Chen, Szu-Chia; Lin, Tsung-Hsien; Hsu, Po-Chao; Chang, Jer-Ming; Lee, Chee-Siong; Tsai, Wei-Chung; Su, Ho-Ming; Voon, Wen-Chol; Chen, Hung-Chun
2011-09-01
Heart failure and increased arterial stiffness are associated with declining renal function. Few studies have evaluated the association between left ventricular ejection fraction (LVEF) and brachial-ankle pulse-wave velocity (baPWV) and renal function progression. The aim of this study was to assess whether LVEF<40% and baPWV are associated with a decline in the estimated glomerular filtration rate (eGFR) and the progression to a renal end point of ≥25% decline in eGFR. This longitudinal study included 167 patients. The baPWV was measured with an ankle-brachial index-form device. The change in renal function was estimated by eGFR slope. The renal end point was defined as ≥25% decline in eGFR. Clinical and echocardiographic parameters were compared and analyzed. After a multivariate analysis, serum hematocrit was positively associated with eGFR slope, and diabetes mellitus, baPWV (P=0.031) and LVEF<40% (P=0.001) were negatively associated with eGFR slope. Forty patients reached the renal end point. Multivariate, forward Cox regression analysis found that lower serum albumin and hematocrit levels, higher triglyceride levels, higher baPWV (P=0.039) and LVEF<40% (P<0.001) were independently associated with progression to the renal end point. Our results show that LVEF<40% and increased baPWV are independently associated with renal function decline and progression to the renal end point.
Asdonk, T; Nickenig, G; Hammerstingl, C
2014-10-01
Mitral regurgitation (MR) is a frequent valve disorder in elderly patients, often accompanied by multiple comorbidities such as renal impairment. In these patients percutaneous mitral valve (MV) repair has become an established treatment option but the role of MR on renal dysfunction is not yet well defined. We here report on two cases presenting with severe MR and progressive renal failure caused by cardio renal syndrome, in which percutaneous MV treatment with the MitraClip system significantly improved renal function. These findings suggest that interventional MV repair can prevent progression of renal deterioration in patients suffering from combined advanced heart and renal failure. Further clinical studies are necessary to support our finding and to answer the question whether optimizing renal function by implantation of the MitraClip device is also of prognostic relevance in these patients. © 2014 Wiley Periodicals, Inc.
Biomarkers of Renal Tumor Burden and Progression in TSC
2012-09-01
code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Biomarkers of Renal Tumor Burden and Progression in TSC Dr. Elahna Paul 1...appearance and growth rates) and renal function parameters (e.g. blood pressure, serum chemistries, urinalysis and urine chemistries). (2) Measure...and renal function parameters (e.g. blood pressure, serum chemistries, urinalysis and urine chemistries). (2) Measure soluble growth factors
Maric-Bilkan, Christine; Flynn, Elizabeth R.
2012-01-01
Diabetic nephropathy is a progressive and generalized vasculopathic condition associated with abnormal angiogenesis. We aim to determine whether changes in renal microvascular (MV) density correlate with and play a role in the progressive deterioration of renal function in diabetes. We hypothesize that MV changes represent the early steps of renal injury that worsen as diabetes progresses, initiating a vicious circle that leads to irreversible renal injury. Male nondiabetic (ND) or streptozotocin-induced diabetic (D) Sprague-Dawley rats were followed for 4 or 12 wk. Renal blood flow and glomerular filtration rate (GFR) were measured by PAH and 125I-[iothalamate], respectively. Renal MV density was quantified ex vivo using three-dimensional micro computed tomography and JG-12 immunoreactivity. Vascular endothelial growth factor (VEGF) levels (ELISA) and expression of VEGF receptors and factors involved in MV remodeling were quantified in renal tissue by Western blotting. Finally, renal morphology was investigated by histology. Four weeks of diabetes was associated with increased GFR, accompanied by a 34% reduction in renal MV density and augmented renal VEGF levels. However, at 12 wk, while GFR remained similarly elevated, reduction of MV density was more pronounced (75%) and associated with increased MV remodeling, renal fibrosis, but unchanged renal VEGF compared with ND at 12 wk. The damage, loss, and subsequent remodeling of the renal MV architecture in the diabetic kidney may represent the initiating events of progressive renal injury. This study suggests a novel concept of MV disease as an early instigator of diabetic kidney disease that may precede and likely promote the decline in renal function. PMID:22031855
Renovascular disease, microcirculation, and the progression of renal injury: role of angiogenesis
2011-01-01
Emerging evidence supports the pivotal role of renal microvascular disease as a determinant of tubulo-interstitial and glomerular fibrosis in chronic kidney disease. An intact microcirculation is vital to restore blood flow to the injured tissues, which is a crucial step to achieve a successful repair response. The purpose of this review is to discuss the impact and mechanisms of the functional and structural changes of the renal microvascular network, as well as the role of these changes in the progression and irreversibility of renal injury. Damage of the renal microcirculation and deterioration of the angiogenic response may constitute early steps in the complex pathways involved in progressive renal injury. There is limited but provocative evidence that stimulation of vascular proliferation and repair may stabilize renal function and slow the progression of renal disease. The feasibility of novel potential therapeutic interventions for stabilizing the renal microvasculature is also discussed. Targeted interventions to enhance endogenous renoprotective mechanisms focused on the microcirculation, such as cell-based therapy or the use of angiogenic cytokines have shown promising results in some experimental and clinical settings. PMID:21307362
Su, Ho-Ming; Tsai, Wei-Chung; Lin, Tsung-Hsien; Hsu, Po-Chao; Lee, Wen-Hsien; Lin, Ming-Yen; Chen, Szu-Chia; Lee, Chee-Siong; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung
2012-01-01
The P wave parameters measured by 12-lead electrocardiogram (ECG) are commonly used as noninvasive tools to assess for left atrial enlargement. There are limited studies to evaluate whether P wave parameters are independently associated with decline in renal function. Accordingly, the aim of this study is to assess whether P wave parameters are independently associated with progression to renal end point of ≥25% decline in estimated glomerular filtration rate (eGFR). This longitudinal study included 166 patients. The renal end point was defined as ≥25% decline in eGFR. We measured two ECG P wave parameters corrected by heart rate, i.e. corrected P wave dispersion (PWdisperC) and corrected P wave maximum duration (PWdurMaxC). Heart function and structure were measured from echocardiography. Clinical data, P wave parameters, and echocardiographic measurements were compared and analyzed. Forty-three patients (25.9%) reached renal end point. Kaplan-Meier curves for renal end point-free survival showed PWdisperC > median (63.0 ms) (log-rank P = 0.004) and PWdurMaxC > median (117.9 ms) (log-rank P<0.001) were associated with progression to renal end point. Multivariate forward Cox-regression analysis identified increased PWdisperC (hazard ratio [HR], 1.024; P = 0.001) and PWdurMaxC (HR, 1.029; P = 0.001) were independently associated with progression to renal end point. Our results demonstrate that increased PWdisperC and PWdurMaxC were independently associated with progression to renal end point. Screening patients by means of PWdisperC and PWdurMaxC on 12 lead ECG may help identify a high risk group of rapid renal function decline.
Warnock, David G; Ortiz, Alberto; Mauer, Michael; Linthorst, Gabor E; Oliveira, João P; Serra, Andreas L; Maródi, László; Mignani, Renzo; Vujkovac, Bojan; Beitner-Johnson, Dana; Lemay, Roberta; Cole, J Alexander; Svarstad, Einar; Waldek, Stephen; Germain, Dominique P; Wanner, Christoph
2012-03-01
The purpose of this study was to identify determinants of renal disease progression in adults with Fabry disease during treatment with agalsidase beta. Renal function was evaluated in 151 men and 62 women from the Fabry Registry who received agalsidase beta at an average dose of 1 mg/kg/2 weeks for at least 2 years. Patients were categorized into quartiles based on slopes of estimated glomerular filtration rate (eGFR) during treatment. Multivariate logistic regression analyses were used to identify factors associated with renal disease progression. Men within the first quartile had a mean eGFR slope of -0.1 mL/min/1.73m(2)/year, whereas men with the most rapid renal disease progression (Quartile 4) had a mean eGFR slope of -6.7 mL/min/1.73m(2)/year. The risk factor most strongly associated with renal disease progression was averaged urinary protein:creatinine ratio (UP/Cr) ≥1 g/g (odds ratio 112, 95% confidence interval (95% CI) 4-3109, P = 0.0054). Longer time from symptom onset to treatment was also associated with renal disease progression (odds ratio 19, 95% CI 2-184, P = 0.0098). Women in Quartile 4 had the highest averaged UP/Cr (mean 1.8 g/g) and the most rapid renal disease progression: (mean slope -4.4 mL/min/1.73m(2)/year). Adults with Fabry disease are at risk for progressive loss of eGFR despite enzyme replacement therapy, particularly if proteinuria is ≥1 g/g. Men with little urinary protein excretion and those who began receiving agalsidase beta sooner after the onset of symptoms had stable renal function. These findings suggest that early intervention may lead to optimal renal outcomes.
Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage
Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C.; Khadayate, Sanjay; Mas, Valeria R.; Nitsch, Dorothea D.; Wang, Zhen; Norman, Jill T.; Wilcox, Christopher S.; Wheeler, David C.; Leiper, James
2015-01-01
Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule–specific Ddah1 knockout (Ddah1PT−/−) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1PT−/− mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. PMID:25855779
Cigarette smoking causes epigenetic changes associated with cardiorenal fibrosis
Haller, Steven T.; Fan, Xiaoming; Xie, Jeffrey X.; Kennedy, David J.; Liu, Jiang; Yan, Yanling; Hernandez, Dawn-Alita; Mathew, Denzil P.; Cooper, Christopher J.; Shapiro, Joseph I.; Tian, Jiang
2016-01-01
Clinical studies indicate that smoking combustible cigarettes promotes progression of renal and cardiac injury, leading to functional decline in the setting of chronic kidney disease (CKD). However, basic studies using in vivo small animal models that mimic clinical pathology of CKD are lacking. To address this issue, we evaluated renal and cardiac injury progression and functional changes induced by 4 wk of daily combustible cigarette smoke exposure in the 5/6th partial nephrectomy (PNx) CKD model. Molecular evaluations revealed that cigarette smoke significantly (P < 0.05) decreased renal and cardiac expression of the antifibrotic microRNA miR-29b-3 and increased expression of molecular fibrosis markers. In terms of cardiac and renal organ structure and function, exposure to cigarette smoke led to significantly increased systolic blood pressure, cardiac hypertrophy, cardiac and renal fibrosis, and decreased renal function. These data indicate that decreased expression of miR-29b-3p is a novel mechanism wherein cigarette smoke promotes accelerated cardiac and renal tissue injury in CKD. (155 words) PMID:27789733
Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage.
Tomlinson, James A P; Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C; Khadayate, Sanjay; Mas, Valeria R; Nitsch, Dorothea D; Wang, Zhen; Norman, Jill T; Wilcox, Christopher S; Wheeler, David C; Leiper, James
2015-12-01
Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule-specific Ddah1 knockout (Ddah1(PT-/-)) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1(PT-/-) mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. Copyright © 2015 by the American Society of Nephrology.
Ortiz, Alberto; Mauer, Michael; Linthorst, Gabor E.; Oliveira, João P.; Serra, Andreas L.; Maródi, László; Mignani, Renzo; Vujkovac, Bojan; Beitner-Johnson, Dana; Lemay, Roberta; Cole, J.Alexander; Svarstad, Einar; Waldek, Stephen; Germain, Dominique P.; Wanner, Christoph
2012-01-01
Background. The purpose of this study was to identify determinants of renal disease progression in adults with Fabry disease during treatment with agalsidase beta. Methods. Renal function was evaluated in 151 men and 62 women from the Fabry Registry who received agalsidase beta at an average dose of 1 mg/kg/2 weeks for at least 2 years. Patients were categorized into quartiles based on slopes of estimated glomerular filtration rate (eGFR) during treatment. Multivariate logistic regression analyses were used to identify factors associated with renal disease progression. Results. Men within the first quartile had a mean eGFR slope of –0.1 mL/min/1.73m2/year, whereas men with the most rapid renal disease progression (Quartile 4) had a mean eGFR slope of –6.7 mL/min/1.73m2/year. The risk factor most strongly associated with renal disease progression was averaged urinary protein:creatinine ratio (UP/Cr) ≥1 g/g (odds ratio 112, 95% confidence interval (95% CI) 4–3109, P = 0.0054). Longer time from symptom onset to treatment was also associated with renal disease progression (odds ratio 19, 95% CI 2–184, P = 0.0098). Women in Quartile 4 had the highest averaged UP/Cr (mean 1.8 g/g) and the most rapid renal disease progression: (mean slope –4.4 mL/min/1.73m2/year). Conclusions. Adults with Fabry disease are at risk for progressive loss of eGFR despite enzyme replacement therapy, particularly if proteinuria is ≥1 g/g. Men with little urinary protein excretion and those who began receiving agalsidase beta sooner after the onset of symptoms had stable renal function. These findings suggest that early intervention may lead to optimal renal outcomes. PMID:21804088
Petras, Dimitrios; Koutroutsos, Konstantinos; Kordalis, Athanasios; Tsioufis, Costas; Stefanadis, Christodoulos
2013-08-01
The kidney has been shown to be critically involved as both trigger and target of sympathetic nervous system overactivity in both experimental and clinical studies. Renal injury and ischemia, activation of renin angiotensin system and dysfunction of nitric oxide system have been implicated in adrenergic activation from kidney. Conversely, several lines of evidence suggest that sympathetic overactivity, through functional and morphological alterations in renal physiology and structure, may contribute to kidney injury and chronic kidney disease progression. Pharmacologic modulation of sympathetic nervous system activity has been found to have a blood pressure independent renoprotective effect. The inadequate normalization of sympathoexcitation by pharmacologic treatment asks for novel treatment options. Catheter based renal denervation targets selectively both efferent and afferent renal nerves and functionally denervates the kidney providing blood pressure reduction in clinical trials and renoprotection in experimental models by ameliorating the effects of excessive renal sympathetic drive. This review will focus on the role of sympathetic overactivity in the pathogenesis of kidney injury and CKD progression and will speculate on the effect of renal denervation to these conditions.
Atherosclerotic renovascular disease among hypertensive adults
Davis, Ross P.; Pearce, Jeffrey D.; Craven, Timothy E.; Moore, Phillip S.; Edwards, Matthew S.; Godshall, Christopher J.; Hansen, Kimberley J.
2010-01-01
Purpose Ths report describes the change in atherosclerotic renovascular disease (AS-RVD) among hypertensive adults referred for renal duplex sonography (RDS) scan. Methods From Oct 1993 through July 2008, 20,994 patients had RDS at our center. A total of 434 hypertensive patients with two or more RDS exams without intervention comprised the study cohort. Patient demographics (blood pressures, medications, serum creatinine levels, and data from RDS) were collected. Analyses of longitudinal changes in Doppler scan parameters, blood pressures, and renal function were performed by fitting linear growth-curve models. After confirming the linearity of change in Doppler scan parameters among patients with variable number of studies, estimates of mean slopes were calculated using maximum likelihood techniques. For changes in renal function, quadratic growth curves were required to describe longitudinal change. Results A total of 434 subjects (212 men [49%] and 222 women [51%]; mean age, 64.6 ± 12.2 years) provided 1351 studies (mean, 3.2 ± 2.4; range, 2 to 18) for 863 kidneys over a mean follow-up of 34.4 ± 25.1 months. At baseline, 20.6% of kidneys demonstrated hemodynamically significant stenosis. On follow-up, 72 kidneys (9.1%) demonstrated anatomic progression of disease. A total of 54 kidneys (6.9%) progressed to significant stenosis and 18 (2.3%) progressed to occlusion. Controlling for progression of disease, baseline renal artery status demonstrated a strong association with baseline kidney length (P = .0006). Significant annualized change in renal length was observed (cm change/year ± standard error of the mean [SEM]: 0.042 ± 0.011; P = .0002) among both kidneys with and without critical disease at baseline, however, decline in length was significantly greater among kidneys exhibiting progression of renovascular disease (−0.152 ± 0.028 cm/year; comparison of slopes between groups P = .0005). In the absence of progression, the presence or absence of critical renal artery stenosis at baseline did not affect the rate of decline in renal length. Fitted models for the natural log transform of serum creatinine demonstrated a significant increase during follow-up (P < .0001). No association was observed between change in serum creatinine and baseline renovascular disease status, or its progression. Conclusion A total of 32% of hypertensive adults referred for RDS demonstrated hemodynamically significant renal artery stenosis. Regardless of the presence or absence of baseline disease, a small percentage of patients demonstrated anatomic progression of AS-RVD. A total of 9.1% demonstrated anatomic progression and 2.3% progressed to occlusion. Although anatomic progression of AS-RVD was associated with an increased rate of decline in renal length, progression did not predict a decline in excretory renal function. Intervention for AS-RVD should be selective and reserved for strict indications. PMID:19700093
Is Fluid Overload More Important than Diabetes in Renal Progression in Late Chronic Kidney Disease?
Tsai, Yi-Chun; Tsai, Jer-Chia; Chiu, Yi-Wen; Kuo, Hung-Tien; Chen, Szu-Chia; Hwang, Shang-Jyh; Chen, Tzu-Hui; Kuo, Mei-Chuan; Chen, Hung-Chun
2013-01-01
Fluid overload is one of the major presentations in patients with late stage chronic kidney disease (CKD). Diabetes is the leading cause of renal failure, and progression of diabetic nephropathy has been associated with changes in extracellular fluid volume. The aim of the study was to assess the association of fluid overload and diabetes in commencing dialysis and rapid renal function decline (the slope of estimated glomerular filtration rate (eGFR) less than -3 ml/min per 1.73 m2/y) in 472 patients with stages 4-5 CKD. Fluid status was determined by bioimpedance spectroscopy method, Body Composition Monitor. The study population was further classified into four groups according to the median of relative hydration status (△HS =fluid overload/extracellular water) and the presence or absence of diabetes. The median level of relative hydration status was 7%. Among all patients, 207(43.9 %) were diabetic. 71 (15.0%) subjects had commencing dialysis, and 187 (39.6%) subjects presented rapid renal function decline during a median 17.3-month follow-up. Patients with fluid overload had a significantly increased risk for commencing dialysis and renal function decline independent of the presence or absence of diabetes. No significantly increased risk for renal progression was found between diabetes and non-diabetes in late CKD without fluid overload. In conclusion, fluid overload has a higher predictive value of an elevated risk for renal progression than diabetes in late CKD. PMID:24349311
Rasche, F. M.; Rasche, W. G.; Schiekofer, S.; Boldt, A.; Sack, U.; Fahnert, J.
2016-01-01
Summary IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Lifelong mesangial deposition of IgA1 complexes subsist inflammation and nephron loss, but the complex pathogenesis in detail remains unclear. In regard to the heterogeneous course, classical immunosuppressive and specific therapeutic regimens adapted to the loss of renal function will here be discussed in addition to the essential common renal supportive therapy. Renal supportive therapy alleviates secondary, surrogate effects or sequelae on renal function and proteinuria of high intraglomerular pressure and subsequent nephrosclerosis by inhibition of the renin angiotensin system (RAASB). In patients with physiological (ΔGFR < 1·5 ml/min/year) or mild (ΔGFR 1·5–5 ml/min/year) decrease of renal function and proteinuric forms (> 1 g/day after RAASB), corticosteroids have shown a reduction of proteinuria and might protect further loss of renal function. In patients with progressive loss of renal function (ΔGFR > 3 ml/min within 3 months) or a rapidly progressive course with or without crescents in renal biopsy, cyclophosphamide with high‐dose corticosteroids as induction therapy and azathioprine maintenance has proved effective in one randomized controlled study of a homogeneous cohort in loss of renal function (ΔGFR). Mycophenolic acid provided further maintenance in non‐randomized trials. Differentiated, precise, larger, randomized, placebo‐controlled studies focused on the loss of renal function in the heterogeneous forms of IgAN are still lacking. Prospectively, fewer toxic agents will be necessary in the treatment of IgAN. PMID:27283488
Progressive kidney failure as the sole manifestation of extrapulmonary sarcoidosis.
Sethi, Supreet; Relia, Nitin; Syal, Gaurav; Kaushik, Chhavi; Gokden, Neriman; Malik, Ahmad B
2013-09-01
Sarcoidosis is a chronic multisystem disorder characterized by an accumulation of T lymphocytes and mononuclear phagocytes, non-caseating epitheliod granulomas and derangement of normal tissue architecture in affected organs. Sarcoidosis can affect any organ system, however approximately 90% of patients with sarcoidosis have pulmonary, lymph node, cutaneous or ocular manifestations. Renal involvement in sarcoidosis is rare and clinically significant renal dysfunction even less common. We present a case of isolated renal sarcoidosis which manifested with progressively worsening renal function and hypercalcemia. A systematic diagnostic approach with pertinent laboratory studies, imaging and renal biopsy elucidated the diagnosis of renal sarcoidosis without any evidence of systemic involvement.
Revascularization to preserve renal function in patients with atherosclerotic renovascular disease.
Novick, A C; Textor, S C; Bodie, B; Khauli, R B
1984-08-01
There are a significant number of patients with advanced atherosclerotic renovascular disease whose blood pressure is well controlled with medical therapy but in whom such vascular disease poses a grave risk to overall renal function. This article reviews current concepts regarding screening, evaluation, and selection of patients with this disease for revascularization to preserve renal function. The underlying rationale for this approach is an increasing awareness that, in selected patients, atherosclerotic renovascular disease represents a surgically correctable cause of progressive renal failure.
Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury
Fakhruddin, Selim; Alanazi, Wael
2017-01-01
Diabetes induces the onset and progression of renal injury through causing hemodynamic dysregulation along with abnormal morphological and functional nephron changes. The most important event that precedes renal injury is an increase in permeability of plasma proteins such as albumin through a damaged glomerular filtration barrier resulting in excessive urinary albumin excretion (UAE). Moreover, once enhanced UAE begins, it may advance renal injury from progression of abnormal renal hemodynamics, increased glomerular basement membrane (GBM) thickness, mesangial expansion, extracellular matrix accumulation, and glomerulosclerosis to eventual end-stage renal damage. Interestingly, all these pathological changes are predominantly driven by diabetes-induced reactive oxygen species (ROS) and abnormal downstream signaling molecules. In diabetic kidney, NADPH oxidase (enzymatic) and mitochondrial electron transport chain (nonenzymatic) are the prominent sources of ROS, which are believed to cause the onset of albuminuria followed by progression to renal damage through podocyte depletion. Chronic hyperglycemia and consequent ROS production can trigger abnormal signaling pathways involving diverse signaling mediators such as transcription factors, inflammatory cytokines, chemokines, and vasoactive substances. Persistently, increased expression and activation of these signaling molecules contribute to the irreversible functional and structural changes in the kidney resulting in critically decreased glomerular filtration rate leading to eventual renal failure. PMID:28164134
The importance of total kidney volume in evaluating progression of polycystic kidney disease
Grantham, Jared J.; Torres, Vicente E.
2017-01-01
The rate at which autosomal dominant polycystic kidney disease (ADPKD) progresses to end-stage renal disease varies widely and is determined by genetic and non-genetic factors. The ability to determine the prognosis of children and young adults with ADPKD is important for the effective life-long management of the disease and to enable the efficacy of emerging therapies to be determined. Total kidney volume (TKV) reflects the sum volume of hundreds of individual cysts with potentially devastating effects on renal function. The sequential measurement of TKV has been advanced as a dynamic biomarker of disease progression, yet doubt remains among nephrologists and regulatory agencies as to its usefulness. Here, we review the mechanisms that lead to an increase in TKV in ADPKD, and examine the evidence supporting the conclusion that TKV provides a metric of disease progression that can be used to assess the efficacy of potential therapeutic regimens in children and adults with ADPKD. Moreover, we propose that TKV can be used to monitor treatment efficacy in patients with normal levels of renal function, before the pathologic processes of ADPKD cause extensive fibrosis and irreversible loss of functioning renal tissue. PMID:27694979
Kitai, Yuichiro; Doi, Yohei; Osaki, Keisuke; Sugioka, Sayaka; Koshikawa, Masao; Sugawara, Akira
2015-12-01
Proteinuria is an established risk factor for progression of renal disease, including diabetic nephropathy. The predictive power of proteinuria, especially nephrotic range proteinuria, for progressive renal deterioration has been well demonstrated in diabetic patients with normal to relatively preserved renal function. However, little is known about the relationship between severity of proteinuria and renal outcome in pre-dialysis diabetic patients with severely impaired renal function. 125 incident dialysis patients with type 2 diabetes were identified. This study was aimed at retrospectively evaluating the impact of nephrotic range proteinuria (urinary protein-creatinine ratio above 3.5 g/gCr) on renal function decline during the 3 months just prior to dialysis initiation. In total, 103 patients (82.4 %) had nephrotic range proteinuria. The median rate of decline in estimated glomerular filtration rate (eGFR) in this study population was 0.98 (interquartile range 0.51-1.46) ml/min/1.73 m(2) per month. Compared to patients without nephrotic range proteinuria, patients with nephrotic range proteinuria showed significantly faster renal function decline (0.46 [0.24-1.25] versus 1.07 [0.64-1.54] ml/min/1.73 m(2) per month; p = 0.007). After adjusting for gender, age, systolic blood pressure, serum albumin, calcium-phosphorus product, hemoglobin A1c, and use of an angiotensin-converting enzyme inhibitor or an angiotensin II receptor blocker, patients with nephrotic range proteinuria showed a 3.89-fold (95 % CI 1.08-14.5) increased risk for rapid renal function decline defined as a decline in eGFR ≥0.5 ml/min/1.73 m(2) per month. Nephrotic range proteinuria is the predominant renal risk factor in type 2 diabetic patients with severely impaired renal function receiving pre-dialysis care.
Frequency response of the renal vasculature in congestive heart failure.
DiBona, Gerald F; Sawin, Linda L
2003-04-29
The renal vasoconstrictor response to renal nerve stimulation is greater in congestive heart failure (CHF) rats than in control rats. This study tested the hypothesis that the enhanced renal vasoconstrictor response to renal nerve stimulation in CHF is a result of an impairment in the low-pass filter function of the renal vasculature. In response to conventional graded-frequency renal nerve stimulation, the reductions in renal blood flow at each stimulation frequency were greater in CHF rats than control rats. A pseudorandom binary sequence pattern of renal nerve stimulation was used to examine the frequency response of the renal vasculature. Although this did not affect the renal blood flow power spectrum in control rats, there was a 10-fold increase in renal blood flow power over the frequency range of 0.01 to 1.0 Hz in CHF rats. On analysis of transfer function gain, attenuation of the renal nerve stimulation input signal was similar in control and CHF rats over the frequency range of 0.001 to 0.1 Hz. However, over the frequency range of 0.1 to 1.0 Hz, although there was progressive attenuation of the input signal (-30 to -70 dB) in control rats, CHF rats exhibited a flat gain response (-20 dB) without progressive attenuation. The enhanced renal vasoconstrictor response to renal nerve stimulation in CHF rats is caused by an alteration in the low-pass filter function of the renal vasculature, resulting in a greater transfer of input signals into renal blood flow in the 0.1 to 1.0 Hz range.
Early RAAS Blockade Exerts Renoprotective Effects in Autosomal Recessive Alport Syndrome.
Uchida, Nao; Kumagai, Naonori; Nozu, Kandai; Fu, Xue Jun; Iijima, Kazumoto; Kondo, Yoshiaki; Kure, Shigeo
2016-11-01
Alport syndrome is a progressive renal disease caused by mutations in COL4A3, COL4A4, and COL4A5 genes that encode collagen type IV alpha 3, alpha 4, and alpha 5 chains, respectively. Because of abnormal collagen chain, glomerular basement membrane becomes fragile and most of the patients progress to end-stage renal disease in early adulthood. COL4A5 mutation causes X-linked form of Alport syndrome, and two mutations in either COL4A3 or COL4A4 causes an autosomal recessive Alport syndrome. Recently, renin-angiotensin-aldosterone system (RAAS) blockade has been shown to attenuate effectively disease progression in Alport syndrome. Here we present three Japanese siblings and their father all diagnosed with autosomal recessive Alport syndrome and with different clinical courses, suggesting the importance of the early initiation of RAAS blockade. The father was diagnosed with Alport syndrome. His consanguineous parents and his wife were healthy. All three siblings showed hematuria since infancy. Genetic analysis revealed that they shared the same gene mutations in COL4A3 in a compound heterozygous state: c.2330G>A (p.Gly777Ala) from the mother and c.4354A>T (p.Ser1452Cys) from the father. Although RAAS blockade was initiated for the older sister and brother when their renal function was already impaired, it did not attenuate disease progression. In the youngest brother, RAAS blockade was initiated during normal renal function stage. After the initiation, his renal function has been normal with the very mild proteinuria to date at the age of 17 years. We propose that in Alport syndrome, RAAS blockade should be initiated earlier than renal function is impaired.
The renin-angiotensin-aldosterone system blockade in patients with advanced diabetic kidney disease.
Bermejo, Sheila; García, Carles Oriol; Rodríguez, Eva; Barrios, Clara; Otero, Sol; Mojal, Sergi; Pascual, Julio; Soler, María José
Diabetic kidney disease is the leading cause of end-stage chronic kidney disease. The renin-angiotensin-aldosterone system (RAAS) blockade has been shown to slow the progression of diabetic kidney disease. Our objectives were: to study the percentage of patients with diabetic kidney disease treated with RAAS blockade, to determine its renal function, safety profile and assess whether its administration is associated with increased progression of CKD after 3 years of follow-up. Retrospective study. 197 diabetic kidney disease patients were included and divided into three groups according to the treatment: patients who had never received RAAS blockade (non-RAAS blockade), patients who at some point had received RAAS blockade (inconstant-RAAS blockade) and patients who received RAAS blockade (constant-RAAS blockade). Clinical characteristics and analytical variables such as renal function, electrolytes, glycosylated haemoglobin and glomerular filtration rate according to chronic kidney disease -EPI and MDRD formulas were assessed. We also studied their clinical course (baseline, 1 and 3 years follow-up) in terms of treatment group, survival, risk factors and renal prognosis. Non-RAAS blockade patients had worse renal function and older age (p<0.05) at baseline compared to RAAS blockade patients. Patients who received RAAS blockade were not found to have greater toxicity or chronic kidney disease progression and no differences in renal prognosis were identified. Mortality was higher in non-RAAS blockade patients, older patients and patients with worse renal function (p<0.05). In the multivariate analysis, older age and worse renal function were risk factors for mortality. Treatment with RAAS blockade is more common in diabetic kidney disease patients with eGFR≥30ml/min/1.73m 2 . In our study, there were no differences in the evolution of renal function between the three groups. Older age and worse renal function were associated with higher mortality in patients who did not receive RAAS blockade. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Renal Vascular Structure and Rarefaction
Chade, Alejandro R.
2014-01-01
An intact microcirculation is vital for diffusion of oxygen and nutrients and for removal of toxins of every organ and system in the human body. The functional and/or anatomical loss of microvessels is known as rarefaction, which can compromise the normal organ function and have been suggested as a possible starting point of several diseases. The purpose of this overview is to discuss the potential underlying mechanisms leading to renal microvascular rarefaction, and the potential consequences on renal function and on the progression of renal damage. Although the kidney is a special organ that receives much more blood than its metabolic needs, experimental and clinical evidence indicates that renal microvascular rarefaction is associated to prevalent cardiovascular diseases such as diabetes, hypertension, and atherosclerosis, either as cause or consequence. On the other hand, emerging experimental evidence using progenitor cells or angiogenic cytokines supports the feasibility of therapeutic interventions capable of modifying the progressive nature of microvascular rarefaction in the kidney. This overview will also attempt to discuss the potential renoprotective mechanisms of the therapeutic targeting of the renal microcirculation. PMID:23720331
[Hereditary cerebro-oculo-renal syndromes].
Sessa, Galina; Hjortshøj, Tina Duelund; Egfjord, Martin
2014-02-17
Although many congenital diseases present disturbances of the central nervous system, eyes and renal function, only few of these have a defined genetic basis. The first clinical features of cerebro-oculo-renal diseases usually develop in early childhood and deterioration of kidney function and even end-stage kidney disease may occur in a young age. The syndromes should be considered in patients with retarded growth and development, central nervous system abnormalities, impaired vision or blindness and progressive renal failure.
Kelsen, Silvia; Hall, John E; Chade, Alejandro R
2011-07-01
Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg(-1)·day(-1)) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD.
Kelsen, Silvia; Hall, John E.
2011-01-01
Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg−1·day−1) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD. PMID:21478482
Rodriguez-Padial, Luis; Akerström, Finn; Barderas, María G; Vivanco, Fernando; Arias, Miguel A; Segura, Julian; Ruilope, Luis M
2017-12-08
There is a frequent association between renal insufficiency and cardiovascular disease in patients with essential hypertension (HTN). The aim of this study was to analyze the relationship between ECG parameters and the progress of renal damage in patients with treated HTN. 109 patients with HTN had their microalbuminuria monitored over a 3-year time frame. During the last 3 months of follow-up, an ECG was recorded. Patients were divided into 3 groups according to the deterioration of their renal function: normoalbuminuria during the study period (normo-normo; n = 51); normoalbuminuria developing microalbuminuria (normo-micro; n = 29); and microalbuminuria at baseline (micro-micro; n = 29). There were no differences in presence of left ventricular hypertrophy between the 3 groups. RV6/RV5 >1 was observed more frequently as renal function declined ( p = 0.025). The 12-lead QRS-complex voltage-duration product was significantly increased in patients without microalbuminuria at baseline who went on to develop microalbuminuria ( p = 0.006). Patients who developed microalbuminuria during follow-up, with positive Cornell voltage criteria, showed a lesser degree of progression of microalbuminuria when compared with the rest of the subgroups ( p = 0.044). Furthermore, patients with microalbuminuria at baseline treated with angiotensin receptor blockers and diuretics, and positive Cornell voltage criteria, showed a higher degree of microalbuminuria compared to those with negative Cornell voltage criteria ( p = 0.016). In patients with HTN, we identified some ECG parameters, which predict renal disease progression in patients with HTN, which may permit the identification of patients who are at risk of renal disease progression, despite optimal antihypertensive pharmacotherapy.
The Putative Role of the Antiageing Protein Klotho in Cardiovascular and Renal Disease
Maltese, Giuseppe; Karalliedde, Janaka
2012-01-01
Ageing is a multifactorial process often characterized by a progressive decline in physiological function(s). Ageing can and is often associated with an increased incidence of cardiovascular and renal disease. Klotho is a novel antiageing gene that encodes a protein with multiple pleiotropic functions including an emerging role in cardiorenal disease. Mice deficient for this gene display a phenotype of premature human ageing characterized by diffuse vascular calcification, altered calcium/phosphate metabolism, and shortened lifespan. Klotho is mainly expressed in the renal tubules but it also exists as circulating soluble form detectable in the blood, with systemic effects. Reduction in soluble Klotho has been associated with renal disease, hyperphosphataemia, increased oxidative stress, endothelial dysfunction, and diffuse vascular calcification. Conversely, overexpression of Klotho promotes cardiovascular-renal protection. The majority of the research on Klotho has been conducted in vitro and in animal studies but there is emerging data from human studies which suggest that Klotho may be a modifiable factor involved in the pathogenesis of cardiovascular and renal disease in at-risk populations. Further data is required to confirm if this novel protein can emerge as therapeutic tool that may be used to prevent or slow progression of cardiorenal disease. PMID:22121479
Fort, J G; Abruzzo, J L
1988-09-01
We describe a patient with polyarteritis nodosa who, despite therapy with daily doses of oral prednisone and cyclophosphamide, developed acute renal failure. Renal histopathologic examination demonstrated crescentic glomerulonephritis. Treatment with intravenous pulse cyclophosphamide and methylprednisolone resulted in clinical improvement and significant recovery of renal function.
[CHRONIC RENAL FAILURE AND PREGNANCY--A CASE REPORT].
Amaliev, G M; Uchikova, E; Malinova, M
2015-01-01
Pregnancy in women with chronic renal failure is a complex therapeutic problem requiring a multidisciplinary approach. It is associated with a higher risk of many perinatal complications. The most common abnormalities are related to: progression of renal failure, development of preeclampsia development of nephrotic syndrome, anemic syndrome, IUGR and fetal death. The prognosis depends on the values of serum creatinine prior to pregnancy, the degree of deterioration of renal function, development of additional obstetric complications and the specific etiological reasons that have led to the occurrence of renal failure. Determining the optimum time for authorization birth depends on the condition of the mother, the condition of the fetus and the rate of progression of renal failure, and the deadline the pregnancy should be terminated is 35 weeks. We present a case of a patient with chronic renal failure, with favorable perinatal outcome.
Faiman, Beth M; Mangan, Patricia; Spong, Jacy; Tariman, Joseph D
2011-08-01
Kidney dysfunction is a common clinical feature of symptomatic multiple myeloma. Some degree of renal insufficiency or renal failure is present at diagnosis or will occur during the course of the disease and, if not reversed, will adversely affect overall survival and quality of life. Chronic insults to the kidneys from other illnesses, treatment, or multiple myeloma itself can further damage renal function and increase the risk for additional complications, such as anemia. Patients with multiple myeloma who have light chain (Bence Jones protein) proteinuria may experience renal failure or progress to end-stage renal disease (ESRD) and require dialysis because of light chain cast nephropathy. Kidney failure in patients with presumed multiple myeloma also may result from amyloidosis, light chain deposition disease, or acute tubular necrosis caused by nephrotoxic agents; therefore, identification of patients at risk for kidney damage is essential. The International Myeloma Foundation's Nurse Leadership Board has developed practice recommendations for screening renal function, identifying positive and negative contributing risk and environmental factors, selecting appropriate therapies and supportive care measures to decrease progression to ESRD, and enacting dialysis to reduce and manage renal complications in patients with multiple myeloma.
Kim, Eun Oh; Lee, Ihn Suk; Choi, Yoo A; Lee, Sang Ju; Chang, Yoon Kyung; Yoon, Hye Eun; Jang, Yi Sun; Lee, Jong Min; Kim, Hye Soo; Yang, Chul Woo; Kim, Suk Young; Hwang, Hyeon Seok
2014-01-01
Patients with chronic kidney disease (CKD) often have subclinical hypothyroidism. However, few reports have investigated changes in the status of subclinical hypothyroidism in CKD patients and its clinical significance in CKD progression. We included 168 patients with nondialysis-dependent CKD stages 2-4. The normalization of subclinical hypothyroidism during follow-up was assessed, and the association between transitions in subclinical hypothyroid status and the rate of decline of the estimated glomerular filtration rate (eGFR) was investigated. At baseline, 127 patients were euthyroid and 41 (24.4%) patients were diagnosed with subclinical hypothyroidism. Of these 41 patients, 21 (51.2%) spontaneously resolved to euthyroid during follow-up. The rate of eGFR decline of patients with resolved subclinical hypothyroidism was similar to that of euthyroid patients. The patients with unresolved subclinical hypothyroidism showed a steeper renal function decline than patients with euthyroidism or resolved subclinical hypothyroidism (all p < 0.05). The progression to end-stage renal disease was more frequent in those with unresolved subclinical hypothyroidism than in those who were euthyroid (p = 0.006). In multivariate linear regression for rate of eGFR decrease, unresolved subclinical hypothyroidism (β = -5.77, p = 0.001), baseline renal function (β = -0.12, p < 0.001) and level of proteinuria (β = -2.36, p = 0.015) were independently associated with the rate of renal function decline. Half of the CKD patients with subclinical hypothyroidism did not resolve to euthyroidism, and this lack of resolution was independently associated with rapid renal function decline.
Exercise Induced Rhabdomyolysis with Compartment Syndrome and Renal Failure
Bhalla, Mary Colleen; Dick-Perez, Ryan
2014-01-01
Exertional rhabdomyolysis is sequela that is occasionally seen after strenuous exercise. The progression to compartment syndrome or renal failure is a rare complication that requires prompt recognition and treatment to prevent morbidity (Giannoglou et al. 2007). We present a case of a 22-year-old college football player who presented to the emergency department (ED) after a typical leg workout as part of his weight conditioning. He was found to have rhabdomyolysis with evidence of renal insufficiency. His condition progressed to bilateral compartment syndrome and renal failure requiring dialysis. After bilateral fasciotomies were performed he had resolution of his compartment syndrome. He continued to be dialysis dependent and had no return of his renal function at discharge 12 days after admission. PMID:25105034
Exercise induced rhabdomyolysis with compartment syndrome and renal failure.
Bhalla, Mary Colleen; Dick-Perez, Ryan
2014-01-01
Exertional rhabdomyolysis is sequela that is occasionally seen after strenuous exercise. The progression to compartment syndrome or renal failure is a rare complication that requires prompt recognition and treatment to prevent morbidity (Giannoglou et al. 2007). We present a case of a 22-year-old college football player who presented to the emergency department (ED) after a typical leg workout as part of his weight conditioning. He was found to have rhabdomyolysis with evidence of renal insufficiency. His condition progressed to bilateral compartment syndrome and renal failure requiring dialysis. After bilateral fasciotomies were performed he had resolution of his compartment syndrome. He continued to be dialysis dependent and had no return of his renal function at discharge 12 days after admission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorstad, B.L.; Russell, C.D.; Dubovsky, E.V.
A case of renovascular hypertension is presented in which the (/sup 131/I)hippuran renogram was initially normal, but became strikingly abnormal upon administration of the angiotensin converting enzyme (ACE) inhibitor captopril. The patient presented with fibromuscular dysplasia of the renal arteries, which was shown by hippuran renography to be functionally significant on the right side. She became normotensive after angioplasty of the right renal artery. Hypertension recurred a year later, at which time the renogram was normal without captopril, but showed functionally significant left renal artery stenosis with captopril challenge. Both the conventional agent, (/sup 131/I)hippuran, and an experimental new /supmore » 99m/Tc-labeled hippuran analog, (/sup 99m/Tc)MAG3, were used. Angiography confirmed progression of disease on the left side, which was successfully treated by angioplasty. Functionally significant unilateral renal artery stenosis was thus demonstrated first on the right side and then, 1 yr later, on the left side, using hippuran and (/sup 99m/Tc)MAG3. Anatomic progression of disease was documented by angiography.« less
Oral manifestations in a renal osteodystrophy patient - a case report with review of literature.
J, Parthiban; Nisha V, Aarthi; Gs, Asokan; Ca, Prakash; Mm, Varadharaja
2014-08-01
Renal Osteodystrophy (ROD) is a common complication of chronic renal disease (CRD) and is the part of a broad spectrum of disorders of mineral metabolism that occurs in the clinical setting. It occurs early in the course of chronic renal failure and progresses as the kidney function deteriorates. It is an osseous alteration believed to arise from increased parathyroid function associated with inappropriate calcium, phosphorus and vitamin D metabolism. Involvement of the jaws is common and radiographic alterations are often one of the earliest signs of chronic renal failure. Herein, reporting a case of Chronic Renal Failure (Bilateral Grade I Neuropathy) with ROD presenting oral manifestations in an 11-year -old male child.
Selective Arterial Clamping Versus Hilar Clamping for Minimally Invasive Partial Nephrectomy.
Yezdani, Mona; Yu, Sue-Jean; Lee, David I
2016-05-01
Partial nephrectomy has become an accepted treatment of cT1 renal masses as it provides improved long-term renal function compared to radical nephrectomy (Campbell et al. J Urol. 182:1271-9, 2009). Hilar clamping is utilized to help reduce bleeding and improve visibility during tumor resection. However, concern over risk of kidney injury with hilar clamping has led to new techniques to reduce length of warm ischemia time (WIT) during partial nephrectomy. These techniques have progressed over the years starting with early hilar unclamping, controlled hypotension during tumor resection, selective arterial clamping, minimal margin techniques, and off-clamp procedures. Selective arterial clamping has progressed significantly over the years. The main question is what are the exact short- and long-term renal effects from increasing clamp time. Moreover, does it make sense to perform these more time-consuming or more complex procedures if there is no long-term preservation of kidney function? More recent studies have shown no difference in renal function 6 months from surgery when selective arterial clamping or even hilar clamping is employed, although there is short-term improved decline in estimated glomerular filtration rate (eGFR) with selective clamping and off-clamp techniques (Komninos et al. BJU Int. 115:921-8, 2015; Shah et al. 117:293-9, 2015; Kallingal et al. BJU Int. doi: 10.1111/bju.13192, 2015). This paper reviews the progression of total hilar clamping to selective arterial clamping (SAC) and the possible difference its use makes on long-term renal function. SAC may be attempted based on surgeon's decision-making, but may be best used for more complex, larger, more central or hilar tumors and in patients who have renal insufficiency at baseline or a solitary kidney.
Sawhney, Simon; Marks, Angharad; Fluck, Nick; Levin, Adeera; McLernon, David; Prescott, Gordon; Black, Corri
2017-08-01
The extent to which renal progression after acute kidney injury (AKI) arises from an initial step drop in kidney function (incomplete recovery), or from a long-term trajectory of subsequent decline, is unclear. This makes it challenging to plan or time post-discharge follow-up. This study of 14651 hospital survivors in 2003 (1966 with AKI, 12685 no AKI) separates incomplete recovery from subsequent renal decline by using the post-discharge estimated glomerular filtration rate (eGFR) rather than the pre-admission as a new reference point for determining subsequent renal outcomes. Outcomes were sustained 30% renal decline and de novo CKD stage 4, followed from 2003-2013. Death was a competing risk. Overall, death was more common than subsequent renal decline (37.5% vs 11.3%) and CKD stage 4 (4.5%). Overall, 25.7% of AKI patients had non-recovery. Subsequent renal decline was greater after AKI (vs no AKI) (14.8% vs 10.8%). Renal decline after AKI (vs no AKI) was greatest among those with higher post-discharge eGFRs with multivariable hazard ratios of 2.29 (1.88-2.78); 1.50 (1.13-2.00); 0.94 (0.68-1.32) and 0.95 (0.64-1.41) at eGFRs of 60 or more; 45-59; 30-44 and under 30, respectively. The excess risk after AKI persisted over ten years of study, irrespective of AKI severity, or post-episode proteinuria. Thus, even if post-discharge kidney function returns to normal, hospital admission with AKI is associated with increased renal progression that persists for up to ten years. Follow-up plans should avoid false reassurance when eGFR after AKI returns to normal. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Park, Walter D; Larson, Timothy S; Griffin, Matthew D; Stegall, Mark D
2012-11-15
After the first year after kidney transplantation, 3% to 5% of grafts fail each year but detailed studies of how grafts progress to failure are lacking. This study aimed to analyze the functional stability of kidney transplants between 1 and 5 years after transplantation and to identify initially well-functioning grafts with progressive decline in allograft function. The study included 788 adult conventional kidney transplants performed at the Mayo Clinic Rochester between January 2000 and December 2005 with a minimum graft survival and follow-up of 2.6 years. The modification of diet in renal disease equation for estimating glomerular filtration rate (eGFR(MDRD)) was used to calculate the slope of renal function over time using all available serum creatinine values between 1 and 5 years after transplantation. Most transplants demonstrated good function (eGFR(MDRD) ≥40 mL/min) at 1 year with positive eGFR(MDRD) slope between 1 and 5 years after transplantation. However, a subset of grafts with 1-year eGFR(MDRD) ≥40 mL/min exhibited strongly negative eGFR(MDRD) slope between 1 and 5 years suggestive of progressive loss of graft function. Forty-one percent of this subset reached graft failure during follow-up, accounting for 69% of allograft failures occurring after 2.5 years after transplantation. This pattern of progressive decline in estimated glomerular filtration rate despite good early function was associated with but not fully attributable to factors suggestive of enhanced antidonor immunity. Longitudinal analysis of serial estimated glomerular filtration ratemeasurements identifies initially well-functioning kidney transplants at high risk for subsequent graft loss. For this subset, further studies are needed to identify modifiable causes of functional decline.
Chade, Alejandro R.; Stewart, Nicholas J.; Peavy, Patrick R.
2013-01-01
We hypothesized that chronic specific endothelin (ET)-A receptor blockade therapy would reverse renal dysfunction and injury in advanced experimental renovascular disease. To test this, unilateral renovascular disease was induced in 19 pigs and after 6 weeks, single-kidney hemodynamics and function was quantified in vivo using computed-tomography. All pigs with renovascular disease were divided such that 7 were untreated, 7 were treated with ET-A blockers, and 5 were treated with ET-B blockers. Four weeks later, all pigs were re-studied in vivo, then euthanized and ex vivo studies performed on the stenotic kidney to quantify microvascular density, remodeling, renal oxidative stress, inflammation, and fibrosis. RBF, GFR, and redox status were significantly improved in the stenotic kidney after ET-A but not ET-B blockade. Furthermore, only ET-A blockade therapy reversed renal microvascular rarefaction and diminished remodeling, which was accompanied by a marked decreased in renal inflammatory and fibrogenic activity. Thus, ET-A but not ET-B blockade ameliorated renal injury in pigs with advanced renovascular disease by stimulating microvascular proliferation and decreasing the progression of microvascular remodeling, renal inflammation and fibrosis in the stenotic kidney. These effects were functionally consequential since ET-A blockade improved single kidney microvascular endothelial function, RBF, and GFR, and decreased albuminuria. PMID:24352153
The effects of environmental chemicals on renal function.
Kataria, Anglina; Trasande, Leonardo; Trachtman, Howard
2015-10-01
The global incidence of chronic kidney disease (CKD) is increasing among individuals of all ages. Despite advances in proteomics, genomics and metabolomics, there remains a lack of safe and effective drugs to reverse or stabilize renal function in patients with glomerular or tubulointerstitial causes of CKD. Consequently, modifiable risk factors that are associated with a progressive decline in kidney function need to be identified. Numerous reports have documented the adverse effects that occur in response to graded exposure to a wide range of environmental chemicals. This Review summarizes the effects of such chemicals on four aspects of cardiorenal function: albuminuria, glomerular filtration rate, blood pressure and serum uric acid concentration. We focus on compounds that individuals are likely to be exposed to as a consequence of normal consumer activities or medical treatment, namely phthalates, bisphenol A, polyfluorinated alkyl acids, dioxins and furans, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environmental exposure to these chemicals during everyday life could have adverse consequences on renal function and might contribute to progressive cumulative renal injury over a lifetime. Regulatory efforts should be made to limit individual exposure to environmental chemicals in an attempt to reduce the incidence of cardiorenal disease.
The effects of environmental chemicals on renal function
Kataria, Anglina; Trasande, Leonardo; Trachtman, Howard
2015-01-01
The global incidence of chronic kidney disease (CKD) is increasing among individuals of all ages. Despite advances in proteomics, genomics and metabolomics, there remains a lack of safe and effective drugs to reverse or stabilize renal function in patients with glomerular or tubulointerstitial causes of CKD. Consequently, modifiable risk factors that are associated with a progressive decline in kidney function need to be identified. Numerous reports have documented the adverse effects that occur in response to graded exposure to a wide range of environmental chemicals. This Review summarizes the effects of such chemicals on four aspects of cardiorenal function: albuminuria, glomerular filtration rate, blood pressure and serum uric acid concentration. We focus on compounds that individuals are likely to be exposed to as a consequence of normal consumer activities or medical treatment, namely phthalates, bisphenol A, polyfluorinated alkyl acids, dioxins and furans, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environmental exposure to these chemicals during everyday life could have adverse consequences on renal function and might contribute to progressive cumulative renal injury over a lifetime. Regulatory efforts should be made to limit individual exposure to environmental chemicals in an attempt to reduce the incidence of cardiorenal disease. PMID:26100504
Tanaka, Mari; Tsujimoto, Hiraku; Yamamoto, Kojiro; Shimoda, Saeko; Oka, Kazumasa; Takeoka, Hiroya
2017-10-01
TAFRO syndrome is a systemic inflammatory disease characterized by a constellation of symptoms: Thrombocytopenia, Anasarca, MyeloFibrosis, Renal dysfunction, and Organomegaly. Progressive renal insufficiency is a predominant symptom; however, the mechanism of acute kidney injury (AKI) remains unclear, probably because severe thrombocytopenia prevents kidney biopsy. We report a rare case of TAFRO syndrome with histologically confirmed renal involvement. A 70-year-old man developed fever, anasarca, AKI, thrombocytopenia, and hepatosplenomegaly. Plasma vascular endothelial growth factor and serum interleukin-6 levels were significantly elevated. The diagnosis of TAFRO syndrome was made based on his clinical and laboratory findings. Kidney biopsy was performed for the evaluation of AKI and provided a diagnosis of membranoproliferative glomerulonephritis-like lesions due to endothelial injury. Glomerular capillary lumens were extremely narrowed or occluded by endothelial swelling, and marked widening of the subendothelial space by electron-lucent material resulted in mesangiolysis and a double-contoured glomerular basement membrane with no immune complex deposits. The patient required temporary hemodialysis due to oliguric AKI, but steroid therapy rapidly improved renal function. Typically, patients with progressive renal involvement in TAFRO syndrome rapidly develop oliguric or anuric AKI. This report suggests that the reduction of glomerular perfusion by glomerular endothelial injury might be a primary factor in the progressive AKI of TAFRO syndrome. Our case and the literature review indicate that steroid and/or biological therapies result in highly favorable renal outcomes in patients with progressive AKI in TAFRO syndrome.
Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease.
Zhao, Juanjuan; Lupino, Katherine; Wilkins, Benjamin J; Qiu, Chengxiang; Liu, Jian; Omura, Yasuhiro; Allred, Amanda L; McDonald, Caitlin; Susztak, Katalin; Barish, Grant D; Pei, Liming
2018-05-22
Mitochondrial dysfunction is increasingly recognized as a critical determinant of both hereditary and acquired kidney diseases. However, it remains poorly understood how mitochondrial metabolism is regulated to support normal kidney function and how its dysregulation contributes to kidney disease. Here, we show that the nuclear receptor estrogen-related receptor gamma (ERRγ) and hepatocyte nuclear factor 1 beta (HNF1β) link renal mitochondrial and reabsorptive functions through coordinated epigenomic programs. ERRγ directly regulates mitochondrial metabolism but cooperatively controls renal reabsorption via convergent binding with HNF1β. Deletion of ERRγ in renal epithelial cells (RECs), in which it is highly and specifically expressed, results in severe renal energetic and reabsorptive dysfunction and progressive renal failure that recapitulates phenotypes of animals and patients with HNF1β loss-of-function gene mutations. Moreover, ERRγ expression positively correlates with renal function and is decreased in patients with chronic kidney disease (CKD). REC-ERRγ KO mice share highly overlapping renal transcriptional signatures with human patients with CKD. Together these findings reveal a role for ERRγ in directing independent and HNF1β-integrated programs for energy production and use essential for normal renal function and the prevention of kidney disease.
Unusual course of infective endocarditis: acute renal failure progressing to chronic renal failure.
Sevinc, Alper; Davutoglu, Vedat; Barutcu, Irfan; Kocoglu, M Esra
2006-04-01
Infective endocarditis is an infection of the endocardium that usually involves the valves and adjacent structures. The classical fever of unknown origin presentation represents a minority of infective endocarditis. The presented case was a 21-yearold young lady presenting with acute renal failure and fever to the emergency room. Cardiac auscultation revealed a soft S1 and 4/6 apical holosystolic murmur extended to axilla. Echocardiography showed mobile fresh vegetation under the mitral posterior leaflet. She was diagnosed as having infective endocarditis. Hemodialysis was started with antimicrobial therapy. However, because of the presence of severe mitral regurgitation with left ventricle dilatation and large mobile vegetation, mitral prosthetic mechanical valve replacement was performed. Although treated with antibiotics combined with surgery, renal functions were deteriorated and progressed to chronic renal failure.
Kim, Eun Oh; Lee, Ihn Suk; Choi, Yoo A; Lee, Sang Ju; Chang, Yoon Kyung; Yoon, Hye Eun; Jang, Yi Sun; Lee, Jong Min; Kim, Hye Soo; Yang, Chul Woo; Kim, Suk Young; Hwang, Hyeon Seok
2014-01-01
Background and Aim: Patients with chronic kidney disease (CKD) often have subclinical hypothyroidism. However, few reports have investigated changes in the status of subclinical hypothyroidism in CKD patients and its clinical significance in CKD progression. Methods: We included 168 patients with nondialysis-dependent CKD stages 2-4. The normalization of subclinical hypothyroidism during follow-up was assessed, and the association between transitions in subclinical hypothyroid status and the rate of decline of the estimated glomerular filtration rate (eGFR) was investigated. Results: At baseline, 127 patients were euthyroid and 41 (24.4%) patients were diagnosed with subclinical hypothyroidism. Of these 41 patients, 21 (51.2%) spontaneously resolved to euthyroid during follow-up. The rate of eGFR decline of patients with resolved subclinical hypothyroidism was similar to that of euthyroid patients. The patients with unresolved subclinical hypothyroidism showed a steeper renal function decline than patients with euthyroidism or resolved subclinical hypothyroidism (all p < 0.05). The progression to end-stage renal disease was more frequent in those with unresolved subclinical hypothyroidism than in those who were euthyroid (p = 0.006). In multivariate linear regression for rate of eGFR decrease, unresolved subclinical hypothyroidism (β = -5.77, p = 0.001), baseline renal function (β = -0.12, p < 0.001) and level of proteinuria (β = -2.36, p = 0.015) were independently associated with the rate of renal function decline. Conclusions: Half of the CKD patients with subclinical hypothyroidism did not resolve to euthyroidism, and this lack of resolution was independently associated with rapid renal function decline. PMID:24396286
Javadzadegan, Ashkan; Fulker, David; Barber, Tracie
2017-07-01
Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.
Oral Manifestations in a Renal Osteodystrophy Patient - A Case Report with Review of Literature
Nisha V, Aarthi; GS, Asokan; CA, Prakash; MM, Varadharaja
2014-01-01
Renal Osteodystrophy (ROD) is a common complication of chronic renal disease (CRD) and is the part of a broad spectrum of disorders of mineral metabolism that occurs in the clinical setting. It occurs early in the course of chronic renal failure and progresses as the kidney function deteriorates. It is an osseous alteration believed to arise from increased parathyroid function associated with inappropriate calcium, phosphorus and vitamin D metabolism. Involvement of the jaws is common and radiographic alterations are often one of the earliest signs of chronic renal failure. Herein, reporting a case of Chronic Renal Failure (Bilateral Grade I Neuropathy) with ROD presenting oral manifestations in an 11-year -old male child. PMID:25302278
Renoprotective effects of hepatocyte growth factor in the stenotic kidney
Stewart, Nicholas
2013-01-01
Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renal artery stenosis (RAS). Hepatocyte growth factor (HGF) is a powerful angiogenic and antifibrotic cytokine that we showed to be decreased in the stenotic kidney. We hypothesized that renal HGF therapy will improve renal function mainly by protecting the renal microcirculation. Unilateral RAS was induced in 15 pigs. Six weeks later, single-kidney RBF and GFR were quantified in vivo using multidetector computed tomography (CT). Then, intrarenal rh-HGF or vehicle was randomly administered into the stenotic kidney (RAS, n = 8; RAS+HGF, n = 7). Pigs were observed for 4 additional weeks before CT studies were repeated. Renal MV density was quantified by 3D micro-CT ex vivo and histology, and expression of angiogenic and inflammatory factors, apoptosis, and fibrosis was determined. HGF therapy improved RBF and GFR compared with vehicle-treated pigs. This was accompanied by improved renal expression of angiogenic cytokines (VEGF, p-Akt) and tissue-healing promoters (SDF-1, CXCR4, MMP-9), reduced MV remodeling, apoptosis, and fibrosis, and attenuated renal inflammation. However, HGF therapy did not improve renal MV density, which was similarly reduced in RAS and RAS+HGF compared with controls. Using a clinically relevant animal model of RAS, we showed novel therapeutic effects of a targeted renal intervention. Our results show distinct actions on the existing renal microcirculation and promising renoprotective effects of HGF therapy in RAS. Furthermore, these effects imply plasticity of the stenotic kidney to recuperate its function and underscore the importance of MV integrity in the progression of renal injury in RAS. PMID:23269649
Points to consider in renal involvement in systemic sclerosis.
Galluccio, Felice; Müller-Ladner, Ulf; Furst, Daniel E; Khanna, Dinesh; Matucci-Cerinic, Marco
2017-09-01
This article discusses points to consider when undertaking a clinical trial to test therapy for renal involvement in SSc, not including scleroderma renal crisis. Double-blind, randomized controlled trials vs placebo or standard background therapy should be strongly considered. Inclusion criteria should consider a pre-specified range of renal functions or stratification of renal function. Gender and age limitations are probably not necessary. Concomitant medications including vasodilators, immunosuppressants and endothelin receptor antagonists and confounding illnesses such as diabetes, kidney stones, hypertension and heart failure need to be considered. A measure of renal function should be strongly considered, while time to dialysis, mortality, prevention of scleroderma renal crisis and progression of renal disease can also be considered, although they remain to be validated. Detailed, pre-planned analysis should be strongly considered and should include accounting for missing data. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The clinical course of diabetic nephropathy.
Kussman, M J; Goldstein, H; Gleason, R E
1976-10-18
A retrospective record analysis of 112 juvenile-onset diabetics with nephropathy was conducted in order to determine their clinical course. The mean duration of diabetes at the onset of proteinuria was 17.3+/-6.0 years. Early renal failure appeared two years after the onset of protein-uria, and severe renal failure (mean serum creatinine level, 8.5+/-3.9 mg/100 ml) four years after the onset of proteinuria. The mean duration of life after the onset of severe renal failure was six months. The mortality was 53%, with 59% of the deaths attributable to renal failure and 36% to cardiovascular disease. All patients experienced progressive deterioration of renal function as well as the other complications of diabetes, the rate of progression being accelerated toward the end of the course. Juvenile onset diabetics should be considered for renal transplantation before the serum creatinine level reaches 8.5 mg/100 ml.
Quantitative analysis of the renal aging in rats. Stereological study.
Melchioretto, Eduardo Felippe; Zeni, Marcelo; Veronez, Djanira Aparecida da Luz; Martins, Eduardo Lopes; Fraga, Rogério de
2016-05-01
To evaluate the renal function and the renal histological alterations through the stereology and morphometrics in rats submitted to the natural process of aging. Seventy two Wistar rats, divided in six groups. Each group was sacrificed in a different age: 3, 6, 9, 12, 18 and 24 months. It was performed right nephrectomy, stereological and morphometric analysis of the renal tissue (renal volume and weight, density of volume (Vv[glom]) and numerical density (Nv[glom]) of the renal glomeruli and average glomerular volume (Vol[glom])) and also it was evaluated the renal function for the dosage of serum creatinine and urea. There was significant decrease of the renal function in the oldest rats. The renal volume presented gradual increase during the development of the rats with the biggest values registered in the group of animals at 12 months of age and significant progressive decrease in older animals. Vv[glom] presented statistically significant gradual reduction between the groups and the Nv[glom] also decreased significantly. The renal function proved to be inferior in senile rats when compared to the young rats. The morphometric and stereological analysis evidenced renal atrophy, gradual reduction of the volume density and numerical density of the renal glomeruli associated to the aging process.
Hua, Kuo-Feng; Yang, Shun-Min; Kao, Tzu-Yang; Chang, Jia-Ming; Chen, Hui-Ling; Tsai, Yung-Jen; Chen, Ann; Yang, Sung-Sen; Chao, Louis Kuoping; Ka, Shuk-Man
2013-01-01
Renal reactive oxygen species (ROS) and mononuclear leukocyte infiltration are involved in the progressive stage (exacerbation) of IgA nephropathy (IgAN), which is characterized by glomerular proliferation and renal inflammation. The identification of the mechanism responsible for this critical stage of IgAN and the development of a therapeutic strategy remain a challenge. Osthole is a pure compound isolated from Cnidiummonnieri (L.) Cusson seeds, which are used as a traditional Chinese medicine, and is anti-inflammatory, anti-apoptotic, and anti-fibrotic both in vitro and in vivo. Recently, we showed that osthole acts as an anti-inflammatory agent by reducing nuclear factor-kappa B (NF-κB) activation in and ROS release by activated macrophages. In this study, we examined whether osthole could prevent the progression of IgAN using a progressive IgAN (Prg-IgAN) model in mice. Our results showed that osthole administration resulted in prevention of albuminuria, improved renal function, and blocking of renal progressive lesions, including glomerular proliferation, glomerular sclerosis, and periglomerular mononuclear leukocyte infiltration. These findings were associated with (1) reduced renal superoxide anion levels and increased Nrf2 nuclear translocation, (2) inhibited renal activation of NF-κB and the NLRP3 inflammasome, (3) decreased renal MCP-1 expression and mononuclear leukocyte infiltration, (4) inhibited ROS production and NLRP3 inflammasome activation in cultured, activated macrophages, and (5) inhibited ROS production and MCP-1 protein levels in cultured, activated mesangial cells. The results suggest that osthole exerts its reno-protective effects on the progression of IgAN by inhibiting ROS production and activation of NF-κB and the NLRP3 inflammasome in the kidney. Our data also confirm that ROS generation and activation of NF-κB and the NLRP3 inflammasome are crucial mechanistic events involved in the progression of the renal disorder. PMID:24204969
Morici, Nuccia; Savonitto, Stefano; Ponticelli, Claudio; Schrieks, Ilse C; Nozza, Anna; Cosentino, Francesco; Stähli, Barbara E; Perrone Filardi, Pasquale; Schwartz, Gregory G; Mellbin, Linda; Lincoff, A Michael; Tardif, Jean-Claude; Grobbee, Diederick E
2017-09-01
Worsening renal function during hospitalization for an acute coronary syndrome is strongly predictive of in-hospital and long-term outcome. However, the role of post-discharge worsening renal function has never been investigated in this setting. We considered the placebo cohort of the AleCardio trial comparing aleglitazar with standard medical therapy among patients with type 2 diabetes mellitus and a recent acute coronary syndrome. Patients who had died or had been admitted to hospital for heart failure before the 6-month follow-up, as well as patients without complete renal function data, were excluded, leaving 2776 patients for the analysis. Worsening renal function was defined as a >20% reduction in estimated glomerular filtration rate from discharge to 6 months, or progression to macroalbuminuria. The Cox regression analysis was used to determine the prognostic impact of 6-month renal deterioration on the composite of all-cause death and hospitalization for heart failure. Worsening renal function occurred in 204 patients (7.34%). At a median follow-up of 2 years the estimated rates of death and hospitalization for heart failure per 100 person-years were 3.45 (95% confidence interval [CI], 2.46-6.36) for those with worsening renal function, versus 1.43 (95% CI, 1.14-1.79) for patients with stable renal function. At the adjusted analysis worsening renal function was associated with the composite endpoint (hazard ratio 2.65; 95% CI, 1.57-4.49; P <.001). Post-discharge worsening renal function is not infrequent among patients with type 2 diabetes and acute coronary syndromes with normal or mildly depressed renal function, and is a strong predictor of adverse cardiovascular events. Copyright © 2017 Elsevier Inc. All rights reserved.
Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf
2017-03-07
Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.
McHugh, Kirk M
2014-04-01
Congenital obstructive nephropathy remains one of the leading causes of chronic renal failure in children. The direct link between obstructed urine flow and abnormal renal development and subsequent dysfunction represents a central paradigm of urogenital pathogenesis that has far-reaching clinical implications. Even so, a number of diagnostic, prognostic, and therapeutic quandaries still exist in the management of congenital obstructive nephropathy. Studies in our laboratory have characterized a unique mutant mouse line that develops in utero megabladder, variable hydronephrosis, and progressive renal failure. Megabladder mice represent a valuable functional model for the study of congenital obstructive nephropathy. Recent studies have begun to shed light on the genetic etiology of mgb (-/-) mice as well as the molecular pathways controlling disease progression in these animals.
Validation of an Experimental Model to Study Less Severe Chronic Renal Failure.
Fernandes-Charpiot, Ida Mária Maximina; Caldas, Heloisa Cristina; Mendes, Glória Elisa Florido; Gomes de Sá Neto, Luiz; Oliveira, Henrique Lacativa; Baptista, Maria Alice Sperto Ferreira; Abbud-Filho, Mario
2016-10-01
The 5/6 nephrectomy, mimics the stages of human chronic renal failure (CRF), but the procedure causes severe renal functional and morphological damage that could interfere with the evaluation of therapies for slowing the progression of the disease. This study summarizes the results of renal function, histology, and immunohistochemical findings in rats undergoing a 2/3 nephrectomy. The rats were distributed in groups according to the type of nephrectomy: CRF5/6: induced by a 5/6 renal mass reduction and CRF2/3: less severe CRF. The body weight and blood pressure were monitored, and the serum creatinine (SCr), creatinine clearance (CCr), urine osmolality, and 24-h proteinuria (PT24h) were measured. CRF progression was evaluated by the rate of decline of CCr (RCCr). Histology and immunohistochemistry were performed in the remnant kidneys. Statistical analysis was done by unpaired t-test, and a P-value < 0.05 was taken as a statistical significance. Compared to the CRF5/6 group, the CRF2/3 model had a lower SCr, PT24h, CCr, and variations of the SCr from baseline. The disease progression was also significantly slower. The renal histopathological findings revealed fewer chronic lesions in rats with CRF2/3. Similarly, we observed less macrophage accumulation as well as lower proliferative activity and expression of fibronectin and a-smooth muscle-actin in the CRF2/3 model. The CRF2/3 model presented with a pattern of less severe CRF, functionally and morphologically, compared to the classical CRF5/6 model, and the CRF2/3 model may be useful for evaluating therapeutic interventions that target the early stages of CRF.
Urinary tract infection in small children: the evolution of renal damage over time.
Swerkersson, Svante; Jodal, Ulf; Sixt, Rune; Stokland, Eira; Hansson, Sverker
2017-10-01
Our objective was to analyze the evolution of kidney damage over time in small children with urinary tract infection (UTI) and factors associated with progression of renal damage. From a cohort of 1003 children <2 years of age with first-time UTI, a retrospective analysis of 103 children was done. Children were selected because of renal damage at index 99m Tc-dimercaptosuccinic acid (DMSA) scintigraphy at least 3 months after UTI, and a late DMSA scan was performed after at least 2 years. Damage was classified as progression when there was a decline in differential renal function (DRF) by ≥4%, as regression when there was complete or partial resolution of uptake defects. Of 103 children, 20 showed progression, 20 regression, and 63 remained unchanged. There were no differences between groups regarding gender or age. In the progression group, 16/20 (80%) children had vesicoureteral reflux (VUR) grade III-V and 13 (65%) had recurrent UTI. In multivariable regression analysis, both VUR grade III-V and recurrent UTI were associated with progression. In the regression group, 16/20 (80%) had no VUR or grade I-II, and two (10%) had recurrent UTI. Most small children with febrile UTI do not develop renal damage and if they do the majority remain unchanged or regress over time. However, up to one-fifth of children with renal damage diagnosed after UTI are at risk of renal deterioration. These children are characterized by the presence of VUR grades III-V and recurrent febrile UTI and may benefit from follow-up.
ROLE OF THE RENAL MICROCIRCULATION IN PROGRESSION OF CHRONIC KIDNEY INJURY IN OBESITY
Chade, Alejandro R.; Hall, John E.
2016-01-01
Background Obesity is largely responsible for the growing incidence and prevalence of diabetes, cardiovascular, and renal disease. Current strategies to prevent and treat obesity and its consequences have been insufficient to reverse the ongoing trends. Lifestyle modification or pharmacological therapies often produce modest weight loss which is not sustained and recurrence of obesity is frequently observed, leading to progression of target organ damage in many obese subjects. Therefore, research efforts have focused not only on the factors that regulate energy balance, but also on understanding mechanisms of target organ injury in obesity. Summary and Key message Microvascular disease plays a pivotal role in progressive kidney injury from different etiologies such as hypertension, diabetes, and atherosclerosis, which are all important consequences of chronic obesity. The microvascular networks are anatomical units that are closely adapted to specific functions of nutrition and removal of waste in every organ. Damage of the small vessels in several tissues and organs has been reported in obesity and may increase cardio-renal risk. However, the mechanisms by which obesity and its attendant cardiovascular and metabolic consequences interact to cause renal microvascular injury and chronic kidney disease are still unclear, although substantial progress has been made in recent years. This review addresses potential mechanisms and consequences of obesity-induced renal microvascular injury as well as current treatments that may provide protection of the renal microcirculation and slow progressive kidney injury in obesity. PMID:27771702
Progressive renal insufficiency related to ALK inhibitor, alectinib.
Nagai, Kojiro; Ono, Hiroyuki; Matsuura, Motokazu; Hann, Michael; Ueda, Sayo; Yoshimoto, Sakiya; Tamaki, Masanori; Murakami, Taichi; Abe, Hideharu; Ishikura, Hisashi; Doi, Toshio
2018-04-01
Alectinib is a second generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor and is generally effective and tolerated in patients who have demonstrated disease progression or adverse effects while on the first generation inhibitor, crizotinib. ALK inhibitors can cause a reversible chronic increase of serum creatinine concentration; however, they rarely induce progressive renal insufficiency. We herein report a case of a 68-year-old woman diagnosed with ALK-positive advanced non-small cell lung cancer and who received ALK inhibitors. Due to dysgeusia and transaminitis, her medication was switched from crizotinib to alectinib. Rapid progressive glomerulonephritis developed 1 year after the initiation of alectinib treatment. A renal biopsy revealed unique kidney lesions in both tubules and glomeruli. Glucocorticoid therapy partially reversed kidney impairment. However, re-administration of alectinib caused kidney dysfunction, which was improved by the cessation of alectinib. Our case suggests that much attention should be paid to kidney function when using ALK inhibitors.
Fatal bilateral dioctophymatosis.
Li, Gang; Liu, Caigang; Li, Fang; Zhou, Maoyi; Liu, Xiangyong; Niu, Yuanjie
2010-12-01
Dioctophyma renale is a parasite that frequently occurs in animals but rarely in humans. The present report describes the clinical observations of a D. renale infection in a 51-yr-old woman. Its clinical signs and diagnostic findings were unspecific until giant worms were observed in the urine and histological findings confirmed it was a D. renale infection. She refused treatment and died of bilateral renal function failure. This is the first confirmed report to follow the natural progression of D. renale infection in a human. Here, we discuss a conservative therapeutic approach and features associated with this parasitic infection.
Piccoli, G B; Motta, D; Gai, M; Mezza, E; Maddalena, E; Bravin, M; Tattoli, F; Consiglio, V; Burdese, M; Bilucaglia, D; Ferrari, A; Segoloni, G P
2004-11-01
Restarting dialysis after kidney transplantation is a critical step with psychological and clinical implications. Maintenance of residual renal function a known factor affecting survival in chronic kidney disease, has so far not been investigated after a kidney transplantation. A 54-year-old woman who started dialysis in 1974 (first graft, 1975-1999) received a second "marginal" kidney graft in February 2001 (donor age, 65 years). Her chronic therapy was tacrolimus and steroids. She had a clinical history as follows: nadir creatinine level of 1.5 mg/dL, moderate-severe hypertension, progressive graft dysfunction, nonresponsiveness to addition of mycophenolate, tapering FK levels, and a rescue switch from tacrolimus to rapamycin. From October to December 2003, the creatinine level increased from 2-2.8 to 7 mg/dL. Biopsy specimen showed malignant and "benign" nephrosclerosis, posttransplantation glomerulopathy, and tacrolimus toxicity. Chronic dialysis was started (GFR <3 mL/min). Rapamycin was discontinued. Dialysis was tailored to reach an equivalent renal clearance of >15 mL/min (2 sessions/wk). Blood pressure control improved, nephrotoxic drugs were avoided, and fluid loss was minimized (maximum 500 mL/hr). By this policy, renal function progressively increased to GFR >10 mL/min in May 2004, allowing a once or twice weekly dialysis schedule, with good clinical balance, and obvious advantages for the quality of life. This long-term patient, who restarted dialysis with severely reduced renal function, regained sufficient renal function to allow once weekly dialysis. Thus, careful tailoring of dialysis sessions at the restart of dialysis may allow preservation of residual kidney function, at least in individuals for whom a subsequent graft is unlikely.
Well Preserved Renal Function in Children With Untreated Chronic Liver Disease.
Berg, Ulla B; Németh, Antal
2018-04-01
On the basis of studies with hepatorenal syndrome, it is widely regarded that renal function is impacted in chronic liver disease (CLD). Therefore, we investigated renal function in children with CLD. In a retrospective study of 277 children with CLD, renal function was investigated as glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), measured as clearance of inulin and para-amino hippuric acid or clearance of iohexol. The data were analyzed with regard to different subgroups of liver disease and to the grade of damage. Hyperfiltration (>+2 SD of controls) was found in the subgroups of progressive familial intrahepatic cholestasis (44%), glycogenosis (75%), and acute fulminant liver failure (60%). Patients with biliary atresia, most other patients with metabolic disease and intrahepatic cholestasis, and those with vascular anomalies and cryptogenic cirrhosis had normal renal function. Decreased renal function was found in patients with Alagille's syndrome (64% < -2 SD). Increased GFR and ERPF was found in patients with elevated transaminases, low prothrombin level, high bile acid concentration, and high aspartate-aminotransferase-to-platelet ratio. Most children with CLD had surprisingly well preserved renal function and certain groups had even hyperfiltration. The finding that children with decompensated liver disease and ongoing liver failure had stable kidney function suggests that no prognostic markers of threatening hepatorenal syndrome were at hand. Moreover, estimation of GFR based on serum creatinine fails to reveal hyperfiltration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaddiwudhipong, Witaya, E-mail: swaddi@hotmail.com; Limpatanachote, Pisit; Mahasakpan, Pranee
Food-borne cadmium was the principal source of exposure for persons living in the 12 cadmium-contaminated villages in Mae Sot District, Tak Province, northwestern Thailand. This report presents progress in cadmium-related health effects among persons with high cadmium exposure. The study included 436 persons who had urinary cadmium levels {>=}5 {mu}g/g creatinine and were screened for urinary cadmium, renal function, hypertension, diabetes and urinary stones in 2005 (baseline) and 2010 (5-year follow-up). Study renal biomarkers included urinary excretion of {beta}{sub 2}-microglobulin ({beta}{sub 2}-MG), total protein and calcium, serum creatinine and glomerular filtration rate (GFR). The geometric mean level of urinary cadmiummore » statistically significantly reduced from 9.5{+-}1.6 {mu}g/g creatinine in 2005 to 8.8{+-}1.6 {mu}g/g creatinine in 2010. Compared to baseline, the follow-up examination revealed significant increases in urinary {beta}{sub 2}-MG (tubular effect), urinary total protein and serum creatinine, and a decrease in GFR (glomerular effects). Progressive renal dysfunctions were similarly observed in persons both with and without reduction in cadmium intake. Significant increases in prevalence of hypertension, diabetes and urinary stones were also detected at follow-up. These three disorders were found to markedly impair renal functions in the study persons. Our study indicates that in persons with prolonged excessive cadmium exposure, toxic health effects may progress even after exposure reduction. Renal damage from cadmium can be due to its direct nephrotoxic effect and also through the related disorders causing nephropathy.« less
Why and how to measure renal function in patients with liver disease.
Piano, Salvatore; Romano, Antonietta; Di Pascoli, Marco; Angeli, Paolo
2017-01-01
Patients with advanced liver disease frequently have impaired renal function. Both acute kidney injury (AKI) and chronic kidney disease (CKD) are quite common in patients with cirrhosis and both are associated with a worse prognosis in these patients. A careful assessment of renal function is highly important in these patients to help physicians determine their diagnosis, prognosis and therapeutic management and to define transplantation strategies (liver transplantation alone vs simultaneous liver and kidney transplantation). Although they are still widely used in clinical practice, conventional biomarkers of renal function such as serum creatinine have several limitations in these patients. Recent progress has been made in the evaluation of renal function and new diagnostic criteria for AKI have been proposed. However, certain issues such as the noninvasive assessment of the glomerular filtration rate and/or improvement in the differential diagnosis between hepatorenal syndrome and acute tubular necrosis must still be addressed. The purposes of this paper are: (i) to highlight the importance of the evaluation of renal function in patients with cirrhosis; (ii) to review the state of the art in the assessment of renal function in these patients as well as advances that we expect will be made to improve the accuracy of available tools. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Adaptive changes in renal mitochondrial redox status in diabetic nephropathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putt, David A.; Zhong, Qing; Lash, Lawrence H., E-mail: l.h.lash@wayne.edu
2012-01-15
Nephropathy is a serious and common complication of diabetes. In the streptozotocin (STZ)-treated rat model of diabetes, nephropathy does not typically develop until 30 to 45 days post-injection, although hyperglycemia occurs within 24 h. We tested the hypothesis that chronic hyperglycemia results in a modest degree of oxidative stress that is accompanied by compensatory changes in certain antioxidants and mitochondrial redox status. We propose that as kidneys progress to a state of diabetic nephropathy, further adaptations occur in mitochondrial redox status. Basic parameters of renal function in vivo and several parameters of mitochondrial function and glutathione (GSH) and redox statusmore » in isolated renal cortical mitochondria from STZ-treated and age-matched control rats were examined at 30 days and 90 days post-injection. While there was no effect of diabetes on blood urea nitrogen, measurement of other, more sensitive parameters, such as urinary albumin and protein, and histopathology showed significant and progressive worsening in diabetic rats. Thus, renal function is compromised even prior to the onset of frank nephropathy. Changes in mitochondrial respiration and enzyme activities indicated existence of a hypermetabolic state. Higher mitochondrial GSH content and rates of GSH transport into mitochondria in kidneys from diabetic rats were only partially due to changes in expression of mitochondrial GSH carriers and were mostly due to higher substrate supply. Although there are few clear indicators of oxidative stress, there are several redox changes that occur early and change further as nephropathy progresses, highlighting the complexity of the disease. Highlights: ►Adaptive changes in renal mitochondrial and redox status in diabetic rats. ►Modest renal dysfunction even prior to onset of nephropathy. ►Elevated concentrations of mitochondrial GSH in diabetic kidneys. ►Change in GSH due partly to increased protein expression of transporter. ►Oxidatively modified proteins in renal mitochondria from diabetic rats.« less
[Chronic renal disease--a global problem in the XXI century].
Shutov, A M
2014-01-01
In 2002, it was proposed to consider functional renal disorders 3 and more months in duration under the general name chronic renal disease (CRD) bearing in mind the common mechanism behind progressive nephropathy and high cardiovascular mortality of such patients. The prevalence of CRD in Russia is unknown; it is supposed that every tenth adult in the world has CRD. Diagnostics of CRD requires at least measurement of serum creatinine, calculation of the glomerular filtration rate by CKD-EPI formula, and determination of albuminuria. A main cause of CRD is cardiovascular disorders. Complicated relationships between cardiac insufficiency and CRD account for 5 types of cardiorenal syndrome. CRD patients are at risk of terminal renal insufficiency requiring replacement therapy; moreover, CRD enhances cardiovascular morbidity and predisposes to acute renal lesion that in turn accelerates progress of CRD. Taken together these events account for the global character of the CRD problem.
Nowak, Natalia; Skupien, Jan; Niewczas, Monika A.; Yamanouchi, Masayuki; Major, Melissa; Croall, Stephanie; Smiles, Adam; Warram, James H.; Bonventre, Joseph V.; Krolewski, Andrzej S.
2015-01-01
Progressively decreasing glomerular filtration rate (GFR), or renal decline, is seen in patients with type 1 diabetes (T1D) and normoalbuminuria or microalbuminuria. Here we examined the associations of kidney injury molecule-1 (KIM-1) in plasma and urine with the risk of renal decline and determine whether those associations are independent of markers of glomerular damage. The study group comprised patients with T1D from the 2nd Joslin Kidney Study of which 259 had normoalbuminuria and 203 had microalbuminuria. Serial measurements over 4 to 10 years of follow-up (median 8 years) of serum creatinine and cystatin C were used jointly to estimate eGFRcr-cys slopes and time of onset of CKD stage 3 or higher. Baseline urinary excretion of IgG2 and albumin were used as markers of glomerular damage, and urinary excretion of KIM-1 and its plasma concentration were used as markers of proximal tubular damage. All patients had normal renal function at baseline. During follow-up, renal decline (eGFRcr-cys loss 3.3% or more per year) developed in 96 patients and 62 progressed to CKD stage 3. For both outcomes, the risk rose with increasing baseline levels of plasma KIM-1. In multivariable models, elevated baseline plasma KIM-1 was strongly associated with risk of early progressive renal decline, regardless of baseline clinical characteristics, serum TNFR1 or markers of glomerular damage. Thus, damage to proximal tubules may play an independent role in the development of early progressive renal decline in non-proteinuric patients with T1D. PMID:26509588
High serum creatinine nonlinearity: a renal vital sign?
Palant, Carlos E; Chawla, Lakhmir S; Faselis, Charles; Li, Ping; Pallone, Thomas L; Kimmel, Paul L; Amdur, Richard L
2016-08-01
Patients with chronic kidney disease (CKD) may have nonlinear serum creatinine concentration (SC) trajectories, especially as CKD progresses. Variability in SC is associated with renal failure and death. However, present methods for measuring SC variability are unsatisfactory because they blend information about SC slope and variance. We propose an improved method for defining and calculating a patient's SC slope and variance so that they are mathematically distinct, and we test these methods in a large sample of US veterans, examining the correlation of SC slope and SC nonlinearity (SCNL) and the association of SCNL with time to stage 4 CKD (CKD4) and death. We found a strong correlation between SCNL and rate of CKD progression, time to CKD4, and time to death, even in patients with normal renal function. We therefore argue that SCNL may be a measure of renal autoregulatory dysfunction that provides an early warning sign for CKD progression. Copyright © 2016 the American Physiological Society.
Chade, Alejandro R.; Kelsen, Silvia
2011-01-01
Background Percutaneous trasluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolve renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesize that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. Methods and Results RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 was infused intra-renally (RAS+VEGF, 0.05 µg/kg). Single-kidney function was assessed in all pigs in vivo using ultra-fast CT after 6 weeks. Half of the RAS/RAS+VEGF completed their observation, and the other half underwent PTRA, VEGF was repeated, and CT studies repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex-vivo using 3D micro-CT, and renal fibrosis quantified. Degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Conclusion Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage. PMID:20587789
[Decline in renal function in old age : Part of physiological aging versus age-related disease].
Braun, F; Brinkkötter, P T
2016-08-01
The incidence and prevalence of chronic renal disease (CKD) in elderly patients are continuously increasing worldwide. Loss of renal function is not only considered to be part of the aging process itself but also reflects the multimorbidity of many geriatric patients. Calculating the glomerular filtration rate using specific algorithms validated for the elderly population and measuring the amount of proteinuria allow an estimation of renal function in elderly patients with high accuracy. Chronic renal failure has many clinical consequences and not only results in a delayed excretion of toxins cleared by the kidneys but also affects hematogenesis, water and electrolyte balance as well as mineral bone metabolism. Furthermore, CKD directly leads to and aggravates geriatric syndromes and in particular the onset of frailty. Therapeutic strategies to halt progression of CKD not only comprise treatment of the underlying disease but also efficient blood pressure and diabetic control and the avoidance of nephrotoxic medications.
Wang, Xiu-juan; Rao, Xiang-rong; Li, Shen; Wang, Li; Liu, Chang; Zhang, Gai-hua; Han, Dong-yan; Zhao, Yu; Zhang, Nan-nan; Li, Xue-xia; Chen, Shuai
2015-11-01
To investigate the effect of Huanshuai Recipe Oral Liquid ([characters: see text], HSR) on retarding the progression of renal dysfunction in patients with atherosclerotic renal artery stenosis (ARAS). A total of 52 ARAS patients with the Chinese medicine (CM) syndrome of qi deficiency and blood stasis, phlegm and dampness retention were recruited and randomly assigned into the treatment group (36 cases) and the control group (16 cases). Both groups received a basic treatment (high-quality low-protein diet, blood pressure control, lipid-lowering, correcting the acidosis, etc.). In addition, the treatment group received 20 mL HSR and the control group received placebo, 3 times a day for 6 months. Renal function (serum creatinine, blood urea nitrogen and uric acid) and blood lipids (cholesterol, triglycerides and low density lipoprotein) were examined monthly. The estimated glomerular filtration rate (eGFR) and CM syndrome score were compared between groups. After treatment, compared with the control group, the serum creatinine level, uric acid level and CM syndrome score of the treatment group were significantly decreased (P<0.05 or P<0.01), and the eGFR in the treatment group were significantly increased (P<0.05). HSR can effectively improve the renal function and clinical symptoms of ARAS patients.
Niacin improves renal lipid metabolism and slows progression in chronic kidney disease.
Cho, Kyu-hyang; Kim, Hyun-ju; Kamanna, Vaijinath S; Vaziri, Nosratola D
2010-01-01
Mounting evidence points to lipid accumulation in the diseased kidney and its contribution to progression of nephropathy. We recently found heavy lipid accumulation and marked dysregulation of lipid metabolism in the remnant kidneys of rats with chronic renal failure (CRF). Present study sought to determine efficacy of niacin supplementation on renal tissue lipid metabolism in CRF. Kidney function, lipid content, and expression of molecules involved in cholesterol and fatty acid metabolism were determined in untreated CRF (5/6 nephrectomized), niacin-treated CRF (50 mg/kg/day in drinking water for 12 weeks) and control rats. CRF resulted in hypertension, proteinuria, renal tissue lipid accumulation, up-regulation of scavenger receptor A1 (SR-A1), acyl-CoA cholesterol acyltransferase-1 (ACAT1), carbohydrate-responsive element binding protein (ChREBP), fatty acid synthase (FAS), acyl-CoA carboxylase (ACC), liver X receptor (LXR), ATP binding cassette (ABC) A-1, ABCG-1, and SR-B1 and down-regulation of sterol responsive element binding protein-1 (SREBP-1), SREBP-2, HMG-CoA reductase, PPAR-alpha, fatty acid binding protein (L-FABP), and CPT1A. Niacin therapy attenuated hypertension, proteinuria, and tubulo-interstitial injury, reduced renal tissue lipids, CD36, ChREBP, LXR, ABCA-1, ABCG-1, and SR-B1 abundance and raised PPAR-alpha and L-FABP. Niacin administration improves renal tissue lipid metabolism and renal function and structure in experimental CRF.
Tatsugami, Katsunori; Oya, Mototsugu; Kabu, Koki; Akaza, Hideyuki
2018-04-10
We retrospectively analysed the efficacy and safety of sorafenib in patients with advanced renal cell carcinoma with renal impairment. Patients were divided into two groups by an estimated glomerular filtration rate (eGFR) cut-off of 45 mL/min/1.73 m 2 . Background factors considered to affect prognosis were well balanced by propensity score matching between the groups. Demographics, dose modification, adverse events, tumour response, progression-free survival, and renal function (eGFR) were evaluated. Among 935 and 2008 patients with an eGFR of <45 and ≥45, respectively, 613 pairs were matched. The mean starting dose was significantly lower in patients with an eGFR of <45; however, the mean daily dose, median treatment duration, progression-free survival, and tumour response were similar between the groups. In terms of safety, no significant differences were found in serious adverse events, although cytopaenia (16.6% vs 10.6%) and renal dysfunction (4.4% vs 0.7%) were higher in patients with an eGFR of <45 than ≥45 in all adverse events. There were also no differences in dose modification, including dose reduction, dose interruption, and treatment discontinuation. Throughout the 12-month observation period, sorafenib in patients with an eGFR of <45 and ≥45 showed similar safety and efficacy, and treatment was continued without affecting renal function.
Miller, Wayne L; Borgeson, Daniel D; Grantham, J Aaron; Luchner, Andreas; Redfield, Margaret M; Burnett, John C
2015-02-01
Aldosterone activation is central to the sodium–fluid retention that marks the progression of heart failure (HF). The actions of dietary sodium restriction, a mainstay in HF management, on cardiorenal and neuroendocrine adaptations during the progression of HF are poorly understood. The study aim was to assess the role of dietary sodium during the progression of experimental HF. Experimental HF was produced in a canine model by rapid right ventricular pacing which evolves from early mild HF to overt, severe HF. Dogs were fed one of three diets: (i) high sodium [250 mEq (5.8 g) per day, n =6]; (ii) standard sodium [58 mEq (1.3 g) per day, n =6]; and (iii) sodium restriction [11 mEq (0.25 g) per day, n =6]. During the 38-day study, haemodynamics, renal function, plasma renin activity (PRA), and aldosterone were measured. Changes in haemodynamics at 38 days were similar in all three groups, as were changes in renal function. Aldosterone activation was demonstrated in all three groups; however, dietary sodium restriction, in contrast to high sodium, resulted in early (10 days) activation of PRA and aldosterone. High sodium demonstrated significant suppression of aldosterone activation over the course of HF progression. Excessive dietary sodium restriction particularly in early stage HF results in early aldosterone activation, while normal and excess sodium intake are associated with delayed or suppressed activation. These findings warrant evaluation in humans to determine if dietary sodium manipulation, particularly during early stage HF, may have a significant impact on neuroendocrine disease progression.
Traditional and emerging cardiovascular and renal risk factors: an epidemiologic perspective.
Zoccali, C
2006-07-01
Patients with chronic kidney disease (CKD) represent an important segment of the population (7-10%) and, mostly because of the high risk of cardiovascular complications associated with renal insufficiency, detection and treatment of CKD is now a public health priority. Traditional risk factors can incite renal dysfunction and cardiovascular damage as well. As renal function deteriorates, non-traditional risk factors play an increasing role both in glomerular filtration rate (GFR) loss and cardiovascular damage. Secondary analyses of controlled clinical trials suggest that inflammation may be a modifiable risk factor both for cardiac ischemia and renal disease progression in patients with or at risk of coronary heart disease. Homocysteine predicts renal function loss in the general population and cardiovascular events in end-stage renal disease (ESRD), but evidence that this sulfur amino acid is directly implicated in the progression of renal disease and in the high cardiovascular mortality of uremic patients is still lacking. High sympathetic activity and raised plasma concentration of asymmetric dimethylarginine (ADMA) have been associated to reduced GFR in patients with CKD and to cardiovascular complications in those with ESRD but again we still lack clinical trials targeting these risk factors. Presently, the clinical management of CKD patients remains largely unsatisfactory because only a minority of these attain the treatment goals recommended by current guidelines. Thus, in addition to research into new and established risk factors, it is important that nephrologists make the best use of knowledge already available to optimize the follow-up of these patients.
Wang, Yuxuan; Wang, Chengcheng; Zhang, Xiuli; Gu, Harvest F; Wu, Liang
2018-01-01
Diabetic nephropathy is characterized by hypertension, progressive albuminuria, glomerulosclerosis and declines in glomerular filtration rate leading to end stage renal disease. Although the pathogenesis of diabetic nephropathy is not fully understood, current treatment of the patients with diabetic nephropathy is mainly based upon the control of hyperglycaemia and management of blood pressures. Several drugs, which are originally developed for hypertension therapy, have been adopted for stabilization of renal function in diabetic nephropathy. In this review, we first discussed the relationships between diabetic nephropathy and hypertension particularly in the renin-angiotensinaldosterone system. We then summarized chemical structures, pharmacological characteristics and clinical studies of the common drugs used for treatment of diabetic nephropathy, while these drugs have effects against hypertension. This review may provide the constructive information for further drug development in diabetic nephropathy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Does Altered Uric Acid Metabolism Contribute to Diabetic Kidney Disease Pathophysiology?
Gul, Ambreen; Zager, Philip
2018-03-01
Multiple experimental and clinical studies have identified pathways by which uric acid may facilitate the development and progression of chronic kidney disease (CKD) in people with diabetes. However, it remains uncertain if the association of uric acid with CKD represents a pathogenic effect or merely reflects renal impairment. In contrast to many published reports, a recent Mendelian randomization study did not identify a causal link between uric acid and CKD in people with type 1 diabetes. Two recent multicenter randomized control trials, Preventing Early Renal Function Loss in Diabetes (PERL) and FEbuxostat versus placebo rAndomized controlled Trial regarding reduced renal function in patients with Hyperuricemia complicated by chRonic kidney disease stage 3 (FEATHER), were recently designed to assess if uric acid lowering slows progression of CKD. We review the evidence supporting a role for uric acid in the pathogenesis of CKD in people with diabetes and the putative benefits of uric acid lowering.
Ensete superbum ameliorates renal dysfunction in experimental diabetes mellitus.
Sreekutty, M S; Mini, S
2016-01-01
Hyperglycemia mediated oxidative stress plays a key role in the pathogenesis of diabetic complications like nephropathy. In the present study, we evaluated the effect of ethanolic extract of Ensete superbum seeds (ESSE) on renal dysfunction and oxidative stress in streptozotocin-induced diabetic rats. Glucose, HbA1c, total protein, albumin, renal function markers (urea, uric acid and creatinine), and lipid peroxidation levels were evaluated. Renal enzymatic and non-enzymatic antioxidants were examined along with renal histopathological study. ESSE (400 mg/kg BW t) administration reduced glucose and HbA1c, and improved serum total protein and albumin in diabetic rats. ESSE in diabetic rats recorded decrement in renal function markers and renal lipid peroxidation products along with significant increment in enzymatic and non-enzymatic antioxidants. Renal morphological abnormalities of diabetic rats were markedly ameliorated by E. superbum. These results suggest that the antioxidant effect of E. superbum could ameliorate oxidative stress and delay/prevent the progress of diabetic nephropathy in diabetes mellitus.
Chade, Alejandro R; Kelsen, Silvia
2010-08-01
Percutaneous transluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolving renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesized that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 0.05 microg/kg was infused intrarenally (RAS+VEGF). Single-kidney function was assessed in all pigs in vivo using ultrafast CT after 6 weeks. Observation of half of the RAS and RAS+VEGF pigs was completed. The other half underwent PTRA and repeated VEGF, and CT studies were repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex vivo using 3D micro-CT, and renal fibrosis quantified. The degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage.
Caroli, Anna; Antiga, Luca; Conti, Sara; Sonzogni, Aurelio; Fasolini, Giorgio; Ondei, Patrizia; Perico, Norberto; Remuzzi, Giuseppe; Remuzzi, Andrea
2011-01-01
Total kidney and cyst volumes have been used to quantify disease progression in autosomal dominant polycystic kidney disease (ADPKD), but a causal relationship with progression to renal failure has not been demonstrated. Advanced image processing recently allowed to quantify extracystic tissue, and to identify an additional tissue component named “intermediate,” appearing hypoenhanced on contrast-enhanced computed tomography (CT). The aim of this study is to provide a histological characterization of intermediate volume, investigate its relation with renal function, and provide preliminary evidence of its role in long-term prediction of functional loss. Three ADPKD patients underwent contrast-enhanced CT scans before nephrectomy. Histological samples of intermediate volume were drawn from the excised kidneys, and stained with hematoxylin and eosin and with saturated picrosirius solution for histological analysis. Intermediate volume showed major structural changes, characterized by tubular dilation and atrophy, microcysts, inflammatory cell infiltrate, vascular sclerosis, and extended peritubular interstitial fibrosis. A significant correlation (r = −0.69, P < 0.001) between relative intermediate volume and baseline renal function was found in 21 ADPKD patients. Long-term prediction of renal functional loss was investigated in an independent cohort of 13 ADPKD patients, followed for 3 to 8 years. Intermediate volume, but not total kidney or cyst volume, significantly correlated with glomerular filtration rate decline (r = −0.79, P < 0.005). These findings suggest that intermediate volume may represent a suitable surrogate marker of ADPKD progression and a novel therapeutic target. PMID:21683674
Gender hormones and the progression of experimental polycystic kidney disease.
Stringer, Kenneth D; Komers, Radko; Osman, Shukri A; Oyama, Terry T; Lindsley, Jessie N; Anderson, Sharon
2005-10-01
Male gender is a risk factor for progression of autosomal-dominant polycystic kidney disease (ADPKD), clinically and in the Han:SPRD rat model. Orchiectomy limits progression, but mechanisms of the detrimental effect of androgen, and/or beneficial effects of estrogen, are not known. This protocol tested the hypothesis that male gender (intact androgen status) promotes progression, while female gender (intact estrogen status) is protective; and that these disease-modifying effects are due to changes in expression of known fibrotic mediators. Studies were performed in male and female noncystic control (+/+) and cystic (+/-) rats subjected to orchiectomy, ovariectomy, or sham operation. At 12 weeks of age, renal function was measured. Blood and kidneys were taken for measurement of plasma and renal renin, endothelin (ET-1), endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor (VEGF), using biochemical, protein expression, and immunohistochemical methods. Cystic male rats exhibited significantly reduced glomerular filtration (GFR) and effective renal plasma flow (ERPF) rates, with suppression of plasma and renal renin, up-regulation of renal ET-1 and eNOS, and down-regulation of renal VEGF expression. Orchiectomy attenuated the fall in GFR and ERPF, while numerically limiting changes in eNOS and VEGF. Female rats exhibited less cystic growth, with normal renin status, lesser elevation of renal ET-1, and proportionately lesser changes in VEGF and eNOS. Ovariectomy led to higher blood pressure and reduced GFR and ERPF, with a trend toward upregulation of ET-1, and significant down-regulation of VEGF and eNOS. Female gender is protective, but ovariectomy attenuates the protective effect of female gender, in association with changes in renal expression of ET-1, VEGF, and eNOS. The accelerated disease in male rats can be attenuated by orchiectomy and consequent changes in expression of disease mediators.
Role of the intrarenal renin-angiotensin system in the progression of renal disease.
Urushihara, Maki; Kagami, Shoji
2017-09-01
The intrarenal renin-angiotensin system (RAS) has many well-documented pathophysiologic functions in both blood pressure regulation and renal disease development. Angiotensin II (Ang II) is the major bioactive product of the RAS. It induces inflammation, renal cell growth, mitogenesis, apoptosis, migration, and differentiation. In addition, Ang II regulates the gene expression of bioactive substances and activates multiple intracellular signaling pathways that are involved in renal damage. Activation of the Ang II type 1 (AT1) receptor pathway results in the production of proinflammatory mediators, intracellular formation of reactive oxygen species, cell proliferation, and extracellular matrix synthesis, which in turn facilities renal injury. Involvement of angiotensinogen (AGT) in intrarenal RAS activation and development of renal disease has previously been reported. Moreover, studies have demonstrated that the urinary excretion rates of AGT provide a specific index of the intrarenal RAS status. Enhanced intrarenal AGT levels have been observed in experimental models of renal disease, supporting the concept that AGT plays an important role in the development and progression of renal disease. In this review, we focus on the role of intrarenal RAS activation in the pathophysiology of renal disease. Additionally, we explored the potential of urinary AGT as a novel biomarker of intrarenal RAS status in renal disease.
[Outcome of rapidly progressive glomerulonephritis post-streptococcal disease in children].
Jellouli, Manel; Maghraoui, Sondos; Abidi, Kamel; Hammi, Yosra; Goucha, Rim; Naija, Ouns; Zarrouk, Chokri; Gargah, Tahar
2015-11-01
Rapidly progressive glomerulonephritis is a rare form of postinfectious glomerulonephritis. The aim of this study was to describe the outcome of our patients with severe post-streptococcal glomerulonephritis. This retrospective study was conducted in the department of pediatrics in Charles-Nicolle Hospital during a period of 13 years (1997-2009). Twenty-seven children were identified. The mean age was 8.7 years. All patients presented renal failure at presentation. The mean serum creatinine at presentation was 376.9 μmol/L. Six patients presented nephrotic syndrome. Twenty-six children had renal biopsies. Renal biopsies showed crescents in 24 cases. Eighteen children received pulse dose of corticosteroids (66.6%) and 6 children (22%) received pulse dose of corticosteroids and cyclophosphamide. Eleven patients required dialysis. At last follow-up, 22 patients (81.5%) had normal kidney function, 2 had renal dysfunction and 3 reached end stage renal disease. The only significant determinant for renal survival was the supportive dialysis (P=0.015). Rapidly progressive glomerulonephritis is uncommon. There have been significant advancements in supportive, as well as specific therapy, but the outcome continues to be poor. Copyright © 2015 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
Does renal ageing affect survival?
Razzaque, M Shawkat
2007-10-01
The effects of ageing on progressive deterioration of renal function, both in human and experimental animals, are described elsewhere, but the effect of renal damage on overall survival and longevity is not yet clearly established. The wild-type animals of various genetic backgrounds, fed with regular diet, overtime develop severe age-associated nephropathy, that include but not limited to inflammatory cell infiltration, glomerulosclerosis, and tubulointerstitial fibrosis. Such renal damage significantly reduces their survival. Reducing renal damage, either by caloric restriction or by suppressing growth hormone (GH)/insulin-like growth factor-1 (IGF-1) activity could significantly enhance the longevity of these animals. Available survival studies using experimental animals clearly suggest that kidney pathology is one of the important non-neoplastic lesions that could affect overall survival, and that restoration of renal function by preventing kidney damage could significantly extend longevity. Careful long-term studies are needed to determine the human relevance of these experimental studies.
Swaddiwudhipong, Witaya; Limpatanachote, Pisit; Mahasakpan, Pranee; Krintratun, Somyot; Punta, Boonyarat; Funkhiew, Thippawan
2012-01-01
Food-borne cadmium was the principal source of exposure for persons living in the 12 cadmium-contaminated villages in Mae Sot District, Tak Province, northwestern Thailand. This report presents progress in cadmium-related health effects among persons with high cadmium exposure. The study included 436 persons who had urinary cadmium levels ≥5 μg/g creatinine and were screened for urinary cadmium, renal function, hypertension, diabetes and urinary stones in 2005 (baseline) and 2010 (5-year follow-up). Study renal biomarkers included urinary excretion of β(2)-microglobulin (β(2)-MG), total protein and calcium, serum creatinine and glomerular filtration rate (GFR). The geometric mean level of urinary cadmium statistically significantly reduced from 9.5±1.6 μg/g creatinine in 2005 to 8.8±1.6 μg/g creatinine in 2010. Compared to baseline, the follow-up examination revealed significant increases in urinary β(2)-MG (tubular effect), urinary total protein and serum creatinine, and a decrease in GFR (glomerular effects). Progressive renal dysfunctions were similarly observed in persons both with and without reduction in cadmium intake. Significant increases in prevalence of hypertension, diabetes and urinary stones were also detected at follow-up. These three disorders were found to markedly impair renal functions in the study persons. Our study indicates that in persons with prolonged excessive cadmium exposure, toxic health effects may progress even after exposure reduction. Renal damage from cadmium can be due to its direct nephrotoxic effect and also through the related disorders causing nephropathy. Copyright © 2011 Elsevier Inc. All rights reserved.
Serra, Andreas L; Kistler, Andreas D; Poster, Diane; Struker, Marian; Wüthrich, Rudolf P; Weishaupt, Dominik; Tschirch, Frank
2007-01-01
Background Currently there is no effective treatment available to retard cyst growth and to prevent the progression to end-stage renal failure in patients with autosomal dominant polycystic kidney disease (ADPKD). Evidence has recently been obtained from animal experiments that activation of the mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in cyst growth and renal volume expansion, and that the inhibition of mTOR with rapamycin (sirolimus) markedly slows cyst development and renal functional deterioration. Based on these promising results in animals we have designed and initiated the first randomized controlled trial (RCT) to examine the effectiveness, safety and tolerability of sirolimus to retard disease progression in ADPKD. Method/design This single center, randomised controlled, open label trial assesses the therapeutic effect, safety and tolerability of the mTOR inhibitor sirolimus (Rapamune®) in patients with autosomal dominant polycystic kidney disease and preserved renal function. The primary outcome will be the inhibition of kidney volume growth measured by magnetic resonance imaging (MRI) volumetry. Secondary outcome parameters will be preservation of renal function, safety and tolerability of sirolimus. Discussion The results from this proof-of-concept RCT will for the first time show whether treatment with sirolimus effectively retards cyst growth in patients with ADPKD. Trial registration NCT00346918 PMID:17868472
Effect of urate-lowering therapies on renal disease progression in patients with hyperuricemia.
Levy, Gerald D; Rashid, Nazia; Niu, Fang; Cheetham, T Craig
2014-05-01
To evaluate the association between hyperuricemia and renal disease progression in a real-world, large observational database study. We conducted a population-based retrospective cohort study identifying 111,992 patients with hyperuricemia (> 7 mg/dl) from a large medical group. The final cohort were ≥ 18 years old, urate-lowering therapy (ULT)-naïve, and had the following laboratory results available: at least 1 glomerular filtration rate (GFR) level before the index date and at least 1 serum uric acid (sUA) level and GFR in the followup 36-month period. The cohort was categorized into 3 groups: never treated (NoTx), ULT time receiving therapy of < 80% (< 80%), and ULT time receiving therapy of ≥ 80% (≥ 80%). Outcomes were defined as a ≥ 30% reduction in GFR from baseline, dialysis, or GFR of ≤ 15 ml/min. A subanalysis of patients with sUA < 6 mg/dl at study conclusion was performed. Cox proportional hazards regression model determined factors associated with renal function decline. A total of 16,186 patients met inclusion criteria. There were 11,192 NoTx patients, 3902 with < 80% time receiving ULT, and 1092 with ≥ 80% time receiving ULT. Factors associated with renal disease progression were age, sex, hypertension, diabetes, congestive heart failure, hospitalizations, rheumatoid arthritis, and higher sUA at baseline. Time receiving therapy was not associated with renal outcomes. Patients who achieved sUA < 6 mg/dl had a 37% reduction in outcome events (p < 0.0001; HR 0.63, 95% CI: 0.5-0.78). Hyperuricemia is an independent risk factor for renal function decline. Patients treated with ULT who achieved sUA < 6 mg/dl on ULT showed a 37% reduction in outcome events.
Noh, Yoojin; Lee, Jimin; Shin, Sooyoung; Park, Inwhee; Bae, Soo Kyung; Oh, Euichul; Lee, Sukhyang
2018-02-01
Background Decline in estimated glomerular filtration rate (eGFR) is an important surrogate marker for the assessment of renal function. Addition of a second agent to angiotensin-converting-enzyme inhibitor (ACEI) or angiotensin II receptor blocker (ARB) treatment may improve current therapeutic strategies aimed at suppressing renal disease progression. Objective To determine the effect of cilostazol in combination with ACEI or ARB treatment on the decline in eGFR. Setting A tertiary hospital in Korea. Method In an observational cohort study, we analyzed 5505 patients who were prescribed ACEI or ARB and cilostazol or other antiplatelet agents. Main outcome measure The primary outcome assessed was worsening of renal function defined as a 30% decline in eGFR per year. The secondary outcomes included commencement of dialysis, renal transplantation, death, myocardial infarction, and ischemic stroke. Results Following propensity score matching, eGFR decreased over time in the majority of patients, but the decline was less in patients in the cilostazol treated (CT) group of stage 1-2 category compared to the cilostazol untreated (CU) group (OR 0.80; 95% CI 0.66-0.98). In the subgroup analysis, the strongest effect in slowing eGFR decline was observed in CT patients at a high risk of diabetes (OR 0.782; 95% CI 0.615-0.993) and the elderly (OR 0.693; 95% CI 0.504-0.953) in the stage 1-2 category. No significant increase in cardiovascular risk was observed between the CT and CU groups. Conclusion Treatment with cilostazol plus ACEI or ARB was observed to prevent worsening of renal progression in patients in the stages 1-2.
Etiopathology of chronic tubular, glomerular and renovascular nephropathies: Clinical implications
2011-01-01
Chronic kidney disease (CKD) comprises a group of pathologies in which the renal excretory function is chronically compromised. Most, but not all, forms of CKD are progressive and irreversible, pathological syndromes that start silently (i.e. no functional alterations are evident), continue through renal dysfunction and ends up in renal failure. At this point, kidney transplant or dialysis (renal replacement therapy, RRT) becomes necessary to prevent death derived from the inability of the kidneys to cleanse the blood and achieve hydroelectrolytic balance. Worldwide, nearly 1.5 million people need RRT, and the incidence of CKD has increased significantly over the last decades. Diabetes and hypertension are among the leading causes of end stage renal disease, although autoimmunity, renal atherosclerosis, certain infections, drugs and toxins, obstruction of the urinary tract, genetic alterations, and other insults may initiate the disease by damaging the glomerular, tubular, vascular or interstitial compartments of the kidneys. In all cases, CKD eventually compromises all these structures and gives rise to a similar phenotype regardless of etiology. This review describes with an integrative approach the pathophysiological process of tubulointerstitial, glomerular and renovascular diseases, and makes emphasis on the key cellular and molecular events involved. It further analyses the key mechanisms leading to a merging phenotype and pathophysiological scenario as etiologically distinct diseases progress. Finally clinical implications and future experimental and therapeutic perspectives are discussed. PMID:21251296
Comparative effects of mesenchymal stem cell therapy in distinct stages of chronic renal failure.
Caldas, Heloisa Cristina; de Paula Couto, Thaís Amarante Peres; Fernandes, Ida Maria Maximina; Baptista, Maria Alice Sperto Ferreira; Kawasaki-Oyama, Rosa Sayoko; Goloni-Bertollo, Eny Maria; Braile, Domingo Marcolino; Abbud-Filho, Mario
2015-10-01
The therapeutic potential of adult stem cells in the treatment of chronic diseases is becoming increasingly evident. In the present study, we sought to assess whether treatment with mesenchymal stem cells (MSCs) efficiently retards progression of chronic renal failure (CRF) when administered to experimental models of less severe CRF. We used two renal mass reduction models to simulate different stages of CRF (5/6 or 2/3 mass renal reduction). Renal functional parameters measured were serum creatinine (SCr), creatinine clearance (CCr), rate of decline in CCr (RCCr), and 24-h proteinuria (PT24h). We also evaluated renal morphology by histology and immunohistochemistry. MSCs were obtained from bone marrow aspirates and injected into the renal parenchyma of the remnant kidneys of both groups of rats with CRF (MSC5/6 or MSC2/3). Animals from groups MSC5/6 and CRF2/3 seemed to benefit from MSC therapy because they showed significantly reduction in SCr and PT24h, increase in CCr and slowed the RCCr after 90 days. Treatment reduced glomerulosclerosis but significant improvement did occur in the tubulointerstitial compartment with much less fibrosis and atrophy. MSC therapy reduced inflammation by decreasing macrophage accumulation proliferative activity (PCNA-positive cells) and fibrosis (α-SM-actin). Comparisons of renal functional and morphological parameters responses between the two groups showed that rats MSC2/3 were more responsive to MSC therapy than MSC5/6. This study showed that MSC therapy is efficient to retard CRF progression and might be more effective when administered during less severe stages of CRF.
Predicting kidney disease progression in patients with acute kidney injury after cardiac surgery.
Mizuguchi, K Annette; Huang, Chuan-Chin; Shempp, Ian; Wang, Justin; Shekar, Prem; Frendl, Gyorgy
2018-06-01
The study objective was to identify patients who are likely to develop progressive kidney dysfunction (acute kidney disease) before their hospital discharge after cardiac surgery, allowing targeted monitoring of kidney function in this at-risk group with periodic serum creatinine measurements. Risks of progression to acute kidney disease (a state in between acute kidney injury and chronic kidney disease) were modeled from acute kidney injury stages (Kidney Disease: Improving Global Outcomes) in patients undergoing cardiac surgery. A modified Poisson regression with robust error variance was used to evaluate the association between acute kidney injury stages and the development of acute kidney disease (defined as doubling of creatinine 2-4 weeks after surgery) in this observational study. Acute kidney disease occurred in 4.4% of patients with no preexisting kidney disease and 4.8% of patients with preexisting chronic kidney disease. Acute kidney injury predicted development of acute kidney disease in a graded manner in which higher stages of acute kidney injury predicted higher relative risk of progressive kidney disease (area under the receiver operator characteristic curve = 0.82). This correlation persisted regardless of baseline kidney function (P < .001). Of note, development of acute kidney disease was associated with higher mortality and need for renal replacement therapy. The degree of acute kidney injury can identify patients who will have a higher risk of progression to acute kidney disease. These patients may benefit from close follow-up of renal function because they are at risk of progressing to chronic kidney disease or end-stage renal disease. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Miller, Wayne L.; Borgeson, Daniel D.; Grantham, J. Aaron; Luchner, Andreas; Redfield, Margaret M.; Burnett, John C.
2015-01-01
Aims Aldosterone activation is central to the sodium-fluid retention that marks the progression of heart failure (HF). The actions of dietary sodium restriction, a mainstay in HF management, on cardiorenal and neuroendocrine adaptations during the progression of HF are poorly understood. The study aim was to assess the role of dietary sodium during the progression of experimental HF. Methods and Results Experimental HF was produced in a canine model by rapid right ventricular pacing which evolves from early mild HF to overt, severe HF. Dogs were fed one of three diets: 1) high sodium [250 mEq (5.8 grams) per day, n=6]; 2) standard sodium [58 mEq (1.3 grams) per day, n=6]; and 3) sodium restriction [11 mEq (0.25 grams) per day, n=6]. During the 38 day study hemodynamics, renal function, renin activity (PRA), and aldosterone were measured. Changes in hemodynamics at 38 days were similar in all three groups, as were changes in renal function. Aldosterone activation was demonstrated in all three groups, however, dietary sodium restriction, in contrast to high sodium, resulted in early (10 days) activation of PRA and aldosterone. High sodium demonstrated significant suppression of aldosterone activation over the course of HF progression. Conclusions Excessive dietary sodium restriction particularly in early stage HF results in early aldosterone activation, while normal and excess sodium intake are associated with delayed or suppressed activation. These findings warrant evaluation in humans to determine if dietary sodium manipulation, particularly during early stage HF, may have a significant impact on neuroendocrine disease progression. PMID:25823360
Zeisberg, Michael; Tampe, Björn; LeBleu, Valerie; Tampe, Desiree; Zeisberg, Elisabeth M; Kalluri, Raghu
2014-10-01
Thrombospondin-1 (TSP1) is a multifunctional matricellular protein known to promote progression of chronic kidney disease. To gain insight into the underlying mechanisms through which TSP1 accelerates chronic kidney disease, we compared disease progression in Col4a3 knockout (KO) mice, which develop spontaneous kidney failure, with that of Col4a3;Tsp1 double-knockout (DKO) mice. Decline of excretory renal function was significantly delayed in the absence of TSP1. Although Col4a3;Tsp1 DKO mice did progress toward end-stage renal failure, their kidneys exhibited distinct histopathological lesions, compared with creatinine level-matched Col4a3 KO mice. Although kidneys of both Col4a3 KO and Col4a3;Tsp1 DKO mice exhibited a widened tubulointerstitium, predominant lesions in Col4a3 KO kidneys were collagen deposition and fibroblast accumulation, whereas in Col4a3;Tsp1 DKO kidney inflammation was predominant, with less collagen deposition. Altered disease progression correlated with impaired activation of transforming growth factor-β1 (TGF-β1) in vivo and in vitro in the absence of TSP1. In summary, our findings suggest that TSP1 contributes to progression of chronic kidney disease by catalyzing activation of latent TGF-β1, resulting in promotion of a fibroproliferative response over an inflammatory response. Furthermore, the findings suggest that fibroproliferative and inflammatory lesions are independent entities, both of which contribute to decline of renal function. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
[Familial focal and segmentary hyalinosis].
Sánchez de la Nieta, M D; Arias, L F; Alcázar, R; de la Torre, M; González, L; Rivera, F; Blanco, J; Ferreras, I
2003-01-01
Focal segmental glomerulosclerosis represents a finding in several renal disorders, characterized by proteinuria and sometimes by arterial hypertension and progressive decline in renal function. There are primary (idiopathic and familial) and secundary forms. In the last 20 years several familial cases has been reported, with a great genetic heterogeneity (dominant and recessive forms) and with multiple associations with particular MHC class-I and class-II gene loci, being Al, DR3 o DR7 the most frequently reported. We described three members of same family with focal segmental hyalinosis that shared the HLA haplotype A31 B61 DR13. This association has not been described previously. We highlight that genetic and acquired factors (obesity, hypertension...) could have importance in the development of progressive renal failure in these patients.
Influence of deceased donor hemodynamic factors in transplant recipients renal function.
Baptista, Ana Paula Maia; Silva, Hélio Tedesco; Pestana, José Osmar Medina
2013-01-01
The incidence of delayed graft function (DGF) and unsatisfactory creatinine clearance (UCC) after renal transplantation is significantly higher in Brazil, when compared with that observed in United States or Europe. Deceased donor (DD) characteristics should directly influence the occurrence of these two outcomes. This study aim to evaluate the influence of DD characteristics on DGF and UCC incidence in Brazil. DD clinical and laboratory variables were correlated with outcome's incidence. We evaluated 787 DD whose organs were transplanted in 1298 patients. We noted a high prevalence of vasoactive drugs use (90.2%), hypernatremia (66.6%) and renal dysfunction (34.8%). The incidence of DGF and UCC was 60.6% and 55.2%, respectively. We observed a progressive increase in DGF risk for age groups over 30 years and for cold ischemia time (CIT) greater than 24 hours. DGF risk was two times higher in recipients of donor kidney final serum creatinine (Cr) over than 1.5 mg/dl. Hypertension and CIT over 36 hours was associated with an increasing of 82% and 99% in UCC risk, respectively. Donor age above 40 years was associated with a progressive increase in UCC risk. DD age, renal function, hypertension and prolonged CIT were associated with increased risk DGF and UCC.
Germain, Dominique P; Waldek, Stephen; Banikazemi, Maryam; Bushinsky, David A; Charrow, Joel; Desnick, Robert J; Lee, Philip; Loew, Thomas; Vedder, Anouk C; Abichandani, Rekha; Wilcox, William R; Guffon, Nathalie
2007-05-01
Fabry disease, an inherited deficiency of the lysosomal enzyme alpha-galactosidase A, causes progressive intralysosomal accumulation of globotriaosylceramide (GL-3) and premature death from renal, cardiac, and cerebrovascular manifestations. To determine the long-term safety and efficacy of recombinant human alpha-galactosidase A, an open-label, phase III extension study was conducted, involving 58 patients who had classic Fabry disease and completed a 20-wk, double-blind, randomized, placebo-controlled, phase III study of agalsidase beta and were transitioned to an extension trial to receive biweekly 1 mg/kg agalsidase beta for up to an additional 54 mo. GL-3 accumulation was evaluated in the capillary endothelia of the skin, kidney, and heart. Renal function was assessed. By month 54, all patients with optional kidney biopsies (n = 8) maintained complete GL-3 clearance in renal capillary endothelial cells and multiple cell types. Continued, complete clearance of skin (31 of 36) and heart (six of eight) capillary endothelium was demonstrated. Mean plasma GL-3 levels remained decreased in the normal range. Median serum creatinine and estimated GFR remained stable (normal) in patients with renal data at month 54 (n = 41). Six patients had renal disease progression; most (four of six) were older than 40 yr and had significant proteinuria at baseline and evidence of sclerotic glomeruli pretreatment. Adverse events were generally mild and unrelated to treatment. The most common treatment-related adverse events were infusion-associated reactions, which decreased over time. Long-term agalsidase beta therapy stabilizes renal function in patients without renal involvement at baseline, maintains reduction of plasma GL-3, and sustains GL-3 clearance in capillary endothelial cells and multiple renal cell types.
The pathogenesis and management of hypertension in diabetic kidney disease.
Van Buren, Peter N; Toto, Robert D
2013-01-01
Hypertension commonly coexists with diabetes, and its prevalence is even higher in the presence of diabetic kidney disease. The pathogenesis of hypertension in this population stems from increased extracellular volume and increased vasoconstriction that results from mechanisms that may be attributed to both diabetes and the eventual impairment of renal function. Antihypertensive therapy aimed at reducing blood pressure remains a primary goal in preventing the incidence of diabetic kidney and slowing its progression. Initial therapy should consist of an ACE inhibitor or ARB titrated to the maximally tolerated dose. Using combination RAAS therapy further reduces proteinuria, but the benefits of this strategy compared with the potential risks of hyperkalemia and acute deterioration of renal function are still unknown. Endothelin receptor antagonists also lower proteinuria, but these can be associated with volume overload and edema with no clear long-term benefit on renal function yet identified. Further large clinical trials are needed to better understand how progression to ESRD can be slowed or halted in patients with diabetic kidney disease. Copyright © 2013 Elsevier Inc. All rights reserved.
Early Focal Segmental Glomerulosclerosis as a Cause of Renal Allograft Primary Nonfunction
Griffin, Emma J.; Thomson, Peter C.; Kipgen, David; Clancy, Marc; Daly, Conal
2013-01-01
Background. Primary focal segmental glomerulosclerosis (FSGS) is one of the commonest causes of glomerular disease and if left untreated will often progress to established renal failure. In many cases the best treatment option is renal transplantation; however primary FSGS may rapidly recur in renal allografts and may contribute to delayed graft function. We present a case of primary nonfunction in a renal allograft due to biopsy-proven FSGS. Case Report. A 32-year-old man presented with serum albumin of 22 g/L, proteinuria quantified at 12 g/L, and marked peripheral oedema. Renal biopsy demonstrated tip-variant FSGS. Despite treatment, the patient developed progressive renal dysfunction and was commenced on haemodialysis. Cadaveric renal transplantation was undertaken; however this was complicated by primary nonfunction. Renal biopsies failed to demonstrate evidence of acute rejection but did demonstrate clear evidence of FSGS. The patient was treated to no avail. Discussion. Primary renal allograft nonfunction following transplantation is often due to acute kidney injury or acute rejection. Recurrent FSGS is recognised as a phenomenon that drives allograft dysfunction but is not traditionally associated with primary nonfunction. This case highlights FSGS as a potentially aggressive process that, once active in the allograft, may prove refractory to targeted treatment. Preemptive therapies in patients deemed to be at high risk of recurrent disease may be appropriate and should be considered. PMID:23781382
Lee, Kyung-Yil
2017-06-01
Every cell of an organism is separated and protected by a cell membrane. It is proposed that harmony between intercellular communication and the health of an organism is controlled by a system, designated the protein-homeostasis-system (PHS). Kidneys consist of a variety of types of renal cells, each with its own characteristic cell-receptor interactions and producing characteristic proteins. A functional union of these renal cells can be determined by various renal function tests, and harmonious intercellular communication is essential for the healthy state of the host. Injury to a kind of renal cells can impair renal function and induce an imbalance in total body health. Every acute or chronic renal disease has unknown etiologic substances that are responsible for renal cell injury at the molecular level. The immune/repair system of the host should control the etiologic substances acting against renal cells; if this system fails, the disease progresses to end stage renal disease. Each renal disease has its characteristic pathologic lesions where immune cells and immune proteins, such as immunoglobulins and complements, are infiltrated. These immune cells and immune proteins may control the etiologic substances involved in renal pathologic lesions. Also, genetic renal diseases and cancers may originate from a protein deficiency or malfunctioning protein under the PHS. A unified pathogenesis for renal diseases, including acute glomerulonephritis, idiopathic nephrotic syndrome, immunoglobulin A nephropathy, genetic renal diseases such as Alport syndrome, and malignancies such as Wilms tumor and renal cell carcinoma, is proposed using the PHS hypothesis.
Treatment of renal failure in idiopathic membranous nephropathy with azathioprine and prednisolone.
Brown, J H; Douglas, A F; Murphy, B G; Hill, C M; McNamee, P T; Nelson, W E; Doherty, C C
1998-02-01
Progressive deterioration in renal function occurs in 20-50% of patients with idiopathic membranous nephropathy (IMN). Several treatment regimens have been used to reverse this with varying effect and toxicity. Thirteen patients (10 males, 3 females, median age 56 years) with IMN and progressive renal failure were treated with oral prednisolone 20-60 mg/day and azathioprine 1.3-2.7 mg/kgBW/day. All patients were followed up for a minimum of 2 years with a median follow-up of 73 months (range 24-103 months). Ten patients responded to treatment with a fall in serum creatinine and renal function stabilized in the remainder. Two patients relapsed, one of whom responded to an increase in immunosuppression, the other is now on dialysis. Proteinuria has significantly reduced in 10 patients, and only four patients still have nephrotic-range proteinuria. Mean (+/- SE) peak pretreatment serum creatinine of 229 (+/- 161) mumol/l and urinary protein of 11.8 (+/- 1.8) g/24 have fallen to 163 (+/- 65) mumol/l and 3.25 (+/- 1.0) g/24 h after 12 months treatment (P < 0.005, Wilcoxon matched pairs test). Immunosuppressive treatment has been successfully withdrawn in four patients after intervals ranging from 12 to 60 months. Adverse effects, which occurred in 10 patients, have been mild and have not led to treatment withdrawal though dose reductions have been necessary in some patients. Oral prednisolone and low-dose azathioprine is an effective therapy for progressing renal failure due to IMN, and induces remission of nephrotic syndrome. Side-effects are less than other immunosuppressive regimens.
Grisk, Olaf
2017-05-01
Increased renal sympathetic nerve activity (RSNA) is present in human and experimental forms of arterial hypertension. Experimental denervation studies showed that renal nerves contribute to the development of hypertension. Clinical trials provided equivocal results on the antihypertensive efficacy of renal denervation in patients spurring discussions on technical aspects of renal denervation and further research on the role of renal nerves for the regulation of kidney function as well as the pathophysiology of hypertension. This review summarizes recent findings on adrenoceptor expression and function in the human kidney, adrenoceptor-dependent regulation of sodium chloride transport in the distal nephron, experimental data on chronic RSNA and the development of high arterial pressure and consequences of renal denervation that may limit its antihypertensive efficacy. Future research needs to reduce the gap between our knowledge on neural control of renal function in animals vs. humans to facilitate translation of experimental animal data to humans. More experimental studies on the temporal relationship between RSNA and arterial pressure in the chronic setting are needed to better define the pathogenetic role of heightened RSNA in different forms of arterial hypertension in order to improve the rational basis for renal denervation in antihypertensive therapy. Finally, research on unintended consequences of renal denervation including but not limited to reinnervation and denervation supersensitivity needs to be intensified to further assess the potential of renal denervation to slow the progression of renal disease and hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.
Seujange, Yuyen; Leelahavanichkul, Asada; Yisarakun, Waranurin; Khawsuk, Witoon; Meepool, Ardool; Phamonleatmongkol, Ponlapat; Saechau, Walai; Onlamul, Winita; Tantiwarattanatikul, Pansa; Oonsook, Worapong; Eiam-Ong, Somchai; Eiam-Ong, Somchit
2013-01-01
Hibiscus sabdariffa Linn. (HS) is a tropical wild plant with antioxidant, antibacterial, antihypertensive, and lipid-lowering properties. In several animal models, HS aqueous extracts reduced the severity of the multi-organ injuries such as hypertension and diabetic nephropathy. One of the multiorgan injuries is chronic kidney disease (CKD), which results from the loss of nephron function. HS was used in a 5/6 nephrectomy (5/6 Nx) rat model to determine if it could attenuate the progression of CKD. HS (250 mg/kg/day) or placebo was orally administered to 5/6 Nx male Sprague-Dawley rats. The Nx+HS group had fewer renal injuries as measured by blood urea nitrogen, serum creatinine, creatinine clearance, and renal pathology when compared with the Nx group. In order to determine which property of HS, either vasodilatory and/or antioxidant, was important in attenuating the progression of CKD, systolic blood pressure (SBP) and serum levels of malondialdehyde (MDA) were assessed. In the Nx+HS group, the SBP and the serum levels of MDA were significantly lower at Week 7. In conclusion, through either antihypertensive and/or antioxidant properties, HS was able to attenuate the progression of renal injury after 5/6 Nx. Hence, HS should be considered as one of the new, promising drugs that can be used to attenuate the progression of CKD.
Zager, Richard A
2013-08-01
Following the induction of ischemic or toxin-mediated acute kidney injury (AKI), cellular adaptations occur that 're-program' how the kidney responds to future superimposed insults. This re-programming is not simply a short-lived phenomenon; rather it can persist for many weeks, implying that a state of 'biologic memory' has emerged. These changes can be both adaptive and maladaptive in nature and they can co-exist in time. A beneficial adaptation is the emergence of acquired cytoresistance, whereby a number of physiologic responses develop that serve to protect the kidney against further ischemic or nephrotoxic attack. Conversely, some changes are maladaptive, such as a predisposition to Gram-negative or Gram-positive bacteremia due to a renal tubular up-regulation of toll-like receptor responses. This latter change culminates in exaggerated cytokine production, and with efflux into the systemic circulation, extra-renal tissue injury can result (so-called 'organ cross talk'). Another maladaptive response is a persistent up-regulation of pro-inflammatory, pro-fibrotic and vasoconstrictive genes, culminating in progressive renal injury and ultimately end-stage renal failure. The mechanisms by which this biologic re-programming, or biologic memory, is imparted remain subjects for considerable debate. However, injury-induced, and stable, epigenetic remodeling at pro-inflammatory/pro-fibrotic genes seems likely to be involved. The goal of this editorial is to highlight that the so-called 'maintenance phase' of acute renal failure is not a static one, somewhere between injury induction and the onset of repair. Rather, this period is one in which the induction of 'biologic memory' can ultimately impact renal functional recovery, extra-renal injury and the possible transition of AKI into chronic, progressive renal disease.
Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease
El Machhour, Fala; Keuylian, Zela; Kavvadas, Panagiotis; Dussaule, Jean-Claude
2015-01-01
Notch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression. By contrast, mice lacking Notch3 expression were protected because they exhibited less proteinuria, uremia, and inflammatory infiltration. Podocyte outgrowth from glomeruli isolated from wild-type mice during the early phase of the disease was higher than outgrowth from glomeruli of mice lacking Notch3. In vitro studies confirmed that podocytes expressing active Notch3 reorganize their cytoskeleton toward a proliferative/migratory and inflammatory phenotype. We then administered antisense oligodeoxynucleotides targeting Notch3 or scramble control oligodeoxynucleotides in wild-type mice concomitant to disease induction. Both groups developed chronic renal disease, but mice injected with Notch3 antisense had lower values of plasma urea and proteinuria and inflammatory infiltration. The improvement of renal function was accompanied by fewer deposits of fibrin within the glomeruli and by decreased peritubular inflammation. Finally, abnormal Notch3 staining was observed in biopsy samples of patients with crescentic GN. These results demonstrate that abnormal activation of Notch3 may be involved in the progression of renal disease by promoting migratory and proinflammatory pathways. Inhibiting Notch3 activation could be a novel, promising approach to treat GN. PMID:25421557
Epigenetics of kidney disease.
Wanner, Nicola; Bechtel-Walz, Wibke
2017-07-01
DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.
Screening for Albuminuria Identifies Individuals at Increased Renal Risk
van der Velde, Marije; Halbesma, Nynke; de Charro, Frank T.; Bakker, Stephan J.L.; de Zeeuw, Dick; de Jong, Paul E.; Gansevoort, Ronald T.
2009-01-01
It is unknown whether screening for albuminuria in the general population identifies individuals at increased risk for renal replacement therapy (RRT) or accelerated loss of renal function. Here, in a general population-based cohort of 40,854 individuals aged 28 to 75 yr, we collected a first morning void for measurement of urinary albumin. In a subset of 6879 individuals, we measured 24-h urinary albumin excretion and estimated GFR at baseline and during 6 yr of follow-up. Linkage with the national RRT registry identified 45 individuals who started RRT during 9 yr of follow-up. The quantity of albuminuria was associated with increased renal risk: the higher the level of albuminuria, the higher the risk of need for renal replacement therapy and the more rapid renal function decline. A urinary albumin concentration of ≥20 mg/L identified individuals who started RRT during follow-up with 58% sensitivity and 92% specificity. Of the identified individuals, 39% were previously unknown to have impaired renal function, and 50% were not being medically treated. Restricting screening to high-risk groups (e.g., known hypertension, diabetes, cardiovascular disease [CVD], older age) reduced the sensitivity of the test only marginally but failed to identify 45% of individuals with micro- and macroalbuminuria. In conclusion, individuals with elevated levels of urinary albumin are at increased risk for RRT and accelerated loss of renal function. Screening for albuminuria identifies patients at increased risk for progressive renal disease, 40 to 50% of whom were previously undiagnosed or untreated. PMID:19211710
Ibraheem, Zaid O; Sattar, Munavvar A; Abdullah, Nor A; Rathore, Hassaan A; Johns, Edward J
2012-02-01
The current study evaluates the impact of high saturated fat feeding in rat model of experimental nephrotoxicity induced by gentamicin. Sprague-Dawley rats weighing 200 g were randomized into four groups; the first one received the standard rodents chow for 8 weeks and was treated as control, the second group (HFD)received an experimental high fat diet rich in palm kernel oil (40% of Calories as fat) for the same period. The third group (HFDG) was given 80 mg/kg (body weight)/day gentamicin sulphate intraperitoneally during the last 24 days of the feeding period while the fourth group was given gentamicin as above along with the standard rodents chow. Renal function was assessed through measuring serum creatinine, creatinine clearance and absolute and fractional excretion of both sodium and potassium. At the end, rats underwent a surgical procedure for blood pressure measurement. Renal function study showed a stronger nephrotoxicity for HFDG group. Hypertension was observed in HFD group while the pressure declined after gentamicin co-administration. Overall, changing the feeding behavior toward using more SAFFAs for rats injected with gentamicin promotes the progression of renal failure.
Ibraheem, Zaid O.; Sattar, Munavvar A.; Abdullah, Nor A.; Rathore, Hassaan A.; Johns, Edward J.
2012-01-01
The current study evaluates the impact of high saturated fat feeding in rat model of experimental nephrotoxicity induced by gentamicin. Sprague-Dawley rats weighing 200 g were randomized into four groups; the first one received the standard rodents chow for 8 weeks and was treated as control, the second group (HFD)received an experimental high fat diet rich in palm kernel oil (40% of Calories as fat) for the same period. The third group (HFDG) was given 80 mg/kg (body weight)/day gentamicin sulphate intraperitoneally during the last 24 days of the feeding period while the fourth group was given gentamicin as above along with the standard rodents chow. Renal function was assessed through measuring serum creatinine, creatinine clearance and absolute and fractional excretion of both sodium and potassium. At the end, rats underwent a surgical procedure for blood pressure measurement. Renal function study showed a stronger nephrotoxicity for HFDG group. Hypertension was observed in HFD group while the pressure declined after gentamicin co-administration. Overall, changing the feeding behavior toward using more SAFFAs for rats injected with gentamicin promotes the progression of renal failure. PMID:22364300
Perera, M Thamara P R; Sharif, Khalid; Lloyd, Carla; Foster, Katharine; Hulton, Sally A; Mirza, Darius F; McKiernan, Patrick J
2011-01-01
Primary hyperoxaluria-I (PH-I) is a serious metabolic disease resulting in end-stage renal disease. Pre-emptive liver transplantation (PLT) for PH-I is an option for children with early diagnosis. There is still little information on its effect on long-term renal function in this situation. Long-term assessment of renal function was conducted using Schwartz's formula (estimated glomerular filtration rate-eGFR) in four children (Group A) undergoing PLT between 2002 and 2008, and a comparison was done with eight gender- and sex-matched controls (Group B) having liver transplantation for other indications. All patients received a liver graft from a deceased donor. Median follow-up for the two groups was 64 and 94 months, respectively. One child in Group A underwent re-transplantation due to hepatic artery thrombosis, while acute rejection was seen in one. A significant difference was seen in eGFR at transplant (81 vs 148 mL/min/1.73 m(2)) with greater functional impairment seen in the study population. In Group A, renal function reduced by 21 and 11% compared with 37 and 35% in Group B at 12 and 24 months, respectively. At 2 years post-transplantation, there was no significant difference in eGFR between the two groups (72 vs 100 mL/min/1.73 m(2), respectively; P = 0.06). Renal function remains relatively stable following pre-emptive LTx for PH-I. With early diagnosis of PH-I, isolated liver transplantation may prevent progression to end-stage renal disease and the need for renal transplantation.
7 T renal MRI: challenges and promises.
de Boer, Anneloes; Hoogduin, Johannes M; Blankestijn, Peter J; Li, Xiufeng; Luijten, Peter R; Metzger, Gregory J; Raaijmakers, Alexander J E; Umutlu, Lale; Visser, Fredy; Leiner, Tim
2016-06-01
The progression to 7 Tesla (7 T) magnetic resonance imaging (MRI) yields promises of substantial increase in signal-to-noise (SNR) ratio. This increase can be traded off to increase image spatial resolution or to decrease acquisition time. However, renal 7 T MRI remains challenging due to inhomogeneity of the radiofrequency field and due to specific absorption rate (SAR) constraints. A number of studies has been published in the field of renal 7 T imaging. While the focus initially was on anatomic imaging and renal MR angiography, later studies have explored renal functional imaging. Although anatomic imaging remains somewhat limited by inhomogeneous excitation and SAR constraints, functional imaging results are promising. The increased SNR at 7 T has been particularly advantageous for blood oxygen level-dependent and arterial spin labelling MRI, as well as sodium MR imaging, thanks to changes in field-strength-dependent magnetic properties. Here, we provide an overview of the currently available literature on renal 7 T MRI. In addition, we provide a brief overview of challenges and opportunities in renal 7 T MR imaging.
[Early detection, prevention and management of renal failure in liver transplantation].
Castells, Lluís; Baliellas, Carme; Bilbao, Itxarone; Cantarell, Carme; Cruzado, Josep Maria; Esforzado, Núria; García-Valdecasas, Juan Carlos; Lladó, Laura; Rimola, Antoni; Serón, Daniel; Oppenheimer, Federico
2014-10-01
Renal failure is a frequent complication in liver transplant recipients and is associated with increased morbidity and mortality. A variety of risk factors for the development of renal failure in the pre- and post-transplantation periods have been described, as well as at the time of surgery. To reduce the negative impact of renal failure in this population, an active approach is required for the identification of those patients with risk factors, the implementation of preventive strategies, and the early detection of progressive deterioration of renal function. Based on published evidence and on clinical experience, this document presents a series of recommendations on monitoring RF in LT recipients, as well as on the prevention and management of acute and chronic renal failure after LT and referral of these patients to the nephrologist. In addition, this document also provides an update of the various immunosuppressive regimens tested in this population for the prevention and control of post-transplantation deterioration of renal function. Copyright © 2013 Elsevier España, S.L.U. and AEEH y AEG. All rights reserved.
The renal nerves in chronic heart failure: efferent and afferent mechanisms
Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.
2015-01-01
The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788
RAS and sex differences in diabetic nephropathy.
Clotet, Sergi; Riera, Marta; Pascual, Julio; Soler, Maria José
2016-03-09
The incidence and progression of kidney diseases are influenced by sex. The renin-angiotensin system (RAS) is an important regulator of cardiovascular and renal function. Sex differences in the renal response to RAS blockade have been demonstrated. Circulating and renal RAS has been shown to be altered in type 1 and type 2 diabetes; this enzymatic cascade plays a critical role in the development of diabetic nephropathy (DN). Angiotensin converting enzyme (ACE) and ACE2 are differentially regulated depending on its localization within the diabetic kidney. Furthermore, clinical and experimental studies have shown that circulating levels of sex hormones are clearly modulated in the context of diabetes, suggesting that sex-dependent RAS regulation may be also be affected in these individuals. The effect of sex hormones on circulating and renal RAS may be involved in the sex differences observed in DN progression. In this paper we will review the influence of sex hormones on RAS expression and its relation to diabetic kidney disease. A better understanding of the sex dimorphism on RAS might provide a new approach for diabetic kidney disease treatment. Copyright © 2015, American Journal of Physiology - Renal Physiology.
Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model
Wang, Xuexiang; Johnson, Ashley C.; Williams, Jan M.; White, Tiffani; Chade, Alejandro R.; Zhang, Jie; Liu, Ruisheng; Roman, Richard J.; Lee, Jonathan W.; Kyle, Patrick B.; Solberg-Woods, Leah
2015-01-01
Some studies have reported up to 40% of patients born with a single kidney develop hypertension, proteinuria, and in some cases renal failure. The increased susceptibility to renal injury may be due, in part, to reduced nephron numbers. Notably, children who undergo nephrectomy or adults who serve as kidney donors exhibit little difference in renal function compared with persons who have two kidneys. However, the difference in risk between being born with a single kidney versus being born with two kidneys and then undergoing nephrectomy are unclear. Animal models used previously to investigate this question are not ideal because they require invasive methods to model congenital solitary kidney. In this study, we describe a new genetic animal model, the heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, which demonstrates 50%–75% spontaneous incidence of a single kidney. The HSRA model is characterized by reduced nephron number (more than would be expected by loss of one kidney), early kidney/glomerular hypertrophy, and progressive renal injury, which culminates in reduced renal function. Long-term studies of temporal relationships among BP, renal hemodynamics, and renal function demonstrate that spontaneous single-kidney HSRA rats are more likely than uninephrectomized normal littermates to exhibit renal impairment because of the combination of reduced nephron numbers and prolonged exposure to renal compensatory mechanisms (i.e., hyperfiltration). Future studies with this novel animal model may provide additional insight into the genetic contributions to kidney development and agenesis and the factors influencing susceptibility to renal injury in individuals with congenital solitary kidney. PMID:25349207
Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model.
Wang, Xuexiang; Johnson, Ashley C; Williams, Jan M; White, Tiffani; Chade, Alejandro R; Zhang, Jie; Liu, Ruisheng; Roman, Richard J; Lee, Jonathan W; Kyle, Patrick B; Solberg-Woods, Leah; Garrett, Michael R
2015-07-01
Some studies have reported up to 40% of patients born with a single kidney develop hypertension, proteinuria, and in some cases renal failure. The increased susceptibility to renal injury may be due, in part, to reduced nephron numbers. Notably, children who undergo nephrectomy or adults who serve as kidney donors exhibit little difference in renal function compared with persons who have two kidneys. However, the difference in risk between being born with a single kidney versus being born with two kidneys and then undergoing nephrectomy are unclear. Animal models used previously to investigate this question are not ideal because they require invasive methods to model congenital solitary kidney. In this study, we describe a new genetic animal model, the heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, which demonstrates 50%-75% spontaneous incidence of a single kidney. The HSRA model is characterized by reduced nephron number (more than would be expected by loss of one kidney), early kidney/glomerular hypertrophy, and progressive renal injury, which culminates in reduced renal function. Long-term studies of temporal relationships among BP, renal hemodynamics, and renal function demonstrate that spontaneous single-kidney HSRA rats are more likely than uninephrectomized normal littermates to exhibit renal impairment because of the combination of reduced nephron numbers and prolonged exposure to renal compensatory mechanisms (i.e., hyperfiltration). Future studies with this novel animal model may provide additional insight into the genetic contributions to kidney development and agenesis and the factors influencing susceptibility to renal injury in individuals with congenital solitary kidney. Copyright © 2015 by the American Society of Nephrology.
[ACE Inhibitors and ARB in Chronic Kidney Disease: What Has to Be Considered].
Zeier, Martin
2018-06-01
Proteinuric kidney disease, especially in the early and middle stages of renal insufficiency, may be favorably affected by ACE-I/ARB. The progression of renal insufficiency is thereby slowed down and dialysis obligation occurs later or can even be avoided. This effect is independent of the underlying glomerular kidney disease. In the advanced stage of renal insufficiency, the benefit of ACE-I/ARB cannot yet be conclusively assessed. The interruption of ACE-I/ARB therapy may possibly contribute to a certain recovery of renal function and delay the onset of dialysis a little. However, studies are still pending and the benefits of ACE-I/ARB for the heart and blood vessels, especially at this stage of renal insufficiency, should not be overlooked.Patients with proteinuria benefit from ACE-I/ARB not only in terms of renal stabilization. A cardio-protective effect by reduction of proteinuria and a delay of progression is proven. On the other hand, the protective effect of ACE-I/ARB that can be detected directly on the heart and blood vessels should not be disregarded. Thus, even if chronic renal insufficiency no longer benefits directly from ACE-I/ARB therapy, cardiac protection may still be of great importance to the chronic kidney patient. © Georg Thieme Verlag KG Stuttgart · New York.
O'Hagan, Emma; Mallett, Tamara; Convery, Mairead; McKeever, Karl
2015-01-01
Antiglomerular basement membrane (anti-GBM) antibody disease is uncommon in the pediatric population. There are no cases in the literature describing the development of anti-GBM disease following XGP or nephrectomy. We report the case of a 7-year-old boy with no past history of urological illness, treated with antimicrobials and nephrectomy for diffuse, unilateral xanthogranulomatous pyelonephritis (XGP). Renal function and ultrasound scan of the contralateral kidney postoperatively were normal. Three months later, the child represented in acute renal failure with rapidly progressive glomerulonephritis requiring hemodialysis. Renal biopsy showed severe crescentic glomerulonephritis with 95% of glomeruli demonstrating circumferential cellular crescents. Strong linear IgG staining of the glomerular basement membranes was present, in keeping with anti-GBM disease. Circulating anti-GBM antibodies were positive. Treatment with plasma exchange, methylprednisolone, and cyclophosphamide led to normalization of anti-GBM antibody titers. Frequency of hemodialysis was reduced as renal function improved, and he is currently independent of dialysis with estimated glomerular filtration rate 20.7 mls/min/1.73 m 2 . Case studies in the adult literature have reported the development of a rapidly progressive anti-GBM antibody-induced glomerulonephritis following renal surgery where patients expressed HLA DR2/HLA DR15 major histocompatibility (MHC) antigens. Of note, our patient also expresses the HLA DR15 MHC antigen.
Glycogen synthase kinase-3β promotes cyst expansion in polycystic kidney disease.
Tao, Shixin; Kakade, Vijayakumar R; Woodgett, James R; Pandey, Pankaj; Suderman, Erin D; Rajagopal, Madhumitha; Rao, Reena
2015-06-01
Polycystic kidney diseases (PKDs) are inherited disorders characterized by the formation of fluid filled renal cysts. Elevated cAMP levels in PKDs stimulate progressive cyst enlargement involving cell proliferation and transepithelial fluid secretion often leading to end-stage renal disease. The glycogen synthase kinase-3 (GSK3) family of protein kinases consists of GSK3α and GSK3β isoforms and has a crucial role in multiple cellular signaling pathways. We previously found that GSK3β, a regulator of cell proliferation, is also crucial for cAMP generation and vasopressin-mediated urine concentration by the kidneys. However, the role of GSK3β in the pathogenesis of PKDs is not known. Here we found that GSK3β expression and activity were markedly upregulated and associated with cyst-lining epithelia in the kidneys of mice and humans with PKD. Renal collecting duct-specific gene knockout of GSK3β or pharmacological inhibition of GSK3 effectively slowed down the progression of PKD in mouse models of autosomal recessive or autosomal dominant PKD. GSK3 inactivation inhibited cAMP generation and cell proliferation resulting in reduced cyst expansion, improved renal function, and extended life span. GSK3β inhibition also reduced pERK, c-Myc, and cyclin-D1, known mitogens in proliferation of cystic epithelial cells. Thus, GSK3β has a novel functional role in PKD pathophysiology, and its inhibition may be therapeutically useful to slow down cyst expansion and progression of PKD.
Kurdián, Melania; Herrero-Fresneda, Inmaculada; Lloberas, Nuria; Gimenez-Bonafe, Pepita; Coria, Virginia; Grande, María T; Boggia, José; Malacrida, Leonel; Torras, Joan; Arévalo, Miguel A; González-Martínez, Francisco; López-Novoa, José M; Grinyó, Josep; Noboa, Oscar
2012-01-01
The immunosuppressive mammalian target of rapamycin (mTOR) inhibitors are widely used in solid organ transplantation, but their effect on kidney disease progression is controversial. mTOR has emerged as one of the main pathways regulating cell growth, proliferation, differentiation, migration, and survival. The aim of this study was to analyze the effects of delayed inhibition of mTOR pathway with low dose of everolimus on progression of renal disease and TGFβ expression in the 5/6 nephrectomy model in Wistar rats. This study evaluated the effects of everolimus (0.3 mg/k/day) introduced 15 days after surgical procedure on renal function, proteinuria, renal histology and mechanisms of fibrosis and proliferation. Everolimus treated group (EveG) showed significantly less proteinuria and albuminuria, less glomerular and tubulointerstitial damage and fibrosis, fibroblast activation cell proliferation, when compared with control group (CG), even though the EveG remained with high blood pressure. Treatment with everolimus also diminished glomerular hypertrophy. Everolimus effectively inhibited the increase of mTOR developed in 5/6 nephrectomy animals, without changes in AKT mRNA or protein abundance, but with an increase in the pAKT/AKT ratio. Associated with this inhibition, everolimus blunted the increased expression of TGFβ observed in the remnant kidney model. Delayed mTOR inhibition with low dose of everolimus significantly prevented progressive renal damage and protected the remnant kidney. mTOR and TGFβ mRNA reduction can partially explain this anti fibrotic effect. mTOR can be a new target to attenuate the progression of chronic kidney disease even in those nephropathies of non-immunologic origin.
Kurdián, Melania; Herrero-Fresneda, Inmaculada; Lloberas, Nuria; Gimenez-Bonafe, Pepita; Coria, Virginia; Grande, María T.; Boggia, José; Malacrida, Leonel; Torras, Joan; Arévalo, Miguel A.; González-Martínez, Francisco; López-Novoa, José M.; Grinyó, Josep; Noboa, Oscar
2012-01-01
Background The immunosuppressive mammalian target of rapamycin (mTOR) inhibitors are widely used in solid organ transplantation, but their effect on kidney disease progression is controversial. mTOR has emerged as one of the main pathways regulating cell growth, proliferation, differentiation, migration, and survival. The aim of this study was to analyze the effects of delayed inhibition of mTOR pathway with low dose of everolimus on progression of renal disease and TGFβ expression in the 5/6 nephrectomy model in Wistar rats. Methods This study evaluated the effects of everolimus (0.3 mg/k/day) introduced 15 days after surgical procedure on renal function, proteinuria, renal histology and mechanisms of fibrosis and proliferation. Results Everolimus treated group (EveG) showed significantly less proteinuria and albuminuria, less glomerular and tubulointerstitial damage and fibrosis, fibroblast activation cell proliferation, when compared with control group (CG), even though the EveG remained with high blood pressure. Treatment with everolimus also diminished glomerular hypertrophy. Everolimus effectively inhibited the increase of mTOR developed in 5/6 nephrectomy animals, without changes in AKT mRNA or protein abundance, but with an increase in the pAKT/AKT ratio. Associated with this inhibition, everolimus blunted the increased expression of TGFβ observed in the remnant kidney model. Conclusion Delayed mTOR inhibition with low dose of everolimus significantly prevented progressive renal damage and protected the remnant kidney. mTOR and TGFβ mRNA reduction can partially explain this anti fibrotic effect. mTOR can be a new target to attenuate the progression of chronic kidney disease even in those nephropathies of non-immunologic origin. PMID:22427849
Corticosteroids in IgA Nephropathy: A Retrospective Analysis from the VALIGA Study
Tesar, Vladimir; Troyanov, Stéphan; Bellur, Shubha; Verhave, Jacobien C.; Cook, H. Terence; Feehally, John; Roberts, Ian S.D.; Cattran, Daniel
2015-01-01
Current guidelines suggest treatment with corticosteroids (CS) in IgA nephropathy (IgAN) when proteinuria is persistently ≥1 g/d despite 3–6 months of supportive care and when eGFR is >50 ml/min per 1.73 m2. Whether the benefits of this treatment extend to patients with an eGFR≤50 ml/min per 1.73 m2, other levels of proteinuria, or different renal pathologic lesions remains unknown. We retrospectively studied 1147 patients with IgAN from the European Validation Study of the Oxford Classification of IgAN (VALIGA) cohort classified according to the Oxford-MEST classification and medication used, with details of duration but not dosing. Overall, 46% of patients received immunosuppression, of which 98% received CS. Treated individuals presented with greater clinical and pathologic risk factors of progression. They also received more antihypertensive medication, and a greater proportion received renin angiotensin system blockade (RASB) compared with individuals without immunosuppressive therapy. Immunosuppression was associated with a significant reduction in proteinuria, a slower rate of renal function decline, and greater renal survival. Using a propensity score, we matched 184 subjects who received CS and RASB to 184 patients with a similar risk profile of progression who received only RASB. Within this group, CS reduced proteinuria and the rate of renal function decline and increased renal survival. These benefits extended to those with an eGFR≤50 ml/min per 1.73 m2, and the benefits increased proportionally with the level of proteinuria. Thus, CS reduced the risk of progression regardless of initial eGFR and in direct proportion to the extent of proteinuria in this cohort. PMID:25677392
Corticosteroids in IgA Nephropathy: A Retrospective Analysis from the VALIGA Study.
Tesar, Vladimir; Troyanov, Stéphan; Bellur, Shubha; Verhave, Jacobien C; Cook, H Terence; Feehally, John; Roberts, Ian S D; Cattran, Daniel; Coppo, Rosanna
2015-09-01
Current guidelines suggest treatment with corticosteroids (CS) in IgA nephropathy (IgAN) when proteinuria is persistently ≥1 g/d despite 3-6 months of supportive care and when eGFR is >50 ml/min per 1.73 m(2). Whether the benefits of this treatment extend to patients with an eGFR≤50 ml/min per 1.73 m(2), other levels of proteinuria, or different renal pathologic lesions remains unknown. We retrospectively studied 1147 patients with IgAN from the European Validation Study of the Oxford Classification of IgAN (VALIGA) cohort classified according to the Oxford-MEST classification and medication used, with details of duration but not dosing. Overall, 46% of patients received immunosuppression, of which 98% received CS. Treated individuals presented with greater clinical and pathologic risk factors of progression. They also received more antihypertensive medication, and a greater proportion received renin angiotensin system blockade (RASB) compared with individuals without immunosuppressive therapy. Immunosuppression was associated with a significant reduction in proteinuria, a slower rate of renal function decline, and greater renal survival. Using a propensity score, we matched 184 subjects who received CS and RASB to 184 patients with a similar risk profile of progression who received only RASB. Within this group, CS reduced proteinuria and the rate of renal function decline and increased renal survival. These benefits extended to those with an eGFR≤50 ml/min per 1.73 m(2), and the benefits increased proportionally with the level of proteinuria. Thus, CS reduced the risk of progression regardless of initial eGFR and in direct proportion to the extent of proteinuria in this cohort. Copyright © 2015 by the American Society of Nephrology.
Renal albumin absorption in physiology and pathology.
Birn, H; Christensen, E I
2006-02-01
Albumin is the most abundant plasmaprotein serving multiple functions as a carrier of metabolites, hormones, vitamins, and drugs, as an acid/base buffer, as antioxidant and by supporting the oncotic pressure and volume of the blood. The presence of albumin in urine is considered to be the result of the balance between glomerular filtration and tubular reabsorption. Albuminuria has been accepted as an independent risk factor and a marker for renal as well as cardiovascular disease, and during the past decade, evidence has suggested that albumin itself may cause progression of renal disease. Thus, the reduction of proteinuria and, in particular, albuminuria has become a target in itself to prevent deterioration of renal function. Studies have shown albumin and its ligands to induce expression of inflammatory and fibrogenic mediators, and it has been hypothesized that increased filtration of albumin causes excessive tubular reabsorption, resulting in inflammation and fibrosis, resulting in the loss of renal function. In addition, it is known that tubular dysfunction in itself may cause albuminuria owing to decreased reabsorption of filtered albumin, and, recently, it has been suggested that significant amounts of albumin fragments are excreted in the urine as a result of tubular degradation. Thus, although both tubular and glomerular dysfunction influences renal handling of albumin, it appears that tubular reabsorption plays a central role in mediating the effects of albumin on renal function. The present paper will review the mechanisms for tubular albumin uptake and the possible implications for the development of renal disease.
Gorriz, José L; Gutiérrez, Félix; Trullàs, Joan C; Arazo, Piedad; Arribas, Jose R; Barril, Guillermina; Cervero, Miguel; Cofán, Frederic; Domingo, Pere; Estrada, Vicente; Fulladosa, Xavier; Galindo, María J; Gràcia, Sílvia; Iribarren, José A; Knobel, Hernando; López-Aldeguer, José; Lozano, Fernando; Martínez-Castelao, Alberto; Martínez, Esteban; Mazuecos, Maria A; Miralles, Celia; Montañés, Rosario; Negredo, Eugenia; Palacios, Rosario; Pérez-Elías, María J; Portilla, Joaquín; Praga, Manuel; Quereda, Carlos; Rivero, Antonio; Santamaría, Juan M; Sanz, José; Sanz, Jesús; Miró, José M
2014-11-01
The aim of this article is to update the 2010 recommendations on the evaluation and management of renal disease in human immunodeficiency virus (HIV)-infected patients. Renal function should be monitored in all HIV-infected patients. The basic renal work-up should include measurements of serum creatinine, estimated glomerular filtration rate by CKD-EPI, urine protein-to-creatinine ratio, and urinary sediment. Tubular function tests should include determination of serum phosphate levels and urine dipstick for glycosuria. In the absence of abnormal values, renal screening should be performed annually. In patients treated with tenofovir, or with risk factors for chronic kidney disease (CKD), more frequent renal screening is recommended. In order to prevent disease progression, potentially nephrotoxic antiretroviral drugs are not recommended in patients with CKD or risk factors for CKD. The document provides indications for renal biopsy and advises on the optimal time for referral of a patient to the nephrologist. The indications for and evaluation and management of dialysis and renal transplantation are also addressed. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease.
El Machhour, Fala; Keuylian, Zela; Kavvadas, Panagiotis; Dussaule, Jean-Claude; Chatziantoniou, Christos
2015-07-01
Notch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression. By contrast, mice lacking Notch3 expression were protected because they exhibited less proteinuria, uremia, and inflammatory infiltration. Podocyte outgrowth from glomeruli isolated from wild-type mice during the early phase of the disease was higher than outgrowth from glomeruli of mice lacking Notch3. In vitro studies confirmed that podocytes expressing active Notch3 reorganize their cytoskeleton toward a proliferative/migratory and inflammatory phenotype. We then administered antisense oligodeoxynucleotides targeting Notch3 or scramble control oligodeoxynucleotides in wild-type mice concomitant to disease induction. Both groups developed chronic renal disease, but mice injected with Notch3 antisense had lower values of plasma urea and proteinuria and inflammatory infiltration. The improvement of renal function was accompanied by fewer deposits of fibrin within the glomeruli and by decreased peritubular inflammation. Finally, abnormal Notch3 staining was observed in biopsy samples of patients with crescentic GN. These results demonstrate that abnormal activation of Notch3 may be involved in the progression of renal disease by promoting migratory and proinflammatory pathways. Inhibiting Notch3 activation could be a novel, promising approach to treat GN. Copyright © 2015 by the American Society of Nephrology.
Role for transforming growth factor-beta1 in alport renal disease progression.
Sayers, R; Kalluri, R; Rodgers, K D; Shield, C F; Meehan, D T; Cosgrove, D
1999-11-01
Alport syndrome results from mutations in either the alpha3(IV), alpha4(IV), or alpha5(IV) collagen genes. The disease is characterized by a progressive glomerulonephritis usually associated with a high-frequency sensorineural hearing loss. A mouse model for an autosomal form of Alport syndrome [collagen alpha3(IV) knockout] was produced and characterized. In this study, the model was exploited to demonstrate a potential role for transforming growth factor-beta1 (TGF-beta1) in Alport renal disease pathogenesis. Kidneys from normal and Alport mice, taken at different stages during the course of renal disease progression, were analyzed by Northern blot, in situ hybridization, and immunohistology for expression of TGF-beta1 and components of the extracellular matrix. Normal and Alport human kidney was examined for TGF-beta1 expression using RNase protection. The mRNAs encoding TGF-beta1 (in both mouse and human), entactin, fibronectin, and the collagen alpha1(IV) and alpha2(IV) chains were significantly induced in total kidney as a function of Alport renal disease progression. The induction of these specific mRNAs was observed in the glomerular podocytes of animals with advanced disease. Type IV collagen, laminin-1, and fibronectin were markedly elevated in the tubulointerstitium at 10 weeks, but not at 6 weeks, suggesting that elevated expression of specific mRNAs on Northern blots reflects events associated with tubulointerstitial fibrosis. The concomitant accumulation of mRNAs encoding TGF-beta1 and extracellular matrix components in the podocytes of diseased kidneys may reflect key events in Alport renal disease progression. These data suggest a role for TGF-beta1 in both glomerular and tubulointerstitial damage associated with Alport syndrome.
Takakura, Koji; Mizukami, Kazuhiko; Mitori, Hikaru; Noto, Takahisa; Tomura, Yuichi
2014-08-15
While pirfenidone has been established as an effective anti-fibrosis remedy, whether or not its antifibrotic effect contributes to a reduction of proteinuria remains unclear. We investigated the renoprotective properties of pirfenidone in an anti-glomerular basement membrane (GBM) glomerulonephritis model both prophylactically and therapeutically to determine its profile against proteinuria. In the prophylactic regimen, pirfenidone was treated immediately after anti-serum injection. We observed a significant reduction in the progression of proteinuria (P<0.05) and decline in renal function (P<0.01) and also noted histological improvement in renal injury. These effects appeared to be due to the maintained expression of nephrin and podocin on podocytes as well as the reduced expression of profibrotic factors like transforming growth factor-β (TGF-β). The expression of nephrin mRNA was strongly negatively correlated with the amount of urinary protein excretion (R=-0.84, P<0.001), implicating podocyte damage in the outcome of proteinuria (R(2)=0.70). These results suggest that preservation of podocytes with the pirfenidone treatment may have resulted in the decrease of proteinuria. In contrast, when the therapeutic regimen was initiated 2 weeks after nephritis induction, pirfenidone had little effect on the progression of proteinuria, although the decline of renal function and fibrosis were suppressed. Taken together, present findings suggested that pirfenidone prevented the progression of proteinuria only when administered prophylactically but was still able to ameliorate the decline of renal function independent of proteinuria. In conclusion, pirfenidone as a prophylactic regimen reduces proteinuria in anti-GBM nephritis via preservation of podocytes with markedly reduced efficacy when administered as a therapeutic regimen. Copyright © 2014 Elsevier B.V. All rights reserved.
The role of the immune system in kidney disease.
Tecklenborg, J; Clayton, D; Siebert, S; Coley, S M
2018-05-01
The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities. © 2018 British Society for Immunology.
Alport syndrome and pregnancy: a case series and literature review.
Brunini, Francesca; Zaina, Barbara; Gianfreda, Davide; Ossola, Wally; Giani, Marisa; Fedele, Luigi; Messa, Piergiorgio; Moroni, Gabriella
2018-06-01
To assess pregnancy outcome in women with Alport syndrome and the impact of pregnancy on the disease progression. We describe one of the largest series of pregnancies in Alport syndrome. Seven pregnancies of six women were monitored by a multidisciplinary team of nephrologists and gynecologists. After delivery, patients were followed for at least 3 years. We compare our results with those in the literature. Pregnancy course was uneventful in the patient with isolated microscopic hematuria. In the other cases, all presenting mild proteinuria at conception, some complications occurred. Proteinuria worsened during the last trimester, reaching nephrotic ranges in five out of six pregnancies and was associated with fluid overload leading to hospitalizations and early delivery. The majority of the newborns had a low birth weight. The two patients with arterial hypertension at conception and twin pregnancy developed pre-eclampsia and renal function deterioration persisted after delivery. The one with pre-pregnancy renal dysfunction reached end-stage renal disease. In the other patients, in which renal function and blood pressure were and remained normal, proteinuria improved after delivery and no signs of disease progression were recorded at last observation. Our observations suggest that Alport syndrome should be considered a potential risk factor for pregnancy in proteinuric patients due to the development of pre-eclampsia, renal function deterioration, and/or full-blown nephrotic syndrome that results in anasarca, slowing of fetal growth and pre-term delivery. Thus, all women with Alport syndrome should receive pre-conceptional counseling and be kept in close follow-up during pregnancy.
STAT3 inhibition attenuates the progressive phenotypes of Alport syndrome mouse model.
Yokota, Tsubasa; Omachi, Kohei; Suico, Mary Ann; Kamura, Misato; Kojima, Haruka; Fukuda, Ryosuke; Motomura, Keishi; Teramoto, Keisuke; Kaseda, Shota; Kuwazuru, Jun; Takeo, Toru; Nakagata, Naomi; Shuto, Tsuyoshi; Kai, Hirofumi
2018-02-01
Alport syndrome (AS) is a hereditary, progressive nephritis caused by mutation of type IV collagen. Previous studies have shown that activation of signal transducer and activator of transcription 3 (STAT3) exacerbates other renal diseases, but whether STAT3 activation exacerbates AS pathology is still unknown. Here we aim to investigate the involvement of STAT3 in the progression of AS. Phosphorylated STAT3 expression was assessed by immunoblotting analysis of kidneys and glomeruli of an AS mouse model (Col4a5 G5X mutant). To determine the effect of blocking STAT3 signaling, we treated AS mice with the STAT3 inhibitor stattic (10 mg/kg i.p., three times per week for 10 weeks; n = 10). We assessed the renal function [proteinuria, blood urea nitrogen (BUN), serum creatinine] and analyzed the glomerular injury score, fibrosis and inflammatory cell invasion by histological staining. Moreover, we analyzed the gene expression of nephritis-associated molecules. Phosphorylated STAT3 was upregulated in AS kidneys and glomeruli. Treatment with stattic ameliorated the progressive renal dysfunction, such as increased levels of proteinuria, BUN and serum creatinine. Stattic also significantly suppressed the gene expression levels of renal injury markers (Lcn2, Kim-1), pro-inflammatory cytokines (Il-6, KC), pro-fibrotic genes (Tgf-β, Col1a1, α-Sma) and Mmp9. Stattic treatment decreased the renal fibrosis congruently with the decrease of transforming growth factor beta (TGF-β) protein and increase of antifibrosis-associated markers p-Smad1, 5 and 8, which are negative regulators of TGF-β signaling. STAT3 inhibition significantly ameliorated the renal dysfunction in AS mice. Our finding identifies STAT3 as an important regulator in AS progression and provides a promising therapeutic target for AS. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Laucho-Contreras, Maria E.; Petersen, Hans; Bijol, Vanesa; Sholl, Lynette M.; Choi, Mary E.; Divo, Miguel; Pinto-Plata, Victor; Chetta, Alfredo; Tesfaigzi, Yohannes; Celli, Bartolomé R.
2017-01-01
Rationale: Patients with chronic obstructive pulmonary disease (COPD) frequently have albuminuria (indicative of renal endothelial cell injury) associated with hypoxemia. Objectives: To determine whether (1) cigarette smoke (CS)-induced pulmonary and renal endothelial cell injury explains the association between albuminuria and COPD, (2) CS-induced albuminuria is linked to increases in the oxidative stress–advanced glycation end products (AGEs) receptor for AGEs (RAGE) pathway, and (3) enalapril (which has antioxidant properties) limits the progression of pulmonary and renal injury by reducing activation of the AGEs–RAGE pathway in endothelial cells in both organs. Methods: In 26 patients with COPD, 24 ever-smokers without COPD, 32 nonsmokers who underwent a renal biopsy or nephrectomy, and in CS-exposed mice, we assessed pathologic and ultrastructural renal lesions, and measured urinary albumin/creatinine ratios, tissue oxidative stress levels, and AGEs and RAGE levels in pulmonary and renal endothelial cells. The efficacy of enalapril on pulmonary and renal lesions was assessed in CS-exposed mice. Measurements and Main Results: Patients with COPD and/or CS-exposed mice had chronic renal injury, increased urinary albumin/creatinine ratios, and increased tissue oxidative stress and AGEs-RAGE levels in pulmonary and renal endothelial cells. Treating mice with enalapril attenuated CS-induced increases in urinary albumin/creatinine ratios, tissue oxidative stress levels, endothelial cell AGEs and RAGE levels, pulmonary and renal cell apoptosis, and the progression of chronic renal and pulmonary lesions. Conclusions: Patients with COPD and/or CS-exposed mice have pulmonary and renal endothelial cell injury linked to increased endothelial cell AGEs and RAGE levels. Albuminuria could identify patients with COPD in whom angiotensin-converting enzyme inhibitor therapy improves renal and lung function by reducing endothelial injury. PMID:28085500
Villegas, Ana; Núñez, Ramiro; Gaya, Anna; Cuevas-Ruiz, María Victoria; Bosch, José Miguel; Carral, Anna; Arrizabalaga, Beatriz; Gómez-Roncero, María Isabel; Mora, Asunción; Bravo, Pilar; Lavilla, Esperanza; Monteserín, Carmen; Hernández, Belén; Martínez-Barranco, Pilar; Jarque, Isidro; Urquía, María Anunciación; García-Donas, Gloria; Brunet, Salut; González, Fernando Ataulfo; Urbano, Álvaro
2017-10-01
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, life-threatening blood disease. With the advent of eculizumab treatment, renal function has substantially improved, although no data from real-world clinical practice are available. An observational, retrospective, multicenter study was conducted in Spain on clinical data obtained from outpatient visits of patients with PNH (Spanish PNH Registry) who had experienced acute (ARF) or chronic (CRF) renal failure. Of the 128 patients registered (April 2014), 60 were diagnosed with classic PNH. Twenty-seven (45.0%) patients with a mean age of 48.5 (±16.2) years had renal failure, ARF or CRF, and were included in this study. Near half of the patients (n = 13; 48.1%) presented with ARF alone, 33.3% (n = 9) had CRF with episodes of ARF, while 18.5% (n = 5) were diagnosed with CRF alone. For patients with diagnosis of PNH and renal failure (n = 27), the median time to the first ARF episode was 6.5 (CI 95%; 2.2, 14.9) years, whereas the median to the diagnosis of CRF was 14.5 (CI 95%; 3.8, 19.2) years after the diagnosis of PNH. Patients with ARF (n = 22) were treated with eculizumab and did not experience new episodes of ARF, except for one patient with sepsis. Of the patients with CRF, two received treatment without experiencing further episodes of ARF. Sixteen patients who completed treatment (11 with ARF and 5 with ARF + CRF) recovered from the episode of ARF or from CRF. Of the remaining patients treated with eculizumab, one patient improved from stages III to II, three patients stabilized without showing disease progression, and one patient progressed from stages III to IV. Treatment with eculizumab in PNH patients has beneficial effects on renal function, preventing ARF and progression to CRF.
The Kidney in Aging: Physiological Changes and Pathological Implications.
Sobamowo, H; Prabhakar, S S
2017-01-01
Aging is associated with progressive decline in renal function along with concurrent morphological changes that ultimately lead to glomerulosclerosis. The mechanisms leading to such changes in the kidney with age as well as the basis of controversies that surround the physiological basis vs pathological nature of aging kidney are the focus of this in-depth review. In addition, the renal functional defects of acid-base homeostasis and electrolyte disturbances in elderly and the physiological basis of such disorders are also discussed. © 2017 Elsevier Inc. All rights reserved.
Baba, Asuka; Tachi, Masahiro; Ejima, Yutaka; Endo, Yasuhiro; Toyama, Hiroaki; Saito, Kazutomo; Abe, Nozomu; Yamauchi, Masanori; Miura, Chieko; Kazama, Itsuro
2017-02-01
Chronic renal failure (CRF) is histopathologically characterized by tubulointerstitial fibrosis in addition to glomerulosclerosis. Although mast cells are known to infiltrate into the kidneys with chronic inflammation, we know little about their contribution to the pathogenesis of renal fibrosis associated with CRF. The aim of this study was to reveal the involvement of mast cells in the progression of renal fibrosis in CRF. Using a rat model with CRF resulting from 5/6 nephrectomy, we examined the histopathological features of the kidneys and the infiltration of mast cells into the renal interstitium. By treating the rats with a potent mast cell stabilizer, tranilast, we also examined the involvement of mast cells in the progression of renal fibrosis associated with CRF. The CRF rat kidneys were characterized by the wide staining of collagen III and increased number of myofibroblasts, indicating the progression of renal fibrosis. Compared to T-lymphocytes or macrophages, the number of tryptase-positive mast cells was much smaller within the fibrotic kidneys and they did not proliferate in situ. The mRNA expression of mast cell-derived fibroblast-activating factors was not increased in the renal cortex isolated from CRF rat kidneys. Treatment with tranilast did not suppress the progression of renal fibrosis, nor did it ameliorate the progression of glomerulosclerosis and the interstitial proliferation of inflammatory leukocytes. This study demonstrated for the first time that mast cells are neither increased nor activated in the fibrotic kidneys of CRF rats. Compared to T-lymphocytes or macrophages that proliferate in situ within the fibrotic kidneys, mast cells were less likely to contribute to the progression of renal fibrosis associated with CRF. © 2016 Asian Pacific Society of Nephrology.
Pharmacological Management of Cardiorenal Syndromes
House, Andrew A.; Haapio, Mikko; Lassus, Johan; Bellomo, Rinaldo; Ronco, Claudio
2011-01-01
Cardiorenal syndromes are disorders of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other. The pharmacological management of Cardiorenal syndromes may be complicated by unanticipated or unintended effects of agents targeting one organ on the other. Hence, a thorough understanding of the pathophysiology of these disorders is paramount. The treatment of cardiovascular diseases and risk factors may affect renal function and modify the progression of renal injury. Likewise, management of renal disease and associated complications can influence heart function or influence cardiovascular risk. In this paper, an overview of pharmacological management of acute and chronic Cardiorenal Syndromes is presented, and the need for high-quality future studies in this field is highlighted. PMID:21660311
Renal Failure in Mice with Gsα Deletion in Juxtaglomerular Cells
Chen, Limeng; Faulhaber-Walter, Robert; Wen, Yubing; Huang, Yuning; Mizel, Diane; Chen, Min; Sequeira Lopez, Maria Luisa; Weinstein, Lee S.; Gomez, R. Ariel; Briggs, Josephine P.; Schnermann, Jurgen
2010-01-01
Background Mice with deletion of Gsα in renin-producing cells (RC/FF mice) have been shown to have greatly reduced renin production and lack of responsiveness of renin secretion to acute stimuli. In addition, young RC/FF mice are hypotensive and have a vasopressin-resistant concentrating defect. In the present study we have determined the long-term effect on renal function, blood pressure, and renal pathology in this low renin and diuretic mouse model. Methods and Results Urine osmolarity of RC/FF mice was decreased in all age groups. GFR measured at 7, 14 and 20 weeks of age declined progressively. Single nephron GFR similarly declined while fractional proximal fluid absorption was maintained. Expression levels of extracellular matrix proteins (collagen I, IV and fibronectin) and α-smooth muscle actin were increased in kidneys of RC/FF mice at 20 weeks, and this was accompanied by focal segmental glomerulosclerosis and periglomerular interstitial fibrosis. RC/FF mice showed a progressive reduction of body weight, an increase in urine albumin excretion, and an increase of blood pressure with aging. Conclusion A chronic reduction of renin production in mice may be a risk factor in its own right, and does not protect renal function against the profibrotic influence of a chronically elevated urine flow. PMID:20551626
Education for patients with chronic kidney disease in Taiwan: a prospective repeated measures study.
Yen, Miaofen; Huang, Jeng-Jong; Teng, Hsiu-Lan
2008-11-01
To investigate the physical, knowledge and quality of life outcomes of an educational intervention for patients with early stage chronic kidney disease. A comprehensive predialysis education care team can be effective in slowing the progression of chronic kidney disease. A single group repeated measures design was used to evaluate the effects of the intervention. Participants were recruited through health department community health screen data banks. A predialysis, team-delivered educational intervention covering renal function health care, dietary management of renal function and the effects of Chinese herb medication on renal function was designed and implemented. Data were collected at baseline, six and 12 months. Study outcomes included physical indicators, knowledge (renal function protection, use of Chinese herbs and renal function and diet) and quality of life. Data were analysed using repeated measure anova to test for change over time in outcome variables. Sixty-six persons participated in this study. The predialysis educational intervention showed significant differences at the three time points in overall knowledge scores, waist-hip ratio, body mass index and global health status. Knowledge measures increased at month 6 and decreased at month 12. The primary indicator of renal function, glomerular filtration rate, remained stable throughout the 12 months of follow-up, despite the relatively older mean age of study participants. A predialysis education care team can provide effective disease-specific knowledge and may help retard deterioration of renal function in persons with early-stage chronic kidney disease. The intervention dose may need to be repeated every six months to maintain knowledge effects. A predialysis educational program with disease-specific knowledge and information is feasible and may provide positive outcomes for patients. Topics on the uses of Chinese herbs should be included for people who are likely to use alternative therapies.
Trujillo, Joyce; Ramírez, Victoria; Pérez, Jazmín; Torre-Villalvazo, Ivan; Torres, Nimbe; Tovar, Armando R; Muñoz, Rosa M; Uribe, Norma; Gamba, Gerardo; Bobadilla, Norma A
2005-01-01
The obese Zucker rat is a valuable model for studying kidney disease associated with obesity and diabetes. Previous studies have shown that substitution of animal protein with soy ameliorates the progression of renal disease. To explore the participation of nitric oxide (NO) and caveolin-1 in this protective effect, we evaluated proteinuria, creatinine clearance, renal structural lesions, nitrites and nitrates urinary excretion (UNO(2)(-)/NO(3)V), and mRNA and protein levels of neuronal NO synthase (nNOS), endothelial NOS (eNOS), and caveolin-1 in lean and fatty Zucker rats fed with 20% casein or soy protein diet. After 160 days of feeding with casein, fatty Zucker rats developed renal insufficiency, progressive proteinuria, and renal structural lesions; these alterations were associated with an important fall of UNO(2)(-)/NO(3)V, changes in nNOS and eNOS mRNA levels, together with increased amount of eNOS and caveolin-1 present in plasma membrane proteins of the kidney. In fatty Zucker rats fed with soy, we observed that soy diet improved renal function, UNO(2)(-)/NO(3)V, and proteinuria and reduced glomerulosclerosis, tubular dilation, intersticial fibrosis, and extracapilar proliferation. Renal protection was associated with reduction of caveolin-1 and eNOS in renal plasma membrane proteins. In conclusion, our results suggest that renal protective effect of soy protein appears to be mediated by improvement of NO generation and pointed out to caveolin-1 overexpression as a potential pathophysiological mechanism in renal disease.
Iacoviello, Massimo; Monitillo, Francesco; Leone, Marta; Citarelli, Gaetano; Doronzo, Annalisa; Antoncecchi, Valeria; Puzzovivo, Agata; Rizzo, Caterina; Lattarulo, Maria Silvia; Massari, Francesco; Caldarola, Pasquale; Ciccone, Marco Matteo
2016-01-01
Background/Aim The renal arterial resistance index (RRI) is a Doppler measure, which reflects abnormalities in the renal blood flow. The aim of this study was to verify the value of RRI as a predictor of worsening renal function (WRF) in a group of chronic heart failure (CHF) outpatients. Methods We enrolled 266 patients in stable clinical conditions and on conventional therapy. Peak systolic velocity and end diastolic velocity of a segmental renal artery were obtained by pulsed Doppler flow, and RRI was calculated. Creatinine serum levels were evaluated at baseline and at 1 year, and the changes were used to assess WRF occurrence. Results During follow-up, 34 (13%) patients showed WRF. RRI was associated with WRF at univariate (OR: 1.13; 95% CI: 1.07–1.20) as well as at a forward stepwise multivariate logistic regression analysis (OR: 1.09; 95% CI: 1.03–1.16; p = 0.005) including the other univariate predictors. Conclusions Quantification of arterial renal perfusion provides a new parameter that independently predicts the WRF in CHF outpatients. Its possible role in current clinical practice to better define the risk of cardiorenal syndrome progression is strengthened. PMID:27994601
Cai, Pingping; Liu, Xiang; Xu, Yuan; Qi, Fanghua; Si, Guomin
2017-01-01
Shenqi detoxification granule (SDG), a traditional Chinese herbal formula, has been shown to have nephroprotective and anti-fibrotic activities in patients with chronic kidney disease (CKD). However, its mechanisms in renal fibrosis and the progression of CKD remain largely unknown. P311, a highly conserved 8-kDa intracellular protein, plays a key role in renal fibrosis by regulating epithelial-mesenchymal transition (EMT). Previously, we found P311 might be involved in the pathogenesis of renal fibrosis by inhibiting EMT via the TGF-β1-Smad-ILK pathway. We also found SDG combined with P311 could ameliorate renal fibrosis by regulating the expression of EMT markers. Here we further examined the effect and mechanism of SDG combined with P311 on TGF-β1-mediated EMT in a rat model of unilateral ureteral occlusion (UUO) renal fibrosis. After establishment of the UUO model successfully, the rats were gavaged with SDG daily and/or injected with recombinant adenovirus p311 (also called Ad-P311) through the tail vein each week for 4 weeks. Serum creatinine (Cr), blood urea nitrogen (BUN) and albumin (ALB) levels were tested to observe renal function, and hematoxylin eosin (HE) and Masson staining were performed to observe kidney histopathology. Furthermore, the expression of EMT markers (E-cadherin and α-smooth muscle actin (α-SMA)) and EMT-related molecules TGF-β1, pSmad2/3, Smad7 and ILK were observed using immunohistochemical staining and Western blot analysis. Treatment with SDG and P311 improved renal function and histopathological abnormalities, as well as reversing the changes of EMT markers and EMT-related molecules, which indicated SDG combined with P311 could attenuate renal fibrosis in UUO rats, and the underlying mechanism might involve TGF-β1-mediated EMT and the TGF-β1-Smad-ILK signaling pathway. Therefore, SDG might be a novel alternative therapy for treating renal fibrosis and delaying the progression of CKD. Furthermore, SDG combined with P311 might have a synergistic effect on attenuating renal fibrosis.
Effects of RAAS Inhibitors in Patients with Kidney Disease.
Zhang, Fan; Liu, Hong; Liu, Di; Liu, Yexin; Li, Huiqiong; Tan, Xia; Liu, Fuyou; Peng, Youming; Zhang, Hongqing
2017-08-08
Proteinuria and decline of renal function are associated with progression of kidney disease. The Renin Angiotensin Aldosterone System (RAAS) plays an important role in blood pressure regulation, fluid volume, and sodium balance. Overactivity of RAAS contributes to the pathogenesis of a variety of clinical conditions including progress of chronic kidney disease (CKD). This review summarizes the use of RAAS inhibitors as dual therapy or monotherapy in different stages of kidney disease. Experimental and clinical studies have demonstrated RAAS inhibitors prevent proteinuria, kidney fibrosis and slow decline of renal function and thus play a protective role in both early and end stages of kidney disease. While combination use of RAAS inhibitors showed higher efficiency compared with monotherapy, it is also associated with higher incidence of adverse events. Besides ACEI/ARBs, more mechanism research of mineralocorticoid receptor antagonists in kidney disease should be performed.
Peces, Ramón; Martínez-Ara, Jorge; Peces, Carlos; Picazo, Mariluz; Cuesta-López, Emilio; Vega, Cristina; Azorín, Sebastián; Selgas, Rafael
2011-01-01
We report the case of a 38-year-old male with autosomal-dominant polycystic kidney disease (ADPKD) and concomitant nephrotic syndrome secondary to membranous nephropathy (MN). A 3-month course of prednisone 60 mg daily and losartan 100 mg daily resulted in resistance. Treatment with chlorambucil 0.2 mg/kg daily, low-dose prednisone, plus an angiotensin-converting enzyme inhibitor (ACEI) and an angiotensin II receptor blocker (ARB) for 6 weeks resulted in partial remission of his nephrotic syndrome for a duration of 10 months. After relapse of the nephrotic syndrome, a 13-month course of mycophenolate mofetil (MFM) 2 g daily and low-dose prednisone produced complete remission for 44 months. After a new relapse, a second 24-month course of MFM and low-dose prednisone produced partial to complete remission of proteinuria with preservation of renal function. Thirty-six months after MFM withdrawal, complete remission of nephrotic-range proteinuria was maintained and renal function was preserved. This case supports the idea that renal biopsy is needed for ADPKD patients with nephrotic-range proteinuria in order to exclude coexisting glomerular disease and for appropriate treatment/prevention of renal function deterioration. To the best of our knowledge, this is the first reported case of nephrotic syndrome due to MN in a patient with ADPKD treated with MFM, with remission of proteinuria and preservation of renal function after more than 10 years. Findings in this patient also suggest that MFM might reduce cystic cell proliferation and fibrosis, preventing progressive renal scarring with preservation of renal function. PMID:21552769
Magistroni, Riccardo; Boletta, Alessandra
2017-08-01
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited renal disease characterized by bilateral renal cyst formation. ADPKD is one of the most common rare disorders, accounting for ~10% of all patients with end-stage renal disease (ESRD). ADPKD is a chronic disorder in which the gradual expansion of cysts that form in a minority of nephrons eventually causes loss of renal function due to the compression and degeneration of the surrounding normal parenchyma. Numerous deranged pathways have been identified in the cyst-lining epithelia, prompting the design of potential therapies. Several of these potential treatments have proved effective in slowing down disease progression in pre-clinical animal studies, while only one has subsequently been proven to effectively slow down disease progression in patients, and it has recently been approved for therapy in Europe, Canada and Japan. Among the affected cellular functions and pathways, recent investigations have described metabolic derangement in ADPKD as a major trait offering additional opportunities for targeted therapies. In particular, increased aerobic glycolysis (the Warburg effect) has been described as a prominent feature of ADPKD kidneys and its inhibition using the glucose analogue 2-deoxy-D-glucose (2DG) proved effective in slowing down disease progression in preclinical models of the disease. At the same time, previous clinical experiences have been reported with 2DG, showing that this compound is well tolerated in humans with minimal and reversible side effects. In this work, we review the literature and speculate that 2DG could be a good candidate for a clinical trial in humans affected by ADPKD.
Fabry nephropathy: a review - how can we optimize the management of Fabry nephropathy?
Waldek, Stephen; Feriozzi, Sandro
2014-05-06
Fabry disease is a rare, X-linked, lysosomal storage disease caused by mutations in the gene encoding the enzyme alpha-galactosidase A. Complete or partial deficiency in this enzyme leads to intracellular accumulation of globotriaosylceramide (Gb3) and related glycosphingolipids in many cell types throughout the body, including the kidney. Progressive accumulation of Gb3 in podocytes, epithelial cells and the tubular cells of the distal tubule and loop of Henle contribute to the renal symptoms of Fabry disease, which manifest as proteinuria and reduced glomerular filtration rate leading to chronic kidney disease and progression to end-stage renal disease. Early diagnosis and timely initiation of treatment of Fabry renal disease is an important facet of disease management. Initiating treatment with enzyme replacement therapy (ERT; agalsidase alfa, Replagal®, Shire; agalsidase beta, Fabrazyme®, Genzyme) as part of a comprehensive strategy to prevent complications of the disease, may be beneficial in stabilizing renal function or slowing its decline. Early initiation of ERT may also be more effective than initiating therapy in patients with more advanced disease. Several strategies are required to complement the use of ERT and treat the myriad of associated symptoms and organ involvements. In particular, patients with renal Fabry disease are at risk of cardiovascular events, such as high blood pressure, cardiac arrhythmias and stroke. This review discusses the management of renal involvement in Fabry disease, including diagnosis, treatments, and follow-up, and explores recent advances in the use of biomarkers to assist with diagnosis, monitoring disease progression and response to treatment.
Fabry nephropathy: a review – how can we optimize the management of Fabry nephropathy?
2014-01-01
Fabry disease is a rare, X-linked, lysosomal storage disease caused by mutations in the gene encoding the enzyme alpha-galactosidase A. Complete or partial deficiency in this enzyme leads to intracellular accumulation of globotriaosylceramide (Gb3) and related glycosphingolipids in many cell types throughout the body, including the kidney. Progressive accumulation of Gb3 in podocytes, epithelial cells and the tubular cells of the distal tubule and loop of Henle contribute to the renal symptoms of Fabry disease, which manifest as proteinuria and reduced glomerular filtration rate leading to chronic kidney disease and progression to end-stage renal disease. Early diagnosis and timely initiation of treatment of Fabry renal disease is an important facet of disease management. Initiating treatment with enzyme replacement therapy (ERT; agalsidase alfa, Replagal®, Shire; agalsidase beta, Fabrazyme®, Genzyme) as part of a comprehensive strategy to prevent complications of the disease, may be beneficial in stabilizing renal function or slowing its decline. Early initiation of ERT may also be more effective than initiating therapy in patients with more advanced disease. Several strategies are required to complement the use of ERT and treat the myriad of associated symptoms and organ involvements. In particular, patients with renal Fabry disease are at risk of cardiovascular events, such as high blood pressure, cardiac arrhythmias and stroke. This review discusses the management of renal involvement in Fabry disease, including diagnosis, treatments, and follow-up, and explores recent advances in the use of biomarkers to assist with diagnosis, monitoring disease progression and response to treatment. PMID:24886109
Herrero-Fresneda, Immaculada; Torras, Joan; Cruzado, Josep M.; Condom, Enric; Vidal, August; Riera, Marta; Lloberas, Nuria; Alsina, Jeroni; Grinyo, Josep M.
2003-01-01
This study assesses the individual contributions of the nonalloreactive factor, cold ischemia (CI), and alloreactivity to late functional and structural renal graft changes, and examines the effect of the association of both factors on the progression of chronic allograft nephropathy. Lewis rats acted as receptors of kidneys from either Lewis or Fischer rats. For CI, kidneys were preserved for 5 hours. The rats were divided into four groups: Syn, syngeneic graft; SynI, syngeneic graft and CI; Allo, allogeneic graft; AlloI, allogeneic graft and CI. Renal function was assessed every 4 weeks for 24 weeks. Grafts were evaluated for acute inflammatory response at 1 week and for chronic histological damage at 24 weeks. Only when CI and allogenicity were combined did immediate posttransplant mortality occur, while survivors showed accelerated renal insufficiency that induced further mortality at 12 weeks after transplant. Solely ischemic rats developed renal insufficiency. Renal structural damage in ischemic rats was clearly tubulointerstitial, while significant vasculopathy and glomerulosclerosis appeared only in the allogeneic groups. There was increased infiltration of macrophages and expression of mRNA-transforming growth factor-β1 in the ischemic groups, irrespective of the allogeneic background. The joint association of CI plus allogenicity significantly increased cellular infiltration at both early and late stages, aggravating tubulointerstitial and vascular damage considerably. In summary, CI is mainly responsible for tubulointerstitial damage, whereas allogenicity leads to vascular lesion. The association of both factors accelerates and aggravates the progression of experimental chronic allograft nephropathy. PMID:12507896
Verbrugge, Frederik H; Dupont, Matthias; Steels, Paul; Grieten, Lars; Swennen, Quirine; Tang, W H Wilson; Mullens, Wilfried
2014-02-01
This review discusses renal sodium handling in heart failure. Increased sodium avidity and tendency to extracellular volume overload, i.e. congestion, are hallmark features of the heart failure syndrome. Particularly in the case of concomitant renal dysfunction, the kidneys often fail to elicit potent natriuresis. Yet, assessment of renal function is generally performed by measuring serum creatinine, which has inherent limitations as a biomarker for the glomerular filtration rate (GFR). Moreover, glomerular filtration only represents part of the nephron's function. Alterations in the fractional reabsorptive rate of sodium are at least equally important in emerging therapy-refractory congestion. Indeed, renal blood flow decreases before the GFR is affected in congestive heart failure. The resulting increased filtration fraction changes Starling forces in peritubular capillaries, which drive sodium reabsorption in the proximal tubules. Congestion further stimulates this process by augmenting renal lymph flow. Consequently, fractional sodium reabsorption in the proximal tubules is significantly increased, limiting sodium delivery to the distal nephron. Orthosympathetic activation probably plays a pivotal role in those deranged intrarenal haemodynamics, which ultimately enhance diuretic resistance, stimulate neurohumoral activation with aldosterone breakthrough, and compromise the counter-regulatory function of natriuretic peptides. Recent evidence even suggests that intrinsic renal derangements might impair natriuresis early on, before clinical congestion or neurohumoral activation are evident. This represents a paradigm shift in heart failure pathophysiology, as it suggests that renal dysfunction-although not by conventional GFR measurements-is driving disease progression. In this respect, a better understanding of renal sodium handling in congestive heart failure is crucial to achieve more tailored decongestive therapy, while preserving renal function. © 2013 The Authors. European Journal of Heart Failure © 2013 European Society of Cardiology.
Early diagnosis of diabetic vascular complications: impairment of red blood cell deformability
NASA Astrophysics Data System (ADS)
Shin, Sehyun; Ku, Yunhee; Park, Cheol-Woo; Suh, Jang-Soo
2006-02-01
Reduced deformability of red blood cells (RBCs) may play an important role on the pathogenesis of chronic vascular complications of diabetes mellitus. However, available techniques for measuring RBC deformability often require washing process after each measurement, which is not optimal for day-to-day clinical use at point of care. The objectives of the present study are to develop a device and to delineate the correlation of impaired RBC deformability with diabetic nephropathy. We developed a disposable ektacytometry to measure RBC deformability, which adopted a laser diffraction technique and slit rheometry. The essential features of this design are its simplicity (ease of operation and no moving parts) and a disposable element which is in contact with the blood sample. We studied adult diabetic patients divided into three groups according to diabetic complications. Group I comprised 57 diabetic patients with normal renal function. Group II comprised 26 diabetic patients with chronic renal failure (CRF). Group III consisted of 30 diabetic subjects with end-stage renal disease (ESRD) on hemodialysis. According to the renal function for the diabetic groups, matched non-diabetic groups were served as control. We found substantially impaired red blood cell deformability in those with normal renal function (group I) compared to non-diabetic control (P = 0.0005). As renal function decreases, an increased impairment in RBC deformability was found. Diabetic patients with chronic renal failure (group II) when compared to non-diabetic controls (CRF) had an apparently greater impairment in RBC deformability (P = 0.07). The non-diabetic cohort (CRF), on the other hand, manifested significant impairment in red blood cell deformability compared to healthy control (P = 0.0001). The newly developed slit ektacytometer can measure the RBC deformability with ease and accuracy. In addition, progressive impairment in cell deformability is associated with renal function loss in all patients regardless of the presence or absence of diabetes. In diabetic patients, early impairment in RBC deformability appears in patients with normal renal function.
Renal Hemodynamics in AKI: In Search of New Treatment Targets
Matejovic, Martin; Ince, Can; Chawla, Lakhmir S.; Blantz, Roland; Molitoris, Bruce A.; Okusa, Mark D.; Kellum, John A.; Ronco, Claudio
2016-01-01
Novel therapeutic interventions are required to prevent or treat AKI. To expedite progress in this regard, a consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 to develop recommendations for research priorities and future directions. Here, we highlight the concepts related to renal hemodynamics in AKI that are likely to reveal new treatment targets on investigation. Overall, we must better understand the interactions between systemic, total renal, and glomerular hemodynamics, including the role of tubuloglomerular feedback. Furthermore, the net consequences of therapeutic maneuvers aimed at restoring glomerular filtration need to be examined in relation to the nature, magnitude, and duration of the insult. Additionally, microvascular blood flow heterogeneity in AKI is now recognized as a common occurrence; timely interventions to preserve the renal microcirculatory flow may interrupt the downward spiral of injury toward progressive kidney failure and should, therefore, be investigated. Finally, development of techniques that permit an integrative physiologic approach, including direct visualization of renal microvasculature and measurement of oxygen kinetics and mitochondrial function in intact tissue in all nephron segments, may provide new insights into how the kidney responds to various injurious stimuli and allow evaluation of new therapeutic strategies. PMID:26510884
Ka, Shuk-Man; Hsieh, Tai-Tzu; Lin, Shih-Hua; Yang, Sung-Sen; Wu, Chin-Chen; Sytwu, Huey-Kang; Chen, Ann
2011-12-01
The progression of IgA nephropathy (IgAN), the most frequent type of primary glomerulonephritis, is associated with high levels of mononuclear leukocyte infiltration into the kidney. These cells consist mainly of T cells and macrophages. Our previous study showed that a decoy receptor 3 (DCR3) gene therapy can prevent the development of a mouse autoimmune glomerulonephritis model by its potent immune modulating effects (Ka SM, Sytwu HK, Chang DM, Hsieh SL, Tsai PY, Chen A. J Am Soc Nephrol 18: 2473-2485, 2007). Here, we tested the hypothesis that DCR3 might prevent the progression of IgAN, an immune complex-mediated primary glomerulonephritis, by inhibiting T cell activation, renal T cell/macrophage infiltration, and protecting the kidney from apoptosis. We used a progressive IgAN (Prg-IgAN) model in B cell-deficient mice, because the mice are characterized by a dramatic proliferation of activated T cells systemically and progressive NF-κB activation in the kidney. We treated the animals with short-term gene therapy with DCR3 plasmids by hydrodynamics-based gene delivery. When the mice were euthanized on day 21, we found that, compared with empty vector-treated (disease control) Prg-IgAN mice, DCR3 gene therapy resulted in 1) systemic inhibition of T cell activation and proliferation; 2) lower serum levels of proinflammatory cytokines; 3) improved proteinuria, renal function, and renal pathology (inhibiting the development of marked glomerular proliferation, crescent formation, glomerulosclerosis, and interstitial inflammation); 5) suppression of T cell and macrophage infiltration into the periglomerular interstitium of the kidney; and 5) a reduction in apoptotic figures in the kidney. On the basis of these findings, DCR3 might be useful therapeutically in preventing the progression of IgAN.
Polycystic Kidney Disease: Pathogenesis and Potential Therapies
Takiar, Vinita; Caplan, Michael J.
2011-01-01
Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent, inherited condition for which there is currently no effective specific clinical therapy. The disease is characterized by the progressive development of fluid-filled cysts derived from renal tubular epithelial cells which gradually compress the parenchyma and compromise renal function. Current interests in the field focus on understanding and exploiting signaling mechanisms underlying disease pathogenesis as well as delineating the role of the primary cilium in cystogenesis. This review highlights the pathogenetic pathways underlying renal cyst formation as well as novel therapeutic targets for the treatment of PKD. PMID:21146605
An unusual renal manifestation of chronic HBV infection.
Aravindan, Ananthakrishnapuram; Yong, Jim; Killingsworth, Murray; Strasser, Simone; Suranyi, Michael
2010-08-01
Hepatitis B viral infection is usually a self-limiting disease in immunocompetent individuals. Chronic infection can be seen in up to 5% of infected patients. Renal manifestations of chronic HBV infection are usually glomerular. We describe here an uncommon presentation of a patient with chronic HBV infection with very high viral load and rapidly progressive renal failure. Renal biopsy showed features of tubulointerstitial nephritis and tubular epithelial inclusion bodies suggestive of HBV infection. Entecavir treatment slowed down the progression of his renal disease. Tubulointerstitial nephritis should be considered as a part of the differential diagnosis in patients with HBV infection. Early antiviral treatment may halt the progression of renal disease.
The Interplay between inflammation and fibrosis in kidney transplantation.
Torres, Irina B; Moreso, Francesc; Sarró, Eduard; Meseguer, Anna; Serón, Daniel
2014-01-01
Serial surveillance renal allograft biopsies have shown that early subclinical inflammation constitutes a risk factor for the development of interstitial fibrosis. More recently, it has been observed that persistent inflammation is also associated with fibrosis progression and chronic humoral rejection, two histological conditions associated with poor allograft survival. Treatment of subclinical inflammation with steroid boluses prevents progression of fibrosis and preserves renal function in patients treated with a cyclosporine-based regimen. Subclinical inflammation has been reduced after the introduction of tacrolimus based regimens, and it has been shown that immunosuppressive schedules that are effective in preventing acute rejection and subclinical inflammation may prevent the progression of fibrosis and chronic humoral rejection. On the other hand, minimization protocols are associated with progression of fibrosis, and noncompliance with the immunosuppressive regime constitutes a major risk factor for chronic humoral rejection. Thus, adequate immunosuppressive treatment, avoiding minimization strategies and reinforcing educational actions to prevent noncompliance, is at present an effective approach to combat the progression of fibrosis.
The Interplay between Inflammation and Fibrosis in Kidney Transplantation
Torres, Irina B.; Moreso, Francesc; Sarró, Eduard; Serón, Daniel
2014-01-01
Serial surveillance renal allograft biopsies have shown that early subclinical inflammation constitutes a risk factor for the development of interstitial fibrosis. More recently, it has been observed that persistent inflammation is also associated with fibrosis progression and chronic humoral rejection, two histological conditions associated with poor allograft survival. Treatment of subclinical inflammation with steroid boluses prevents progression of fibrosis and preserves renal function in patients treated with a cyclosporine-based regimen. Subclinical inflammation has been reduced after the introduction of tacrolimus based regimens, and it has been shown that immunosuppressive schedules that are effective in preventing acute rejection and subclinical inflammation may prevent the progression of fibrosis and chronic humoral rejection. On the other hand, minimization protocols are associated with progression of fibrosis, and noncompliance with the immunosuppressive regime constitutes a major risk factor for chronic humoral rejection. Thus, adequate immunosuppressive treatment, avoiding minimization strategies and reinforcing educational actions to prevent noncompliance, is at present an effective approach to combat the progression of fibrosis. PMID:24991565
Wu, Fiona Mei Wen; Tay, Melissa Hui Wen; Tai, Bee Choo; Chen, Zhaojin; Tan, Lincoln; Goh, Benjamin Yen Seow; Raman, Lata; Tiong, Ho Yee
2015-12-01
Surgically induced chronic kidney disease (CKD) has been found to have less impact on survival as well as function when compared to medical causes for CKD. The aim of this study is to evaluate whether preoperative remaining kidney volume correlates with renal function after nephrectomy, which represents an individual's renal reserve before surgically induced CKD. A retrospective review of 75 consecutive patients (29.3% females) who underwent radical nephrectomy (RN) (2000-2010) was performed. Normal side kidney parenchyma, excluding renal vessels and central sinus fat, was manually outlined in each transverse slice of CT image and multiplied by slice thickness to calculate volume. Estimated glomerular filtration rate (eGFR) was determined using the Modification of Diet in Renal Disease equation. CKD is defined as eGFR < 60 mL/min/1.73 m(2). Mean preoperative normal kidney parenchymal volume (mean age 55 [SD 13] years) is 150.7 (SD 36.4) mL. Over median follow-up of 36 months postsurgery, progression to CKD occurred in 42.6% (n = 32) of patients. On multivariable analysis, preoperative eGFR and preoperative renal volume <144 mL are independent predictors for postoperative CKD. On Kaplan-Meier analysis, median time to reach CKD postnephrectomy is 12.7 (range 0.03-43.66) months for renal volume <144 mL but not achieved if renal volume is >144 mL. Normal kidney parenchymal volume and preoperative eGFR are independent predictive factors for postoperative CKD after RN and may represent renal reserve for both surgically and medically induced CKD, respectively. Preoperative remaining kidney volume may be an adjunct representation of renal reserve postsurgery and predict later renal function decline due to perioperative loss of nephrons.
Renal and blood pressure effects from environmental cadmium exposure in Thai children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaddiwudhipong, Witaya, E-mail: swaddi@hotmail.com; Mahasakpan, Pranee; Jeekeeree, Wanpen
Very few studies have shown renal and blood pressure effects from environmental cadmium exposure in children. This population study examined associations between urinary cadmium excretion, a good biomarker of long-term cadmium exposure, and renal dysfunctions and blood pressure in environmentally exposed Thai children. Renal functions including urinary excretion of β{sub 2}-microglobulin, calcium (early renal effects), and total protein (late renal effect), and blood pressure were measured in 594 primary school children. Of the children studied, 19.0% had urinary cadmium ≥1 μg/g creatinine. The prevalence of urinary cadmium ≥1 μg/g creatinine was significantly higher in girls and in those consuming ricemore » grown in cadmium-contaminated areas. The geometric mean levels of urinary β{sub 2}-microglobulin, calcium, and total protein significantly increased with increasing tertiles of urinary cadmium. The analysis did not show increased blood pressure with increasing tertiles of urinary cadmium. After adjusting for age, sex, and blood lead levels, the analysis showed significant positive associations between urinary cadmium and urinary β{sub 2}-microglobulin and urinary calcium, but not urinary total protein nor blood pressure. Our findings provide evidence that environmental cadmium exposure can affect renal functions in children. A follow-up study is essential to assess the clinical significance and progress of renal effects in these children. - Highlights: • Few studies show renal effects from environmental cadmium exposure in children. • We report renal and blood pressure effects from cadmium exposure in Thai children. • Urinary β{sub 2}-microglobulin and calcium increased with increasing urinary cadmium. • The study found no association between urinary cadmium levels and blood pressure. • Environmental cadmium exposure can affect renal functions in children.« less
Does bariatric surgery really prevent deterioration of renal function?
Kim, Eun Young; Kim, Yong Jin
2016-05-01
Obesity is related to impaired renal function; bariatric surgery is associated with an improvement in renal function. We investigated obesity-related changes in renal function after bariatric surgery and identified related clinical factors. Soonchunhyang University Seoul Hospital, Korea. From December 2011 to February 2014, 493 consecutive patients who met the criteria underwent bariatric surgery. Of these patients, 136 patients were enrolled. The exclusion criteria were as follows: revisional bariatric surgery, laparoscopic adjustable gastric banding, significant chronic kidney disease, macroalbuminuria, nephrotic range proteinuria, and absence of laboratory data on renal function. Overall, there were 126 patients with Roux-en-Y gastric bypass and 10 with sleeve gastrectomy. Preoperative and postoperative 1-year renal function was evaluated by the estimated glomerular filtration rate, urinary albumin-to-creatinine ratio (UACR), and urinary protein-to-creatinine ratio (UPCR). Of 136 patients, 101 were women, and the mean age was 35.9±11.2 years. UACR was significantly lower postoperatively than preoperatively (27.0±47.2 versus 9.0±8.6 mg/g; P<.001). Microalbuminuria was present in 22.1% of patients preoperatively, decreasing to 4.4% 1-year postoperatively. A significant reduction was observed in the UPCR (90.7±101.2 versus 64.6±34.8 mg/g; P = .004). The mean value of estimated glomerular filtration rate improved from 117.8 to 119.6 mL/min/1.73 m(2), although this was not significant. In obese patients, bariatric surgery significantly improves microalbuminuria and decreases the UACR and UPCR. Therefore, bariatric surgery should be considered as an early treatment for obesity with renal impairment and may prevent the progression to overt disease. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Role of renal urothelium in the development and progression of kidney disease.
Carpenter, Ashley R; McHugh, Kirk M
2017-04-01
The clinical and financial impact of chronic kidney disease (CKD) is significant, while its progression and prognosis is variable and often poor. Studies using the megabladder (mgb -/- ) model of CKD show that renal urothelium plays a key role in modulating early injury responses following the development of congenital obstruction. The aim of this review is to examine the role that urothelium has in normal urinary tract development and pathogenesis. We discuss normal morphology of renal urothelium and then examine the role that uroplakins (Upks) play in its development. Histologic, biochemical, and molecular characterization of Upk1b RFP/RFP mice indicated Upk1b expression is essential for normal urinary tract development, apical plaque/asymmetric membrane unit (AUM) formation, and differentiation and functional integrity of the renal urothelium. Our studies provide the first evidence that Upk1b is directly associated with the development of congenital anomalies of the urinary tract (CAKUT), spontaneous age-dependent hydronephrosis, and dysplastic urothelia. These observations demonstrate the importance of proper urothelial differentiation in normal development and pathogenesis of the urinary tract and provide a unique working model to test the hypothesis that the complex etiology associated with CKD is dependent upon predetermined genetic susceptibilities that establish pathogenic thresholds for disease initiation and progression.
Role of Renal Urothelium in the Development and Progression of Kidney Disease
Carpenter, Ashley R.; McHugh, Kirk M.
2016-01-01
The clinical and financial impact of chronic kidney disease (CKD) is significant, while the progression and prognosis of CKD is variable and often poor. Studies using the megabladder (mgb−/−) model of CKD have shown that renal urothelium plays a key role in modulating the early injury responses following the development of congenital obstruction. The aim of this review is to examine the role that urothelium has in normal urinary tract development and pathogenesis. We discuss normal morphology of renal urothelium and then examine the role that uroplakins (Upks) play in its development. Histologic, biochemical and molecular characterization of Upk1bRFP/RFP mice indicated Upk1b expression is essential for normal urinary tract development, apical plaque/AUM formation and differentiation and functional integrity of the renal urothelium. Our studies provide the first evidence Upk1b is directly associated with the development of congenital anomalies of the urinary tract (CAKUT), spontaneous age-dependent hydronephrosis and dysplastic urothelia. These observations demonstrate the importance of proper urothelial differentiation in the normal development and pathogenesis of the urinary tract, and provide a unique working model to test the hypothesis that the complex etiology associated with CKD is dependent upon predetermined genetic susceptibilities that establish pathogenic thresholds for disease initiation and progression. PMID:27115886
Protocol biopsies in renal transplantation: prognostic value of structural monitoring.
Serón, D; Moreso, F
2007-09-01
The natural history of renal allograft damage has been characterized in serial protocol biopsies. The prevalence of subclinical rejection (SCR) is maximal during the first months and it is associated with the progression of interstitial fibrosis/tubular atrophy (IF/TA) and a decreased graft survival. IF/TA rapidly progress during the first months and constitutes an independent predictor of graft survival. IF/TA associated with transplant vasculopathy, SCR, or transplant glomerulopathy implies a poorer prognosis than IF/TA without additional lesions. These observations suggest that protocol biopsies could be considered a surrogate of graft survival. Preliminary data suggest that the predictive value of protocol biopsies is not inferior to acute rejection or renal function. Additionally, protocol biopsies have been employed as a secondary efficacy variable in clinical trials. This strategy has been useful to demonstrate a decrease in the progression of IF/TA in some calcineurin-free regimens. Quantification of renal damage is associated with graft survival suggesting that quantitative parameters might improve the predictive value of protocol biopsies. Validation of protocol biopsies as a surrogate of graft survival is actively pursued, as the utility of classical surrogates of graft outcome such as acute rejection has become less useful because of its decreased prevalence with actual immunosuppression.
Focal segmental necrotizing glomerulonephritis in rheumatoid arthritis.
Harper, L; Cockwell, P; Howie, A J; Michael, J; Richards, N T; Savage, C O; Wheeler, D C; Bacon, P A; Adu, D
1997-02-01
We report ten patients with rheumatoid arthritis (RA) who developed a focal segmental necrotizing glomerulonephritis (FSNGN) and extracapillary proliferation typical of vasculitic glomerulonephritis. Five patients also had extrarenal vasculitis. Renal presentation was with renal impairment (n = 9) (median creatinine 726 mumol/l, range 230-1592 mumol/l), microscopic haematuria (n = 8) and proteinuria (n = 10). Nine patients were seropositive for rheumatoid factor and nine had bone erosions. Serum from four of five patients tested by indirect immunofluorescence was positive for antineutrophil cytoplasmic antibody (ANCA) with perinuclear staining. Only three patients had penicillamine or gold therapy. Treatment was with prednisolone and cyclophosphamide (six patients, two of whom were also plasma-exchanged), prednisolone and azathioprine (two patients) and prednisolone alone (two patients). There was a marked improvement in renal function in eight patients. Two patients with dialysis-dependent renal failure recovered renal function, although in one patient this was transient and she required further dialysis 4 months later. Two other patients progressed to dialysis at 3 months and 1 year respectively. Four patients died, one remains dialysis-dependent, and four continue to have good renal function at 5 year follow-up (median creatinine 148.5 mumol/l, range 120-193 mumol/l). One patient was lost to follow-up at 5 years. FSNGN should be considered in all patients with RA and renal impairment, proteinuria and/or microscopic haematuria. This diagnosis appears to be more likely in patients with clinical extrarenal vasculitis, bone erosions or who are seropositive. In these cases, an urgent renal biopsy is indicated.
Thieme, Karina; Oliveira-Souza, Maria
2015-01-01
The role of hyperleptinemia in cardiovascular diseases is well known; however, in the renal tissue, the exact site of leptin’s action has not been established. This study was conducted to assess the effect of leptin treatment for 7 and 28 days on renal function and morphology and the participation of angiotensin II (Ang II), through its AT1 receptor. Rats were divided into four groups: sham, losartan (10 mg/kg/day, s.c.), leptin (0.5 mg/kg/day for the 7 days group and 0.25 mg/kg/day for the 28 days group) and leptin plus losartan. Plasma leptin, Ang II and endothelin 1 (ET-1) levels were measured using an enzymatic immuno assay. The systolic blood pressure (SBP) was evaluated using the tail-cuff method. The renal plasma flow (RPF) and the glomerular filtration rate (GFR) were determined by p-aminohippuric acid and inulin clearance, respectively. Urinary Na+ and K+ levels were also analyzed. Renal morphological analyses, desmin and ED-1 immunostaining were performed. Proteinuria was analyzed by silver staining. mRNA expression of renin-angiotensin system (RAS) components, TNF-α and collagen type III was analyzed by quantitative PCR. Our results showed that leptin treatment increased Ang II plasma levels and progressively increased the SBP, achieving a pre-hypertension state. Rats treated with leptin 7 days showed a normal RPF and GFR, but increased filtration fraction (FF) and natriuresis. However, rats treated with leptin for 28 showed a decrease in the RPF, an increase in the FF and no changes in the GFR or tubular function. Leptin treatment-induced renal injury was demonstrated by: glomerular hypertrophy, increased desmin staining, macrophage infiltration in the renal tissue, TNF-α and collagen type III mRNA expression and proteinuria. In conclusion, our study demonstrated the progressive renal morphological changes in experimental hyperleptinemia and the interaction between leptin and the RAS on these effects. PMID:25793389
The macro- and microcirculation of the kidney.
Guerci, Philippe; Ergin, Bulent; Ince, Can
2017-09-01
Acute kidney injury (AKI) remains one of the main causes of morbidity and mortality in the intensive care medicine today. Its pathophysiology and progress to chronic kidney disease is still under investigation. In addition, the lack of techniques to adequately monitor renal function and microcirculation at the bedside makes its therapeutic resolution challenging. In this article, we review current concepts related to renal hemodynamics compromise as being the event underlying AKI. In doing so, we discuss the physiology of the renal circulation and the effects of alterations in systemic hemodynamics that lead to renal injury specifically in the context of reperfusion injury and sepsis. The ultimate key culprit of AKI leading to failure is the dysfunction of the renal microcirculation. The cellular and subcellular components of the renal microcirculation are discussed and how their injury contributes to AKI is described. Copyright © 2017. Published by Elsevier Ltd.
Role of adipose tissue-derived stem cells in the progression of renal disease.
Donizetti-Oliveira, Cassiano; Semedo, Patricia; Burgos-Silva, Marina; Cenedeze, Marco Antonio; Malheiros, Denise Maria Avancini Costa; Reis, Marlene Antônia Dos; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva
2011-03-01
To analyze the role of adipose tissue-derived stem cells in reducing the progression of renal fibrosis. adipose tissue-derived stem cells were isolated from C57Bl/6 mice and characterized by cytometry and differentiation. Renal fibrosis was established after unilateral clamping of the renal pedicle for 1 hour. Four hours after reperfusion, 2.105 adipose tissue-derived stem cells were administered intraperitoneally and the animals were followed for 24 hours during 6 weeks. In another experimental group, 2.105adipose tissue-derived stem cells were administered only after 6 weeks of reperfusion, and they were euthanized and studied 4 weeks later. Twenty-four hours after reperfusion, the animals treated with adipose tissue-derived stem cells displayed reduced renal and tubular dysfunction and an increase of the regenerative process. Renal expression of IL-6 and TNF mRNA were decreased in the animals treated with adipose tissue-derived stem cells, while the levels of IL-4, IL-10, and HO-1 were increased, despite the fact that adipose tissue-derived stem cells were not observed in the kidneys via SRY analysis. In 6 weeks, the kidneys of non-treated animals decreased in size, and the kidneys of the animals treated with adipose tissue-derived stem cells remained at normal size and display less deposition of type 1 collagen and FSP-1. The renal protection observed in animals treated with adipose tissue-derived stem cells was followed by a drop in serum levels of TNF-α, KC, RANTES, and IL-1a. Treatment with adipose tissue-derived stem cells after 6 weeks, when the animals already displayed established fibrosis, demonstrated an improvement in functional parameters and less fibrosis analyzed by Picrosirius stain, as well as a reduction of the expression of type 1 collagen and vimentin mRNA. Treatment with adipose tissue-derived stem cells may deter the progression of renal fibrosis by modulation of the early inflammatory response, likely via reduction of the epithelial-mesenchymal transition.
Ohkawa, Sakae; Yanagida, Momoko; Uchikawa, Tsuyoshi; Yoshida, Takuya; Ikegaya, Naoki; Kumagai, Hiromichi
2013-09-01
The mammalian target of rapamycin (mTOR), a regulator of cellular protein synthesis and cell growth, plays an important role in the progression of renal hypertrophy and renal dysfunction in experimental chronic kidney disease models. Because the mTOR activity is regulated by nutrients including amino acids, we tested the hypothesis that the renoprotective effect of a low-protein diet (LPD) might be associated with the attenuation of the renal mTOR pathway. In this study, 5/6 nephrectomized rats were fed an LPD or a normal protein diet (NPD), and a number of rats that were fed an NPD received rapamycin (1.0 mg kg⁻¹ d⁻¹), a specific inhibitor of mTOR. After 6 weeks, renal tissue was collected to evaluate the activity of the mTOR pathway and histologic changes. The phosphorylation of p70S6k, a kinase in the downstream of mTOR, was significantly higher in the NPD-fed rats that showed progressive renal dysfunction than in the sham-operated rats (NPD). The LPD attenuated the excessive phosphorylation of p70S6k concomitant with reduced proteinuria and improved renal histologic changes in the 5/6 nephrectomized rats. The effects of the LPD were similar to the effects of rapamycin. The expression of phosphorylated p70S6k was significantly correlated with proteinuria (r² = 0.63, P < .001), the glomerular area (r² = 0.60, P < .001), and the number of phosphorylated Smad2-positive cells in the glomerulus (r² = 0.26, P < .05) of these rats. These results suggest that the preventive effect of an LPD on the progression of renal failure is associated with attenuation of the activated mTOR/p70S6k pathway in the rat remnant kidney model. © 2013.
Permanent renal loss following tumor necrosis factor α antagonists for arthritis.
Chen, Tzu-Jen; Yang, Ya-Fei; Huang, Po-Hao; Lin, Hsin-Hung; Huang, Chiu-Ching
2010-06-01
Tumor necrosis factor alpha (TNF-alpha) antagonists are now widely used in the treatment of aggressive rheumatoid arthritis and are generally well tolerated. Although rare, they could induce systemic lupus erythematosus, glomerulonephritis, and antineutrophil cytoplasmic antibody associated systemic vasculitis. Tumor necrosis factor alpha antagonists associated glomerulonephritis usually subsides after discontinuation of the therapy and subsequent initiation of corticosteroids and immunosuppressive agents. Here we describe crescentic glomerulonephritis progression to end-stage renal disease in a patient following two doses of TNF-alpha antagonists for the treatment of reactive arthritis. To our knowledge, dialysis dependent permanent renal loss after TNF-alpha antagonists has not yet been reported. We suggest the renal function should be closely monitored in patients treated with TNF-alpha antagonists by rheumatologists.
Rituximab fails where eculizumab restores renal function in C3nef-related DDD.
Rousset-Rouvière, Caroline; Cailliez, Mathilde; Garaix, Florentine; Bruno, Daniele; Laurent, Daniel; Tsimaratos, Michel
2014-06-01
Dense deposit disease (DDD), a C3 glomerulopathy (C3G), is a rare disease with unfavorable progression towards end-stage kidney disease. The pathogenesis of DDD is due to cytotoxic effects related to acquired or genetic dysregulation of the complement alternative pathway, which is at times accompanied by the production of C3 nephritic factor (C3NeF), an auto-antibody directed against the alternative C3 convertase. Available treatments include plasma exchange, CD20-targeted antibodies, and a terminal complement blockade via the anti-C5 monoclonal antibody eculizumab. We report here the case of an 8-year-old child with C3NeF and refractory DDD who presented with a nephritic syndrome. She tested positive for C3NeF activity; C3 was undetectable. Genetic analyses of the alternative complement pathway were normal. Methylprednisolone pulses and mycophenolate mofetil treatment resulted in complete recovery of renal function and a reduction in proteinuria. Corticosteroids were tapered and then withdrawn. Four months after corticosteroid discontinuation, hematuria and proteinuria recurred, and a renal biopsy confirmed an active DDD with a majority of extracapillary crescents. Despite an increase in immunosuppressive drugs, including methylprednisolone pulses and rituximab therapy, the patient suffered acute renal failure within 3 weeks, requiring dialysis. Eculizumab treatment resulted in a quick and impressive response. Hematuria very quickly resolved, kidney function improved, and no further dialysis was required. The patient received bimonthly eculizumab injections of 600 mg, allowing for normalization of renal function and reduction of proteinuria to <0.5 g per day. Since then, she continues to receive eculizumab. Complement regulation pathway-targeted therapy may be a specific and useful treatment for rapidly progressing DDD prior to the development of glomerulosclerosis. Our data provide evidence supporting the pivotal role of complement alternative pathway abnormalities in C3G with DDD.
Enzyme replacement therapy of Fabry disease.
Clarke, Joe T R; Iwanochko, R Mark
2005-08-01
Fabry disease is an X-linked lysosomal storage disease caused by deficiency of the enzyme alpha-galactosidase A and results in pain, progressive renal impairment, cardiomyopathy, and cerebrovascular disease. The results of two major randomized, double-blind, placebo-controlled clinical trials and open-label extensions have shown that replacement of the deficient enzyme with either of two preparations of recombinant human alpha-galactosidase A, agalsidase-alfa, and agalsidase-beta is safe. Biweekly i.v. infusions of 0.2 mg/kg of agalsidase-alfa were associated with a significant decrease in pain and stabilization of renal function. Biweekly infusions of 1 mg/kg of agalsidase-beta were associated with virtually complete clearing of accumulated glycolipid substrate from renal and cutaneous capillary endothelial cells. Several smaller, open-label studies, along with observations made in the course of monitoring large numbers of patients on enzyme replacement therapy, indicated that treatment stabilizes renal function and produces significant improvements in myocardial mass and function. Treatment of Fabry disease by enzyme replacement has a significant impact on at least some serious complications of the disease.
Chade, Alejandro R; Kelsen, Silvia
2012-05-15
Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to treat chronic RVD.
Kelsen, Silvia
2012-01-01
Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to treat chronic RVD. PMID:22357917
Cao, Xia; Wu, Liuxin; Chen, Zhiheng
2018-03-01
To investigate whether an elevated serum uric acid (SUA) level is an independent risk factor for rapid decline in renal function or new-onset chronic kidney disease (CKD) in a Chinese health checkup population. A cohort study of 6495 Chinese individuals who underwent health checkups with normal estimated glomerular filtration rate (eGFR) at baseline was carried out from May 2011 to April 2016. Examinations included a questionnaire, physical measurements, and blood sampling. The gender-specific quartiles of blood uric acid were used to present baseline descriptive data. Rapid decline of renal function was defined as eGFR loss of > 3 mL/min/1.73 m 2 /year. New-onset CKD was defined as follow-up eGFR < 60 mL/min/1.73 m 2 or positive proteinuria. Multivariable logistic regression was used to assess the relationship between serum uric acid and the following outcomes: rapid decline of renal function, incident CKD, and combined renal outcomes. During mean follow-up of 52.8 months, 1608 (24.8%) individuals reached combined renal events. Rapid decline in renal function developed in 1506 (23.2%) individuals, and incident CKD was documented in 372 (5.7%) individuals. In a multivariate model adjusted for age, BMI, diabetes, hypertension, alcohol drinking, SBP, total cholesterol, and eGFR, the odds ratio for rapid decline of renal function increased across quartiles of serum uric acid level, reaching a 1.32 (95% CI 1.02-2.97) for the top quartile compared to the lowest quartile (P for trend < 0.001). Meanwhile, higher SUA was also associated with incident CKD in all models. Furthermore, an increased risk of reaching renal outcomes across increasing quartiles of SUA levels appeared to be similar among subgroups stratified according to age, eGFR, and SBP (P < 0.05 in all). These findings suggest that higher SUA may predict progressive renal damage and dysfunction in a health checkup population in China.
Betz, Boris B; Jenks, Sara J; Cronshaw, Andrew D; Lamont, Douglas J; Cairns, Carolynn; Manning, Jonathan R; Goddard, Jane; Webb, David J; Mullins, John J; Hughes, Jeremy; McLachlan, Stela; Strachan, Mark W J; Price, Jackie F; Conway, Bryan R
2016-05-01
Many diabetic patients suffer from declining renal function without developing albuminuria. To identify alternative biomarkers for diabetic nephropathy (DN) we performed urinary peptidomic analysis in a rodent model in which hyperglycemia and hypertension synergize to promote renal pathologic changes consistent with human DN. We identified 297 increased and 15 decreased peptides in the urine of rats with DN compared with controls, including peptides derived from proteins associated with DN and novel candidate biomarkers. We confirmed by ELISA that one of the parent proteins, urinary epidermal growth factor (uEGF), was more than 2-fold reduced in rats with DN in comparison with controls. To assess the clinical utility of uEGF we examined renal outcomes in 642 participants from the Edinburgh Type 2 Diabetes Study who were normoalbuminuric and had preserved renal function at baseline. After adjustment for established renal risk factors, a lower uEGF to creatinine ratio was associated with new-onset estimated glomerular filtration rate less than 60 ml/min per 1.73m(2) (odds ratio 0.48; 95% confidence interval, 0.26-0.90), rapid (over 5% per annum) decline in renal function (odds ratio 0.44; 95% confidence interval, 0.27-0.72) or the composite of both outcomes (odds ratio 0.38; 95% confidence interval, 0.24-0.62). Thus, the utility of a low uEGF to creatinine ratio as a biomarker of progressive decline in renal function in normoalbuminuric patients should be assessed in additional populations. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Chronic Renal Failure Secondary to Unrecognized Neurogenic Bladder in A Child with Myelodysplasia.
Ahmed, Shameem; Paul, Siba Prosad
2017-01-01
Myelodysplasia includes a group of developmental anomalies resulting from defects that occur during neural tube closure. Urological morbidity in patients with myelodysplasia is significant and if not treated appropriately in a timely manner can potentially lead to progressive renal failure, requiring dialysis or transplantation. We report the case of a 13-year old girl with neurogenic bladder who presented chronic renal failure secondary to lipomyelomeningocele with retethering of cord. She was managed with urinary indwelling catheterization until optimization of renal function and then underwent detethering of cord with excision and repair of residual lipomeningomyelocele. Her renal parameters improved gradually over weeks and then were managed on self clean intermittent catheterization. The case emphasizes the need for considering retethering of spinal cord in children with myelodysplasia where symptoms of neurogenic bladder and recurrent urinary tract infections occur.
Whole kidney engineering for clinical translation.
Kim, Ick-Hee; Ko, In Kap; Atala, Anthony; Yoo, James J
2015-04-01
Renal transplantation is currently the only definitive treatment for end-stage renal disease; however, this treatment is severely limited by the shortage of implantable kidneys. To address this shortcoming, development of an engineered, transplantable kidney has been proposed. Although current advances in engineering kidneys based on decellularization and recellularization techniques have offered great promises for the generation of functional kidney constructs, most studies have been conducted using rodent kidney constructs and short-term in-vivo evaluation. Toward clinical translations of this technique, several limitations need to be addressed. Human-sized renal scaffolds are desirable for clinical application, and the fabrication is currently feasible using native porcine and discarded human kidneys. Current progress in stem cell biology and cell culture methods have demonstrated feasibility of the use of embryonic stem cells, induced pluripotent stem cells, and primary renal cells as clinically relevant cell sources for the recellularization of renal scaffolds. Finally, approaches to long-term implantation of engineered kidneys are under investigation using antithrombogenic strategies such as functional reendothelialization of acellular kidney matrices. In the field of bioengineering, whole kidneys have taken a number of important initial steps toward clinical translations, but many challenges must be addressed to achieve a successful treatment for the patient with end-stage renal disease.
Torres-Sánchez, M J; Ávila-Barranco, E; Esteban de la Rosa, R J; Fernández-Castillo, R; Esteban, M A; Carrero, J J; García-Valverde, M; Bravo-Soto, J A
2016-03-01
To determine in patients with autosomal dominant polycystic kidney disease the relationship between total renal volume (the sum of both kidneys, TRV) as measured by magnetic resonance and renal function; and its behaviour according to sex and the presence of arterial hypertension, hypercholesterolaemia and hyperglycemia. Cross-sectional study including patients with autosomal dominant polycystic kidney disease who underwent periodic reviews at Nephrology external consultations at Hospital de las Nieves de Granada, and who underwent an magnetic resonance to estimate renal volume between January 2008 and March 2011. We evaluated 67 patients (59.7% women, average age of 48±14.4 years) and found a significant positive association between TRV and serum creatinine or urea, which was reversed compared with estimated glomerular filtration by MDRD-4 and Cockcroft-Gault. Women showed an average serum creatinine level and a significantly lower TRV level compared with males. Subgroups affected by arterial hypertension and hyperuricemia presented average values for serum creatinine and urea, higher for TRV and lower for estimated glomerular filtration. The hypercholesterolaemia subgroup showed higher average values for urea and lower for estimated glomerular filtration, without detecting significant differences compared with TRV. The volume of polycystic kidneys measured by magnetic resonance is associated with renal function, and can be useful as a complementary study to monitor disease progression. The presence of arterial hypertension, hyperuricemia or hypercholesterolaemia is associated with a poorer renal function. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Bowen, Diana K; Yerkes, Elizabeth B; Lindgren, Bruce W; Gong, Edward M; Faasse, Mark A
2015-07-01
We report 4 pediatric cases of ureteropelvic junction obstruction involving delayed progression of initially mild postnatal hydronephrosis. All 4 children became symptomatic; however, 3 already had a substantial decrement of ipsilateral kidney function by the time of diagnosis. Two of these 3 patients had previous renal scintigraphy demonstrating normal differential function. We caution that counseling regarding hydronephrosis should emphasize the importance of prompt re-evaluation for any symptoms potentially referable to delayed presentation of ureteropelvic junction obstruction, irrespective of initial hydronephrosis grade. Future studies are needed to determine the optimal follow-up regimen for conservative management of hydronephrosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Primary hyperoxaluria type 1 with a novel mutation.
Sethi, Sidharth Kumar; Waterham, Hans R; Sharma, Sonika; Sharma, Alok; Hari, Pankaj; Bagga, Arvind
2009-02-01
Primary hyperoxaluria type 1 [PH1] is an autosomal recessive disorder caused by a deficiency of alanine-glyoxylate aminotransferase AGT, which is encoded by the AGXT gene. We report an Indian family with two affected siblings having a novel mutation in the AGXT gene inherited from the parents. The index case progressed to end stage renal disease at 5 months of age. His 4 month old sibling is presently under follow up with preserved renal function.
Barr, Elizabeth L M; Barzi, Federica; Hughes, Jaquelyne T; Jerums, George; Hoy, Wendy E; O'Dea, Kerin; Jones, Graham R D; Lawton, Paul D; Brown, Alex D H; Thomas, Mark; Ekinci, Elif I; Sinha, Ashim; Cass, Alan; MacIsaac, Richard J; Maple-Brown, Louise J
2018-04-01
To examine the association between soluble tumor necrosis factor receptor 1 (sTNFR1) levels and kidney disease progression in Indigenous Australians at high risk of kidney disease. This longitudinal observational study examined participants aged ≥18 years recruited from >20 sites across diabetes and/or kidney function strata. Baseline measures included sTNFR1, serum creatinine, urine albumin-to-creatinine ratio (uACR), HbA 1c , C-reactive protein (CRP), waist-to-hip ratio, systolic blood pressure, and medical history. Linear regression was used to estimate annual change in estimated glomerular filtration rate (eGFR) for increasing sTNFR1, and Cox proportional hazards were used to estimate the hazard ratio (HR) and 95% CI for developing a combined renal outcome (first of a ≥30% decline in eGFR with a follow-up eGFR <60 mL/min/1.73 m 2 , progression to renal replacement therapy, or renal death) for increasing sTNFR1. Over a median of 3 years, participants with diabetes ( n = 194) in the highest compared with the lowest quartile of sTNFR1 experienced significantly greater eGFR decline (-4.22 mL/min/1.73 m 2 /year [95% CI -7.06 to -1.38]; P = 0.004), independent of baseline age, sex, eGFR, and uACR. The adjusted HR (95% CI) for participants with diabetes per doubling of sTNFR1 for the combined renal outcome ( n = 32) was 3.8 (1.1-12.8; P = 0.03). No association between sTNFR1 and either renal outcome was observed for those without diabetes ( n = 259). sTNFR1 is associated with greater kidney disease progression independent of albuminuria and eGFR in Indigenous Australians with diabetes. Further research is required to assess whether TNFR1 operates independently of other metabolic factors associated with kidney disease progression. © 2018 by the American Diabetes Association.
Lien, Y H; Kam, I; Shanley, P F; Schröter, G P
1991-12-01
Renal cell carcinoma (RCC) is a relatively uncommon cancer in renal transplant patients. From 1968 to 1987, 101 cases of RCC of native kidneys have been reported to the Cincinnati Transplant Tumor Registry. We describe here a case of metastatic RCC associated with acquired cystic kidney disease (ACKD) 15 years after successful renal transplantation. The patient presented with a subcutaneous nodule, which led to discovery of a large primary tumor in the left kidney. ACKD was present in the atrophic right kidney. The reported cases of ACKD-associated RCC in renal transplant recipients were reviewed. Most of these cases are middle-aged men with a long posttransplant course, good graft function, and usage of azathioprine and prednisone as immunosuppressive agents. ACKD can develop or persist and progress to RCC many years after successful renal transplantation. Transplant patients with flank pain, hematuria, or other suspicious symptoms should have imaging studies of their native kidneys.
Curtis, J R; Bateman, F J
1975-01-01
Prazosin was used in combination with other antihypertensive drugs in the successful management of hypertension in seven patients with chronic renal failure and six renal transplant recipients, also with chronic renal failure. The addition of small doses of prazosin (mean 3 mg/day) to the antihypertensive regimen produced significant falls in systolic and diastolic blood pressures in both the lying and standing positions. The standing blood pressures were significantly lower than the lying blood pressures during prazosin treatment. Neither the mean blood urea concentrations nor the mean plasma creatinine concentrations changed significantly during prazosin administration. Chromium-51 edetic acid clearances did not change significantly during prazosin treatment in the seven patients in whom it was measured. Severe symptomatic postural hypotension occurred in one patient a week after starting prazosin 3 mg/day. This hypotensive episode was associated with a transient and reversible deterioration in renal function. Another patient developed a rash while on prazosin but it was probably related to propranolol rather than prazosin. Prazosin is thus an effective antihypertensive drug in patients with chronic renal failure, and it may be used with a variety of other drugs. It should be used cautiously, however, since patients with chronic renal failure may respond to small doses, and significant postural falls in blood pressure may result. There was no evidence that the use of prazosin resulted in progressive deterioration in the residual renal function of the patients with chronic renal failure. PMID:811312
Curtis, J R; Bateman, F J
1975-11-22
Prazosin was used in combination with other antihypertensive drugs in the successful management of hypertension in seven patients with chronic renal failure and six renal transplant recipients, also with chronic renal failure. The addition of small doses of prazosin (mean 3 mg/day) to the antihypertensive regimen produced significant falls in systolic and diastolic blood pressures in both the lying and standing positions. The standing blood pressures were significantly lower than the lying blood pressures during prazosin treatment. Neither the mean blood urea concentrations nor the mean plasma creatinine concentrations changed significantly during prazosin administration. Chromium-51 edetic acid clearances did not change significantly during prazosin treatment in the seven patients in whom it was measured. Severe symptomatic postural hypotension occurred in one patient a week after starting prazosin 3 mg/day. This hypotensive episode was associated with a transient and reversible deterioration in renal function. Another patient developed a rash while on prazosin but it was probably related to propranolol rather than prazosin. Prazosin is thus an effective antihypertensive drug in patients with chronic renal failure, and it may be used with a variety of other drugs. It should be used cautiously, however, since patients with chronic renal failure may respond to small doses, and significant postural falls in blood pressure may result. There was no evidence that the use of prazosin resulted in progressive deterioration in the residual renal function of the patients with chronic renal failure.
Omachi, Kohei; Miyakita, Rui; Fukuda, Ryosuke; Kai, Yukari; Suico, Mary Ann; Yokota, Tsubasa; Kamura, Misato; Shuto, Tsuyoshi; Kai, Hirofumi
2017-12-01
Alport syndrome (AS) is a hereditary kidney disease caused by mutation of type IV collagen. Loss of collagen network induces collapse of glomerular basement membrane (GBM) structure. The previous studies showed that upregulation of some tyrosine kinase receptors signaling accompanied GBM disorder in AS mouse model. EGFR signaling is one of the well-known receptor kinase signaling that is involved in glomerular diseases. However, whether EGFR signaling is relevant to AS progression is still uninvestigated. Here, we determined the involvement of EGFR in AS and the effect of suppressing EGFR signaling by erlotinib treatment on AS progression. Phosphorylated EGFR expression was investigated by Western blotting analysis and immunostaining of kidney tissues of Col4a5 mutant mice (a mouse model of X-linked AS). To check the effect of blocking EGFR signaling in AS, we administered erlotinib to AS mice once a day (10 mg/kg/day) orally for 18 weeks. Renal function parameters (proteinuria, serum creatinine, and BUN) and renal histology were assessed, and the gene expressions of inflammatory cytokines were analyzed in renal tissues. Phosphorylated EGFR expression was upregulated in AS mice kidney tissues. Erlotinib slightly reduced the urinary protein and suppressed the expression of renal injury markers (Lcn2, Lysozyme) and inflammatory cytokines (Il-6, Il-1β and KC). Erlotinib did not improve renal pathology, such as glomerular sclerosis and fibrosis. These findings suggest that EGFR signaling is upregulated in kidney, but although inhibiting this signaling pathway suppressed renal inflammatory cytokines, it did not ameliorate renal dysfunction in AS mouse model.
Salivary markers in patients with chronic renal failure.
Pallos, Debora; Leão, Mariella V P; Togeiro, Fernanda C F B; Alegre, Larissa; Ricardo, Lucilene Hernandes; Perozini, Caroline; Ruivo, Gilson Fernandes
2015-12-01
Chronic renal failure (CRF) is a progressive loss of renal function over a period of months or years. The major function of the kidneys is the removal of metabolic waste products, electrolytes and water. When this function is impaired, systemic changes, oral complications and alterations in salivary composition may occur. This study aimed to compare the levels of immunological and inflammatory components in the saliva samples from patients that undergo to hemodialysis treatment (HD), without HD and control. This study evaluated IgA, IgG, C reactive protein (CRP) and nitric oxide (NO) in saliva samples from 119 patients, who were divided into the control group (C), chronic renal failure (CRF) patient group and CRF patients on hemodialysis treatment (HD) group. IgA and IgG levels were analyzed by ELISA. Nitric oxide levels were determined indirectly by the nitrite concentration using Griess reagent; CRP by agglutination tests; and total proteins, by Bradford assay. The HD group showed significantly higher levels of IgG, IgA and CRP compared with the control and CRF groups. The CRF group presented the same amounts of IgG, IgA and CRP as the C group but significantly higher levels of NO similar to the HD group. Renal disease, particularly hemodialysis treatment during renal disease, seems to alter salivary immunological and inflammatory components. Thus, analyzing the levels of IgA, IgG, NO and CRP in saliva may be beneficial for monitoring renal disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
McGraw, Nancy J; Krul, Elaine S; Grunz-Borgmann, Elizabeth; Parrish, Alan R
2016-01-01
Chronic kidney disease (CKD) is a significant public health problem as risk factors such as advanced age, obesity, hypertension and diabetes rise in the global population. Currently there are no effective pharmacologic treatments for this disease. The role of diet is important for slowing the progression of CKD and managing symptoms in later stages of renal insufficiency. While low protein diets are generally recommended, maintaining adequate levels of intake is critical for health. There is an increasing appreciation that the source of protein may also be important. Soybean protein has been the most extensively studied plant-based protein in subjects with kidney disease and has demonstrated renal protective properties in a number of clinical studies. Soy protein consumption has been shown to slow the decline in estimated glomerular filtration rate and significantly improve proteinuria in diabetic and non-diabetic patients with nephropathy. Soy’s beneficial effects on renal function may also result from its impact on certain physiological risk factors for CKD such as dyslipidemia, hypertension and hyperglycemia. Soy intake is also associated with improvements in antioxidant status and systemic inflammation in early and late stage CKD patients. Studies conducted in animal models have helped to identify the underlying molecular mechanisms that may play a role in the positive effects of soy protein on renal parameters in polycystic kidney disease, metabolically-induced kidney dysfunction and age-associated progressive nephropathy. Despite the established relationship between soy and renoprotection, further studies are needed for a clear understanding of the role of the cellular and molecular target(s) of soy protein in maintaining renal function. PMID:27152261
Pharmacokinetics of sugammadex in subjects with moderate and severe renal impairment .
Min, K Chris; Lasseter, Kenneth C; Marbury, Thomas C; Wrishko, Rebecca E; Hanley, William D; Wolford, Dennis G; Udo de Haes, Joanna; Reitmann, Christina; Gutstein, David E
2017-09-01
Sugammadex rapidly reverses moderate and deep rocuronium- or vecuronium-induced neuromuscular blockade at doses of 4 mg/kg and 2 mg/kg, respectively. Sugammadex is renally eliminated. This study evaluated the pharmacokinetics of sugammadex in subjects with renal impairment versus those with normal renal function. This open-label, two-part, phase 1 study included adults with moderate (creatinine clearance (CLcr) 30 - < 50 mL/min) and severe (CLcr < 30 mL/min) renal impairment and healthy controls (CLcr ≥ 80 mL/min). A single intravenous (IV) bolus injection of sugammadex 4 mg/kg was administered into a peripheral vein over 10 seconds directly by straight needle in part 1 (n = 24; 8/group), and via an IV catheter followed by a saline flush in part 2 (n = 18; 6/group). Plasma concentrations of sugammadex were collected after drug administration. Due to dosing issues in part 1, pharmacokinetic parameters were determined for part 2 only. Safety was assessed throughout the study. Pharmacokinetic data were obtained from 18 subjects. Mean sugammadex exposure (AUC0-∞) in subjects with moderate and severe renal impairment was 2.42- and 5.42-times, respectively, that of healthy controls. Clearance decreased and apparent terminal half-life was prolonged with increasing renal dysfunction. Similar Cmax values were observed in subjects with renal impairment and healthy controls. There were no serious adverse events. Sugammadex exposure is increased in subjects with moderate and severe renal insufficiency due to progressively decreased clearance as a function of worsening renal function. Sugammadex 4 mg/kg was well tolerated in subjects with renal impairment, with a safety profile similar to that of healthy subjects. These results indicate that dose adjustment of sugammadex is not required in patients with moderate renal impairment; however, current safety experience is insufficient to support the use of sugammadex in patients with CLcr < 30 mL/min. .
SGLT2 Inhibitors and the Diabetic Kidney.
Fioretto, Paola; Zambon, Alberto; Rossato, Marco; Busetto, Luca; Vettor, Roberto
2016-08-01
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. Blood glucose and blood pressure control reduce the risk of developing this complication; however, once DN is established, it is only possible to slow progression. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, the most recent glucose-lowering oral agents, may have the potential to exert nephroprotection not only through improving glycemic control but also through glucose-independent effects, such as blood pressure-lowering and direct renal effects. It is important to consider, however, that in patients with impaired renal function, given their mode of action, SGLT2 inhibitors are less effective in lowering blood glucose. In patients with high cardiovascular risk, the SGLT2 inhibitor empagliflozin lowered the rate of cardiovascular events, especially cardiovascular death, and substantially reduced important renal outcomes. Such benefits on DN could derive from effects beyond glycemia. Glomerular hyperfiltration is a potential risk factor for DN. In addition to the activation of the renin-angiotensin-aldosterone system, renal tubular factors, including SGLT2, contribute to glomerular hyperfiltration in diabetes. SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule, causing, through tubuloglomerular feedback, afferent arteriole vasoconstriction and reduction in hyperfiltration. Experimental studies showed that SGLT2 inhibitors reduced hyperfiltration and decreased inflammatory and fibrotic responses of proximal tubular cells. SGLT2 inhibitors reduced glomerular hyperfiltration in patients with type 1 diabetes, and in patients with type 2 diabetes, they caused transient acute reductions in glomerular filtration rate, followed by a progressive recovery and stabilization of renal function. Interestingly, recent studies consistently demonstrated a reduction in albuminuria. Although these data are promising, only dedicated renal outcome trials will clarify whether SGLT2 inhibitors, in addition to their glycemic and blood pressure benefits, may provide nephroprotective effects. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Renal Hemodynamics in AKI: In Search of New Treatment Targets.
Matejovic, Martin; Ince, Can; Chawla, Lakhmir S; Blantz, Roland; Molitoris, Bruce A; Rosner, Mitchell H; Okusa, Mark D; Kellum, John A; Ronco, Claudio
2016-01-01
Novel therapeutic interventions are required to prevent or treat AKI. To expedite progress in this regard, a consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 to develop recommendations for research priorities and future directions. Here, we highlight the concepts related to renal hemodynamics in AKI that are likely to reveal new treatment targets on investigation. Overall, we must better understand the interactions between systemic, total renal, and glomerular hemodynamics, including the role of tubuloglomerular feedback. Furthermore, the net consequences of therapeutic maneuvers aimed at restoring glomerular filtration need to be examined in relation to the nature, magnitude, and duration of the insult. Additionally, microvascular blood flow heterogeneity in AKI is now recognized as a common occurrence; timely interventions to preserve the renal microcirculatory flow may interrupt the downward spiral of injury toward progressive kidney failure and should, therefore, be investigated. Finally, development of techniques that permit an integrative physiologic approach, including direct visualization of renal microvasculature and measurement of oxygen kinetics and mitochondrial function in intact tissue in all nephron segments, may provide new insights into how the kidney responds to various injurious stimuli and allow evaluation of new therapeutic strategies. Copyright © 2016 by the American Society of Nephrology.
Caravaca, Francisco; Caravaca-Fontán, Fernando; Azevedo, Lilia; Luna, Enrique
In routine clinical practice, the prescription of vitamin D analogues (VDA) in patients with chronic kidney disease (CKD) is often associated with a decline of the estimated renal function. The reason for this is not fully understood. To analyse the effects of VDA discontinuation in advanced CKD and to determine the factors associated with changes in renal function. Retrospective cohort study of adult patients with advanced CKD. The case subgroup was treated with VDA and this medication was discontinued at baseline (the first visit). The control subgroup was not treated with VDA and they were selected according to comparability principles for CKD progression by propensity score matching. The primary outcome measure was a change to both the estimated glomerular filtration rate (MDRD-GFR) and the measured glomerular filtration rate (mGFR by combined creatinine and urea clearances). Baseline parameters related to mineral metabolism and creatinine generation were analysed as potential determinants of renal function changes. The study sample consisted of 67 cases and 67 controls. Renal function improved in 67% of cases and worsened in 72% of controls (p<0.0001). Changes in MDRD-GFR for the case subgroup and the control subgroup were +0.455±0.997 vs. -0.436±1.103ml/min/1.73 m 2 /month (p<0.0001), respectively. Total creatinine excretion was slightly higher in cases than in controls but the difference was not significant. According to multivariate logistic and linear regression analyses, baseline total serum calcium was one of the best determinants of both renal function recovery (Odds ratio=3.49; p=0.001), and of the extent of renal function recovery (beta=0.276; p=0.001). Discontinuation of VDA treatment in CKD patients is associated with significant recovery of estimated renal function. The extent of these changes is mainly associated with baseline total serum calcium. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Kim, Munkyung; Piaia, Alessandro; Shenoy, Neeta; Kagan, David; Gapp, Berangere; Kueng, Benjamin; Weber, Delphine; Dietrich, William; Ksiazek, Iwona
2015-01-01
Alport syndrome is a genetic disease of collagen IV (α3, 4, 5) resulting in renal failure. This study was designed to investigate sex-phenotype correlations and evaluate the contribution of macrophage infiltration to disease progression using Col4a3 knock out (Col4a3KO) mice, an established genetic model of autosomal recessive Alport syndrome. No sex differences in the evolution of body mass loss, renal pathology, biomarkers of tubular damage KIM-1 and NGAL, or deterioration of kidney function were observed during the life span of Col4a3KO mice. These findings confirm that, similar to human autosomal recessive Alport syndrome, female and male Col4a3KO mice develop renal failure at the same age and with similar severity. The specific contribution of macrophage infiltration to Alport disease, one of the prominent features of the disease in human and Col4a3KO mice, remains unknown. This study shows that depletion of kidney macrophages in Col4a3KO male mice by administration of clodronate liposomes, prior to clinical onset of disease and throughout the study period, does not protect the mice from renal failure and interstitial fibrosis, nor delay disease progression. These results suggest that therapy targeting macrophage recruitment to kidney is unlikely to be effective as treatment of Alport syndrome. PMID:26555339
Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis.
Humphreys, Benjamin D; Xu, Fengfeng; Sabbisetti, Venkata; Grgic, Ivica; Movahedi Naini, Said; Wang, Ningning; Chen, Guochun; Xiao, Sheng; Patel, Dhruti; Henderson, Joel M; Ichimura, Takaharu; Mou, Shan; Soeung, Savuth; McMahon, Andrew P; Kuchroo, Vijay K; Bonventre, Joseph V
2013-09-01
Acute kidney injury predisposes patients to the development of both chronic kidney disease and end-stage renal failure, but the molecular details underlying this important clinical association remain obscure. We report that kidney injury molecule-1 (KIM-1), an epithelial phosphatidylserine receptor expressed transiently after acute injury and chronically in fibrotic renal disease, promotes kidney fibrosis. Conditional expression of KIM-1 in renal epithelial cells (Kim1(RECtg)) in the absence of an injury stimulus resulted in focal epithelial vacuolization at birth, but otherwise normal tubule histology and kidney function. By 4 weeks of age, Kim1(RECtg) mice developed spontaneous and progressive interstitial kidney inflammation with fibrosis, leading to renal failure with anemia, proteinuria, hyperphosphatemia, hypertension, cardiac hypertrophy, and death, analogous to progressive kidney disease in humans. Kim1(RECtg) kidneys had elevated expression of proinflammatory monocyte chemotactic protein-1 (MCP-1) at early time points. Heterologous expression of KIM-1 in an immortalized proximal tubule cell line triggered MCP-1 secretion and increased MCP-1-dependent macrophage chemotaxis. In mice expressing a mutant, truncated KIM-1 polypeptide, experimental kidney fibrosis was ameliorated with reduced levels of MCP-1, consistent with a profibrotic role for native KIM-1. Thus, sustained KIM-1 expression promotes kidney fibrosis and provides a link between acute and recurrent injury with progressive chronic kidney disease.
Ueno, Toshiharu; Takeda, Kazuhito; Nagata, Michio
2012-02-01
Renal AA amyloidosis presents as a life-threatening disease in patients with rheumatoid arthritis (RA). Although several newly developed immunosuppressive drugs have been tried, patients often progress to end-stage renal failure with unsatisfactory survival rate. A total of nine consecutive cases of severe nephrotic renal AA amyloidosis presented to us. Complete remission of proteinuria was observed in four cases (responders), and the remaining five reached the end point of haemodialysis or death (non-responders); these groups were retrospectively compared. The patients were treated with immunosuppressants, biological drugs and anti-hypertensive drugs. Levels of serum creatinine (S-Cr), urinary protein-creatinine ratio (UP/UCr), blood pressure (BP) and C-reactive protein (CRP) were measured. Histological characteristics of renal amyloid deposition and extent of kidney injury were also scored. Prior to treatment, clinical data (S-Cr, UP/UCr, BP and CRP) and histological severity (glomerular sclerosis, tubulointerstitial injury and extent of amyloid deposition) observed in the renal biopsy specimen were not significantly different between the groups. Following therapeutic intervention, proteinuria disappeared (UP/UCr <0.3) in responders within 12 ± 5.4 months but persisted in non-responders. Consequently, renal function stabilized in responders, but it deteriorated in all non-responders. Strict inflammatory control along with optimal control of hypertension was achieved in responders during the treatment. Regardless of histological severity, intensive therapeutic intervention that includes strict inflammatory control and optimal control of hypertension may change the histology-predicted prognosis of RA-associated renal AA amyloidosis.
Demartini, Zeferino; Galdino, Jennyfer; Koppe, Gelson L; Bignelli, Alexandre T; Francisco, Alexandre N; Gatto, Luana Am
2018-06-01
Background Patients with polycystic kidney disease have a higher prevalence of intracranial aneurysms and may progress to renal failure requiring transplantation. The endovascular treatment of intracranial aneurysms may improve prognosis, since rupture often causes premature death or disability, but the nephrotoxicity risk associated with contrast medium must be always considered in cases of renal impairment. Methods A 55-year-old female patient with polycystic kidney disease and grafted kidney associated with anterior communicant artery aneurysm was successfully treated by embolization. Results The renal function remained normal after the procedure. To the authors' knowledge, this is the first case of endovascular treatment of brain aneurysm in a transplanted patient reported in the medical literature. Conclusions The endovascular procedure in renal transplant patients is feasible and can be considered to treat this population. Further studies and cases are needed to confirm its safety.
Yamada, Yuichiro; Suzuki, Keisuke; Nobata, Hironobu; Kawai, Hirohisa; Wakamatsu, Ryo; Miura, Naoto; Banno, Shogo; Imai, Hirokazu
2014-01-01
A 58-year-old woman who received gemcitabine for advanced gallbladder cancer developed an impaired renal function, thrombocytopenia, Raynaud's phenomenon, digital ischemic changes, a high antinuclear antibody titer and hypertensive emergency that mimicked a scleroderma renal crisis. A kidney biopsy specimen demonstrated onion-skin lesions in the arterioles and small arteries along with ischemic changes in the glomeruli, compatible with a diagnosis of hypertensive emergency (malignant hypertension). The intravenous administration of a calcium channel blocker, the oral administration of an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker and the transfusion of fresh frozen plasma were effective for treating the thrombocytopenia and progressive kidney dysfunction. Gemcitabine induces hemolytic uremic syndrome with accelerated hypertension and Raynaud's phenomenon, mimicking scleroderma renal crisis.
The Role of Endoplasmic Reticulum Stress in Diabetic Nephropathy.
Fan, Ying; Lee, Kyung; Wang, Niansong; He, John Cijiang
2017-03-01
Diabetic nephropathy (DN) has become the leading cause of end-stage renal disease (ESRD) worldwide. Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a major role in the development and progression of DN. Recent findings suggested that many attributes of DN, such as hyperglycemia, proteinuria, and increased advanced glycation end products and free fatty acids, can all trigger unfolded protein response (UPR) in kidney cells. Herein, we review the current knowledge on the role of ER stress in the setting of kidney injury with a specific emphasis on DN. As maladaptive ER stress response caused by excessively prolonged UPR will eventually cause cell death and increase kidney injury, several ER stress inhibitors have been shown to improve DN in animal models, albeit blocking both adaptive and maladaptive UPR. More recently, reticulon-1A (RTN1A), an ER-associated protein, was shown to be increased in both human and mouse diabetic kidneys. Its expression correlates with the progression of DN, and its polymorphisms are associated with kidney disease in people with diabetes. Increased RTN1A expression heightened the ER stress response and renal cell apoptosis, and conversely reduced RTN1A in renal cells decreased apoptosis and ameliorated kidney injury and DN progression, suggesting that RTN1A may be a novel target to specifically restrain the maladaptive UPR. These findings suggest that ER stress response in renal cells is a key driver of progression of DN and that the inhibition of the unchecked ER stress response in DN, such as by inhibition of RTN1A function, may be a promising therapeutic approach against DN.
Oxalate, inflammasome, and progression of kidney disease
Ermer, Theresa; Eckardt, Kai-Uwe; Aronson, Peter S.; Knauf, Felix
2016-01-01
Purpose of review Oxalate is an end product of metabolism excreted via the kidney. Excess urinary oxalate, whether from primary or enteric hyperoxaluria, can lead to oxalate deposition in the kidney. Oxalate crystals are associated with renal inflammation, fibrosis and progressive renal failure. It has long been known that as glomerular filtration rate (GFR) becomes reduced in chronic kidney disease (CKD), there is striking elevation of plasma oxalate. Taken together, these findings raise the possibility that elevation of plasma oxalate in CKD may promote renal inflammation and more rapid progression of CKD independent of primary etiology. Recent findings The inflammasome has recently been identified to play a critical role in oxalate-induced renal inflammation. Oxalate crystals have been shown to activate the nucleotide-binding domain, leucine-rich repeat inflammasome 3 (also known as NALP3, NLRP3 or cryopyrin), resulting in release of Interleukin-1β and macrophage infiltration. Deletion of inflammasome proteins in mice protects from oxalate-induced renal inflammation and progressive renal failure. Summary The findings reviewed in this article expand our understanding of the relevance of elevated plasma oxalate levels leading to inflammasome activation. We propose that inhibiting oxalate-induced inflammasome activation, or lowering plasma oxalate, may prevent or mitigate progressive renal damage in CKD, and warrants clinical trials. PMID:27191349
Prenatal programming-effects on blood pressure and renal function.
Ritz, Eberhard; Amann, Kerstin; Koleganova, Nadezda; Benz, Kerstin
2011-03-01
Impaired intrauterine nephrogenesis-most clearly illustrated by low nephron number-is frequently associated with low birthweight and has been recognized as a powerful risk factor for renal disease; it increases the risks of low glomerular filtration rate, of more rapid progression of primary kidney disease, and of increased incidence of chronic kidney disease or end-stage renal disease. Another important consequence of impaired nephrogenesis is hypertension, which further amplifies the risk of onset and progression of kidney disease. Hypertension is associated with low nephron numbers in white individuals, but the association is not universal and is not seen in individuals of African origin. The derangement of intrauterine kidney development is an example of a more general principle that illustrates the paradigm of plasticity during development-that is, that transcription of the genetic code is modified by epigenetic factors (as has increasingly been documented). This Review outlines the concept of prenatal programming and, in particular, describes its role in kidney disease and hypertension.
Ramanathan, Gnanasambandan; Elumalai, Ramprasad; Periyasamy, Soundararajan; Lakkakula, Bhaskar
2014-07-01
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited disease of the kidneys and is marked by progressive cyst growth and decline in kidney function, resulting in end-stage renal disease (ESRD). Hypertension is thought to be a significant modifying factor in the progression of renal failure in ADPKD. A number of genetic variations involved in renin-angiotensin-aldosterone system (RAAS) pathway genes have clinical or physiological impacts on pathogenesis of hypertension-induced ESRD in ADPKD. Information on RAAS pathway gene polymorphisms and their association with ESRD and ADPKD, published till March 2013, was collected using MEDLINE search. The present review deals with RAAS gene polymorphisms focused on hypertension-induced ESRD in ADPKD in different populations. The results were inconclusive and limited by heterogeneity in the study designs and the population stratification. In lieu of applying next generation sequencing technologies to study complex diseases, it is also possible to apply the same to unravel the complexity of ESRD in ADPKD.
Low molecular weight fucoidan protects renal tubular cells from injury induced by albumin overload.
Jia, Yingli; Sun, Yi; Weng, Lin; Li, Yingjie; Zhang, Quanbin; Zhou, Hong; Yang, Baoxue
2016-08-22
Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflammation and fibrosis associated proteins in 129S2/Sv mice. LMWF (100 mg/kg) protected against kidney injury and renal dysfunction with decreased blood creatinine by 34% and urea nitrogen by 25%, increased creatinine clearance by 48%, and decreased significantly urinary albumin concentration. In vitro proximal tubule epithelial cell (NRK-52E) model showed that LMWF dose-dependently inhibited overexpression of proinflammatory and profibrotic factors, oxidative stress and apoptosis caused by albumin overload. These experimental results indicate that LMWF protects against albumin overload caused renal injury by inhibiting inflammation, fibrosis, oxidative stress and apoptosis, which suggests that LMWF could be a promising candidate drug for preventing CKD.
Tanaka, Mari; Asada, Misako; Higashi, Atsuko Y; Nakamura, Jin; Oguchi, Akiko; Tomita, Mayumi; Yamada, Sachiko; Asada, Nariaki; Takase, Masayuki; Okuda, Tomohiko; Kawachi, Hiroshi; Economides, Aris N; Robertson, Elizabeth; Takahashi, Satoru; Sakurai, Takeshi; Goldschmeding, Roel; Muso, Eri; Fukatsu, Atsushi; Kita, Toru; Yanagita, Motoko
2010-03-01
The glomerular basement membrane (GBM) is a key component of the filtering unit in the kidney. Mutations involving any of the collagen IV genes (COL4A3, COL4A4, and COL4A5) affect GBM assembly and cause Alport syndrome, a progressive hereditary kidney disease with no definitive therapy. Previously, we have demonstrated that the bone morphogenetic protein (BMP) antagonist uterine sensitization-associated gene-1 (USAG-1) negatively regulates the renoprotective action of BMP-7 in a mouse model of tubular injury during acute renal failure. Here, we investigated the role of USAG-1 in renal function in Col4a3-/- mice, which model Alport syndrome. Ablation of Usag1 in Col4a3-/- mice led to substantial attenuation of disease progression, normalization of GBM ultrastructure, preservation of renal function, and extension of life span. Immunohistochemical analysis revealed that USAG-1 and BMP-7 colocalized in the macula densa in the distal tubules, lying in direct contact with glomerular mesangial cells. Furthermore, in cultured mesangial cells, BMP-7 attenuated and USAG-1 enhanced the expression of MMP-12, a protease that may contribute to GBM degradation. These data suggest that the pathogenetic role of USAG-1 in Col4a3-/- mice might involve crosstalk between kidney tubules and the glomerulus and that inhibition of USAG-1 may be a promising therapeutic approach for the treatment of Alport syndrome.
Seidu, Samuel; Kunutsor, Setor K; Cos, Xavier; Gillani, Syed; Khunti, Kamlesh
2018-06-01
Sodium-glucose co-transporter 2 (SGLT2) inhibitors may have renal protective effects in people with impaired kidney function. We assessed the use of SGLT2 inhibitors in people with type 2 diabetes with or without renal impairment [defined as estimated glomerular filtration rate (eGFR) of ≥30 and <60ml/min/1.73m 2 and/or UACR>300 and ≤5000mg/g] by conducting a systematic review and meta-analysis of available studies. Randomised controlled trials (RCTs) were identified from MEDLINE, EMABASE, Web of Science, the Cochrane Library, and search of bibliographies to March 2017. No relevant observational study was identified. Summary measures were presented as mean differences and narrative synthesis performed for studies that could not be pooled. 42 articles which included 40 RCTs comprising 29,954 patients were included. In populations with renal impairment, SGLT2 inhibition compared with placebo was consistently associated with an initial decrease in eGFR followed by an increase and return to baseline levels. In pooled analysis of 17 studies in populations without renal impairment, there was no significant change in eGFR comparing SGLT2 inhibitors with placebo (mean difference, 0.51ml/min/1.73m 2 ; 95% CI: -0.69, 1.72; p=403). SGLT2 inhibition relative to placebo was associated with preservation in serum creatinine levels or initial increases followed by return to baseline levels in patients with renal impairment, but levels were preserved in patients without renal impairment. In populations with or without renal impairment, SGLT2 inhibitors (particularly canagliflozin and empagliflozin) compared with placebo were associated with decreased urine albumin, improved albuminiuria, slowed progression to macroalbuminuria, and reduced the risk of worsening renal impairment, the initiation of kidney transplant, and death from renal disease. Emerging data suggests that with SGLT2 inhibition, renal function seems to be preserved in people with diabetes with or without renal impairment. Furthermore, SGLT2 inhibition prevents further renal function deterioration and death from kidney disease in these patients. Copyright © 2018 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
Cardiac Abnormalities in Primary Hyperoxaluria
Mookadam, Farouk; Smith, Travis; Jiamsripong, Panupong; Moustafa, Sherif E; Monico, Carla G.; Lieske, John C.; Milliner, Dawn S.
2018-01-01
Background In patients with primary hyperoxaluria (PH), oxalate overproduction can result in recurrent urolithiasis and nephrocalcinosis, which in some cases results in a progressive decline in renal function, oxalate retention, and systemic oxalosis involving bone, retina, arterial media, peripheral nerves, skin, and heart. Oxalosis involving the myocardium or conduction system can potentially lead to heart failure and fatal arrhythmias. Methods and Results A retrospective review of our institution’s database was conducted for all patients with a confirmed diagnosis of PH between 1/1948 and 1/2006 (n=103). Electrocardiogram (ECG) and echocardiography were used to identify cardiac abnormalities. Ninety-three patients fulfilled the inclusion criteria, 58% were male. Mean follow-up was 11.9 (median 8.8) years. In 38 patients who received an ECG or echocardiography, 31 were found to have any cardiac abnormalities. Cardiac findings correlated with decline in renal function. Conclusions Our data suggests that physicians caring for patients with PH should pay close attention to cardiac status, especially if renal function is impaired. PMID:20921818
Ogawara, Aoi; Harada, Makoto; Ichikawa, Tohru; Fujii, Kazuaki; Ehara, Takashi; Kobayashi, Mamoru
2017-12-01
Renal prognosis for anti-glomerular basement membrane (GBM) glomerulonephritis is poor. The greater the amount of anti-GBM antibody binding the antigen (type IV collagen of the glomerular basement membrane), the greater the number of crescents that develop in glomeruli, resulting in progression of renal impairment. Immunofluorescence staining reveals linear IgG depositions on glomerular capillary walls. Membranous nephropathy (MN) is one of the most common causes of nephrotic syndrome in middle-aged to elderly patients. Immune complex is deposited in the sub-epithelial space of the glomerulus resulting in the development of a membranous lesion. Immunofluorescence staining reveals granular IgG depositions on glomerular capillary walls. Coexisting anti-GBM glomerulonephritis and MN are rare and, here we report a case of coexisting anti-GBM glomerulonephritis and MN with preserved renal function. There are some cases of coexisting anti-GBM glomerulonephritis and MN do not show severely decreased renal function. A 76-year-old Japanese woman presented with nephrotic syndrome, microscopic hematuria, and was positive for anti-GBM antibody. Kidney biopsy revealed linear and granular IgG depositions in glomerular capillary walls, crescent formations, and electron-dense deposits in the sub-epithelial space. She was diagnosed with anti-GBM glomerulonephritis and MN. Steroid and cyclosporine therapy achieved complete remission, and kidney function was preserved. In conclusion, coexisting anti-GBM glomerulonephritis and MN can have preserved renal function. IgG subclass of deposited anti-GBM antibody may be associated with the severity of anti-GBM glomerulonephritis. In addition, in the case of nephrotic syndrome with hematuria, we should consider the possibility of coexisting anti-GBM glomerulonephritis and MN.
Hoskote, Aparna; Burch, Michael
2015-06-01
Significant advances in cardiac intensive care including extracorporeal life support have enabled children with complex congenital heart disease and end-stage heart failure to be supported while awaiting transplantation. With an increasing number of survivors after heart transplantation in children, the complications from long-term immunosuppression, including renal insufficiency, are becoming more apparent. Severe renal dysfunction after heart transplant is defined by a serum creatinine level >2.5 mg/dL (221 μmol/L), and/or need for dialysis or renal transplant. The degree of renal dysfunction is variable and is progressive over time. About 3-10 % of heart transplant recipients will go on to develop severe renal dysfunction within the first 10 years post-transplantation. Multiple risk factors for chronic kidney disease post-transplant have been identified, which include pre-transplant worsening renal function, recipient demographics and morbidity, peri-transplant haemodynamics and long-term exposure to calcineurin inhibitors. Renal insufficiency increases the risk of post-transplant morbidity and mortality. Hence, screening for renal dysfunction pre-, peri- and post-transplantation is important. Early and timely detection of renal insufficiency may help minimize renal insults, and allow prompt implementation of renoprotective strategies. Close monitoring and pre-emptive management of renal dysfunction is an integral aspect of peri-transplant and subsequent post-transplant long-term care.
New Developments in Hepatorenal Syndrome.
Mindikoglu, Ayse L; Pappas, Stephen C
2018-02-01
Hepatorenal syndrome (HRS) continues to be one of the major complications of decompensated cirrhosis, leading to death in the absence of liver transplantation. Challenges in precisely evaluating renal function in the patient with cirrhosis remain because of the limitations of serum creatinine (Cr) alone in estimating glomerular filtration rate (GFR); current GFR estimating models appear to underestimate renal dysfunction. Newer models incorporating renal biomarkers, such as the Cr-Cystatin C GFR Equation for Cirrhosis appear to estimate measured GFR more accurately. A major change in the diagnostic criteria for HRS based on dynamic serial changes in serum Cr that regard HRS type 1 as a special form of acute kidney injury promises the possibility of earlier identification of renal dysfunction in patients with cirrhosis. The diagnostic criteria of HRS still include the exclusion of other causes of kidney injury. Renal biomarkers have been disappointing in assisting with the differentiation of HRS from prerenal azotemia and other kidney disorders. Serum metabolomic profiling may be a more powerful tool to assess renal dysfunction, although the practical clinical significance of this remains unclear. As a result of the difficulties of assessing renal function in cirrhosis and the varying HRS diagnostic criteria and the rigor with which they are applied, the precise incidence and prevalence of HRS is unknown, but it is likely that HRS occurs more commonly than expected. The pathophysiology of HRS is rooted firmly in the setting of progressive reduction in renal blood flow as a result of portal hypertension and splanchnic vasodilation. Progressive marked renal cortical ischemia in patients with cirrhosis parallels the evolution of diuretic-sensitive ascites to diuretic-refractory ascites and HRS, a recognized continuum of renal dysfunction in cirrhosis. Alterations in nitrous oxide production, both increased and decreased, may play a major role in the pathophysiology of this evolution. The inflammatory cascade, triggered by bacterial translocation and endotoxemia, increasingly recognized as important in the manifestation of acute-on-chronic liver failure, also may play a significant role in the pathophysiology of HRS. The mainstay of treatment remains vasopressor therapy with albumin in an attempt to reverse splanchnic vasodilation and improve renal blood flow. Several meta-analyses have confirmed the value of vasopressors, chiefly terlipressin and noradrenaline, in improving renal function and reversing HRS type 1. Other interventions such as renal replacement therapy, transjugular intrahepatic portosystemic shunt, and artificial liver support systems have a very limited role in improving outcomes in HRS. Liver transplantation remains the definitive treatment for HRS. The frequency of simultaneous liver-kidney transplantation has increased dramatically in the Model for End-stage Liver Disease era, with changes in organ allocation policies. This has resulted in a more urgent need to predict native kidney recovery from HRS after liver transplantation alone, to avoid unnecessary simultaneous liver-kidney transplantation. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Idrizi, A; Barbullushi, M; Petrela, E; Kodra, S; Koroshi, A; Thereska, N
2009-01-01
Background: Renal stones, urinary tract infections (UTI) and gross hematuria (GH) are the most important renal manifestations of autosomal dominant polycystic kidney disease (ADPKD). They are not only common, but are also frequent cause of morbidity, influencing renal dysfunction. The aim of this study was to evaluate the frequency of these manifestations in our patients with ADPKD and their impact on renal function. Methods: One hundred eighty ADPKD patients were included in the study. Subjects were studied for the presence of UTI, gross hematuria frequency and responsible factors of nephrolithiasis. Survival times were calculated as the time to renal replacement therapy or time of serum creatinine value up to 10 mg/dl. Kaplan-Meier product-limit survival curves were constructed, and log rank test was used to compare the survival curves. Results: Kidney stones were present in 76/180 (42% of pts). The stones were composed of urate (47%) calcium oxalate (39%), and other compounds 14%. UTI was observed in 60% (108 patients). Patients treated with urinary disinfectants had a significant lower frequency of urinary infection (p<0.001) and hematuria (p<0.001) after one year than untreated patients. Gross hematuria was present in 113 patients (63%). In 43 patients hematuria was diagnosed before age 30 (38%), while in 70 patients it was diagnosed after age 30 (62%). Conclusions: UTI is frequent in our ADPKD patients. The correct treatment of UTI decreases its frequency and has beneficial role in the rate of progression to renal failure in ADPKD patients. Patients with recurrent episodes of gross hematuria may be at risk for more severe renal disease. PMID:19918304
Pejchinovski, Martin; Siwy, Justyna; Metzger, Jochen; Dakna, Mohammed; Mischak, Harald; Klein, Julie; Jankowski, Vera; Bae, Kyongtae T; Chapman, Arlene B; Kistler, Andreas D
2017-03-01
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by slowly progressive bilateral renal cyst growth ultimately resulting in loss of kidney function and end-stage renal disease (ESRD). Disease progression rate and age at ESRD are highly variable. Therapeutic interventions therefore require early risk stratification of patients and monitoring of disease progression in response to treatment. We used a urine peptidomic approach based on capillary electrophoresis-mass-spectrometry (CE-MS) to identify potential biomarkers reflecting the risk for early progression to ESRD in the Consortium of Radiologic Imaging in Polycystic Kidney Disease (CRISP) cohort. A biomarker-based classifier consisting of 20 urinary peptides allowed the prediction of ESRD within 10-13 years of follow-up in patients 24-46 years of age at baseline. The performance of the biomarker score approached that of height-adjusted total kidney volume (htTKV) and the combination of the biomarker panel with htTKV improved prediction over either one alone. In young patients (<24 years at baseline), the same biomarker model predicted a 30 mL/min/1.73 m 2 glomerular filtration rate decline over 8 years. Sequence analysis of the altered urinary peptides and the prediction of the involved proteases by in silico analysis revealed alterations in distinct proteolytic pathways, in particular matrix metalloproteinases and cathepsins. We developed a urinary test that accurately predicts relevant clinical outcomes in ADPKD patients and suggests altered proteolytic pathways involved in disease progression. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Sodium intake, RAAS-blockade and progressive renal disease.
de Borst, Martin H; Navis, Gerjan
2016-05-01
Pharmacological blockade of the renin-angiotensin-aldosterone system (RAAS) by angiotensin converting enzyme inhibitors or angiotensin receptor blockers is the current standard treatment to prevent progressive renal function loss in patients with chronic kidney disease. Yet in many patients the renal protective effect of RAAS-blockade is incomplete. Short-term clinical studies have demonstrated that dietary sodium restriction potentiates the antiproteinuric effect of RAAS-blockade. More recently, it was shown that this effect is accompanied by a lower risk of end-stage renal disease and adverse cardiovascular outcomes. The modulation of RAAS-blockade efficacy by sodium intake is likely multifactorial, and is mediated by effects of sodium on local tissue RAAS in kidney, vasculature and brain, and by effects on the immune system. Despite the evidence showing the beneficial effects of even a moderate sodium restriction (∼2.5g/d), it remains difficult to realize in clinical practice. In an analysis based on 24-h urinary sodium excretion data from more than 10,000 CKD patients and renal transplant recipients, we found that sodium intake in these patients is on average 3.8g/d, closely resembling the global general population (3.95g/d). Behavioral approaches including the use of online dietary coaching (ehealth) and feedback using data from 24-h urine collections may be useful to successfully lower dietary sodium intake, aiming to improve cardio-renal outcomes in patients with CKD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cystatin C as an early marker of acute kidney injury in septic shock.
Ortuño-Andériz, F; Cabello-Clotet, N; Vidart-Simón, N; Postigo-Hernández, C; Domingo-Marín, S; Sánchez-García, M
2015-03-01
To describe the utility of determining plasma cystatinC concentrations in the diagnosis of acute incident kidney injury in septic shock. Prospective series of 50 patients with septic shock and plasma creatinine levels <2mg/dL hospitalized in an intensive care unit. Clinical and laboratory follow-ups were conducted, with measurements of cystatinC, urea and plasma creatinine levels from the diagnosis of septic shock to 5days later. The severity of the septic shock was assessed with the RIFLE scale. Twenty patients (40%) developed acute kidney injury: 8 (16%) were categorized as RIFLE-R, 5 (10%) as RIFLE-I and 7 (14%) as RIFLE-F. All patients categorized as RIFLE-F required extracorporeal renal clearance. Eighteen (36%) patients died, 8 (20%) of whom had developed acute kidney injury in their evolution. There was poor correlation between plasma creatinine and cystatin C levels (r=.501; P=.001), which disappeared upon reaching any degree of renal impairment on the RIFLE scale. CystatinC levels increased earlier and were better able to identify patients who would develop serious renal function impairment (RIFLE-F) than creatinine and urea levels. The initial cystatinC levels were related to mortality at 30days (OR=1.16; 95%CI: 03-.85). For patients who developed acute septic kidney injury, the plasma cystatinC levels increased before the classical markers of renal function. CystatinC also constitutes a severity biomarker that correlates with progression to RIFLE-F, the need for extrarenal clearance and, ultimately, mortality. This precocity could be useful for starting measures that prevent the progression of renal dysfunction. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Matavelli, Luis C; Zhou, Xiaoyan; Varagic, Jasmina; Susic, Dinko; Frohlich, Edward D
2007-02-01
We have previously shown that salt excess has adverse cardiac effects in spontaneously hypertensive rats (SHR), independent of its increased arterial pressure; however, the renal effects have not been reported. In the present study we evaluated the role of three levels of salt loading in SHR on renal function, systemic and renal hemodynamics, and glomerular dynamics. At 8 wk of age, rats were given a 4% (n = 11), 6% (n = 9), or 8% (n = 11) salt-load diet for the ensuing 8 wk; control rats (n = 11) received standard chow (0.6% NaCl). Rats had weekly 24-h proteinuria and albuminuria quantified. At the end of salt loading, all rats had systemic and renal hemodynamics measured; glomerular dynamics were specially studied by renal micropuncture in the control, 4% and 6% salt-loaded rats. Proteinuria and albuminuria progressively increased by the second week of salt loading in the 6% and 8% salt-loaded rats. Mean arterial pressure increased minimally, and glomerular filtration rate decreased in all salt-loaded rats. The 6% and 8% salt-loaded rats demonstrated decreased renal plasma flow and increased renal vascular resistance and serum creatinine concentration. Furthermore, 4% and 6% salt-loaded rats had diminished single-nephron plasma flow and increased afferent and efferent arteriolar resistances; glomerular hydrostatic pressure also increased in the 6% salt-loaded rats. In conclusion, dietary salt loading as low as 4% dramatically deteriorated renal function, renal hemodynamics, and glomerular dynamics in SHR independent of a minimal further increase in arterial pressure. These findings support the concept of a strong independent causal relationship between salt excess and cardiovascular and renal injury.
Mende, Christian W
2017-03-01
Patients with type 2 diabetes (T2D) often have coexisting chronic kidney disease (CKD). However, healthy renal function is crucial in maintaining glucose homeostasis, assuring that almost all of the filtered glucose is reabsorbed by the sodium glucose cotransporters (SGLTs) SGLT-1 and SGLT-2. In diabetes, an increased amount of glucose is filtered by the kidneys and SGLT-2 is upregulated, leading to increased glucose absorption and worsening hyperglycemia. Prolonged hyperglycemia contributes to the development of CKD by inducing metabolic and hemodynamic changes in the kidneys. Due to the importance of SGLT-2 in regulating glucose levels, investigation into SGLT-2 inhibitors was initiated as a glucose-dependent mechanism to control hyperglycemia, and there are three agents currently approved for use in the United States: dapagliflozin, canagliflozin, and empagliflozin. SGLT-2 inhibitors have been shown to reduce glycated hemoglobin (A1C), weight, and blood pressure, which not only affects glycemic control, but may also help slow the progression of renal disease by impacting the underlying mechanisms of kidney injury. In addition, SGLT-2 inhibitors have shown reductions in albuminuria, uric acid, and an increase in magnesium. Caution is advised when prescribing SGLT-2 inhibitors to patients with moderately impaired renal function and those at risk for volume depletion and hypotension. Published data on slowing of the development, as well as progression of CKD, is a hopeful indicator for the possible renal protection potential of this drug class. This narrative review provides an in-depth discussion of the interplay between diabetes, SGLT-2 inhibitors, and factors that affect kidney function.
Chronic Fluid Flow Is an Environmental Modifier of Renal Epithelial Function
Resnick, Andrew
2011-01-01
Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is been known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because ADPKD is a slowly progressing disease, I asked how fluid flow may act, via the primary cilium, to alter epithelial physiology during the course of cell turnover. I performed an experiment to determine under what conditions fluid flow can result in a change of function of renal epithelial tissue. A wildtype epithelial cell line derived the cortical collecting duct of a heterozygous offspring of the Immortomouse (Charles River Laboratory) was selected as our model system. Gentle orbital shaking was used to induce physiologically relevant fluid flow, and periodic measurements of the transepithelial Sodium current were performed. At the conclusion of the experiment, mechanosensitive proteins of interest were visualized by immunostaining. I found that fluid flow, in itself, modifies the transepithelial sodium current, cell proliferation, and the actin cytoskeleton. These results significantly impact the understanding of both the mechanosensation function of primary cilia as well as the understanding of ADPKD disease progression. PMID:22046444
4D MRI of polycystic kidneys from rapamycin-treated Glis3-deficient mice
Xie, Luke; Qi, Yi; Subashi, Ergys; Liao, Grace; Miller DeGraff, Laura; Jetten, Anton M.; Johnson, G. Allan
2015-01-01
Polycystic kidney disease (PKD) is a life-threatening disease that leads to a grotesque enlargement of the kidney and significant lose of function. Several imaging studies with MRI have demonstrated that cyst size in polycystic kidneys can determine disease severity and progression. In the present study, we found that while kidney volume and cyst volume decreased with drug treatment, renal function did not improve with treatment. Here, we applied dynamic contrast-enhanced MRI to study PKD in a Glis3-deficient mouse model. Cysts from this model have a wide range of sizes and develop at an early age. To capture this crucial stage and assess cysts in detail, we imaged during early development (3 to 17 weeks) and applied high spatiotemporal resolution MRI (125×125×125 cubic microns every 7.7 seconds). A drug treatment with rapamycin (also known as sirolimus) was applied to determine whether disease progression could be halted. The effect and synergy (interaction) of aging and treatment were evaluated using an analysis of variance (ANOVA). Structural measurements including kidney volume, cyst volume, and cyst-kidney volume ratio changed significantly with age. Drug treatment significantly decreased these metrics. Functional measurements of time-to-peak (TTP) mean and TTP variance were determined. TTP mean did not change with age, while TTP variance increased with age. The treatment of rapamycin generally did not affect these functional metrics. Synergistic effects of treatment and age were not found for any measurements. Together, the size and volume ratio of cysts decreased with drug treatment, while renal function remained the same. Quantifying renal structure and function with MRI can comprehensively assess the pathophysiology of PKD and response to treatment. PMID:25810360
Freitas, Frederico F. C. T.; Araujo, Gilberto; Porto, Marcella L.; Freitas, Flavia P. S.; Graceli, Jones B.; Balarini, Camille M.; Vasquez, Elisardo C.; Meyrelles, Silvana S.; Gava, Agata L.
2016-01-01
Increased blood pressure variability (BPV), which can be experimentally induced by sinoaortic denervation (SAD), has emerged as a new marker of the prognosis of cardiovascular and renal outcomes. Considering that increased BPV can lead to organ-damage, the goal of the present study was to evaluate the effects of SAD on renal function in an experimental model of chronic kidney disease (CKD). SAD was performed in male Wistar rats 2 weeks before 5/6 nephrectomy and the animals were evaluated 4 weeks after the induction of CKD. Our data demonstrated that BPV was increased in SAD and CKD animals and that the combination of both conditions (SAD+CKD) exacerbated BPV. The baroreflex sensitivity index was diminished in the SAD and CKD groups; this reduction was more pronounced when SAD and CKD were performed together. 5/6 nephrectomy led to hypertension, which was higher in SAD+CKD animals. Regarding renal function, the combination of SAD and CKD resulted in reduced renal plasma and blood flow, increased renal vascular resistance and augmented uraemia when compared to CKD animals. Glomerular filtration rate and BPV were negatively correlated in SAD, CKD, and SAD+CKD animals. Moreover, SAD+CKD animals presented a higher level of glomerulosclerosis when compared to all other groups. Cardiac and renal hypertrophy, as well as oxidative stress, was also further increased when SAD and CKD were combined. These results show that SAD prior to 5/6 nephrectomy exacerbates renal dysfunction, suggesting that previous augmented BPV should be considered as an important factor to the progression of renal diseases. PMID:27721797
Yuan, Zhongshang; Zhao, Meng; Zhang, Bingchang; Zhang, Haiqing; Zhang, Xu; Guan, Qingbo; Ning, Guang; Gao, Ling; Xue, Fuzhong; Zhao, Jiajun
2015-01-01
Hypothyroidism was confirmed to be associated with both dyslipidemia and renal dysfunction. However, the impact of thyroid function on the relationship between serum lipid levels and renal function has never been given sufficient attention. In this large-scale multicenter cross-sectional study, the ratio of triglyceride to high-density lipoprotein cholesterol (TG/HDL) and the prevalence of hypothyroidism in CKD subjects were significantly higher than those in non-CKD ones (P < 0.001). After adjustment for potential confounding factors, TG/HDL was shown to be significantly associated with serum Cr levels (β = 0.551; 95%CI, 0.394–0.708), and eGFR (β = −0.481; 95%CI, −0.731–−0.230). The risk for CKD was significantly increased as TG/HDL ratio was elevated (adjusted odds ratio = 1.20; 95%CI, 1.11–1.27). These significant associations were found among subjects with euthyroidism and hypothyroidism rather than hyperthyroidism. Furthermore, the associations between TG/HDL and Cr or CKD status were significantly greater in hypothyroidism than those in euthyroidism (P < 0.05). These results suggested that elevated TG/HDL ratio was associated with renal dysfunction; it exhibited a significantly stronger association with Cr and CKD in hypothyroidism than in euthyroidism. Therefore, more attention should be paid on lipid profile to prevent or delay the occurrence and progression of renal dysfunction, especially for those with hypothyroidism. PMID:26179571
Yuan, Zhongshang; Zhao, Meng; Zhang, Bingchang; Zhang, Haiqing; Zhang, Xu; Guan, Qingbo; Ning, Guang; Gao, Ling; Xue, Fuzhong; Zhao, Jiajun
2015-07-16
Hypothyroidism was confirmed to be associated with both dyslipidemia and renal dysfunction. However, the impact of thyroid function on the relationship between serum lipid levels and renal function has never been given sufficient attention. In this large-scale multicenter cross-sectional study, the ratio of triglyceride to high-density lipoprotein cholesterol (TG/HDL) and the prevalence of hypothyroidism in CKD subjects were significantly higher than those in non-CKD ones (P < 0.001). After adjustment for potential confounding factors, TG/HDL was shown to be significantly associated with serum Cr levels (β = 0.551; 95%CI, 0.394-0.708), and eGFR (β = -0.481; 95%CI, -0.731--0.230). The risk for CKD was significantly increased as TG/HDL ratio was elevated (adjusted odds ratio = 1.20; 95%CI, 1.11-1.27). These significant associations were found among subjects with euthyroidism and hypothyroidism rather than hyperthyroidism. Furthermore, the associations between TG/HDL and Cr or CKD status were significantly greater in hypothyroidism than those in euthyroidism (P < 0.05). These results suggested that elevated TG/HDL ratio was associated with renal dysfunction; it exhibited a significantly stronger association with Cr and CKD in hypothyroidism than in euthyroidism. Therefore, more attention should be paid on lipid profile to prevent or delay the occurrence and progression of renal dysfunction, especially for those with hypothyroidism.
Versican Promotes Tumor Progression, Metastasis and Predicts Poor Prognosis in Renal Carcinoma.
Mitsui, Yozo; Shiina, Hiroaki; Kato, Taku; Maekawa, Shigekatsu; Hashimoto, Yutaka; Shiina, Marisa; Imai-Sumida, Mitsuho; Kulkarni, Priyanka; Dasgupta, Pritha; Wong, Ryan Kenji; Hiraki, Miho; Arichi, Naoko; Fukuhara, Shinichiro; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Dahiya, Rajvir; Nakajima, Koichi; Tanaka, Yuichiro
2017-07-01
The proteoglycan versican (VCAN) promotes tumor progression and enhances metastasis in several cancers; however, its role in clear cell renal cell carcinoma (ccRCC) remains unknown. Recent evidence suggests that VCAN is an important target of chromosomal 5q gain, one of the most prevalent genetic abnormalities in ccRCC. Thus, we investigated whether VCAN expression is associated with the pathogenesis of ccRCC. VCAN expression was analyzed using three RCC and normal kidney cell lines as well as a clinical cohort of 84 matched ccRCC and normal renal tissues. Functional analyses on growth and progression properties were performed using VCAN-depleted ccRCC cells. Microarray expression profiling was employed to investigate the target genes and biologic pathways involved in VCAN-mediated ccRCC carcinogenesis. ccRCC had elevated VCAN expression in comparison with normal kidney in both cell lines and clinical specimens. The elevated expression of VCAN was significantly correlated with metastasis ( P < 0.001) and worse 5-year overall survival after radical nephrectomy ( P = 0.014). In vitro , VCAN knockdown significantly decreased cell proliferation and increased apoptosis in Caki-2 and 786-O cells, and this was associated with alteration of several TNF signaling-related genes such as TNFα, BID , and BAK Furthermore, VCAN depletion markedly decreased cell migration and invasion which correlated with reduction of MMP7 and CXCR4. These results demonstrate that VCAN promotes ccRCC tumorigenesis and metastasis and thus is an attractive target for novel diagnostic, prognostic, and therapeutic strategies. Implications: This study highlights the oncogenic role of VCAN in renal cell carcinogenesis and suggests that this gene has therapeutic and/or biomarker potential for renal cell cancer. Mol Cancer Res; 15(7); 884-95. ©2017 AACR . ©2017 American Association for Cancer Research.
Suzuki, M; Aso, T; Sato, T; Michimata, M; Kazama, I; Saiki, H; Hatano, R; Ejima, Y; Miyama, N; Sato, A; Matsubara, M
2005-06-01
The calcium-sensing receptor (CaSR) regulates the extracellular calcium level, mainly by controlling parathyroid hormon secretion and renal calcium reabsorption. In gain-of-function CaSR mutations, the genetic abnormalities increase CaSR activity leading to the development of such clinical manifestations as hypercalciuric hypocalcemia and hypoparathyroidism. We report a Japanese case of CaSR gain-of-function mutation and represent a therapeutic intervention based on the functional characteristics of CaSR in renal tubule. DNA sequence analysis revealed a heterozygous G to T mutation identified in a 12-year-old Japanese girl presenting with sporadic onset of hypercalciuric hypocalcemia and hypoparathyroidism. The mutation is located in the N-terminal extracellular domain of the CaSR gene, one of the most important parts for the three-dimensional construction of the receptor, resulting in the substitution of phenylalanine for cysteine at amino acid 131 (C131F) in exon 3. Based on the diagnosis of the gain-of-function mutation in the CaSR, oral hydrochlorothiazide administration and supplemental hydration were started in addition to calcium supplementation. The combination therapy of thiazide and supplemental hydration markedly reduced both renal calcium excretion and urinary calcium concentration from 0.4-0.7 to less than 0.1 mg/mg (urinary calcium/creatinine ratio) and from 10-15 to 3-5 mg/dl (urinary calcium concentration), respectively. This therapy stopped the progression of renal calcification during the follow-up period. Supplemental hydration should be considered essential for the following reasons: (1) calcium supplementation activates the CaSR in the kidney and suppresses renal urinary concentrating ability, (2) the thiazide has a diuretic effect, (3) as calcium supplementation increases renal calcium excretion, the supplemental hydration decreases urinary calcium concentration by increasing urinary volume, thereby diminishing the risk of intratubular crystallization of calcium ion.
Rituximab treatment for fibrillary glomerulonephritis.
Hogan, Jonathan; Restivo, Michaela; Canetta, Pietro A; Herlitz, Leal C; Radhakrishnan, Jai; Appel, Gerald B; Bomback, Andrew S
2014-10-01
Approximately 50% of patients with fibrillary glomerulonephritis (GN) progress to end-stage renal disease (ESRD) within 2 years of diagnosis, and no standard therapy exists. The data on rituximab therapy for fibrillary GN are limited and have inconsistent outcomes. Here, we report the largest case series to date using rituximab for fibrillary GN. Retrospective chart reviews were conducted on 12 patients with fibrillary GN who were treated with rituximab (1 g i.v. × 2 doses or 375 mg/m(2) × 4 doses) at the Center for Glomerular Diseases at Columbia University Medical Center. Non-progression of disease was defined as stable/improved serum creatinine (SCr) with a minimum of 1 year of follow-up. The median SCr was 2.1 (range 0.7-2.7) mg/dL, median estimated glomerular filtration rate (eGFR) 39 (range 21-98) mL/min/1.73 m(2) and median proteinuria 4497 (range 210-7542) mg/day at the time of rituximab initiation. Four patients had received immunosuppression before rituximab, and nine received immunosuppression after rituximab, with four receiving a second rituximab course. Four of 12 patients were non-progressors, 3 of 12 had progressive renal dysfunction without reaching ESRD, and 5 patients reached ESRD. The median follow-up for patients who did not reach ESRD was 38 (range 14-76) months after rituximab treatment. Non-progressors had lower SCr values, higher eGFRs and shorter median duration from diagnosis to treatment than progressors. No serious adverse events were noted. Rituximab therapy was associated with non-progression of renal disease in 4 of 12 patients. At the time of treatment, these non-progressors had better renal function and shorter time from diagnosis to treatment than progressors. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Anyabolu, Ernest Ndukaife; Chukwuonye, Innocent Ijezie; Anyabolu, Arthur Ebelenna; Enwere, Okezie
2016-01-01
Proteinuria is a common marker of kidney damage. This study aimed at determining predictors of proteinuria in subjects without impaired renal filtration function in Owerri, Nigeria. This was a cross-sectional study involving 136 subjects, consecutively drawn from Federal Medical Centre (FMC), Owerri, Nigeria. Relevant investigations were performed, including 24-hour urine protein (24HUP). Correlation and multivariate linear regression analysis were used to determine the association and strength of variables to predict proteinuria. Proteinuria was defined as 24HUP ≥0.300g and impaired renal filtration function as creatinine clearance (ClCr) <90mls/min. P<0.05 was taken as statistically significant. Mean age of subjects was 38.58 ±11.79 years. Female/male ratio was 3:1. High 24-hour urine volume (24HUV) (p<0.001), high spot urine protein/creatinine ratio (SUPCR) (p<0.001), high 24-hour urine protein/creatinine ratio (24HUPCR) (p<0.001), high 24-hour urine protein/osmolality ratio (24HUPOR) (p<0.001), low 24-hour urine creatinine/osmolality ratio (24HUCOR) (p<0.001), and low spot urine protein/osmolality ratio (SUPOR) (p<0.001), predicted proteinuria in this study. The risk factors of proteinuria in subjects without impaired renal filtration function in Owerri, Nigeria, included 24HUV, SUPCR, 24HUPCR, 24HUPOR, 24HUCOR and SUPOR. Further research should explore the relationship between urine creatinine and urine osmolality, and how this relationship may affect progression of kidney damage, with or without impaired renal filtration function.
Pyrogenic renal hyperemia: the role of prostaglandins.
Gagnon, J A; Ramwell, P W; Flamenbaum, W
1978-01-01
The intravenous administration of triple typhoid vaccine to anesthetized dogs resulted in a significant increase in renal blood flow accompanied by a modest decline in systemic blood pressure. This renal hyperemia was associated with elevated renal secretory rates of renin and prostaglandin E and F. Measurements of the intracortical distribution of radiolabeled microspheres revealed a progressive decrease in outer cortical blood flow rates and a progressive increase in inner cortical flow rates. When meclofenamate, an inhibitor of prostaglandin synthetase, was administered concomitantly with triple typhoid vaccine renal hyperemia did not develop. The renal renin secretory rate increased modestly and intracortical renal blood flow was not redistributed. The increased renal blood flow after triple typhoid vaccine administration to unanesthetized dogs was also reversed by meclofenamate. The marked increase in prostaglandin secretion by the kidney during renal hyperemia following triple typhoid vaccine administration (pyrogen), and the effect of meclofenamate, is consonant with a role for increased renal synthesis and release of prostaglandins.
Hypertensive renal disease: susceptibility and resistance in inbred hypertensive rat lines.
Braun, Michael C; Herring, Stacy M; Gokul, Nisha; Monita, Monique; Bell, Rebecca; Hicks, M John; Wenderfer, Scott E; Doris, Peter A
2013-10-01
Spontaneously hypertensive rat (SHR) lines differ in their susceptibility to hypertensive end-organ disease and may provide an informative model of genetic risk of disease. Lines derived from the original SHR-B and SHR-C clades are highly resistant to hypertensive end-organ disease, whereas lines derived from the SHR-A clade were selected for stroke susceptibility and experience hypertensive renal disease. Here we characterize the temporal development of progressive renal injury in SHR-A3 animals consuming 0.3% sodium in the diet and drinking water. SHR-A3 rats demonstrate albuminuria, glomerular damage, tubulointerstitial injury, and renal fibrosis that emerge at 18 weeks of age and progress. Mortality of SHR-A3 animals was 50% at 40 weeks of age, and animals surviving to this age had reduced renal function. In contrast SHR-B2, which are 87% genetically identical to SHR-A3, are substantially protected from renal injury and demonstrate only moderate changes in albuminuria and renal histological injury over this time period. At 40 weeks of age, electron microscopy of the renal glomerulus revealed severe podocyte effacement in SHR-A3, but slit diaphragm architecture in SHR-B2 at this age was well preserved. Renal injury traits in the F1 and F2 progeny of an intercross between SHR-A3 and SHR-B2 were measured to determine heritability of renal injury in this model. Heritability of albuminuria, glomerular injury, and tubulointerstitial injury were estimated at 48.9, 66.5 and 58.6%, respectively. We assessed the relationship between blood pressure and renal injury measures in the F2 animals and found some correlation between these variables that explain up to 26% of the trait variation. Quantitative trait locus (QTL) mapping was performed using over 200 single nucleotide polymorphism markers distributed across the 13% of the genome that differs between these two closely related lines. Mapping of albuminuria, tubulointerstitial injury, and renal fibrosis failed to identify loci linked with disease susceptibility, suggesting a complex inheritance of disease risk. We detected a single QTL conferring susceptibility to glomerular injury that was confined to a small haplotype block at chromosome 14:70-76Mb.
[Cardio-renal syndrome: the challenge in heart failure treatment].
Martins, Hélia; Pedro, Nelson; Castellano, Maria; Monteiro, Pedro; Moura, José Júlio; Providência, Luís A
2011-01-01
Heart failure is a chronic and progressive disease that is estimated to affect approximately 20 million people worldwide and is one of the major public health problems. Its prevalence is reaching epidemic levels with about 550,000 new cases diagnosed annually, partly due to increased life expectancy in developed countries. And as it is a systemic disease, it can cause dysfunction in various organs, but especially in the kidney. The renal failure is often associated with heart failure and, when present together, make the treatment more complex and the prognosis is worse. This is the cardio-renal syndrome. The definition of cardio-renal syndrome varies according to the working groups, and there isn't a consensus. The exact cause of deterioration of renal function and the mechanism behind this interaction are complex, multifactorial in nature and not fully known at present. The treatment available is the one used for the treatment of heart failure. It is necessary to maintain the normal function of filtration, secretion and reabsorption in kidney to have a real improvement of the clinical condition of the patient. Patients with higher risk of developing nephropathy and those who have diagnosed renal failure should have prescribed drugs that are handled very carefully. But as in many other clinical situations, there aren't perfect drugs available to treat cardio-renal syndrome and the existing ones may have serious side effects in medium/long term causing the deterioration of renal function and possibly an increased mortality. The treatment is truly challenging in patients with severe fluid overload that is refractory to diuretics. This article aims to present the existing definitions of cardio-renal syndrome, its epidemiology, describe the current knowledge about the pathophysiology and its relationship to therapeutic interventions, some actual strategies and future technologies in an attempt to preserve the kidney, mainly during the decompensation of chronic heart failure.
Localized renal cell carcinoma management: an update.
Heldwein, Flavio L; McCullough, T Casey; Souto, Carlos A V; Galiano, Marc; Barret, Eric
2008-01-01
To review the current modalities of treatment for localized renal cell carcinoma. A literature search for keywords: renal cell carcinoma, radical nephrectomy, nephron sparing surgery, minimally invasive surgery, and cryoablation was performed for the years 2000 through 2008. The most relevant publications were examined. New epidemiologic data and current treatment of renal cancer were covered. Concerning the treatment of clinically localized disease, the literature supports the standardization of partial nephrectomy and laparoscopic approaches as therapeutic options with better functional results and oncologic success comparable to standard radical resection. Promising initial results are now available for minimally invasive therapies, such as cryotherapy and radiofrequency ablation. Active surveillance has been reported with acceptable results, including for those who are poor surgical candidates. This review covers current advances in radical and conservative treatments of localized kidney cancer. The current status of nephron-sparing surgery, ablative therapies, and active surveillance based on natural history has resulted in great progress in the management of localized renal cell carcinoma.
Extreme intrafamilial variability of Saudi brothers with primary hyperoxaluria type 1.
Alfadhel, Majid; Alhasan, Khalid A; Alotaibi, Mohammed; Al Fakeeh, Khalid
2012-01-01
Primary hyperoxaluria type 1 (PH1) is characterized by progressive renal insufficiency culminating in end-stage renal disease, and a wide range of clinical features related to systemic oxalosis in different organs. It is caused by autosomal recessive deficiency of alanine:glyoxylate aminotransferase due to a defect in AGXT gene. Two brothers (one 6 months old; the other 2 years old) presented with acute renal failure and urinary tract infection respectively. PH1 was confirmed by high urinary oxalate level, demonstration of oxalate crystals in bone biopsy, and pathogenic homozygous known AGXT gene mutation. Despite the same genetic background, same sex, and shared environment, the outcome of the two siblings differs widely. While one of them died earlier with end-stage renal disease and multiorgan failure caused by systemic oxalosis, the older brother is pyridoxine responsive with normal development and renal function. Clinicians should be aware of extreme intrafamilial variability of PH1 and international registries are needed to characterize the genotype-phenotype correlation in such disorder.
Mitochondrial tRNAPhe mutation as a cause of end-stage renal disease in childhood
D’Aco, Kristin E; Manno, Megan; Clarke, Colleen; Ganesh, Jaya; Meyers, Kevin EC; Sondheimer, Neal
2012-01-01
Background We identified a mitochondrial tRNA mutation (m.586G>A) in a patient with renal failure and symptoms consistent with a mitochondrial cytopathy. This mutation was of unclear significance because there were neither consistent reports of linkage to specific disease phenotypes nor an existing analysis of effects upon mitochondrial function. Case-Diagnosis/Treatment A 16-month-old girl with failure-to-thrive, developmental regression, persistent lactic acidosis, hypotonia, GI dysmotility, adrenal insufficiency and hematologic abnormalities developed hypertension and renal impairment with chronic tubulointerstitial fibrosis, progressing to renal failure with need for peritoneal dialysis. Evaluation of her muscle and blood identified a mutation of the mitochondrial tRNA for phenylalanine, m.586G>A. Conclusions The m.586G>A mutation is pathogenic and is a cause of end-stage renal disease in childhood. The mutation interferes with the stability of tRNAPhe and affects the translation of mitochondrial proteins and the stability of the electron transport chain. PMID:23135609
Acid-base balance of the diet: implications for bone
USDA-ARS?s Scientific Manuscript database
With aging, men and women develop a mild and progressive metabolic acidosis. This occurs as a result of the combination of declining renal function and ingestion of acid-producing diets. Acid-producing diets are generally low in fruits and vegetables in relation to their content of cereal grains and...
NF-κB-Dependent Lymphoid Enhancer Co-option Promotes Renal Carcinoma Metastasis.
Rodrigues, Paulo; Patel, Saroor A; Harewood, Louise; Olan, Ioana; Vojtasova, Erika; Syafruddin, Saiful E; Zaini, M Nazhif; Richardson, Emma K; Burge, Johanna; Warren, Anne Y; Stewart, Grant D; Saeb-Parsy, Kourosh; Samarajiwa, Shamith A; Vanharanta, Sakari
2018-06-06
Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states. SIGNIFICANCE: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 1-16. ©2018 AACR. ©2018 American Association for Cancer Research.
Koo, T Y; Ahn, C; Yang, J
2017-06-01
Cardiovascular disease is the leading cause of morbidity and mortality in kidney transplantation (KT) patients. The prevalence of left ventricular hypertrophy increases with the progression of renal insufficiency. We investigated the association between the progression of renal insufficiency and left ventricular hypertrophy after KT. We reviewed KT patients at Seoul National University Hospital from January 1973 to December 2009. The creatinine elevation ratio (CER, the percentage change in the creatinine level from 1 month to 5 years after transplant) was calculated as follows: (creatinine level at 5 years minus creatinine level at 1 month)/creatinine level at 1 month × 100. The study population was classified into a high-CER group (CER ≥25%) and low-CER group (CER <25%). Mean left ventricular mass index (LVMI) values were 135.7 and 134.7 g/m 2 before KT and 101.7 and 123.7 g/m 2 at 5 years after KT in the low-CER and high-CER groups, respectively. The LVMI before or 1 year after KT was not different between the 2 groups, but the LVMI at 5 years post-transplant was higher in the high-CER group than in the low-CER group. The LVMI increased after its initial decrease in the high-CER group, whereas its reduction was maintained in the low-CER group during the 5 years after KT (P = .009, repeated-measures analysis of variance). These data suggest that deterioration of renal allograft function is associated with left ventricular remodeling after KT. Copyright © 2017 Elsevier Inc. All rights reserved.
The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system.
Schernthaner, Guntram; Mogensen, Carl Erik; Schernthaner, Gerit-Holger
2014-09-01
Diabetic nephropathy (DN) affects an estimated 20%-40% of patients with type 2 diabetes mellitus (T2DM). Key modifiable risk factors for DN are albuminuria, anaemia, dyslipidaemia, hyperglycaemia and hypertension, together with lifestyle factors, such as smoking and obesity. Early detection and treatment of these risk factors can prevent DN or slow its progression, and may even induce remission in some patients. DN is generally preceded by albuminuria, which frequently remains elevated despite treatment in patients with T2DM. Optimal treatment and prevention of DN may require an early, intensive, multifactorial approach, tailored to simultaneously target all modifiable risk factors. Regular monitoring of renal function, including urinary albumin excretion, creatinine clearance and glomerular filtration rate, is critical for following any disease progression and making treatment adjustments. Dipeptidyl peptidase (DPP)-4 inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels without additional risk of hypoglycaemia, and may also reduce albuminuria. Further investigation of the potential renal benefits of DPP-4 and SGLT2 inhibitors is underway. © The Author(s) 2014.
The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system
Mogensen, Carl Erik; Schernthaner, Gerit-Holger
2014-01-01
Diabetic nephropathy (DN) affects an estimated 20%–40% of patients with type 2 diabetes mellitus (T2DM). Key modifiable risk factors for DN are albuminuria, anaemia, dyslipidaemia, hyperglycaemia and hypertension, together with lifestyle factors, such as smoking and obesity. Early detection and treatment of these risk factors can prevent DN or slow its progression, and may even induce remission in some patients. DN is generally preceded by albuminuria, which frequently remains elevated despite treatment in patients with T2DM. Optimal treatment and prevention of DN may require an early, intensive, multifactorial approach, tailored to simultaneously target all modifiable risk factors. Regular monitoring of renal function, including urinary albumin excretion, creatinine clearance and glomerular filtration rate, is critical for following any disease progression and making treatment adjustments. Dipeptidyl peptidase (DPP)-4 inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels without additional risk of hypoglycaemia, and may also reduce albuminuria. Further investigation of the potential renal benefits of DPP-4 and SGLT2 inhibitors is underway. PMID:25116004
NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy
Knauf, Felix; Asplin, John R.; Granja, Ignacio; Schmidt, Insa M.; Moeckel, Gilbert; David, Rachel; Flavell, Richard A.; Aronson, Peter S.
2013-01-01
Oxalate nephropathy with renal failure is caused by multiple disorders causing hyperoxaluria due to either overproduction of oxalate (primary hyperoxaluria) or excessive absorption of dietary oxalate (enteric hyperoxaluria). To study the etiology of renal failure in crystal-induced kidney disease, we created a model of progressive oxalate nephropathy by feeding mice a diet high in soluble oxalate (high oxalate in the absence of dietary calcium). Renal histology was characterized by intratubular calcium-oxalate crystal deposition with an inflammatory response in the surrounding interstitium. Oxalate nephropathy was not found in mice fed a high oxalate diet that also contained calcium. NALP3, also known as cryopyrin, has been implicated in crystal-associated diseases such as gout and silicosis. Mice fed the diet high in soluble oxalate demonstrated increased NALP3 expression in the kidney. Nalp3-null mice were completely protected from the progressive renal failure and death that occurred in wild-type mice fed the diet high in soluble oxalate. NALP3-deficiency did not affect oxalate homeostasis, thereby excluding differences in intestinal oxalate handling to explain the observed phenotype. Thus, progressive renal failure in oxalate nephropathy results primarily from NALP3-mediated inflammation. PMID:23739234
Aging and the Disposition and Toxicity of Mercury in Rats
Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.
2014-01-01
Progressive loss of functioning nephrons, secondary to age-related glomerular disease, can impair the ability of the kidneys to effectively clear metabolic wastes and toxicants from blood. Additionally, as renal mass is diminished, cellular hypertrophy occurs in functional nephrons that remain. We hypothesize that these nephrons are exposed to greater levels of nephrotoxicants, such as inorganic mercury (Hg2+), and thus are at an increased risk of becoming intoxicated by these compounds. The purpose of the present study was to characterize the effects of aging on the disposition and renal toxicity of Hg2+ in young adult and aged Wistar rats. Paired groups of animals were injected (i.v.) with either a 0.5 μmol • kg−1 non-nephrotoxic or a 2.5 μmol • kg−1 nephrotoxic dose of mercuric chloride (HgCl2). Plasma creatinine and renal biomarkers of proximal tubular injury were greater in both groups of aged rats than in the corresponding groups of young adult rats. Histologically, evidence of glomerular sclerosis, tubular atrophy, interstitial inflammation and fibrosis were significant features of kidneys from aged animals. In addition, proximal tubular necrosis, especially along the straight segments in the inner cortex and outer stripe of the outer medulla was a prominent feature in the renal sections from both aged and young rats treated with the nephrotoxic dose of HgCl2. Our findings indicate 1) that overall renal function is significantly impaired in aged rats, resulting in chronic renal insufficiency and 2) the disposition of HgCl2 in aging rats is significantly altered compared to that of young rats. PMID:24548775
Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes.
Wanner, Christoph; Inzucchi, Silvio E; Lachin, John M; Fitchett, David; von Eynatten, Maximilian; Mattheus, Michaela; Johansen, Odd Erik; Woerle, Hans J; Broedl, Uli C; Zinman, Bernard
2016-07-28
Diabetes confers an increased risk of adverse cardiovascular and renal events. In the EMPA-REG OUTCOME trial, empagliflozin, a sodium-glucose cotransporter 2 inhibitor, reduced the risk of major adverse cardiovascular events in patients with type 2 diabetes at high risk for cardiovascular events. We wanted to determine the long-term renal effects of empagliflozin, an analysis that was a prespecified component of the secondary microvascular outcome of that trial. We randomly assigned patients with type 2 diabetes and an estimated glomerular filtration rate of at least 30 ml per minute per 1.73 m(2) of body-surface area to receive either empagliflozin (at a dose of 10 mg or 25 mg) or placebo once daily. Prespecified renal outcomes included incident or worsening nephropathy (progression to macroalbuminuria, doubling of the serum creatinine level, initiation of renal-replacement therapy, or death from renal disease) and incident albuminuria. Incident or worsening nephropathy occurred in 525 of 4124 patients (12.7%) in the empagliflozin group and in 388 of 2061 (18.8%) in the placebo group (hazard ratio in the empagliflozin group, 0.61; 95% confidence interval, 0.53 to 0.70; P<0.001). Doubling of the serum creatinine level occurred in 70 of 4645 patients (1.5%) in the empagliflozin group and in 60 of 2323 (2.6%) in the placebo group, a significant relative risk reduction of 44%. Renal-replacement therapy was initiated in 13 of 4687 patients (0.3%) in the empagliflozin group and in 14 of 2333 patients (0.6%) in the placebo group, representing a 55% lower relative risk in the empagliflozin group. There was no significant between-group difference in the rate of incident albuminuria. The adverse-event profile of empagliflozin in patients with impaired kidney function at baseline was similar to that reported in the overall trial population. In patients with type 2 diabetes at high cardiovascular risk, empagliflozin was associated with slower progression of kidney disease and lower rates of clinically relevant renal events than was placebo when added to standard care. (Funded by the Boehringer Ingelheim and Eli Lilly and Company Diabetes Alliance; EMPA-REG OUTCOME ClinicalTrials.gov number, NCT01131676.).
Chen, Yuan; Sun, Yin; Rao, Qun; Xu, Hua; Li, Lei; Chang, Chawnshang
2015-01-01
Mutational inactivation of the VHL tumor suppressor plays key roles in the development of renal cell carcinoma (RCC), and mutated VHL-mediated VEGF induction has become the main target for the current RCC therapy. Here we identified a signal pathway of VEGF induction by androgen receptor (AR)/miRNA-145 as a new target to suppress RCC progression. Mechanism dissection revealed that AR might function through binding to the androgen receptor element (ARE) located on the promoter region of miRNA-145 to suppress p53's ability to induce expression of miRNA-145 that normally suppresses expression of HIF2α/VEGF/MMP9/CCND1. Suppressing AR with AR-shRNA or introducing exogenous miRNA-145 mimic can attenuate RCC progression independent of VHL status. MiR-145 mimic in preclinical RCC orthotopic xenograft mouse model revealed its efficacy in suppression of RCC progression. These results together identified signals by AR-suppressed miRNA-145 as a key player in the RCC progression via regulating HIF2α/VEGF/MMP9/CCND1 expression levels. Blockade of the newly identified signal by AR inhibition or miRNA-145 mimics has promising therapeutic benefit to suppress RCC progression. PMID:26304926
Pinkham, Maximilian I.; Loftus, Michael T.; Amirapu, Satya; Guild, Sarah-Jane; Quill, Gina; Woodward, William R.; Habecker, Beth A.
2017-01-01
Heart failure is characterized by the loss of sympathetic innervation to the ventricles, contributing to impaired cardiac function and arrhythmogenesis. We hypothesized that renal denervation (RDx) would reverse this loss. Male Wistar rats underwent myocardial infarction (MI) or sham surgery and progressed into heart failure for 4 wk before receiving bilateral RDx or sham RDx. After additional 3 wk, left ventricular (LV) function was assessed, and ventricular sympathetic nerve fiber density was determined via histology. Post-MI heart failure rats displayed significant reductions in ventricular sympathetic innervation and tissue norepinephrine content (nerve fiber density in the LV of MI+sham RDx hearts was 0.31 ± 0.05% vs. 1.00 ± 0.10% in sham MI+sham RDx group, P < 0.05), and RDx significantly increased ventricular sympathetic innervation (0.76 ± 0.14%, P < 0.05) and tissue norepinephrine content. MI was associated with an increase in fibrosis of the noninfarcted ventricular myocardium, which was attenuated by RDx. RDx improved LV ejection fraction and end-systolic and -diastolic areas when compared with pre-RDx levels. This is the first study to show an interaction between renal nerve activity and cardiac sympathetic nerve innervation in heart failure. Our findings show denervating the renal nerves improves cardiac sympathetic innervation and function in the post-MI failing heart. PMID:28052866
Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo
2015-01-01
Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970
Gude, Einar; Gullestad, Lars; Andreassen, Arne K
2017-06-01
De-novo introduction of everolimus (Eve) in heart transplant recipients opens for early reduction of calcineurin inhibitors (CNI) and potential of preserving renal function, attenuate progression of coronary allograft vasculopathy (CAV) and maintain rejection efficacy. The first trials demonstrated adequate rejection prophylaxis and favorable outcomes on CAV, but observed enhanced nephrotoxicity because of insufficient CNI reduction. The SCHEDULE trial compared de-novo Eve with significantly reduced CNI exposure and conversion to CNI-free treatment week 7-11 postheart transplant, with standard CNI immunosuppression. Improved renal function and attenuation of CAV was found among Eve patients, with higher numbers of treated acute rejections observed. With sustained superior renal and CAV related data also after 36 months with the Eve protocol, cardiac function was equally well preserved in both groups. According to the International Society of Heart and Lunge Transplantation registry, mammalian target of rapamycin inhibitor treatment is uncommon during the first postoperative year, with a prevalence of 20% in patients after 5 years. Current evidence suggests a greater benefit from these immunosuppressives if introduced at an earlier timepoint. Immunosuppressive protocols based on Eve treatment in de-novo patients should be further investigated and developed, enabling CNI avoidance before accelerating side-effects lead to irreversible damage.
Ezquer, Fernando; Giraud-Billoud, Maximiliano; Carpio, Daniel; Cabezas, Fabián; Conget, Paulette; Ezquer, Marcelo
2015-01-01
The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected.
Ezquer, Fernando; Giraud-Billoud, Maximiliano; Carpio, Daniel; Cabezas, Fabián; Conget, Paulette
2015-01-01
The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected. PMID:26167475
Kim, Jee-Seon; Kim, Kyong-Ju; Choi, Eun-Young
2018-06-01
The standard drugs used to treat tuberculosis are rifampicin and isoniazid. These agents are usually safe and inexpensive for short-term use in treatment of latent tuberculosis infection, but sometimes cause adverse renal effects, including minimal change disease (MCD). Here, we report a 51-year-old woman with latent tuberculosis infection who developed nephrotic syndrome during treatment with rifampicin and isoniazid for 25 days. Renal biopsy findings were compatible with MCD, and she had no relevant medical history and was not taking other medications. A diagnosis of anti-tuberculosis drug- induced MCD was made. This is the first report of acute renal failure due to rifampicin and/or isoniazid-induced MCD. After cessation of rifampicin and isoniazid, however, acute renal failure progressed and she was treated with temporary dialysis and oral prednisolone. The patient achieved complete remission after cessation of rifampicin and isoniazid with steroid therapy. This case demonstrates that rifampicin and/or isoniazid can cause nephrotic syndrome with acute renal failure during the first months of continuous latent tuberculosis therapy. Therefore, renal function and proteinuria should be monitored carefully in all patients taking rifampicin and isoniazid, especially during the first few months of therapy.
Chen, Jun-Feng; Liu, Hong; Ni, Hai-Feng; Lv, Lin-Li; Zhang, Ming-Hui; Zhang, Ai-Hua; Tang, Ri-Ning; Chen, Ping-Sheng; Liu, Bi-Cheng
2013-01-01
Dysfunctional mitochondria participate in the progression of chronic kidney disease (CKD). Pirfenidone is a newly identified anti-fibrotic drug. However, its mechanism remains unclear. Mitochondrial dysfunction is an early event that occurs prior to the onset of renal fibrosis. In this context, we investigated the protective effect of pirfenidone on mitochondria and its relevance to apoptosis and oxidative stress in renal proximal tubular cells. A remnant kidney rat model was established. Human renal proximal tubular epithelial cells (HK2) using rotenone, a mitochondrial respiratory chain complex Ι inhibitor were further investigated in vitro to examine the mitochondrial protective effect of pirfenidone. Pirfenidone protected mitochondrial structures and functions by stabilizing the mitochondrial membrane potential, maintaining ATP production and improving the mitochondrial DNA (mtDNA) copy number. Pirfenidone decreased tubular cell apoptosis by inhibiting the mitochondrial apoptotic signaling pathway. Pirfenidone also reduced oxidative stress by enhancing manganese superoxide dismutase (Mn-SOD) and inhibiting intracellular reactive oxygen species (ROS) generation, which suggested that the anti-oxidant effects occurred at least partially via the mitochondrial pathway. Pirfenidone may be effective prior to the onset of renal fibrosis because this drug exerts its anti-fibrotic effect by protection of mitochondria in renal proximal tubular cells.
Chen, Jun-Feng; Liu, Hong; Ni, Hai-Feng; Lv, Lin-Li; Zhang, Ming-Hui; Zhang, Ai-Hua; Tang, Ri-Ning; Chen, Ping-Sheng; Liu, Bi-Cheng
2013-01-01
Dysfunctional mitochondria participate in the progression of chronic kidney disease (CKD). Pirfenidone is a newly identified anti-fibrotic drug. However, its mechanism remains unclear. Mitochondrial dysfunction is an early event that occurs prior to the onset of renal fibrosis. In this context, we investigated the protective effect of pirfenidone on mitochondria and its relevance to apoptosis and oxidative stress in renal proximal tubular cells. A remnant kidney rat model was established. Human renal proximal tubular epithelial cells (HK2) using rotenone, a mitochondrial respiratory chain complex Ι inhibitor were further investigated in vitro to examine the mitochondrial protective effect of pirfenidone. Pirfenidone protected mitochondrial structures and functions by stabilizing the mitochondrial membrane potential, maintaining ATP production and improving the mitochondrial DNA (mtDNA) copy number. Pirfenidone decreased tubular cell apoptosis by inhibiting the mitochondrial apoptotic signaling pathway. Pirfenidone also reduced oxidative stress by enhancing manganese superoxide dismutase (Mn-SOD) and inhibiting intracellular reactive oxygen species (ROS) generation, which suggested that the anti-oxidant effects occurred at least partially via the mitochondrial pathway. Pirfenidone may be effective prior to the onset of renal fibrosis because this drug exerts its anti-fibrotic effect by protection of mitochondria in renal proximal tubular cells. PMID:24349535
Kelly, Tanika N; Raj, Dominic; Rahman, Mahboob; Kretzler, Matthias; Kallem, Radhakrishna R; Ricardo, Ana C; Rosas, Sylvia E; Tao, Kaixiang; Xie, Dawei; Hamm, Lotuce Lee; He, Jiang
2015-10-01
We conducted single-marker, gene- and pathway-based analyses to examine the association between renin-angiotensin-aldosterone system (RAAS) variants and chronic kidney disease (CKD) progression among Chronic Renal Insufficiency Cohort study participants. A total of 1523 white and 1490 black subjects were genotyped for 490 single nucleotide polymorphisms (SNPs) in 12 RAAS genes as part of the ITMAT-Broad-CARe array. CKD progression phenotypes included decline in estimated glomerular filtration rate (eGFR) over time and the occurrence of a renal disease event, defined as incident end-stage renal disease or halving of eGFR from baseline. Mixed-effects models were used to examine SNP associations with eGFR decline, while Cox proportional hazards models tested SNP associations with renal events. Gene- and pathway-based analyses were conducted using the truncated product method. All analyses were stratified by race, and a Bonferroni correction was applied to adjust for multiple testing. Among white and black participants, eGFR declined an average of 1.2 and 2.3 mL/min/1.73 m(2)/year, respectively, while renal events occurred in a respective 11.5 and 24.9% of participants. We identified strong gene- and pathway-based associations with CKD progression. The AGT and RENBP genes were consistently associated with risk of renal events in separate analyses of white and black participants (both P < 1.00 × 10(-6)). Driven by the significant gene-based findings, the entire RAAS pathway was also associated with renal events in both groups (both P < 1.00 × 10(-6)). No single-marker associations with CKD progression were observed. The current study provides strong evidence for a role of the RAAS in CKD progression. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Kelly, Tanika N.; Raj, Dominic; Rahman, Mahboob; Kretzler, Matthias; Kallem, Radhakrishna R.; Ricardo, Ana C.; Rosas, Sylvia E.; Tao, Kaixiang; Xie, Dawei; Hamm, Lotuce Lee; He, Jiang; Appel, J.; Feldman, Harold I.; Go, Alan S.; Kusek, John W.; Lash, James P.; Ojo, Akinlolu; Townsend, Raymond R.
2015-01-01
Background We conducted single-marker, gene- and pathway-based analyses to examine the association between renin–angiotensin–aldosterone system (RAAS) variants and chronic kidney disease (CKD) progression among Chronic Renal Insufficiency Cohort study participants. Methods A total of 1523 white and 1490 black subjects were genotyped for 490 single nucleotide polymorphisms (SNPs) in 12 RAAS genes as part of the ITMAT-Broad-CARe array. CKD progression phenotypes included decline in estimated glomerular filtration rate (eGFR) over time and the occurrence of a renal disease event, defined as incident end-stage renal disease or halving of eGFR from baseline. Mixed-effects models were used to examine SNP associations with eGFR decline, while Cox proportional hazards models tested SNP associations with renal events. Gene- and pathway-based analyses were conducted using the truncated product method. All analyses were stratified by race, and a Bonferroni correction was applied to adjust for multiple testing. Results Among white and black participants, eGFR declined an average of 1.2 and 2.3 mL/min/1.73 m2/year, respectively, while renal events occurred in a respective 11.5 and 24.9% of participants. We identified strong gene- and pathway-based associations with CKD progression. The AGT and RENBP genes were consistently associated with risk of renal events in separate analyses of white and black participants (both P < 1.00 × 10−6). Driven by the significant gene-based findings, the entire RAAS pathway was also associated with renal events in both groups (both P < 1.00 × 10−6). No single-marker associations with CKD progression were observed. Conclusions The current study provides strong evidence for a role of the RAAS in CKD progression. PMID:25906781
Gjorgjievska, K; Zafirov, D; Jurhar-Pavlova, M; Cekovska, S; Atanasovska, E; Pavlovska, K; Zendelovska, D
2015-01-01
Salt sensitive hypertension is known to be a contributing factor for the progression of kidney disease. This study was undertaken to investigate the role of excessive dietary salt on renal function and to evaluate the effect of valsartan and amlodipin given as a combination therapy on blood pressure and parameters specific to the renal function in salt loaded SHR rats. 48 male SHR rats at age of 20 weeks and body weight ranging between 270-350 g were used. SHR rats were divided into 3 groups: control group of rats -SHRC (n = 16) given tab water ad libitum and two salt treated groups in which tab water was replaced with a solution of NaCl (1%) from age of 8 weeks given ad libitum: SHRVAL+AMLO group (n = 16) where investigated drugs were administered at a dose of 10 mg/kg/ b.w. (valsartan) and 5 mg/kg/ b.w. (amlodipin) by gavage and SHR NaCl group (n = 16) that received saline in the same volume and the same time intervals as the SHRVAL+AMLO group. For a period of 12 weeks we have investigated the effect of the VAL+AMLO drug combination on systolic blood pressure (SBP), body weight and renal function tests. Salt loading with 1% solution in the SHR NaCl group has lead to significant increase of blood pressure, proteinuria and decrease in creatinine clearance. Combined treatment with AT1 receptor blocker and calcium antagonist has managed to control blood pressure and ameliorated renal damage.
Kataoka, Hiroshi; Mochizuki, Toshio; Nitta, Kosaku
2018-01-01
Renal prognostic factors of chronic kidney disease are important concerns for patients. Kidney biopsy can be used to evaluate not only the activity of the original disease but also various risk factors related to the lifestyle of patients. Considering that lifestyle-related factors, including obesity and metabolic syndrome, are crucial prognostic risk factors of kidney disease progression and all-cause mortality, evaluation of lifestyle-related prognostic factors in kidney biopsy of all kidney diseases is important. Renal corpuscle size (glomerular size) is an easily measured parameter and potentially acts as a predictor of long-term renal function. Large renal corpuscle found on kidney biopsy is a classic and simple indicator, and has merit owing to its quantitative nature, but it has yet to be used to its full potential in clinical settings. Large renal corpuscle is an index that includes not only the activity of the original disease but also the damage of various metabolic risk states as represented by obesity, diabetes, and metabolic syndrome. Large renal corpuscles could be used to guide therapy. In this review, after identifying the pitfalls regarding the assessment of mean values in medical research, we propose that measurement of the maximum renal corpuscle profile (glomerular profile) in renal biopsies would provide valuable insights into the diagnosis, prognosis, and management of kidney diseases. © 2018 S. Karger AG, Basel.
West, Stephen; Soar, Jasmeet; Callaway, Clifton W
2016-11-01
To identify reports of patients who underwent cardiopulmonary resuscitation (CPR) prior to solid organ donation and compare recipient and organ function outcomes to those that did not undergo CPR. Donation after restoration of circulation then progressing to death and those donating with on-going CPR who would have otherwise have termination of efforts were both included. Systematic review. Clinical studies comparing the outcome of patients and organs retrieved from donors who underwent CPR with those that did not require CPR. Full-text articles were searched on EmBASE, MEDLINE, Cochrane Database of Systematic Reviews and the Cochrane Register of Controlled Trials. Twenty-two observational studies were included. There were 12,206 adult and 2552 paediatric organ transplantation identified. Comparing donation after restoration of circulation there was no difference in immediate, one year, and five-year graft function. Donation with on-going CPR was associated with reduced immediate graft function for both renal and hepatic transplantation, however long term function was not different. CPR does not appear to adversely affect graft function. Patients who have restored circulation after resuscitation and subsequently progress to death should be evaluated for organ donation. Those with on-going CPR should be considered for hepatic and renal transplantation but there may be worse initial graft function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Can zero-hour cortical biopsy predict early graft outcomes after living donor renal transplantation?
Rathore, Ranjeet Singh; Mehta, Nisarg; Mehta, Sony Bhaskar; Babu, Manas; Bansal, Devesh; Pillai, Biju S; Sam, Mohan P; Krishnamoorthy, Hariharan
2017-11-01
The aim of this study was to identify relevance of subclinical pathological findings in the kidneys of living donors and correlate these with early graft renal function. This was a prospective study on 84 living donor kidney transplant recipients over a period of two years. In all the donors, cortical wedge biopsy was taken and sent for assessment of glomerular, mesangial, and tubule status. The graft function of patients with normal histology was compared with those of abnormal histological findings at one, three, and six months, and one year post-surgery. Most abnormal histological findings were of mild degree. Glomerulosclerosis (GS, 25%), interstitial fibrosis (IF, 13%), acute tubular necrosis (ATN 5%), and focal tubal atrophy (FTA, 5%) were the commonly observed pathological findings in zero-hour biopsies. Only those donors who had histological changes of IF and ATN showed progressive deterioration of renal function at one month, three months, six months, and one year post-transplantation. In donors with other histological changes, no significant effect on graft function was observed. Zero-hour cortical biopsy gave us an idea of the general status of the donor kidney and presence or absence of subclinical pathological lesions. A mild degree of subclinical and pathological findings on zero-hour biopsy did not affect early graft renal function in living donor kidney transplantation. Zero-hour cortical biopsy could also help in discriminating donor-derived lesions from de novo alterations in the kidney that could happen subsequently.
Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes
2018-02-01
One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Guobao; Zhao, Tingting; Wang, Leyu; Hu, Bianxiang; Darabi, Ali; Lin, Jiansheng; Xing, Malcolm M Q; Qiu, Xiaozhong
2015-11-25
Single-walled carbon nanotubes (SWCNTs) have been used to deliver single-stranded (ssDNA). ssDNA in oligonucleotide can act as an inhibitor of microRNA to regulate cellular functions. However, these ssDNA are difficult to bind carbon nanotubes with low transferring efficiency to cells. To this end, we designed ssDNA with regulatory and functional units to form ssDNA-SWCNT hybrids to study their binding effects and transferring efficiency. The functional unit on ssDNA mimics the inhibitor (MI) of miRNA-382, which plays a crucial role in the progress of many diseases such as renal interstitial fibrosis. After verification of overexpression of miRNA-382 in a coculture system, we designed oligonucleotide sequences (GCG)5-MI, (TAT)5-MI, and N23-MI as regulatory units added to the 5'-terminal end of the functional DNA fragment, respectively. These regulatory units lead to different secondary structures and thus exhibit different affinity ability to SWCNTs, and finally decide their deliver efficacy to cells. Autophagy, apoptosis and necrosis were observed in renal mesangial cells.
New treatment options for metastatic renal cell carcinoma with prior anti-angiogenesis therapy.
Zarrabi, Kevin; Fang, Chunhui; Wu, Shenhong
2017-02-02
Angiogenesis is a critical process in the progression of advanced renal cell carcinoma. Agents targeting angiogenesis have played a primary role in the treatment of metastatic renal cell carcinoma. However, resistance to anti-angiogenesis therapy almost always occurs, and major progress has been made in understanding its underlying molecular mechanism. Axitinib and everolimus have been used extensively in patients whom have had disease progression after prior anti-angiogenesis therapy. Recently, several new agents have been shown to improve overall survival in comparison with everolimus. This review provides an in-depth summary of drugs employable in the clinical setting, the rationale to their use, and the studies conducted leading to their approval for use and provides perspective on the paradigm shift in the treatment of renal cell carcinoma. Highlighted are the newly approved agents cabozantinib, nivolumab, and lenvatinib for advanced renal cell carcinoma patients treated with prior anti-angiogenesis therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Xiao-hui; Zhang, Ling, E-mail: lindazhang8508@hotmail.com; Chen, Guo-tao
Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealedmore » that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD. - Highlights: • ALR is involved in the pathological progression of renal EMT in NRK-52E cells. • ALR suppresses the expression of TβRII and the phosphorylation of Smad2 and NF-κB. • ALR plays a role in inhibiting progression of renal tubular EMT.« less
The lymphotoxin β receptor is a potential therapeutic target in renal inflammation.
Seleznik, Gitta; Seeger, Harald; Bauer, Judith; Fu, Kai; Czerkowicz, Julie; Papandile, Adrian; Poreci, Uriana; Rabah, Dania; Ranger, Ann; Cohen, Clemens D; Lindenmeyer, Maja; Chen, Jin; Edenhofer, Ilka; Anders, Hans J; Lech, Maciej; Wüthrich, Rudolf P; Ruddle, Nancy H; Moeller, Marcus J; Kozakowski, Nicolas; Regele, Heinz; Browning, Jeffrey L; Heikenwalder, Mathias; Segerer, Stephan
2016-01-01
Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin β receptor (LTβR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTβR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTβR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTβ ligands, as well as LTβR. The LTβR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTβ was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTβ mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTβR signaling. Importantly, in a murine lupus model, LTβR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTβR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Liu, Yan; Mo, Lan; Goldfarb, David S.; Evan, Andrew P.; Liang, Fengxia; Khan, Saeed R.; Lieske, John C.
2010-01-01
Mammalian urine contains a range of macromolecule proteins that play critical roles in renal stone formation, among which Tamm-Horsfall protein (THP) is by far the most abundant. While THP is a potent inhibitor of crystal aggregation in vitro and its ablation in vivo predisposes one of the two existing mouse models to spontaneous intrarenal calcium crystallization, key controversies remain regarding the role of THP in nephrolithiasis. By carrying out a long-range follow-up of more than 250 THP-null mice and their wild-type controls, we demonstrate here that renal calcification is a highly consistent phenotype of the THP-null mice that is age and partially gene dosage dependent, but is gender and genetic background independent. Renal calcification in THP-null mice is progressive, and by 15 mo over 85% of all the THP-null mice develop spontaneous intrarenal crystals. The crystals consist primarily of calcium phosphate in the form of hydroxyapatite, are located more frequently in the interstitial space of the renal papillae than intratubularly, particularly in older animals, and lack accompanying inflammatory cell infiltration. The interstitial deposits of hydroxyapatite observed in THP-null mice bear strong resemblances to the renal crystals found in human kidneys bearing idiopathic calcium oxalate stones. Compared with 24-h urine from the wild-type mice, that of THP-null mice is supersaturated with brushite (calcium phosphate), a stone precursor, and has reduced urinary excretion of citrate, a stone inhibitor. While less frequent than renal calcinosis, renal pelvic and ureteral stones and hydronephrosis occur in the aged THP-null mice. These results provide direct in vivo evidence indicating that normal THP plays an important role in defending the urinary system against calcification and suggest that reduced expression and/or decreased function of THP could contribute to nephrolithiasis. PMID:20591941
Dietary Phosphorus Intake and the Kidney
Chang, Alex R.; Anderson, Cheryl
2017-01-01
Although phosphorus is an essential nutrient required for multiple physiological functions, recent research raises concerns that high phosphorus intake could have detrimental effects on health. Phosphorus is abundant in the food supply of developed countries, occurring naturally in protein-rich foods and as an additive in processed foods. High phosphorus intake can cause vascular and renal calcification, renal tubular injury, and premature death in multiple animal models. Small studies in human suggest that high phosphorus intake may result in positive phosphorus balance and correlate with renal calcification and albuminuria. Although serum phosphorus is strongly associated with cardiovascular disease, progression of kidney disease, and death, limited data exist linking high phosphorus intake directly to adverse clinical outcomes. Further prospective studies are needed to determine whether phosphorus intake is a modifiable risk factor for kidney disease. PMID:28613982
Role and regulation of apoptotic cell death in the kidney. Y2K update.
Ortiz, A; Lorz, C; Catalan, M P; Justo, P; Egido, J
2000-08-01
Apoptosis is an active form of cell death that, in balance with mitosis, regulates cell number. Cell number abnormalities are a frequent feature of renal disease. We now review current concepts on the molecular regulation of apoptotic cell death, including the influence of survival and lethal factors from the extracellular microenvironment as well as the role of intracellular regulators of apoptosis, such as death receptors, proapoptotic and antiapoptotic bcl2-related proteins, the mitochondria and caspases. In addition the role of apoptosis in the genesis, persistence and progression and remodeling and resolution of renal injury is discussed. Information on the expression and function of apoptosis regulatory proteins in specific renal syndromes is summarized. Finally, future perspectives in research and clinical intervention are discussed.
Levitsky, J.; O’Leary, J.G.; Asrani, S.; Sharma, P.; Fung, J.; Wiseman, A.; Niemann, C.U.
2016-01-01
Acute and chronic kidney disease after liver transplantation is common and results in significant morbidity and mortality. The introduction of MELD has directly correlated with an increased prevalence of perioperative renal dysfunction and the number of simultaneous liver-kidney transplants performed. Thus, kidney dysfunction in this population is typically multifactorial and related to pre-existing conditions, pre-transplant renal injury, peri-operative events, and post-transplant nephrotoxic immunosuppressive therapies. The management of kidney disease following liver transplantation is challenging, as by the time the serum creatinine is significantly elevated, few interventions impact the course of progression. Also, immunological factors such as antibody-mediated rejection have become of greater interest given the rising liver-kidney transplant population. Therefore this review, assembled by experts in the field and endorsed by the American Society of Transplantation Liver and Intestinal Community of Practice, provides a critical assessment of measures of renal function and interventions aimed at preserving renal function early and late after liver and simultaneous liver-kidney transplantation. Key points and practice-based recommendations for the prevention and management of kidney injury in this population are provided to offer guidance for clinicians and identify gaps in knowledge for future investigations. PMID:26932352
Argan, Onur; Ural, Dilek; Kozdag, Guliz; Sahin, Tayfun; Bozyel, Serdar; Aktas, Mujdat; Karauzum, Kurtulus; Yılmaz, Irem; Dervis, Emir; Agir, Aysen
2016-01-01
Background Atrial fibrillation (AF) and renal dysfunction are two common comorbidities in patients with chronic heart failure with reduced ejection fraction (HFrEF). This study evaluated the effect of permanent AF on renal function in HFrEF and investigated the associations of atrial fibrillation, neutrophil gelatinase-associated lipocalin (NGAL), and neutrophil-to-lymphocyte ratio (NLR) with adverse clinical outcome. Material/Methods Serum NGAL levels measured by ELISA and NLR were compared between patients with sinus rhythm (HFrEF-SR, n=68), with permanent AF (HFrEF-AF, n=62), and a healthy control group (n=50). Results Mean eGFR levels were significantly lower, and NLR and NGAL levels were significantly higher in the HFrEF patients than in the control patients but the difference between HFrEF-SR and HFrEF-AF was not statistically significant (NGAL: 95 ng/mL in HFrEF-SR, 113 ng/mL in HFrEF-AF and 84 ng/mL in the control group; p<0.001). Independent associates of baseline eGFR were age, hemoglobin, NLR, triiodothyronine, and pulmonary artery systolic pressure. In a mean 16 months follow-up, adverse clinical outcome defined as progression of kidney dysfunction and composite of all-cause mortality and re-hospitalization were not different between HFrEF-SR and HFrEF-AF patients. Although NGAL was associated with clinical endpoints in the univariate analysis, Cox regression analysis showed that independent predictors of increased events were the presence of signs right heart failure, C-reactive protein, NLR, triiodothyronine, and hemoglobin. In ROC analysis, a NLR >3 had a 68% sensitivity and 75% specificity to predict progression of kidney disease (AUC=0.72, 95% CI 0.58–0.85, p=0.001). Conclusions Presence of AF in patients with HFrEF was not an independent contributor of adverse clinical outcome (i.e., all-cause death, re-hospitalization) or progression of renal dysfunction. Renal dysfunction in HFrEF was associated with both NLR and NGAL levels, but systemic inflammation reflected by NLR seemed to be a more important determinant of progression of kidney dysfunction. PMID:27918494
Pini, Alessandro; Grange, Cristina; Veglia, Eleonora; Argenziano, Monica; Cavalli, Roberta; Guasti, Daniele; Calosi, Laura; Ghè, Corrado; Solarino, Roberto; Thurmond, Robin L; Camussi, Giovanni; Chazot, Paul L; Rosa, Arianna Carolina
2018-02-01
Due to the incidence of diabetes and the related morbidity of diabetic nephropathy, identification of new therapeutic strategies represents a priority. In the last few decades new and growing evidence on the possible role of histamine in diabetes has been provided. In particular, the histamine receptor H 4 R is emerging as a new promising pharmacological target for diabetic nephropathy. The aim of this study was to evaluate the efficacy of selective H 4 R antagonism by JNJ39758979 on the prevention of diabetic nephropathy progression in a murine model of diabetes induced by streptozotocin injection. JNJ39758979 (25, 50, 100 mg/kg/day p.o.) was administered for 15 weeks starting from the onset of diabetes. Functional parameters were monitored throughout the experimental period. JNJ39758979 did not significantly affect glycaemic status or body weight. The urine analysis indicated a dose-dependent inhibitory effect of JNJ39758979 on Albumin-Creatinine-Ratio, the Creatinine Clearance, the 24 h urine volume, and pH urine acidification (P < 0.05). The beneficial effects of JNJ39758979 on renal function paralleled comparable effects on renal morphological integrity. These effects were sustained by a significant immune infiltration and fibrosis reduction. Notably, megalin and sodium-hydrogen-exchanger 3 expression levels were preserved. Our data suggest that the H 4 R participates in diabetic nephropathy progression through both a direct effect on tubular reabsorption and an indirect action on renal tissue architecture via inflammatory cell recruitment. Therefore, H 4 R antagonism emerges as a possible new multi-mechanism therapeutic approach to counteract development of diabetic nephropathy development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Long-term renal outcome in patients with malignant hypertension: a retrospective cohort study
2012-01-01
Background Malignant hypertension is frequently complicated by renal insufficiency. Although the survival of this hypertensive emergency has improved, recent data on renal outcome and its predictors are lacking. We assessed renal outcome and its predictors in patients with malignant hypertension. Methods Retrospective analysis of patients admitted with malignant hypertension in Amsterdam, the Netherlands between August 1992–January 2010. Follow-up data on vital status, renal function and blood pressure (BP) were obtained from the outpatient department and from general practitioners. The primary composite endpoint was end-stage renal disease (ESRD) defined as the start of kidney replacement therapy (KRT) or ≥ 50% decline of estimated glomerular filtration rate (eGFR). The secondary endpoint was all cause mortality. Results A total of 120 patients admitted with malignant hypertension were included. After a median follow-up period of 67 months (IQR 28 to 108 months) the primary endpoint was reached by 37 (31%) patients, whereas 18 patients (15%) reached the secondary endpoint. Twenty-nine (24%) patients started KRT and 8 patients (7%) had an eGFR decline ≥ 50%. After the acute phase (> 3 months after admission), initial serum creatinine and follow-up BP were the main predictors of future ESRD with hazard ratios of 6.1 (95% CI, 2.2–17) for patients with initial serum creatinine ≥ 175 μmol /L and 4.3 (95% CI, 1.4–14) for patients with uncontrolled hypertension. Conclusions Progressive renal function decline leading to ESRD remains a major threat to patients with malignant hypertension. BP control during follow-up was an important modifiable predictor of renal outcome. PMID:22846257
Complications of cirrhosis. A 50 years flashback.
Møller, Søren; Bendtsen, Flemming
2015-06-01
In patients with cirrhosis and portal hypertension, it is largely the frequency and severity of complications relating to the diseased liver, degree of portal hypertension and hemodynamic derangement that determine the prognosis. It can be considered as a multiple organ failure that apart from the liver involves the heart, lungs, kidneys, the immune systems and other organ systems. Progressive fibrosis of the liver and subsequent metabolic impairment leads to a systemic and splanchnic arteriolar vasodilatation. With the progression of the disease development of portal hypertension leads to formation of esophageal varices and ascites. The circulation becomes hyperdynamic with cardiac, pulmonary as well as renal consequences for dysfunction and reduced survival. Infections and a changed cardiac function known as cirrhotic cardiomyopathy may be involved in further aggravation of other complications such as renal failure precipitating the hepatorenal syndrome. Patients with end-stage liver disease and related complications as for example the hepatopulmonary syndrome can only radically be treated by liver transplantation.
Abbate, M; Remuzzi, G
1996-05-01
Kidney repair from injury is a major focus of interest for research, both clinical and basic, in the field of acute renal failure. This is so because very little progress has been made during the past several years to improve mortality in hospitalized patients with acute renal failure despite the unique potential of the kidney for complete structural and functional recovery. Novel therapeutic options have recently emerged from the knowledge of molecular mechanisms of tissue injury after ischemia, including pathways of endothelial-leukocyte interaction and epithelial cell aggregation mediated by integrin molecules. These strategies are promising because they may target early mechanisms of leukocyte infiltration and tubular obstruction. However, it seems clear that additional interventions should address the reparative program that potentially leads to the full restoration of kidney structure and function. Thus, acceleration of repair from acute renal failure is achieved experimentally by growth factors which besides different renal actions seem to have in common the ability to stimulate proliferation of surviving tubular epithelial cells. We direct attention to cellular processes which characterize, and possibly have role in, renal repair from acute tubular injury as potential targets of therapy. In addition to proliferation, they include epithelial differentiation and apoptosis. Further investigation in the biology of repair should set the stage for rational design of targeted therapies which may accelerate the pace of recovery and hopefully decrease mortality in such a dramatic and potentially reversible setting.
Renal tubular function in children with tyrosinaemia type I treated with nitisinone.
Santra, S; Preece, M A; Hulton, S-A; McKiernan, P J
2008-06-01
Tyrosinaemia type I (TTI) is an inherited deficiency in the enzyme fumarylacetoacetate hydrolase and is frequently complicated by renal tubular dysfunction which may persist in some patients after hepatic transplantation. Nitisinone has revolutionized the management of TTI but its effect on renal tubular dysfunction has not been described in a large cohort of patients. To document the incidence and progression of renal tubular dysfunction in children with TTI treated with nitisinone at a single centre. Twenty-one patients with TTI from a single centre were treated with nitisinone for at least 12 months. Median age at first treatment was 17 weeks (range 1 week to 27 months). Nine patients (43%) presented in acute liver failure, seven (33%) had a chronic presentation and five (24%) were detected pre-clinically. A retrospective case analysis of plasma phosphate, urinary protein/creatinine ratio and tubular reabsorption of phosphate was performed for all patients as markers of tubular function. Renal ultrasounds were examined for evidence of nephrocalcinosis and where available, skeletal radiographs for rickets. All patients had biochemical evidence of renal tubular dysfunction at presentation. After nitisinone and dietary treatment were started, all three markers normalized within one year. Four children had clinical rickets at presentation (which improved), of whom one had nephrocalcinosis, which did not reverse on nitisinone. No child redeveloped tubular dysfunction after commencing nitisinone. All patients with TTI had evidence of tubular dysfunction at presentation and in all cases this resolved with nitisinone and dietary control. The tubulopathy associated with TTI is reversible.
Ueno, Koji; Hirata, Hiroshi; Majid, Shahana; Tabatabai, Z Laura; Hinoda, Yuji; Dahiya, Rajvir
2011-11-15
The Wnt/β-catenin signaling pathway is inactivated by Wnt antagonists in most cancers and IGFBP-4 is an antagonist of the Wnt/ β-catenin signaling pathway. However, the function of IGFBP-4 is not currently understood in renal cell carcinoma (RCC). We initially found that the expression of IGFBP-4 was significantly lower in primary RCC and higher in metastatic RCC compared to normal human kidney tissues. To assess the function of IGFBP4, we established IGFBP4 transfectants (primary renal cancer cell line) and performed functional analyses including Tcf reporter assays, cell viability, invasive capability, mortality, and in vivo tumor growth. Interestingly IGFBP-4 transfectants promoted cell growth (in vitro and in vivo), invasion, and motility in primary renal cancer. Tcf transcriptional activity was significantly increased in IGFBP-4 transfectants compared to mock cells and β-catenin expression was increased. Also the β-catenin downstream effector, MT1-MMP showed increased expression in IGFBP4 transfectants. Additionally IGFBP4 induced the expression of M-CAM, a marker of tumor progression. In order to assess the role of IGFBP4 in metastatic renal cancer, IGFBP-4 mRNA in a metastatic renal cancer cell lines (ACHN) was knocked-down using a siRNA technique. The cell growth and motility was decreased in si-IGFBP4 transfected ACHN cells compared to cells transfected with control siRNA. Tcf activity in ACHN cells was also decreased with si-IGFBP-4 transfection. This is a first report documenting that IGFBP-4 expression in RCC activates cell growth, metastasis, Wnt/beta-catenin signaling and may be involved in RCC metastasis. Copyright © 2011 UICC.
Ma, Frank Y; Han, Yingjie; Nikolic-Paterson, David J; Kolkhof, Peter; Tesch, Greg H
2015-01-01
Steroidal mineralocorticoid receptor antagonists (MRAs) are effective in the treatment of kidney disease; however, the side effect of hyperkalaemia, particularly in the context of renal impairment, is a major limitation to their clinical use. Recently developed non-steroidal MRAs have distinct characteristics suggesting that they may be superior to steroidal MRAs. Therefore, we explored the benefits of a non-steroidal MRA in a model of rapidly progressive glomerulonephritis. Accelerated anti-glomerular basement membrane (GBM) glomerulonephritis was induced in groups of C57BL/6J mice which received no treatment, vehicle or a non-steroidal MRA (BR-4628, 5mg/kg/bid) from day 0 until being killed on day 15 of disease. Mice were examined for renal injury. Mice with anti-GBM glomerulonephritis which received no treatment or vehicle developed similar disease with severe albuminuria, impaired renal function, glomerular tuft damage and crescents in 40% of glomeruli. In comparison, mice which received BR-4628 displayed similar albuminuria, but had improved renal function, reduced severity of glomerular tuft lesions and a 50% reduction in crescents. The protection seen in BR-4628 treated mice was associated with a marked reduction in glomerular macrophages and T-cells and reduced kidney gene expression of proinflammatory (CCL2, TNF-α, IFN-γ) and profibrotic molecules (collagen I, fibronectin). In addition, treatment with BR-4626 did not cause hyperkalaemia or increase urine Na+/K+ excretion (a marker of tubular dysfunction). The non-steroidal MRA (BR-4628) provided substantial suppression of mouse crescentic glomerulonephritis without causing tubular dysfunction. This finding warrants further investigation of non-steroidal MRAs as a therapy for inflammatory kidney diseases.
Macrophage Phenotype Controls Long-Term AKI Outcomes—Kidney Regeneration versus Atrophy
Gröbmayr, Regina; Ryu, Mi; Lorenz, Georg; Hartter, Ingo; Mulay, Shrikant R.; Susanti, Heni Eka; Kobayashi, Koichi S.; Flavell, Richard A.; Anders, Hans-Joachim
2014-01-01
The mechanisms that determine full recovery versus subsequent progressive CKD after AKI are largely unknown. Because macrophages regulate inflammation as well as epithelial recovery, we investigated whether macrophage activation influences AKI outcomes. IL-1 receptor–associated kinase-M (IRAK-M) is a macrophage-specific inhibitor of Toll-like receptor (TLR) and IL-1 receptor signaling that prevents polarization toward a proinflammatory phenotype. In postischemic kidneys of wild-type mice, IRAK-M expression increased for 3 weeks after AKI and declined thereafter. However, genetic depletion of IRAK-M did not affect immunopathology and renal dysfunction during early postischemic AKI. Regarding long-term outcomes, wild-type kidneys regenerated completely within 5 weeks after AKI. In contrast, IRAK-M−/− kidneys progressively lost up to two-thirds of their original mass due to tubule loss, leaving atubular glomeruli and interstitial scarring. Moreover, M1 macrophages accumulated in the renal interstitial compartment, coincident with increased expression of proinflammatory cytokines and chemokines. Injection of bacterial CpG DNA induced the same effects in wild-type mice, and TNF-α blockade with etanercept partially prevented renal atrophy in IRAK-M−/− mice. These results suggest that IRAK-M induction during the healing phase of AKI supports the resolution of M1 macrophage– and TNF-α–dependent renal inflammation, allowing structural regeneration and functional recovery of the injured kidney. Conversely, IRAK-M loss-of-function mutations or transient exposure to bacterial DNA may drive persistent inflammatory mononuclear phagocyte infiltrates, which impair kidney regeneration and promote CKD. Overall, these results support a novel role for IRAK-M in the regulation of wound healing and tissue regeneration. PMID:24309188
Yu, Gang; Bai, Zhiming; Chen, Zhiyuan; Chen, Hui; Wang, Guoren; Wang, Gang; Liu, Zhenxiang
2017-02-01
Ozone therapy is an effective medical treatment for various diseases. A previous study has demonstrated its reno-protective effect in chronic kidney disease (CKD), but the mechanism involved is not completely known. This study produced the 5/6 nephrectomized CKD rat model and investigated whether the reno-protective effect of ozone therapy was achieved by its anti-inflammatory property through the modulation of the NLRP3 inflammasome. The results showed that ozone therapy at a low concentration improved renal function and ameliorated renal morphological injury in 5/6 nephrectomized rats. The expression of NLRP3, ASC, and caspase-1-p10 in the kidney of these rats was simultaneously lowered by ozone therapy. Moreover, renal inflammation caused by IL-1β was significantly alleviated by ozone therapy. The Pearson correlation analysis indicated that the protein level of IL-1β was positively correlated with renal injury scores. Taken together, these results indicated that ozone therapy might reduce sterile renal inflammation and slow down CKD progression through the modulation of the NLRP3 inflammasome in 5/6 nephrectomized rats. Copyright © 2016 Elsevier B.V. All rights reserved.
The future of hemodialysis membranes.
Humes, H D; Fissell, W H; Tiranathanagul, K
2006-04-01
Hemodialytic treatment of patients with either acute or chronic renal failure has had a dramatic impact on the mortality rates of these patients. Unfortunately, this membrane-based therapy is still incomplete renal replacement, as the mortality and morbidity of these patients remain unacceptably high. Much progress must be made to improve the biocompatibility of hemodialysis membranes as well as their hydraulic and permselective properties to remove small solutes and 'middle molecules' in compact cartridges. The next directions of development will leverage materials and mechanical engineering technology, including microfluidics and nanofabrication, to further improve the clearance functions of the kidney to replicate glomerular permselectivity while retaining high rates of hydraulic permeability. The extension of membrane technology to biohybrid devices utilizing progenitor/stem cells will be another substantive advance for renal replacement therapy. The ability to not only replace solute and water clearance but also active reabsorptive transport and metabolic activity will add additional benefit to the therapy of patients suffering from renal failure. This area of translational research is rich in creative opportunities to improve the unmet medical needs of patients with either chronic or acute renal failure.
Extreme intrafamilial variability of Saudi brothers with primary hyperoxaluria type 1
Alfadhel, Majid; Alhasan, Khalid A; Alotaibi, Mohammed; Al Fakeeh, Khalid
2012-01-01
Background Primary hyperoxaluria type 1 (PH1) is characterized by progressive renal insufficiency culminating in end-stage renal disease, and a wide range of clinical features related to systemic oxalosis in different organs. It is caused by autosomal recessive deficiency of alanine:glyoxylate aminotransferase due to a defect in AGXT gene. Case report Two brothers (one 6 months old; the other 2 years old) presented with acute renal failure and urinary tract infection respectively. PH1 was confirmed by high urinary oxalate level, demonstration of oxalate crystals in bone biopsy, and pathogenic homozygous known AGXT gene mutation. Despite the same genetic background, same sex, and shared environment, the outcome of the two siblings differs widely. While one of them died earlier with end-stage renal disease and multiorgan failure caused by systemic oxalosis, the older brother is pyridoxine responsive with normal development and renal function. Conclusion Clinicians should be aware of extreme intrafamilial variability of PH1 and international registries are needed to characterize the genotype-phenotype correlation in such disorder. PMID:22956877
Stember, Joseph N; Newhouse, Jeffrey; Behr, Gerald; Alam, Shumyle
2017-11-01
Early identification and quantification of bladder damage in pediatric patients with congenital anomalies of the kidney and urinary tract (CAKUT) is crucial to guiding effective treatment and may affect the eventual clinical outcome, including progression of renal disease. We have developed a novel approach based on the convex hull to calculate bladder wall trabecularity in pediatric patients with CAKUT. The objective of this study was to test whether our approach can accurately predict bladder wall irregularity. Twenty pediatric patients, half with renal compromise and CAKUT and half with normal renal function, were evaluated. We applied the convex hull approach to calculate T, a metric proposed to reflect the degree of trabeculation/bladder wall irregularity, in this set of patients. The average T value was roughly 3 times higher for diseased than healthy patients (0.14 [95% confidence interval, 0.10-0.17] versus 0.05 [95% confidence interval, 0.03-0.07] for normal bladders). This disparity was statistically significant (P < .01). We have demonstrated that a convex hull-based procedure can measure bladder wall irregularity. Because bladder damage is a reversible precursor to irreversible renal parenchymal damage, applying such a measure to at-risk pediatric patients can help guide prompt interventions to avert disease progression. © 2017 by the American Institute of Ultrasound in Medicine.
Sarma, Debanga; Barua, Sasanka K; Rajeev, T P; Baruah, Saumar J
2012-10-01
Nuclear renal scan is currently the gold standard imaging study to determine differential renal function. We propose helical CT as single modality for both the anatomical and functional evaluation of kidney with impaired function. In the present study renal parenchymal volume is measured and percent total renal volume is used as a surrogate marker for differential renal function. The objective of this study is to correlate between differential renal function estimation using CT-based renal parenchymal volume measurement with differential renal function estimation using (99m)TC - DTPA renal scan. Twenty-one patients with unilateral obstructive uropathy were enrolled in this prospective comparative study. They were subjected to (99m)Tc - DTPA renal scan and 64 slice helical CT scan which estimates the renal volume depending on the reconstruction of arterial phase images followed by volume rendering and percent renal volume was calculated. Percent renal volume was correlated with percent renal function, as determined by nuclear renal scan using Pearson coefficient. RESULTS AND OBSERVATION: A strong correlation is observed between percent renal volume and percent renal function in obstructed units (r = 0.828, P < 0.001) as well as in nonobstructed units (r = 0.827, P < 0.001). There is a strong correlation between percent renal volume determined by CT scan and percent renal function determined by (99m)TC - DTPA renal scan both in obstructed and in normal units. CT-based percent renal volume can be used as a single radiological tests for both functional and anatomical assessment of impaired renal units.
Chen, C L; Chou, K J; Fang, H C; Hsu, C Y; Huang, W C; Huang, C W; Huang, C K; Chen, H Y; Lee, P T
2015-12-02
Pathophysiological changes associated with chronic kidney disease impair angiogenic processes and increase renal fibrosis. Progenitor-like cells derived from adult kidney have been previously used to promote regeneration in acute kidney injury, even though it remained unclear whether the cells could be beneficial in chronic kidney disease (CKD). In this study, we established a CKD model by five-sixths nephrectomy and mouse kidney progenitor-like cells (MKPCs) were intravenously administered weekly for 5 weeks after establishing CKD. We examined the impact of MKPCs on the progression of renal fibrosis and the potential of MKPCs to preserve the angiogenic process and prevent endothelial mesenchymal transition in vivo and in vitro. Our results demonstrate that the MKPCs delayed interstitial fibrosis and the progression of glomerular sclerosis and ameliorated the decline of kidney function. At 17 weeks, the treated mice exhibited lower blood pressures, higher hematocrit levels, and larger kidney sizes than the control mice. In addition, the MKPC treatment prolonged the survival of the mice with chronic kidney injuries. We observed a decreased recruitment of macrophages and myofibroblasts in the interstitium and the increased tubular proliferation. Notably, MKPC both decreased the level of vascular rarefaction and prevented endothelial mesenchymal transition (EndoMT) in the remnant kidneys. Moreover, the conditioned medium from the MKPCs ameliorated endothelial cell death under hypoxic culture conditions and prevented TGF-β-induced EndoMT through downregulation of phosphorylated Smad 3 in vitro. MKPCs may be a beneficial treatment for kidney diseases characterized by progressive renal fibrosis. The enhanced preservation of angiogenic processes following MKPC injections may be associated with decreased fibrosis in the remnant kidney. These findings provide further understanding of the mechanisms involved in these processes and will help develop new cell-based therapeutic strategies for regenerative medicine in renal fibrosis.
Micropuncture studies of the recovery phase of myohemoglobinuric acute renal failure in the rat
Oken, Donald E.; DiBona, Gerald F.; McDonald, Franklin D.
1970-01-01
Micropuncture studies of the recovery phase of glycerol-induced myohemoglobinuric acute renal failure were performed in rats whose blood urea nitrogen (BUN) had fallen at least 20% below its peak value. The glomerular filtration rate (GFR) of individual nephrons in a single kidney in the recovery period generally either was in the normal range or minimal. Each animal's BUN concentration at the time of the study was inversely related to the proportion of functioning surface nephrons, but did not correlate with individual nephron GFR values. Proximal tubule fractional water absorption was significantly depressed as manifested by both depressed inulin (TF/P) values and supernormal volumes of collections, a finding which, in the absence of a urea-induced osmotic diuresis, suggests impaired sodium transport by the damaged nephron. The mean proximal tubule hydrostatic pressure in recovery was normal and there was little variation in pressure among functioning nephrons. It is concluded that recovery from this model of acute renal failure reflects the progressive recruitment of increasing numbers of functioning nephrons. The recovery of individual nephron glomerular filtration, once begun, was rapid and complete. No evidence could be adduced that the gradual return of renal function towards normal reflects a slow release of tubular obstruction or repair of disrupted tubular epithelium. Rather, recovery appeared to be directly attributable to the return of an adequate effective glomerular filtration pressure. Significant limitation in proximal tubule water absorption persisted after individual nephron GFR had returned to normal or supernormal values in this model of experimental acute renal failure in the rat, a finding which readily accounts for the diuresis associated with the recovery phase of this syndrome. PMID:5443173
IgG4-related tubulointerstitial nephritis: A prospective analysis.
Nada, Ritambhra; Ramachandran, Raja; Kumar, Ashwani; Rathi, Manish; Rawat, Amit; Joshi, Kusum; Kohli, Harbir Singh; Gupta, Krishan Lal
2016-07-01
Immunoglobulin-G4 (IgG4)-related tubulo-interstitial nephritis (IgG4TIN) could be the first presentation of IgG4-related systemic disease. Most of the data is from the West or Japan and retrospective, with good patient outcome. This study was carried out from April 2011 to July 2013. We report a prospective follow-up of 11 patients who presented with renal dysfunction and had histological diagnosis of IgG4TIN followed for a minimum period of 1 year or until end-stage renal disease. IgG4TIN constituted 0.28% of total renal biopsies and 6.5% of all tubulointerstitial nephritis. Patient ages ranged between 21 and 71 years with a male predominance. All the patients had renal dysfunction at presentation with a mean serum creatinine of 5.12 mg/dL. Proteinuria was subnephrotic except when there was coexisting membranous glomerulonephritis (36.4%). The mean 24-h urine protien excretion was 1.8 g. Serum IgG4 levels were elevated in 10 (90.9%) patients. Ten (90.9%) patients had renomegaly and one (9.1%) had focal renal mass. Extra-renal manifestations were present in seven (63.6%). Renal histology showed pattern A in five (45.5%), pattern B in four (36.3%) and pattern C in two (18.1%) patients. All but one patient (90.9%) received immunosuppressive therapy. Four (36.3%) achieved complete remission and three (27.2%) progressed to end stage renal disease. Two patients died due to infections while on steroid therapy. One patient with a mass had end stage renal disease for 12 months and did not improve with steroid therapy, and one (pattern C) had progressive chronic kidney disease on follow-up. IgG4TIN in an Indian cohort most often presents with rapidly progressive renal failure and less often has extra-renal organ involvement. On follow-up, patients can experience a more aggressive course with progression to end stage renal disease. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
Renal alpha-smooth muscle actin: a new prognostic factor for lupus nephritis.
Makni, Kaouthar; Jarraya, Faïçal; Khabir, Abdelmajid; Hentati, Basma; Hmida, Mohamed Ben; Makni, Hafedh; Boudawara, Tahia; Jlidi, Rchid; Hachicha, Jamil; Ayadi, Hammadi
2009-08-01
Systemic lupus erythematosus (SLE) is the prototype of autoimmune disease where renal involvement is frequent and always severe. Histological prognostic factors proposed for lupus nephritis (LN) including the World Health Organization and International Society of Nephrology/Renal Pathology Society--Working Group on the Classification classifications, active (AI) and chronicity (CI) indices may not predict response to treatment. The aim of this study was to correlate alpha-smooth muscle actin (alpha-SMA) expression, an early marker of glomerular and interstitial response to injury, to AI and CI, renal scarring progression and response to treatment. Fifty-seven kidney biopsy specimens obtained from 32 patients suffering from LN were studied. Twenty patients with class IV LN at first biopsy were identified to study renal progression to chronic renal failure until the use of immunosuppressive treatment. Interstitial alpha-SMA (I-alpha-SMA) was correlated only with CI (P < 0.001) whereas mesangial alpha-SMA (M-alpha-SMA) was correlated with neither LN activity (P = 0.126) nor sclerosis (P = 0.297). Only I-alpha-SMA was correlated with renal failure (P = 0.01). We divided patients with class IV LN into progressors and non-progressors based on the slope of serum creatinine. At first biopsy, M-alpha-SMA and I-alpha-SMA, but not AI and CI, were correlated with renal failure progression (M-alpha-SMA, 9.7b1.1 vs 7.8b1.4, P = 0.004; and I-alpha-SMA, 9.3b1.1 vs 6.5b3.2, P = 0.011). The study data highlight that I-alpha-SMA immunostain in class IV LN patients was correlated with chronicity indices. Moreover, M-alpha-SMA and I-alpha-SMA expression in first biopsy predicted renal progression modality. alpha-SMA expression may therefore be a useful marker to predict renal prognosis in LN.
Li, Sheng; Zöllner, Frank G; Merrem, Andreas D; Peng, Yinghong; Roervik, Jarle; Lundervold, Arvid; Schad, Lothar R
2012-03-01
Renal diseases can lead to kidney failure that requires life-long dialysis or renal transplantation. Early detection and treatment can prevent progression towards end stage renal disease. MRI has evolved into a standard examination for the assessment of the renal morphology and function. We propose a wavelet-based clustering to group the voxel time courses and thereby, to segment the renal compartments. This approach comprises (1) a nonparametric, discrete wavelet transform of the voxel time course, (2) thresholding of the wavelet coefficients using Stein's Unbiased Risk estimator, and (3) k-means clustering of the wavelet coefficients to segment the kidneys. Our method was applied to 3D dynamic contrast enhanced (DCE-) MRI data sets of human kidney in four healthy volunteers and three patients. On average, the renal cortex in the healthy volunteers could be segmented at 88%, the medulla at 91%, and the pelvis at 98% accuracy. In the patient data, with aberrant voxel time courses, the segmentation was also feasible with good results for the kidney compartments. In conclusion wavelet based clustering of DCE-MRI of kidney is feasible and a valuable tool towards automated perfusion and glomerular filtration rate quantification. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ulu, Nadir; Mulder, Gemma M; Vavrinec, Peter; Landheer, Sjoerd W; Duman-Dalkilic, Basak; Gurdal, Hakan; Goris, Maaike; Duin, Marry; van Dokkum, Richard P E; Buikema, Hendrik; van Goor, Harry; Henning, Robert H
2013-06-01
Transactivation of epidermal growth factor receptor (EGFR) signaling by G protein-coupled receptors has been implicated in several cardiovascular (CV) conditions, including hypertension, heart failure, and cardiac and vascular hypertrophy. However, the therapeutic potential of EGFR inhibition in these conditions is currently unknown. The main objective of the present study was to investigate cardiac, vascular, and renal effects of EGFR inhibition by 4-[4-[[(1R)-1-phenylethyl]amino]-7H-pyrrolo[2,3-d]pyrimidin-6-yl]phenol (PKI-166) in the hypertensive chronic kidney disease model. Rats underwent 5/6 nephrectomy (5/6Nx) and were treated with PKI-166, lisinopril or vehicle from week 6 after disease induction until week 12. Sham animals received either PKI-166 or vehicle. Treatment with PKI-166 did not affect the development of the characteristic renal features in 5/6Nx, including proteinuria, diminished creatinine clearance, and increased glomerulosclerosis, whereas these were attenuated by lisinopril. Despite absence of effects on progressive renal damage, PKI-166 attenuated the progression of hypertension and maintained cardiac function (left ventricle end-diastolic pressure) to a similar extent as lisinopril. Also, PKI-166 attenuated the increase in phosphorylated EGFR in the heart as induced by 5/6Nx. Moreover, PKI-166 and lisinopril restored the impaired contraction of isolated thoracic aortic rings to phenylephrine and angiotensin II and impaired myogenic constriction of small mesenteric arteries in 5/6Nx rats. Blockade of the EGFR displays a CV benefit independent of limiting the progression of renal injury. Our findings extend the evidence on EGFR signaling as a target in CV disorders.
Oxidant Mechanisms in Renal Injury and Disease
Ratliff, Brian B.; Abdulmahdi, Wasan; Pawar, Rahul
2016-01-01
Abstract Significance: A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. Recent Advances: Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. Critical Issues: The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. Future Directions: Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119–146. PMID:26906267
Cosmai, Laura; Gallieni, Maurizio; Liguigli, Wanda; Porta, Camillo
2017-04-01
Since angiogenesis plays a key role in tumor growth, progression and metastasization, anti-vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) agents have been developed over the years as anticancer agents, and have changed, for the better, the natural history of a number of cancer types. In the present review, the renal safety profile of presently available agents targeting either VEGF or VEGFRs will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, renal toxicity (especially, but not exclusively, hypertension and proteinuria) are quite commonly observed with these agents, and may be increased by the concomitant use of cytoxic chemotherapeutics. Despite all the above, kidney impairment or dialysis must not be regarded di per se as reasons not to administer or to stop an active anticancer treatment, especially considering the possibility of a significant survival improvement in many cancer patients treated with these agents.
Okada, Akira
2014-05-16
Some elderly patients on chronic lithium therapy for bipolar disorder and their doctors may be faced with a therapeutic dilemma over whether or not to continue prescribing/taking lithium given their increased risk of reduced renal function. We present the case of a 78-year-old woman with bipolar disorder who discontinued lithium therapy due to increased risk factors for renal injury. After discontinuation, she experienced markedly decreased appetite secondary to a depressive episode, and developed acute renal failure, which subsequently progressed to a more advanced stage of chronic kidney disease. This case suggests that extreme care must be taken to prevent the recurrence of depression in elderly patients with bipolar disorder who discontinue lithium therapy, even when they had been emotionally stable for a long time while receiving lithium. Medications other than lithium for bipolar disorder may be needed at the time lithium therapy is discontinued. 2014 BMJ Publishing Group Ltd.
Masson, Serge; Barlera, Simona; Colotta, Francesco; Magnoli, Michela; Bonelli, Fabrizio; Moro, Milena; Marchioli, Roberto; Tavazzi, Luigi; Tognoni, Gianni; Latini, Roberto
2016-12-01
Dysregulation of the vitamin D system promotes renal dysfunction and has direct detrimental effects on the heart. Progressive deterioration of renal function is common in patients with chronic heart failure (HF) and is invariably associated with unfavorable outcomes which can be improved by early identification and timely interventions. We examined the relation between two plasma markers of vitamin D metabolism and worsening of renal function (WRF) in a large cohort of patients with chronic HF. Plasma levels of 1,25-dihydroxyvitamin D (1,25(OH) 2 D) and parathyroid hormone PTH (1-84) were measured in 1237 patients with clinical evidence of chronic and stable HF enrolled in the multicentre GISSI-HF trial and followed for 3.9years. We examined the relation of 1,25(OH) 2 D, PTH(1-84), and their ratio with WRF, defined as first increase in serum creatinine concentration ≥0.3mg/dL and ≥25% at two consecutive measurements at any time during the study. Lower 1,25(OH) 2 D/PTH(1-84) ratio was associated with a higher baseline serum concentration of creatinine, winter season, female sex and older age; 335 patients (29.6%) experienced an episode of WRF. After adjustment, a lower 1,25(OH) 2 D/PTH(1-84) ratio remained significantly associated with a higher risk of WRF (HR=0.75 [0.62-0.90], p=0.002) and correctly reclassified events. This ratio also independently predicted mortality and admission to hospital for cardiovascular reasons. The plasma 1,25(OH) 2 D/PTH(1-84) ratio is a promising indicator of future risk of deterioration of renal function in patients with chronic HF and mild renal impairment, that may serve to optimize therapies and improve outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Peng, Min; Cai, Pingping; Ma, Hongbo; Meng, Hongyan; Xu, Yuan; Zhang, Xiaoyi; Si, Guomin
2014-01-01
Progressive fibrosis accompanies all chronic renal disease, connective tissue growth factor (CTGF,) and platelet-derived growth factor-B, (PDGF-B,) play important roles in extra-cellular matrix abnormal accumulation, while endothelin-1 (ET-1) nitric oxide (NO,) are related to endothelial dysfunction, which mediates the progression of renal fibrosis. Shenqi Detoxification Granule (SDG), a traditional Chinese herbal formula, has been used for treatment of chronic renal failure in clinic for many years. In order to evaluate the efficacy, and explore the mechanism of SDG to inhibit the progression of renal fibrosis, study was carried out using the adenine-induced Wister rats as the CRF model, and losartan as postive control drug. Levels of serum creatinine [Scr], and blood urea nitrogen (BUN), albumin (ALB), 24hrs, urine protein (24hUP), triacylglycerol (TG), and cholesterol (CHO), together with ET-1, and NO were detected. Pathological changes of renal tissues were observed by HE, staining. In addition, CTGF and PDGF-B expression were analyzed by immuno-histo-chemistry. The results indicated that SDG can effectively reduce Scr, BUN, 24hUP, TG, and CHO levels, increase ALB levels, inhibit renal tissue damage in CRF rats, and the mechanism maybe reduce PDGF-B, CTGF expression and ET-1/NO. Shenqi Detoxification Granule is a beneficial treatment for chronic renal failure.
McCord, Kelly; Steyn, Philip F; Lunn, Katharine F
2008-07-01
A 12-year-old, 6 kg, castrated male Siamese-cross cat was referred for investigation of an abdominal mass. The cat was found to have a left perinephric pseudocyst (PNP), accompanied by azotemia, with a small right kidney detected on ultrasound. Glomerular filtration rate (GFR) was determined by renal scintigraphy and was found to be low, with the left kidney contributing 64% of the total GFR. Percutaneous ultrasound-guided drainage of the PNP did not improve the GFR, and fluid reaccumulated within a short period of time. Laparoscopic fenestration of the cyst capsule was performed to allow for permanent drainage. The PNP did not recur, renal values progressively improved, and 8 months after the capsulotomy the GFR of the left kidney had increased by 50%, while renal function remained static on the right side.
Parenthood in Renal Homograft Recipients
Penn, Israel; Makowski, Edgar; Droegemueller, William; Halgrimson, Charles G.; Starzl, Thomas E.
2010-01-01
Nineteen male recipients of renal homografts were responsible for 23 pregnancies, resulting so far in 19 live births and one abortion; three additional wives have not yet been delivered of infants. Eighteen of the 19 infants were normal; the abnormal infant had a myelomeningocele and other anomalies. Eight female recipients have become pregnant ten times. Two of the pregnancies were terminated with therapeutic abortions, and two more are in progress. The other six resulted in live births. There were only two infants with a completely uncomplicated neonatal period. One premature baby died a few hours after birth from hyaline membrane disease. The other five survived, but one had pulmonary valvular stenosis, two had evidence of transient adrenocortical insufficiency plus lymphopenia, and one child had the respiratory distress syndrome. Renal function of three mothers underwent deterioration during pregnancy, but was restored after its termination PMID:4931428
Makabe, Shiho; Kataoka, Hiroshi; Kondo, Tsunenori; Tanabe, Kazunari; Tsuchiya, Ken; Nitta, Kosaku; Mochizuki, Toshio
2018-05-01
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the occurrence of multiple cysts that increase the size of both kidneys, progressively reducing kidney function. Usually the cysts occur bilaterally, and there is no difference in the degree of cyst enlargement between the left and right. Here, we report a case of ADPKD in which kidney size increased markedly on the left side and was accompanied by severe abdominal distension and discomfort. Renal dynamic scintigraphy revealed a severe reduction in function of the left kidney compared with the right. Open left nephrectomy was performed. No change in renal function was observed postoperatively [preoperative estimated glomerular filtration rate (eGFR): 57.6 mL/min/1.73 m 2 , 3-month postoperative eGFR: 56.4 mL/min/1.73 m 2 ], and the abdominal symptoms subsided. When one kidney is markedly larger than the other, the cause and status of the laterality should be evaluated by using renal dynamic scintigraphy in addition to other examinations such as computed tomography or magnetic resonance imaging. Unilateral nephrectomy should be considered as a potential treatment.
Wnt6 regulates epithelial cell differentiation and is dysregulated in renal fibrosis.
Beaton, Hayley; Andrews, Darrell; Parsons, Martin; Murphy, Mary; Gaffney, Andrew; Kavanagh, David; McKay, Gareth J; Maxwell, Alexander P; Taylor, Cormac T; Cummins, Eoin P; Godson, Catherine; Higgins, Debra F; Murphy, Paula; Crean, John
2016-07-01
Diabetic nephropathy is the most common microvascular complication of diabetes mellitus, manifesting as mesangial expansion, glomerular basement membrane thickening, glomerular sclerosis, and progressive tubulointerstitial fibrosis leading to end-stage renal disease. Here we describe the functional characterization of Wnt6, whose expression is progressively lost in diabetic nephropathy and animal models of acute tubular injury and renal fibrosis. We have shown prominent Wnt6 and frizzled 7 (FzD7) expression in the mesonephros of the developing mouse kidney, suggesting a role for Wnt6 in epithelialization. Importantly, TCF/Lef reporter activity is also prominent in the mesonephros. Analysis of Wnt family members in human renal biopsies identified differential expression of Wnt6, correlating with severity of the disease. In animal models of tubular injury and fibrosis, loss of Wnt6 was evident. Wnt6 signals through the canonical pathway in renal epithelial cells as evidenced by increased phosphorylation of GSK3β (Ser9), nuclear accumulation of β-catenin and increased TCF/Lef transcriptional activity. FzD7 was identified as a putative receptor of Wnt6. In vitro Wnt6 expression leads to de novo tubulogenesis in renal epithelial cells grown in three-dimensional culture. Importantly, Wnt6 rescued epithelial cell dedifferentiation in response to transforming growth factor-β (TGF-β); Wnt6 reversed TGF-β-mediated increases in vimentin and loss of epithelial phenotype. Wnt6 inhibited TGF-β-mediated p65-NF-κB nuclear translocation, highlighting cross talk between the two pathways. The critical role of NF-κB in the regulation of vimentin expression was confirmed in both p65(-/-) and IKKα/β(-/-) embryonic fibroblasts. We propose that Wnt6 is involved in epithelialization and loss of Wnt6 expression contributes to the pathogenesis of renal fibrosis. Copyright © 2016 the American Physiological Society.
Adipocytes play an etiological role in the podocytopathy of high-fat diet-fed rats.
Chen, Jinn-Yang; Jian, Deng-Yuan; Lien, Chih-Chan; Lin, Yu-Ting; Ting, Ching-Heng; Chen, Luen-Kui; Hsu, Ting-Chia; Huang, Hsuan-Min; Wu, Yu-Ting; Kuan, Tse-Ting; Chao, Yu-Wen; Wu, Liang-Yi; Huang, Seng-Wong; Juan, Chi-Chang
2016-11-01
Obesity is a risk factor that promotes progressive kidney disease. Studies have shown that an adipocytokine imbalance contributes to impaired renal function in humans and animals, but the underlying interplay between adipocytokines and renal injury remains to be elucidated. We aimed to investigate the mechanisms linking obesity to chronic kidney disease. We assessed renal function in high-fat (HF) diet-fed and normal diet-fed rats, and the effects of preadipocyte- and adipocyte-conditioned medium on cultured podocytes. HF diet-fed and normal diet-fed Sprague Dawley rats were used to analyze the changes in plasma BUN, creatinine, urine protein and renal histology. Additionally, podocytes were incubated with preadipocyte- or adipocyte-conditioned medium to investigate the effects on podocyte morphology and protein expression. In the HF diet group, 24 h urinary protein excretion (357.5 ± 64.2 mg/day vs 115.9 ± 12.4 mg/day, P < 0.05) and the urine protein/creatinine ratio were significantly higher (1.76 ± 0.22 vs 1.09 ± 0.15, P < 0.05), increased kidney weight (3.54 ± 0.04 g vs 3.38 ± 0.04 g, P < 0.05) and the glomerular volume and podocyte effacement increased by electron microscopy. Increased renal expression of desmin and decreased renal expression of CD2AP and nephrin were also seen in the HF diet group (P < 0.05). Furthermore, we found that adipocyte-conditioned medium-treated podocytes showed increased desmin expression and decreased CD2AP and nephrin expression compared with that in preadipocyte-conditioned medium-treated controls (P < 0.05). These findings show that adipocyte-derived factor(s) can modulate renal function. Adipocyte-derived factors play an important role in obesity-related podocytopathy. © 2016 Society for Endocrinology.
Functions of the Renal Nerves.
ERIC Educational Resources Information Center
Koepke, John P.; DiBona, Gerald F.
1985-01-01
Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…
Mattes, F M; Vargas, A; Kopycinski, J; Hainsworth, E G; Sweny, P; Nebbia, G; Bazeos, A; Lowdell, M; Klenerman, P; Phillips, R E; Griffiths, P D; Emery, V C
2008-05-01
Human cytomegalovirus (HCMV) remains an important cause of morbidity after allotransplantation, causing a range of direct effects including hepatitis, pneumonitis, enteritis and retinitis. A dominant risk factor for HCMV disease is high level viral replication in blood but it remains unexplained why only a subset of patients develop such diseases. In this detailed study of 25 renal transplant recipients, we show that functional impairment of HCMV specific CD8 T cells in the production of interferon gamma was associated with a 14-fold increased risk of progression to high level replication. The CD8 T-cell impairment persisted during the period of high level replication and was more prominent in patients above 40 years of age (odds ratio = 1.37, p = 0.01) and was also evident in dialysis patients. Threshold levels of functional impairment were associated with an increased risk of future HCMV replication and there was a direct relationship between the functional capacity of HCMV ppUL83 CD8 T cells and HCMV load (R(2)= 0.83). These results help to explain why a subset of seropositive individuals develop HCMV replication and are at risk of end-organ disease and may facilitate the early identification of individuals who would benefit from targeted anti-HCMV therapy after renal transplantation.
Maahs, David M; Caramori, Luiza; Cherney, David Z I; Galecki, Andrzej T; Gao, Chuanyun; Jalal, Diana; Perkins, Bruce A; Pop-Busui, Rodica; Rossing, Peter; Mauer, Michael; Doria, Alessandro
2013-08-01
Diabetic kidney disease causes significant morbidity and mortality among people with type 1 diabetes (T1D). Intensive glucose and blood pressure control have thus far failed to adequately curb this problem and therefore a major need for novel treatment approaches exists. Multiple observations link serum uric acid levels to kidney disease development and progression in diabetes and strongly argue that uric acid lowering should be tested as one such novel intervention. A pilot of such a trial, using allopurinol, is currently being conducted by the Preventing Early Renal Function Loss (PERL) Consortium. Although the PERL trial targets T1D individuals at highest risk of kidney function decline, the use of allopurinol as a renoprotective agent may also be relevant to a larger segment of the population with diabetes. As allopurinol is inexpensive and safe, it could be cost-effective even for relatively low-risk patients, pending the completion of appropriate trials at earlier stages.
Ruiz-del-Árbol, Luis; Serradilla, Regina
2015-01-01
During the course of cirrhosis, there is a progressive deterioration of cardiac function manifested by the disappearance of the hyperdynamic circulation due to a failure in heart function with decreased cardiac output. This is due to a deterioration in inotropic and chronotropic function which takes place in parallel with a diastolic dysfunction and cardiac hypertrophy in the absence of other known cardiac disease. Other findings of this specific cardiomyopathy include impaired contractile responsiveness to stress stimuli and electrophysiological abnormalities with prolonged QT interval. The pathogenic mechanisms of cirrhotic cardiomyopathy include impairment of the b-adrenergic receptor signalling, abnormal cardiomyocyte membrane lipid composition and biophysical properties, ion channel defects and overactivity of humoral cardiodepressant factors. Cirrhotic cardiomyopathy may be difficult to determine due to the lack of a specific diagnosis test. However, an echocardiogram allows the detection of the diastolic dysfunction and the E/e′ ratio may be used in the follow-up progression of the illness. Cirrhotic cardiomyopathy plays an important role in the pathogenesis of the impairment of effective arterial blood volume and correlates with the degree of liver failure. A clinical consequence of cardiac dysfunction is an inadequate cardiac response in the setting of vascular stress that may result in renal hypoperfusion leading to renal failure. The prognosis is difficult to establish but the severity of diastolic dysfunction may be a marker of mortality risk. Treatment is non-specific and liver transplantation may normalize the cardiac function. PMID:26556983
COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome.
Storey, Helen; Savige, Judy; Sivakumar, Vanessa; Abbs, Stephen; Flinter, Frances A
2013-12-01
Alport syndrome is an inherited disease characterized by hematuria, progressive renal failure, hearing loss, and ocular abnormalities. Autosomal recessive Alport syndrome is suspected in consanguineous families and when female patients develop renal failure. Fifteen percent of patients with Alport syndrome have autosomal recessive inheritance caused by two pathogenic mutations in either COL4A3 or COL4A4. Here, we describe the mutations and clinical features in 40 individuals including 9 children and 21 female individuals (53%) with autosomal recessive inheritance indicated by the detection of two mutations. The median age was 31 years (range, 6-54 years). The median age at end stage renal failure was 22.5 years (range, 10-38 years), but renal function was normal in nine adults (29%). Hearing loss and ocular abnormalities were common (23 of 35 patients [66%] and 10 of 18 patients [56%], respectively). Twenty mutation pairs (50%) affected COL4A3 and 20 pairs affected COL4A4. Of the 68 variants identified, 39 were novel, 12 were homozygous changes, and 9 were present in multiple individuals, including c.2906C>G (p.(Ser969*)) in COL4A4, which was found in 23% of the patients. Thirty-six variants (53%) resulted directly or indirectly in a stop codon, and all 17 individuals with early onset renal failure had at least one such mutation, whereas these mutations were less common in patients with normal renal function or late-onset renal failure. In conclusion, patient phenotypes may vary depending on the underlying mutations, and genetic testing should be considered for the routine diagnosis of autosomal recessive Alport syndrome.
COL4A3/COL4A4 Mutations and Features in Individuals with Autosomal Recessive Alport Syndrome
Savige, Judy; Sivakumar, Vanessa; Abbs, Stephen; Flinter, Frances A.
2013-01-01
Alport syndrome is an inherited disease characterized by hematuria, progressive renal failure, hearing loss, and ocular abnormalities. Autosomal recessive Alport syndrome is suspected in consanguineous families and when female patients develop renal failure. Fifteen percent of patients with Alport syndrome have autosomal recessive inheritance caused by two pathogenic mutations in either COL4A3 or COL4A4. Here, we describe the mutations and clinical features in 40 individuals including 9 children and 21 female individuals (53%) with autosomal recessive inheritance indicated by the detection of two mutations. The median age was 31 years (range, 6–54 years). The median age at end stage renal failure was 22.5 years (range, 10–38 years), but renal function was normal in nine adults (29%). Hearing loss and ocular abnormalities were common (23 of 35 patients [66%] and 10 of 18 patients [56%], respectively). Twenty mutation pairs (50%) affected COL4A3 and 20 pairs affected COL4A4. Of the 68 variants identified, 39 were novel, 12 were homozygous changes, and 9 were present in multiple individuals, including c.2906C>G (p.(Ser969*)) in COL4A4, which was found in 23% of the patients. Thirty-six variants (53%) resulted directly or indirectly in a stop codon, and all 17 individuals with early onset renal failure had at least one such mutation, whereas these mutations were less common in patients with normal renal function or late-onset renal failure. In conclusion, patient phenotypes may vary depending on the underlying mutations, and genetic testing should be considered for the routine diagnosis of autosomal recessive Alport syndrome. PMID:24052634
Alberti, C
2012-02-01
The widespread use of fetal ultrasonography results in a frequent antenatally observation of hydronephrosis, ureteropelvic junction obstruction (UPJO) accounting for the greatest fraction of congenital obstructive nephropathy. UPJO may be considered, in most cases, as a functional obstructive condition, depending on defective fetal smooth muscle/nerve development at this level, with lack of peristaltic wave propagation--aperistaltic segment--and, therefore, poor urine ejection from the renal pelvis into the ureter. The UPJO-related physiopathologic events are, at first, the compliant dilatation of renal pelvis that, acting as hydraulic buffer, protects the renal parenchyma from the rising intrapelvic pressure-related potential damages, and, subsequently, beyond such phase of dynamic balance, the tubular cell stretch-stress induced by increased intratubular pressure and following parenchymal inflammatory lesions: inflammatory infiltrates, fibroblast proliferation, activation of myofibroblasts, tubulo-interstitial fibrosis. Reactive oxygen species (ROS), nitric oxide (NO), several chemo- and cytokines, growth factors, prostaglandins and eicosanoids, angiotensin-II are the main pathogenetic mediators of the obstructive nephropathy. Apoptosis of tubular cells is the major cause of the tubular atrophy, together with epithelial-mesenchymal transdifferentiation. Some criticisms on tout court semantic renal pelvis dilatation-obstruction connection have been raised considering that the renal pelvis expansion isn't, in any case, linked to an ostructive condition, as it may be verified by diuretic (furosemide) renogram together with scintiscan-based evaluation of differential renal function. In this regard, rather than repetitive invasive nuclear procedures that expose the children to ionizing radiations, an intriguing noninvasive strategy, based on the evaluation of urinary biomarkers and urinary proteome, can define the UPJO-related possible progress of parenchymal lesions, thus predicting which patients must require an obstruction correcting surgery and in which patients, instead, the hydronephrosis will spontaneously resolve.
Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor
2014-03-15
This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.
Haque, Muhammad E; Franklin, Tammy; Bokhary, Ujala; Mathew, Liby; Hack, Bradley K; Chang, Anthony; Puri, Tipu S; Prasad, Pottumarthi V
2014-04-01
To evaluate longitudinal changes in renal oxygenation and diffusion measurements in a model of reversible unilateral ureteral obstruction (rUUO) which has been shown to induce chronic renal functional deficits in a strain dependent way. C57BL/6 mice show higher degree of functional deficit compared with BALB/c mice. Because hypoxia and development of fibrosis are associated with chronic kidney diseases and are responsible for progression, we hypothesized that MRI measurements would be able to monitor the longitudinal changes in this model and will show strain dependent differences in response. Here blood oxygenation level dependent (BOLD) and diffusion MRI measurements were performed at three time points over a 30 day period in mice with rUUO. The studies were performed on a 4.7T scanner with the mice anesthetized with isoflurane before UUO, 2 and 28 days postrelease of 6 days of obstruction. We found at the early time point (∼2 days after releasing the obstruction), the relative oxygenation in C57Bl/6 mice were lower compared with BALB/c. Diffusion measurements were lower at this time point and reached statistical significance in BALB/c These methods may prove valuable in better understanding the natural progression of kidney diseases and in evaluating novel interventions to limit progression. Copyright © 2013 Wiley Periodicals, Inc.
The kidney and type 2 diabetes mellitus: therapeutic implications of SGLT2 inhibitors.
Weir, Matthew R
2016-01-01
Understanding the role of the kidneys in type 2 diabetes mellitus (T2DM) has taken on an increased importance in recent years with the arrival of sodium-glucose co-transporter 2 (SGLT2) inhibitors - antihyperglycemic agents (AHAs) that specifically target the kidneys. This review includes an update on the physiology of the kidneys, their role in the pathophysiology of T2DM, and the mechanisms implicated in the development and progression of diabetic kidney disease, such as glomerular hyperfiltration and inflammation. It also discusses renal issues that could influence the choice of AHA for patients with T2DM, including special populations such as patients with concomitant chronic kidney disease. The most recent data published on the clinical efficacy and safety of the SGLT2 inhibitors canagliflozin, dapagliflozin, and empagliflozin and their effects on renal function are presented, showing how the renally mediated mechanisms of action of these agents translate into clinical benefits, including the potential for renoprotection. The observed positive effects of these agents on measures such as glucose control, estimated glomerular filtration rate, albumin-to-creatinine ratio, blood pressure, and body weight in patients both with and without impaired renal function suggest that SGLT2 inhibitors represent an important extension to the diabetes treatment armamentarium.
Elevations in serum creatinine with RAAS blockade: why isn't it a sign of kidney injury?
Ryan, Michael J; Tuttle, Katherine R
2008-09-01
The aim of this article is to review the pertinent physiology and pathophysiology of the renin-angiotensin-aldosterone system (RAAS), summarize the proven beneficial cardiovascular and renal effects of RAAS blockade, examine clinical situations in which RAAS blockade may induce reductions in glomerular filtration rate, and explore why increases in serum creatinine in the setting of angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB) therapy do not necessarily signify the presence of clinically relevant kidney failure. RAAS inhibition appears to reduce the likelihood of atrial fibrillation. RAAS inhibition leads to improved insulin sensitivity and glycemic control, but does not appear to prevent diabetes. The beneficial effects of ACEi/ARB therapy extend to those with significant renal disease. Combination ACEi/ARB is safe, and reduces proteinuria more than either agent alone in patients with macroalbuminuric nephropathy. Acute deteriorations in renal function that result from RAAS inhibition are usually reversible. RAAS blockade exerts potent hemodynamic, antihypertensive, and antiinflammatory effects, and slows progression of kidney disease beyond that due to lowering of blood pressure. The benefit extends to those with advanced disease. In spite of established benefit, ACEi and ARB therapy remains underutilized, in part due to concerns about acute deteriorations in renal function that result from interruption of the RAAS.
Biragova, Margarita S; Gracheva, Svetlana A; Glazunova, Alexandra M; Martynov, Sergey A; Ulaynova, Irina N; Ilyin, Alexandr V; Philippov, Yury I; Musaeva, Guliya M; Shamkhalova, Minara S; Shestakova, Marina V
2016-08-01
The objective of our study was to evaluate the role of mineral and bone metabolism disorders associated with chronic kidney disease (MBD-CKD) in the development and progression of cardiac and renal pathology in patients with type 1 diabetes mellitus (T1DM) of long duration. We investigated 96 patients with T1DM of long duration, with CKD at different stages (0-5), including patients on hemodialysis (HD) and with kidney transplantation (KT). Along with overall clinical examination, we assessed markers of MBD (calcium, phosphorus, parathormone, vitamin D, fibroblast growth factor (FGF) 23) and levels of cardiac injury marker (atrial natriuretic peptide, NT-proBNP). Multispiral computer tomography with Agatston index calculation was also included. Decreased kidney function was associated with increased of levels phosphorus, parathormone, FGF 23, and vitamin D deficiency, with the highest deviation from the reference ranges seen in patients on HD with a very high risk of cardiovascular events. In KT patients with satisfactory graft function, these parameters were at the same levels as in patients with CKD stages 0-4. Progression of cardiovascular pathology was accompanied by elevation of NT-proBNP levels as CKD duration increased, decreased glomerular filtration rate, and were correlated with the main parameters of mineral homeostasis. The severity of coronary arteries calcification was associated with patient age and duration of T1DM and arterial hypertension. Development and progression of kidney dysfunction is accompanied by MBD, a significant factor in progression of cardiac pathology, which remains a major cause of mortality in this patient population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Piao, Songzhe; Park, Juhyun; Son, Hwancheol; Jeong, Hyeon; Cho, Sung Yong
2016-05-01
To compare the perioperative relative renal function and determine predictors of deterioration and recovery of separate renal function in patients with renal stones >10 mm and who underwent mini-percutaneous nephrolithotomy or retrograde intra-renal surgery. A main stone >10 mm or stones growing, high-risk stone formers and extracorporeal shock-wave lithotripsy-resistant stones were prospectively included in 148 patients. Patients with bilateral renal stones and anatomical deformities were excluded. Renal function was evaluated by estimated glomerular filtration rate, 99m-technetium dimercaptosuccinic acid and 99m-technetium diethylenetriamine pentaacetate prior to intervention and at postoperative 3 months. Logistic regression analyses were performed to find predictors of functional deterioration and recovery. The overall stone-free rate was 85.1 %. A third of patients (53/148, 35.8 %) with renal stones >10 mm showed deterioration of separate renal function. Mean renal function of operative sites showed 58.2 % (36.8 %/63.2 %) of that of contralateral sites in these patients. Abnormal separate renal function showed postoperative recovery in 31 patients (58.5 %). Three cases (5.7 %) showed deterioration of separate renal function despite no presence of remnant stones. Improvement rates of the abnormal separate renal function did not differ according to the type of surgery. The presence of hydronephrosis and three or more stones were significant predictors for renal function deterioration. Female gender and three or more stones were significantly correlated with postoperative recovery. Mini-percutaneous nephrolithotomy or retrograde intra-renal surgery was effective and safe for renal function preservation. Patients with multiple large stones should be considered for candidates of active surgical removal.
Effect of low-protein diet supplemented with keto acids on progression of chronic kidney disease.
Garneata, Liliana; Mircescu, Gabriel
2013-05-01
Hypoproteic diets are most often discussed for patients with chronic kidney disease (CKD) who do not receive dialysis. A very low-protein diet supplemented with ketoanalogues of essential amino acids (keto-diet) proved effective in ameliorating metabolic disturbances of advanced CKD and delaying the initiation of dialysis without deleterious effects on nutritional status. Several recent studies report that the keto-diet could also slow down the rate of decline in renal function, with better outcomes after the initiation of dialysis. Results of a single-center randomized controlled trial addressing the rate of CKD progression revealed a 57% slower decline in renal function with the keto-diet compared with a conventional low-protein diet (LPD). The keto-diet allowed the safe management of selected patients with stage 4-5 CKD, delaying dialysis for almost 1 year, with a major impact on patient quality of life and health expenditures. Therefore, the keto-diet could be a link in the integrated care model. Careful selection of patients, nutritional monitoring, and dietary counseling are required. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Lima, Ingrid L. B.; Rodrigues, Aline F. A. C.; Bergamaschi, Cássia T.; Campos, Ruy R.; Hirata, Aparecida E.; Tufik, Sergio; Xylaras, Beatriz D. P.; Visniauskas, Bruna; Chagas, Jair R.; Gomes, Guiomar N.
2014-01-01
Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi – tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127±2.6 (19); OCSR: 144±2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: −2.6±0.15 (9); OCRS: −1.6±0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4±15 (18); OSR: 60.2±3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4±0.2 (10); OCSR: 7.4±0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring. PMID:25405471
Lima, Ingrid L B; Rodrigues, Aline F A C; Bergamaschi, Cássia T; Campos, Ruy R; Hirata, Aparecida E; Tufik, Sergio; Xylaras, Beatriz D P; Visniauskas, Bruna; Chagas, Jair R; Gomes, Guiomar N
2014-01-01
Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi - tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127 ± 2.6 (19); OCSR: 144 ± 2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: -2.6 ± 0.15 (9); OCRS: -1.6 ± 0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4 ± 15 (18); OSR: 60.2 ± 3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4 ± 0.2 (10); OCSR: 7.4 ± 0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring.
Effect of Cordyceps sinensis on renal function of patients with chronic allograft nephropathy.
Zhang, Zhihong; Wang, Xiangwei; Zhang, Yuanning; Ye, Gang
2011-01-01
To investigate the effect of Cordyceps sinensis (Bailing capsule, fermented agent of C. sinensis) on renal function of patients with chronic allograft nephropathy (CAN). A total of 231 CAN patients who underwent transplantation between 2005 and 2008 and experienced chronic graft dysfunction were randomly divided into 2 groups. Patients in group A (n = 122) were treated with immunosuppressive agents and C. sinensis (2.0 g/day, 3 times a day), while patients in group B (n = 109) were treated with traditional immunosuppressive drugs. Serum creatinine (SCr), blood urea nitrogen (BUN), creatinine clearance rate (C(Cr)) and urinary protein in 24 h (24-hour Upro) of all patients were measured before and after treatment. Urinary concentrations of transforming growth factor (TGF)-β(1), retinol-binding protein (RBP) and β(2)-microglobulin (β(2)-MG) were detected at the same time. After 6-month treatment with C. sinensis, SCr and C(Cr) in group A were significantly improved (p < 0.05), while there was no significant improvement observed for group B. There was no significant change in BUN in groups A and B (p > 0.05). 24-hour Upro, RBP and β(2)-MG were lower in group A after treatment with C. sinensis (p < 0.05 or p < 0.01), and urinary TGF-β(1) in group A was significantly lower than the values before C. sinensis treatment (p < 0.05), but showed no change in patients of group B. In group A, renal function had improved in 72 cases, stabilized in 38 cases, and worsened in 12 cases. In group B, renal function had improved in 14 cases, stabilized in 50 cases, and worsened in 45 cases (p < 0.05). C. sinensis therapy is advantageous in improving renal function of CAN patients by retarding CAN progression. Copyright © 2011 S. Karger AG, Basel.
Haneda, Masakazu; Koya, Daisuke; Kondo, Keiko; Tanaka, Sachiko; Arima, Hisatomi; Kume, Shinji; Nakazawa, Jun; Chin-Kanasaki, Masami; Ugi, Satoshi; Kawai, Hiromichi; Araki, Hisazumi; Uzu, Takashi; Maegawa, Hiroshi
2015-01-01
Background and objectives We investigated the association of urinary potassium and sodium excretion with the incidence of renal failure and cardiovascular disease in patients with type 2 diabetes. Design, setting, participants, & measurements A total of 623 Japanese type 2 diabetic patients with eGFR≥60 ml/min per 1.73 m2 were enrolled in this observational follow-up study between 1996 and 2003 and followed-up until 2013. At baseline, a 24-hour urine sample was collected to estimate urinary potassium and sodium excretion. The primary end point was renal and cardiovascular events (RRT, myocardial infarction, angina pectoris, stroke, and peripheral vascular disease). The secondary renal end points were the incidence of a 50% decline in eGFR, progression to CKD stage 4 (eGFR<30 ml/min per 1.73 m2), and the annual decline rate in eGFR. Results During the 11-year median follow-up period, 134 primary end points occurred. Higher urinary potassium excretion was associated with lower risk of the primary end point, whereas urinary sodium excretion was not. The adjusted hazard ratios for the primary end point in Cox proportional hazards analysis were 0.56 (95% confidence interval [95% CI], 0.33 to 0.95) in the third quartile of urinary potassium excretion (2.33–2.90 g/d) and 0.33 (95% CI, 0.18 to 0.62) in the fourth quartile (>2.90 g/d) compared with the lowest quartile (<1.72 g/d). Similar associations were observed for the secondary renal end points. The annual decline rate in eGFR in the fourth quartile of urinary potassium excretion (–1.3 ml/min per 1.73 m2/y; 95% CI, –1.5 to –1.0) was significantly slower than those in the first quartile (–2.2; 95% CI, –2.4 to –1.8). Conclusions Higher urinary potassium excretion was associated with the slower decline of renal function and the lower incidence of cardiovascular complications in type 2 diabetic patients with normal renal function. Interventional trials are necessary to determine whether increasing dietary potassium is beneficial. PMID:26563378
Weinberger, Sarah; Klarholz-Pevere, Carola; Liefeldt, Lutz; Baeder, Michael; Steckhan, Nico; Friedersdorff, Frank
2018-03-22
To analyse the influence of CT-based depth correction in the assessment of split renal function in potential living kidney donors. In 116 consecutive living kidney donors preoperative split renal function was assessed using the CT-based depth correction. Influence on donor side selection and postoperative renal function of the living kidney donors were analyzed. Linear regression analysis was performed to identify predictors of postoperative renal function. A left versus right kidney depth variation of more than 1 cm was found in 40/114 donors (35%). 11 patients (10%) had a difference of more than 5% in relative renal function after depth correction. Kidney depth variation and changes in relative renal function after depth correction would have had influence on side selection in 30 of 114 living kidney donors. CT depth correction did not improve the predictability of postoperative renal function of the living kidney donor. In general, it was not possible to predict the postoperative renal function from preoperative total and relative renal function. In multivariate linear regression analysis, age and BMI were identified as most important predictors for postoperative renal function of the living kidney donors. Our results clearly indicate that concerning the postoperative renal function of living kidney donors, the relative renal function of the donated kidney seems to be less important than other factors. A multimodal assessment with consideration of all available results including kidney size, location of the kidney and split renal function remains necessary.
Tatsukawa, Hideki; Otsu, Risa; Tani, Yuji; Wakita, Ryosuke; Hitomi, Kiyotaka
2018-05-09
Chronic kidney disease is characterized by prolonged decline in renal function, excessive accumulation of ECM, and progressive tissue fibrosis. Transglutaminase (TG) is a crosslinking enzyme that catalyzes the formation of covalent bonds between glutamine and lysine residues, and is involved in the induction of renal fibrosis via the stabilization of ECM and the activation of TGF-β1. Despite the accumulating evidences indicating that TG2 is a key enzyme in fibrosis, genetic knockout of TG2 reduced by only 50% the elevated protein crosslinking and fibrous protein in renal fibrosis model, whereas treatment with TG inhibitor almost completely reduced these levels. Here, we also clarified the distributions of TG isozymes and their in situ activities and identified the isozyme-specific crosslinked substrates for both TG1 and TG2 in fibrotic kidney. We found that TG1 activity was markedly enhanced in renal tubular epithelium and interstitial areas, whereas TG2 activity increased only in the extracellular space. In total, 47 and 67 possible candidates were identified as TG1 and TG2 substrates, respectively, only in fibrotic kidney. Among them, several possible substrates related to renal disease and fibrosis were identified. These findings provide novel insights into the mechanisms of renal fibrosis through the targeting of isozyme-specific TG substrates.
Buda-Nowak, Anna; Kucharz, Jakub; Dumnicka, Paulina; Kuzniewski, Marek; Herman, Roman Maria; Zygulska, Aneta L; Kusnierz-Cabala, Beata
2017-04-01
Sunitinib is a tyrosine kinase inhibitor (TKI) used in treatment of metastatic renal cell carcinoma (mRCC), gastrointestinal stromal tumors and pancreatic neuroendocrine tumors. One of the most common side effects related to sunitinib is hypothyroidism. Recent trials suggest correlation between the incidence of hypothyroidism and treatment outcome in patients treated with TKI. This study evaluates whether development of hypothyroidism is a predictive marker of progression-free survival (PFS) in patients with mRCC treated with sunitinib. Twenty-seven patients diagnosed with clear cell mRCC, after nephrectomy and in 'good' or 'intermediate' MSKCC risk prognostic group, were included in the study. All patients received sunitinib as a first-line treatment on a standard schedule (initial dose 50 mg/day, 4 weeks on, 2 weeks off). The thyroid-stimulating hormone serum levels were obtained at the baseline and every 12 weeks of treatment. In statistic analyses, we used Kaplan-Meier method for assessment of progression-free survival; for comparison of survival, we used log-rank test. In our study, the incidence of hypothyroidism was 44%. The patients who had developed hypothyroidism had better median PFS to patients with normal thyroid function 28,3 months [95% (CI) 20.4-36.2 months] versus 9.8 months (6.4-13.1 months). In survival analysis, we perceive that thyroid dysfunction is a predictive factor of a progression-free survival (PFS). In the unified group of patients, the development of hypothyroidism during treatment with sunitinib is a positive marker for PFS. During that treatment, thyroid function should be evaluated regularly.
Genome-Wide Association of CKD Progression: The Chronic Renal Insufficiency Cohort Study.
Parsa, Afshin; Kanetsky, Peter A; Xiao, Rui; Gupta, Jayanta; Mitra, Nandita; Limou, Sophie; Xie, Dawei; Xu, Huichun; Anderson, Amanda Hyre; Ojo, Akinlolu; Kusek, John W; Lora, Claudia M; Hamm, L Lee; He, Jiang; Sandholm, Niina; Jeff, Janina; Raj, Dominic E; Böger, Carsten A; Bottinger, Erwin; Salimi, Shabnam; Parekh, Rulan S; Adler, Sharon G; Langefeld, Carl D; Bowden, Donald W; Groop, Per-Henrik; Forsblom, Carol; Freedman, Barry I; Lipkowitz, Michael; Fox, Caroline S; Winkler, Cheryl A; Feldman, Harold I
2017-03-01
The rate of decline of renal function varies significantly among individuals with CKD. To understand better the contribution of genetics to CKD progression, we performed a genome-wide association study among participants in the Chronic Renal Insufficiency Cohort Study. Our outcome of interest was CKD progression measured as change in eGFR over time among 1331 blacks and 1476 whites with CKD. We stratified all analyses by race and subsequently, diabetes status. Single-nucleotide polymorphisms (SNPs) that surpassed a significance threshold of P <1×10 -6 for association with eGFR slope were selected as candidates for follow-up and secondarily tested for association with proteinuria and time to ESRD. We identified 12 such SNPs among black patients and six such SNPs among white patients. We were able to conduct follow-up analyses of three candidate SNPs in similar (replication) cohorts and eight candidate SNPs in phenotype-related (validation) cohorts. Among blacks without diabetes, rs653747 in LINC00923 replicated in the African American Study of Kidney Disease and Hypertension cohort (discovery P =5.42×10 -7 ; replication P =0.039; combined P =7.42×10 -9 ). This SNP also associated with ESRD (hazard ratio, 2.0 (95% confidence interval, 1.5 to 2.7); P =4.90×10 -6 ). Similarly, rs931891 in LINC00923 associated with eGFR decline ( P =1.44×10 -4 ) in white patients without diabetes. In summary, SNPs in LINC00923 , an RNA gene expressed in the kidney, significantly associated with CKD progression in individuals with nondiabetic CKD. However, the lack of equivalent cohorts hampered replication for most discovery loci. Further replication of our findings in comparable study populations is warranted. Copyright © 2017 by the American Society of Nephrology.
Necrotizing crescentic glomerulonephritis related to sarcoidosis: a case report.
Maroz, Natallia; Field, Halle
2015-12-14
Renal injury due to sarcoidosis develops in less than a quarter of patients with this systemic disease. In most cases, granulomatous tissue alters the production of vitamin D, which leads to hypercalciuria, nephrocalcinosis, and nephrolithiasis. Granulomatous interstitial nephritis is another well-recognized pathological process associated with sarcoidosis. However, a glomerular pathology is very rarely noted, and only a few cases are reported to have cellular crescentic glomerulonephritis. We describe the case of a 26-year-old African American woman with systemic sarcoidosis, with a unique constellation of renal lesions, including noncaseating epithelioid granulomatous necrotizing interstitial nephritis, cellular crescent formation, and necrotizing vasculitis. Immunosuppressive therapy was helpful for alleviating her nephrotic syndrome and maintaining the stability of her renal function over a 30-month period. Glomerular involvement of sarcoidosis needs to be considered in the differential diagnosis in cases of rapidly progressive glomerular nephritis.
Renal Aging: Causes and Consequences
Hughes, Jeremy; Ferenbach, David A.
2017-01-01
Individuals age >65 years old are the fastest expanding population demographic throughout the developed world. Consequently, more aged patients than before are receiving diagnoses of impaired renal function and nephrosclerosis—age–associated histologic changes in the kidneys. Recent studies have shown that the aged kidney undergoes a range of structural changes and has altered transcriptomic, hemodynamic, and physiologic behavior at rest and in response to renal insults. These changes impair the ability of the kidney to withstand and recover from injury, contributing to the high susceptibility of the aged population to AKI and their increased propensity to develop subsequent progressive CKD. In this review, we examine these features of the aged kidney and explore the various validated and putative pathways contributing to the changes observed with aging in both experimental animal models and humans. We also discuss the potential for additional study to increase understanding of the aged kidney and lead to novel therapeutic strategies. PMID:28143966
Harambat, Jérôme; Fargue, Sonia; Bacchetta, Justine; Acquaviva, Cécile; Cochat, Pierre
2011-01-01
Primary hyperoxalurias (PH) are inborn errors in the metabolism of glyoxylate and oxalate. PH type 1, the most common form, is an autosomal recessive disorder caused by a deficiency of the liver-specific enzyme alanine, glyoxylate aminotransferase (AGT) resulting in overproduction and excessive urinary excretion of oxalate. Recurrent urolithiasis and nephrocalcinosis are the hallmarks of the disease. As glomerular filtration rate decreases due to progressive renal damage, oxalate accumulates leading to systemic oxalosis. Diagnosis is often delayed and is based on clinical and sonographic findings, urinary oxalate assessment, DNA analysis, and, if necessary, direct AGT activity measurement in liver biopsy tissue. Early initiation of conservative treatment, including high fluid intake, inhibitors of calcium oxalate crystallization, and pyridoxine in responsive cases, can help to maintain renal function in compliant subjects. In end-stage renal disease patients, the best outcomes have been achieved with combined liver-kidney transplantation which corrects the enzyme defect. PMID:21748001
Pathophysiologic Mechanisms in Heart Failure: Role of the Sympathetic Nervous System.
Antoine, Steve; Vaidya, Gaurang; Imam, Haider; Villarreal, Daniel
2017-01-01
The syndrome of heart failure involves complex pathophysiologic mechanisms and is associated with extremely high-morbidity, mortality and economic costs. This growing global epidemic has diverse etiologies and is fundamentally characterized by dyshomeostasis between heart and kidneys, leading to development and progression of the cardiorenal syndrome. Excessive and sustained sympathoexcitation has emerged as a single prominent factor involved in the structural and functional dysfunction of multiple organ systems during this disease. Studies in experimental models of heart failure indicate that ablation of the renal nerves may help restore renal sodium and water equilibrium as well as the attenuation of adverse cardiac remodeling. With the recent development of minimally invasive endovascular renal denervation in humans, it is anticipated that this technology would become a novel and important paradigm shift in the management of heart failure. Copyright © 2017. Published by Elsevier Inc.
Tampe, Björn; Steinle, Ulrike; Tampe, Désirée; Carstens, Julienne L; Korsten, Peter; Zeisberg, Elisabeth M; Müller, Gerhard A; Kalluri, Raghu; Zeisberg, Michael
2017-01-01
Acute kidney injury (AKI) and progressive chronic kidney disease (CKD) are intrinsically tied syndromes. In this regard, the acutely injured kidney often does not achieve its full regenerative capacity and AKI directly transitions into progressive CKD associated with tubulointerstitial fibrosis. Underlying mechanisms of such AKI-to-CKD progression are still incompletely understood and specific therapeutic interventions are still elusive. Because epigenetic modifications play a role in maintaining tissue fibrosis, we used a murine model of ischemia-reperfusion injury to determine whether aberrant promoter methylation of RASAL1 contributes causally to the switch between physiological regeneration and tubulointerstitial fibrogenesis, a hallmark of AKI-to-CKD progression. It is known that the antihypertensive drug hydralazine has demethylating activity, and that its optimum demethylating activity occurs at concentrations below blood pressure-lowering doses. Administration of low-dose hydralazine effectively induced expression of hydroxylase TET3, which catalyzed RASAL1 hydroxymethylation and subsequent RASAL1 promoter demethylation. Hydralazine-induced CpG promoter demethylation subsequently attenuated renal fibrosis and preserved excretory renal function independent of its blood pressure-lowering effects. In comparison, RASAL1 demethylation and inhibition of tubulointerstitial fibrosis was not detected upon administration of the angiotensin-converting enzyme inhibitor Ramipril in this model. Thus, RASAL1 promoter methylation and subsequent transcriptional RASAL1 suppression plays a causal role in AKI-to-CKD progression. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Yadav, Saveg; Pandey, Shrish Kumar; Goel, Yugal; Kujur, Praveen Kumar; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra
2018-03-01
3-bromopyruvate (3-BP) possesses promising antineoplastic potential, however, its effects on immunological homeostasis vis a vis hepatic and renal functions in a tumor bearing host remain unclear. Therefore, the effect of 3-BP administration to a murine host bearing a progressively growing tumor of thymoma origin, designated as Dalton's lymphoma (DL), on immunological, renal and hepatic homeostasis was investigated. Administration of 3-BP (4 mg/kg) to the tumor bearing host reversed tumor growth associated thymic atrophy and splenomegaly, accompanied by altered cell survival and repertoire of splenic, bone marrow and tumor associated macrophages (TAM). TAM displayed augmented phagocytic, tumoricidal activities and production of IL-1 and TNF-α. 3-BP-induced activation of TAM was of indirect nature, mediated by IFN-γ. Blood count of T lymphocytes (CD4 + & CD8 + ) and NK cells showed a rise in 3-BP administered tumor bearing mice. Moreover, 3-BP administration triggered modulation of immunomodulatory cytokines in serum along with refurbished hepatic and renal functions. The study indicates the role of altered cytokines balance, site specific differential macrophage functions and myelopoiesis in restoration of lymphoid organ homeostasis in 3-BP administered tumor bearing host. These observations will have long lasting impact in understanding of alternate mechanisms underlying the antitumor action of 3-BP accompanying appraisal of safety issues for optimizing its antineoplastic actions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Punaro, Giovana R; Maciel, Fabiane R; Rodrigues, Adelson M; Rogero, Marcelo M; Bogsan, Cristina S B; Oliveira, Marice N; Ihara, Silvia S M; Araujo, Sergio R R; Sanches, Talita R C; Andrade, Lucia C; Higa, Elisa M S
2014-02-15
This study aimed at assessing the effects of Kefir, a probiotic fermented milk, on oxidative stress in diabetic animals. The induction of diabetes was achieved in adult male Wistar rats using streptozotocin (STZ). The animals were distributed into four groups as follows: control (CTL); control Kefir (CTLK); diabetic (DM) and diabetic Kefir (DMK). Starting on the 5th day of diabetes, Kefir was administered by daily gavage at a dose of 1.8 mL/day for 8 weeks. Before and after Kefir treatment, the rats were placed in individual metabolic cages to obtain blood and urine samples to evaluate urea, creatinine, proteinuria, nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and C-reactive protein (CRP). After sacrificing the animals, the renal cortex was removed for histology, oxidative stress and NOS evaluation. When compared to CTL rats, DM rats showed increased levels of glycemia, plasmatic urea, proteinuria, renal NO, superoxide anion, TBARS, and plasmatic CRP; also demonstrated a reduction in urinary urea, creatinine, and NO. However, DMK rats showed a significant improvement in most of these parameters. Despite the lack of differences observed in the expression of endothelial NO synthase (eNOS), the expression of inducible NO synthase (iNOS) was significantly lower in the DMK group when compared to DM rats, as assessed by Western blot analysis. Moreover, the DMK group presented a significant reduction of glycogen accumulation within the renal tubules when compared to the DM group. These results indicate that Kefir treatment may contribute to better control of glycemia and oxidative stress, which is associated with the amelioration of renal function, suggesting its use as a non-pharmacological adjuvant to delay the progression of diabetic complications. Copyright © 2014 Elsevier Inc. All rights reserved.
Clinical, biopsy, and mass spectrometry findings of renal gelsolin amyloidosis.
Sethi, Sanjeev; Dasari, Surendra; Amin, Md Shahrier; Vrana, Julie A; Theis, Jason D; Alexander, Mariam P; Kurtin, Paul J
2017-04-01
Gelsolin amyloidosis is a rare type of amyloidosis typically involving the cranial and peripheral nerves, but rarely the kidney. Here we report the clinical, kidney biopsy, and mass spectrometry findings in 12 cases of renal gelsolin amyloidosis. Of the 12 patients, five were men and seven were women with mean age at diagnosis of 63.8 years. Gelsolin amyloidosis was most common in Caucasians (six patients) and Asians (four patients), and included one each African-American and Hispanic patients. Nephrotic syndrome was the most common cause of biopsy, although most patients also had progressive loss of kidney function. Hematological and serological evaluation was negative in 11 patients, while one patient had a monoclonal gammopathy. The renal biopsy showed large amounts of pale eosinophilic Congo red-positive amyloid deposits typically restricted to the glomeruli. Immunofluorescence studies were negative for immunoglobulins in nine cases with three cases of smudgy glomerular staining for IgG. Electron microscopy showed mostly random arrangement of amyloid fibrils with focally parallel bundles/sheets of amyloid fibrils present. Laser microdissection of the amyloid deposits followed by mass spectrometry showed large spectra numbers for gelsolin, serum amyloid P component, and apolipoproteins E and AIV. Furthermore, the p. Asn211Lys gelsolin mutation on mass spectrometry studies was detected in three patients by mass spectrometry, which appears to represent a renal-limited form of gelsolin amyloidosis. Thus, renal gelsolin amyloidosis is seen in older patients, presents with nephrotic syndrome and progressive chronic kidney disease, and histologically exhibits glomerular involvement. The diagnosis can be confirmed by mass spectrometry studies. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease.
Coca, Steven G; Nadkarni, Girish N; Huang, Yuan; Moledina, Dennis G; Rao, Veena; Zhang, Jane; Ferket, Bart; Crowley, Susan T; Fried, Linda F; Parikh, Chirag R
2017-09-01
Biomarkers of diverse pathophysiologic mechanisms may improve risk stratification for incident or progressive diabetic kidney disease (DKD) in persons with type 2 diabetes. To evaluate such biomarkers, we performed a nested case-control study ( n =190 cases of incident DKD and 190 matched controls) and a prospective cohort study ( n =1156) using banked baseline plasma samples from participants of randomized, controlled trials of early (ACCORD) and advanced (VA NEPHRON-D) DKD. We assessed the association and discrimination obtained with baseline levels of plasma TNF receptor-1 (TNFR-1), TNFR-2, and kidney injury molecule-1 (KIM-1) for the outcomes of incident DKD (ACCORD) and progressive DKD (VA-NEPHRON-D). At baseline, median concentrations of TNFR-1, TNFR-2, and KIM-1 were roughly two-fold higher in the advanced DKD population (NEPHRON-D) than in the early DKD population (ACCORD). In both cohorts, patients who reached the renal outcome had higher baseline levels than those who did not reach the outcome. Associations between doubling in TNFR-1, TNFR-2, and KIM-1 levels and risk of the renal outcomes were significant for both cohorts. Inclusion of these biomarkers in clinical models increased the area under the curve (SEM) for predicting the renal outcome from 0.68 (0.02) to 0.75 (0.02) in NEPHRON-D. Systematic review of the literature illustrated high consistency in the association between these biomarkers of inflammation and renal outcomes in DKD. In conclusion, TNFR-1, TNFR-2, and KIM-1 independently associated with higher risk of eGFR decline in persons with early or advanced DKD. Moreover, addition of these biomarkers to clinical prognostic models significantly improved discrimination for the renal outcome. Copyright © 2017 by the American Society of Nephrology.
Measurements of renal shear wave velocities in chronic kidney disease patients.
Sasaki, Yutaka; Hirooka, Yoshiki; Kawashima, Hiroki; Ishikawa, Takuya; Takeshita, Kyosuke; Goto, Hidemi
2018-07-01
Background Chronic kidney disease (CKD) patients have advanced glomerulosclerosis and renal interstitial fibrosis. Shear wave elastography (SWE) is useful to diagnose liver fibrosis. However, there are few data available regarding evaluation of kidney function on the use of SWE. Purpose To assess the utility of SWE by evaluating the correlation between renal function and renal elasticity using SWE. Material and Methods A total of 187 participants who had available serum creatinine levels and also underwent SWE of the kidney using a transabdominal ultrasonography were recruited at Nagoya University Hospital. We measured the depth of the shear wave (SW) in the right and left kidneys and calculated the measurement success rates. The glomerular filtration rate (GFR) classification and shear wave value (SWV) were compared. Results The success rates of the right and left kidneys were 93.6% and 71.6%, respectively. Based on these results, the correlation between GFR classification and SWV were analyzed in only the right kidneys because the success rates and the number of enrolled patients were low for the left kidney. There were significant differences found between G1 and G3a, G2 and G3a, G3a and G3b, G3a and G4, and G3a and G5. SWV significantly negatively and positively correlated with the G2-G3a and G3a-G3b classifications. Conclusion There is no correlation between renal function and SW. However, we can diagnose the progression to the CKD stages G3a and G3b by observing the changes over time using the SWV.
Effect of weight loss in obese dogs on indicators of renal function or disease.
Tvarijonaviciute, A; Ceron, J J; Holden, S L; Biourge, V; Morris, P J; German, A J
2013-01-01
Obesity is a common medical disorder in dogs, and can predispose to a number of diseases. Human obesity is a risk factor for the development and progression of chronic kidney disease. To investigate the possible association of weight loss on plasma and renal biomarkers of kidney health. Thirty-seven obese dogs that lost weight were included in the study. Prospective observational study. Three novel biomarkers of renal functional impairment, disease, or both (homocysteine, cystatin C, and clusterin), in addition to traditional markers of chronic renal failure (serum urea and creatinine, urine specific gravity [USG], urine protein-creatinine ratio [UPCR], and urine albumin corrected by creatinine [UAC]) before and after weight loss in dogs with naturally occurring obesity were investigated. Urea (P = .043) and USG (P = .012) were both greater after weight loss than before loss, whilst UPCR, UAC, and creatinine were less after weight loss (P = .032, P = .006, and P = .026, respectively). Homocysteine (P < .001), cystatin C (P < .001) and clusterin (P < .001) all decreased upon weight loss. Multiple linear regression analysis revealed associations between percentage weight loss (greater weight loss, more lean tissue loss; r = -0.67, r(2) = 0.45, P < .001) and before-loss plasma clusterin concentration (greater clusterin, more lean tissue loss; r = 0.48, r(2) = 0.23, P = .003). These results suggest possible subclinical alterations in renal function in canine obesity, which improve with weight loss. Further work is required to determine the nature of these alterations and, most notably, the reason for the association between before loss plasma clusterin and subsequent lean tissue loss during weight management. Copyright © 2012 by the American College of Veterinary Internal Medicine.
Marin, Evelyn Cristina Santana; Balbi, Ana Paula Coelho; Francescato, Heloísa Della Coletta; Alves da Silva, Cleonice Giovanini; Costa, Roberto Silva; Coimbra, Terezila M
2008-01-01
Adult rats submitted to perinatal salt overload presented renin-angiotensin system (RAS) functional disturbances. The RAS contributes to the renal development and renal damage in a 5/6 nephrectomy model. The aim of the present study was to analyze the renal structure and function of offspring from dams that received a high-salt intake during pregnancy and lactation. We also evaluated the influence of the prenatal high-salt intake on the evolution of 5/6 nephrectomy in adult rats. A total of 111 sixty-day-old rat pups from dams that received saline or water during pregnancy and lactation were submitted to 5/6 nephrectomy (nephrectomized) or to a sham operation (sham). The animals were killed 120 days after surgery, and the kidneys were removed for immunohistochemical and histological analysis. Systolic blood pressure (SBP), albuminuria, and glomerular filtration rate (GFR) were evaluated. Increased SBP, albuminuria, and decreased GFR were observed in the rats from dams submitted to high-sodium intake before surgery. However, there was no difference in these parameters between the groups after the 5/6 nephrectomy. The scores for tubulointerstitial lesions and glomerulosclerosis were higher in the rats from the sham saline group compared to the same age control rats, but there was no difference in the histological findings between the groups of nephrectomized rats. In conclusion, our data showed that the high-salt intake during pregnancy and lactation in rats leads to structural changes in the kidney of adult offspring. However, the progression of the renal lesions after 5/6 nephrectomy was similar in both groups.
The importance of histopathology in the diagnosis of isolated renal sarcoidosis: a case report.
Trindade Filho, João Onofre; Amaro, Kaline Daniele de Souza; Oliveira, Allana Desirée Teixeira de; Gomes, Cecília Neta Alves Pegado; Costa, Hermann Ferreira; Trajano, Vinicius Nogueira
2018-06-18
Sarcoidosis is a systemic inflammatory disease of unknown etiology, characterized by the presence of non-caseating granulomas in several organs; renal impairment alone is a rare condition. When it affects the kidneys, the most prevalent manifestations are hypercalcemia and hypercalciuria. This paper aims to address the topic of renal sarcoidosis, by means of a case report, and reinstate the importance of histopathology in its diagnosis. The data came from an observational clinical study with a qualitative approach, through an interview with the renal sarcoidosis patient and data from her medical records. Patient D.M.S., 50 years old, Caucasian, presented with reddish eyes and body pains lasting for fifteen days as first manifestations of the disease. Upon kidney ultrasound scan, we found renal parenchymal nephropathy. Serial renal function and metabolic tests reported anemia and progressive urea and creatinine changes, as well as hypercalcemia and hypercalciuria, confirming acute kidney failure (AKF). A histopathological examination suggested the diagnosis, which was confirmed by clinical, laboratory and histopathological data. There was therapeutic resolution after steroid therapy. The symptomatology of sarcoidosis is diverse and often non-specific. Renal manifestation, which usually occurs after organ involvement, is present in less than 5% of patients, and about 1% to 2% of these patients may develop AKF. The use of histopathology together with clinical and laboratory data to diagnose isolated renal sarcoidosis, rule out other etiologies and introduce early treatment is of paramount importance.
Risk factors for end stage renal disease in non-WT1-syndromic Wilms tumor.
Lange, Jane; Peterson, Susan M; Takashima, Janice R; Grigoriev, Yevgeny; Ritchey, Michael L; Shamberger, Robert C; Beckwith, J Bruce; Perlman, Elizabeth; Green, Daniel M; Breslow, Norman E
2011-08-01
We assessed risk factors for end stage renal disease in patients with Wilms tumor without known WT1 related syndromes. We hypothesized that patients with characteristics suggestive of a WT1 etiology (early onset, stromal predominant histology, intralobar nephrogenic rests) would have a higher risk of end stage renal disease due to chronic renal failure. We predicted a high risk of end stage renal disease due to progressive bilateral Wilms tumor in patients with metachronous bilateral disease. End stage renal disease was ascertained in 100 of 7,950 nonsyndromic patients enrolled in a National Wilms Tumor Study during 1969 to 2002. Risk factors were evaluated with cumulative incidence curves and proportional hazard regressions. The cumulative incidence of end stage renal disease due to chronic renal failure 20 years after Wilms tumor diagnosis was 0.7%. For end stage renal disease due to progressive bilateral Wilms tumor the incidence was 4.0% at 3 years after diagnosis in patients with synchronous bilateral Wilms tumor and 19.3% in those with metachronous bilateral Wilms tumor. For end stage renal disease due to chronic renal failure stromal predominant histology had a HR of 6.4 relative to mixed (95% CI 3.4, 11.9; p<0.001), intralobar rests had a HR of 5.9 relative to no rests (95% CI 2.0, 17.3; p=0.001), and Wilms tumor diagnosis at less than 24 months had a HR of 1.7 relative to 24 to 48 months and 2.8 relative to greater than 48 months (p=0.003 for trend). Metachronous bilateral Wilms tumor is associated with high rates of end stage renal disease due to surgery for progressive Wilms tumor. Characteristics associated with a WT1 etiology markedly increased the risk of end stage renal disease due to chronic renal failure despite the low risk in non-WT1 syndromic cases overall. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Current Insights into Long Non-Coding RNAs in Renal Cell Carcinoma
Seles, Maximilian; Hutterer, Georg C.; Kiesslich, Tobias; Pummer, Karl; Berindan-Neagoe, Ioana; Perakis, Samantha; Schwarzenbacher, Daniela; Stotz, Michael; Gerger, Armin; Pichler, Martin
2016-01-01
Renal cell carcinoma (RCC) represents a deadly disease with rising mortality despite intensive therapeutic efforts. It comprises several subtypes in terms of distinct histopathological features and different clinical presentations. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts in the genome which vary in expression levels and length and perform diverse functions. They are involved in the inititation, evolution and progression of primary cancer, as well as in the development and spread of metastases. Recently, several lncRNAs were described in RCC. This review emphasises the rising importance of lncRNAs in RCC. Moreover, it provides an outlook on their therapeutic potential in the future. PMID:27092491
Pancreas Transplantation: Solid Organ and Islet
Mittal, Shruti; Johnson, Paul; Friend, Peter
2014-01-01
Transplantation of the pancreas, either as a solid organ or as isolated islets of Langerhans, is indicated in a small proportion of patients with insulin-dependent diabetes in whom severe complications develop, particularly severe glycemic instability and progressive secondary complications (usually renal failure). The potential to reverse diabetes has to be balanced against the morbidity of long-term immunosuppression. For a patient with renal failure, the treatment of choice is often a simultaneous transplant of the pancreas and kidney (SPK), whereas for a patient with glycemic instability, specifically hypoglycemic unawareness, the choice between a solid organ and an islet transplant has to be individual to the patient. Results of SPK transplantation are comparable to other solid-organ transplants (kidney, liver, heart) and there is evidence of improved quality of life and life expectancy, but the results of solitary pancreas transplantation and islets are inferior with respect to graft survival. There is some evidence of benefit with respect to the progression of secondary diabetic complications in patients with functioning transplants for several years. PMID:24616200
De Rosa, Silvia; Samoni, Sara; Villa, Gianluca; Ronco, Claudio
2017-01-01
Patients with chronic kidney disease (CKD) are at high risk for developing critical illness and for admission to intensive care units (ICU). 'Critically ill CKD patients' frequently develop an acute worsening of renal function (i.e. acute-on-chronic, AoC) that contributes to long-term kidney dysfunction, potentially leading to end-stage kidney disease (ESKD). An integrated multidisciplinary effort is thus necessary to adequately manage the multi-organ damage of those kidney patients and contemporaneously reduce the progression of kidney dysfunction when they are critically ill. The aim of this review is to describe (1) the pathophysiological mechanisms underlying the development of AoC kidney dysfunction and its role in the progression toward ESKD; (2) the most common clinical presentations of critical illness among CKD/ESKD patients; and (3) the continuum of care for CKD/ESKD patients from maintenance hemodialysis/peritoneal dialysis to acute renal replacement therapy performed in ICU and, vice-versa, for AoC patients who develop ESKD. © 2017 S. Karger AG, Basel.
Clinical effectiveness of secondary interventions for restenosis after renal artery stenting
Simone, Thomas A.; Brooke, Benjamin S.; Goodney, Philip P.; Walsh, Daniel B.; Stone, David H.; Powell, Richard J.; Cronenwett, Jack L.; Nolan, Brian W.
2013-01-01
Objective Secondary interventions for renal artery restenosis (RAS) after renal artery stenting are common, despite limited data about their effectiveness. This study was designed to evaluate the outcomes of endovascular treatment of recurrent RAS. Methods We conducted a retrospective review of patients who underwent renal artery stenting between 2001 and 2011 at Dartmouth-Hitchcock Medical Center. Patients who required secondary interventions were compared with control patients who underwent only primary interventions for RAS. Multivariate regression models were used to identify factors associated with successful outcomes, as measured by changes in blood pressure, estimated glomerular filtration rate, and number of antihypertensive medications required. Results Sixty-five secondary (57 patients) renal interventions were undertaken for recurrent RAS associated with progressive hypertension or renal dysfunction and compared with outcomes after 216 primary (180 patients) renal artery stenting procedures. Patients undergoing primary vs secondary interventions did not differ significantly in the number of preoperative antihypertensive medications used, comorbid conditions, or blood pressure. All primary and secondary interventions were performed with stents and showed no difference in procedural complications. At a mean follow-up of 23 months (range, 1–128 months), similar improvements in renal function and blood pressure were found between patients undergoing primary and secondary interventions, and there was no difference in rates of restenosis or survival between cohorts. Regression models showed that the use of embolic protection devices was associated with improved renal function after primary (odds ratio [OR], 2.0; 95% confidence interval [CI], 1.1–3.8; P < .05) and secondary (OR, 4.7; 95% CI, 1.7–12.5; P < .05) interventions, whereas statin therapy was associated with improved renal (OR, 2.0; 95% CI, 1.3–3.2; P < .05) and blood pressure response (OR, 4.1; 95% CI, 1.1–14.9; P < .05) after secondary interventions. Conclusions Patients undergoing secondary interventions for recurrent RAS have outcomes that are comparable with those for primary interventions. These data suggest that repeated endovascular procedures for RAS can be undertaken with similar expectations for clinical improvement and may be further improved by routine use of embolic protection devices and statin therapy. PMID:23688626
Ruilope, Luis Miguel; Redón, Josep; Schmieder, Roland
2007-01-01
Endothelial dysfunction is the initial pathophysiological step in a progression of vascular damage that leads to overt cardiovascular and chronic kidney disease. Angiotensin II, the primary agent of the renin–angiotensin system (RAS), has a central role in endothelial dysfunction. Therefore, RAS blockade with an angiotensin receptor blocker (ARB) and/or angiotensin-converting enzyme (ACE) inhibitor provides a rational approach to reverse endothelial dysfunction, reduce microalbuminuria, and, thus, improves cardiovascular and renal prognosis. ARBs and ACE inhibitors act at different points in the RAS pathway and recent evidence suggests that there are differences regarding their effects on endothelial dysfunction. In addition to blood pressure lowering, studies have shown that ARBs reduce target-organ damage, including improvements in endothelial dysfunction, arterial stiffness, the progression of renal dysfunction in patients with type 2 diabetes, proteinuria, and left ventricular hypertrophy. The ONgoing Telmisartan Alone in combination with Ramipril Global Endpoint Trial (ONTARGET) Programme is expected to provide the ultimate evidence of whether improved endothelial function translates into reduced cardiovascular and renal events in high-risk patients, and to assess possible differential outcomes with telmisartan, the ACE inhibitor ramipril, or a combination of both (dual RAS blockade). Completion of ONTARGET is expected in 2008. PMID:17583170
Lifestyle modification and progressive renal failure.
Ritz, Eberhard; Schwenger, Vedat
2005-08-01
There is increasing evidence that lifestyle factors impact on the risk of developing chronic kidney disease (CKD) and the risk of progression of CKD. Equally important is the consideration that patients with CKD are more likely to die from cardiovascular disease than to reach the stage of end-stage renal failure. It is advantageous that manoeuvres that interfere with progression at the same time also reduce the risk of cardiovascular events. Lifestyle factors that aggravate progression include, among others, smoking, obesity and dietary salt intake. Alcohol consumption, according to some preliminary information, has a bimodal relationship to cardiovascular risk and progression, with moderate consumption being protective.
Emerging drugs for chronic kidney disease.
Stefoni, Sergio; Cianciolo, Giuseppe; Baraldi, Olga; Iorio, Mario; Angelini, Maria Laura
2014-06-01
Chronic kidney disease (CKD) is a worldwide health problem. Despite remarkable headway in slowing the progression of kidney diseases, the incidence of end-stage renal disease (ESRD) is increasing in all countries with a severe impact on patients and society. The high incidence of diabetes and hypertension, along with the aging population, may partially explain this growth. Currently, the mainstay of pharmacological treatment for CKD, aiming to slow progression to ESRD are ACE inhibitors and angiotensin II receptor blockers for their hemodynamic/antihypertensive and anti-inflammatory/antifibrotic action. However, novel drugs would be highly desirable to effectively slow the progressive renal function loss. Through the search engines, PubMed and ClinicalTrial.gov, the scientific literature was reviewed in search of emerging drugs in Phase II or III trials, which appear to be the most promising for CKD treatment. The great expectations for new drugs for the management of CKD over the last decade have unfortunately not been met. Encouraging results from preliminary studies with specific agents need to be tempered with caution, given the absence of consistent and adequate data. To date, several agents that showed great promise in animal studies have been less effective in humans.
Udell, Jacob A; Bhatt, Deepak L; Braunwald, Eugene; Cavender, Matthew A; Mosenzon, Ofri; Steg, Ph Gabriel; Davidson, Jaime A; Nicolau, Jose C; Corbalan, Ramon; Hirshberg, Boaz; Frederich, Robert; Im, KyungAh; Umez-Eronini, Amarachi A; He, Ping; McGuire, Darren K; Leiter, Lawrence A; Raz, Itamar; Scirica, Benjamin M
2015-04-01
The glycemic management of patients with type 2 diabetes mellitus (T2DM) and renal impairment is challenging, with few treatment options. We investigated the effect of saxagliptin in the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus (SAVOR)-Thrombolysis in Myocardial Infarction (TIMI) 53 trial according to baseline renal function. Patients with T2DM at risk for cardiovascular events were stratified as having normal or mildly impaired renal function (estimated glomerular filtration rate [eGFR] >50 mL/min/1.73 m(2); n = 13,916), moderate renal impairment (eGFR 30-50 mL/min/1.73 m(2); n = 2,240), or severe renal impairment (eGFR <30 mL/min/1.73 m(2); n = 336) and randomized to receive saxagliptin or placebo. The primary end point was cardiovascular death, myocardial infarction, or ischemic stroke. After a median duration of 2 years, saxagliptin neither increased nor decreased the risk of the primary and secondary composite end points compared with placebo, irrespective of renal function (all P for interactions ≥ 0.19). Overall, the risk of hospitalization for heart failure among the three eGFR groups of patients was 2.2% (referent), 7.4% (adjusted hazard ratio [HR] 2.38 [95% CI 1.95-2.91], P < 0.001), and 13.0% (adjusted HR 4.59 [95% CI 3.28-6.28], P < 0.001), respectively. The relative risk of hospitalization for heart failure with saxagliptin was similar (P for interaction = 0.43) in patients with eGFR >50 mL/min/1.73 m(2) (HR 1.23 [95% CI 0.99-1.55]), eGFR 30-50 mL/min/1.73 m(2) (HR 1.46 [95% CI 1.07-2.00]), and in patients with eGFR <30 (HR 0.94 [95% CI 0.52-1.71]). Patients with renal impairment achieved reductions in microalbuminuria with saxagliptin (P = 0.041) that were similar to those of the overall trial population. Saxagliptin did not affect the risk of ischemic cardiovascular events, increased the risk of heart failure hospitalization, and reduced progressive albuminuria, irrespective of baseline renal function. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
The Variability of Estimated Glomerular Filtration Rate Decline in Alport Syndrome.
Langsford, David; Tang, Mila; Djurdjev, Ognjenka; Er, Lee; Levin, Adeera
2016-01-01
A progressive trajectory toward renal failure is common in patients with Alport syndrome. Genotype-phenotype correlations have been well described; however, the natural history of the trajectory toward renal failure is not well described. The objective of this study is to describe the natural history of renal function decline in a cohort of Alport syndrome patients. Retrospective observational cohort study. British Columbia, Canada, chronic renal disease registry 1995-2012. 37 biopsy proven Alport syndrome or hematuria with family history of Alport syndrome. Serial estimated glomerular filtration rate (eGFR) Trajectory of renal decline described graphically by fitting a cubic smoothing spline to patient's eGFR measures. Various time points within a trajectory were indexed, randomly sampled, and followed for 2 years to estimate portion of progressors (>5 mL/min/1.73 m2 /y decline), stable state (0-2 mL/min/1.73 m2 /y decline), and regressors (>2 mL/min/1.73 m2 /y incline). In this retrospective observational cohort study, participants were identified through a chronic renal disease registry in British Columbia, Canada, from 1995 to 2012. Inclusion criteria were biopsy proven or hematuria with a family history of Alport syndrome. Individual patients and family group members were studied. Trajectory of renal decline described graphically by fitting a cubic smoothing spline to patient's serial estimated glomerular filtration rate (eGFR) measures. Various time points within a trajectory were indexed, randomly sampled, and followed for 2 years to estimate portion of progressors (>5 mL/min/1.73 m 2 /y decline), stable state (0-2 mL/min/1.73 m 2 /y decline), and regressors (>2 mL/min/1.73 m 2 /y incline). Histological or genetic evidence of Alport syndrome is not available in all patients. Median follow-up time was 48.2 months of 37 patients (78% male), with a median age of 36 (interquartile range [IQR], 18-47) and a median age of renal replacement therapy commencement (n = 23) of 38 (IQR = 20-52). Renal function changes were found to be heterogeneous overall, intra-individual and within families. Portion of progressors in eGFR 45-60 mL/min/1.73 m 2 was 73.7% (SD, 10.3), whereas 23.6% (SD, 11.0) remained stable. Within eGFR 30-45 mL/min/1.73 m 2 , 45.6% (SD, 7.0) were progressors, whereas 53.4% (SD, 7.4) remained stable. A large portion of eGFR 15-30 mL/min/1.73 m 2 patients were stable (54.8%; SD, 8.4), whereas 25.7% (SD, 7.1) progressed and 19.5% (SD, 5.6) regressed. The renal decline in Alport syndrome patients is heterogeneous which has implications for designing clinical trials of interventions.
The Variability of Estimated Glomerular Filtration Rate Decline in Alport Syndrome
Langsford, David; Tang, Mila; Djurdjev, Ognjenka; Er, Lee; Levin, Adeera
2016-01-01
Background: A progressive trajectory toward renal failure is common in patients with Alport syndrome. Genotype-phenotype correlations have been well described; however, the natural history of the trajectory toward renal failure is not well described. Objective: The objective of this study is to describe the natural history of renal function decline in a cohort of Alport syndrome patients. Design: Retrospective observational cohort study. Setting: British Columbia, Canada, chronic renal disease registry 1995-2012. Patients: 37 biopsy proven Alport syndrome or hematuria with family history of Alport syndrome. Measurements: Serial estimated glomerular filtration rate (eGFR) Trajectory of renal decline described graphically by fitting a cubic smoothing spline to patient’s eGFR measures. Various time points within a trajectory were indexed, randomly sampled, and followed for 2 years to estimate portion of progressors (>5 mL/min/1.73 m2 /y decline), stable state (0-2 mL/min/1.73 m2 /y decline), and regressors (>2 mL/min/1.73 m2 /y incline). Methods: In this retrospective observational cohort study, participants were identified through a chronic renal disease registry in British Columbia, Canada, from 1995 to 2012. Inclusion criteria were biopsy proven or hematuria with a family history of Alport syndrome. Individual patients and family group members were studied. Trajectory of renal decline described graphically by fitting a cubic smoothing spline to patient’s serial estimated glomerular filtration rate (eGFR) measures. Various time points within a trajectory were indexed, randomly sampled, and followed for 2 years to estimate portion of progressors (>5 mL/min/1.73 m2/y decline), stable state (0-2 mL/min/1.73 m2/y decline), and regressors (>2 mL/min/1.73 m2/y incline). Limitations: Histological or genetic evidence of Alport syndrome is not available in all patients. Results: Median follow-up time was 48.2 months of 37 patients (78% male), with a median age of 36 (interquartile range [IQR], 18-47) and a median age of renal replacement therapy commencement (n = 23) of 38 (IQR = 20-52). Renal function changes were found to be heterogeneous overall, intra-individual and within families. Portion of progressors in eGFR 45-60 mL/min/1.73 m2 was 73.7% (SD, 10.3), whereas 23.6% (SD, 11.0) remained stable. Within eGFR 30-45 mL/min/1.73 m2, 45.6% (SD, 7.0) were progressors, whereas 53.4% (SD, 7.4) remained stable. A large portion of eGFR 15-30 mL/min/1.73 m2 patients were stable (54.8%; SD, 8.4), whereas 25.7% (SD, 7.1) progressed and 19.5% (SD, 5.6) regressed. Conclusions: The renal decline in Alport syndrome patients is heterogeneous which has implications for designing clinical trials of interventions. PMID:28781883
Renken, Catharina; Fischer, Dagmar-Christiane; Kundt, Günther; Gretz, Norbert; Haffner, Dieter
2011-01-01
Activation of the mTOR pathway has been implicated in the mediation of the progression of polycystic kidney disease (PKD). Whereas targeted inhibition of mTOR has been proven to be effective in various animal models of autosomal dominant PKD, its efficacy in autosomal recessive PKD (ARPKD) remains to be elucidated. We examined the effects of sirolimus in PCK rats, an orthologous animal model of human ARPKD. Weaned PCK rats (n = 85) and SD-control rats (n = 72) received drinking water without and with sirolimus (corresponding to a daily intake of 2 mg/kg body weight) for 4, 8 and 12 weeks, respectively. The renal and hepatic functions were monitored throughout the treatment periods. Kidneys and livers were harvested and investigated with respect to progression of fibrosis, and number and size of cysts using the QWin image analysis programme. Expression of Akt, mTOR and its downstream target pS6K were assessed by immunohistochemistry. Five out of 43 sirolimus-treated PCK rats, but none of the controls, died during the study. Sirolimus treatment resulted in slightly reduced weight gain. In PCK rats, grossly enlarged kidney and livers as well as hepatic fibrosis together with enlarged bile ducts were readily detectable. Whereas activation of Akt/mTOR signalling was hardly detectable in the kidneys of SD rats, strong signals were seen in the kidneys of PCK rats. Despite a significantly reduced relative kidney weight after 12 weeks of treatment (P < 0.05), neither fibrosis and cyst area nor renal function improved during treatment. Sirolimus-treated PCK rats showed only a minor inhibition of renal mTOR-specific phosphorylation of S6K. Male PCK rats on sirolimus presented with increased concentrations of bile acids and bilirubin compared with controls (each P < 0.05 at 12 weeks). Similar, albeit non-significant, effects were noted in female PCK rats. Sirolimus failed to attenuate progression of kidney and liver disease in PCK rats. The lack of a protective effect might be due to intrinsic or acquired rapamycin resistance in this animal model of ARPKD.
Congenital ureteropelvic junction obstruction: human disease and animal models
Klein, Julie; Gonzalez, Julien; Miravete, Mathieu; Caubet, Cécile; Chaaya, Rana; Decramer, Stéphane; Bandin, Flavio; Bascands, Jean-Loup; Buffin-Meyer, Bénédicte; Schanstra, Joost P
2011-01-01
Ureteropelvic junction (UPJ) obstruction is the most frequently observed cause of obstructive nephropathy in children. Neonatal and foetal animal models have been developed that mimic closely what is observed in human disease. The purpose of this review is to discuss how obstructive nephropathy alters kidney histology and function and describe the molecular mechanisms involved in the progression of the lesions, including inflammation, proliferation/apoptosis, renin–angiotensin system activation and fibrosis, based on both human and animal data. Also we propose that during obstructive nephropathy, hydrodynamic modifications are early inducers of the tubular lesions, which are potentially at the origin of the pathology. Finally, an important observation in animal models is that relief of obstruction during kidney development has important effects on renal function later in adult life. A major short-coming is the absence of data on the impact of UPJ obstruction on long-term adult renal function to elucidate whether these animal data are also valid in humans. PMID:20681980
2009-01-01
CBC, reticulocyte count, G-6-PD determination, Duffy phenotype, ABO and Rh group typing, hemoglobin electrophoresis and erythrocyte sedimentation ... rates and APTT† Cardiovascular disease Hepatic or renal abnormalities Cardiovascular function Immunodeficiency Electrocardiogram Autoimmune...malaria vaccine. Progress has been achieved in the development of P. vivax pre- erythrocytic subunit vaccines such as the circumsporo- zoite (CS) and
Choi, Sung Won; Ryu, Ok Hee; Choi, Sun Jin; Song, In Sun; Bleyer, Anthony J; Hart, Thomas C
2005-10-01
As a consequence of uromodulin gene mutations, individuals develop precocious hyperuricemia, gout, and progressive renal failure. In vitro studies suggest that pathologic accumulation of uromodulin/Tamm-Horsfall glycoprotein (THP) occurs in the endoplasmic reticulum (ER), but the pathophysiology of renal damage is unclear. It was hypothesized that programmed cell death triggered by accumulation of misfolded THP in the ER causes progressive renal disease. Stably transfected human embryonic kidney 293 cells and immortalized thick ascending limb of Henle's loop cells with wild-type and mutated uromodulin cDNA were evaluated to test this hypothesis. Immunocytochemistry, ELISA, and deglycosylation studies indicated that accumulation of mutant THP occurred in the ER. FACS analyses showed a significant increase in early apoptosis signal in human embryonic kidney 293 and thick ascending limb of Henle's loop cells that were transfected with mutant uromodulin constructs. Colchicine and sodium 4-phenylbutyrate treatment increased secretion of THP from the ER to the cell membrane and into the culture media and significantly improved cell viability. These findings indicate that intracellular accumulation of THP facilitates apoptosis and that this may provide the pathologic mechanism responsible for the progressive renal damage associated with uromodulin gene mutations. Colchicine and sodium 4-phenylbutyrate reverse these processes and could potentially be beneficial in ameliorating the progressive renal damage in uromodulin-associated kidney diseases.
Inappropriate Prescription and Renal Function Among Older Patients with Cognitive Impairment.
Sönnerstam, Eva; Sjölander, Maria; Gustafsson, Maria
2016-12-01
Older people are more sensitive to drugs and adverse drug reactions than younger people because of age-related physiological changes such as impaired renal function. As people with dementia are particularly vulnerable to the effects of drugs, it is especially important to evaluate the dosages of renally cleared medications in this group. The aim of this study was to estimate the prevalence of impaired renal function and inappropriate prescriptions on the basis of renal function among older patients with dementia or cognitive impairment. The medical records of 428 patients aged ≥65 years who were admitted to two hospitals in northern Sweden were reviewed and renally cleared medications were identified. The Cockcroft-Gault equation was used to evaluate renal function. Doses were evaluated according to the Geriatric Dosage Handbook. Renal function was impaired (estimated glomerular filtration rate <60 ml/min) in 65.4 % of the study population. Impaired renal function was associated with increasing age. Among 547 prescriptions identified as renally cleared medications, 9.1 % were inappropriate based on the patient's renal function; 13.5 % of the 326 patients prescribed renally cleared medications had inappropriate prescriptions. Inappropriate prescriptions were more common among patients living in nursing homes. Impaired renal function is common and inappropriate prescription is prevalent among old people with cognitive impairment in northern Sweden. Continuous consideration of renal function is important when prescribing medications to this group.
Oxidative Stress in Kidney Diseases: The Cause or the Consequence?
Krata, Natalia; Zagożdżon, Radosław; Foroncewicz, Bartosz; Mucha, Krzysztof
2018-06-01
Exaggerated oxidative stress (OS) is usually considered as a disturbance in regular function of an organism. The excessive levels of OS mediators may lead to major damage within the organism's cells and tissues. Therefore, the OS-associated biomarkers may be considered as new diagnostic tools of various diseases. In nephrology, researchers are looking for alternative methods replacing the renal biopsy in patients with suspicion of chronic kidney disease (CKD). Currently, CKD is a frequent health problem in world population, which can lead to progressive loss of kidney function and eventually to end-stage renal disease. The course of CKD depends on the primary disease. It is assumed that one of the factors influencing the course of CKD might be OS. In the current work, we review whether monitoring the OS-associated biomarkers in nephrology patients can support the decision-making process regarding diagnosis, prognostication and treatment initiation.
Mikhaylova, Olga; Stratton, Yiwen; Hall, Daniel; Kellner, Emily; Ehmer, Birgit; Drew, Angela F.; Gallo, Catherine A.; Plas, David R.; Biesiada, Jacek; Meller, Jarek; Czyzyk-Krzeska, Maria F.
2012-01-01
Summary The von Hippel-Lindau tumor-suppressor gene (VHL) is lost in most clear cell renal cell carcinomas (ccRCC). Here, using human ccRCC specimens, VHL-deficient cells, and xenograft models, we show that miR-204 is a VHL-regulated tumor suppressor acting by inhibiting macroautophagy, with MAP1LC3B (LC3B) as a direct and functional target. Importantly, higher tumor grade of human ccRCC was correlated with a concomitant decrease in miR-204 and increase in LC3B levels, indicating that LC3B-mediated macroautophagy is necessary for RCC progression. VHL, in addition to inducing endogenous miR-204, triggered the expression of LC3C, an HIF-regulated LC3B paralog, that suppressed tumor growth. These data reveal a function of VHL as a tumor suppressing regulator of autophagic programs. PMID:22516261
Park, Joon-Sung; Kim, Sua; Jo, Chor Ho; Oh, Il Hwan; Kim, Gheun-Ho
2014-01-01
Although high salt intake is thought to accelerate renal progression in proteinuric kidney disease, it is not known whether strict dietary salt restriction could delay renal inflammation and interstitial fibrosis. Here, we sought to answer this question in a rat model of adriamycin-induced nephrotic syndrome. Adriamycin was administered via the femoral vein in a single bolus (7.5 mg/kg), and the rats were put on a sodium-deficient rodent diet. Rats with intact kidneys were studied for 5 weeks (experiment 1), and uninephrectomized rats were studied for 6 weeks (experiment 2). In experiment 1, restricting salt intake improved renal tubulointerstitial histopathology in adriamycin-treated rats. Immunohistochemical and immunoblot results additionally showed that restricting dietary salt lowered adriamycin-induced expression of osteopontin, collagen III, and fibronectin. In experiment 2, salt restriction improved adriamycin-induced azotemia, although it did not affect proteinuria or blood pressure. Dietary salt restriction also reduced adriamycin-induced infiltration of ED1-positive cells and the upregulated expression of osteopontin and α-SMA. Masson's trichrome and Sirius red staining revealed that salt restriction slowed Adriamycin-induced progression of renal interstitial fibrosis. Finally, qPCR revealed that adriamycin-induced expression of TNF-α, IκB-α, gp91(phox), p47(phox), and p67(phox) mRNA was blocked by salt restriction. Our findings demonstrate that strict dietary salt restriction delays the progress of renal inflammation and fibrosis in proteinuric kidney disease, most likely via relieving the reactive oxygen species-mediated NF-κB activation. © 2014 S. Karger AG, Basel.
Renal, auricular, and ocular outcomes of Alport syndrome and their current management.
Zhang, Yanqin; Ding, Jie
2017-09-01
Alport syndrome is a hereditary glomerular basement membrane disease caused by mutations in the COL4A3/4/5 genes encoding the type IV collagen alpha 3-5 chains. Most cases of Alport syndrome are inherited as X-linked dominant, and some as autosomal recessive or autosomal dominant. The primary manifestations are hematuria, proteinuria, and progressive renal failure, whereas some patients present with sensorineural hearing loss and ocular abnormalities. Renin-angiotensin-aldosterone system blockade is proven to delay the onset of renal failure by reducing proteinuria. Renal transplantation is a curative treatment for patients who have progressed to end-stage renal disease. However, only supportive measures can be used to improve hearing loss and visual loss. Although both stem cell therapy and gene therapy aim to repair the basement membrane defects, technical difficulties require more research in Alport mice before clinical studies. Here, we review the renal, auricular, and ocular manifestations and outcomes of Alport syndrome and their current management.
End-stage renal failure in type 2 diabetes: A medical catastrophe of worldwide dimensions.
Ritz, E; Rychlík, I; Locatelli, F; Halimi, S
1999-11-01
The incidence of patients with end-stage renal failure and diabetes mellitus type 2 as a comorbid condition has increased progressively in the past decades, first in the United States and Japan, but subsequently in all countries with a western lifestyle. Although there are explanations for this increase, the major factor is presumably diminishing mortality from hypertension and cardiovascular causes, so that patients survive long enough to develop nephropathy and end-stage renal failure. This review summarizes the striking differences between countries against the background of a similar tendency of an increasing incidence in all countries. Survival on renal replacement therapy continues to be substantially worse for patients with type 2 diabetes. A major reason for this observation is that patients enter renal replacement programs with cardiovascular morbidity acquired in the preterminal phase of renal failure. It is argued that the challenge for the future will be better patient management in earlier phases of diabetic nephropathy to attenuate or prevent progression, as well as cardiovascular complications.
Jaffa, Miran A; Gebregziabher, Mulugeta; Jaffa, Ayad A
2015-06-14
Renal transplant patients are mandated to have continuous assessment of their kidney function over time to monitor disease progression determined by changes in blood urea nitrogen (BUN), serum creatinine (Cr), and estimated glomerular filtration rate (eGFR). Multivariate analysis of these outcomes that aims at identifying the differential factors that affect disease progression is of great clinical significance. Thus our study aims at demonstrating the application of different joint modeling approaches with random coefficients on a cohort of renal transplant patients and presenting a comparison of their performance through a pseudo-simulation study. The objective of this comparison is to identify the model with best performance and to determine whether accuracy compensates for complexity in the different multivariate joint models. We propose a novel application of multivariate Generalized Linear Mixed Models (mGLMM) to analyze multiple longitudinal kidney function outcomes collected over 3 years on a cohort of 110 renal transplantation patients. The correlated outcomes BUN, Cr, and eGFR and the effect of various covariates such patient's gender, age and race on these markers was determined holistically using different mGLMMs. The performance of the various mGLMMs that encompass shared random intercept (SHRI), shared random intercept and slope (SHRIS), separate random intercept (SPRI) and separate random intercept and slope (SPRIS) was assessed to identify the one that has the best fit and most accurate estimates. A bootstrap pseudo-simulation study was conducted to gauge the tradeoff between the complexity and accuracy of the models. Accuracy was determined using two measures; the mean of the differences between the estimates of the bootstrapped datasets and the true beta obtained from the application of each model on the renal dataset, and the mean of the square of these differences. The results showed that SPRI provided most accurate estimates and did not exhibit any computational or convergence problem. Higher accuracy was demonstrated when the level of complexity increased from shared random coefficient models to the separate random coefficient alternatives with SPRI showing to have the best fit and most accurate estimates.
Moriya, Tatsumi; Tanaka, Shiro; Kawasaki, Ryo; Ohashi, Yasuo; Akanuma, Yasuo; Yamada, Nobuhiro; Sone, Hirohito; Yamashita, Hidetoshi; Katayama, Shigehiro
2013-09-01
To examine the interactive relationship between diabetic retinopathy (DR) and diabetic nephropathy (DN) in type 2 diabetic patients and to elucidate the role of DR and microalbuminuria on the onset of macroalbuminuria and renal function decline. We explored the effects of DR and microalbuminuria on the progression of DN from normoalbuminuria and low microalbuminuria (<150 mg/gCr) to macroalbuminuria or renal function decline in the Japan Diabetes Complications Study (JDCS), which is a nationwide randomized controlled study of type 2 diabetic patients focusing on lifestyle modification. Patients were divided into four groups according to presence or absence of DR and MA: normoalbuminuria without DR [NA(DR-)] (n = 773), normoalbuminuria with DR [NA(DR+)] (n = 279), microalbuminuria without DR [MA(DR-)] (n = 277), and microalbuminuria with DR [MA(DR+)] (n = 146). Basal urinary albumin-to-creatinine ratio and DR status were determined at baseline and followed for a median of 8.0 years. Annual incidence rates of macroalbuminuria were 1.6/1,000 person-years (9 incidences), 3.9/1,000 person-years (8 incidences), 18.4/1,000 person-years (34 incidences), and 22.1/1,000 person-years (22 incidences) in the four groups, respectively. Multivariate-adjusted hazard ratios of the progression to macroalbuminuria were 2.48 (95% CI 0.94-6.50; P = 0.07), 10.40 (4.91-22.03; P < 0.01), and 11.55 (5.24-25.45; P < 0.01) in NA(DR+), MA(DR-), and MA(DR+), respectively, in comparison with NA(DR-). Decline in estimated glomerular filtration rate (GFR) per year was two to three times faster in MA(DR+) (-1.92 mL/min/1.73 m(2)/year) than in the other groups. In normo- and low microalbuminuric Japanese type 2 diabetic patients, presence of microalbuminuria at baseline was associated with higher risk of macroalbuminuria in 8 years. Patients with microalbuminuria and DR showed the fastest GFR decline. Albuminuria and DR should be considered as risk factors of renal prognosis in type 2 diabetic patients. An open sharing of information will benefit both ophthalmologists and diabetologists.
Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo
2017-06-01
To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.
Li, Quanxin; Wang, Ziying; Zhang, Yan; Zhu, Jiaqing; Li, Liang; Wang, Xiaojie; Cui, Xiaoyang; Sun, Yu; Tang, Wei; Gao, Chengjiang; Ma, Chunhong; Yi, Fan
2018-06-12
There is significant progress in understanding the structure and function of NLRC5, a member of the nucleotide oligomerization domain-like receptor family. However, in the context of MHC class I gene expression, the functions of NLRC5 in innate and adaptive immune responses beyond the regulation of MHC class I genes remain controversial and unresolved. In particular, the role of NLRC5 in the kidney is unknown. NLRC5 was significantly upregulated in the kidney from mice with renal ischemia/reperfusion injury. NLRC5 deficient mice significantly ameliorated renal injury as evidenced by decreased serum creatinine levels, improved morphological injuries, and reduced inflammatory responses versus wild type mice. Similar protective effects were also observed in cisplatin-induced acute kidney injury. Mechanistically, NLRC5 contributed to renal injury by promoting tubular epithelial cell apoptosis and reducing inflammatory responses were, at least in part, associated with the negative regulation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). To determine the relative contribution of NLRC5 expression by parenchymal cells or leukocytes to renal damage during ischemia/reperfusion injury, we generated bone marrow chimeric mice. NLRC5 deficient mice engrafted with wild type hematopoietic cells had significantly lower serum creatinine and less tubular damage than wild type mice reconstituted with NLRC5 deficient bone marrow. This suggests that NLRC5 signaling in renal parenchymal cells plays the dominant role in mediating renal damage. Thus, modulation of the NLRC5-mediated pathway may have important therapeutic implications for patients with acute kidney injury. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Estrogens and progression of diabetic kidney damage.
Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Elliot, Sharon J
2011-01-01
It is generally accepted that estrogens affect and modulate the development and progression of chronic kidney diseases (CKD) not related to diabetes. Clinical studies have indeed demonstrated that the severity and rate of progression of renal damage tends to be greater among men, compared with women. Experimental studies also support the notion that female sex is protective and male sex permissive, for the development of CKD in non-diabetics, through the opposing actions of estrogens and testosterone. However, when we consider diabetes-induced kidney damage, in the setting of either type 1 or type 2 diabetes, the contribution of gender to the progression of renal disease is somewhat uncertain. Previous studies on the effects of estrogens in the pathogenesis of progressive kidney damage have primarily focused on mesangial cells. More recently, data on the effects of estrogens on podocytes, the cell type whose role may include initiation of progressive diabetic renal disease, became available. The aim of this review will be to summarize the main clinical and experimental data on the effects of estrogens on the progression of diabetes-induced kidney injury. In particular, we will highlight the possible biological effects of estrogens on podocytes, especially considering those critical for the pathogenesis of diabetic kidney damage.
Serum Uric Acid Level Predicts Progression of IgA Nephropathy in Females but Not in Males
Shoji, Tatsuya; Shinzawa, Maki; Hasuike, Yukiko; Nagatoya, Katsuyuki; Yamauchi, Atsushi; Hayashi, Terumasa; Kuragano, Takayuki; Moriyama, Toshiki; Isaka, Yoshitaka; Nakanishi, Takeshi
2016-01-01
Background Immunoglobulin A nephropathy (IgAN) is one of most common forms of glomerulonephritis. At this point, the clinical impact of hyperuricemia on IgAN is not clear. The aim of the present study was to explore the clinical impact of hyperuricemia on the progression of IgAN. Study Design Multicenter retrospective cohort study. Setting & Participants 935 IgAN patients who were diagnosed by kidney biopsy at Osaka University Hospital, Osaka General Hospital, and Osaka Rosai Hospital. were included in this study. Predictor Uric acid levels at renal biopsy. Outcomes The outcome of interest was the time from the kidney biopsy to the time when a 50% increase in the baseline serum creatinine level was observed, which was defined as "progression". Measurements The baseline characteristics according to the kidney biopsy at the time of diagnosis were collected from the medical records, and included age, gender, body mass index, hypertension, diabetes (use of antidiabetic drugs), serum levels of creatinine, urinary protein, smoking status, RAAS blockers and steroid therapy. Results An elevated serum uric acid level was an independent risk factor for progression in female patients (per 1.0 mg/dL, multivariate-adjusted incident rate ratio 1.33 [95% confidence interval 1.07, 1.64], P = 0.008) but not in male patients (1.02 [0.81, 1.29], P = 0.855). To control a confounding effect of renal function on an association between serum uric acid level and progression in female patients, age- and serum creatinine-matched and propensity score-matched analyses were performed, and these results also supported the effect by uric acid on kidney disease progression independent of basal kidney function. Limitations A cohort analyzed retorospectively. Conclusions This study revealed that an elevated uric acid level was an independent risk factor for ESKD in female IgAN patients. Therefore, uric acid might be a treatable target in female IgAN patients. PMID:27560997
Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function.
DiBona, Gerald F
2005-03-01
Methods of dynamic analysis are used to provide additional understanding of the renal sympathetic neural control of renal function. The concept of functionally specific subgroups of renal sympathetic nerve fibres conveying information encoded in the frequency domain is presented. Analog pulse modulation and pseudorandom binary sequence stimulation patterns are used for the determination of renal vascular frequency response. Transfer function analysis is used to determine the effects of non-renal vasoconstrictor and vasoconstrictor intensities of renal sympathetic nerve activity on dynamic autoregulation of renal blood flow.
Zhao, Shanrong; Schlerman, Franklin J.; Savary, Leigh; Campanholle, Gabriela; Johnson, Bryce G.; Xi, Li; Nguyen, Vuong; Zhan, Yutian; Lech, Matthew P.; Wang, Ju; Nie, Qing; Karsdal, Morten A.; Genovese, Federica; Boucher, Germaine; Brown, Thomas P.; Zhang, Baohong; Homer, Bruce L.; Martinez, Robert V.
2017-01-01
ZSF1 rats exhibit spontaneous nephropathy secondary to obesity, hypertension, and diabetes, and have gained interest as a model system with potentially high translational value to progressive human disease. To thoroughly characterize this model, and to better understand how closely it recapitulates human disease, we performed a high resolution longitudinal analysis of renal disease progression in ZSF1 rats spanning from early disease to end stage renal disease. Analyses included metabolic endpoints, renal histology and ultrastructure, evaluation of a urinary biomarker of fibrosis, and transcriptome analysis of glomerular-enriched tissue over the course of disease. Our findings support the translational value of the ZSF1 rat model, and are provided here to assist researchers in the determination of the model’s suitability for testing a particular mechanism of interest, the design of therapeutic intervention studies, and the identification of new targets and biomarkers for type 2 diabetic nephropathy. PMID:28746409
Dower, Ken; Zhao, Shanrong; Schlerman, Franklin J; Savary, Leigh; Campanholle, Gabriela; Johnson, Bryce G; Xi, Li; Nguyen, Vuong; Zhan, Yutian; Lech, Matthew P; Wang, Ju; Nie, Qing; Karsdal, Morten A; Genovese, Federica; Boucher, Germaine; Brown, Thomas P; Zhang, Baohong; Homer, Bruce L; Martinez, Robert V
2017-01-01
ZSF1 rats exhibit spontaneous nephropathy secondary to obesity, hypertension, and diabetes, and have gained interest as a model system with potentially high translational value to progressive human disease. To thoroughly characterize this model, and to better understand how closely it recapitulates human disease, we performed a high resolution longitudinal analysis of renal disease progression in ZSF1 rats spanning from early disease to end stage renal disease. Analyses included metabolic endpoints, renal histology and ultrastructure, evaluation of a urinary biomarker of fibrosis, and transcriptome analysis of glomerular-enriched tissue over the course of disease. Our findings support the translational value of the ZSF1 rat model, and are provided here to assist researchers in the determination of the model's suitability for testing a particular mechanism of interest, the design of therapeutic intervention studies, and the identification of new targets and biomarkers for type 2 diabetic nephropathy.
Li, Xiao-Dong; Wu, Yu-Peng; Wei, Yong; Chen, Shao-Hao; Zheng, Qing-Shui; Cai, Hai; Xue, Xue-Yi; Xu, Ning
2018-01-01
This study aimed to identify factors predicting the recoverability of renal function after pyeloplasty in adult patients with ureteropelvic junction obstruction. We retrospectively reviewed 138 adults with unilateral renal obstruction-induced hydronephrosis and who underwent Anderson-Hynes dismembered pyeloplasty from January 2013 to January 2016. Hydronephrosis was classified preoperatively according to the Society for Fetal Urology (SFU) grading system. All patients underwent Doppler ultrasonography, excretory urography, computed tomography, and technetium-99m-diethylenetriamine pentaacetic acid radioisotope (99mTc DTPA) renography before and after surgery. Renal resistive index (RRI) and 99mTc DTPA renography were repeated at 1, 3, 6, and 12 months. Multivariate analysis identified age, renal pelvic type, SFU grade, preoperative RRI, decline of RRI, and renal parenchyma to hydronephrosis area ratio (PHAR) as independent predictors of renal function recoverability after pyeloplasty. However, preoperative RRI and RRI decline were not significantly associated with recoverability of renal function in patients aged >35 years. Lower preoperative RRI, greater decline in RRI, higher PHAR, lower SFU grade, and extrarenal pelvis were associated with greater improvements in postoperative renal function. Preoperative differential renal function cannot independently predict the recoverability of postoperative renal function in adult patients with unilateral renal obstruction-induced hydronephrosis. SFU grade, renal pelvic type, PHAR, preoperative RRI, and decline in RRI were significantly associated with the recoverability of renal function in adult patients aged <35 years, while only SFU grade, renal pelvic type, and PHAR were significantly associated with renal function recoverability in patients aged ≥35 years. Renal function recovery was better in patients younger than 35 years when compared with older patients. © 2018 S. Karger AG, Basel.
Renal dopamine containing nerves. What is their functional significance?
DiBona, G F
1990-06-01
Biochemical and morphological studies indicate that there are nerves within the kidney that contain dopamine and that various structures within the kidney contain dopamine receptors. However, the functional significance of these renal dopamine containing nerves in relation to renal dopamine receptors is unknown. The functional significance could be defined by demonstrating that an alteration in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves is dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors. Thus, the hypothesis becomes: reflex or electrical activation of efferent renal nerves causes alterations in renal function (eg, renal blood flow, water and solute handling) that are inhibited by specific and selective dopamine receptor antagonists. As reviewed herein, the published experimental data do not support the hypothesis. Therefore, the view that alterations in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves are dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors remains unproven.
2012-01-01
Introduction To evaluate whether alkaline phosphatase (AP) treatment improves renal function in sepsis-induced acute kidney injury (AKI), a prospective, double-blind, randomized, placebo-controlled study in critically ill patients with severe sepsis or septic shock with evidence of AKI was performed. Methods Thirty-six adult patients with severe sepsis or septic shock according to Systemic Inflammatory Response Syndrome criteria and renal injury defined according to the AKI Network criteria were included. Dialysis intervention was standardized according to Acute Dialysis Quality Initiative consensus. Intravenous infusion of alkaline phosphatase (bolus injection of 67.5 U/kg body weight followed by continuous infusion of 132.5 U/kg/24 h for 48 hours, or placebo) starting within 48 hours of AKI onset and followed up to 28 days post-treatment. The primary outcome variable was progress in renal function variables (endogenous creatinine clearance, requirement and duration of renal replacement therapy, RRT) after 28 days. The secondary outcome variables included changes in circulating inflammatory mediators, urinary excretion of biomarkers of tubular injury, and safety. Results There was a significant (P = 0.02) difference in favor of AP treatment relative to controls for the primary outcome variable. Individual renal parameters showed that endogenous creatinine clearance (baseline to Day 28) was significantly higher in the treated group relative to placebo (from 50 ± 27 to 108 ± 73 mL/minute (mean ± SEM) for the AP group; and from 40 ± 37 to 65 ± 30 mL/minute for placebo; P = 0.01). Reductions in RRT requirement and duration did not reach significance. The results in renal parameters were supported by significantly more pronounced reductions in the systemic markers C-reactive protein, Interleukin-6, LPS-binding protein and in the urinary excretion of Kidney Injury Molecule-1 and Interleukin-18 in AP-treated patients relative to placebo. The Drug Safety Monitoring Board did not raise any issues throughout the trial. Conclusions The improvements in renal function suggest alkaline phosphatase is a promising new treatment for patients with severe sepsis or septic shock with AKI. Trial Registration www.clinicaltrials.gov: NCTNCT00511186 PMID:22269279
A random comparison of fosinopril and nifedipine GITS in patients with primary renal disease.
Marin, R; Ruilope, L M; Aljama, P; Aranda, P; Segura, J; Diez, J
2001-10-01
To investigate in a random comparison the capacity of an angiotensin converting enzyme inhibitor (fosinopril), and that of a long-acting dihydropiridine (nifedipine GITS) to modify the decay in renal function in patients with primary renal disease, exhibiting a progressive increase in serum creatinine during the previous 2 years. A randomized, open-label, multicenter study with a minimum follow-up of 3 years. A total of 241 patients were included in the study. All of them were hypertensive and had a 25% or at least 0.5 mg/dl increase in the value of serum creatinine during the 24 months prior to entering the study. Initial doses of fosinopril and nifedipine GITS were 10 and 30 mg respectively, and titration to 30 and 60 mg was performed if needed to obtain the expected blood pressure goal (< 140/90 mmHg). Furosemide, atenolol, and doxazosin were added as second, third, and fourth drugs if necessary, for blood pressure control. The primary end-point of the study was the appearance of double the serum creatinine values and/or the need to enter a dialysis programme. Secondary end-points were cardiovascular events, death, changes in 24 h proteinuria, and the evolution of serum creatinine. Data reflect the analysis performed by intention to treat. Mean age of the group was 54 +/- 14, and 59% were males. Primary glomerulonephritis (31%), nephrosclerosis (26%) and polycystic kidney disease (19%) were the three most frequent diagnostic findings. After 3 years of follow-up, 21% (27/127) of patients treated with fosinopril, and 36% (40/112) of those receiving nifedipine GITS presented a primary end-point, (OR 0.47, 95% confidence intervals 0.26-0.84, P = 0.01). Renal survival was significantly better when fosinopril constituted the first step therapy (P = 0.002). These results did not seem to be influenced by the type of primary renal disease. Proteinuria decreased at the end of the study by a mean of 57% in the fosinopril group and increased by 7% in the group receiving dihydropiridine. Blood pressure control did not differ among groups for diastolic values. During follow-up, however, the patients receiving ACEi showed systolic blood pressure values 4-6 mmHg lower. In patients with chronic renal failure and hypertension due to primary renal disease, fosinopril significantly differed from nifedipine GITS by its capacity to slow the progressive decay in renal function. The drugs also differed by their capacity to lower blood pressure. The better control, in particular of systolic blood pressure, in the fosinopril arm could have contributed in a relevant manner to the attainment of a better outcome when the ACEi was employed.
Uric Acid: The Unknown Uremic Toxin.
Treviño-Becerra, Alejandro
2018-01-01
This review brings together concepts of uric acid metabolism affecting renal parenchyma and its function and the current therapies to reduce hyperuricemia (HyU) and avoid renal disease progression. High uric acid plays an important role in several chronic diseases including kidney diseases such as lithiasis, gout nephropathy, and preeclampsia. In the last 30 years, it has been shown that reducing HyU with low protein and low purine diets in addition to allopurinol creates physiopathological conditions that produce a slight increase in the glomerular filtration rate (GFR). In recent years, in a new era of research in clinical, genetics, pharmacological, and epidemiologic fields, they have been moving forward to support the idea that reduction in HyU could benefit the chronic renal failure (CRF) patients (stage III-IV), thereby avoiding the drop of GFR for undefined mechanisms. There are several clinical trials in progress that show the HyU reducing to very low values and an increased GFR. In a young population, when treating HyU there is a reduction in high blood pressure. There are some reports showing that HyU could play a role in the diabetic nephropathy. Therefore, there have been some speculations that HyU treatment could stop the progression of CRF modifying the natural history of the diseases. So there will be new clinical trials with old and new medication and metabolic procedure to maintain a very low blood levels in the unknown uremic toxin know as uric acid which seems to be the toxin to the damage kidney. © 2018 S. Karger AG, Basel.
Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells.
García-Sánchez, Omar; López-Novoa, José Miguel; López-Hernández, Francisco J
2014-01-01
Chronic kidney disease (CKD) is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β) and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ), and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2) cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD.
Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells
García-Sánchez, Omar; López-Novoa, José Miguel; López-Hernández, Francisco J.
2014-01-01
Background/Aims Chronic kidney disease (CKD) is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β) and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Methods Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ), and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. Results We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2) cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Conclusion Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD. PMID:24575118
Rintala, Jukka M; Savikko, Johanna; Rintala, Sini E; Palin, Niina; Koskinen, Petri K
2016-06-01
Mesangial proliferative glomerulonephritis is a common glomerular disorder that may lead to end-stage renal disease. Epidermal growth factor (EGF) plays an important role in the regulation of cell growth, proliferation, and differentiation and in the pathology of various renal diseases. Erlotinib is a novel, oral, highly selective tyrosine kinase inhibitor of the EGF receptor. It is clinically used to treat non-small cell lung and pancreatic cancers. Here, we investigated the effect of erlotinib on the progression of mesangioproliferative glomerulonephritis in an experimental model. Mesangial glomerulonephritis was induced with anti-rat Thy-1.1 antibody in male Wistar rats weighing 150-160 g. Rats were treated with erlotinib (10 mg/kg/day p.o.) or vehicle only (polyethylene glycol). Native Wistar rat kidneys were used as histological controls. Serum creatinine levels were measured at day 7. Kidneys were harvested 7 days after antibody administration for histology. Native controls showed no histological signs of glomerular pathology. In the vehicle group, intense glomerular inflammation developed after 7 days and prominent mesangial cell proliferation and glomerular matrix accumulation was seen. Erlotinib was well tolerated and there were no adverse effects during the follow-up period. Erlotinib significantly prevented progression of the glomerular inflammatory response and glomerular mesangial cell proliferation as well as matrix accumulation when compared with the vehicle group. Erlotinib also preserved renal function. These results indicate that erlotinib prevents the early events of experimental mesangial proliferative glomerulonephritis. Therefore, inhibition of the EGF receptor with erlotinib could prevent the progression of glomerulonephritis also in clinical nephrology.
The effects of medicinal plants on renal function and blood pressure in diabetes mellitus.
Musabayane, C T
2012-09-01
Diabetes mellitus is one of the most common chronic global diseases affecting children and adolescents in both the developed and developing nations. The major types of diabetes mellitus are type 1 and type 2, the former arising from inadequate production of insulin due to pancreatic β-cell dysfunction, and the latter from reduced sensitivity to insulin in the target tissues and/or inadequate insulin secretion. Sustained hyperglycaemia is a common result of uncontrolled diabetes and, over time, can damage the heart, eyes, kidneys and nerves, mainly through deteriorating blood vessels supplying the organs. Microvascular (retinopathy and nephropathy) and macrovascular (atherosclerotic) disorders are the leading causes of morbidity and mortality in diabetic patients. Therefore, emphasis on diabetes care and management is on optimal blood glucose control to avert these adverse outcomes. Studies have demonstrated that diabetic nephropathy is associated with increased cardiovascular mortality. In general, about one in three patients with diabetes develops end-stage renal disease (ESRD) which proceeds to diabetic nephropathy (DN), the principal cause of significant morbidity and mortality in diabetes. Hypertension, a well-established major risk factor for cardiovascular disease contributes to ESRD in diabetes. Clinical evidence suggests that there is no effective treatment for diabetic nephropathy and prevention of the progression of diabetic nephropathy. However, biomedical evidence indicates that some plant extracts have beneficial effects on certain processes associated with reduced renal function in diabetes mellitus. On the other hand, other plant extracts may be hazardous in diabetes, as reports indicate impairment of renal function. This article outlines therapeutic and pharmacological evidence supporting the potential of some medicinal plants to control or compensate for diabetes-associated complications, with particular emphasis on kidney function and hypertension.
Gu, Liubao; Huang, Liji; Wu, Haidi; Lou, Qinglin; Bian, Rongwen
2017-05-01
Serum uric acid has shown to be a predictor of renal disease progression in most but not all studies. This study aims to test whether renal function-normalized serum uric acid is superior to serum uric acid as the predictor of incident chronic kidney disease in type 2 diabetes mellitus patients. In this study, 1339 type 2 diabetes mellitus patients with estimated glomerular filtration rate ⩾60 mL/min/1.73 m 2 and normouricemia were included. Renal function-normalized serum uric acid was calculated using serum uric acid/creatinine. Cox regression analysis was used to estimate the association between serum uric acid, renal function-normalized serum uric acid and incident chronic kidney disease. In total, 74 (5.53%) patients developed to chronic kidney disease 3 or greater during a median follow-up of 4 years, with older ages, longer diabetes duration and lower estimated glomerular filtration rate at baseline. The decline rate of estimated glomerular filtration rate was positively correlated with serum uric acid/creatinine ( r = 0.219, p < 0.001), but not serum uric acid ( r = 0.005, p = 0.858). Moreover, multivariate analysis revealed that serum uric acid was not an independent risk factor for incident chronic kidney disease ( p = 0.055), whereas serum uric acid to creatinine ratio was significantly associated with incident chronic kidney disease independently of potential confounders including baseline estimated glomerular filtration rate. serum uric acid to creatinine ratio might be a better predictor of incident chronic kidney disease in type 2 diabetes mellitus patients.
Bell, Tracy D; DiBona, Gerald F; Wang, Ying; Brands, Michael W
2006-08-01
The purpose of this study was to establish the roles of the myogenic response and the TGF mechanism in renal blood flow (RBF) control at the very earliest stages of diabetes. Mean arterial pressure (MAP) and RBF were measured continuously, 18 h/d, in uninephrectomized control and diabetic rats, and transfer function analysis was used to determine the dynamic autoregulatory efficiency of the renal vasculature. During the control period, MAP averaged 91 +/- 0.5 and 89 +/- 0.4 mmHg, and RBF averaged 8.0 +/- 0.1 and 7.8 +/- 0.1 ml/min in the control and diabetic groups, respectively. Induction of diabetes with streptozotocin caused a marked and progressive increase in RBF in the diabetic rats, averaging 10 +/- 6% above control on day 1 of diabetes and 22 +/- 3 and 34 +/- 1% above control by the end of diabetes weeks 1 and 2. MAP increased approximately 9 mmHg during the 2 wk in the diabetic rats, and renal vascular resistance decreased. Transfer function analysis revealed significant increases in gain to positive values over the frequency ranges of both the TGF and myogenic mechanisms, beginning on day 1 of diabetes and continuing through day 14. These very rapid increases in RBF and transfer function gain suggest that autoregulation is impaired at the very onset of hyperglycemia in streptozotocin-induced type 1 diabetes and may play an important role in the increase in RBF and GFR in diabetes. Together with previous reports of decreases in chronically measured cardiac output and hindquarter blood flow, this suggests that there may be differential effects of diabetes on RBF versus nonrenal BF control.
Castro, Pedro; Azevedo, Elsa; Rocha, Isabel; Sorond, Farzaneh; Serrador, Jorge M
2018-03-02
Chronic kidney disease increases stroke incidence and severity but the mechanisms behind this cerebro-renal interaction are mostly unexplored. Since both vascular beds share similar features, microvascular dysfunction could be the possible missing link. Therefore, we examined the relationship between renal function and cerebral autoregulation in the early hours post ischemia and its impact on outcome. We enrolled 46 ischemic strokes (middle cerebral artery). Dynamic cerebral autoregulation was assessed by transfer function (coherence, phase and gain) of spontaneous blood pressure oscillations to blood flow velocity within 6 h from symptom-onset. Estimated glomerular filtration rate (eGFR) was calculated. Hemorrhagic transformation (HT) and white matter lesions (WML) were collected from computed tomography performed at presentation and 24 h. Outcome was evaluated with modified Rankin Scale at 3 months. High gain (less effective autoregulation) was correlated with lower eGFR irrespective of infarct side (p < 0.05). Both lower eGFR and higher gain correlated with WML grade (p < 0.05). Lower eGFR and increased gain, alone and in combination, progressively reduced the odds of a good functional outcome [ipsilateral OR = 4.39 (CI95% 3.15-25.6), p = 0.019; contralateral OR = 8.15 (CI95% 4.15-15.6), p = 0.002] and increased risk of HT [ipsilateral OR = 3.48 (CI95% 0.60-24.0), p = 0.132; contralateral OR = 6.43 (CI95% 1.40-32.1), p = 0.034]. Lower renal function correlates with less effective dynamic cerebral autoregulation in acute ischemic stroke, both predicting a bad outcome. The evaluation of serum biomarkers of renal dysfunction could have interest in the future for assessing cerebral microvascular risk and relationship with stroke complications.
Benjamin, Amanda; Gallacher, David J; Greiter-Wilke, Andrea; Guillon, Jean-Michel; Kasai, Cheiko; Ledieu, David; Levesque, Paul; Prelle, Katja; Ratcliffe, Sian; Sannajust, Frederick; Valentin, Jean-Pierre
2015-01-01
With the recent development of more sensitive biomarkers to assess kidney injury preclinically, a survey was designed i) to investigate what strategies are used to investigate renal toxicity in both ICH S7A compliant Safety Pharmacology (SP) studies after a single dose of a compound and within repeat-dose toxicity studies by large pharmaceutical companies today; ii) to understand whether renal SP studies have impact or utility in drug development and/or if it may be more appropriate to assess renal effects after multiple doses of compounds; iii) to ascertain how much mechanistic work is performed by the top 15 largest pharmaceutical companies (as determined by R&D revenue size); iv) to gain an insight into the impact of the validation of DIKI biomarkers and their introduction in the safety evaluation paradigm; and v) to understand the impact of renal/urinary safety study data on progression of projects. Two short anonymous surveys were submitted to SP leaders of the top 15 pharmaceutical companies, as defined by 2012 R&D portfolio size. Fourteen multiple choice questions were designed to explore the strategies used to investigate renal effects in both ICH S7A compliant SP studies and within toxicology studies. A 67% and 60% response rate was obtained in the first and second surveys, respectively. Nine out of ten respondent companies conduct renal excretory measurements (eg. urine analysis) in toxicology studies whereas only five out of ten conduct specific renal SP studies; and all of those 5 also conduct the renal excretory measurements in toxicology studies. These companies measure and/or calculate a variety of parameters as part of these studies, and also on a case by case basis include regulatory qualified and non-qualified DIKI biomarkers. Finally, only one company has used renal/urinary functional data alone to stop a project, whereas the majority of respondents combine renal data with other target organ assessments to form an integrated decision-making set. These short surveys highlighted areas of similarity: a) urinary measurements are most commonly taken on repeat-dose toxicity studies, and b) renal SP studies are less often utilised. The two major differences are a) lack of consistent use of DIKI biomarkers in urinary safety studies and b) the way large pharmaceutical companies assess renal function. Finally, suggestions were made to improve the safety assessment methods for determining the safety of compounds with potential renal liability. Copyright © 2015 Elsevier Inc. All rights reserved.
Significance of mast cell renal infiltration in patients with anti-GBM nephritis.
Wu, Xiao-Mei; Zhang, Yi-Yan; Zhang, Ming-Chao; Zhang, Li-Hua; Zeng, Cai-Hong; Liu, Zhi-Hong; Tang, Zheng
2016-07-01
To investigate the role of mast cells (MCs) renal infiltration in the progression of human anti-GBM nephritis, 38 patients diagnosed with anti-GBM nephritis were enrolled. Renal biopsies were performed. Immunohistochemistry was conducted to detect MCs in renal tissues. Patients were divided into group 1 (MCs <50 mm(-2), n = 18) and group 2 (MCs ≥50 mm(-2), n = 20) according to the infiltrating renal MC count. The clinical-pathological indices were compared. And, correlation between MCs and the clinical-pathological indices was analyzed. Patients of group 2 had more severe renal dysfunctions, expressed as higher levels of serum creatinine (SCr 8.95 ± 3.66 vs. 4.75 ± 2.73 mg/dL, p < 0.001), urine retinol-binding protein (RBP 29.8 ± 13.9 vs. 15.7 ± 11.5 mg/dL, p = 0.005), and lower urinary osmotic pressure. Pathologically, patients of group 2 had a higher percentage of fibrous/fibrocellular crescents (66.7 ± 21.9 vs. 47.0 ± 33.6%, p = 0.037) but a lower percentage of cellular crescents. More CD8 (268 mm(-2) vs. 180 mm(-2), p = 0.045) and CD68 (268 mm(-2) vs. 180 mm(-2), p = 0.045) positive cells infiltrating the interstitium were observed in group 2. Furthermore, renal MCs correlated significantly with the total number of crescents and the tubular interstitial CD8 and CD68 positive cells. And, the number of MCs was associated with the histological types. The renal function was significantly different between the two groups at presentation. However, at 3 and 6 month follow-up, the patient outcome was associated with the histological types. Our study showed that MC infiltrations were associated with chronic lesions in anti-GBM nephritis and may be involved in the loss of renal function with pathological changes.
Renal cell carcinoma in a cat with polycystic kidney disease undergoing renal transplantation.
Adams, Daniel J; Demchur, Jolie A; Aronson, Lillian R
2018-01-01
A 10-year-old spayed female American Shorthair cat underwent renal transplantation due to worsening chronic kidney disease secondary to polycystic kidney disease. During transplantation, the right kidney grossly appeared to be more diseased than the left and was firmly adhered to the surrounding tissues. An intraoperative fine-needle aspirate of the right native kidney revealed inflammatory cells but no evidence of neoplasia. To create space for the allograft, a right nephrectomy was performed. Following nephrectomy, the right native kidney was submitted for biopsy. Biopsy results revealed a renal cell carcinoma. Although the cat initially recovered well from surgery, delayed graft function was a concern in the early postoperative period. Significant azotemia persisted and the cat began to have diarrhea. Erythematous skin lesions developed in the perineal and inguinal regions, which were suspected to be secondary to thromboembolic disease based on histopathology. The cat's clinical status continued to decline with development of signs of sepsis, followed by marked obtundation with uncontrollable seizures. Given the postoperative diagnosis of renal cell carcinoma and the cat's progressively declining clinical status, humane euthanasia was elected. This case is the first to document renal cell carcinoma in a cat with polycystic kidney disease. An association of the two diseases has been reported in the human literature, but such a link has yet to be described in veterinary medicine. Given the association reported in the human literature, a plausible relationship between polycystic kidney disease and renal cell carcinoma in cats merits further investigation.
Mesquita, L R; Rahal, S C; Faria, L G; Takahira, R K; Rocha, N S; Mamprim, M J; Oliveira, H S
2014-01-01
Dioctophyma renale is a large nematode distributed worldwide that may cause progressive and severe destruction of renal parenchyma. The present study aimed to evaluate pre- and post-operatively dogs submitted to right nephrectomy due to D. renale and to assess the histopathological damage of the removed kidney. Eight crossbred dogs, aged from 12 to 48 months that were unilaterally nephrectomized due to the presence of D. renale were evaluated. Physical examination, urinalysis, complete blood count, serum biochemistry, and abdominal ultrasound were performed immediately before and one month after nephrectomy. The nephrectomized right kidneys were submitted to macroscopic and microscopic evaluations. Urinalysis preoperatively detected occult blood in all dogs and D. renale eggs in five cases. Complete blood count showed all parameters within the reference range, except one dog post-operatively. Serum biochemistry performed before and after surgery verified that urea, creatinine and sodium were within the reference range values in all dogs. Other findings varied among the dogs. The length and arterial resistive index mean values of the left kidney were similar pre- and post-operatively. Thus, the inconsiderable change in laboratory findings pre- and post-operatively was attributable to compensation by left kidney function for the removed abnormal right kidney. Right kidney histology revealed chronic nephropathy due to D. renale. Imaging diagnosis should be performed on dogs suspected as carrying the disease or on those from an enzootic area since the laboratory findings are not specific except eggs in the urine.
Association between pulmonary function and renal function: findings from China and Australia.
Yu, Dahai; Chen, Tao; Cai, Yamei; Zhao, Zhanzheng; Simmons, David
2017-05-01
The relationship between obstructive lung function and impaired renal function is unclear. This study investigated the dose-response relationship between obstructive lung function and impaired renal function. Two independent cross-sectional studies with representative sampling were applied. 1454 adults from rural Victoria, Australia (1298 with normal renal function, 156 with impaired renal function) and 5824 adults from Nanjing, China (4313 with normal renal function, 1511 with impaired renal function). Pulmonary function measurements included forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). Estimated glomerular filtration rate (eGFR), and impaired renal function marked by eGFR <60 mL/min/1.73m 2 were used as outcome. eGFR increased linearly with FEV1 in Chinese participants and with FVC in Australians. A non-linear relationship with peaked eGFR was found for FEV1 at 2.65 L among Australians and for FVC at 2.78 L among Chinese participants, respectively. A non-linear relationship with peaked eGFR was found for the predicted percentage value of forced expiratory volume in 1 s (PFEV1) at 81-82% and for the predicted percentage value of forced vital capacity (PFVC) at 83-84% among both Chinese and Australian participants, respectively. The non-linear dose-response relationships between lung capacity measurements (both for FEV1 and FVC) and risk of impaired renal function were consistently identified in both Chinese and Australian participants. An increased risk of impaired renal function was found below 3.05 L both for FEV1 and FVC, respectively. The non-linear relationship between PFEV and PVC and the risk of impaired renal function were consistently identified in both Chinese and Australian participants. An increased risk of impaired renal function was found below 76-77% for PFEV1 and 79-80% for PFVC, respectively. In both Australian and Chinese populations, the risk of impaired renal function increased both with FEV1 and FVC below 3.05 L, with PFEV1 below 76-77% or with PFVC below 79-80%, respectively. Obstructive lung function was associated with increased risk of reduced renal function. The screen for impaired renal function in patients with obstructive lung disease might be useful to ensure there was no impaired renal function before the commencement of potentially nephrotoxic medication where indicated (eg diuretics).
Hepatocyte growth factor: a regulator of extracellular matrix genes in mouse mesangial cells.
Laping, N J; Olson, B A; Ho, T; Ziyadeh, F N; Albrightson, C R
2000-04-01
The potential role of hepatocyte growth factor (HGF) in regulating extracellular matrix in mouse mesangial cells (MMC) was evaluated. Functional HGF receptors were deed in MMC by HGF-induced extracellular acidification, a response that was inhibited by the HGF inhibitor HGF/NK2, a splice variant expressing the N-terminal domain through the second kringle domain HGF also increased fibronectin and collagen alpha1 (IV) mRNA levels in these cells; the increases were associated with a concentration-dependent increase in transcriptional activity of the collagen alpha1 (IV) gene. HGF also stimulated fibronectin and collagen alpha1 (IV) mRNA levels in primary rabbit proximal tubule epithelial cells To evaluate the potential consequences of chronic elevation of HGF on renal fuction, HGF was administered continuously for 18 days to normal and diabetic C57BLKS/J lepr(db) mice. In the diabetic mice, HGF reduced creatinine clearance and increased microalbuminuria, indicating that chronic exposure to HGF impairs renal function. Thus, chronically elevated HGF may contribute to the progression of chronic renal disease in diabetes by decreasing the glomerular filtration rate and possibly promoting the accumulation of extracellular matrix.
Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how?
Preston, Rebecca; Stuart, Helen M; Lennon, Rachel
2017-11-27
Steroid-resistant nephrotic syndrome (SRNS) is a common cause of chronic kidney disease in childhood and has a significant risk of rapid progression to end-stage renal disease. The identification of over 50 monogenic causes of SRNS has revealed dysfunction in podocyte-associated proteins in the pathogenesis of proteinuria, highlighting their essential role in glomerular function. Recent technological advances in high-throughput sequencing have enabled indication-driven genetic panel testing for patients with SRNS. The availability of genetic testing, combined with the significant phenotypic variability of monogenic SRNS, poses unique challenges for clinicians when directing genetic testing. This highlights the need for clear clinical guidelines that provide a systematic approach for mutational screening in SRNS. The likelihood of identifying a causative mutation is inversely related to age at disease onset and is increased with a positive family history or the presence of extra-renal manifestations. An unequivocal molecular diagnosis could allow for a personalised treatment approach with weaning of immunosuppressive therapy, avoidance of renal biopsy and provision of accurate, well-informed genetic counselling. Identification of novel causative mutations will continue to unravel the pathogenic mechanisms of glomerular disease and provide new insights into podocyte biology and glomerular function.
Acute renal failure as a form of presentation of sarcoidosis in a young adult: a case report
2014-01-01
Introduction Sarcoidosis is a systemic granulomatous disease. Renal involvement is a rare initial presentation of this disease. Few articles on renal involvement as an initial presentation of sarcoidosis have been published in the literature. Case presentation A 26-year-old Caucasian woman presented with acute renal failure as an initial manifestation of sarcoidosis. Conclusions Renal involvement is an uncommon feature of sarcoidosis and it is essential to establish a fast and correct diagnosis because early therapy avoids progression to terminal renal failure. PMID:25124289
Palazzuoli, Alberto; McCullough, Peter A; Ronco, Claudio; Nuti, Ranuccio
2015-08-01
Chronic kidney disease (CKD) in heart failure (HF) has been recognized as an independent risk factor for adverse outcome, although the most important clinical trials tend to exclude patients with moderate and severe renal insufficiency. Despite this common association, the precise pathophysiological connection and liaison between heart and kidney is partially understood. Moreover, is it not enough considering how much cardio-renal syndrome type 1 is attributable to previous CKD, and how much to new-onset acute kidney injury (AKI). Neither development of AKI, its progression and time nor duration is related to an adverse outcome. An AKI definition is not universally recognized, and many confounding terms have been used in literature: "worsening renal function", "renal impairment", "renal dysfunction", etc., are all names that contribute to misunderstanding, and do not facilitate an universal classification. Therefore, AKI development should be the consequence of the basal clinical characteristics of patients, different primitive kidney disease and hemodynamic status. AKI could also be the mirror of several underlying associated diseases poorly controlled. Finally, it is not clear which is the optimal laboratory tool for identifying patients with an increased risk of AKI. In the current report, we review the different kidney diseases' impact in HF, and we analyze the modalities for AKI recognition during HF focusing our attention about some new biomarkers with potential application in the current setting.
Uric acid and progression of chronic kidney disease.
Weaver, Donald J
2018-06-21
The association between serum uric acid levels and human disease has garnered intense interest over the last decade including chronic kidney disease. Animal studies have provided evidence for a potential mechanistic role of uric acid in promoting progression of chronic kidney disease. Epidemiologic studies have also suggested an association between elevated serum uric acid levels and worsening renal function in the general population as well as in patients with chronic kidney disease. However, there is currently insufficient evidence to recommend the use of uric acid-lowering therapy to delay progression of chronic kidney disease in this patient population. Adequately powered, randomized, placebo-controlled trials are required to more precisely evaluate the risk and benefits of uric acid-lowering therapy in pediatric patients.
Urinary Angiostatin - A Novel Putative Marker of Renal Pathology Chronicity in Lupus Nephritis*
Wu, Tianfu; Du, Yong; Han, Jie; Singh, Sandeep; Xie, Chun; Guo, Yuyuan; Zhou, Xin J.; Ahn, Chul; Saxena, Ramesh; Mohan, Chandra
2013-01-01
There is a critical need to identify biomarkers for Systemic Lupus Erythematosus (SLE) which has a high prevalence of renal failure. When urine from patients with lupus nephritis was recently screened for the levels of ∼280 molecules using an exploratory array-based proteomic platform, elevated angiostatin levels were noted. Angiostatin is a bioactive fragment of plasminogen, and has been known to have modulatory function in angiogenesis and inflammation. The significant elevation in urinary angiostatin was next validated in an independent cohort of SLE patients (n = 100) using ELISA. Among patients with SLE, urine angiostatin was significantly increased in active SLE compared with inactive SLE, correlating well with the SLEDAI disease activity index and SLICC renal activity score (r = 0.66, p < 0.0001). ROC curve analysis further confirmed that urinary angiostatin had the capacity to discriminate patients with active SLE from those with inactive disease. Patients with Class IV lupus nephritis exhibited the highest levels of urinary angiostatin. Immunohistochemistry staining localized angiostatin expression to the renal tubular cells in these patients. Finally, when paired urine-kidney samples procured concurrently from patients with LN were next examined, urine angiostatin levels correlated strongly with the renal pathology chronicity index, but not with the activity index. Given that Class IV lupus nephritis and renal pathology chronicity changes forebode poor renal and patient survival, urinary angiostatin emerges as a novel noninvasive marker of renal disease in SLE. Longitudinal studies are in progress to further assess the disease-predictive potential of urinary angiostatin. PMID:23345539
αvβ6 Integrin Regulates Renal Fibrosis and Inflammation in Alport Mouse
Hahm, Kyungmin; Lukashev, Matvey E.; Luo, Yi; Yang, William J.; Dolinski, Brian M.; Weinreb, Paul H.; Simon, Kenneth J.; Chun Wang, Li; Leone, Diane R.; Lobb, Roy R.; McCrann, Donald J.; Allaire, Normand E.; Horan, Gerald S.; Fogo, Agnes; Kalluri, Raghu; Shield, Charles F.; Sheppard, Dean; Gardner, Humphrey A.; Violette, Shelia M.
2007-01-01
The transforming growth factor (TGF)-β-inducible integrin αvβ6 is preferentially expressed at sites of epithelial remodeling and has been shown to bind and activate latent precursor TGF-β. Herein, we show that αvβ6 is overexpressed in human kidney epithelium in membranous glomerulonephritis, diabetes mellitus, IgA nephropathy, Goodpasture’s syndrome, and Alport syndrome renal epithelium. To assess the potential regulatory role of αvβ6 in renal disease, we studied the effects of function-blocking αvβ6 monoclonal antibodies (mAbs) and genetic ablation of the β6 subunit on kidney fibrosis in Col4A3−/− mice, a mouse model of Alport syndrome. Expression of αvβ6 in Alport mouse kidneys was observed primarily in cortical tubular epithelial cells and in correlation with the progression of fibrosis. Treatment with αvβ6-blocking mAbs inhibited accumulation of activated fibroblasts and deposition of interstitial collagen matrix. Similar inhibition of renal fibrosis was observed in β6-deficient Alport mice. Transcript profiling of kidney tissues showed that αvβ6-blocking mAbs significantly inhibited disease-associated changes in expression of fibrotic and inflammatory mediators. Similar patterns of transcript modulation were produced with recombinant soluble TGF-β RII treatment, suggesting shared regulatory functions of αvβ6 and TGF-β. These findings demonstrate that αvβ6 can contribute to the regulation of renal fibrosis and suggest this integrin as a potential therapeutic target. PMID:17200187
Outcomes of Renal Allograft Recipients With Hepatitis C.
Carpio, R; Pamugas, G E; Danguilan, R; Que, E
2016-04-01
Studies on the effect of hepatitis C virus (HCV) infection showed decreased graft survival compared to HCV-negative matched patients. It was also identified as an independent risk factor for graft loss and mortality in kidney transplantation patients. This study was designed to evaluate the 10-year graft and patient outcomes of renal allograft recipients with HCV infection at the National Kidney and Transplant Institute. This is a retrospective study of patients who underwent renal transplantation with HCV infection and a group who were HCV-negative in the same post-transplantation period. Data were gathered from the in-patient and out-patient clinic records. Patient survival was significantly lower in the HCV-positive than in the HCV-negative group. The mean duration of patient survival was 154.95 (+4.95) months (12 years and 10 months) in HCV-negative patients compared to 141 (+6.52) months (11 years and 9 months) in the HCV-positive group (P = .05). Graft survival did not differ significantly between HCV-positive and HCV-negative recipients (P = .734). The mean duration of graft survival was 137 (+7.68) months (11 years and 5 months) in HCV-negative patients compared to 130 (+6.84) months (10 years and 10 months) in HCV-positive patients. Short- and long-term outcomes including biopsy-proven acute rejection, transplant glomerulopathy, chronic allograft nephropathy, renal function, and proteinuria were similar in both groups. Rejection, glomerulopathy, and renal function were similar in both groups. HCV progression was also observed in patients with detectable HCV-RNA 6 months before transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
Yin, Qingqiao; Xia, Yuanyu; Wang, Guan
2016-09-02
As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression in HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
[Chronic kidney disease and dyslipidaemia].
Pascual, Vicente; Serrano, Adalberto; Pedro-Botet, Juan; Ascaso, Juan; Barrios, Vivencio; Millán, Jesús; Pintó, Xavier; Cases, Aleix
Chronic kidney disease (CKD) has to be considered as a high, or even very high risk cardiovascular risk condition, since it leads to an increase in cardiovascular mortality that continues to increase as the disease progresses. An early diagnosis of CKD is required, together with an adequate identification of the risk factors, in order to slow down its progression to more severe states, prevent complications, and to delay, whenever possible, the need for renal replacement therapy. Dyslipidaemia is a factor of the progression of CKD that increases the risk in developing atherosclerosis and its complications. Its proper control contributes to reducing the elevated cardiovascular morbidity and mortality presented by these patients. In this review, an assessment is made of the lipid-lowering therapeutic measures required to achieve to recommended objectives, by adjusting the treatment to the progression of the disease and to the characteristics of the patient. In CKD, it seems that an early and intensive intervention of the dyslipidaemia is a priority before there is a significant decrease in kidney function. Treatment with statins has been shown to be safe and effective in decreasing LDL-Cholesterol, and in the reduction of cardiovascular events in individuals with CKD, or after renal transplant, although there is less evidence in the case of dialysed patients. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
Macconi, Daniela; Bonomelli, Maria; Benigni, Ariela; Plati, Tiziana; Sangalli, Fabio; Longaretti, Lorena; Conti, Sara; Kawachi, Hiroshi; Hill, Prue; Remuzzi, Giuseppe; Remuzzi, Andrea
2006-01-01
Changes in podocyte number or density have been suggested to play an important role in renal disease progression. Here, we investigated the temporal relationship between glomerular podocyte number and development of proteinuria and glomerulosclerosis in the male Munich Wistar Fromter (MWF) rat. We also assessed whether changes in podocyte number affect podocyte function and focused specifically on the slit diaphragm-associated protein nephrin. Age-matched Wistar rats were used as controls. Estimation of podocyte number per glomerulus was determined by digital morphometry of WT1-positive cells. MWF rats developed moderate hypertension, massive proteinuria, and glomerulosclerosis with age. Glomerular hypertrophy was already observed at 10 weeks of age and progressively increased thereafter. By contrast, mean podocyte number per glomerulus was lower than normal in young animals and further decreased with time. As a consequence, the capillary tuft volume per podocyte was more than threefold increased in older rats. Electron microscopy showed important changes in podocyte structure of MWF rats, with expansion of podocyte bodies surrounding glomerular filtration membrane. Glomerular nephrin expression was markedly altered in MWF rats and inversely correlated with both podocyte loss and proteinuria. Our findings suggest that reduction in podocyte number is an important determinant of podocyte dysfunction and progressive impairment of the glomerular permselectivity that lead to the development of massive proteinuria and ultimately to renal scarring. PMID:16400008
Uric acid and chronic kidney disease: which is chasing which?
Johnson, Richard J.; Nakagawa, Takahiko; Jalal, Diana; Sánchez-Lozada, Laura Gabriela; Kang, Duk-Hee; Ritz, Eberhard
2013-01-01
Serum uric acid is commonly elevated in subjects with chronic kidney disease (CKD), but was historically viewed as an issue of limited interest. Recently, uric acid has been resurrected as a potential contributory risk factor in the development and progression of CKD. Most studies documented that an elevated serum uric acid level independently predicts the development of CKD. Raising the uric acid level in rats can induce glomerular hypertension and renal disease as noted by the development of arteriolosclerosis, glomerular injury and tubulointerstitial fibrosis. Pilot studies suggest that lowering plasma uric acid concentrations may slow the progression of renal disease in subjects with CKD. While further clinical trials are necessary, uric acid is emerging as a potentially modifiable risk factor for CKD. Gout was considered a cause of CKD in the mid-nineteenth century [1], and, prior to the availability of therapies to lower the uric acid level, the development of end-stage renal disease was common in gouty patients. In their large series of gouty subjects Talbott and Terplan found that nearly 100% had variable degrees of CKD at autopsy (arteriolosclerosis, glomerulosclerosis and interstitial fibrosis) [2]. Additional studies showed that during life impaired renal function occurred in half of these subjects [3]. As many of these subjects had urate crystals in their tubules and interstitium, especially in the outer renal medulla, the disease became known as gouty nephropathy. The identity of this condition fell in question as the presence of these crystals may occur in subjects without renal disease; furthermore, the focal location of the crystals could not explain the diffuse renal scarring present. In addition, many subjects with gout also had coexistent conditions such as hypertension and vascular disease, leading some experts to suggest that the renal injury in gout was secondary to these latter conditions rather than to uric acid per se [4]. Indeed, gout was removed from the textbooks as a cause of CKD, and the common association of hyperuricemia with CKD was solely attributed to the retention of serum uric acid that is known to occur as the glomerular filtration rate falls. Renewed interest in uric acid as a cause of CKD occurred when it was realized that invalid assumptions had been made in the arguments to dismiss uric acid as a risk factor for CKD [5]. The greatest assumption was that the mechanism by which uric acid would cause kidney disease would be via the precipitation as crystals in the kidney, similar to the way it causes gout. However, when laboratory animals with CKD were made hyperuricemic, the renal disease progressed rapidly despite an absence of crystals in the kidney [6]. Since this seminal study, there has been a renewed interest in the potential role uric acid may have in both acute and CKD. We briefly review some of the major advances that have occurred in this field in the last 15 years. PMID:23543594
Long-term efficacy of anti-CD20 antibodies in refractory lupus nephritis.
Arce-Salinas, C Alejandro; Rodríguez-García, Felipe; Gómez-Vargas, J Iván
2012-05-01
Eight patients with refractory lupus nephritis received rituximab after failing standard sequential therapy and were followed for 104 weeks after the infusion. One patient died secondary to a complicated pregnancy but had stable renal function. Three patients received a re-infusion of rituximab approximately 12 months apart due to a renal flare; during the second year of follow-up, those patients progressed toward ESRD. The four remaining patients demonstrated improvements in SLEDAI score, CrCl, and proteinuria with maintenance of their standard immunosuppressive therapy and did not require a re-infusion of rituximab. Although rituximab as induction therapy for refractory lupus nephritis has been shown to have a good response, its efficacy in long-term assessments demonstrates disappointing results.
Bhongsatiern, Jiraganya; Stockmann, Chris; Yu, Tian; Constance, Jonathan E; Moorthy, Ganesh; Spigarelli, Michael G; Desai, Pankaj B; Sherwin, Catherine M T
2016-05-01
Growth and maturational changes have been identified as significant covariates in describing variability in clearance of renally excreted drugs such as vancomycin. Because of immaturity of clearance mechanisms, quantification of renal function in neonates is of importance. Several serum creatinine (SCr)-based renal function descriptors have been developed in adults and children, but none are selectively derived for neonates. This review summarizes development of the neonatal kidney and discusses assessment of the renal function regarding estimation of glomerular filtration rate using renal function descriptors. Furthermore, identification of the renal function descriptors that best describe the variability of vancomycin clearance was performed in a sample study of a septic neonatal cohort. Population pharmacokinetic models were developed applying a combination of age-weight, renal function descriptors, or SCr alone. In addition to age and weight, SCr or renal function descriptors significantly reduced variability of vancomycin clearance. The population pharmacokinetic models with Léger and modified Schwartz formulas were selected as the optimal final models, although the other renal function descriptors and SCr provided reasonably good fit to the data, suggesting further evaluation of the final models using external data sets and cross validation. The present study supports incorporation of renal function descriptors in the estimation of vancomycin clearance in neonates. © 2015, The American College of Clinical Pharmacology.
Stenting and medical therapy for atherosclerotic renal-artery stenosis.
Cooper, Christopher J; Murphy, Timothy P; Cutlip, Donald E; Jamerson, Kenneth; Henrich, William; Reid, Diane M; Cohen, David J; Matsumoto, Alan H; Steffes, Michael; Jaff, Michael R; Prince, Martin R; Lewis, Eldrin F; Tuttle, Katherine R; Shapiro, Joseph I; Rundback, John H; Massaro, Joseph M; D'Agostino, Ralph B; Dworkin, Lance D
2014-01-02
Atherosclerotic renal-artery stenosis is a common problem in the elderly. Despite two randomized trials that did not show a benefit of renal-artery stenting with respect to kidney function, the usefulness of stenting for the prevention of major adverse renal and cardiovascular events is uncertain. We randomly assigned 947 participants who had atherosclerotic renal-artery stenosis and either systolic hypertension while taking two or more antihypertensive drugs or chronic kidney disease to medical therapy plus renal-artery stenting or medical therapy alone. Participants were followed for the occurrence of adverse cardiovascular and renal events (a composite end point of death from cardiovascular or renal causes, myocardial infarction, stroke, hospitalization for congestive heart failure, progressive renal insufficiency, or the need for renal-replacement therapy). Over a median follow-up period of 43 months (interquartile range, 31 to 55), the rate of the primary composite end point did not differ significantly between participants who underwent stenting in addition to receiving medical therapy and those who received medical therapy alone (35.1% and 35.8%, respectively; hazard ratio with stenting, 0.94; 95% confidence interval [CI], 0.76 to 1.17; P=0.58). There were also no significant differences between the treatment groups in the rates of the individual components of the primary end point or in all-cause mortality. During follow-up, there was a consistent modest difference in systolic blood pressure favoring the stent group (-2.3 mm Hg; 95% CI, -4.4 to -0.2; P=0.03). Renal-artery stenting did not confer a significant benefit with respect to the prevention of clinical events when added to comprehensive, multifactorial medical therapy in people with atherosclerotic renal-artery stenosis and hypertension or chronic kidney disease. (Funded by the National Heart, Lung and Blood Institute and others; ClinicalTrials.gov number, NCT00081731.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chen; Liang, Yihuai; Key Laboratory of Public Health Safety, Ministry of Education, 130 DongAn Road, Shanghai 200032
2013-08-15
Exposure to cadmium (Cd) can affect both DNA methylation and renal function, but there are few examples of the association between epigenetic markers and Cd-induced kidney damage. It has been suggested that hypermethylation of the genes RASAL1 and KLOTHO is associated with renal fibrogenesis. To investigate whether hypermethylation of RASAL1 and KLOTHO in peripheral blood DNA can be associated with Cd exposure and/or Cd-induced renal dysfunction, the degrees of methylation of RASAL1 and KLOTHO in peripheral blood DNA from 81 residents in Cd-polluted and non-polluted areas were measured using bisulfate-PCR-pyrosequencing. Changes in blood cadmium (BCd), urinary cadmium (UCd), and kidneymore » parameters were measured, and the glomerular filtration rate (eGFR) was estimated. The levels of BCd and UCd correlated positively with the levels of DNA methylation in RASAL1 and in KLOTHO. The more heavily exposed residents (BCd, 4.23–13.22 μg/L; UCd, 8.65–32.90 μg/g creatinine) exhibited obvious renal dysfunction. Notably, when Cd concentration in blood and urine was adjusted, the increased methylation level in RASAL1 was inversely correlated with eGFR (P < 0.01) but the relationship between hypermethylation of KLOTHO and eGFR was not statistically significant. The methylation of RASAL1 increased along with the increased abnormal prevalence of eGFR. Our findings suggest that Cd exposure can induce the hypermethylation of RASAL1 and KLOTHO. Hypermethylation of RASAL1 may be an indicator of the progress for chronic kidney disease. - Highlights: • A long term heavily Cd exposure induced renal dysfunction. • Cd exposure correlated positively with DNA methylation in RASAL1 and KLOTHO. • Hypermethylation of RASAL1 correlated with adjusted renal function indicators.« less
Yang, Yue; Ma, Ye-Ping; Zhang, Zheng; Dai, Pei-Lin; Li, Ping; Li, Wen-Ge
2018-06-01
Evaluation of renal lesions and clinicopathologic correlation in rheumatoid arthritis.
Muthukumar, Periyasamy; Dhanapriya, Jeyachandran; Gopalakrishnan, Natarajan; Dineshkumar, Thanigachalam; Sakthirajan, Ramanathan; Balasubramaniyan, T
2017-01-01
The most common causes of renal disease in rheumatoid arthritis (RA) are glomerulonephritis (GN), amyloidosis, tubulo-interstitial nephritis, and drug toxicity. Our aim was to evaluate the clinicopathologic correlation of renal lesions and to assess the course and prognosis of renal disease in patients with RA. We conducted a prospective observational study in all adult patients with RA between July 2010 and June 2015. The total number of patients studied was 90, with a female:male ratio of 2.3:1. Mean follow-up duration was 30 ± 6.5 months. About 54 patients (60%) were asymptomatic. The most common symptom was edema legs (30%), followed by oliguria (10%). About 18 patients (20%) presented with the nephrotic syndrome, 15 patients (16.6%) with nephritic syndrome, and 30 (33%) with asymptomatic urinary abnormalities. Chronic kidney disease (CKD) was seen in 48 of 90 patients (53%).The most common renal pathology noted was mesangioproliferative GN followed by membranous nephropathy (MN). IgM with C3 deposits was the most common immunofluorescence pattern observed. Among the patients who had glomerular diseases, complete remission was seen in nine patients, partial remission in 15, and persistent proteinuria in 14. Duration of RA and a high erythrocyte sedimentation rate correlated significantly with persistent proteinuria. Only one patient in the glomerular disease group progressed to dialysis-dependent renal failure. On followup, 11 out of 48 CKD patients showed a significant decrease in estimated glomerular filtration rate and worsened to the next stage of CKD. Renal disease in RA presents with varied renal pathology. MN was seen frequently and was not associated with gold or penicillamine usage. Relatively high incidence of CKD was noted. Hence, it is important to monitor renal function abnormalities periodically in these patients.
Lin, Lirong; Zhang, Huhai; Yang, Jurong; Zhang, Jianguo; Li, Kailong; Huo, Bengang; Dai, Huanzi; Zhang, Weiwei; Yang, Jie; Tan, Wei; He, Yani
2016-01-01
Abnormal circadian rhythm of blood pressure (BP) is closely related to target organ damage in hypertension. However, the association between abnormal circadian rhythm of BP and renal injury is not clear. We investigated whether renal injury is associated with nocturnal BP and circadian rhythm of BP in Chinese IgAN patients. Clinic and 24 h ambulatory BP monitoring data were obtained from 330 Chinese IgAN patients with mean 24 h BP < 130/80 and mean daytime BP < 135/85 mmHg. Renal histopathological injury was determined according to the Oxford classification of IgAN. Among the 330 IgAN subjects, 35.8% suffered from nocturnal hypertension, 61.5% had abnormal circadian BP, and 27% had nocturnal hypertension with a nondipping pattern. Compared with nocturnal normotensive patients, patients with nocturnal hypertension had significantly higher levels of blood cystatin C, blood uric acid, and lower estimated glomerular filtration rate (eGFR), and significantly a higher mean renal tissue injury score. The nondipping hypertensive group had significantly higher nocturnal diastolic and systolic BP, blood uric acid, and glomerulosclerosis rates, whereas eGFR was lower. In nondipping hypertensive patients, urinary sodium excretion and renal tissue injury scores were significantly higher than dipping patients. Nocturnal hypertension and abnormal circadian BP correlated with renal tissue injury, renal interstitial fibrosis, and aortic arch atherosclerosis. Abnormal circadian rhythm of BP and nocturnal hypertension are common clinical manifestations in Chinese IgAN patients with normal mean 24 h BP. Abnormal circadian BP and nocturnal hypertension may accelerate IgAN progression by inducing renal dysfunction and histopathological damage. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei-Yu, E-mail: wychen624@cgmh.org.tw; Chang, Ya-Jen; Su, Chia-Hao
Interstitial fibrosis and loss of parenchymal tubular cells are the common outcomes of progressive renal diseases. Pro-inflammatory cytokines have been known contributing to the damage of tubular cells and fibrosis responses after renal injury. Interleukin (IL)-33 is a tissue-derived nucleus alarmin that drives inflammatory responses. The regulation and function of IL-33 in renal injury, however, is not well understood. To investigate the involvement of cytokines in the pathogenesis of renal injury and fibrosis, we performed the mouse renal injury model induced by unilateral urinary obstruction (UUO) and analyze the differentially upregulated genes between the obstructed and the contralateral unobstructed kidneysmore » using RNA sequencing (RNAseq). Our RNAseq data identified IL33 and its receptor ST2 were upregulated in the UUO kidney. Quantitative analysis confirmed that transcripts of IL33 and ST2 were upregulated in the obstructed kidneys. Immunofluorescent staining revealed that IL-33 was upregulated in Vimentin- and alpha-SMA-positive interstitial cells. By using genetically knockout mice, deletion of IL33 reduced UUO-induced renal fibrosis. Moreover, in combination with BrdU labeling technique, we observed that the numbers of proliferating tubular epithelial cells were increased in the UUO kidneys from IL33-or ST2-deficient mice compared to wild type mice. Collectively, our study demonstrated the upregulation of IL-33/ST2 signaling in the obstructed kidney may promote tubular cell injury and interstitial fibrosis. IL-33 may serve as a biomarker to detect renal injury and that IL-33/ST2 signaling may represent a novel target for treating renal diseases. -- Highlights: •Interleukin (IL)-33 was upregulated in obstructed kidneys. •Interstitial myofibroblasts expressed IL-33 after UUO-induced renal injury. •Deficiency of IL33 reduced interstitial fibrosis and promoted tubular cell proliferation.« less
The future of partial nephrectomy.
Malthouse, Theo; Kasivisvanathan, Veeru; Raison, Nicholas; Lam, Wayne; Challacombe, Ben
2016-12-01
Innovation in recent times has accelerated due to factors such as the globalization of communication; but there are also more barriers/safeguards in place than ever before as we strive to streamline this process. From the first planned partial nephrectomy completed in 1887, it took over a century to become recommended practice for small renal tumours. At present, identified areas for improvement/innovation are 1) to preserve renal parenchyma, 2) to optimise pre-operative eGFR and 3) to reduce global warm ischaemia time. All 3 of these, are statistically significant predictors of post-operative renal function. Urologists, have a proud history of embracing innovation & have experimented with different clamping techniques of the renal vasculature, image guidance in robotics, renal hypothermia, lasers and new robots under development. The DaVinci model may soon no longer have a monopoly on this market, as it loses its stranglehold with novel technology emerging including added features, such as haptic feedback with reduced costs. As ever, our predictions of the future may well fall wide of the mark, but in order to progress, one must open the mind to the possibilities that already exist, as evolution of existing technology often appears to be a revolution in hindsight. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Histomorphometry of feline chronic kidney disease and correlation with markers of renal dysfunction.
Chakrabarti, S; Syme, H M; Brown, C A; Elliott, J
2013-01-01
Chronic kidney disease is common in geriatric cats, but most cases have nonspecific renal lesions, and few studies have correlated these lesions with clinicopathological markers of renal dysfunction. The aim of this study was to identify the lesions best correlated with renal function and likely mediators of disease progression in cats with chronic kidney disease. Cats were recruited through 2 first-opinion practices between 1992 and 2010. When postmortem examinations were authorized, renal tissues were preserved in formalin. Sections were evaluated by a pathologist masked to all clinicopathological data. They were scored semiquantitatively for the severity of glomerulosclerosis, interstitial inflammation, and fibrosis. Glomerular volume was measured using image analysis; the percentage of glomeruli that were obsolescent was recorded. Sections were assessed for hyperplastic arteriolosclerosis and tubular mineralization. Kidneys from 80 cats with plasma biochemical data from the last 2 months of life were included in the study. Multivariable linear regression (P < .05) was used to assess the association of lesions with clinicopathological data obtained close to death. Interstitial fibrosis was the lesion best correlated with the severity of azotemia, hyperphosphatemia, and anemia. Proteinuria was associated with interstitial fibrosis and glomerular hypertrophy, whereas higher time-averaged systolic blood pressure was associated with glomerulosclerosis and hyperplastic arteriolosclerosis.
Bertolo, Riccardo; Fiori, Cristian; Piramide, Federico; Amparore, Daniele; Barrera, Monica; Sardo, Diego; Veltri, Andrea; Porpiglia, Francesco
2018-05-14
To evaluate the correlation between the loss of renal function as assessed by Tc99MAG-3 renal scan and the loss of renal volume as calculated by volumetric assessment on CT-scan in patients who underwent minimally-invasive partial nephrectomy (PN). PN prospectively-maintained database was retrospectively queried for patients who underwent minimally-invasive PN (2012-2017) for renal mass
Age-related pathophysiological changes in rats with unilateral renal agenesis.
Amakasu, Kohei; Suzuki, Katsushi; Katayama, Kentaro; Suzuki, Hiroetsu
2011-06-01
Affected rats of the unilateral urogenital anomalies (UUA) strain show renal agenesis restricted to the left side. To determine whether unilateral renal agenesis is a risk factor for the progression of renal insufficiency, we studied age-related pathophysiological alterations in affected rats. Although body growth and food intake were normal, polydipsia and polyuria with low specific gravity were present at 10 weeks and deteriorated further with age. Blood hemoglobin concentrations were normal, though there was slight erythropenia with increased MCV and MCH. Although hypoalbuminemia, hypercholesterolemia, azotemia, and hypermagnesemia were manifested after age 20 weeks, neither hyperphosphatemia nor hypocalcemia was observed. Plasma Cre and UN concentrations gradually increased with age. Cre clearance was almost normal, whereas fractional UN excretion was consistently lower than normal. Proteinuria increased with age, and albumin was the major leakage protein. In addition to cortical lesions, dilated tubules, cast formation, and interstitial fibrosis were observed in the renal medulla of 50 week-old affected rats. Renal weight was increased 1.7-fold and glomerular number 1.2-fold compared with normal rats. These findings show that the remaining kidney in UUA rats is involved not only in compensatory reactions but experiences pathophysiological alterations associated with progressive renal insufficiency.
[Progressive renal insufficiency in a 55-year-old man with psoriasis].
Herfurth, K; Busch, M; Gröne, H J; Wolf, G
2018-06-05
Treatment with tumor necrosis factor alpha (TNF-α) inhibitors is a well-established therapeutic strategy for various autoimmune diseases. However, little is known about renal complications and possible causality of renal injury due to this treatment. The following case of a patient with psoriasis demonstrates the difficulties in classifying renal complications of anti-TNF-α therapy versus kidney involvement caused by the underlying disease.
ACE and SGLT2 inhibitors: the future for non-diabetic and diabetic proteinuric renal disease.
Perico, Norberto; Ruggenenti, Piero; Remuzzi, Giuseppe
2017-04-01
Most chronic nephropathies progress relentlessly to end-stage kidney disease. Research in animals and humans has helped our understanding of the mechanisms of chronic kidney disease progression. Current therapeutic strategies to prevent or revert renal disease progression focus on reduction of urinary protein excretion and blood pressure control. Blockade of the renin-angiotensin system (RAS) with angiotensin-converting enzyme inhibitors and/or angiotensin II type 1 receptor blockers is the most effective treatment to achieve these purposes in non-diabetic and diabetic proteinuric renal diseases. For those individuals in which nephroprotection by RAS blockade is only partial, sodium-glucose linked cotransporter-2 (SGLT2) inhibitors could be a promising new class of drugs to provide further renoprotective benefit when added on to RAS blockers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nishi, Shinichi; Muso, Eri; Shimizu, Akira; Sugiyama, Hitoshi; Yokoyama, Hitoshi; Ando, Yukio; Goto, Shunsuke; Fujii, Hideki
2017-08-01
The available clinical data are limited in a rare glomerular disease, renal amyloidosis. We aimed to clarify the clinical features of renal amyloidosis from database of the Japan Renal Biopsy Registry (J-RBR). We performed a cross-sectional study with database of the J-RBR of the Japanese Society of Nephrology. We identified 281 cases of renal amyloidosis from 20,997 cases enrolled into the J-RBR from 2007 to 2014. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were compared among the levels of ages, amount of urine protein excretion (AUPE) or CKD G stages. The prevalence of renal amyloidosis was 1.3 % (281/20,997). DBP significantly decreased in higher age quartiles (P = 0.034). SBP and DBP did not increase in the progression of AUPE levels and CKD G stages. In multiple regression analysis, eGFR was a significant independent factor for SBP in all cases and a subgroup without hypertensive agents. There was a reverse significant relationship between SBP and eGFR. Blood pressure did not significantly increase in elderly and much proteinuric condition in renal amyloidosis. The progression of CKD and decrease of eGFR did not produce the higher SBP. The mechanism underlying these results remains unclear; however, they are unique features of renal amyloidosis. The couple of hypotensive and hypertensive conditions might produce no relationship between blood pressure and CKD stages.
Rare case of nephrotic syndrome: Schimke syndrome.
Pedrosa, Anna Kelly Krislane de Vasconcelos; Torres, Luiz Fernando Oliveira; Silva, Ana Corina Brainer Amorim da; Dantas, Adrianna Barros Leal; Zuntini, Káthia Liliane da Cunha Ribeiro; Aguiar, Lia Cordeiro Bastos
2016-01-01
Schimke syndrome corresponds to dysplasia of bone and immunity, associated with progressive renal disease secondary to nephrotic syndrome cortico-resistant, with possible other abnormalities such as hypothyroidism and blond marrow aplasia. It is a rare genetic disorder, with few reports in the literature. The most frequent renal involvement is nephrotic syndrome with focal segmental glomerulosclerosis and progressive renal failure. The objective of this study was to report a case of Schimke syndrome, diagnostic investigation and management of the case. Resumo A síndrome Schimke corresponde à displasia imuno-óssea, associada à doença renal progressiva secundária à síndrome nefrótica córtico-resistente, podendo haver outras anormalidades como hipotireoidismo e aplasia de medula óssea. Trata-se de uma patologia genética rara, com poucos relatos na literatura. O acometimento renal mais frequente é uma síndrome nefrótica por glomeruloesclerose segmentar e focal e falência renal progressiva. O objetivo deste estudo foi relatar um caso de síndrome de Schimke, investigação diagnóstica e condução do caso.
Narita, Takuma; Hatakeyama, Shingo; Koie, Takuya; Hosogoe, Shogo; Matsumoto, Teppei; Soma, Osamu; Yamamoto, Hayato; Yoneyama, Tohru; Tobisawa, Yuki; Yoneyama, Takahiro; Hashimoto, Yasuhiro; Ohyama, Chikara
2017-08-31
Urinary tract obstruction and postoperative hydronephrosis are risk factor for renal function deterioration after orthotopic ileal neobladder construction. However, reports of relationship between transient hydronephrosis and renal function are limited. We assess the influence of postoperative transient hydronephrosis on renal function in patients with orthotopic ileal neobladder construction. Between January 2006 and June 2013, we performed radical cystectomy in 164 patients, and 101 received orthotopic ileal neobladder construction. This study included data available from 64 patients with 128 renal units who were enrolled retrospectively. The hydronephrosis grade of each renal unit scored 0-4. The patients were divided into 4 groups according to the grade of hydronephrosis: control, low, intermediate, and high. The grade of postoperative hydronephrosis was compared with renal function 1 month and 1 year after surgery. There were no significant differences in renal function before surgery between groups. One month after surgery, the presence of hydronephrosis was significantly associated with decreased renal function. However, 1 year after urinary diversion hydronephrosis grades were improved significantly, and renal function was comparable between groups. Postoperative hydronephrosis at 1 month had no significant influence on renal function 1 year after ileal neobladder construction. Limitations include retrospective design, short follow-up periods, and a sample composition. The presence of transient hydronephrosis immediately after surgery may have limited influence on renal function 1 year after ileal neobladder construction.
Rogers, Jeffrey; Katari, Ravi; Gifford, Sheyna; Tamburrini, Riccardo; Edgar, Lauren; Voigt, Marcia R; Murphy, Sean V; Igel, Daniel; Mancone, Sara; Callese, Tyler; Colucci, Nicola; Mirzazadeh, Majid; Peloso, Andrea; Zambon, Joao Paulo; Farney, Alan C; Stratta, Robert J; Orlando, Giuseppe
2016-01-01
Kidney transplantation (KT), as a modality of renal replacement therapy (RRT), has been shown to be both economically and functionally superior to dialysis for the treatment of end-stage renal disease (ESRD). Progress in KT is limited by two major barriers: a) a chronic and burgeoning shortage of transplantable organs and b) the need for chronic immunosuppression following transplantation. Although ground-breaking advances in transplant immunology have improved patient survival and graft durability, a new pathway of innovation is needed in order to overcome current obstacles. Regenerative medicine (RM) holds the potential to shift the paradigm in RRT, through organ bioengineering. Manufactured organs represent a potentially inexhaustible source of transplantable grafts that would bypass the need for immunosuppressive drugs by using autologous cells to repopulate extracellular matrix (ECM) scaffolds. This overview discusses the current status of renal transplantation while reviewing the most promising innovations in RM therapy as applied to RRT.
Therapeutic application of extracellular vesicles in acute and chronic renal injury.
Rovira, Jordi; Diekmann, Fritz; Campistol, Josep M; Ramírez-Bajo, María José
A new cell-to-cell communication system was discovered in the 1990s, which involves the release of vesicles into the extracellular space. These vesicles shuttle bioactive particles, including proteins, mRNA, miRNA, metabolites, etc. This particular communication has been conserved throughout evolution, which explains why most cell types are capable of producing vesicles. Extracellular vesicles (EVs) are involved in the regulation of different physiological processes, as well as in the development and progression of several diseases. EVs have been widely studied over recent years, especially those produced by embryonic and adult stem cells, blood cells, immune system and nervous system cells, as well as tumour cells. EV analysis from bodily fluids has been used as a diagnostic tool for cancer and recently for different renal diseases. However, this review analyses the importance of EVs generated by stem cells, their function and possible clinical application in renal diseases and kidney transplantation. Copyright © 2016. Published by Elsevier España, S.L.U.
Badani, K K; Hemal, A K; Menon, M
2004-01-01
Autosomal Dominant Polycystic Kidney Disease (ADPKD), often referred to as "adult" polycystic kidney disease, is one of the commonest hereditary disorders. It affects approximately 4 to 6 million individuals worldwide. The disease progresses to end-stage renal disease and it accounts for 10-15% of patients requiring dialysis in the United States. A comprehensive Medline search for aetiology, evaluation, screening, cellular biology, and treatment was utilized to locate, extract, and synthesize relevant data with respect to this topic. Special attention was focused on urologic literature and surgical textbooks regarding operative treatment of pain associated with ADPKD. Now, patients with ADPKD have more treatment options. More specifically, several therapeutic alternatives are now available for the management of pain in these patients. A recent review of literature supports the performance of open or laparoscopic cyst decortication procedures for control of pain and infection without the worry of causing further renal impairment in those with preserved renal function.
Patients with a failed renal transplant.
Marcén, R; Teruel Briones, J L
2011-03-01
Despite the advances in the care of recipients and in immunosuppression, long-term graft survival has experienced little improvement in the last 10 years. An important number of recipients present progressive loss of graft function and have to be readmitted on dialysis therapy. Before starting dialysis, these patients are re-exposed to the complications of chronic renal failure but there are no specific guidelines for their treatment. The Kidney Disease Quality Initiative Advisory Board clinical practice guidelines given for the non-transplant chronic kidney disease patients have been recommended for ameliorating their clinical situation and the rate of progression of graft failure. The time when dialysis has to be restarted and the type of dialysis procedure, hemodialysis or peritoneal dialysis, are under discusion. But there is no evidence about the superiority of either type of dialysis procedure. Systematic graft nephrectomy has been considered to improve the inflammatory status of the patients with a failed graft which could contribute to a worse control of some complications such as anemia and to the increased rates of cardiovascular mortality. As in the patients with primary end-stage renal disease, retransplantation is the best treatment for a patient with a failed graft. Due to the shortage of organs for transplantation the number of patients who are retransplanted has remained stable. Recurrent diseases such as glomerulonephritis, lyphoproliferative diseases, BK virus nephopathy and previous non-adherence to the treatment do not necessarily preclude retransplantation.
Youcef, Gina; Olivier, Arnaud; L'Huillier, Clément P J; Labat, Carlos; Fay, Renaud; Tabcheh, Lina; Toupance, Simon; Rodriguez-Guéant, Rosa-Maria; Bergerot, Damien; Jaisser, Frédéric; Lacolley, Patrick; Zannad, Faiez; Laurent Vallar; Pizard, Anne
2014-01-01
Individuals with metabolic syndrome (MetS) are prone to develop heart failure (HF). However, the deleterious effects of MetS on the continuum of events leading to cardiac remodeling and subsequently to HF are not fully understood. This study characterized simultaneously MetS and cardiac, vascular and renal phenotypes in aging Spontaneously Hypertensive Heart Failure lean (SHHF(+/?) regrouping (+/+) and (+/cp) rats) and obese (SHHF(cp/cp), "cp" defective mutant allele of the leptin receptor gene) rats. We aimed to refine the milestones and their onset during the progression from MetS to HF in this experimental model. We found that SHHF(cp/cp )but not SHHF(+/?) rats developed dyslipidemia, as early as 1.5 months of age. This early alteration in the lipidic profile was detectable concomitantly to impaired renal function (polyuria, proteinuria but no glycosuria) and reduced carotid distensibility as compared to SHHF(+/?) rats. By 3 months of age SHHFcp/cp animals developed severe obesity associated with dislipidemia and hypertension defining the onset of MetS. From 6 months of age, SHHF(+/?) rats developed concentric left ventricular hypertrophy (LVH) while SHHF(cp/cp) rats developed eccentric LVH apparent from progressive dilation of the LV dimensions. By 14 months of age only SHHF(cp/cp) rats showed significantly higher central systolic blood pressure and a reduced ejection fraction resulting in systolic dysfunction as compared to SHHF(+/?). In summary, the metabolic and hemodynamic mechanisms participating in the faster decline of cardiac functions in SHHF(cp/cp) rats are established long before their physiological consequences are detectable. Our results suggest that the molecular mechanisms triggered within the first three months after birth of SHHF(cp/cp) rats should be targeted preferentially by therapeutic interventions in order to mitigate the later HF development.
Youcef, Gina; Olivier, Arnaud; L'Huillier, Clément P. J.; Labat, Carlos; Fay, Renaud; Tabcheh, Lina; Toupance, Simon; Rodriguez-Guéant, Rosa-Maria; Bergerot, Damien; Jaisser, Frédéric; Lacolley, Patrick; Zannad, Faiez; Laurent Vallar; Pizard, Anne
2014-01-01
Individuals with metabolic syndrome (MetS) are prone to develop heart failure (HF). However, the deleterious effects of MetS on the continuum of events leading to cardiac remodeling and subsequently to HF are not fully understood. This study characterized simultaneously MetS and cardiac, vascular and renal phenotypes in aging Spontaneously Hypertensive Heart Failure lean (SHHF+/? regrouping +/+ and +/cp rats) and obese (SHHFcp/cp, “cp” defective mutant allele of the leptin receptor gene) rats. We aimed to refine the milestones and their onset during the progression from MetS to HF in this experimental model. We found that SHHFcp/cp but not SHHF+/? rats developed dyslipidemia, as early as 1.5 months of age. This early alteration in the lipidic profile was detectable concomitantly to impaired renal function (polyuria, proteinuria but no glycosuria) and reduced carotid distensibility as compared to SHHF+/? rats. By 3 months of age SHHFcp/cp animals developed severe obesity associated with dislipidemia and hypertension defining the onset of MetS. From 6 months of age, SHHF+/? rats developed concentric left ventricular hypertrophy (LVH) while SHHFcp/cp rats developed eccentric LVH apparent from progressive dilation of the LV dimensions. By 14 months of age only SHHFcp/cp rats showed significantly higher central systolic blood pressure and a reduced ejection fraction resulting in systolic dysfunction as compared to SHHF+/?. In summary, the metabolic and hemodynamic mechanisms participating in the faster decline of cardiac functions in SHHFcp/cp rats are established long before their physiological consequences are detectable. Our results suggest that the molecular mechanisms triggered within the first three months after birth of SHHFcp/cp rats should be targeted preferentially by therapeutic interventions in order to mitigate the later HF development. PMID:24831821
Enzyme replacement therapy in Fabry disease: influence on cardiac manifestations.
Caballero, L; Climent, V; Hernández-Romero, D; Quintanilla, M A; de la Morena, G; Marín, F
2010-01-01
Fabry disease (FD) is an X-linked glycosphingolipid storage disorder caused by deficient activity of the lysosomal enzyme alpha-galactosidase A. This leads to a progressive accumulation of globotriaosylceramide (Gb3) in the lysosomes of different cells and tissues, causing principally ventricular hypertrophy, renal failure and cerebrovascular accidents, reducing lifespan both in hemizygous males and heterozygous females. Residual enzyme activity might lead to slow progression of the disease and result in the so-called cardiac or renal variants with delayed presentation. Two different forms of alpha-galactosidase A enzyme replacement therapies (ERT) are available for the treatment of FD, one genetically engineered in human cell line (agalsidase alfa, Replagal, Shire) and the other produced in a Chinese hamster ovary cell line (agalsidase beta, Fabrazyme, Genzyme). Although both proteins are structurally and functionally very similar, with the same amino acid sequence as the native human enzyme, they differ in the pattern of glycosilation of the protein depending on the originating cell line. Studies with both preparations have described a reduction in plasma, urinary sediment and tissue levels of Gb3, a decrease in the frequency of pain crisis and a reduction in left ventricular mass and improvement or stabilization of renal function. Studies have generally shown the greatest benefit when treatment is started at an early stage of the disease before extensive fibrosis or other irreversible tissue damage takes place. However, more data are needed to document long-term treatment outcomes. The aim of the present review is to provide an update overview of the two different forms of ERT for FD, their clinical effects in cardiac manifestations and their possible differences in terms of efficacy, side effects and safety profiles.
Rapamycin slows IgA nephropathy progression in the rat.
Tian, Jihua; Wang, Yanhong; Zhou, Xiaoshuang; Li, Yanjiao; Wang, Chen; Li, Jiaming; Li, Rongshan
2014-01-01
IgA nephropathy (IgAN) is the most frequent glomerulonephritis worldwide. Different therapeutic approaches have been tested against IgAN. The present study was designed to explore the renoprotective potential of low-dose mammalian target of rapamycin (mTOR) inhibitor rapamycin in an IgAN rat model and the possible mechanism of action. After establishing an IgAN model, the rats were randomly divided into four groups: control, control with rapamycin treatment, IgAN model, and IgAN model with rapamycin treatment. Coomassie Brilliant Blue was utilized to measure 24-hour urinary protein levels. Hepatic and renal function was determined with an autoanalyzer. Proliferation was assayed via 5-bromo-2'-deoxyuridine incorporation. Real-time PCR and immunohistochemistry were utilized to detect the expression of α-SMA, collagen I, collagen III, TGF-β1 and platelet-derived growth factor. Western blotting and immunohistochemistry were performed to determine p-S6 protein levels. Low-dose mTOR inhibitor rapamycin prevented an additional increase in proteinuria and protected kidney function in a model of IgAN. Rapamycin directly or indirectly interfered with multiple key pathways in the progression of IgAN to end-stage renal disease: (1) reduced the deposition of IgA and inhibited cell proliferation; (2) decreased the expression of fibrosis markers α-SMA and type III collagen, and (3) downregulated the expression of the profibrotic growth factors platelet-derived growth factor and TGF-β1. The expression of p-S6 was significantly elevated in IgAN rats. The mTOR pathway was activated in IgAN rats and the early application of low-dose mTOR inhibitor rapamycin may slow the renal injury of IgAN in rats.
Impact of pretransplant renal function on survival after liver transplantation.
Gonwa, T A; Klintmalm, G B; Levy, M; Jennings, L S; Goldstein, R M; Husberg, B S
1995-02-15
To determine the effect of pretransplant liver function on survival following orthotopic liver transplantation and to quantify the effects of cyclosporine administration on long-term renal function in patients undergoing liver transplant, we performed an analysis of a prospectively maintained database. Data from 569 consecutive patients undergoing liver transplantation alone who were treated with CsA for immunosuppression were used for this study. Actuarial graft and patient survival rates were calculated using Kaplan-Meier statistics. Glomerular filtration rates, serum creatinine, and the use of various immunosuppressives were analyzed for this study. The initial analysis demonstrated that patients presenting for liver transplant with hepatorenal syndrome have a significantly decreased acturial patient survival after liver transplant at 5 years compared with patients without hepatorenal syndrome (60% vs. 68%, P < 0.03). Patients with hepatorenal syndrome recovered their renal function after liver transplant. Patients who had hepatorenal syndrome were sicker and required longer stays in the intensive care unit, longer hospitalizations, and more dialysis treatments after transplantation compared with patients who did not have hepatorenal syndrome. The incidence of end-stage renal disease after liver transplantation in patients who had hepatorenal syndrome was 7%, compared with 2% in patients who did not have hepatorenal syndrome. To more fully examine the effect of pretransplant renal function on posttransplant survival, the non-hepatorenal syndrome patients were divided into quartiles depending upon their pretransplant renal function. The patients with the lowest pretransplant renal function had the same survival as the patients with the highest pretransplant renal function. In addition, there was no increased incidence of acute or chronic rejection in any of the groups. The patients with the lower pretransplant renal function were treated with more azathioprine to maintain renal function and had a negligible decrease in glomerular filtration rate following transplant. Conversely, patients with the highest level of renal function pretransplant had a 40% decline in renal function in the first year, but maintained stable renal function up to 4 years after transplant. We conclude that pretransplant renal function other than hepato-renal syndrome has no effect on patient survival after orthotopic liver transplant. Renal function after liver transplant is stable after an initial decline, despite continued administration of CsA.(ABSTRACT TRUNCATED AT 400 WORDS)
Harris, David P.; Vogel, Peter; Wims, Marie; Moberg, Karen; Humphries, Juliane; Jhaver, Kanchan G.; DaCosta, Christopher M.; Shadoan, Melanie K.; Xu, Nianhua; Hansen, Gwenn M.; Balakrishnan, Sanjeevi; Domin, Jan; Powell, David R.; Oravecz, Tamas
2011-01-01
An early lesion in many kidney diseases is damage to podocytes, which are critical components of the glomerular filtration barrier. A number of proteins are essential for podocyte filtration function, but the signaling events contributing to development of nephrotic syndrome are not well defined. Here we show that class II phosphoinositide 3-kinase C2α (PI3KC2α) is expressed in podocytes and plays a critical role in maintaining normal renal homeostasis. PI3KC2α-deficient mice developed chronic renal failure and exhibited a range of kidney lesions, including glomerular crescent formation and renal tubule defects in early disease, which progressed to diffuse mesangial sclerosis, with reduced podocytes, widespread effacement of foot processes, and modest proteinuria. These findings were associated with altered expression of nephrin, synaptopodin, WT-1, and desmin, indicating that PI3KC2α deficiency specifically impacts podocyte morphology and function. Deposition of glomerular IgA was observed in knockout mice; importantly, however, the development of severe glomerulonephropathy preceded IgA production, indicating that nephropathy was not directly IgA mediated. PI3KC2α deficiency did not affect immune responses, and bone marrow transplantation studies also indicated that the glomerulonephropathy was not the direct consequence of an immune-mediated disease. Thus, PI3KC2α is critical for maintenance of normal glomerular structure and function by supporting normal podocyte function. PMID:20974805
Arun Thomas, E T; George, Jacob; Sruthi, Devi; Vineetha, N S; Gracious, Noble
2018-04-01
Dengue fever is a mosquito-borne viral disease endemic in many tropical and sub-tropical countries. There is only limited data in the literature about dengue fever in renal transplant recipients and patients with chronic kidney disease. This study compares the clinical course of dengue fever and its impact on renal function in renal transplant recipients, patients with chronic kidney disease and patients with normal base line renal function. An observational study was conducted from 1 st May to 31 st July 2017, at a tertiary care centre of South India. A major epidemic of dengue had occurred during the study period. Twelve renal transplant recipients, 22 patients with CKD and 58 patients with normal baseline renal function (control group) admitted with dengue fever were prospectively studied. Nadir WBC count was lowest in renal transplant recipients (2575 + 1187/mm 3 ), [P<0.001]. Renal transplant recipients took more time for normalisation of platelet count (6 + 4.5 days), [P<0.001]. All 22 patients with CKD and 11 of 12 renal transplant recipients had worsening of renal function where as only 17 of 58 patients in the control group had worsening [P<0.001]. Sixteen patients with CKD, one renal transplant recipient and none among control group required hemodialysis [P<0.001]. Dialysis requiring patients had more hemoconcentration (52.5+ 19.9% increase in haemoglobin), [P<0.001]. Seven patients with CKD were dialysis dependent at the end of 2 weeks. Clinical features of dengue fever were different in renal transplant recipients and patients with CKD. Severe worsening of renal function was common in CKD patients. Worsening of renal function in renal transplant recipients was less severe and transient. This article is protected by copyright. All rights reserved.
Krajewski, Wojciech; Wojciechowska, Joanna; Dembowski, Janusz; Zdrojowy, Romuald; Szydełko, Tomasz
2017-08-01
Ureteropelvic junction obstruction (UPJO) causes a reduction in the urine flow from the renal pelvis into the ureter. Untreated UPJO may cause hydronephrosis, chronic infection or urolithiasis and will often result in progressive deterioration of renal function. Most cases of UPJO are congenital; however, the disease can be clinically silent until adulthood. Other causes, both intrinsic and extrinsic, are acquired and include urolithiasis, post-operative/inflammatory/ischemic stricture, fibroepithelial polyps, adhesions and malignancy. In the past, the most frequent symptom of UPJO in neonates and infants was a palpable flank mass. Nowadays, thanks to the widespread use of maternal and prenatal ultrasound examinations, asymptomatic hydronephrosis is diagnosed very early. In adults and older children symptoms may include intermittent abdominal or flank pain, nausea, vomiting and hematuria. In addition to high specificity and sensitivity in detecting UPJO, modern technologically advanced equipment such as ultrasound, magnetic resonance imaging and computed tomography provides a lot of information about the function of the affected kidney and the anatomy of the surrounding tissues. Treatment options for UPJO include a wide spectrum of approaches, from active surveillance or minimally invasive endourologic techniques to open, laparoscopic or robotic pyeloplasty. The main goal of therapy is to relieve symptoms and maintain or improve renal function, but it is difficult to define treatment success after UPJO therapy.
Suzuki, Keisuke; Miura, Naoto; Kitagawa, Wataru; Suzuki, Shinkichi; Komatsuda, Atsushi; Nishikawa, Kazuhiro; Watanabe, Daisuke; Imai, Hirokazu
2011-12-01
A 37-year-old Japanese man affected by Fabry disease secondary to a novel mutation of Leu311Arg (L311R) in α-galactosidase demonstrated progressive renal failure despite biweekly enzyme replacement therapy (ERT) for approximately 10 years. Kidney biopsy revealed foamy glomerular epithelial cells, compatible with the typical pathologic features of Fabry disease. The patient entered a phase III study of Replagal (agalsidase alfa) in 2001, allowing him to continue ERT with biweekly dosing for almost 10 years. During 2 years of that period, he was continued on Fabrazyme (agalsidase beta) biweekly dosing. His estimated GFR was calculated to decrease by 9.9 mL/min/1.73 m(2) per year. Patients with Fabry disease have been reported to have a mean decrease in GFR of 12.2 ± 8.1 mL/min/1.73 m(2) per year. This result suggests that biweekly ERT is only mildly effective at preventing loss of kidney function.
Geometric Alteration of Renal Arteries After Fenestrated Grafting and the Impact on Renal Function.
Ou, Jiale; Chan, Yiu-Che; Chan, Crystal Yin-Tung; Cheng, Stephen W K
2017-05-01
This study aims to investigate the degree of geometric change on renal arteries and its impact on renal function after fenestrated endovascular aortic repair (fEVAR). Twenty-five patients with fEVAR were included. There were 47 renal arteries target vessels, and 43 of these (22 left and 21 right vessels) stented successfully. Their preoperative and first postoperative follow-up computed tomography (CT) images were reconstructed using the Aquarius workstation (TeraRecon, San Mateo, CA, USA). The superior mesenteric artery (SMA) or celiac axis (if SMA was stented) was appointed as reference origin. The longitudinal orientation of a renal artery or a stent was represented by a takeoff angle (ToA) between the renal artery or stent and the distal abdominal aorta. The postoperative stent ToAs were compared with those of preoperative renal arteries. Preoperative and short-term postoperative serum creatinine levels were measured. Renal function impairment was indicated as a >30% or >2.0 mg/dL rise in serum creatinine compared to the preoperative level. The relationship between postoperative renal function impairment and the stent orientation or geometric changes in renal arteries was correlated. The patency rate of renal arteries was 100% at the first postoperative CT review. The average ToAs of both renal arteries were significantly enlarged after stenting (P < 0.05). Seven stent deformations (16.3%) in four patients (16.0%) were observed. They were attributed to caudal misalignment of the fenestrated stent graft (n = 6) or inaccurate graft sizing (n = 1). There was no stent fracture or target vessel loss. Postoperatively, nine patients (36.0%) at day 1 and 10 patients (41.7%) after 3 months suffered the renal function impairment. This was found not to be associated with the stent angulation or angular change of the renal arteries (both P > 0.05). The three patients with stent deformation due to misalignment suffered postoperative renal function impairment and continuing deterioration in renal function. Implanted renal stents could angulate renal arteries more cephalad after fenestrated stenting. Postoperative renal function impairment was not associated with the stent orientation and changes in vessel orientation. Accurate fenestrated alignment is important to maintain stent performance and preserve renal function. Copyright © 2017 Elsevier Inc. All rights reserved.
Pregnancy and renal outcomes in lupus nephritis: an update and guide to management.
Bramham, K; Soh, M C; Nelson-Piercy, C
2012-10-01
Systemic lupus erythematosis (SLE) commonly affects women of child bearing-age, and advances in treatment have resulted in an increasing number of women with renal involvement becoming pregnant. Knowledge of the relationship of the condition with respect to fertility and pregnancy is important for all clinicians involved in the care of women with lupus nephritis because they have complicated pregnancies. Presentation of lupus nephritis can range from mild asymptomatic proteinuria to rapidly progressive renal failure and may occur before, during, or after pregnancy. The timing of diagnosis may influence pregnancy outcome. Pregnancy may also affect the course of lupus nephritis. All pregnancies in women with lupus nephritis should be planned, preferably after more than six-months of quiescent disease. Predictors of poor obstetric outcome include active disease at conception or early pregnancy, baseline poor renal function with Creatinine >100 μmol/L, proteinuria >0.5 g/24 hours, presence of concurrent antiphospholipid syndrome and hypertension. In this review the most recent studies of pregnancies in women with lupus nephritis are discussed and a practical approach to managing women prepregnancy, during pregnancy and post-partum is described.
Rios, John Fredy Nieto; Zuluaga, Monica; Higuita, Lina Maria Serna; Florez, Adriana; Bello-Marquez, Diana Carolina; Aristizábal, Arbey; Kohn, Catalina Ocampo; Zuluaga, Gustavo Adolfo
2017-01-01
Primary hyperoxaluria (PH) is a very rare genetic disorder; it is characterized by total or partial deficiency of the enzymes related to the metabolism of glyoxylate, with an overproduction of calcium oxalate that is deposited in different organs, mainly the kidney, leading to recurrent lithiasis, nephrocalcinosis and end stage renal disease (ESRD). In patients with ESRD that receive kidney transplantation alone, the disease has a relapse of 100%, with graft loss in a high percentage of patients in the first 5 years of transplantation. Three molecular disorders have been described in PH: mutation of the gene alanin glioxalate aminotransferase (AGXT); glyoxalate reductase/hydroxy pyruvate reductase (GRHPR) and 4-OH-2-oxoglutarate aldolase (HOGA1). We present two cases of patients with a history of renal lithiasis who were diagnosed with primary hyperoxaluria in the post-transplant period, manifested by early graft failure, with evidence of calcium oxalate crystals in renal biopsy, hyperoxaluria, hyperoxalemia, and genetic test compatible; they were managed with proper diet, abundant oral liquids, pyridoxine, hydrochlorothiazide and potassium citrate; however, they had slow but progressive deterioration of their grafts function until they reached end-stage chronic renal disease.
The Saga of Two Centuries of Urea: Nontoxic Toxin or Vice Versa?
Duranton, Flore; Depner, Thomas A; Argilés, Àngel
2014-03-01
In the early 1700s, a substance ultimately identified as urea was reported for the first time in urine. About a century later, in 1828, synthesis of this organic compound was achieved, thus giving rise to modern organic chemistry. In parallel, physicians showed that urine comes from the kidneys and contains large amounts of urea, which is produced outside of the kidneys, establishing the humoral approach of renal physiology. Urea was the first uremic retention solute to be identified and it has been used as a marker of renal disease ever since. However, progress in the knowledge of urea metabolism has shown that it is susceptible to many extrarenal variations and, therefore, it cannot be a reliable marker of renal function. It reflects protein intake in the stable patient and has been used to assess nutrition and dialysis efficacy in renal patients. Although it has been studied for almost 200 years, its toxicity has been largely debated. An indirect toxicity occurring through carbamylation of lysine residues is now well established and some evidence from recent work also supports direct toxicity of urea, offering additional rationale for interventional prevention of uremic complications. Copyright © 2014 Elsevier Inc. All rights reserved.
Tullos, Nathan; Stewart, Nicholas J.; Surles, Bret
2015-01-01
Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD. PMID:25377076
Fu, Shihui; Liu, Chunling; Luo, Leiming; Ye, Ping
2017-11-09
Predictive abilities of cardiovascular biomarkers to renal function decline are more significant in Chinese community-dwelling population without glomerular filtration rate (GFR) below 60 ml/min/1.73m 2 , and long-term prospective study is an optimal choice to explore this problem. Aim of this analysis was to observe this problem during the follow-up of 5 years. In a large medical check-up program in Beijing, there were 948 participants with renal function evaluated at baseline and follow-up of 5 years. Physical examinations were performed by well-trained physicians. Blood samples were analyzed by qualified technicians in central laboratory. Median rate of renal function decline was 1.46 (0.42-2.91) mL/min/1.73m 2 /year. Rapid decline of renal function had a prevalence of 23.5% (223 participants). Multivariate linear and Logistic regression analyses confirmed that age, sex, baseline GFR, homocysteine and N-terminal pro B-type natriuretic peptide (NT-proBNP) had independently predictive abilities to renal function decline rate and rapid decline of renal function (p < 0.05 for all). High-sensitivity cardiac troponin T (hs-cTnT), carotid femoral pulse wave velocity and central augmentation index had no statistically independent association with renal function decline rate and rapid decline of renal function (p > 0.05 for all). Homocysteine and NT-proBNP rather than hs-cTnT had independently predictive abilities to rapid decline of renal function in Chinese community-dwelling population without GFR below 60 ml/min/1.73m 2 . Baseline GFR was an independent factor predicting the rapid decline of renal function. Arterial stiffness and compliance had no independent effect on rapid decline of renal function. This analysis has a significant implication for public health, and changing the homocysteine and NT-proBNP levels might slow the rapid decline of renal function.
Thongnak, Laongdao; Pongchaidecha, Anchalee; Jaikumkao, Krit; Chatsudthipong, Varanuj; Chattipakorn, Nipon; Lungkaphin, Anusorn
2017-10-19
Hyperglycemia-induced oxidative stress is usually found in diabetic condition. 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors, statins, are widely used as cholesterol-lowering medication with several "pleiotropic" effects in diabetic patients. This study aims to evaluate whether the protective effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 (Oat3) function involve the modulation of oxidative stress and pancreatic function in type 1 diabetic rats. Type 1 diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg BW). Atorvastatin and insulin as single or combined treatment were given for 4 weeks after diabetic condition had been confirmed. Diabetic rats demonstrated renal function and renal Oat3 function impairment with an increased MDA level and decreased SOD protein expression concomitant with stimulation of renal Nrf2 and HO-1 protein expression. Insulin plus atorvastatin (combined) treatment effectively restored renal function as well as renal Oat3 function which correlated with the decrease in hyperglycemia and oxidative stress. Moreover, pancreatic inflammation and apoptosis in diabetic rats were ameliorated by the combined drugs treatment. Therefore, atorvastatin plus insulin seems to exert the additive effect in improving renal functionby alleviating hyperglycemiaand the modulation of oxidative stress, inflammation and apoptosis.
Miyamoto, Takuma; Karimov, Jamshid H; Fukamachi, Kiyotaka
2018-03-01
Continuous-flow (CF) left ventricular assist devices (LVADs) are widely used to treat end-stage heart failure. Despite substantial improvement in clinical results, numerous complications remain associated with this technology. Worsening renal function is one, associated with morbidity and mortality in patients supported by CF LVADs. The effects of CF LVAD support on renal function have been investigated since the mid-1990s by many research groups. Area covered: We review the current status of LVAD therapy, experimental results regarding the effects of types of flow generated by LVADs on renal function and pathology, changes in renal function after LVAD implant, the influence of renal function on outcomes, and risk factors for renal dysfunction post implant. This information was obtained through online databases and direct extraction of single studies. Expert commentary: Immediately after CF LVAD implantation, renal function improves temporarily as patients recover from the kidneys' previously low perfusion and congestive state. However, many studies have shown that this initially recovered renal function gradually declines during long-term CF LVAD support. Although it is known that CF LVAD support adversely affects renal function over the long term, just how it does has not yet been clearly defined in terms of clinical symptoms or signs.
Gannon, Stephen A; Mukamal, Kenneth J; Chang, James D
2018-06-14
The aim of this study was to identify echocardiographic predictors of improved or worsening renal function during intravenous diuresis for decompensated heart failure. Secondary aim included defining the incidence and clinical risk factors for acute changes in renal function with decongestion. A retrospective review of 363 patients admitted to a single centre for decompensated heart failure who underwent intravenous diuresis and transthoracic echocardiography was conducted. Clinical, echocardiographic, and renal function data were retrospectively collected. A multinomial logistic regression model was created to determine relative risk ratios for improved renal function (IRF) or worsening renal function (WRF). Within this cohort, 36% of patients experienced WRF, 35% had stable renal function, and 29% had IRF. Patients with WRF were more likely to have a preserved left ventricular ejection fraction compared with those with stable renal function or IRF (P = 0.02). Patients with IRF were more likely to have a dilated, hypokinetic right ventricle compared with those with stable renal function or WRF (P ≤ 0.01), although this was not significant after adjustment for baseline characteristics. Left atrial size, left ventricular linear dimensions, and diastolic function did not significantly predict change in renal function. An acute change in renal function occurred in 65% of patients admitted with decompensated heart failure. WRF was statistically more likely in patients with a preserved left ventricular ejection fraction. A trend towards IRF was noted in patients with global right ventricular dysfunction. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
Koye, Digsu N; Magliano, Dianna J; Reid, Christopher M; Jepson, Christopher; Feldman, Harold I; Herman, William H; Shaw, Jonathan E
2018-05-18
Reduced glomerular filtration rate (GFR) in the absence of albuminuria is a common manifestation of chronic kidney disease (CKD) in diabetes. However, the frequency with which it progresses to end-stage kidney disease (ESKD) is unknown. Multicenter prospective cohort study. We included 1,908 participants with diabetes and reduced GFR enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study in the United States. Urinary albumin and protein excretion. Incident ESKD, CKD progression (ESKD or ≥50% reduction in estimated GFR [eGFR] from baseline), and annual rate of decline in kidney function. ESKD was ascertained by self-report and by linkage to the US Renal Data System. We used Cox proportional hazards modeling to estimate the association of albuminuria and proteinuria with incident ESKD or CKD progression and linear mixed-effects models to assess differences in eGFR slopes among those with and without albuminuria. Mean eGFR at baseline was 41.2mL/min/1.73m 2 . Normal or mildly increased 24-hour urinary albumin excretion (<30mg/d) at baseline was present in 28% of participants, but in only 5% of those progressing to ESKD. For those with baseline normal or mildly increased albuminuria, moderately increased albuminuria (albumin excretion, 30-299mg/d), and 2 levels of severely increased albuminuria (albumin excretion, 300-999 and ≥1,000mg/d): crude rates of ESKD were 7.4, 34.8, 78.7, and 178.7 per 1,000 person-years, respectively; CKD progression rates were 17.0, 61.4, 130.5, and 295.1 per 1,000 person-years, respectively; and annual rates of eGFR decline were -0.17, -1.35, -2.74, and -4.69mL/min/1.73m 2 , respectively. We were unable to compare the results with healthy controls. In people with diabetes with reduced eGFRs, the absence of albuminuria or proteinuria is common and carries a much lower risk for ESKD, CKD progression, or rapid decline in eGFR compared with those with albuminuria or proteinuria. The rate of eGFR decline in normoalbuminuric CKD was similar to that reported for the general diabetic population. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Emans, Tonja W; Janssen, Ben J; Pinkham, Maximilian I; Ow, Connie P C; Evans, Roger G; Joles, Jaap A; Malpas, Simon C; Krediet, C T Paul; Koeners, Maarten P
2016-11-01
Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation. Exogenous angiotensin-II reduced renal cortical tissue PO2 more than equi-pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine. Activation of the endogenous renin-angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin-II receptor type 1 antagonist. Angiotensin-II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. We hypothesised that both exogenous and endogenous angiotensin-II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose-dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi-pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min -1 . Equi-pressor infusion of phenylephrine did not significantly reduce RBF or renal oxygen delivery. Activation of the endogenous renin-angiotensin system in Cyp1a1Ren2 transgenic rats reduced cortical tissue PO2. This could be reversed within minutes by pharmacological angiotensin-II receptor type 1 (AT 1 R) blockade. Thus AngII is an important modulator of renal cortical oxygenation via AT 1 receptors. AngII had a greater influence on cortical oxygenation than did phenylephrine. This phenomenon appears to be attributable to the profound impact of AngII on renal oxygen delivery. We conclude that the ability of AngII to promote renal cortical hypoxia may contribute to its influence on initiation and progression of chronic kidney disease. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Using the Drosophila Nephrocyte to Model Podocyte Function and Disease
Helmstädter, Martin; Huber, Tobias B.; Hermle, Tobias
2017-01-01
Glomerular disorders are a major cause of end-stage renal disease and effective therapies are often lacking. Nephrocytes are considered to be part of the Drosophila excretory system and form slit diaphragms across cellular membrane invaginations. Nehphrocytes have been shown to share functional, morphological, and molecular features with podocytes, which form the glomerular filter in vertebrates. Here, we report the progress and the evolving tool-set of this model system. Combining a functional, accessible slit diaphragm with the power of the genetic tool-kit in Drosophila, the nephrocyte has the potential to greatly advance our understanding of the glomerular filtration barrier in health and disease. PMID:29270398
Following specific podocyte injury captopril protects against progressive long term renal damage.
Zhou, Yu S; Ihmoda, Ihmoda A; Phelps, Richard G; Bellamy, Christopher Os; Turner, A Neil
2015-01-01
Angiotensin converting enzyme inhibitors (ACEi) reduce proteinuria and preserve kidney function in proteinuric renal diseases. Their nephroprotective effect exceeds that attributable to lowering of blood pressure alone. This study examines the potential of ACEi to protect from progression of injury after a highly specific injury to podocytes in a mouse model. We created transgenic (Podo-DTR) mice in which graded specific podocyte injury could be induced by a single injection of diphtheria toxin. Transgenic and wild-type mice were given the ACEi captopril in drinking water, or water alone, commencing 24h after toxin injection. Kidneys were examined histologically at 8 weeks and injury assessed by observers blinded to experimental group. After toxin injection, Podo-DTR mice developed acute proteinuria, and at higher doses transient renal impairment, which subsided within 3 weeks to be followed by a slow glomerular scarring process. Captopril treatment in Podo-DTR line 57 after toxin injection at 5ng/g body weight reduced proteinuria and ameliorated glomerular scarring, matrix accumulation and glomerulosclerosis almost to baseline (toxin: 17%; toxin + ACEi 10%, p<0.04; control 7% glomerular scarring). Podocyte counts were reduced after toxin treatment and showed no recovery irrespective of captopril treatment (7.1 and 7.3 podocytes per glomerular cross section in water and captopril-treated animals compared with 8.2 of wild-type controls, p<0.05). Observations in Podo-DTR mice support the hypothesis that continuing podocyte dysfunction is a key abnormality in proteinuric disease. Our model is ideal for studying strategies to protect the kidney from progressive injury following podocyte depletion. Demonstrable protective effects from captopril occur, despite indiscernible preservation or restoration of podocyte counts, at least after this degree of relatively mild injury.
Kimura, Kimihiro; Ohkita, Mamoru; Koyama, Maki; Matsumura, Yasuo
2012-10-15
It has been reported that endothelin-1 (ET-1) overproduction and reduced nitric oxide (NO) production are closely related to the progression of renal diseases. In the present study, we examined the interrelation between ET-1 and NO system using rats treated with the combination of deoxycorticosterone acetate (DOCA)-salt and a non selective NO synthase inhibitor N(ω)-nitro-L-arginine (NOARG). Rats were treated with DOCA-salt (15 mg/kg, plus drinking water containing 1% NaCl) for two weeks, and then additional treatment of NOARG (0.6 mg/ml in the drinking water) was performed for three days. Combined treatment of DOCA-salt and NOARG drastically developed the severe renal dysfunction and tissue injury. This treatment additionally enhanced renal ET-1 production compared to the rats treated with DOCA-salt alone, whereas a selective ET(A) receptor antagonist ABT-627 completely prevented renal dysfunction and tissue injury. On the other hand, combined treatment of DOCA-salt and NOARG induced the phosphorylation of inhibitory protein kappa B (IκB), followed by the activation of nuclear factor-kappa B (NF-κB) in the kidney. In addition, pyrrolidine-dithiocarbamate completely suppressed not only NF-κB activation but also renal dysfunction and ET-1 overproduction. These results suggest that NF-κB/ET-1/ET(A) receptor-mediated actions are responsible for the increased susceptibility to DOCA-salt induced renal injuries in the case of reduced NO production. Copyright © 2012 Elsevier Inc. All rights reserved.
Mid-Term Vascular Safety of Renal Denervation Assessed by Follow-up MR Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, Axel, E-mail: axel.schmid@uk-erlangen.de; Schmieder, Raphael; Lell, Michael
Background/AimsRenal denervation (RDN) emerged as a treatment option for reducing blood pressure (BP) in patients with treatment-resistant hypertension (TRH). However, concerns have been raised regarding the incidence of late renal artery stenosis or thromboembolism after RDN. The goal of the current study was, therefore, to conduct a prospective clinical trial on the mid-term vascular integrity of the renal arteries and the perfusion of the renal parenchyma assessed by magnetic resonance imaging (MRI) in the follow-up after catheter-based RDN.MethodsIn our single-centre investigator initiated study, 51 patients with true TRH underwent catheter-based RDN using the Symplicity Flex{sup TM} catheter (Medtronic Inc., Palomore » Alto, CA). Follow-up MRI was performed at a median of 11 months (interquartile range 6–18 months) after RDN on a 1.5T MR unit. High-resolution MR angiography (MRA) and MRI results were compared to the baseline digital angiography of renal arteries obtained at time of RDN. In case of uncertainties (N = 2) catheter angiography was repeated.ResultsBoth office and 24-h ambulatory BP were significantly reduced 6 and 12 months after RDN. Renal function remained unchanged 6 and 12 months after RDN. In all patients, MRA excluded new or progression of pre-existing low grade renal artery stenosis as well as focal aneurysms at the sites of radiofrequency ablation. In none of the patients new segmental perfusion deficits in either kidney were detected on MRI.ConclusionsNo vascular or parenchymal complications after radiofrequency-based RDN were detected in 51 patients followed up by MRI.« less
Community nephrology: audit of screening for renal insufficiency in a high risk population.
Kissmeyer, L; Kong, C; Cohen, J; Unwin, R J; Woolfson, R G; Neild, G H
1999-09-01
The rate of acceptance onto dialysis programmes has doubled in the past 10 years and is steadily increasing. Early detection and treatment of renal failure slows the rate of progression. Is it feasible to screen for patients who are at increased risk of developing renal failure? We have audited primary care records of patients aged 50-75 years who have either hypertension or diabetes, and are therefore considered to be at high risk of developing renal insufficiency. Our aim was to see whether patients had had their blood pressure measured and urine tested for protein within 12 months, and plasma creatinine measured within 24 months. This was a retrospective study of case notes and computer records in 12 general practices from inner and greater London. A total of 16,855 patients were aged 50-75 years. From this age group, 2693 (15.5%) patients were identified as being either hypertensive or diabetic, or both. Of the 2561 records audited, 1359 (53.1%) contained a plasma creatinine measured within 24 months, and 11% of these (150) had a value > 125 micromol/l. This equates to a prevalence of renal insufficiency of > 110,000 patients per million in this group. Forty two patients (28%) had been referred to a nephrologist. Of records audited, 73% contained a blood pressure measurement and 29% contained a test for proteinuria within 12 months. There is a high prevalence of chronic renal insufficiency in hypertensive and diabetic patients. It is feasible to detect renal insufficiency at a primary care level, but an effective system will require computerized databases that code for age, ethnicity, measurement of blood pressure and renal function, as well as diagnoses.
Zhao, Shiyue; Wang, Yangwei; Luo, Manyu; Cui, Wenpeng; Zhou, Xiaoxi; Miao, Lining
2018-06-06
BACKGROUND Data on the expression of RCC tissues from the GEO database and patient survival data from TCGA were used to explore the prognostic significance of long noncoding RNA SNHG1. SNHG1 has been reported to participate in the development of several cancers, but, the underlying mechanism of SNHG1 in renal cell carcinoma (RCC) has not been reported. The purpose of our study was to investigate the potential function of SNHG1 in RCC. MATERIAL AND METHODS The expression of SNHG1 in 40 cases of RCC and adjacent normal tissues and 5 cell lines was detected by qRT-PCR. Cell proliferation, Transwell assay, and Western blotting assay were carried out to investigate the biological function of SNHG1. A rescue experiment was performed to verify that miR-137 can partly impede the effect of SNHG1 on renal cancer cells. RESULTS SNHG1 was identified to be overexpressed in RCC tissues and RCC cell lines. High levels of SNHG1 were correlated with poor prognosis of RCC patients. Knockdown of SNHG1 suppressed the proliferation, invasion, and EMT capacity in RCC. Moreover, miR-137 abrogated the effect of SNHG1 on RCC. CONCLUSIONS SNHG1 is significantly upregulated in RCC and renal cancer cell lines. Overexpression of SNHG1 participates in RCC tumorigenesis by regulating miR-137.
Zhao, Shiyue; Wang, Yangwei; Luo, Manyu; Cui, Wenpeng; Zhou, Xiaoxi
2018-01-01
Background Data on the expression of RCC tissues from the GEO database and patient survival data from TCGA were used to explore the prognostic significance of long noncoding RNA SNHG1. SNHG1 has been reported to participate in the development of several cancers, but, the underlying mechanism of SNHG1 in renal cell carcinoma (RCC) has not been reported. The purpose of our study was to investigate the potential function of SNHG1 in RCC. Material/Methods The expression of SNHG1 in 40 cases of RCC and adjacent normal tissues and 5 cell lines was detected by qRT-PCR. Cell proliferation, Transwell assay, and Western blotting assay were carried out to investigate the biological function of SNHG1. A rescue experiment was performed to verify that miR-137 can partly impede the effect of SNHG1 on renal cancer cells. Results SNHG1 was identified to be overexpressed in RCC tissues and RCC cell lines. High levels of SNHG1 were correlated with poor prognosis of RCC patients. Knockdown of SNHG1 suppressed the proliferation, invasion, and EMT capacity in RCC. Moreover, miR-137 abrogated the effect of SNHG1 on RCC. Conclusions SNHG1 is significantly upregulated in RCC and renal cancer cell lines. Overexpression of SNHG1 participates in RCC tumorigenesis by regulating miR-137. PMID:29874202
Regulation of oxygen utilization by angiotensin II in chronic kidney disease
Deng, Aihua; Tang, Tong; Singh, Prabhleen; Wang, Chen; Satriano, Joe; Thomson, Scott C; Blantz, Roland C
2010-01-01
Angiotensin II (ANG II) blockade delays progression of chronic kidney disease (CKD) by modifying intrarenal hemodynamics, but the effect on metabolic adaptations has not been examined. Using renal ablation/infarction (A/I) model of CKD in rats at one week, the effects of ANG II blockade by captopril (CAP) and losartan (LOS) on renal O2 consumption (QO2), renal nitric oxide (NO) activity and nitric oxide synthase (NOS) protein expression was examined. A/I kidneys exhibited proteinuria, reduced GFR, renal blood flow (RBF) and NOS-1 protein expression, while QO2 factored by sodium reabsorption (QO2/TNa) was markedly increased. CAP + LOS treatment increased GFR, RBF, and TNa, while QO2 remained unchanged, thus normalizing QO2/TNa. NOS-1 expression was normalized with CAP + LOS, as was proteinuria. Triple antihypertensive therapy administered to control for the blood pressure reduction, and lysine administration to increase GFR and RBF, did not normalize QO2/TNa, suggesting a specific effect of ANG II in elevating QO2/TNa. NOS blockade, to test functional NO activity on QO2 and QO2/TNa, increased QO2 in shams, but not in untreated A/I. The increase in QO2 was restored in CAP + LOS treated A/I. CAP + LOS treatment normalized the increased QO2/TNa and functional NO activity in A/I independent of the blood pressure and GFR effects, providing evidence for an additional mechanism underlying the benefits of ANG II inhibition therapy. PMID:18818681
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Qingqiao; Xia, Yuanyu, E-mail: xiayuanyu.wh@gmail.com; Wang, Guan
As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression inmore » HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders.« less
Lip, Gregory Y H; Al-Saady, Naab; Ezekowitz, Michael D; Banach, Maciej; Goette, Andreas
2017-11-01
The ENSURE-AF study (NCT 02072434) of anticoagulation for electrical cardioversion in nonvalvular atrial fibrillation (NVAF) showed comparable low rates of bleeding and thromboembolism between the edoxaban and the enoxaparin-warfarin treatment arms. This post hoc analysis investigated the relationship between renal function and clinical outcomes. ENSURE-AF was a multicenter, PROBE evaluation trial of edoxaban 60 mg, or dose reduced to 30 mg/d for weight≤60 kg, creatinine clearance (CrCl; Cockcroft-Gault) ≤50 mL/min, or concomitant P-glycoprotein inhibitors compared with therapeutically monitored enoxaparin-warfarin in 2,199 NVAF patients undergoing electrical cardioversion. Efficacy and safety outcomes and time in therapeutic range in the warfarin arm were analyzed in relation to CrCl in prespecified ranges ≥15 and ≤30, >30 and ≤50, >50 and <80, and ≥80 mL/min, and an exploratory ≥95-mL/min analysis. A total of 1,095 subjects were randomized to edoxaban and 1,104 to enoxaparin-warfarin. Mean age was 64.3±10 and 64.2±11 years. Mean time in therapeutic range was progressively lower with reducing CrCl strata, being 66.8% in those with CrCl >30 to ≤50 compared with 71.8% in those with CrCl ≥80. The odds ratios for the primary efficacy and safety end points were comparable for the different predefined renal function strata; given the small numbers, the 95% CI included 1.0. In the subset of those with CrCl ≥95, the odds ratios showed consistency with the other CrCl strata. When CrCl was assessed as a continuous variable, there was a nonsignificant trend toward higher major or clinically relevant nonmajor bleeding with reducing CrCl levels, with no significant differences between the 2 treatment arms. When we assessed CrCl at baseline compared with end of treatment, there were no significant differences in CrCl change between the edoxaban and enoxaparin-warfarin arms. The proportions with worsening of renal function (defined as a decrease of >20% from baseline) were similar in the 2 treatment arms. Given the small number of events in ENSURE-AF, no effect of renal (dys)function was demonstrated in comparing edoxaban to enoxaparin-warfarin for cardioversion; efficacy and safety of edoxaban remained consistent even in patients with normal or supranormal renal function. Copyright © 2017 Elsevier Inc. All rights reserved.
Weisel, Katja C.; Dimopoulos, Meletios A.; Moreau, Philippe; Lacy, Martha Q.; Song, Kevin W.; Delforge, Michel; Karlin, Lionel; Goldschmidt, Hartmut; Banos, Anne; Oriol, Albert; Alegre, Adrian; Chen, Christine; Cavo, Michele; Garderet, Laurent; Ivanova, Valentina; Martinez-Lopez, Joaquin; Knop, Stefan; Yu, Xin; Hong, Kevin; Sternas, Lars; Jacques, Christian; Zaki, Mohamed H.; Miguel, Jesus San
2016-01-01
Pomalidomide + low-dose dexamethasone is effective and well tolerated for refractory or relapsed and refractory multiple myeloma after bortezomib and lenalidomide failure. The phase III trial MM-003 compared pomalidomide + low-dose dexamethasone with high-dose dexamethasone. This subanalysis grouped patients by baseline creatinine clearance ≥ 30 − < 60 mL/min (n=93, pomalidomide + low-dose dexamethasone; n=56, high-dose dexamethasone) or ≥ 60 mL/min (n=205, pomalidomide + low-dose dexamethasone; n=93, high-dose dexamethasone). Median progression-free survival was similar for both subgroups and favored pomalidomide + low-dose dexamethasone versus high-dose dexamethasone: 4.0 versus 1.9 months in the group with baseline creatinine clearance ≥ 30 − < 60 mL/min (P<0.001) and 4.0 versus 2.0 months in the group with baseline creatinine clearance ≥ 60 mL/min (P<0.001). Median overall survival for pomalidomide + low-dose dexamethasone versus high-dose dexamethasone was 10.4 versus 4.9 months (P=0.030) and 15.5 versus 9.2 months (P=0.133), respectively. Improved renal function, defined as an increase in creatinine clearance from < 60 to ≥ 60 mL/min, was similar in pomalidomide + low-dose dexamethasone and high-dose dexamethasone patients (42% and 47%, respectively). Improvement in progression-free and overall survival in these patients was comparable with that in patients without renal impairment. There was no increase in discontinuations of therapy, dose modifications, and adverse events in patients with moderate renal impairment. Pomalidomide at a starting dose of 4 mg + low-dose dexamethasone is well tolerated in patients with refractory or relapsed and refractory multiple myeloma, and of comparable efficacy if moderate renal impairment is present. This trial was registered with clinicaltrials.gov identifier 01311687 and EudraCT identifier 2010-019820-30. PMID:27081177
Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease.
Germain, Dominique P; Charrow, Joel; Desnick, Robert J; Guffon, Nathalie; Kempf, Judy; Lachmann, Robin H; Lemay, Roberta; Linthorst, Gabor E; Packman, Seymour; Scott, C Ronald; Waldek, Stephen; Warnock, David G; Weinreb, Neal J; Wilcox, William R
2015-05-01
Fabry disease results from deficient α-galactosidase A activity and globotriaosylceramide accumulation causing renal insufficiency, strokes, hypertrophic cardiomyopathy and early demise. We assessed the 10-year outcome of recombinant α-galactosidase A therapy. The outcomes (severe clinical events, renal function, cardiac structure) of 52/58 patients with classic Fabry disease from the phase 3 clinical trial and extension study, and the Fabry Registry were evaluated. Disease progression rates for patients with low renal involvement (LRI, n=32) or high renal involvement (HRI, n=20) at baseline were assessed. 81% of patients (42/52) did not experience any severe clinical event during the treatment interval and 94% (49/52) were alive at the end of the study period. Ten patients reported a total of 16 events. Patients classified as LRI started therapy 13 years younger than HRI (mean 25 years vs 38 years). Mean slopes for estimated glomerular filtration rate for LRI and HRI were -1.89 mL/min/1.73 m(2)/year and -6.82 mL/min/1.73 m(2)/year, respectively. Overall, the mean left ventricular posterior wall thickness and interventricular septum thickness remained unchanged and normal. Patients who initiated treatment at age ≥ 40 years exhibited significant increase in left ventricular posterior wall thickness and interventricular septum thickness. Mean plasma globotriaosylceramide normalised within 6 months. This 10-year study documents the effectiveness of agalsidase beta (1 mg/kg/2 weeks) in patients with Fabry disease. Most patients remained alive and event-free. Patients who initiated treatment at a younger age and with less kidney involvement benefited the most from therapy. Patients who initiated treatment at older ages and/or had advanced renal disease experienced disease progression. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease
Germain, Dominique P; Charrow, Joel; Desnick, Robert J; Guffon, Nathalie; Kempf, Judy; Lachmann, Robin H; Lemay, Roberta; Linthorst, Gabor E; Packman, Seymour; Scott, C Ronald; Waldek, Stephen; Warnock, David G; Weinreb, Neal J; Wilcox, William R
2015-01-01
Background Fabry disease results from deficient α-galactosidase A activity and globotriaosylceramide accumulation causing renal insufficiency, strokes, hypertrophic cardiomyopathy and early demise. We assessed the 10-year outcome of recombinant α-galactosidase A therapy. Methods The outcomes (severe clinical events, renal function, cardiac structure) of 52/58 patients with classic Fabry disease from the phase 3 clinical trial and extension study, and the Fabry Registry were evaluated. Disease progression rates for patients with low renal involvement (LRI, n=32) or high renal involvement (HRI, n=20) at baseline were assessed. Results 81% of patients (42/52) did not experience any severe clinical event during the treatment interval and 94% (49/52) were alive at the end of the study period. Ten patients reported a total of 16 events. Patients classified as LRI started therapy 13 years younger than HRI (mean 25 years vs 38 years). Mean slopes for estimated glomerular filtration rate for LRI and HRI were −1.89 mL/min/1.73 m2/year and −6.82 mL/min/1.73 m2/year, respectively. Overall, the mean left ventricular posterior wall thickness and interventricular septum thickness remained unchanged and normal. Patients who initiated treatment at age ≥40 years exhibited significant increase in left ventricular posterior wall thickness and interventricular septum thickness. Mean plasma globotriaosylceramide normalised within 6 months. Conclusions This 10-year study documents the effectiveness of agalsidase beta (1 mg/kg/2 weeks) in patients with Fabry disease. Most patients remained alive and event-free. Patients who initiated treatment at a younger age and with less kidney involvement benefited the most from therapy. Patients who initiated treatment at older ages and/or had advanced renal disease experienced disease progression. PMID:25795794
Khella, H W Z; Bakhet, M; Allo, G; Jewett, M A S; Girgis, A H; Latif, A; Girgis, H; Von Both, I; Bjarnason, G A; Yousef, G M
2013-10-01
MicroRNAs (miRNAs) play a crucial role in tumor progression and metastasis. We, and others, recently identified a number of miRNAs that are dysregulated in metastatic renal cell carcinoma compared with primary renal cell carcinoma. Here, we investigated three miRNAs that are significantly downregulated in metastatic tumors: miR-192, miR-194 and miR-215. Gain-of-function analyses showed that restoration of their expression decreases cell migration and invasion in renal cell carcinoma cell line models, whereas knockdown of these miRNAs resulted in enhancing cellular migration and invasion abilities. We identified three targets of these miRNAs with potential role in tumor aggressiveness: murine double minute 2, thymidylate synthase, and Smad Interacting protein 1/zinc finger E-box binding homeobox 2. We observed a convergent effect (the same molecule can be targeted by all three miRNAs) and a divergent effect (the same miRNA can control multiple targets) for these miRNAs. We experimentally validated these miRNA-target interactions using three independent approaches. First, we observed that miRNA overexpression significantly reduces the mRNA and protein levels of their targets. In the second, we observed significant reduction of the luciferase signal of a vector containing the 3'UTR of the target upon miRNA overexpression. Finally, we show the presence of inverse correlation between miRNA changes and the expression levels of their targets in patient specimens. We also examined the prognostic significance of miR-215 in renal cell carcinoma. Lower expression of miR-215 is associated with significantly reduced disease-free survival time. These findings were validated on an independent data set from The Cancer Genome Atlas. These results can pave the way to the clinical use of miRNAs as prognostic markers and therapeutic targets.
Uneda, Kazushi; Wakui, Hiromichi; Maeda, Akinobu; Azushima, Kengo; Kobayashi, Ryu; Haku, Sona; Ohki, Kohji; Haruhara, Kotaro; Kinguchi, Sho; Matsuda, Miyuki; Ohsawa, Masato; Minegishi, Shintaro; Ishigami, Tomoaki; Toya, Yoshiyuki; Atobe, Yoshitoshi; Yamashita, Akio; Umemura, Satoshi; Tamura, Kouichi
2017-07-27
The kidney is easily affected by aging-associated changes, including glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Particularly, renal tubulointerstitial fibrosis is a final common pathway in most forms of progressive renal disease. Angiotensin II type 1 receptor (AT1R)-associated protein (ATRAP), which was originally identified as a molecule that binds to AT1R, is highly expressed in the kidney. Previously, we have shown that ATRAP suppresses hyperactivation of AT1R signaling, but does not affect physiological AT1R signaling. We hypothesized that ATRAP has a novel functional role in the physiological age-degenerative process, independent of modulation of AT1R signaling. ATRAP-knockout mice were used to study the functional involvement of ATRAP in the aging. ATRAP-knockout mice exhibit a normal age-associated appearance without any evident alterations in physiological parameters, including blood pressure and cardiovascular and metabolic phenotypes. However, in ATRAP-knockout mice compared with wild-type mice, the following takes place: (1) age-associated renal function decline and tubulointerstitial fibrosis are more enhanced; (2) renal tubular mitochondrial abnormalities and subsequent increases in the production of reactive oxygen species are more advanced; and (3) life span is 18.4% shorter (median life span, 100.4 versus 123.1 weeks). As a key mechanism, age-related pathological changes in the kidney of ATRAP-knockout mice correlated with decreased expression of the prosurvival gene, Sirtuin1 . On the other hand, chronic angiotensin II infusion did not affect renal sirtuin1 expression in wild-type mice. These results indicate that ATRAP plays an important role in inhibiting kidney aging, possibly through sirtuin1-mediated mechanism independent of blocking AT1R signaling, and further protecting normal life span. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
History of Childhood Kidney Disease and Risk of Adult End-Stage Renal Disease.
Calderon-Margalit, Ronit; Golan, Eliezer; Twig, Gilad; Leiba, Adi; Tzur, Dorit; Afek, Arnon; Skorecki, Karl; Vivante, Asaf
2018-02-01
The long-term risk associated with childhood kidney disease that had not progressed to chronic kidney disease in childhood is unclear. We aimed to estimate the risk of future end-stage renal disease (ESRD) among adolescents who had normal renal function and a history of childhood kidney disease. We conducted a nationwide, population-based, historical cohort study of 1,521,501 Israeli adolescents who were examined before compulsory military service in 1967 through 1997; data were linked to the Israeli ESRD registry. Kidney diseases in childhood included congenital anomalies of the kidney and urinary tract, pyelonephritis, and glomerular disease; all participants included in the primary analysis had normal renal function and no hypertension in adolescence. Cox proportional-hazards models were used to estimate the hazard ratio for ESRD associated with a history of childhood kidney disease. During 30 years of follow-up, ESRD developed in 2490 persons. A history of any childhood kidney disease was associated with a hazard ratio for ESRD of 4.19 (95% confidence interval [CI], 3.52 to 4.99). The associations between each diagnosis of kidney disease in childhood (congenital anomalies of the kidney and urinary tract, pyelonephritis, and glomerular disease) and the risk of ESRD in adulthood were similar in magnitude (multivariable-adjusted hazard ratios of 5.19 [95% CI, 3.41 to 7.90], 4.03 [95% CI, 3.16 to 5.14], and 3.85 [95% CI, 2.77 to 5.36], respectively). A history of kidney disease in childhood was associated with younger age at the onset of ESRD (hazard ratio for ESRD among adults <40 years of age, 10.40 [95% CI, 7.96 to 13.59]). A history of clinically evident kidney disease in childhood, even if renal function was apparently normal in adolescence, was associated with a significantly increased risk of ESRD, which suggests that kidney injury or structural abnormality in childhood has long-term consequences.
Novel actions of tissue-type plasminogen activator in chronic kidney disease: a paradigm shift
Hu, Kebin; Mars, Wendy M.; Liu, Youhua
2009-01-01
Tissue-type plasminogen activator (tPA) is traditionally viewed as a simple serine protease whose main function is to convert plasminogen into biologically active plasmin. As a protease, tPA plays a crucial role in regulating blood fibrinolysis, in maintaining the homeostasis of extracellular matrix (ECM) and in modulating the post-translational activation of growth factors. However, emerging evidence indicates that tPA may also function as a cytokine that transmits its signal across the cell membrane, initiates a diverse array of intracellular signaling, and dictates gene expression in the nuclei. Structurally, tPA is a kringle-containing protein that shares significant similarity to other classic cytokines such as hepatocyte growth factor (HGF) and macrophage-stimulating protein (MSP). Although there is no dedicated receptor, tPA binds to the cell membrane low density lipoprotein (LDL) receptor-related protein-1 (LRP-1), triggers LRP-1 tyrosine phosphorylation, and activates various intracellular signaling. As a cytokine, tPA plays a pivotal role in the pathogenesis of renal interstitial fibrosis through diverse mechanisms. It induces matrix matelloproteinase-9 (MMP-9) gene expression in renal interstitial fibroblasts, which causes the destruction of the tubular basement membrane (TBM), thereby facilitating tubular epithelial to mesenchymal transition (EMT). tPA also potentiates myofibroblast activation from quiescent interstitial fibroblasts through LRP-1-mediated recruitment of β1 integrin signaling. Furthermore, tPA acts as a survival factor that protects renal interstitial fibroblasts/myofibroblasts from apoptosis, thereby resulting in an expansion of myofibroblast populations in diseased kidney. Together, a growing body of evidence has implicated tPA as a fibrogenic cytokine that promotes the progression of kidney diseases. These new findings have radically changed our conception of tPA in renal fibrogenesis and represent a paradigm shift towards uncovering its cytokine function. A better understanding of renal tPA biology will ultimately translate into more rational therapeutic remedies for patients with chronic kidney fibrosis. PMID:18508579
Hennings, Anna; Hannemann, Anke; Rettig, Rainer; Dörr, Marcus; Nauck, Matthias; Völzke, Henry; Lerch, Markus M.; Lieb, Wolfgang; Friedrich, Nele
2016-01-01
Background An intact angiopoietin/Tie-2 ligand receptor system is indispensable for life. High circulating angiopoietin-2 (Ang-2) concentrations are strongly associated with kidney disease involving the progressive loss of glomerular filtration. The aim of our study was to investigate the associations between renal function and serum Ang-2 or serum Tie-2 concentrations in the general population. Methods Data of 3081 and 4088 subjects from two population-based studies, the Study of Health in Pomerania (SHIP-1) and SHIP-Trend, were used. Renal function was assessed by serum creatinine, cystatin C concentration, creatinine-based estimated glomerular filtration rate [eGFR(crea)], cystatin C-based eGFR [eGFR(cys)] and urinary albumin-to-creatinine ratio (uACR). Analyses of variance and linear regression models were calculated. Results In both cohorts, strong positive associations between serum cystatin C concentrations and serum Ang-2 or Tie-2 concentrations as well as inverse associations between eGFR(cys) and serum Ang-2 or Tie-2 concentrations were found. These relations were also present in a subpopulation without hypertension or diabetes mellitus type 2. Furthermore, we detected weak U-shaped associations between serum creatinine concentrations or eGFR(crea) and serum Ang-2 concentrations. With respect to uACR a strong positive association with serum Ang-2 concentrations was revealed. Conclusion Serum Ang-2 concentrations are strongly associated with sensitive parameters of renal impairment like serum cystatin C, uACR and eGFR(cys). These findings persisted even after exclusion of subjects with hypertension or diabetes mellitus type 2, conditions that predispose to chronic renal disease and are associated with increased Ang-2 concentrations. Interestingly, we did not detect the same strong relations between serum creatinine and eGFR(crea) with serum Ang-2 concentration. Additionally, significant association of serum Tie-2 concentrations with cystatin C and eGFR(cys) were detected. PMID:27893762
Hennings, Anna; Hannemann, Anke; Rettig, Rainer; Dörr, Marcus; Nauck, Matthias; Völzke, Henry; Lerch, Markus M; Lieb, Wolfgang; Friedrich, Nele
2016-01-01
An intact angiopoietin/Tie-2 ligand receptor system is indispensable for life. High circulating angiopoietin-2 (Ang-2) concentrations are strongly associated with kidney disease involving the progressive loss of glomerular filtration. The aim of our study was to investigate the associations between renal function and serum Ang-2 or serum Tie-2 concentrations in the general population. Data of 3081 and 4088 subjects from two population-based studies, the Study of Health in Pomerania (SHIP-1) and SHIP-Trend, were used. Renal function was assessed by serum creatinine, cystatin C concentration, creatinine-based estimated glomerular filtration rate [eGFR(crea)], cystatin C-based eGFR [eGFR(cys)] and urinary albumin-to-creatinine ratio (uACR). Analyses of variance and linear regression models were calculated. In both cohorts, strong positive associations between serum cystatin C concentrations and serum Ang-2 or Tie-2 concentrations as well as inverse associations between eGFR(cys) and serum Ang-2 or Tie-2 concentrations were found. These relations were also present in a subpopulation without hypertension or diabetes mellitus type 2. Furthermore, we detected weak U-shaped associations between serum creatinine concentrations or eGFR(crea) and serum Ang-2 concentrations. With respect to uACR a strong positive association with serum Ang-2 concentrations was revealed. Serum Ang-2 concentrations are strongly associated with sensitive parameters of renal impairment like serum cystatin C, uACR and eGFR(cys). These findings persisted even after exclusion of subjects with hypertension or diabetes mellitus type 2, conditions that predispose to chronic renal disease and are associated with increased Ang-2 concentrations. Interestingly, we did not detect the same strong relations between serum creatinine and eGFR(crea) with serum Ang-2 concentration. Additionally, significant association of serum Tie-2 concentrations with cystatin C and eGFR(cys) were detected.
Sag, Alan Alper; Inal, Ibrahim; Okcuoglu, John; Rossignol, Patrick; Ortiz, Alberto; Afsar, Baris; Sos, Thomas A; Kanbay, Mehmet
2016-04-01
After three neutral trials in which renal artery stenting failed to improve renal function or reduce cardiovascular and renal events, the controversy surrounding diagnosis and treatment of atherosclerotic renal artery stenosis and renovascular hypertension has led to paradigm shifts in the diagnostic algorithm. Noninvasive determination of earlier events (cortex hypoxia and renal artery hemodynamic changes) will supersede late sequelae (calcific stenosis, renal cortical thinning). Therefore, this review proposes the concept of renal penumbra in defining at-risk ischemic renal parenchyma. The complex field of functional renal magnetic resonance imaging will be reviewed succinctly in a clinician-directed fashion. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Correa-Rotter, R; Gamba, G; Ochoa, C; Onuma, L; Reyes, E; Tamayo, J A; Peña, J C
1990-01-01
The purpose of this retrospective study was to study the incidence of idiopathic and secondary forms of membranous nephropathy in our institution, its clinical course and progression to chronic renal failure, and the risk factors associated with it. Two hundred fourteen (16%) of the 1,287 renal biopsies obtained between 1962 and 1988 were primary glomerular diseases and 28 of this 214 (13%) were idiopathic membranous nephropathy. On the other hand 59 of 1,287 biopsies were membranous nephropathy of whom 28 were idiopathic, 27 secondary to systemic lupus erythematosus, 2 due to drugs, one associated with rheumatoid arthritis, and one more with breast cancer. The clinical picture was: nephrotic syndrome in 84%, hypertension in 15%, non-nephrotic proteinuria in 14%, chronic renal failure in 8.4%, and renal vein thrombosis in 6.3%. In the idiopathic group 75% of the patients were male while in the lupus group 85% were female. For the analysis of progression to chronic renal failure we excluded 5 patients with renal failure when the biopsy was taken, 2 because the nephropathy was due to drugs, one associated with breast cancer, and nine were within the first year of follow-up. Thus, for this analysis the group consisted of 22 patients with idiopathic form and 20 with systemic lupus erythematosus. The idiopathic and lupus groups were similar except for a lower serum albumin in the former. The progression to renal failure was seen in 9 patients: six in the idiopathic group and the other 3 in the lupus group; this difference was not significant.(ABSTRACT TRUNCATED AT 250 WORDS)
Li, Yan; Wang, Xiaomin; O'Mara, Edward; Dimopoulos, Meletios A; Sonneveld, Pieter; Weisel, Katja C; Matous, Jeffrey; Siegel, David S; Shah, Jatin J; Kueenburg, Elisabeth; Sternas, Lars; Cavanaugh, Chloe; Zaki, Mohamed; Palmisano, Maria; Zhou, Simon
2017-01-01
Pomalidomide is an immunomodulatory drug for treatment of relapsed or refractory multiple myeloma (rrMM) in patients who often have comorbid renal conditions. To assess the impact of renal impairment on pomalidomide exposure, a population pharmacokinetics (PPK) model of pomalidomide in rrMM patients with various degrees of impaired renal function was developed. Intensive and sparse pomalidomide concentration data collected from two clinical studies in rrMM patients with normal renal function, moderately impaired renal function, severely impaired renal function not requiring dialysis, and with severely impaired renal function requiring dialysis were pooled over the dose range of 2 to 4 mg, to assess specifically the influence of the impaired renal function as a categorical variable and a continuous variable on pomalidomide clearance and plasma exposure. In addition, pomalidomide concentration data collected on dialysis days from both the withdrawal (arterial) side and from the returning (venous) side of the dialyzer, from rrMM patients with severely impaired renal function requiring dialysis, were used to assess the extent to which dialysis contributes to the removal of pomalidomide from blood circulation. PPK analyses demonstrated that moderate to severe renal impairment not requiring dialysis has no influence on pomalidomide clearance or plasma exposure, as compared to those patients with normal renal function, while pomalidomide exposure increased approximately 35% in patients with severe renal impairment requiring dialysis on nondialysis days. In addition, dialysis increased total body pomalidomide clearance from 5 L/h to 12 L/h, indicating that dialysis will significantly remove pomalidomide from the blood circulation. Thus, pomalidomide should be administered post-dialysis on the days of dialysis.
Hashimoto, Junichiro; Ito, Sadayoshi
2015-07-01
Aortic stiffness determines the glomerular filtration rate (GFR) and predicts the progressive decline of the GFR. However, the underlying pathophysiological mechanism remains obscure. Recent evidence has shown a close link between aortic stiffness and the bidirectional (systolic forward and early diastolic reverse) flow characteristics. We hypothesized that the aortic stiffening-induced renal dysfunction is attributable to altered central flow dynamics. In 222 patients with hypertension, Doppler velocity waveforms were recorded at the proximal descending aorta to calculate the reverse/forward flow ratio. Tonometric waveforms were recorded to measure the carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities, to estimate the aortic pressure from the radial waveforms, and to compute the aortic characteristic impedance. In addition, renal hemodynamics was evaluated by duplex ultrasound. The estimated GFR was inversely correlated with the aortic pulse wave velocity, reverse/forward flow ratio, pulse pressure, and characteristic impedance, whereas it was not correlated with the peripheral pulse wave velocity or mean arterial pressure. The association between aortic pulse wave velocity and estimated GFR was independent of age, diabetes mellitus, hypercholesterolemia, and antihypertensive medication. However, further adjustment for the aortic reverse/forward flow ratio and pulse pressure substantially weakened this association, and instead, the reverse/forward flow ratio emerged as the strongest determinant of estimated GFR (P=0.001). A higher aortic reverse/forward flow ratio was also associated with lower intrarenal forward flow velocities. These results suggest that an increase in aortic flow reversal (ie, retrograde flow from the descending thoracic aorta toward the aortic arch), caused by aortic stiffening and impedance mismatch, reduces antegrade flow into the kidney and thereby deteriorates renal function. © 2015 American Heart Association, Inc.
Dapagliflozin Aggravates Renal Injury via Promoting Gluconeogenesis in db/db Mice.
Jia, Yingli; He, Jinzhao; Wang, Liang; Su, Limin; Lei, Lei; Huang, Wei; Geng, Xiaoqiang; Zhang, Shun; Meng, Xiaolu; Zhou, Hong; Yang, Baoxue
2018-01-01
A sodium-glucose co-transporter-2 inhibitor dapagliflozin is widely used for lowering blood glucose and its usage is limited in type 2 diabetes mellitus patients with moderate renal impairment. As its effect on kidney function is discrepant and complicated, the aim of this study is to determine the effect of dapagliflozin on the progression of diabetic nephropathy and related mechanisms. Twelve-week-old male C57BL/6 wild-type and db/db mice were treated with vehicle or 1 mg/kg dapagliflozin for 12 weeks. Body weight, blood glucose, insulin tolerance, glucose tolerance, pyruvate tolerance and 24-hour urine were measured every 4 weeks. At 24 weeks of age, renal function was evaluated by blood urea nitrogen level, creatinine clearance, urine output, urinary albumin excretion, Periodic Acid-Schiff staining, Masson's trichrome staining and electron microscopy. Changes in insulin signaling and gluconeogenic key regulatory enzymes were detected using Western blot analysis. Dapagliflozin did not alleviate but instead aggravated diabetic nephropathy manifesting as increased levels of microalbuminuria, blood urea nitrogen, and glomerular and tubular damage in db/db mice. Despite adequate glycemic control by dapagliflozin, urinary glucose excretion increased after administration before 24 weeks of age and was likely associated with renal impairment. Increased urinary glucose excretion was mainly derived from the disturbance of glucose homeostasis with elevated hepatic and renal gluconeogenesis induced by dapagliflozin. Although it had no effect on insulin sensitivity and glucose tolerance, dapagliflozin further induced the expression of gluconeogenic key rate-limiting enzymes through increasing the expression levels of FoxO1 in the kidney and liver. These experimental results indicate that dapagliflozin aggravates diabetes mellitus-induced kidney injury, mostly through increasing gluconeogenesis. © 2018 The Author(s). Published by S. Karger AG, Basel.
Measuring residual renal function for hemodialysis adequacy: Is there an easier option?
Davenport, Andrew
2017-10-01
Most patients starting hemodialysis (HD) have residual renal function. As such, there has been increased interest in starting patients with less frequent and shorter dialysis session times. However, for this incremental approach to be successful, patients require regular monitoring of residual renal function, so that as residual renal function declines, the amount of HD is appropriately increased. Currently most dialysis centers rely on interdialytic urine collections. However, many patients find these inconvenient and there may be marked intrapatient variability due to compliance issues. Thus, alternative markers of residual renal function are required for routine clinical practice. Currently three middle sized molecules; cystatin C, β2 microglobulin, and βtrace protein have been investigated as potential endogenous markers of glomerular filtration. Although none is ideal, combinations of these markers have been proposed to provide a more accurate estimation of glomerular clearance, and in particular cut offs for minimal residual renal function. However, in patients with low levels of residual renal function it remains unclear as to whether the benefits of residual renal function equally apply to glomerular filtration or tubular function. © 2017 International Society for Hemodialysis.
Watts, Kara L; Ghosh, Propa; Stein, Solomon; Ghavamian, Reza
2017-01-01
To assess the relationship between individual nephrometry score (NS) constituents (RENAL) on perioperative outcomes and renal function of the surgical kidney in patients undergoing laparoscopic partial nephrectomy or robotic-assisted partial nephrectomy. Two hundred forty-five patients who underwent laparoscopic partial nephrectomy or robotic-assisted partial nephrectomy between 2005 and 2014 were retrospectively reviewed. Each renal mass' NS was calculated from preoperative computed tomography imaging. Multivariate regression analysis was used to evaluate the effect of NS variables on perioperative outcomes and change in overall renal function (as estimated by glomerular filtration rate) from preoperative to 1-year postoperative. A cohort analysis assessed the effect of NS variables on change in split renal function of the surgical kidney from pre- to postoperative based on nuclear medicine renal scintigraphy. Tumor radius (R), endophytic nature (E), and nearness to collecting system (N) variables significantly and incrementally predicted a longer operative time and warm ischemia time. Overall renal function based on glomerular filtration rate was not affected by any NS variable. However, percent function of the surgical kidney by renal scintigraphy significantly decreased postoperatively as R and E values increased. R, E, and N were associated with significant changes in warm ischemia time and operative time. R and E were associated with a significant decrease in split renal function of the surgical kidney at 1 year after surgery but not with overall renal function. R, E, and N are the NS constituents most relevant to perioperative outcomes and postoperative differential renal function after partial nephrectomy. Copyright © 2016. Published by Elsevier Inc.
Taha, Doris; Barbar, Maha; Kanaan, Hassan; Williamson Balfe, John
2003-10-15
We report on two sibs (of 4) with a syndrome of minor facial anomalies, proportionate IUGR, neonatal non-autoimmune diabetes mellitus (NDM), severe congenital hypothyroidism (CH), cholestasis, congenital glaucoma, and polycystic kidneys. Liver disease progressed to hepatic fibrosis. The renal disease was characterized by large kidneys and multiple small cysts with deficient corticomedullary junction differentiation and normal kidney function. The phenotype observed in the two sibs was identical. Although a combination of liver, kidney, and pancreatic involvement has been described in Ivemark syndrome (hepato-renal-pancreatic syndrome), the coexistence of NDM, CH, and glaucoma in both sibs suggests the possibility that this combination of manifestations describes a new autosomal recessive syndrome. Mutation analysis for several candidate genes is warranted. Copyright 2003 Wiley-Liss, Inc.
Cerebral venous hypertension and blindness: a reversible complication.
Cuadra, Salvador A; Padberg, Frank T; Turbin, Roger E; Farkas, Jeffrey; Frohman, Larry P
2005-10-01
A 57-year-old woman developed blindness during treatment for sarcoidosis-induced end-stage renal disease. An initial renal transplantation failed, and hemoaccess was maintained with multiple central catheters and upper extremity prosthetic arteriovenous grafts. A successful second transplantation eliminated her need for hemodialysis, but a right brachial to internal jugular graft remained patent. Progressive visual loss 2 years after transplantation prompted ophthalmic evaluation which initially revealed unilateral left optic nerve edema and visual loss, ultimately worsening over several months to no light perception in the left eye, 20/60 vision in the right eye, and bilateral papilledema. Arteriography demonstrated cerebral venous hypertension attributed to the functioning hemoaccess graft. Permanent graft occlusion normalized the papilledema, and visual field defects in the right eye and visual acuity returned to 20/20 in the right eye.
Stock, Johanna; Kuenanz, Johannes; Glonke, Niklas; Sonntag, Joseph; Frese, Jenny; Tönshoff, Burkhard; Höcker, Britta; Hoppe, Bernd; Feldkötter, Markus; Pape, Lars; Lerch, Christian; Wygoda, Simone; Weber, Manfred; Müller, Gerhard-Anton; Gross, Oliver
2017-01-01
Patients with autosomal or X-linked Alport syndrome (AS) with heterozygous mutations in type IV collagen genes have a 1-20 % risk of progressing to end-stage renal disease during their lifetime. We evaluated the long-term renal outcome of patients at risk of progressive disease (chronic kidney disease stages 1-4) with/without nephroprotective therapy. This was a prospective, non-interventional, observational study which included data from a 4-year follow-up of AS patients with heterozygous mutations whose datasets had been included in an analysis of the 2010 database of the European Alport Registry. Using Kaplan-Meier estimates and logrank tests, we prospectively analyzed the updated datasets of 52 of these patients and 13 new datasets (patients added to the Registry after 2011). The effects of therapy, extrarenal symptoms and inheritance pattern on renal outcome were analyzed. The mean prospective follow-up was 46 ± 10 months, and the mean time on therapy was 8.4 ± 4.4 (median 7; range 2-18) years. The time from the appearance of the first symptom to diagnosis was 8.1 ± 14.2 (range 0-52) years. At the time of starting therapy, 5.4 % of patients had an estimated glomerular filtration rate of <60 ml/min, 67.6 % had proteinuria and 27.0 % had microalbuminuria. Therapeutic strategies included angiotensin-converting enzymer inhibitors (97.1 %), angiotensin receptor antagonists (1 patient), dual therapy (11.8 %) and statins (8.8 %). Among patients included in the prospective dataset, prevented the need for dialysis. Among new patients, no patient at risk for renal failure progressed to the next disease stage after 4 years follow-up; three patients even regressed to a lower stage during therapy. Treatment with blockers of the renin-angiotensin-aldosterone system prevents progressive renal failure in AS patients with heterozygous mutations in the genes causing AS. Considerable numbers of aging AS patients on dialysis may have heterozygous mutations in these genes (present in 1 % of total population) as underlying disease. Hence, greater alertness towards timely diagnosis and therapy has the potential to prevent progressive renal failure in most-if not all-AS patients with heterozygous mutations in the causal genes.
Renalase Protects against Renal Fibrosis by Inhibiting the Activation of the ERK Signaling Pathways
Wu, Yiru; Wang, Liyan; Deng, Dai; Zhang, Qidong; Liu, Wenhu
2017-01-01
Renal interstitial fibrosis is a common pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease. Renalase, acting as a signaling molecule, has been reported to have cardiovascular and renal protective effects. However, its role in renal fibrosis remains unknown. In this study, we evaluated the therapeutic efficacy of renalase in rats with complete unilateral ureteral obstruction (UUO) and examined the inhibitory effects of renalase on transforming growth factor-β1 (TGF-β1)-induced epithelial–mesenchymal transition (EMT) in human proximal renal tubular epithelial (HK-2) cells. We found that in the UUO model, the expression of renalase was markedly downregulated and adenoviral-mediated expression of renalase significantly attenuated renal interstitial fibrosis, as evidenced by the maintenance of E-cadherin expression and suppressed expression of α-smooth muscle actin (α-SMA), fibronectin and collagen-I. In vitro, renalase inhibited TGF-β1-mediated upregulation of α-SMA and downregulation of E-cadherin. Increased levels of Phospho-extracellular regulated protein kinases (p-ERK1/2) in TGF-β1-stimulated cells were reversed by renalase cotreatment. When ERK1 was overexpressed, the inhibition of TGF-β1-induced EMT and fibrosis mediated by renalase was attenuated. Our study provides the first evidence that renalase can ameliorate renal interstitial fibrosis by suppression of tubular EMT through inhibition of the ERK pathway. These results suggest that renalase has potential renoprotective effects in renal interstitial fibrosis and may be an effective agent for slowing CKD progression. PMID:28448446
Lenders, Malte; Canaan-Kühl, Sima; Krämer, Johannes; Duning, Thomas; Reiermann, Stefanie; Sommer, Claudia; Stypmann, Jörg; Blaschke, Daniela; Üçeyler, Nurcan; Hense, Hans-Werner; Brand, Stefan-Martin; Wanner, Christoph; Weidemann, Frank; Brand, Eva
2016-03-01
Because of the shortage of agalsidase-β supply between 2009 and 2012, patients with Fabry disease either were treated with reduced doses or were switched to agalsidase-α. In this observational study, we assessed end organ damage and clinical symptoms with special focus on renal outcome after 2 years of dose-reduction and/or switch to agalsidase-α. A total of 89 adult patients with Fabry disease who had received agalsidase-β (1.0 mg/kg body wt) for >1 year were nonrandomly assigned to continue this treatment regimen (regular-dose group, n=24), to receive a reduced dose of 0.3-0.5 mg/kg and a subsequent switch to 0.2 mg/kg agalsidase-α (dose-reduction-switch group, n=28), or to directly switch to 0.2 mg/kg agalsidase-α (switch group, n=37) and were followed-up for 2 years. We assessed clinical events (death, myocardial infarction, severe arrhythmia, stroke, progression to ESRD), changes in cardiac and renal function, Fabry-related symptoms (pain, hypohidrosis, diarrhea), and disease severity scores. Determination of renal function by creatinine and cystatin C-based eGFR revealed decreasing eGFRs in the dose-reduction-switch group and the switch group. The Mainz Severity Score Index increased significantly in these two groups (P=0.02 and P<0.001, respectively), and higher frequencies of gastrointestinal pain occurred during follow-up. In conclusion, after 2 years of observation, all groups showed a stable clinical disease course with respect to serious clinical events. However, patients under agalsidase-β dose-reduction and switch or a direct switch to agalsidase-α showed a decline of renal function independent of the eGFR formula used. Copyright © 2016 by the American Society of Nephrology.
Lenders, Malte; Canaan-Kühl, Sima; Krämer, Johannes; Duning, Thomas; Reiermann, Stefanie; Sommer, Claudia; Stypmann, Jörg; Blaschke, Daniela; Üçeyler, Nurcan; Hense, Hans-Werner; Brand, Stefan-Martin; Wanner, Christoph; Weidemann, Frank
2016-01-01
Because of the shortage of agalsidase-β supply between 2009 and 2012, patients with Fabry disease either were treated with reduced doses or were switched to agalsidase-α. In this observational study, we assessed end organ damage and clinical symptoms with special focus on renal outcome after 2 years of dose-reduction and/or switch to agalsidase-α. A total of 89 adult patients with Fabry disease who had received agalsidase-β (1.0 mg/kg body wt) for >1 year were nonrandomly assigned to continue this treatment regimen (regular-dose group, n=24), to receive a reduced dose of 0.3–0.5 mg/kg and a subsequent switch to 0.2 mg/kg agalsidase-α (dose-reduction-switch group, n=28), or to directly switch to 0.2 mg/kg agalsidase-α (switch group, n=37) and were followed-up for 2 years. We assessed clinical events (death, myocardial infarction, severe arrhythmia, stroke, progression to ESRD), changes in cardiac and renal function, Fabry-related symptoms (pain, hypohidrosis, diarrhea), and disease severity scores. Determination of renal function by creatinine and cystatin C–based eGFR revealed decreasing eGFRs in the dose-reduction-switch group and the switch group. The Mainz Severity Score Index increased significantly in these two groups (P=0.02 and P<0.001, respectively), and higher frequencies of gastrointestinal pain occurred during follow-up. In conclusion, after 2 years of observation, all groups showed a stable clinical disease course with respect to serious clinical events. However, patients under agalsidase-β dose-reduction and switch or a direct switch to agalsidase-α showed a decline of renal function independent of the eGFR formula used. PMID:26185201
García-Trabanino, Ramón; Jarquín, Emmanuel; Wesseling, Catharina; Johnson, Richard J; González-Quiroz, Marvin; Weiss, Ilana; Glaser, Jason; José Vindell, Juan; Stockfelt, Leo; Roncal, Carlos; Harra, Tamara; Barregard, Lars
2015-10-01
An epidemic of progressive kidney failure afflicts sugarcane workers in Central America. Repeated high-intensity work in hot environments is a possible cause. To assess heat stress, dehydration, biomarkers of renal function and their possible associations. A secondary aim was to evaluate the prevalence of pre-shift renal damage and possible causal factors. Sugarcane cutters (N=189, aged 18-49 years, 168 of them male) from three regions in El Salvador were examined before and after shift. Cross-shift changes in markers of dehydration and renal function were examined and associations with temperature, work time, region, and fluid intake were assessed. Pre-shift glomerular filtration rate was estimated (eGFR) from serum creatinine. The mean work-time was 4 (1.4-11) hours. Mean workday temperature was 34-36 °C before noon, and 39-42 °C at noon. The mean liquid intake during work was 0.8L per hour. There were statistically significant changes across shift. The mean urine specific gravity, urine osmolality and creatinine increased, and urinary pH decreased. Serum creatinine, uric acid and urea nitrogen increased, while chloride and potassium decreased. Pre-shift serum uric acid levels were remarkably high and pre-shift eGFR was reduced (<60 mL/min) in 23 male workers (14%). The high prevalence of reduced eGFR, and the cross-shift changes are consistent with recurrent dehydration from strenuous work in a hot and humid environment as an important causal factor. The pathophysiology may include decreased renal blood flow, high demands on tubular reabsorption, and increased levels of uric acid. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Schievink, Bauke; Mol, Peter G M; Lambers Heerspink, Hiddo J
2015-11-01
There is increased interest in developing surrogate endpoints for clinical trials of chronic kidney disease progression, as the established clinically meaningful endpoint end-stage renal disease requires large and lengthy trials to assess drug efficacy. We describe recent developments in the search for novel surrogate endpoints. Declines in estimated glomerular filtration rate (eGFR) of 30% or 40% and albuminuria have been proposed as surrogates for end-stage renal disease. However, changes in eGFR or albuminuria may not be valid under all circumstances as drugs always have effects on multiple renal risk markers. Changes in each of these other 'off-target' risk markers can alter renal risk (either beneficially or adversely), and can thereby confound the relationship between surrogates that are based on single risk markers and renal outcome. Risk algorithms that integrate the short-term drug effects on multiple risk markers to predict drug effects on hard renal outcomes may therefore be more accurate. The validity of these risk algorithms is currently investigated. Given that drugs affect multiple renal risk markers, risk scores that integrate these effects are a promising alternative to using eGFR decline or albuminuria. Proper validation is required before these risk scores can be implemented.
Stable expression of HIF-1α in tubular epithelial cells promotes interstitial fibrosis
Kimura, Kuniko; Iwano, Masayuki; Higgins, Debra F.; Yamaguchi, Yukinari; Nakatani, Kimihiko; Harada, Koji; Kubo, Atsushi; Akai, Yasuhiro; Rankin, Erinn B.; Neilson, Eric G.; Haase, Volker H.; Saito, Yoshihiko
2008-01-01
Chronic hypoxia accelerates renal fibrosis. The chief mediator of the hypoxic response is hypoxia-inducible factor 1 (HIF-1) and its oxygen-sensitive component HIF-1α. HIF-1 regulates a wide variety of genes, some of which are closely associated with tissue fibrosis. To determine the specific role of HIF-1 in renal fibrosis, we generated a knockout mouse in which tubular epithelial expression of von Hippel-Lindau tumor suppressor (VHL), which acts as a ubiquitin ligase to promote proteolysis of HIF-1α, was targeted. We investigated the effect of VHL deletion (i.e., stable expression of HIF-1α) histologically and used the anti-HIF-1α agent [3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole] (YC-1) to test whether inhibition of HIF-1α could represent a novel approach to treating renal fibrosis. The area of renal fibrosis was significantly increased in a 5/6 renal ablation model of VHL−/− mice and in all VHL−/− mice at least 60 wk of age. Injection of YC-1 inhibited the progression of renal fibrosis in unilateral ureteral obstruction model mice. In conclusion, HIF-1α appears to be a critical contributor to the progression of renal fibrosis and could be a useful target for its treatment. PMID:18667485
Mitchell, Marc A; Wartinger, David D
2016-10-01
The identification and evaluation of activities capable of dislodging calyceal renal calculi require a patient surrogate or validated functional pyelocalyceal renal model. To evaluate roller coaster facilitation of calyceal renal calculi passage using a functional pyelocalyceal renal model. A previously described adult ureteroscopy and renoscopy simulator (Ideal Anatomic) was modified and remolded to function as a patient surrogate. Three renal calculi of different sizes from the patient who provided the original computed tomographic urograph on which the simulator was based were used. The renal calculi were suspended in urine in the model and taken for 20 rides on the Big Thunder Mountain Railroad roller coaster at Walt Disney World in Orlando, Florida. The roller coaster rides were analyzed using variables of renal calculi volume, calyceal location, model position on the roller coaster, and renal calculi passage. Sixty renal calculi rides were analyzed. Independent of renal calculi volume and calyceal location, front seating on the roller coaster resulted in a passage rate of 4 of 24. Independent of renal calculi volume and calyceal location, rear seating on the roller coaster resulted in a passage rate of 23 of 36. Independent of renal calculi volume in rear seating, calyceal location differed in passage rates, with an upper calyceal calculi passage rate of 100%; a middle calyceal passage rate of 55.6%; and a lower calyceal passage rate of 40.0%. The functional pyelocalyceal renal model serves as a functional patient surrogate to evaluate activities that facilitate calyceal renal calculi passage. The rear seating position on the roller coaster led to the most renal calculi passages.
First successful combined heart and kidney transplant in Iran: a case report.
Ahmadi, Zargham-Hossein; Mirhosseini, Seyed Mohsen; Fakhri, Mohammad; Mozaffary, Amirhossein; Lotfaliany, Mojtaba; Nejatollahi, Seyed Mohammad Reza; Marashi, Seyed-Ali; Behzadnia, Neda; Sharif-Kashani, Babak
2013-08-01
Combined heart and kidney transplant has become an accepted therapy for patients with coexisting heart and kidney failure. This method, compared with single-organ transplant, has a better outcome. Here, we report the first successful combined heart and kidney transplant in Iran. The patient was a 36-year-old man with end-stage renal disease owing to IgA nephropathy, admitted to Masih Daneshvari Hospital in Tehran, Iran for progressive dyspnea and chest pain. In-patient evaluations revealed cardiomyopathy leading to end-stage heart failure. Owing to concurrent heart and kidney end-stage diseases, combined cardiorenal transplant was done. Eight months after his transplant, routine follow-ups have not shown any signs of acute rejection. He is now New York Heart Association functional class I. Both cardiac and renal functions are within normal ranges. Good outcome during follow-up for this case justifies simultaneous heart plus kidney transplants as an alternate treatment for patients with advanced disease of both organs.
SECRETED KLOTHO AND CHRONIC KIDNEY DISEASE
Hu, Ming Chang; Kuro-o, Makoto; Moe, Orson W.
2013-01-01
Soluble Klotho (sKl) in the circulation can be generated directly by alterative splicing of the Klotho transcript or the extracellular domain of membrane Klotho can be released from membrane-anchored Klotho on the cell surface. Unlike membrane Klotho which functions as a coreceptor for fibroblast growth factor-23 (FGF23), sKl, acts as hormonal factor and plays important roles in anti-aging, anti-oxidation, modulation of ion transport, and Wnt signaling. Emerging evidence reveals that Klotho deficiency is an early biomarker for chronic kidney diseases as well as a pathogenic factor. Klotho deficiency is associated with progression and chronic complications in chronic kidney disease including vascular calcification, cardiac hypertrophy, and secondary hyperparathyroidism. In multiple experimental models, replacement of sKl, or manipulated up-regulation of endogenous Klotho protect the kidney from renal insults, preserve kidney function, and suppress renal fibrosis, in chronic kidney disease. Klotho is a highly promising candidate on the horizon as an early biomarker, and as a novel therapeutic agent for chronic kidney disease. PMID:22396167
Recommendations of everolimus use in liver transplant.
Rubín Suárez, Angel; Bilbao Aguirre, Itxarone; Fernández-Castroagudin, Javier; Pons Miñano, José Antonio; Salcedo Plaza, Magdalena; Varo Pérez, Evaristo; Prieto Castillo, Martín
2017-11-01
Mammalian target of rapamycin (mTOR) inhibitors, everolimus (EVL) and sirolimus are immunosuppressive agents with a minor nephrotoxic effect, limited to the development of proteinuria in some cases. The combination of EVL and low-dose tacrolimus has proven to be as safe and effective as standard therapy with tacrolimus for the prevention of acute cellular rejection. Early initiation of EVL-based immunosuppressive regimens with reduced exposure to calcineurin inhibitors has been shown to significantly improve renal function of LT recipients during induction and maintenance phases, with comparable efficacy and safety profiles. In patients with established kidney failure, initiating EVL may enable clinicians to reduce calcineurin inhibitors exposure, thereby contributing to the improved renal function of these patients. Although there is not sufficient evidence to recommend their use to prevent the recurrence of hepatocellular carcinoma and the progression of de novo tumours, they are used in this context in routine clinical practice. Copyright © 2017 Elsevier España, S.L.U., AEEH y AEG. All rights reserved.
Karstila, K; Korpela, M; Sihvonen, S; Mustonen, J
2007-12-01
The objective of this study was to assess the long-term prognosis of nephropathy findings and the incidence of new abnormal clinical renal findings in patients with rheumatoid arthritis (RA). The original population-based cross-sectional study of 604 RA patients was carried out in 1988, 103 nephropathy patients being found. Controls matched for age, sex, and duration of RA were selected from among RA patients with normal renal function and urinalysis in 1988. In 2003, a follow-up study was made of the 103 nephropathy patients and 102 controls, and the median follow-up time was 13 years. In the original nephropathy group, serum creatinine exceeded 200 mumol/l in 8% of the original isolated hematuria patients, in 30% of the isolated proteinuria patients, in 57% of the combined hematuria and proteinuria patients, but in none of the isolated chronic renal failure (CRF) patients (p = 0.001 for the difference). Probable or definitive renal amyloidosis was diagnosed in 19% of the nephropathy patients. Dialysis therapy was given to 10 out of the 103 nephropathy patients, nine of them belonging to the original isolated proteinuria or combined hematuria and proteinuria groups. There were six renal deaths among the nephropathy patients, and none in the controls. In the control group, new abnormal renal findings, in most cases mild, were detected in 28%. Serum creatinine exceeded 200 mumol/l in 4% of the controls, and dialysis therapy was given to 2% of the controls. Probable or definitive renal amyloidosis was diagnosed in 4% of this group. With regards to the development or progression of chronic renal failure, the long-term clinical prognosis of isolated hematuria and isolated CRF was found to be favorable. Proteinuria alone or combined with hematuria or CRF was related to evidently poorer prognosis.
Renal angioplasty and stenting: is it still indicated after ASTRAL and STAR studies?
Henry, M; Benjelloun, A; Henry, I; Polydorou, A; Hugel, M
2010-10-01
A renal artery stenosis (RAS) is common among patients with atherosclerosis, up to a third of patients undergoing cardiac catheterization. Fibromuscular dysplasia is the next cause of RAS, commonly found in young women. Atherosclerosis RAS generally progresses overtime and is often associated with loss of renal mass and worsening renal function (RF). Percutaneous renal artery stent placement is the preferred method of revascularization for hemodynamically significant RAS according to ACC and AHA guidelines. Several randomized trials have shown the superiority of endovascular procedures to medical therapy alone. However, two studies ASTRAL and STAR studies were recently published and did not find any difference between renal stenting and medical therapy. But these studies have a lot of limitations and flaws as we will discuss (poor indications, poor results, numerous complications, failures, poor technique, inexperienced operators, ecc.). Despite these questionable studies, renal stenting keeps indications in patients with: uncontrolled hypertension; ischemic nephropathy; cardiac disturbance syndrome (e.g. "flash" pulmonary edema, uncontrolled heart failure or uncontrolled angina pectoris); solitary kidney. To improve the clinical response rates, a better selection of the patients and lesions is mandatory with: good non-invasive or invasive imaging; physiologic lesion assessment using transluminal pressure gradients; measurements of biomarkers (e.g., BNP); fractional flow reserve study. A problem remains after renal angioplasty stenting, the deterioration of the RF in 20-30% of the patients. Atheroembolism seems to play an important role and is probably the main cause of this R.F deterioration. The use of protection devices alone or in combination with IIb IIa inhibitors has been proposed and seems promising as shown in different recent reports. Renal angioplasty and stenting is still indicated but we need: a better patient and lesion selection; improvements in techniques and maybe the use of protection devices to reduce the risk of RF deterioration after renal stenting.
Xu, Huiyan; Li, Quanxin; Liu, Jiang; Zhu, Jiaqing; Li, Liang; Wang, Ziying; Zhang, Yan; Sun, Yu; Sun, Jinpeng; Wang, Rong; Yi, Fan
2018-01-01
Despite substantial progress being made in understanding the mechanisms contributing to the pathogenesis of renal fibrosis, there are only a few therapies available to treat or prevent renal fibrosis in clinical use today. Therefore, identifying the key cellular and molecular mediators involved in the pathogenesis of renal fibrosis will provide new therapeutic strategy for treating patients with chronic kidney disease (CKD). β-Arrestin-1, a member of β-arrestin family, not only is a negative adaptor of G protein-coupled receptors (GPCRs), but also acts as a scaffold protein and regulates a diverse array of cellular functions independent of GPCR activation. In this study, we identified for the first time that β-arrestin-1 was upregulated in the kidney from mice with unilateral ureteral obstruction nephropathy as well as in the paraffin-embedded sections of human kidneys from the patients with diabetic nephropathy, polycystic kidney, or uronephrosis, which normally causes renal fibrosis. Deficiency of β-arrestin-1 in mice significantly alleviated renal fibrosis by the regulation of inflammatory responses, kidney fibroblast activation, and epithelial-mesenchymal transition (EMT) in both in vivo and in vitro studies. Furthermore, we found that among the major isoforms of Wnts, Wnt1 was regulated by β-arrestin-1 and gene silencing of Wnt1 inhibited the activation of β-catenin and suppressed β-arrestin-1-mediated renal fibrosis. Collectively, our results indicate that β-arrestin-1 is one of the critical components of signal transduction pathways in the development of renal fibrosis. Modulation of these pathways may be an innovative therapeutic strategy for treating patients with renal fibrosis. β-Arrestin-1 was upregulated in the kidney from mice with UUO nephropathy. β-Arrestin-1 regulated kidney fibroblast activation and epithelial-mesenchymal transition. β-Arrestin-1 exacerbated renal fibrosis via mediating Wnt1/β-catenin signaling.
Are gatekeepers to renal services referring patients equitably?
Kee, Frank; Reaney, Elizabeth; Savage, Gerard; O'Reilly, Dermot; Patterson, Chris; Maxwell, Peter; Fogarty, Damian
2007-01-01
Patients with chronic kidney disease (CKD) benefit from specialist interventions to retard progression of renal failure and prevent cardiovascular events. Certain patient groups have poor access to specialist renal services when dialysis is required. This study used a population-based laboratory database to investigate access to and timeliness of referral to renal specialists relatively early in the course of the disease. All tests for serum creatinine and haemoglobin (Hb) A(1)c in Northern Ireland in a two-year period (2001 and 2002) were retrieved for 345,441 adults. Of these, 16,856 patients had at least one serum creatinine level above 150 micromol/L in 2001 not deemed to be due to acute renal failure (crude prevalence 1.42%). This cohort was followed until the end of 2002 and the differences in the time to referral to a specialist were assessed using Cox's proportional hazards regression. Diabetic patients, older patients and those living in deprived areas were significantly more likely to have serum creatinine testing, compared with non-diabetic, younger and those living in more affluent areas. Delays in referral to renal specialists for patients with raised serum creatinine levels were significantly shorter among diabetic patients, women, younger individuals, those living in rural areas, those living close to renal centres and those living in deprived areas. Overall, only 19% of diabetic patients and 6% of non-diabetic patients who had CKD had seen a renal specialist within 12 months of their index creatinine test. Contrary to other diseases, disadvantaged patients do not seem to be under-investigated for renal disease compared with their more affluent neighbours and are generally referred earlier for specialist assessment. However, the absolute rate of timely specialist assessment is low. Recent changes in referral criteria for CKD will result in more referrals and will have serious resource implications. Opportunities for health gain among patients with declining renal function are being missed, particularly among the old and those living furthest from specialist centres.
Afsar, Baris; Elsurer, Rengin
2015-07-01
Metabolic acidosis is a common feature in chronic renal failure patients, worsening progressively as renal function declines. There are conflicting data in hemodialysis (HD) patients with regard to acidosis, alkalosis and mortality. In HD patients, cognitive impairment, depression, sleep disorders and impaired quality of life are very common. Besides, these conditions are related with increased morbidity and mortality. However, no previous study investigated the relationship between pH, venous bicarbonate and anion gap with depression, sleep problems and cognitive function in HD patients. In this study we investigated these relationships. In total, 65 HD patients were included. The demographic parameters and laboratory parameters including bicarbonate, pH and anion gap was measured for all patients. Depressive symptoms, sleep quality and cognitive function, were measured by Beck depression inventory, The Pittsburgh Sleep Quality Index and by Mini Mental State Examination, respectively. We found that, sleep quality but not cognitive function or depression was independently related with venous pH and bicarbonate. Anion gap has no independent relationship with sleep quality, cognitive function and depression. In conclusion, metabolic acidosis and bicarbonate levels were independently related with sleep quality in HD patients. However, there was no association between metabolic acidosis and bicarbonate levels with cognitive function and depression.
Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D; Macdougall, Iain C; Ponikowski, Piotr; Lainscak, Mitja
2015-12-01
To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P=0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P=0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number: NCT01829880.
Nashan, Bjorn; Schemmer, Peter; Braun, Felix; Dworak, Markus; Wimmer, Peter; Schlitt, Hans
2015-03-26
Introduction of calcineurin inhibitors had led to improved survival rates in liver transplant recipients. However, long-term use of calcineurin inhibitors is associated with a higher risk of chronic renal failure, neurotoxicity, de novo malignancies, recurrence of hepatitis C viral (HCV) infection and hepatocellular carcinoma. Several studies have shown that everolimus has the potential to provide protection against viral replication, malignancy, and progression of fibrosis, as well as preventing nephrotoxicity by facilitating calcineurin inhibitor reduction without compromising efficacy. The Hephaistos study evaluates the beneficial effects of early initiation of everolimus in de novo liver transplant recipients. Hephaistos is an ongoing 12-month, multi-center, open-label, controlled study aiming to enroll 330 de novo liver transplant recipients from 15 centers across Germany. Patients are randomized in a 1:1 ratio (7-21 days post-transplantation) to receive everolimus (trough levels 3-8 ng/mL) with reduced tacrolimus (trough levels <5 ng/mL), or standard tacrolimus (trough levels 6-10 ng/mL) after entering a run-in period (3-5 days post-transplantation). In the run-in period, patients are treated with induction therapy, mycophenolate mofetil, tacrolimus, and corticosteroids according to local practice. Randomization is stratified by HCV status and model of end-stage liver disease scores at transplantation. The primary objective of the study is to exhibit superior renal function (estimated glomerular filtration rate assessed by the Modification of Diet in Renal Disease (MDRD)-4 formula) with everolimus plus reduced tacrolimus compared to standard tacrolimus at Month 12. Other objectives are: to assess the incidence of treated biopsy-proven acute rejection, graft loss, or death; the incidences of components of the composite efficacy endpoint; renal function via estimated glomerular filtration rate using various formulae (MDRD-4, Nankivell, Cockcroft-Gault, chronic kidney disease epidemiology collaboration and Hoek formulae); the incidence of proteinuria; the incidence of adverse events and serious adverse events; the incidence and severity of cytomegalovirus and HCV infections and HCV-related fibrosis. This study aims to demonstrate superior renal function, comparable efficacy, and safety in de novo liver transplant recipients receiving everolimus with reduced tacrolimus compared with standard tacrolimus. This study also evaluates the antiviral benefit by early initiation of everolimus. NCT01551212 .
Bharthuar, Anubha; Pearce, Lori; Litwin, Alan; LeVea, Charles; Kuvshinoff, Boris; Iyer, Renuka
2009-09-04
Pancreatic adenocarcinoma and renal cell carcinoma are relatively frequent cancers that have been rarely reported as synchronous primary malignancies. When present simultaneously, they pose a therapeutic challenge given the many available targeted agents with reported efficacy in renal cell cancer and limited options for metastatic pancreatic cancer. We report the case of a 43-year-old Caucasian gentleman diagnosed simultaneously with metastatic pancreatic adenocarcinoma and localized renal cell carcinoma treated with combination chemotherapy, consisting of gemcitabine and sunitinib. Patient had a radiographic response and prolonged progression free survival of twenty six weeks; side effects were manageable and included grade 3 neutropenia and grade 2 hypertension. This encouraging response, safety profile and progression free survival response suggest that we should further examine this and other such regimens to improve clinical outcomes for maximum efficacy with minimal side-effects.
Everolimus affects vasculogenic mimicry in renal carcinoma resistant to sunitinib
Serova, Maria; Tijeras-Raballand, Annemilaï; Santos, Celia Dos; Martinet, Matthieu; Neuzillet, Cindy; Lopez, Alfred; Mitchell, Dianne C.; Bryan, Brad A.; Gapihan, Guillaume; Janin, Anne; Bousquet, Guilhem; Riveiro, Maria Eugenia; Bieche, Ivan; Faivre, Sandrine
2016-01-01
Angiogenesis is hallmark of clear cell renal cell carcinogenesis. Anti-angiogenic therapies have been successful in improving disease outcome; however, most patients treated with anti-angiogenic agents will eventually progress. In this study we report that clear cell renal cell carcinoma was associated with vasculogenic mimicry in both mice and human with tumor cells expressing endothelial markers in the vicinity of tumor vessels. We show that vasculogenic mimicry was efficiently targeted by sunitinib but eventually associated with tumor resistance and a more aggressive phenotype both in vitro and in vivo. Re-challenging these resistant tumors in mice, we showed that second-line treatment with everolimus particularly affected vasculogenic mimicry and tumor cell differentiation compared to sorafenib and axitinib. Finally, our results highlighted the phenotypic and genotypic changes at the tumor cell and microenvironment levels during sunitinib response and progression and the subsequent improvement second-line therapies bring to the current renal cell carcinoma treatment paradigm. PMID:27509260
2010-01-01
Fabry disease (FD) is a progressive, X-linked inherited disorder of glycosphingolipid metabolism due to deficient or absent lysosomal α-galactosidase A activity. FD is pan-ethnic and the reported annual incidence of 1 in 100,000 may underestimate the true prevalence of the disease. Classically affected hemizygous males, with no residual α-galactosidase A activity may display all the characteristic neurological (pain), cutaneous (angiokeratoma), renal (proteinuria, kidney failure), cardiovascular (cardiomyopathy, arrhythmia), cochleo-vestibular and cerebrovascular (transient ischemic attacks, strokes) signs of the disease while heterozygous females have symptoms ranging from very mild to severe. Deficient activity of lysosomal α-galactosidase A results in progressive accumulation of globotriaosylceramide within lysosomes, believed to trigger a cascade of cellular events. Demonstration of marked α-galactosidase A deficiency is the definitive method for the diagnosis of hemizygous males. Enzyme analysis may occasionnally help to detect heterozygotes but is often inconclusive due to random X-chromosomal inactivation so that molecular testing (genotyping) of females is mandatory. In childhood, other possible causes of pain such as rheumatoid arthritis and 'growing pains' must be ruled out. In adulthood, multiple sclerosis is sometimes considered. Prenatal diagnosis, available by determination of enzyme activity or DNA testing in chorionic villi or cultured amniotic cells is, for ethical reasons, only considered in male fetuses. Pre-implantation diagnosis is possible. The existence of atypical variants and the availability of a specific therapy singularly complicate genetic counseling. A disease-specific therapeutic option - enzyme replacement therapy using recombinant human α-galactosidase A - has been recently introduced and its long term outcome is currently still being investigated. Conventional management consists of pain relief with analgesic drugs, nephroprotection (angiotensin converting enzyme inhibitors and angiotensin receptors blockers) and antiarrhythmic agents, whereas dialysis or renal transplantation are available for patients experiencing end-stage renal failure. With age, progressive damage to vital organ systems develops and at some point, organs may start to fail in functioning. End-stage renal disease and life-threatening cardiovascular or cerebrovascular complications limit life-expectancy of untreated males and females with reductions of 20 and 10 years, respectively, as compared to the general population. While there is increasing evidence that long-term enzyme therapy can halt disease progression, the importance of adjunctive therapies should be emphasized and the possibility of developing an oral therapy drives research forward into active site specific chaperones. PMID:21092187
Reid, Ryan; Ezekowitz, Justin A.; Brown, Paul M.; McAlister, Finlay A.; Rowe, Brian H.; Braam, Branko
2015-01-01
Background Worsening and improving renal function during acute heart failure have been associated with adverse outcomes but few studies have considered the admission level of renal function upon which these changes are superimposed. Objectives The objective of this study was to evaluate definitions that incorporate both admission renal function and change in renal function. Methods 696 patients with acute heart failure with calculable eGFR were classified by admission renal function (Reduced [R, eGFR<45 ml/min] or Preserved [P, eGFR≥45 ml/min]) and change over hospital admission (worsening [WRF]: eGFR ≥20% decline; stable [SRF]; and improving [IRF]: eGFR ≥20% increase). The primary outcome was all-cause mortality. The prevalence of Pres and Red renal function was 47.8% and 52.2%. The frequency of R-WRF, R-SRF, and R-IRF was 11.4%, 28.7%, and 12.1%, respectively; the incidence of P-WRF, P-SRF, and P-IRF was 5.7%, 35.3%, and 6.8%, respectively. Survival was shorter for patients with R-WRF compared to R-IRF (median survival times 13.9 months (95%CI 7.7–24.9) and 32.5 months (95%CI 18.8–56.1), respectively), resulting in an acceleration factor of 2.3 (p = 0.016). Thus, an increase compared with a decrease in renal function was associated with greater than two times longer survival among patients with Reduced renal function. PMID:26380982
Kara, Önder; Maurice, Matthew J; Mouracade, Pascal; Malkoç, Ercan; Dagenais, Julien; Nelson, Ryan J; Chavali, Jaya Sai S; Stein, Robert J; Fergany, Amr; Kaouk, Jihad H
2017-07-01
We sought to identify the preoperative factors associated with conversion from robotic partial nephrectomy to radical nephrectomy. We report the incidence of this event. Using our institutional review board approved database, we abstracted data on 1,023 robotic partial nephrectomies performed at our center between 2010 and 2015. Standard and converted cases were compared in terms of patients and tumor characteristics, and perioperative, functional and oncologic outcomes. Logistic regression analysis was done to identify predictors of radical conversion. The overall conversion rate was 3.1% (32 of 1,023 cases). The most common reasons for conversion were tumor involvement of hilar structures (8 cases or 25%), failure to achieve negative margins on frozen section (7 or 21.8%), suspicion of advanced disease (5 or 15.6%) and failure to progress (5 or 15.6%). Patients requiring conversion were older and had a higher Charlson score (both p <0.01), including an increased prevalence of chronic kidney disease (p = 0.02). Increasing tumor size (5 vs 3.1 cm, p <0.01) and R.E.N.A.L. (radius, exophytic/endophytic properties, nearness of tumor to collecting system or sinus, anterior/posterior, location relative to polar lines and hilar location) score (9 vs 8, p <0.01) were also associated with an increased risk of conversion. Worse baseline renal function (OR 0.98, 95% CI 0.96-0.99, p = 0.04), large tumor size (OR 1.44, 95% CI 1.22-1.7, p <0.01) and increasing R.E.N.A.L. score (p = 0.02) were independent predictors of conversion. Compared to converted cases, at latest followup standard robotic partial nephrectomy cases had similar short-term oncologic outcomes but better renal functional preservation (p <0.01). At a high volume center the rate of robotic partial nephrectomy conversion to radical nephrectomy was 3.1%, including 2.2% of preoperatively anticipated nephrectomy cases. Increasing tumor size and complexity, and poor preoperative renal function are the main predictors of conversion. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
The renal effects of SGLT2 inhibitors and a mini-review of the literature.
Andrianesis, Vasileios; Glykofridi, Spyridoula; Doupis, John
2016-12-01
Sodium-glucose linked transporter 2 (SGLT2) inhibitors are a new and promising class of antidiabetic agents which target renal tubular glucose reabsorption. Their action is based on the blockage of SGLT2 sodium-glucose cotransporters that are located at the luminal membrane of tubular cells of the proximal convoluted tubule, inducing glucosuria. It has been proven that they significantly reduce glycated hemoglobin (HbA1c), along with fasting and postprandial plasma glucose in patients with type 2 diabetes mellitus (T2DM). The glucosuria-induced caloric loss as well as the osmotic diuresis significantly decrease body weight and blood pressure, respectively. Given that SGLT2 inhibitors do not interfere with insulin action and secretion, their efficacy is sustained despite the progressive β-cell failure in T2DM. They are well tolerated, with a low risk of hypoglycemia. Their most frequent adverse events are minor: genital and urinal tract infections. Recently, it was demonstrated that empagliflozin presents a significant cardioprotective effect. Although the SGLT2 inhibitors' efficacy is affected by renal function, new data have been presented that some SGLT2 inhibitors, even in mild and moderate renal impairment, induce significant HbA1c reduction. Moreover, recent data indicate that SGLT2 inhibition has a beneficial renoprotective effect. The role of this review paper is to explore the current evidence on the renal effects of SGLT2 inhibitors.
The renal effects of SGLT2 inhibitors and a mini-review of the literature
Andrianesis, Vasileios; Glykofridi, Spyridoula; Doupis, John
2016-01-01
Sodium-glucose linked transporter 2 (SGLT2) inhibitors are a new and promising class of antidiabetic agents which target renal tubular glucose reabsorption. Their action is based on the blockage of SGLT2 sodium-glucose cotransporters that are located at the luminal membrane of tubular cells of the proximal convoluted tubule, inducing glucosuria. It has been proven that they significantly reduce glycated hemoglobin (HbA1c), along with fasting and postprandial plasma glucose in patients with type 2 diabetes mellitus (T2DM). The glucosuria-induced caloric loss as well as the osmotic diuresis significantly decrease body weight and blood pressure, respectively. Given that SGLT2 inhibitors do not interfere with insulin action and secretion, their efficacy is sustained despite the progressive β-cell failure in T2DM. They are well tolerated, with a low risk of hypoglycemia. Their most frequent adverse events are minor: genital and urinal tract infections. Recently, it was demonstrated that empagliflozin presents a significant cardioprotective effect. Although the SGLT2 inhibitors’ efficacy is affected by renal function, new data have been presented that some SGLT2 inhibitors, even in mild and moderate renal impairment, induce significant HbA1c reduction. Moreover, recent data indicate that SGLT2 inhibition has a beneficial renoprotective effect. The role of this review paper is to explore the current evidence on the renal effects of SGLT2 inhibitors. PMID:28203358
Dioctophyma renale (Goeze, 1782) Infection in a Domestic Dog from Hamedan, Western Iran
ZOLHAVARIEH, Seyed Masoud; NORIAN, Alireza; YAVARI, Morteza
2016-01-01
Dioctophyma renale infection is found in a wide range of mammalian species, typically in temperate areas of the world. Here, we report for the first time, the parasitism of a domestic dog by D. renale in Hamedan, Iran, a mountainous cold region, lacking significant amounts of rainfall, high humidity and temperature. A 2.5 yr old male mixed breed dog was presented with a two months history of progressive hematuria and muscle weakness. Complete blood count and serum biochemistry were performed with results indicating impaired renal function. Urinalysis, showed hematuria as well as parasitic eggs, suggestive of D. renale infection. Urinary system ultrasonography revealed a hypoecogenic tubular structure in the right kidney. The animal was treated with fenbendazole (45 mg/kg, PO, QD - five days) and ivermectin (0.02 mg/kg, SC, single dose). One week later, repeated laboratory examination confirmed presence of at least one alive worm in the affected kidney. A unilateral nephrectomy was performed; one female (60 × 5 cm) and one male (30 × 3.8 cm) live worm were taken out of the extremely thin walled right kidney. One month later, due to failure of the remained kidney and poor condition, the patient deceased. We conclude that dioctophymosis can be found in cold and or relatively dry area. Moreover, the results showed that the worm was not affected with common anthelmintic drugs. PMID:27095981
Dioctophyma renale (Goeze, 1782) Infection in a Domestic Dog from Hamedan, Western Iran.
Zolhavarieh, Seyed Masoud; Norian, Alireza; Yavari, Morteza
2016-01-01
Dioctophyma renale infection is found in a wide range of mammalian species, typically in temperate areas of the world. Here, we report for the first time, the parasitism of a domestic dog by D. renale in Hamedan, Iran, a mountainous cold region, lacking significant amounts of rainfall, high humidity and temperature. A 2.5 yr old male mixed breed dog was presented with a two months history of progressive hematuria and muscle weakness. Complete blood count and serum biochemistry were performed with results indicating impaired renal function. Urinalysis, showed hematuria as well as parasitic eggs, suggestive of D. renale infection. Urinary system ultrasonography revealed a hypoecogenic tubular structure in the right kidney. The animal was treated with fenbendazole (45 mg/kg, PO, QD - five days) and ivermectin (0.02 mg/kg, SC, single dose). One week later, repeated laboratory examination confirmed presence of at least one alive worm in the affected kidney. A unilateral nephrectomy was performed; one female (60 × 5 cm) and one male (30 × 3.8 cm) live worm were taken out of the extremely thin walled right kidney. One month later, due to failure of the remained kidney and poor condition, the patient deceased. We conclude that dioctophymosis can be found in cold and or relatively dry area. Moreover, the results showed that the worm was not affected with common anthelmintic drugs.
Heart failure and kidney dysfunction: epidemiology, mechanisms and management.
Schefold, Joerg C; Filippatos, Gerasimos; Hasenfuss, Gerd; Anker, Stefan D; von Haehling, Stephan
2016-10-01
Heart failure (HF) is a major health-care problem and the prognosis of affected patients is poor. HF often coexists with a number of comorbidities of which declining renal function is of particular importance. A loss of glomerular filtration rate, as in acute kidney injury (AKI) or chronic kidney disease (CKD), independently predicts mortality and accelerates the overall progression of cardiovascular disease and HF. Importantly, cardiac and renal diseases interact in a complex bidirectional and interdependent manner in both acute and chronic settings. From a pathophysiological perspective, cardiac and renal diseases share a number of common pathways, including inflammatory and direct, cellular immune-mediated mechanisms; stress-mediated and (neuro)hormonal responses; metabolic and nutritional changes including bone and mineral disorder, altered haemodynamic and acid-base or fluid status; and the development of anaemia. In an effort to better understand the important crosstalk between the two organs, classifications such as the cardio-renal syndromes were developed. This classification might lead to a more precise understanding of the complex interdependent pathophysiology of cardiac and renal diseases. In light of exceptionally high mortality associated with coexisting HF and kidney disease, this Review describes important crosstalk between the heart and kidney, with a focus on HF and kidney disease in the acute and chronic settings. Underlying molecular and cellular pathomechanisms in HF, AKI and CKD are discussed in addition to current and future therapeutic approaches.
Zhang, Mingyan; Yan, Zhibin; Bu, Lili; An, Chunmei; Wang, Dan; Liu, Xin; Zhang, Jianfeng; Yang, Wenle; Deng, Bochuan; Xie, Junqiu; Zhang, Bangzhi
2018-01-01
Kidney fibrosis is the main pathologic change in diabetic nephropathy (DN), which is the major cause of end-stage renal disease. Current therapeutic strategies slow down but cannot reverse the progression of renal dysfunction in DN. Plant-derived bioactive peptides in foodstuffs are widely used in many fields because of their potential pharmaceutical and nutraceutical benefits. However, this type of peptide has not yet been studied in renal fibrosis of DN. Previous studies have indicated that the peptide YWDHNNPQIR (named RAP), a natural peptide derived from rapeseed protein, has an antioxidative stress effect. The oxidative stress is believed to be associated with DN. The aim of this study was to evaluate the pharmacologic effects of RAP against renal fibrosis of DN and high glucose (HG)-induced mesangial dysfunction. Diabetes was induced by streptozotocin and high-fat diet in C57BL/6 mice and these mice were treated by subcutaneous injection of different doses of RAP (0.1 mg/kg and 0.5 mg/kg, every other day) or PBS for 12 weeks. Later, functional and histopathologic analyses were performed. Parallel experiments verifying the molecular mechanism by which RAP alleviates DN were carried out in HG-induced mesangial cells (MCs). RAP improved the renal function indices, including 24-h albuminuria, triglyceride, serum creatinine, and blood urea nitrogen levels, but did not lower blood glucose levels in DN mice. RAP also simultaneously attenuated extracellular matrix accumulation in DN mice and HG-induced MCs. Furthermore, RAP reduced HG-induced cell proliferation, but it showed no toxicity in MCs. Additionally, RAP inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathways. RAP can attenuate fibrosis in vivo and in vitro by antagonizing the MAPK and NF-κB pathways.
Bergner, R; Siegrist, B; Gretz, N; Pohlmeyer-Esch, G; Kränzlin, B
2015-09-01
A previous animal study compared the nephrotoxic effect of ibandronate (IBN) and zoledronate (ZOL), but interpretation of these study results was limited because of the model of minimal nephrotoxic dosage with a dosage ratio of 1:3. The present study investigated the nephrotoxicity of ibandronate and zoledronate in a 1.5:1 dose ratio, as used in clinical practice and compared the nephrotoxicity in rats with normal and with mildly to moderately impaired renal function. We compared rats with normal renal function (SHAM) and with impaired renal function after unilateral nephrectomy (UNX), treated either with ibandronate 1.5mg/kg, zoledronate 1mg/kg or placebo once (1×) or nine (9×) times. Renal function and markers of tubular toxicity were measured over a 27 week period. After last bisphosphonate treatment the rats were sacrificed and kidneys examined histologically. All bisphosphonate treated animals showed a significant tubular toxicity, which was temporary except in the ZOL-UNX-9×-group. Also the renal function was only transiently reduced except in the ZOL-UNX-9×-group. Histologically, bisphosphonate treatment led to cortical tubuloepithelial degeneration/necrosis and medullary tubuloepithelial swelling which were slightly more pronounced in ibandronate treated animals, when compared to zoledronate treated animals, especially with impaired renal function. In contrast to the previous study we found a similar nephrotoxicity of ibandronate and zoledronate in rats with normal renal function. In rats with impaired renal function the peak of toxicity had not even been fully reached until end of experiment in the zoledronate treated animals. The peak of toxicity seems to be more severe and delayed in rats with impaired renal function compared with rats with normal renal function. Copyright © 2015 Elsevier Ltd. All rights reserved.
Weir, Matthew A; Gomes, Tara; Mamdani, Muhammad; Juurlink, David N; Hackam, Daniel G; Mahon, Jeffrey L; Jain, Arsh K; Garg, Amit X
2011-06-01
Little evidence justifies the avoidance of glyburide in patients with impaired renal function. We aimed to determine if renal function modifies the risk of hypoglycaemia among patients using glyburide. We conducted a nested case-control study using administrative records and laboratory data from Ontario, Canada. We included outpatients 66 years of age and older with diabetes mellitus and prescriptions for glyburide, insulin or metformin. We ascertained hypoglycaemic events using administrative records and estimated glomerular filtration rates (eGFR) using serum creatinine concentrations. From a cohort of 19,620 patients, we identified 204 cases whose eGFR was ≥ 60 mL/min/1.73 m(2) (normal renal function) and 354 cases whose eGFR was < 60 mL/min/1.73 m(2) (impaired renal function). Compared to metformin, glyburide is associated with a greater risk of hypoglycaemia in patients with both normal [adjusted odds ratio (OR) 9.0, 95% confidence interval (95% CI) 4.9-16.4] and impaired renal function (adjusted OR 6.0, 95% CI 3.8-9.5). We observed a similar relationship when comparing insulin to metformin; the risk was greater in patients with normal renal function (adjusted OR 18.7, 95% CI 10.5-33.5) compared to those with impaired renal function (adjusted OR 7.9, 95% CI 5.0-12.4). Tests of interaction showed that among glyburide users, renal function did not significantly modify the risk of hypoglycaemia, but among insulin users, impaired renal function is associated with a lower risk. In this population-based study, impaired renal function did not augment the risk of hypoglycaemia associated with glyburide use.
Staub, Daniel; Partovi, Sasan; Zeller, Thomas; Breidthardt, Tobias; Kaech, Max; Boeddinghaus, Jasper; Puelacher, Christian; Nestelberger, Thomas; Aschwanden, Markus; Mueller, Christian
2016-06-01
Identifying patients likely to have improved renal function after percutaneous transluminal renal angioplasty and stenting (PTRA) for renal artery stenosis (RAS) is challenging. The purpose of this study was to use a comprehensive multimarker assessment to identify those patients who would benefit most from correction of RAS. In 127 patients with RAS and decreased renal function and/or hypertension referred for PTRA, quantification of hemodynamic cardiac stress using B-type natriuretic peptide (BNP), renal function using estimated glomerular filtration rate (eGFR), parenchymal renal damage using resistance index (RI), and systemic inflammation using C-reactive protein (CRP) were performed before intervention. Predefined renal function improvement (increase in eGFR ≥10%) at 6 months occurred in 37% of patients. Prognostic accuracy as quantified by the area under the receiver-operating characteristics curve for the ability of BNP, eGFR, RI and CRP to predict renal function improvement were 0.59 (95% CI, 0.48-0.70), 0.71 (95% CI, 0.61-0.81), 0.52 (95% CI, 0.41-0.65), and 0.56 (95% CI, 0.44-0.68), respectively. None of the possible combinations increased the accuracy provided by eGFR (lower eGFR indicated a higher likelihood for eGFR improvement after PTRA, P=ns for all). In the subgroup of 56 patients with pre-interventional eGFR <60 mL/min/1.73 m(2), similar findings were obtained. Quantification of renal function, but not any other pathophysiologic signal, provides at least moderate accuracy in the identification of patients with RAS in whom PTRA will improve renal function.
Li, Pu; Qin, Chao; Cao, Qiang; Li, Jie; Lv, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Tang, Lijun; Shao, Pengfei
2016-10-01
To evaluate the feasibility and efficiency of laparoscopic partial nephrectomy (LPN) with segmental renal artery clamping, and to analyse the factors affecting postoperative renal function. We conducted a retrospective analysis of 466 consecutive patients undergoing LPN using main renal artery clamping (group A, n = 152) or segmental artery clamping (group B, n = 314) between September 2007 and July 2015 in our department. Blood loss, operating time, warm ischaemia time (WIT) and renal function were compared between groups. Univariable and multivariable linear regression analyses were applied to assess the correlations of selected variables with postoperative glomerular filtration rate (GFR) reduction. Volumetric data and estimated GFR of a subset of 60 patients in group B were compared with GFR to evaluate the correlation between these functional variables and preserved renal function after LPN. The novel technique slightly increased operating time, WIT and intra-operative blood loss (P < 0.001), while it provided better postoperative renal function (P < 0.001) compared with the conventional technique. The blocking method and tumour characteristics were independent factors affecting GFR reduction, while WIT was not an independent factor. Correlation analysis showed that estimated GFR presented better correlation with GFR compared with kidney volume (R(2) = 0.794 cf. R(2) = 0.199) in predicting renal function after LPN. LPN with segmental artery clamping minimizes warm ischaemia injury and provides better early postoperative renal function compared with clamping the main renal artery. Kidney volume has a significantly inferior role compared with eGFR in predicting preserved renal function. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.
Functional MRI detects perfusion impairment in renal allografts with delayed graft function.
Hueper, Katja; Gueler, Faikah; Bräsen, Jan Hinrich; Gutberlet, Marcel; Jang, Mi-Sun; Lehner, Frank; Richter, Nicolas; Hanke, Nils; Peperhove, Matti; Martirosian, Petros; Tewes, Susanne; Vo Chieu, Van Dai; Großhennig, Anika; Haller, Hermann; Wacker, Frank; Gwinner, Wilfried; Hartung, Dagmar
2015-06-15
Delayed graft function (DGF) after kidney transplantation is not uncommon, and it is associated with long-term allograft impairment. Our aim was to compare renal perfusion changes measured with noninvasive functional MRI in patients early after kidney transplantation to renal function and allograft histology in biopsy samples. Forty-six patients underwent MRI 4-11 days after transplantation. Contrast-free MRI renal perfusion images were acquired using an arterial spin labeling technique. Renal function was assessed by estimated glomerular filtration rate (eGFR), and renal biopsies were performed when indicated within 5 days of MRI. Twenty-six of 46 patients had DGF. Of these, nine patients had acute rejection (including borderline), and eight had other changes (e.g., tubular injury or glomerulosclerosis). Renal perfusion was significantly lower in the DGF group compared with the group with good allograft function (231 ± 15 vs. 331 ± 15 ml·min(-1)·100 g(-1), P < 0.001). Living donor allografts exhibited significantly higher perfusion values compared with deceased donor allografts (P < 0.001). Renal perfusion significantly correlated with eGFR (r = 0.64, P < 0.001), resistance index (r = -0.57, P < 0.001), and cold ischemia time (r = -0.48, P < 0.01). Furthermore, renal perfusion impairment early after transplantation predicted inferior renal outcome and graft loss. In conclusion, noninvasive functional MRI detects renal perfusion impairment early after kidney transplantation in patients with DGF. Copyright © 2015 the American Physiological Society.
Renal function monitoring in heart failure – what is the optimal frequency? A narrative review
Wright, David; Devonald, Mark Alexander John; Pirmohamed, Munir
2017-01-01
The second most common cause of hospitalization due to adverse drug reactions in the UK is renal dysfunction due to diuretics, particularly in patients with heart failure, where diuretic therapy is a mainstay of treatment regimens. Therefore, the optimal frequency for monitoring renal function in these patients is an important consideration for preventing renal failure and hospitalization. This review looks at the current evidence for optimal monitoring practices of renal function in patients with heart failure according to national and international guidelines on the management of heart failure (AHA/NICE/ESC/SIGN). Current guidance of renal function monitoring is in large part based on expert opinion, with a lack of clinical studies that have specifically evaluated the optimal frequency of renal function monitoring in patients with heart failure. Furthermore, there is variability between guidelines, and recommendations are typically nonspecific. Safer prescribing of diuretics in combination with other antiheart failure treatments requires better evidence for frequency of renal function monitoring. We suggest developing more personalized monitoring rather than from the current medication‐based guidance. Such flexible clinical guidelines could be implemented using intelligent clinical decision support systems. Personalized renal function monitoring would be more effective in preventing renal decline, rather than reacting to it. PMID:28901643
Cardiorenal Syndrome in Acute Heart Failure: Revisiting Paradigms.
Núñez, Julio; Miñana, Gema; Santas, Enrique; Bertomeu-González, Vicente
2015-05-01
Cardiorenal syndrome has been defined as the simultaneous dysfunction of both the heart and the kidney. Worsening renal function that occurs in patients with acute heart failure has been classified as cardiorenal syndrome type 1. In this setting, worsening renal function is a common finding and is due to complex, multifactorial, and not fully understood processes involving hemodynamic (renal arterial hypoperfusion and renal venous congestion) and nonhemodynamic factors. Traditionally, worsening renal function has been associated with worse outcomes, but recent findings have revealed mixed and heterogeneous results, perhaps suggesting that the same phenotype represents a diversity of pathophysiological and clinical situations. Interpreting the magnitude and chronology of renal changes together with baseline renal function, fluid overload status, and clinical response to therapy might help clinicians to unravel the clinical meaning of renal function changes that occur during an episode of heart failure decompensation. In this article, we critically review the contemporary evidence on the pathophysiology and clinical aspects of worsening renal function in acute heart failure. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
High Prolactin Excretion in Patients with Diabetes Mellitus and Impaired Renal Function.
Triebel, Jakob; Moreno-Vega, Aura Ileana; Vázquez-Membrillo, Miguel; Nava, Gabriel; García-Franco, Renata; López-Star, Ellery; Baldivieso-Hurtado, Olivia; Ochoa, Daniel; Macotela, Yazmín; Bertsch, Thomas; Martinez de la Escalera, Gonzalo; Clapp, Carmen
2015-01-01
The metabolic clearance of prolactin (PRL) is partially executed by the kidney. Here, we investigate the urine excretion of PRL in patients with Diabetes Mellitus and renal impairment. Serum and urine samples were collected from male, mestizo patients in central Mexico employing a cross-sectional study design. Ninety-eight individuals had either no diabetes and normal renal function (control), diabetes and normal renal function, or diabetes with impaired renal function. PRL was determined by a chemiluminescent immunometric assay; protein, albumin, and creatinine were evaluated using quantitative colorimetric assays. The results were analyzed using ANOVA-testing. Patients with Diabetes Mellitus and renal impairment had significantly higher urine PRL levels than patients with Diabetes Mellitus and normal renal function and control patients. Higher urine PRL levels were associated with lower glomerular filtration rates, higher serum creatinine, and higher urinary albumin-to-creatinine ratios (UACR). Urine PRL levels correlated positively with UACR. Serum PRL levels were similar among groups. Patients with Diabetes Mellitus and impaired renal function demonstrate a high urinary PRL excretion. Urinary PRL excretion in the context of proteinuria could contribute to PRL dysregulation in renal impairment.
Almomen, Salwa M K; Guan, Qiunong; Liang, Peihe; Yang, Kaidi; Sidiqi, Ahmad M; Levin, Adeera; Du, Caigan
2017-03-31
Individuals living with metabolic syndrome (MetS) such as diabetes and obesity are at high risk for developing chronic kidney disease (CKD). This study investigated the beneficial effect of whole grape powder (WGP) diet on MetS-associated CKD. Obese diabetic ZSF1 rats, a kidney disease model with MetS, were fed WGP (5%, w / w ) diet for six months. Kidney disease was determined using blood and urine chemical analyses, and histology. When compared to Vehicle controls, WGP intake did not change the rat bodyweight, but lowered their kidney, liver and spleen weight, which were in parallel with the lower serum glucose and the higher albumin or albumin/globin ratio. More importantly, WGP intake improved the renal function as urination and proteinuria decreased, or it prevented kidney tissue damage in these diabetic rats. The renal protection of WGP diet was associated with up-regulation of antioxidants ( Dhcr24 , Gstk1 , Prdx2 , Sod2 , Gpx1 and Gpx4 ) and downregulation of Txnip (for ROS production) in the kidneys. Furthermore, addition of grape extract reduced H₂O₂-induced cell death of cultured podocytes. In conclusion, daily intake of WGP reduces the progression of kidney disease in obese diabetic rats, suggesting a protective function of antioxidant-rich grape diet against CKD in the setting of MetS.
Clinical and genetic characterization of an autosomal dominant nephropathy.
Parvari, R; Shnaider, A; Basok, A; Katchko, L; Borochovich, Z; Kanis, A; Landau, D
2001-03-15
Autosomal dominant familial nephropathies with adult onset, no macroscopic cysts, and progressive deterioration include medullary cystic disease (ADMCKD) as well as other less specific entities. We studied a kindred of Jewish ancestry in which 15 members (both male and female) have suffered from chronic renal failure. The first evidence of renal involvement was observed between 18 and 38 years. It included hypertension followed by progressive renal insufficiency. No polyuria, anemia, gout, hematuria, nor proteinuria were seen. An average of 4.5 years elapsed from diagnosis to end-stage renal disease. Renal pathology at early stages of the disease showed extensive tubulointerstitial fibrosis and global glomerulosclerosis. Linkage analysis was performed at the two known loci of ADMCKD, on Chromosomes 1 and 16. Linkage to the chromosome 16 locus was excluded. However, linkage to the chromosome 1q21 locus of ADMCKD was established with a maximum two-point LOD score of 3.82 to D1S394. The disease interval could be narrowed to about 9 cM/7.4 Mb between D1S1156 and D1S2635. Multiple-point linkage analysis revealed a maximum LOD of 4.21, with a broad peak from markers D1S2858 and D1S2624. This report establishes linkage between a familial nephropathy characterized by hypertension and progressive renal failure to the locus described for ADMCKD, a disease classically associated with macroscopic corticomedullary cysts, salt-losing tubulointerstitial nephropathy, and anemia. This finding broadens the clinical spectrum of ADMCKD positioned on chromosome 1q21 locus. Copyright 2001 Wiley-Liss. Inc.
2014-01-01
Background No consensus exists on how to define abnormally rapid deterioration in renal function (Rapid Progression, RP). We developed an operational definition of RP in HIV-positive persons with baseline estimated glomerular filtration rate (eGFR) >90 ml/min/1.73 m2 (using Cockcroft Gault) in the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study from 2004 to 2011. Methods Two definitions were evaluated; RP definition A: An average eGFR decline (slope) ≥5 ml/min/1.73 m2/year over four years of follow-up with ≥3 eGFR measurements/year, last eGFR <90 ml/min/1.73 m2 and an absolute decline ≥5 ml/min/1.73 m2/year in two consecutive years. RP definition B: An absolute annual decline ≥5 ml/min/1.73 m2/year in each year and last eGFR <90 ml/min/1.73 m2. Sensitivity analyses were performed considering two and three years’ follow-up. The percentage with and without RP who went on to subsequently develop incident chronic kidney disease (CKD; 2 consecutive eGFRs <60 ml/min/1.73 m2 and 3 months apart) was calculated. Results 22,603 individuals had baseline eGFR ≥90 ml/min/1.73 m2. 108/3655 (3.0%) individuals with ≥4 years’ follow-up and ≥3 measurements/year experienced RP under definition A; similar proportions were observed when considering follow-up periods of three (n=195/6375; 3.1%) and two years (n=355/10756; 3.3%). In contrast under RP definition B, greater proportions experienced RP when considering two years (n=476/10756; 4.4%) instead of three (n=48/6375; 0.8%) or four (n=15/3655; 0.4%) years’ follow-up. For RP definition A, 13 (12%) individuals who experienced RP progressed to CKD, and only (21) 0.6% of those without RP progressed to CKD (sensitivity 38.2% and specificity 97.4%); whereas for RP definition B, fewer RP individuals progressed to CKD. Conclusions Our results suggest using three years’ follow-up and at least two eGFR measurements per year is most appropriate for a RP definition, as it allows inclusion of a reasonable number of individuals and is associated with the known risk factors. The definition does not necessarily identify all those that progress to incident CKD, however, it can be used alongside other renal measurements to early identify and assess those at risk of developing CKD. Future analyses will use this definition to identify other risk factors for RP, including the role of antiretrovirals. PMID:24666792
Kamara, David A; Ryom, Lene; Ross, Michael; Kirk, Ole; Reiss, Peter; Morlat, Philippe; Moranne, Olivier; Fux, Christoph A; Mocroft, Amanda; Sabin, Caroline; Lundgren, Jens D; Smith, Colette J
2014-03-25
No consensus exists on how to define abnormally rapid deterioration in renal function (Rapid Progression, RP). We developed an operational definition of RP in HIV-positive persons with baseline estimated glomerular filtration rate (eGFR) >90 ml/min/1.73 m2 (using Cockcroft Gault) in the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study from 2004 to 2011. Two definitions were evaluated; RP definition A: An average eGFR decline (slope) ≥5 ml/min/1.73 m2/year over four years of follow-up with ≥3 eGFR measurements/year, last eGFR <90 ml/min/1.73 m2 and an absolute decline ≥5 ml/min/1.73 m2/year in two consecutive years. RP definition B: An absolute annual decline ≥5 ml/min/1.73 m2/year in each year and last eGFR <90 ml/min/1.73 m2. Sensitivity analyses were performed considering two and three years' follow-up. The percentage with and without RP who went on to subsequently develop incident chronic kidney disease (CKD; 2 consecutive eGFRs <60 ml/min/1.73 m2 and 3 months apart) was calculated. 22,603 individuals had baseline eGFR ≥90 ml/min/1.73 m2. 108/3655 (3.0%) individuals with ≥4 years' follow-up and ≥3 measurements/year experienced RP under definition A; similar proportions were observed when considering follow-up periods of three (n=195/6375; 3.1%) and two years (n=355/10756; 3.3%). In contrast under RP definition B, greater proportions experienced RP when considering two years (n=476/10756; 4.4%) instead of three (n=48/6375; 0.8%) or four (n=15/3655; 0.4%) years' follow-up. For RP definition A, 13 (12%) individuals who experienced RP progressed to CKD, and only (21) 0.6% of those without RP progressed to CKD (sensitivity 38.2% and specificity 97.4%); whereas for RP definition B, fewer RP individuals progressed to CKD. Our results suggest using three years' follow-up and at least two eGFR measurements per year is most appropriate for a RP definition, as it allows inclusion of a reasonable number of individuals and is associated with the known risk factors. The definition does not necessarily identify all those that progress to incident CKD, however, it can be used alongside other renal measurements to early identify and assess those at risk of developing CKD. Future analyses will use this definition to identify other risk factors for RP, including the role of antiretrovirals.
Kelsen, Silvia; He, Xiaochen; Chade, Alejandro R
2012-08-15
Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution regarding antioxidant strategies in RAS.
Kelsen, Silvia; He, Xiaochen
2012-01-01
Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution regarding antioxidant strategies in RAS. PMID:22622460
Outcomes and renal function trajectory after acute kidney injury: the narrow road to perdition.
Coca, Steven G
2017-08-01
Analyses of the Grampian Laboratory Outcomes Morbidity and Mortality Study-II cohort support the notion that acute kidney injury (AKI) increases the risk of progression of glomerular filtration rate after recovery from AKI to a new baseline. However, the findings have to be considered in the bigger context of the absolute event rates for de novo progression versus nonrecovery and the competing risk of death after AKI. Examination of the data raises important implications for the design and implementation of clinical trials with interventions that target the AKI-to-chronic kidney disease transition. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Hijazi, Ziad; Hohnloser, Stefan H; Andersson, Ulrika; Alexander, John H; Hanna, Michael; Keltai, Matyas; Parkhomenko, Alexander; López-Sendón, José L; Lopes, Renato D; Siegbahn, Agneta; Granger, Christopher B; Wallentin, Lars
2016-07-01
Renal impairment confers an increased risk of stroke, bleeding, and death in patients with atrial fibrillation. Little is known about the efficacy and safety of apixaban in relation to renal function changes over time. To evaluate changes of renal function over time and their interactions with outcomes during a median of 1.8 years of follow-up in patients with atrial fibrillation randomized to apixaban vs warfarin treatment. The prospective, randomized, double-blind Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) clinical trial randomized 18 201 patients with atrial fibrillation to apixaban or warfarin. Serial creatinine measurements were available in 16 869 patients. Worsening of renal function was defined as an annual decrease in estimated glomerular filtration more than 20%. The relations between treatment, outcomes, and renal function were investigated using Cox regression models, with renal function as a time-dependent covariate. Stroke or systemic embolism (primary outcome), major bleeding (safety outcome), and mortality were examined in relation to renal function over time estimated with both the Cockcroft-Gault and Chronic Kidney Disease Epidemiology Collaboration equations. Among 16 869 patients, the median age was 70 years and 65.2% of patients were men. Worsening in estimated glomerular filtration more than 20% was observed in 2294 patients (13.6%) and was associated with older age and more cardiovascular comorbidities. The risks of stroke or systemic embolism, major bleeding, and mortality were higher in patients with worsening renal function (HR, 1.53; 95% CI, 1.17-2.01 for stroke or systemic embolism; HR, 1.56; 95% CI, 1.27-1.93 for major bleeding; and HR, 2.31; 95% CI, 1.98-2.68 for mortality). The beneficial effects of apixaban vs warfarin on rates of stroke or systemic embolism and major bleeding were consistent in patients with normal or poor renal function over time and also in those with worsening renal function. In patients with atrial fibrillation, declining renal function was more common in elderly patients and those with cardiovascular comorbidities. Worsening renal function was associated with a higher risk of subsequent cardiovascular events and bleeding. The superior efficacy and safety of apixaban as compared with warfarin were similar in patients with normal, poor, and worsening renal function. clinicaltrials.gov Identifier: NCT00412984.
Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D.; Macdougall, Iain C.; Ponikowski, Piotr; Lainscak, Mitja
2015-01-01
Aim To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Methods Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Results Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P = 0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P = 0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Conclusions Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number NCT01829880 PMID:26718759
Consideration of Rat Chronic Progressive Nephropathy in Regulatory Evaluations for Carcinogenicity
Hard, Gordon C.
2013-01-01
Chronic progressive nephropathy (CPN) is a spontaneous renal disease of rats which can be a serious confounder in toxicology studies. It is a progressive disease with known physiological factors that modify disease progression, such as high dietary protein. The weight of evidence supports an absence of a renal counterpart in humans. There is extensive evidence that advanced CPN, particularly end-stage kidney, is a risk factor for development of a background incidence of atypical tubule hyperplasia and renal tubule tumors (RTT). The likely cause underlying this association with tubule neoplasia is the long-term increased tubule cell proliferation that occurs throughout CPN progression. As a variety of chemicals are able to exacerbate CPN, there is a potential for those exacerbating the severity up to and including end-stage kidney to cause a marginal increase in RTT and their precursor lesions. Extensive statistical analysis of National Toxicology Program studies shows a strong correlation between high-grade CPN, especially end-stage CPN, and renal tumor development. CPN as a mode of action (MOA) for rat RTT has received attention from regulatory authorities only recently. In the absence of toxic effects elsewhere, this does not constitute a carcinogenic effect of the chemical but can be addressed through a proposed MOA approach for regulatory purposes to reach a decision that RTT, developing as a result of CPN exacerbation in rats, have no relevance for human risk assessment. Guidelines are proposed for evaluation of exacerbation of CPN and RTT as a valid MOA for a given chemical. PMID:23104430
Renal Function Recovery with Total Artificial Heart Support.
Quader, Mohammed A; Goodreau, Adam M; Shah, Keyur B; Katlaps, Gundars; Cooke, Richard; Smallfield, Melissa C; Tchoukina, Inna F; Wolfe, Luke G; Kasirajan, Vigneshwar
2016-01-01
Heart failure patients requiring total artificial heart (TAH) support often have concomitant renal insufficiency (RI). We sought to quantify renal function recovery in patients supported with TAH at our institution. Renal function data at 30, 90, and 180 days after TAH implantation were analyzed for patients with RI, defined as hemodialysis supported or an estimated glomerular filtration rate (eGFR) less than 60 ml/min/1.73 m. Between January 2008 and December 2013, 20 of the 46 (43.5%) TAH recipients (age 51 ± 9 years, 85% men) had RI, mean preoperative eGFR of 48 ± 7 ml/min/1.73 m. Renal function recovery was noted at each follow-up interval: increment in eGFR (ml/min/1.73 m) at 30, 90, and 180 days was 21 ± 35 (p = 0.1), 16.5 ± 18 (p = 0.05), and 10 ± 9 (p = 0.1), respectively. Six patients (30%) required preoperative dialysis. Of these, four recovered renal function, one remained on dialysis, and one died. Six patients (30%) required new-onset dialysis. Of these, three recovered renal function and three died. Overall, 75% (15 of 20) of patients' renal function improved with TAH support. Total artificial heart support improved renal function in 75% of patients with pre-existing significant RI, including those who required preoperative dialysis.