytokines and the activation of cell death pathways leading to apoptosis. The upstream activators of NF-κB and JNK are more contentious and may depend on the experimental model used. TLRs are strong contenders. It remains possible that inflammation in NASH originates outside the liver and in the gut microbiota that prime KC/TLR responses, inflamed adipose tissue and circulating inflammatory cells. We briefly review these mechanistic considerations and project their implications for the effective treatment of NASH. PMID:22570745

  5. Oral Inflammatory Diseases and Systemic Inflammation: Role of the Macrophage

    PubMed Central

    Hasturk, Hatice; Kantarci, Alpdogan; Van Dyke, Thomas E.

    2012-01-01

    Inflammation is a complex reaction to injurious agents and includes vascular responses, migration, and activation of leukocytes. Inflammation starts with an acute reaction, which evolves into a chronic phase if allowed to persist unresolved. Acute inflammation is a rapid process characterized by fluid exudation and emigration of leukocytes, primarily neutrophils, whereas chronic inflammation extends over a longer time and is associated with lymphocyte and macrophage infiltration, blood vessel proliferation, and fibrosis. Inflammation is terminated when the invader is eliminated, and the secreted mediators are removed; however, many factors modify the course and morphologic appearance as well as the termination pattern and duration of inflammation. Chronic inflammatory illnesses such as diabetes, arthritis, and heart disease are now seen as problems that might have an impact on the periodontium. Reciprocal effects of periodontal diseases are potential factors modifying severity in the progression of systemic inflammatory diseases. Macrophages are key cells for the inflammatory processes as regulators directing inflammation to chronic pathological changes or resolution with no damage or scar tissue formation. As such, macrophages are involved in a remarkably diverse array of homeostatic processes of vital importance to the host. In addition to their critical role in immunity, macrophages are also widely recognized as ubiquitous mediators of cellular turnover and maintenance of extracellular matrix homeostasis. In this review, our objective is to identify macrophage-mediated events central to the inflammatory basis of chronic diseases, with an emphasis on how control of macrophage function can be used to prevent or treat harmful outcomes linked to uncontrolled inflammation. PMID:22623923

  6. The origins of cachexia in acute and chronic inflammatory diseases.

    PubMed

    Delano, Matthew J; Moldawer, Lyle L

    2006-02-01

    The term cachexia originates from the Greek root kakos hexis, which translates into "bad condition," recognized for centuries as a progressive deterioration of body habitus. Cachexia is commonly associated with a number of disease states, including acute inflammatory processes associated with critical illness and chronic inflammatory diseases, such as cancer, congestive heart failure, chronic obstructive pulmonary disease, and human immunodeficiency virus infection. Cachexia is responsible for the deaths of 10%-22% of all patients with cancer and approximately 15% of the trauma deaths that occur from sepsis-induced organ dysfunction and malnutrition days to weeks after the initial traumatic event. The abnormalities associated with cachexia include anorexia, weight loss, a preferential loss of somatic muscle and fat mass, altered hepatic glucose and lipid metabolism, and anemia. Anorexia alone cannot fully explain the development of cachexia; metabolic alterations in carbohydrate, lipid, and protein metabolism contribute to the severe tissue losses. Despite significant advances in our understanding of specific disease processes, the mechanisms leading to cachexia remain unclear and multifactorial. Although complex, increasing evidence from both animal models and clinical studies suggests that an inflammatory response, mediated in part by a dysregulated production of proinflammatory cytokines, plays a role in the genesis of cachexia, associated with both critical illness and chronic inflammatory diseases. These cytokines are further thought to induce an acute phase protein response (APR) and produce the alterations in lipid and carbohydrate metabolism identified as crucial markers of acute inflammation in states of malignancy and critical illness. Although much is still unknown about the etiology of cachexia, there is growing appreciation that cachexia represents the endproduct of an inappropriate interplay between multiple cytokines, neuropeptides, classic stress

  7. Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response.

    PubMed

    Hong, Hyun Sook; Son, Youngsook

    2014-10-10

    Current rheumatoid arthritis (RA) therapies such as biologics inhibiting pathogenic cytokines substantially delay RA progression. However, patient responses to these agents are not always complete and long lasting. This study explored whether substance P (SP), an 11 amino acids long endogenous neuropeptide with the novel ability to mobilize mesenchymal stem cells (MSC) and modulate injury-mediated inflammation, can inhibit RA progression. SP efficacy was evaluated by paw swelling, clinical arthritis scoring, radiological analysis, histological analysis of cartilage destruction, and blood levels of tumor necrosis factor-alpha (TNF-α) interleukin (IL)-10, and IL-17 in vivo. SP treatment significantly reduced local inflammatory signs, mean arthritis scores, degradation of joint cartilage, and invasion of inflammatory cells into the synovial tissues. Moreover, the SP treatment markedly reduced the size of spleens enlarged by excessive inflammation in CIA, increased IL-10 levels, and decreased TNF-α and IL-17 levels. Mobilization of stem cells and induction of T(reg) and M2 type macrophages in the circulation were also increased by the SP treatment. These effect of SP might be associated with the suppression of inflammatory responses in RA and, furthermore, blockade of RA progression. Our results propose SP as a potential therapeutic for autoimmune-related inflammatory diseases. PMID:25264193

  8. Angiogenesis in Inflammatory Bowel Disease

    PubMed Central

    Alkim, Canan; Alkim, Huseyin; Koksal, Ali Riza; Boga, Salih; Sen, Ilker

    2015-01-01

    Angiogenesis is an important component of pathogenesis of inflammatory bowel disease (IBD). Chronic inflammation and angiogenesis are two closely related processes. Chronic intestinal inflammation is dependent on angiogenesis and this angiogenesis is modulated by immune system in IBD. Angiogenesis is a very complex process which includes multiple cell types, growth factors, cytokines, adhesion molecules, and signal transduction. Lymphangiogenesis is a new research area in the pathogenesis of IBD. While angiogenesis supports inflammation via leukocyte migration, carrying oxygen and nutrients, on the other hand, it has a major role in wound healing. Angiogenic molecules look like perfect targets for the treatment of IBD, but they have risk for serious side effects because of their nature. PMID:26839731

  9. Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response

    SciTech Connect

    Hong, Hyun Sook; Son, Youngsook

    2014-10-10

    Highlights: • SP can increase IL-10 levels and reduce TNF-α and IL-17 levels in RA. • SP causes the increase in T{sub reg}, M2 macrophage, and MSCs in RA. • SP-induced immune suppression leads to the blockade of RA progression. • SP can be used as the therapeutics for autoimmune-related inflammatory diseases. - Abstract: Current rheumatoid arthritis (RA) therapies such as biologics inhibiting pathogenic cytokines substantially delay RA progression. However, patient responses to these agents are not always complete and long lasting. This study explored whether substance P (SP), an 11 amino acids long endogenous neuropeptide with the novel ability to mobilize mesenchymal stem cells (MSC) and modulate injury-mediated inflammation, can inhibit RA progression. SP efficacy was evaluated by paw swelling, clinical arthritis scoring, radiological analysis, histological analysis of cartilage destruction, and blood levels of tumor necrosis factor-alpha (TNF-α) interleukin (IL)-10, and IL-17 in vivo. SP treatment significantly reduced local inflammatory signs, mean arthritis scores, degradation of joint cartilage, and invasion of inflammatory cells into the synovial tissues. Moreover, the SP treatment markedly reduced the size of spleens enlarged by excessive inflammation in CIA, increased IL-10 levels, and decreased TNF-α and IL-17 levels. Mobilization of stem cells and induction of T{sub reg} and M2 type macrophages in the circulation were also increased by the SP treatment. These effect of SP might be associated with the suppression of inflammatory responses in RA and, furthermore, blockade of RA progression. Our results propose SP as a potential therapeutic for autoimmune-related inflammatory diseases.

  10. Learning numerical progressions.

    PubMed

    Vitz, P C; Hazan, D N

    1974-01-01

    Learning of simple numerical progressions and compound progressions formed by combining two or three simple progressions is investigated. In two experiments, time to solution was greater for compound vs simple progressions; greater the higher the progression's solution level; and greater if the progression consisted of large vs small numbers. A set of strategies is proposed to account for progression learning based on the assumption S computes differences between integers, differences between differences, etc., in a hierarchical fashion. Two measures of progression difficulty, each a summary of the strategies, are proposed; C1 is a count of the number of differences needed to solve a progression; C2 is the same count with higher level differences given more weight. The measures accurately predict in both experiments the mean time to solve 16 different progressions with C2 being somewhat superior. The measures also predict the learning difficulty of 10 other progressions reported by Bjork (1968).

  11. Cannabis for inflammatory bowel disease.

    PubMed

    Naftali, Timna; Mechulam, Raphael; Lev, Lihi Bar; Konikoff, Fred M

    2014-01-01

    The marijuana plant Cannabis sativa has been used for centuries as a treatment for a variety of ailments. It contains over 60 different cannabinoid compounds. Studies have revealed that the endocannabinoid system is involved in almost all major immune events. Cannabinoids may, therefore, be beneficial in inflammatory disorders. In murine colitis, cannabinoids decrease histologic and microscopic inflammation. In humans, cannabis has been used to treat a plethora of gastrointestinal problems, including anorexia, emesis, abdominal pain, diarrhea, and diabetic gastroparesis. Despite anecdotal reports on medical cannabis in inflammatory bowel disease (IBD), there are few controlled studies. In an observational study in 30 patients with Crohn's disease (CD), we found that medical cannabis was associated with improvement in disease activity and reduction in the use of other medications. In a more recent placebo-controlled study in 21 chronic CD patients, we showed a decrease in the CD activity index >100 in 10 of 11 subjects on cannabis compared to 4 of 10 on placebo. Complete remission was achieved in 5 of 11 subjects in the cannabis group and 1 of 10 in the placebo group. Yet, in an additional study, low-dose cannabidiol did not have an effect on CD activity. In summary, evidence is gathering that manipulating the endocannabinoid system can have beneficial effects in IBD, but further research is required to declare cannabinoids a medicine. We need to establish the specific cannabinoids, as well as appropriate medical conditions, optimal dose, and mode of administration, to maximize the beneficial effects while avoiding any potential harmful effects of cannabinoid use.

  12. What changes in inflammatory bowel disease management can be implemented today?

    PubMed

    Louis, Edouard; Baumgart, Daniel C; Ghosh, Subrata; Gomollón, Fernando; Hanauer, Stephen; Hart, Ailsa; Irving, Peter

    2012-02-01

    Innovative ideas are required to improve the management of inflammatory bowel disease and to share best practice that can be implemented into clinical practice today. The use of biomarkers such as calprotectin to monitor disease progression and treatment response could help to improve management of inflammatory bowel disease, but several strategies need to be implemented to make this a reality in clinical practice. The use of calprotectin as a biomarker and the manipulation of the thiopurine pathway to extend the use of current therapies are examples of how basic research can translate into patient benefit. Translational research into the use of microbiota and predictive factors for response and toxicity to drugs, may provide future clinical applications. Global improvement in care in inflammatory bowel disease could also be advanced by improving service provision. For example, the establishment of 'Centres of Excellence', a global interactive inflammatory disease map, and the alignment of processes and standards of care within treatment centres may help to achieve better outcomes for patients with inflammatory bowel disease. Realization of this goal, as well as a better understanding of the aetiology of the disease, may be furthered by collaborative efforts between organizations involved in inflammatory bowel disease as well as wider collaboration across countries and globally. PMID:22463933

  13. What changes in inflammatory bowel disease management can be implemented today?

    PubMed

    Louis, Edouard; Baumgart, Daniel C; Ghosh, Subrata; Gomollón, Fernando; Hanauer, Stephen; Hart, Ailsa; Irving, Peter

    2012-02-01

    Innovative ideas are required to improve the management of inflammatory bowel disease and to share best practice that can be implemented into clinical practice today. The use of biomarkers such as calprotectin to monitor disease progression and treatment response could help to improve management of inflammatory bowel disease, but several strategies need to be implemented to make this a reality in clinical practice. The use of calprotectin as a biomarker and the manipulation of the thiopurine pathway to extend the use of current therapies are examples of how basic research can translate into patient benefit. Translational research into the use of microbiota and predictive factors for response and toxicity to drugs, may provide future clinical applications. Global improvement in care in inflammatory bowel disease could also be advanced by improving service provision. For example, the establishment of 'Centres of Excellence', a global interactive inflammatory disease map, and the alignment of processes and standards of care within treatment centres may help to achieve better outcomes for patients with inflammatory bowel disease. Realization of this goal, as well as a better understanding of the aetiology of the disease, may be furthered by collaborative efforts between organizations involved in inflammatory bowel disease as well as wider collaboration across countries and globally.

  14. Dietary Inflammatory Index and Incidence of Cardiovascular Disease in the SUN Cohort

    PubMed Central

    Ramallal, Raúl; Toledo, Estefanía; Martínez-González, Miguel A.; Hernández-Hernández, Aitor; García-Arellano, Ana; Shivappa, Nitin; Hébert, James R.; Ruiz-Canela, Miguel

    2015-01-01

    Background Diet is known to play a key role in atherogenesis and in the development of cardiovascular events. Dietary factors may mediate these processes acting as potential modulators of inflammation. Potential Links between inflammatory properties of diet and the occurrence of cardiovascular events have not been tested previously. Objective We aimed to assess the association between the dietary inflammatory index (DII), a method to assess the inflammatory potential of the diet, and incident cardiovascular disease. Methods In the prospective, dynamic SUN cohort, 18,794 middle-aged, Spanish university graduates were followed up for 8.9 years (median). A validated 136-item food-frequency questionnaire was used to calculate the DII. The DII is based on scientific evidence about the relationship between diet and inflammatory biomarkers (C-reactive protein, IL-1β, IL-4, IL-6, IL-10 and TNF-α). Cox proportional hazard models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between the DII and incident cardiovascular disease (myocardial infarction, stroke or cardiovascular death). Results The risk for cardiovascular events progressively increased with each increasing quartile of DII (ptrend = 0.017). The multivariable-adjusted HR for participants in the highest (most pro-inflammatory) vs. the lowest quartile of the DII was 2.03 (95% CI 1.06–3.88). Conclusions A pro-inflammatory diet was associated with a significantly higher risk for developing cardiovascular events. PMID:26340022

  15. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.

    PubMed

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin'ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD. PMID:27621596

  16. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors

    PubMed Central

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin’ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.

  17. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.

    PubMed

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin'ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.

  18. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors

    PubMed Central

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin’ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD. PMID:27621596

  19. The life (and death) of CD4+CD28null T cells in inflammatory diseases

    PubMed Central

    Dumitriu, Ingrid E

    2015-01-01

    Inflammation contributes to the development and perpetuation of several disorders and T lymphocytes orchestrate the inflammatory immune response. Although the role of T cells in inflammation is widely recognized, specific therapies that tackle inflammatory networks in disease are yet to be developed. CD4+CD28null T cells are a unique subset of helper T lymphocytes that recently shot back into the limelight as potential catalysts of inflammation in several inflammatory disorders such as autoimmunity, atherosclerosis and chronic viral infections. In contrast to conventional helper T cells, CD4+CD28null T cells have an inbuilt ability to release inflammatory cytokines and cytotoxic molecules that can damage tissues and amplify inflammatory pathways. It comes as no surprise that patients who have high numbers of these cells have more severe disease and poor prognosis. In this review, I provide an overview on the latest advances in the biology of CD4+CD28null T cells. Understanding the complex functions and dynamics of CD4+CD28null T cells may open new avenues for therapeutic intervention to prevent progression of inflammatory diseases. PMID:26190355

  20. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases

    PubMed Central

    Richards, James L; Yap, Yu Anne; McLeod, Keiran H; Mackay, Charles R; Mariño, Eliana

    2016-01-01

    It is now convincingly clear that diet is one of the most influential lifestyle factors contributing to the rise of inflammatory diseases and autoimmunity in both developed and developing countries. In addition, the modern 'Western diet' has changed in recent years with increased caloric intake, and changes in the relative amounts of dietary components, including lower fibre and higher levels of fat and poor quality of carbohydrates. Diet shapes large-bowel microbial ecology, and this may be highly relevant to human diseases, as changes in the gut microbiota composition are associated with many inflammatory diseases. Recent studies have demonstrated a remarkable role for diet, the gut microbiota and their metabolites—the short-chain fatty acids (SCFAs)—in the pathogenesis of several inflammatory diseases, such as asthma, arthritis, inflammatory bowel disease, colon cancer and wound-healing. This review summarizes how diet, microbiota and gut microbial metabolites (particularly SCFAs) can modulate the progression of inflammatory diseases and autoimmunity, and reveal the molecular mechanisms (metabolite-sensing G protein-coupled receptor (GPCRs) and inhibition of histone deacetylases (HDACs)). Therefore, considerable benefit could be achieved simply through the use of diet, probiotics and metabolites for the prevention and treatment of inflammatory diseases and autoimmunity. PMID:27350881

  1. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases.

    PubMed

    Richards, James L; Yap, Yu Anne; McLeod, Keiran H; Mackay, Charles R; Mariño, Eliana

    2016-05-01

    It is now convincingly clear that diet is one of the most influential lifestyle factors contributing to the rise of inflammatory diseases and autoimmunity in both developed and developing countries. In addition, the modern 'Western diet' has changed in recent years with increased caloric intake, and changes in the relative amounts of dietary components, including lower fibre and higher levels of fat and poor quality of carbohydrates. Diet shapes large-bowel microbial ecology, and this may be highly relevant to human diseases, as changes in the gut microbiota composition are associated with many inflammatory diseases. Recent studies have demonstrated a remarkable role for diet, the gut microbiota and their metabolites-the short-chain fatty acids (SCFAs)-in the pathogenesis of several inflammatory diseases, such as asthma, arthritis, inflammatory bowel disease, colon cancer and wound-healing. This review summarizes how diet, microbiota and gut microbial metabolites (particularly SCFAs) can modulate the progression of inflammatory diseases and autoimmunity, and reveal the molecular mechanisms (metabolite-sensing G protein-coupled receptor (GPCRs) and inhibition of histone deacetylases (HDACs)). Therefore, considerable benefit could be achieved simply through the use of diet, probiotics and metabolites for the prevention and treatment of inflammatory diseases and autoimmunity. PMID:27350881

  2. Microbiota biodiversity in inflammatory bowel disease.

    PubMed

    Comito, Donatella; Cascio, Antonio; Romano, Claudio

    2014-03-31

    Gut microbiota plays a significant role in human health and energy balance, and provides protection against disease states. An altered balance between microbiota and its host (dysbiosis) would appear to contribute to the development of Inflammatory Bowel Disease (IBD), Crohn's Disease (CD) and Ulcerative Colitis (UC). CD and UC are chronic inflammatory diseases of the gastrointestinal tes.

  3. Hypertrophic osteoarthropathy of chronic inflammatory bowel disease

    SciTech Connect

    Oppenheimer, D.A.; Jones, H.H.

    1982-12-01

    The case of a 14-year old girl with painful periostitis and ulcerative colitis is reported. The association of chronic inflammatory bowel disease with osteoarthropathy is rare and has previously been reported in eight patients. The periosteal reaction found in association with inflammatory bowel disease is apparently related to a chronic disease course and may cause extreme localized pain.

  4. Early Comparison of Inflammatory vs. Fibrostenotic Phenotype in Eosinophilic Esophagitis in a Multicenter Longitudinal Study

    PubMed Central

    Singla, Manish B; Chehade, Mirna; Brizuela, Diana; Maydonovitch, Corinne L; Chen, Yen-Ju; Riffle, Mary Ellen; Achem, Sami R; Moawad, Fouad J

    2015-01-01

    OBJECTIVES: Eosinophilic esophagitis (EoE) is a chronic inflammatory condition that causes esophageal remodeling and stricture formation. We compared the clinical course of symptoms, endoscopic findings, histology, and changes in phenotype over time in EoE patients with inflammatory and fibrostenotic phenotypes. METHODS: Data were obtained from EoE patients from three medical centers and followed prospectively. Endoscopic features and histology from index and follow-up endoscopies were recorded. Behavior was classified as inflammatory if endoscopic findings demonstrated furrows or white plaques and as fibrostenotic if endoscopic findings included fixed rings or strictures. RESULTS: Two hundred and fifty-six EoE patients were included in the analysis. The mean age was 32±18 years, 25% of patients were <18 years, 89% of patients were Caucasians, and 74% of patients were male. The mean duration of symptoms before diagnosis was 6.8±7.2 years with a follow-up of 1.7±1.9 years (maximum follow-up of 12 years). Fifty-four percent of patients presented with fibrostenotic EoE, whereas 46% presented with inflammatory EoE. Patients with inflammatory disease were younger than those with fibrostenotic disease (24±19 vs. 39±15 years, P<0.001). Patients with fibrostenotic disease had a longer duration of symptoms than those with inflammatory disease (8.1±7.7 vs. 5.3±6.3 years, P=0.002). Over the study period, 47 (18%) had remission of inflammatory EoE, 68 (27%) continued to have inflammatory disease, 74 (29%) continued to have fibrostenotic disease, 65 (25%) fibrostenotic patients had regression of fibrosis, and 2 patients (1%) progressed from inflammatory disease to fibrostenotic disease. Patients who had regression from their fibrostenosis were more likely than patients who continued to demonstrate fibrostenosis to have a decrease in proximal (54% vs. 32%, P<0.001) and distal (70% vs. 38%, P<0.001) eosinophilia. CONCLUSIONS: Most EoE patients maintained their phenotype or

  5. Anti-Inflammatory Agents for Cancer Therapy

    PubMed Central

    Rayburn, Elizabeth R.; Ezell, Scharri J.; Zhang, Ruiwen

    2010-01-01

    Inflammation is closely linked to cancer, and many anti-cancer agents are also used to treat inflammatory diseases, such as rheumatoid arthritis. Moreover, chronic inflammation increases the risk for various cancers, indicating that eliminating inflammation may represent a valid strategy for cancer prevention and therapy. This article explores the relationship between inflammation and cancer with an emphasis on epidemiological evidence, summarizes the current use of anti-inflammatory agents for cancer prevention and therapy, and describes the mechanisms underlying the anti-cancer effects of anti-inflammatory agents. Since monotherapy is generally insufficient for treating cancer, the combined use of anti-inflammatory agents and conventional cancer therapy is also a focal point in discussion. In addition, we also briefly describe future directions that should be explored for anti-cancer anti-inflammatory agents. PMID:20333321

  6. Anti-inflammatory actions of acupuncture.

    PubMed Central

    Zijlstra, Freek J; van den Berg-de Lange, Ineke; Huygen, Frank J P M; Klein, Jan

    2003-01-01

    Acupuncture has a beneficial effect when treating many diseases and painful conditions, and therefore is thought to be useful as a complementary therapy or to replace generally accepted pharmacological intervention. The attributive effect of acupuncture has been investigated in inflammatory diseases, including asthma, rhinitis, inflammatory bowel disease, rheumatoid arthritis, epicondylitis, complex regional pain syndrome type 1 and vasculitis. Large randomised trials demonstrating the immediate and sustained effect of acupuncture are missing. Mechanisms underlying the ascribed immunosuppressive actions of acupuncture are reviewed in this communication. The acupuncture-controlled release of neuropeptides from nerve endings and subsequent vasodilative and anti-inflammatory effects through calcitonine gene-related peptide is hypothesised. The complex interactions with substance P, the analgesic contribution of beta-endorphin and the balance between cell-specific pro-inflammatory and anti-inflammatory cytokines tumour necrosis factor-alpha and interleukin-10 are discussed. PMID:12775355

  7. The complement system in inflammatory bowel disease.

    PubMed

    Jain, Umang; Otley, Anthony R; Van Limbergen, Johan; Stadnyk, Andrew W

    2014-09-01

    Complement is well appreciated to be a potent innate immune defense against microbes and is important in the housekeeping act of removal of apoptotic and effete cells. It is also understood that hyperactivation of complement, or the lack of regulators, may underlie chronic inflammatory diseases. A pipeline of products to intervene in complement activation, some already in clinical use, is being studied in various chronic inflammatory diseases. To date, the role of complement in inflammatory bowel disease has not received a lot of research interest. Novel genetically modified laboratory animals and experiments using antagonists to complement effector molecules have kindled important research observations implicating the complement system in inflammatory bowel disease pathogenesis. We review the evidence base for the role and potential therapeutic manipulation of the complement cascade in inflammatory bowel disease.

  8. The Evaluation of Rapidly Progressive Dementia

    PubMed Central

    Rosenbloom, Michael Henry; Atri, Alireza

    2012-01-01

    Background Rapidly progressive dementia (RPD) is a unique set of disorders resulting in cognitive, behavioral, and motor decline within 2 years. A variety of etiologies may contribute to RPD including neurodegenerative, inflammatory, infectious, and toxic-metabolic conditions. Jakob-Creutzfeldt disease (CJD) is frequently the most concerning diagnosis on the differential. The challenge for the neurologist is distinguishing prion disease from reversible processes that result in dementia. Review Summary This review discusses the clinical aspects and the diagnostic work-up of RPD. Particular focus is given to both CJD and the potentially treatable inflammatory conditions that may cause a similar presentation. Furthermore, a standardized step-wise approach is outlined for patients presenting with RPD. Conclusion Neurologists should adopt a standardized approach to the rapidly presenting disease processes that may mimic CJD in their clinical and radiological features. PMID:21364356

  9. Th17 Cells in Protection from Tumor or Promotion of Tumor Progression

    PubMed Central

    Young, M. Rita I.

    2016-01-01

    The roles of inflammation and inflammatory cells such as Th17 cells in the development and progression of cancer have been extensively studied. However, the results have been varied, with conflicting conclusions. Most studies have focused on changes in inflammatory phenotypes once cancers have developed and disease is progressing. Far fewer studies have looked at the immune phenotypic changes that occur during progression of premalignant lesions to cancer. The impact of inflammation and, in particular, Th17 cells on tumor biology is summarized in this review, with a focus on the differences in the outcomes of studies. Possible explanations for the contradictory conclusions are also suggested. PMID:27453801

  10. The Roles of Vitamin D and Its Analogs in Inflammatory Diseases.

    PubMed

    Lin, Zongtao; Li, Wei

    2016-01-01

    The discovery of nonclassical actions, other than mineral homeostasis, of 1α,25- dihydroxyvitamin D3 (1,25D3) has expanded its applications. Among these, its anti-inflammation activity has drawn more and more attention of researchers to investigate its role in regulating the progression of inflammatory diseases. The expression of many inflammation-related genes is regulated by 1,25D3 through vitamin D receptor (VDR) in a large variety of cells including immune cells such as, but not limited to, macrophages, dendritic cells, T helper cells, and B cells. Studies of 1,25D3 in these immune cells have shown both direct and indirect immunomodulatory activities affecting innate and adaptive immune responses. Moreover, 1,25D3 can also exert its anti-inflammation effects through regulating the biosynthesis of pro-inflammatory molecules in the prostaglandin pathway or through nuclear factor kappa light-chain-enhancer of activated B cells (NFκB) by affecting cytokine production and inflammatory responses. These actions of 1,25D3 may explain the associations between vitamin D levels and inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, asthma, type 1 diabetes, and systemic lupus erythematosus. Although several analogs of 1,25D3 have shown potent immunomodulatory or anti-inflammatory activity on immune cell cultures or in animal models, no vitamin D analog has been used in clinical research to treat inflammatory diseases. Here, we review the relationship between vitamin D analogs and inflammation based on observations of immune cells, prostaglandin and NFκB pathways, as well as common inflammatory diseases. PMID:26369816

  11. Pleural Tuberculosis Mimicking Inflammatory Pseudotumour

    PubMed Central

    P., Arul; Varghese, Renu G’boy; Ramdas, Anita

    2013-01-01

    A pseudotumour is a rare presentation of bronchopulmonary tuberculosis which occurs in immunocompetent patients, which can simulate malignancy, both clinically and radiologically, and may cause delay in its diagnosis and treatment. The incidence of bronchopulmonary pseudotumours was found to vary from 2-4%, as was seen in various studies. A mycobacterial pseudotumour of the pleura is a rare entity. We are reporting a case of a pleura based tubercular pseudotumour in a 59 years old patient who presented with a four month history of the nonspecific symptoms of cough and chest pain. The radiological investigations showed that a pleural based mass lesion was occupying the right lower hemithorax. The initial biopsy was suggestive of a hyalinizing variant of an inflammatory pseudotumour. The follow-up surgical resected mass was consistent with the features of a tubercular granuloma. The clinical presentation and the histopathological findings have been presented, with a brief review of the literature. Due to its varied and unusual presentation, bronchopulmonary tuberculosis should always be kept in mind when a patient with a similar clinical and a radiological picture is being evaluated. PMID:23730653

  12. Pain and Inflammatory Bowel Disease

    PubMed Central

    Bielefeldt, Klaus; Davis, Brian; Binion, David G.

    2010-01-01

    Abdominal pain is a common symptom of inflammatory bowel disease (IBD: Crohn’s disease, ulcerative colitis). Pain may arise from different mechanisms, which can include partial blockage and gut distention as well as severe intestinal inflammation. A majority of patients suffering from acute flares of IBD will experience pain, which will typically improve as disease activity decreases. However, a significant percentage of IBD patients continue experiencing symptoms of pain despite resolving inflammation and achieving what appears to be clinical remission. Current evidence suggests that sensory pathways sensitize during inflammation, leading to persistent changes in afferent neurons and central nervous system pain processing. Such persistent pain is not only a simple result of sensory input. Pain processing and even the activation of sensory pathways is modulated by arousal, emotion, and cognitive factors. Considering the high prevalence of iatrogenic as well as essential neuropsychiatric comorbidities including anxiety and depression in IBD patients, these central modulating factors may significantly contribute to the clinical manifestation of chronic pain. The improved understanding of peripheral and central pain mechanisms is leading to new treatment strategies that view pain as a biopsychosocial problem. Thus, improving the underlying inflammation, decreasing the excitability of sensitized afferent pathways, and altering emotional and/or cognitive functions may be required to more effectively address the difficult and disabling disease manifestations. PMID:19130619

  13. The benefits and limitations of a physical training program in patients with inflammatory myositis.

    PubMed

    Lawson Mahowald, M

    2001-08-01

    The clinical features of inflammatory myositis are determined by the severity and extent of muscle weakness and systemic manifestations. The benefits and limitations of physical training programs and rehabilitation strategies depend on the clinical phase of the disease and analysis of underlying impairments responsible for functional limitations in the patient. Patients with early stage disease and severe weakness will be treated differently than patients who have responded to medication and are improving. Not all patients will respond to medications; their therapy programs will have different requirements. This article reviews available data on the physiologic responses to exercise in patients with inflammatory muscle diseases. New data support more aggressive approaches to progressive strengthening exercises for patients with inflammatory myositis.

  14. Inflammatory pseudotumor of the infratemporal fossa leading to orbital apex syndrome.

    PubMed

    Nishio, Naoki; Fujimoto, Yasushi; Nakashima, Tsutomu

    2014-07-01

    An inflammatory pseudotumor is a rare benign disease presenting with non-specific chronic inflammation, and reported occurrences involving the skull base are relatively rare. A 65-year-old man became aware of pain around the right temporomandibular joint and mild trismus, and palsies of the cranial nerves III, IV, V, and VI were observed. A biopsy was performed under general anesthesia with an infratemporal fossa approach, and he was diagnosed with inflammatory pseudotumor of the infratemporal fossa. There was a rapid improvement in symptoms after the start of steroid administration, and 29 months after the initial consultation, the patient remained under strict observation. The 3 criteria in our department for confirming progression of the disease are (1) clinical symptoms, (2) C-reactive protein levels in blood tests, and (3) contrast effect of the tumor on magnetic resonance imaging. This is a rare case report to demonstrate the inflammatory pseudotumor of the infratemporal fossa leading to orbital apex syndrome.

  15. Power Doppler ultrasonographic assessment of the ankle in patients with inflammatory rheumatic diseases.

    PubMed

    Suzuki, Takeshi

    2014-11-18

    Ankle involvement is frequent in patients with inflammatory rheumatic diseases, but accurate evaluation by physical examination is often difficult because of the complex anatomical structures of the ankle. Over the last decade, ultrasound (US) has become a practical imaging tool for the assessment of articular and periarticular pathologies, including joint synovitis, tenosynovitis, and enthesitis in rheumatic diseases. Progress in power Doppler (PD) technology has enabled evaluation of the strength of ongoing inflammation. PDUS is very useful for identifying the location and kind of pathologies in rheumatic ankles as well as for distinguishing between inflammatory processes and degenerative changes or between active inflammation and residual damage. The aim of this paper is to illustrate the US assessment of ankle lesions in patients with inflammatory rheumatic diseases, including rheumatoid arthritis, spondyloarthritis, and systemic lupus erythematosus, focusing on the utility of PDUS.

  16. Blocking Pro-Inflammatory Cytokine Release Modulates Peripheral Blood Mononuclear Cell Response to Porphyromonas Gingivalis

    PubMed Central

    Berker, Ezel; Kantarci, Alpdogan; Hasturk, Hatice; Van Dyke, Thomas E.

    2013-01-01

    Background Chronic periodontitis is an inflammatory disease in which cytokines play a major role in the progression of disease. Anti-inflammatory cytokines (IL-4 and IL-10) were reported to be absent or reduced in diseased periodontal tissues, suggesting an imbalance between the pro- and anti-inflammatory mediators. We have tested the hypothesis that there is cellular cross-talk mediated by pro- and anti-inflammatory cytokines and that blocking pro-inflammatory cytokine (TNF-α and IL-1) production will enhance anti-inflammatory cytokine (IL-4 and IL-10) production from peripheral blood mononuclear cells (PBMC) in response to P. gingivalis. Methods PBMC were isolated from individuals diagnosed with chronic periodontitis or healthy individuals and cultured for 24 hours. Concanavalin-A (ConA) was used as an activator of lymphocyte function. Live and heat-killed P .gingivalis or lipopolysaccharide from P. gingivalis was used as the bacterial stimulants. TNF-α and IL-1 production was neutralized by specific antibodies against TNF-α and IL-1α or β. Culture supernatants were evaluated by ELISA for TNF-α, IL-1β, IL-4, and IL-10 production. Results Live P. gingivalis did not result in any significant IL-10 or IL-4 release while heat-killed P. gingivalis led to a significant increase in IL-10 levels compared to unstimulated or live P. gingivalis-stimulated cells from both healthy and periodontitis individuals. Overall, PBMC from patients with chronic periodontitis produced significantly lower IL-10 in response to ConA and P. gingivalis suggesting chronic suppression of the anti-inflammatory cytokine production. Blocking the pro-inflammatory cytokine response did not result in any substantial change in IL-10 or IL-4 response to live P. gingivalis. Blocking the pro-inflammatory cytokine response restored IL-10 production by cells from chronic periodontitis in response to P. gingivalis LPS. Conclusion These findings suggest that PBMC from patients with chronic

  17. Two-Stage Progressive Femoral Lowering Followed by Cementless Total Hip Arthroplasty for Treating Crowe IV-Hartofilakidis Type 3 Developmental Dysplasia of the Hip.

    PubMed

    Binazzi, Roberto

    2015-05-01

    High developmental dysplasia of the hip is commonly treated with total hip arthroplasty and shortening osteotomy. We present a two stage technique, consisting of progressive femoral lowering followed by total hip arthroplasty. The clinico-radiographic results of eleven patients (twelve hips) who were operated on with the two-stage technique were evaluated at a mean follow-up of 11 ± 5 years. At the final follow-up, ten patients (eleven hips) had a mean Harris hip score of 85 ± 5 points with no implant loosening. One patient (one hip) was revised at 5 years due to infection. No neurovascular complications were observed in any patients. With this technique, we could place the cup in the anatomical position and obtain complete limb symmetry with excellent clinical results at long-term. PMID:25599863

  18. Current therapeutic approaches in inflammatory bowel disease.

    PubMed

    Sohrabpour, Amir Ali; Malekzadeh, Reza; Keshavarzian, Ali

    2010-01-01

    Inflammatory bowel disease (IBD) is a chronic, relapsing, inflammatory disorder of the gastrointestinal tract and is broadly classified into Crohn's disease (CD) and ulcerative colitis (UC). In the last decade, our understanding of the etiology and pathogenesis of this group of disorders has been improved. More specifically, recent development of biologics and use of immunomodulator agents in IBD have made it possible to robustly control mucosal inflammation and heal mucosal ulcerations and thus provide an opportunity to potentially modify disease course and prevent complications and future surgery. However, unfortunately we have not identified reliable, sensitive and specific markers to predict disease course and to identify those patients with aggressive and progressive course that would benefit from early use of biologics to prevent future complication and surgery. Thus, optimal medical management of IBD has remained multifaceted and individualized. Our primary therapeutic goals have remained unchanged and are to: [1] improve patient quality of life by treating flare ups [induction of remission], maintaining remission, and treating symptoms like diarrhea; [2] predict and prevent/treat complication; [3] prevent/treat nutritional deficiency and maintain optimal nutrition, [4] provide appropriate psychosocial support, and of course [5] attempt to modify disease course in those with aggressive disease. We can achieve these goals by appropriate use of therapeutic agents that include 5-aminosalicylates, corticosteroids, immunosuppressive agents, antibiotics, nutritional support, and the biologic agents. Information from well designed double blind placebo controlled trials combined with knowledge of the potential impact of patient and disease characteristics on disease course which can assist us to individualized treatment plan will be the guide for us to appropriately use these therapeutic agents. For example, age of the onset of the disease, patient gender and race

  19. The anti-inflammatory effect of opioids.

    PubMed

    Gavalas, A; Victoratos, P; Yiangou, M; Hadjipetrou-Kourounakis, L; Rekka, E; Kourounakis, P

    1994-01-01

    The anti-inflammatory activity of two novel opioids PM and PO as well as of pethidine was studied. The mouse paw edema, induced by various phlogistic agents, was significantly inhibited after the administration of opioids, fact that was independent of their antioxidant properties. The anti-inflammatory action of the above opioids was not reversed by naloxone. These results suggest that a variety of complex regulatory activities may be performed by opioid agonists via naloxone-sensitive or naloxone insensitive receptors on inflammatory cells, directly or indirectly by the inhibition of cytokines and mediators involved in inflammation.

  20. Gender Disparities in Ocular Inflammatory Disorders*

    PubMed Central

    Sen, Hatice Nida; Davis, Janet; Ucar, Didar; Fox, Austin; Chan, Chi Chao; Goldstein, Debra A.

    2014-01-01

    Ocular inflammatory disorders disproportionately affect women, and the majority of affected women are of childbearing age. The role of sex or reproductive hormones has been proposed in many other inflammatory or autoimmune disorders, and findings from non-ocular autoimmune diseases suggest a complex interaction between sex hormones, genetic factors and the immune system. However, despite the age and sex bias, factors that influence this disparity are complicated and unclear. This review aims to evaluate the gender disparities in prevalence, incidence and severity of the most common infectious and non-infectious ocular inflammatory disorders. PMID:24987987

  1. Inflammatory pseudotumor of the urinary bladder.

    PubMed

    Rosado, Elsa; Pereira, José; Corbusier, Florence; Demeter, Pieter; Bali, Maria Antonietta

    2015-01-01

    We report a case of an inflammatory pseudotumor of the urinary bladder in a 31 year-old woman. She presented at the emergency room with low abdominal pain and urinary symptoms. Abdominal ultrasound, computed tomography and magnetic resonance imaging were performed and revealed asymmetric thickening of the urinary bladder wall. Cystoscopy with urinary cytology revealed a benign nature of the process. The patient underwent partial cystectomy and the pathologic examination of the specimen revealed an inflammatory pseudotumor. We reviewed the clinical, imaging and pathological features of the inflammatory pseudotumor of the urinary bladder and discussed its differential diagnosis.

  2. Inflammatory Pseudotumor of the Urinary Bladder

    PubMed Central

    Rosado, Elsa; Pereira, José; Corbusier, Florence; Demeter, Pieter; Bali, Maria Antonietta

    2015-01-01

    We report a case of an inflammatory pseudotumor of the urinary bladder in a 31 year-old woman. She presented at the emergency room with low abdominal pain and urinary symptoms. Abdominal ultrasound, computed tomography and magnetic resonance imaging were performed and revealed asymmetric thickening of the urinary bladder wall. Cystoscopy with urinary cytology revealed a benign nature of the process. The patient underwent partial cystectomy and the pathologic examination of the specimen revealed an inflammatory pseudotumor. We reviewed the clinical, imaging and pathological features of the inflammatory pseudotumor of the urinary bladder and discussed its differential diagnosis. PMID:25926919

  3. Caring for Women with Inflammatory Bowel Disease.

    PubMed

    Feagins, Linda A; Kane, Sunanda V

    2016-06-01

    Ulcerative colitis and Crohn disease are chronic inflammatory diseases with typical onset in early adulthood. These diseases, therefore, can affect a woman throughout the many stages of her life, including menstruation, sexuality, pregnancy, and menopause. Unique health issues face women during these stages and can affect the course of their inflammatory bowel disease as well as treatment strategies and health maintenance. This article covers the non-pregnancy-related issues that are important in caring for women with inflammatory bowel disease. The topics of pregnancy and fertility are covered in a separate review.

  4. Lung Xenotransplantation: Recent Progress and Current Status

    PubMed Central

    Harris, Donald G.; Quinn, Kevin J.; Dahi, Siamak; Burdorf, Lars; Azimzadeh, Agnes M.; Pierson, Richard N.

    2014-01-01

    Xenotransplantation has undergone important progress in controlling initial hyperacute rejection in many pre-clinical models, with some cell, tissue, and organ xenografts advancing toward clinical trials. However, acute injury, driven primarily by innate immune and inflammatory responses, continues to limit results in lung xenograft models. The purpose of this article is to review the current status of lung xenotransplantation – including the seemingly unique challenges posed by this organ – and summarize proven and emerging means of overcoming acute lung xenograft injury. PMID:25040467

  5. [Hylacombun in inflammatory bowel diseases].

    PubMed

    Príkazska, M; Letkovicová, M

    1996-02-01

    Treatment of non-specific bowel inflammation (NBI) particularly of Crohn's disease (MD) and ulcerative colitis is very complicated, especially because of the fact, that in spite of atrial successful findings, the etiology of both main diseases of this group remain unknown. Nevertheless, manifestations, particularly in MC vary, often unexpectedly and surprisingly. Different medical teams elaborate therapeutic schedules, but none of them has been accepted world-wide. As it is still possible to state that NBI is untreatable by drug therapy, even the surgical removal of the affected part of the bowel does not protect against the relapse, it may indicate that no therapeutical approaches are sufficient at present. Using drug therapy, the biochemical chain of numerous inflammatory mediators is being tried to be disrupted. Despite the advances achieved, there are still many difficulties related to drug therapy. It is necessary to take into account the fact that the lack of knowledge in causative therapy and failure, poor response to initial therapy lead to the use of more new drugs. Therefore a careful consideration of every used or recommended drug is necessary. The principle of using Hylacombun (Merckle) in therapy was not applied due to the presumption of influencing the disease fundamentally, but due to an effort to reduce some symptoms of the disease, which deteriorate the life quality of patients. Data given by patients in questionnaires as well as biochemical and haematological parameters were evaluated statistically. Besides the commonly used Student t-test, we used Box and Whisker plots, linear trend analysis and the method of 9 aggregation numbers to follow both dynamics of the disease and drug effect. Laboratory, as well as the questionnaire data were equilibrated and graphically illustrated by the spline method. We found out that Hylacombun was effective in all patients. Subjective improvement was shown after 10 days of therapy, stabile improvement after 2

  6. Inflammatory response and the endothelium.

    PubMed

    Meroni, P L; Borghi, M O; Raschi, E; Ventura, D; Sarzi Puttini, P C; Atzeni, F; Lonati, L; Parati, G; Tincani, A; Mari, D; Tedesco, F

    2004-01-01

    Antiphospholipid-mediated endothelium perturbation plays a role in antiphospholipid syndrome (APS)-associated vasculopathy. Antiphospholipid antibodies activate endothelium both in vitro and in vivo experimental models by inducing a pro-inflammatory/-coagulant phenotype; the antibodies recognize beta2 glycoprotein I (beta2GPI) on human endothelial cells (EC) from different parts of the vasculature. In spite of such large in vitro evidence, few studies have addressed the issue whether or not a comparable endothelial perturbation might be detectable in vivo. We investigated several indirect ex vivo parameters of endothelial dysfunction: plasma levels of soluble adhesion molecules (sADM), soluble thrombomodulin (sTM), von Willebrand factor (vWF) and tissue plasminogen activator (t-PA) by solid-phase assays. The study included: patients with primary antiphospholipid syndrome (n=32), with the syndrome secondary to non-active systemic lupus erythematosus (SLE, n=10), six patients with persistent antiphospholipid positivity at medium/high titre without any clinical manifestation of the syndrome. Fifty-two age and sex matched healthy subjects have been enrolled as controls. In addition, circulating endothelial cells identified by flow cytometry and the brachial artery flow-mediated vasodilation (FMV) were evaluated in 26 patients (20 primary and 6 lupus syndromes) and 30 healthy controls. Plasma levels of soluble adhesion molecules did not differ from controls, while a significant increase in von Willebrand factor titres (P<0.05) was found. No significant difference was found regarding the number of circulating endothelial cells and flow-mediated vasodilation. As a whole, these findings do suggest that antiphospholipid antibodies per se are not able to support a full-blown endothelial perturbation in vivo. As shown in antiphospholipid syndrome experimental animal models, a two-hit hypothesis is suggested.

  7. Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8) Signaling in Cancer

    PubMed Central

    Campbell, Laura M.; Maxwell, Pamela J.; Waugh, David J.J.

    2013-01-01

    It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations. PMID:24276377

  8. Brazilian Green Propolis Inhibits Inflammatory Angiogenesis in a Murine Sponge Model

    PubMed Central

    de Moura, Sandra Aparecida Lima; Ferreira, Mônica Alves Neves Diniz; Andrade, Silvia Passos; Reis, Maria Leticia Costa; Noviello, Maria de Lourdes; Cara, Denise Carmona

    2011-01-01

    Angiogenesis and inflammation are persistent features of several pathological conditions. Propolis, a sticky material that honeybees collect from living plants, has been reported to have multiple biological effects including anti-inflammatory and anti-neoplasic activities. Here, we investigated the effects of water extract of green propolis (WEP) on angiogenesis, inflammatory cell accumulation and endogenous production of cytokines in sponge implants of mice over a 14-day period. Blood vessel formation as assessed by hemoglobin content and by morphometric analysis of the implants was reduced by WEP (500 mg kg−1 orally) compared to the untreated group. The levels of vascular endothelial growth factor (VEGF) increased progressively in the treated group but decreased after Day 10 in the control group. Accumulation of neutrophils and macrophages was determined by measuring myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAG) activities, respectively. Neutrophil accumulation was unaffected by propolis, but NAG activity was reduced by the treatment at Day 14. The levels TGF-β1 intra-implant increased progressively in both groups but were higher (40%) at Day 14 in the control implants. The pro-inflammatory levels of TNF-α peaked at Day 7 in the control implants, and at Day 14 in the propolis-treated group. Our results indicate that the anti-inflammatory/anti-angiogenic effects of propolis are associated with cytokine modulation. PMID:20007259

  9. IL-32: A Novel Pluripotent Inflammatory Interleukin, towards Gastric Inflammation, Gastric Cancer, and Chronic Rhino Sinusitis.

    PubMed

    Khawar, Muhammad Babar; Abbasi, Muddasir Hassan; Sheikh, Nadeem

    2016-01-01

    A vast variety of nonstructural proteins have been studied for their key roles and involvement in a number of biological phenomenona. Interleukin-32 is a novel cytokine whose presence has been confirmed in most of the mammals except rodents. The IL-32 gene was identified on human chromosome 16 p13.3. The gene has eight exons and nine splice variants, namely, IL-32α, IL-32β, IL-32γ, IL-32δ, IL-32ε, IL-32ζ, IL-32η, IL-32θ, and IL-32s. It was found to induce the expression of various inflammatory cytokines including TNF-α, IL-6, and IL-1β as well as macrophage inflammatory protein-2 (MIP-2) and has been reported previously to be involved in the pathogenesis and progression of a number of inflammatory disorders, namely, inflammatory bowel disease (IBD), gastric inflammation and cancer, rheumatoid arthritis, and chronic obstructive pulmonary disease (COPD). In the current review, we have highlighted the involvement of IL-32 in gastric cancer, gastric inflammation, and chronic rhinosinusitis. We have also tried to explore various mechanisms suspected to induce the expression of this extraordinary cytokine as well as various mechanisms of action employed by IL-32 during the mediation and progression of the above said problems. PMID:27143819

  10. IL-32: A Novel Pluripotent Inflammatory Interleukin, towards Gastric Inflammation, Gastric Cancer, and Chronic Rhino Sinusitis

    PubMed Central

    2016-01-01

    A vast variety of nonstructural proteins have been studied for their key roles and involvement in a number of biological phenomenona. Interleukin-32 is a novel cytokine whose presence has been confirmed in most of the mammals except rodents. The IL-32 gene was identified on human chromosome 16 p13.3. The gene has eight exons and nine splice variants, namely, IL-32α, IL-32β, IL-32γ, IL-32δ, IL-32ε, IL-32ζ, IL-32η, IL-32θ, and IL-32s. It was found to induce the expression of various inflammatory cytokines including TNF-α, IL-6, and IL-1β as well as macrophage inflammatory protein-2 (MIP-2) and has been reported previously to be involved in the pathogenesis and progression of a number of inflammatory disorders, namely, inflammatory bowel disease (IBD), gastric inflammation and cancer, rheumatoid arthritis, and chronic obstructive pulmonary disease (COPD). In the current review, we have highlighted the involvement of IL-32 in gastric cancer, gastric inflammation, and chronic rhinosinusitis. We have also tried to explore various mechanisms suspected to induce the expression of this extraordinary cytokine as well as various mechanisms of action employed by IL-32 during the mediation and progression of the above said problems. PMID:27143819

  11. Inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma

    PubMed Central

    Han, Ke-Qi; He, Xue-Qun; Ma, Meng-Yu; Guo, Xiao-Dong; Zhang, Xue-Min; Chen, Jie; Han, Hui; Zhang, Wei-Wei; Zhu, Quan-Gang; Nian, Hua; Ma, Li-Jun

    2015-01-01

    AIM: To study the inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma (HCC) in nude mice. METHODS: CBRH-7919 HCC cells were injected into the subcutaneous region of nude mice. Beginning two weeks after the challenge, tumor growth was measured every week for six weeks. The stromal microenvironment and inflammatory cell infiltration was assessed by immunohistochemistry in paired tumor and adjacent peritumoral samples, and macrophage phenotype was assessed using double-stain immunohistochemistry incorporating expression of an intracellular enzyme. A chemokine PCR array, comprised of 98 genes, was used to screen differential gene expressions, which were validated by Western blotting. Additionally, expression of identified chemokines was knocked-down by RNA interference, and the effect on tumor growth was assessed. RESULTS: Inflammatory cell infiltrates are a key feature of adjacent peritumoral tissues with increased macrophage, neutrophil, and T cell (specifically helper and activated subsets) infiltration. Macrophages within adjacent peritumoral tissues express inducible nitric oxide synthase, suggestive of a proinflammatory phenotype. Fifty-one genes were identified in tumor tissues during the progression period, including 50 that were overexpressed (including CXCL1, CXCL2 and CXCL3) and three that were underexpressed (CXCR1, Ifg and Actb). RNA interference of CXCL1 in the CBRH-7919 cells decreased the growth of tumors in nude mice and inhibited expression of CXCL2, CXCL3 and interleukin-1β protein. CONCLUSION: These findings suggest that CXCL1 plays a critical role in tumor growth and may serve as a potential molecular target for use in HCC therapy. PMID:25944999

  12. Inflammatory joint disease and human immunodeficiency virus infection

    PubMed Central

    Forster, S M; Seifert, M H; Keat, A C; Rowe, I F; Thomas, B J; Taylor-Robinson, D; Pinching, A J; Harris, J R W

    1988-01-01

    Nine men positive for antibody to human immunodeficiency virus (HIV) who developed peripheral, non-erosive arthritis were followed up. The clinical features were compatible with reactive arthritis but were atypical in several respects: the joint symptoms were generally severe, persistent, and unresponsive to non-steroidal anti-inflammatory drugs. The onset of arthritis was associated with various infections, none of which are known to be associated with the development of reactive arthritis. HLA typing was performed for three patients, all of whom were positive for HLA-B27. HIV was isolated from the synovial fluid of one patient. No patient had AIDS before developing arthritis, but four progressed to having AIDS after a mean of 7·5 months, and two died. Arthritis resolved in only one patient. The possibility of HIV infection should be considered in all patients with conditions suggesting reactive arthritis. Synovitis in patients with severe immunodeficiency has important pathogenetic implications. PMID:3135044

  13. Recent advances in the immunogenetics of idiopathic inflammatory myopathy

    PubMed Central

    2011-01-01

    This review summarizes the previous and current literature on the immunogenetics of idiopathic inflammatory myopathy (IIM) and updates the research progress that has been made over the past decade. A substantial part of the genetic risk for developing adult- and juvenile-onset IIM lies within the major histocompatibility complex (MHC), and a tight relationship exists between individual human leukocyte antigen alleles and specific serological subtypes, which in turn dictate clinical disease phenotypes. Multiple genetic regions outside of the MHC are increasingly being identified in conferring IIM disease susceptibility. We are still challenged with the task of studying a serologically and clinically heterogeneous disorder that is rarer by orders of magnitude than the likes of rheumatoid arthritis. An ongoing and internationally coordinated IIM genome-wide association study may provide further insights into IIM immunogenetics. PMID:21658295

  14. Diagnosis and treatment of the idiopathic inflammatory myopathies

    PubMed Central

    Gazeley, David J.

    2011-01-01

    The idiopathic inflammatory myopathies (IIMs) are rare disorders with the unifying feature of proximal muscle weakness. These diseases include polymyositis(PM), dermatomyositis (DM) and inclusion body myositis (IBM) as the most common. The diagnosis is based on the finding of weakness on exam, elevated muscles enzymes, characteristic histopathology of muscle biopsies, electromyography abnormalities and rash in DM. Myositis-specific antibodies have been helpful in defining subsets of patients with different responses to treatment and prognosis. The cornerstone of therapy is corticosteroids with the addition of other immunosuppressives in severe or refractory disease or patients with intolerable side effects. IBM is particularly difficult to treat but is more slowly progressive as compared with PM or DM. There is still a great need to find more effective and less-toxic therapies. PMID:22870489

  15. [Anesthetic Management of Three Patients with Chronic Inflammatory Demyelinating Polyradiculoneuropathy].

    PubMed

    Maruyama, Naoko; Wakimoto, Mayuko; Inamori, Noriko; Nishimura, Shinya; Mori, Takahiko

    2015-08-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a chronically progressing or relapsing disease caused by immune-mediated peripheral neuropathy. We report the anesthetic management of three CIDP patients who underwent elective orthopedic surgeries. Owing to the risk of neuraxial anesthetics triggering demyelination, general anesthesia was selected to avoid epidural or spinal anesthesia or other neuraxial blockade. It was also judged prudent to avoid prolonged perioperative immobilization, which might compress vulnerable peripheral nerves. For Patient 1, general anesthesia was induced with propofol, remifentanil, and sevoflurane, and was maintained with sevoflurane and remifentanil. For Patients 2 and 3, general anesthesia was induced and maintained with propofol and remifentanil. For tracheal intubation, under careful monitoring with peripheral nerve stimulators, minimal doses of rocuronium (0.6-0.7 mg x kg(-1)) were administered. When sugammadex was administered to reverse the effect of rocuronium, all patients rapidly regained muscular strength. Postoperative courses were satisfactory without sequelae.

  16. Light and sound - emerging imaging techniques for inflammatory bowel disease

    PubMed Central

    Knieling, Ferdinand; Waldner, Maximilian J

    2016-01-01

    Patients with inflammatory bowel disease are known to have a high demand of recurrent evaluation for therapy and disease activity. Further, the risk of developing cancer during the disease progression is increasing from year to year. New, mostly non-radiant, quick to perform and quantitative methods are challenging, conventional endoscopy with biopsy as gold standard. Especially, new physical imaging approaches utilizing light and sound waves have facilitated the development of advanced functional and molecular modalities. Besides these advantages they hold the promise to predict personalized therapeutic responses and to spare frequent invasive procedures. Within this article we highlight their potential for initial diagnosis, assessment of disease activity and surveillance of cancer development in established techniques and recent advances such as wide-view full-spectrum endoscopy, chromoendoscopy, autofluorescence endoscopy, endocytoscopy, confocal laser endoscopy, multiphoton endoscopy, molecular imaging endoscopy, B-mode and Doppler ultrasound, contrast-enhanced ultrasound, ultrasound molecular imaging, and elastography. PMID:27433080

  17. Standard and escalating treatment of chronic inflammatory demyelinating polyradiculoneuropathy

    PubMed Central

    Yoon, Min-Suk; Chan, Andrew; Gold, Ralf

    2011-01-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired, immune-mediated polyradiculoneuritis that is progressive or relapsing over a period of at least 8 weeks. Although the exact pathogenesis is unclear, it is thought to be mediated by both cellular and humoral immune reactions directed against the peripheral nerve myelin or axon. CIDP also involves spinal nerve roots. Early medical treatment of CIDP is important to prevent axonal loss. Only three treatment regimens for CIDP have demonstrated benefit in randomized, controlled studies: corticosteroids, plasma exchange, and intravenous immunoglobulins (IVIg). Approximately 25% of patients respond inadequately to corticosteroids, plasma exchange or IVIg. Large placebo-controlled trials with alternative immunosuppressive compounds, e.g. mycophenolate mofetil, cyclosporine, cyclophosphamide, or monoclonal antibodies, are lacking. PMID:21694819

  18. Light and sound - emerging imaging techniques for inflammatory bowel disease.

    PubMed

    Knieling, Ferdinand; Waldner, Maximilian J

    2016-07-01

    Patients with inflammatory bowel disease are known to have a high demand of recurrent evaluation for therapy and disease activity. Further, the risk of developing cancer during the disease progression is increasing from year to year. New, mostly non-radiant, quick to perform and quantitative methods are challenging, conventional endoscopy with biopsy as gold standard. Especially, new physical imaging approaches utilizing light and sound waves have facilitated the development of advanced functional and molecular modalities. Besides these advantages they hold the promise to predict personalized therapeutic responses and to spare frequent invasive procedures. Within this article we highlight their potential for initial diagnosis, assessment of disease activity and surveillance of cancer development in established techniques and recent advances such as wide-view full-spectrum endoscopy, chromoendoscopy, autofluorescence endoscopy, endocytoscopy, confocal laser endoscopy, multiphoton endoscopy, molecular imaging endoscopy, B-mode and Doppler ultrasound, contrast-enhanced ultrasound, ultrasound molecular imaging, and elastography. PMID:27433080

  19. [Anti-inflammatory modulators in traumatic brain injury].

    PubMed

    Lescot, T; Marchand-Verrecchia, C; Puybasset, L

    2006-07-01

    Traumatic brain injury leads to primary and secondary brain injuries. Primary brain injury results from mechanical forces applied to the head at the time of impact. Secondary brain injury occurs at some time after the primary impact. Numerous pathophysiological mechanisms have been postulated to explain the progressive tissue damage produced by secondary injuries. The endogenous neuroinflammatory response after traumatic brain injury contributes to the development of blood-brain barrier breakdown, cerebral oedema and neuronal cell death and this has led to various pharmacological therapies to try to limit this type of damage. Studies employing glutamate receptor antagonist for cerebral protection have yielded promising results in laboratory animals but failed to produce clinically significant improvements. The present review will summarize the mechanisms of post traumatic cerebral inflammation with a special focus on the anti-inflammatory drug targets.

  20. Inflammatory-like presentation of CADASIL: a diagnostic challenge

    PubMed Central

    2012-01-01

    Background CADASIL is an autosomal dominant genetic leukoencephalopathy linked to mutations in the Notch3 gene. In rare cases, widespread brain lesions on T2 MRI mimicking multiple sclerosis are observed. From a national registry of 268 patients with adult-onset leukodystrophy, we identified two patients with an atypical presentation of CADASIL without co-occurrence of another systemic disease. Case presentations Patient 1 experienced progressive gait disability and patient 2 relapsing optic neuritis and sensory-motor deficit in the leg. Both patients responded to corticotherapy and patient 2 was also responsive to glatiramer acetate. No oligoclonal bands were found in the CSF, and MRI showed myelitis and lesions with gadolinium enhancement in brain (patient 1) or incomplete CADASIL phenotype (patient 2). Conclusions In rare cases, an inflammatory-like process can occur in CADASIL. In these patients, immunomodulatory treatments, including corticosteroids, could be effective. PMID:22905984

  1. A Personalized Approach to Managing Inflammatory Bowel Disease

    PubMed Central

    Kingsley, Michael J.

    2016-01-01

    The management of inflammatory bowel disease (IBD) requires a personalized approach to treat what is a heterogeneous group of patients with inherently variable disease courses. In its current state, personalized care of the IBD patient involves identifying patients at high risk for rapid progression to complications, selecting the most appropriate therapy for a given patient, using therapeutic drug monitoring, and achieving the individualized goal that is most appropriate for that patient. The growing body of research in this area allows clinicians to better predict outcomes for individual patients. Some paradigms, especially within the realm of therapeutic drug monitoring, have begun to change as therapy is targeted to individual patient results and goals. Future personalized medical decisions may allow specific therapeutic plans to draw on serologic, genetic, and microbial data for Crohn’s disease and ulcerative colitis patients. PMID:27499713

  2. Progressive Pigmentary Purpura

    MedlinePlus

    ... Category: Share: Yes No, Keep Private Progressive Pigmentary Purpura Share | Progressive pigmentary purpura (we will call it PPP) is a group ... conditions ( Schamberg's disease , Lichenoid dermatitis of Gourgerot-Blum, purpura annularis telangiectodes of Majocchi and Lichen aureus). Schamberg's ...

  3. Role of interleukin-22 in inflammatory bowel disease

    PubMed Central

    Li, Lin-Jing; Gong, Chen; Zhao, Mei-Hua; Feng, Bai-Sui

    2014-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disease thought to be mediated by the microbiota of the intestinal lumen and inappropriate immune responses. Aberrant immune responses can cause secretion of harmful cytokines that destroy the epithelium of the gastrointestinal tract, leading to further inflammation. Interleukin (IL)-22 is a member of the IL-10 family of cytokines that was recently discovered to be mainly produced by both adaptive and innate immune cells. Several cytokines and many of the transcriptional factors and T regulatory cells are known to regulate IL-22 expression through activation of signal transducer and activator of transcription 3 signaling cascades. This cytokine induces antimicrobial molecules and proliferative and antiapoptotic pathways, which help prevent tissue damage and aid in its repair. All of these processes play a beneficial role in IBD by enhancing intestinal barrier integrity and epithelial innate immunity. In this review, we discuss recent progress in the involvement of IL-22 in the pathogenesis of IBD, as well as its therapeutic potential. PMID:25561785

  4. RNA interference-based nanosystems for inflammatory bowel disease therapy

    PubMed Central

    Guo, Jian; Jiang, Xiaojing; Gui, Shuangying

    2016-01-01

    Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn’s disease, is a chronic, recrudescent disease that invades the gastrointestinal tract, and it requires surgery or lifelong medicinal therapy. The conventional medicinal therapies for IBD, such as anti-inflammatories, glucocorticoids, and immunosuppressants, are limited because of their systemic adverse effects and toxicity during long-term treatment. RNA interference (RNAi) precisely regulates susceptibility genes to decrease the expression of proinflammatory cytokines related to IBD, which effectively alleviates IBD progression and promotes intestinal mucosa recovery. RNAi molecules generally include short interfering RNA (siRNA) and microRNA (miRNA). However, naked RNA tends to degrade in vivo as a consequence of endogenous ribonucleases and pH variations. Furthermore, RNAi treatment may cause unintended off-target effects and immunostimulation. Therefore, nanovectors of siRNA and miRNA were introduced to circumvent these obstacles. Herein, we introduce non-viral nanosystems of RNAi molecules and discuss these systems in detail. Additionally, the delivery barriers and challenges associated with RNAi molecules will be discussed from the perspectives of developing efficient delivery systems and potential clinical use. PMID:27789943

  5. Current issues in pediatric inflammatory bowel disease-associated arthropathies.

    PubMed

    Cardile, Sabrina; Romano, Claudio

    2014-01-01

    Joint involvement is the most common extraintestinal manifestation in children with inflammatory bowel disease (IBD) and may involve 16%-33% of patients at diagnosis or during follow-up. It is possible to distinguish asymmetrical, transitory and migrating arthritis (pauciarticular and polyarticular) and spondyloarthropathy (SpA). Clinical manifestations can be variable, and peripheral arthritis often occurs before gastrointestinal symptoms develop. The inflammatory intestinal pattern is variable, ranging from sub-clinical inflammation conditions, classified as indeterminate colitis and nodular lymphoid hyperplasia of the ileum, to Crohn's disease or ulcerative colitis. Unlike the axial form, there is an association between gut inflammation and evolution of recurrent peripheral articular disease that coincides with a flare-up of intestinal disease. This finding seems to confirm a key role of intestinal inflammation in the pathogenesis of SpA. An association between genetic background and human leukocyte antigen-B27 status is less common in pediatric than n adult populations. Seronegative sacroiliitis and SpA are the most frequent forms of arthropathy in children with IBD. In pediatric patients, a correct therapeutic approach relies on the use of nonsteroidal antiinflammatory drugs, local steroid injections, physiotherapy and anti-tumor necrosis factor therapy (infliximab). Early diagnosis of these manifestations reduces the risk of progression and complications, and as well as increasing the efficacy of the therapy. PMID:24415857