Sample records for progressive treadmill test

  1. Effects of progressive backward body weight suppoted treadmill training on gait ability in chronic stroke patients: A randomized controlled trial.

    PubMed

    Kim, Kyung Hun; Lee, Kyoung Bo; Bae, Young-Hyeon; Fong, Shirley S M; Lee, Suk Min

    2017-10-23

    A stroke patient with hemiplegic gait is generally described as being slow and asymmetric. Body weight-supported treadmill training and backward gait training are recent additions to therapeutic gait trainings that may help improve gait in stroke patient with hemiplegic gait. Therefore, we examined the effect of progressive backward body weight-supported treadmill training on gait in chronic stroke patients with hemiplegic gait. Thirty subjects were divided to the experimental and control groups. The experimental group consisted of 15 patients and underwent progressive backward body weight-supported treadmill training. The control group consisted of 15 patients and underwent general treadmill gait training five times per week, for a total of four weeks. The OptoGait was used to analyze gait kinematics, and the dynamic gait index (DGI) and results of the 6-minute walk test were used as the clinical evaluation indicators. A follow-up test was carried out four weeks later to examine persistence of exercise effects. The experimental group showed statistically significant results in all dependent variables week four compared to the control group. However, until the eighth week, only the dependent variables, of affected step length (ASL), stride length (SL), and DGI differed significantly between the two groups. This study verified that progressive bodyweight-supported treadmill training had a positive influence on the temporospatial characteristics of gait and clinical gait evaluation index in chronic stroke patients.

  2. Effects of Progressive Body Weight Support Treadmill Forward and Backward Walking Training on Stroke Patients' Affected Side Lower Extremity's Walking Ability.

    PubMed

    Kim, Kyunghoon; Lee, Sukmin; Lee, Kyoungbo

    2014-12-01

    [Purpose] The purpose of the present study was to examine the effects of progressive body weight supported treadmill forward and backward walking training (PBWSTFBWT), progressive body weight supported treadmill forward walking training (PBWSTFWT), progressive body weight supported treadmill backward walking training (PBWSTBWT), on stroke patients' affected side lower extremity's walking ability. [Subjects and Methods] A total of 36 chronic stroke patients were divided into three groups with 12 subjects in each group. Each of the groups performed one of the progressive body weight supported treadmill training methods for 30 minute, six times per week for three weeks, and then received general physical therapy without any other intervention until the follow-up tests. For the assessment of the affected side lower extremity's walking ability, step length of the affected side, stance phase of the affected side, swing phase of the affected side, single support of the affected side, and step time of the affected side were measured using optogait and the symmetry index. [Results] In the within group comparisons, all the three groups showed significant differences between before and after the intervention and in the comparison of the three groups, the PBWSTFBWT group showed more significant differences in all of the assessed items than the other two groups. [Conclusion] In the present study progressive body weight supported treadmill training was performed in an environment in which the subjects were actually walked, and PBWSTFBWT was more effective at efficiently training stroke patients' affected side lower extremity's walking ability.

  3. Comparison of two progressive treadmill tests in patients with peripheral arterial disease.

    PubMed

    Riebe, D; Patterson, R B; Braun, C M

    2001-11-01

    In a vascular rehabilitation program, 28% of our frail elderly patients are unable to be tested with traditional progressive exercise protocols at program entry due to the high (2.0 miles/h or 3.2 km/h) initial treadmill speeds. The purpose of this investigation was to compare a new progressive treadmill protocol which has a reduced initial speed (1.0 mile/h or 1.6 km/h) to an established protocol performed at 2.0 miles/h (3.2 km/h) to determine the comparability and reproducibility of the new protocol. Eleven patients with arterial claudication performed three symptom-limited exercise tests in random order. Two tests used the new protocol while the remaining trial used the established protocol. Claudication pain was measured using a 5-point scale. Oxygen consumption, heart rate, minute ventilation, respiratory exchange ratio and blood pressure at peak exercise were similar among the three trials. There were strong intraclass correlations for peak oxygen consumption (r = 0.97), onset of claudication (r = 0.96) and maximum walking time (r = 0.98) between the two trials using the new protocol. There was also a significant correlation between the new protocol and the established protocol for peak oxygen consumption (r = 0.90) and maximum walking time (r = 0.89). The new progressive treadmill protocol represents a valid, reliable protocol for patients with arterial claudication. This protocol may be useful for testing patients with a low functional capacity so that clinically appropriate exercise prescriptions can be established and the efficacy of treatments can be determined.

  4. INTENSITY AND GENERALIZATION OF TREADMILL-SLIP TRAINING: HIGH OR LOW; PROGRESSIVELY-INCREASE OR -DECREASE?

    PubMed Central

    Liu, Xuan; Bhatt, Tanvi; Pai, Yi-Chung (Clive)

    2015-01-01

    Very little is known how training intensity interacts with the generalization from treadmill-slip to overground slip. The purposes of this study were to determine whether treadmill-slip training improved center-of-mass stability, more so in the reactive than in the proactive control of stability, with high intensity (HI with a trial-to-trial-consistent acceleration of 12 m/s2) better than low intensity training (LO with a consistent acceleration of 6 m/s2), and progressively-increasing intensity (INCR with a block-to-block acceleration varied from 6 to 12 m/s2) better than progressively-decreasing intensity training (DECR with an acceleration varied from 12 to 6 m/s2) in such generalization. Thirty-six young subjects evenly assigned to one of four (HI, LO, INCR, DECR) groups underwent 24 treadmill-slips before their generalization test trial with a novel slip during overground walking. The controls (CTRL, n=9) from existing data only experienced the same novel overground slip without treadmill training but under otherwise identical condition. The results showed that treadmill-slip training did improved balance control on overground slip with a greater impact on subjects’ reactive (44.3%) than proactive control of stability (27.1%) in comparison to the CTRL. HI yielded stronger generalization than LO, while INCR was only marginally better than DECR. Finally, the group means of these four displayed a clear ascending order from CTRL, LO, DECR, INCR, to HI. The results suggested that higher training intensity on treadmill led to a better generalization, while a progressively-increase in intensity had advantage over the progressively-decrease or the low training strategy. (243 words) PMID:26159058

  5. Circulatory and Metabolic Responses of Young Women at HR=180 and HR=MAX

    ERIC Educational Resources Information Center

    Humphrey, Dennis L.; Falls, Harold B.

    1975-01-01

    This study investigated whether the commonly used 180 heart rate termination criterion during progressive treadmill testing is valid for estimating absolute aerobic power in young healthy females. (RC)

  6. Treadmill Training or Progressive Strength Training to Improve Walking in People with Multiple Sclerosis? A Randomized Parallel Group Trial.

    PubMed

    Braendvik, Siri Merete; Koret, Teija; Helbostad, Jorunn L; Lorås, Håvard; Bråthen, Geir; Hovdal, Harald Olav; Aamot, Inger Lise

    2016-12-01

    The most effective treatment approach to improve walking in people with multiple sclerosis (MS) is not known. The aim of this trial was to assess the efficacy of treadmill training and progressive strength training on walking in people with MS. A single blinded randomized parallel group trial was carried out. Eligible participants were adults with MS with Expanded Disability Status Scale score ≤6. A total of 29 participants were randomized and 28 received the allocated exercise intervention, treadmill (n = 13) or strength training (n = 15). Both groups exercised 30 minutes, three times a week for 8 weeks. Primary outcome was The Functional Ambulation Profile evaluated by the GAITRite walkway. Secondary outcomes were walking work economy and balance control during walking, measured by a small lightweight accelerometer connected to the lower back. Testing was performed at baseline and the subsequent week after completion of training. Two participants were lost to follow-up, and 11 (treadmill) and 15 (strength training) were left for analysis. The treadmill group increased their Functional Ambulation Profile score significantly compared with the strength training group (p = .037). A significant improvement in walking work economy (p = .024) and a reduction of root mean square of vertical acceleration (p = .047) also favoured the treadmill group. The results indicate that task-specific training by treadmill walking is a favourable approach compared with strength training to improve walking in persons with mild and moderate MS. Implications for Physiotherapy practice, this study adds knowledge for the decision of optimal treatment approaches in people with MS. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Compensatory balance reactions during forward and backward walking on a treadmill.

    PubMed

    Bolton, D A E; Misiaszek, J E

    2012-04-01

    Previous work suggests that balance perturbations to the body opposing the direction of progression during walking lead to larger amplitude corrective reactions than perturbations concurrent with walking direction. To test this hypothesis, subjects received forward and backward perturbations applied to the pelvis through a padded harness, while walking forwards or backwards on a treadmill. Contrary to our hypothesis, the greatest responses were associated with backward perturbations regardless of the direction of walking. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Exercise stress test

    MedlinePlus

    Exercise ECG; ECG - exercise treadmill; EKG - exercise treadmill; Stress ECG; Exercise electrocardiography; Stress test - exercise treadmill; CAD - treadmill; Coronary artery disease - treadmill; Chest pain - treadmill; Angina - treadmill; ...

  9. Treadmill exercise delays the onset of non-motor behaviors and striatal pathology in the CAG140 knock-in mouse model of Huntington's disease.

    PubMed

    Stefanko, D P; Shah, V D; Yamasaki, W K; Petzinger, G M; Jakowec, M W

    2017-09-01

    Depression, cognitive impairments, and other neuropsychiatric disturbances are common during the prodromal phase of Huntington's disease (HD) well before the onset of classical motor symptoms of this degenerative disorder. The purpose of this study was to examine the potential impact of physical activity in the form of exercise on a motorized treadmill on non-motor behavioral features including depression-like behavior and cognition in the CAG 140 knock-in (KI) mouse model of HD. The CAG 140 KI mouse model has a long lifespan compared to other HD rodent models with HD motor deficits emerging after 12months of age and thus provides the opportunity to investigate early life interventions such as exercise on disease progression. Motorized treadmill running was initiated at 4weeks of age (1h per session, 3 times per week) and continued for 6months. Non-motor behaviors were assessed up to 6months of age and included analysis of depression-like behavior (using the tail-suspension and forced-swim tests) and cognition (using the T-maze and object recognition tests). At both 4 and 6months of age, CAG 140 KI mice displayed significant depression-like behavior in the forced swim and tail suspension tests and cognitive impairment by deficits in reversal relearning in the T-maze test. These deficits were not evident in mice engaged in treadmill running. In addition, exercise restored striatal dopamine D2 receptor expression and dopamine neurotransmitter levels both reduced in sedentary HD mice. Finally, we examined the pattern of striatal expression of mutant huntingtin (mHTT) protein and showed that the number and intensity of immunohistochemical staining patterns of intranuclear aggregates were significantly reduced with exercise. Altogether these findings begin to address the potential impact of lifestyle and early intervention such as exercise on modifying HD progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Energy cost of wearing chemical protective clothing during progressive treadmill walking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, J.F.; Bidwell, T.E.; Murphy, M.M.

    1995-03-01

    While chemical protective (CP) clothing is known to adversely affect physical performance, few data exist regarding the physiological response of wearing US military cp clothing during incremental, dynamic exercise. To quantify the effects of CP clothing on energy cost and to test the hypothesis that the mask contributes little to this effect, oxygen uptake (vo2) and ventilation (VE) were determined in 14 male soldiers who walked on a treadmill at 1.56 m -5(-1) for 20 min each at 0, 5, and 10% grades in three clothing conditions: BDU (battledress uniform only).

  11. 1996 Toxic Hazards Research Annual Report.

    DTIC Science & Technology

    1998-01-01

    gasoline , diesel fuel, and jet propulsion (JP) fuel (Staats, 1994). Millions of dollars are spent each year at petroleum contaminated sites for remediation...of locomotor activity and auditory startle reflex tests will be provided in the detailed technical report (in progress). Body Weights and Food...Olfactory Sensitization, Acoustic Startle, Prepulse Inhibition and Habituation, Total Locomotor Activity, Tail Flick Analgesia, and the Treadmill Test of

  12. A pilot clinical trial on a Variable Automated Speed and Sensing Treadmill (VASST) for hemiparetic gait rehabilitation in stroke patients.

    PubMed

    Chua, Karen S G; Chee, Johnny; Wong, Chin J; Lim, Pang H; Lim, Wei S; Hoo, Chuan M; Ong, Wai S; Shen, Mira L; Yu, Wei S

    2015-01-01

    Impairments in walking speed and capacity are common problems after stroke which may benefit from treadmill training. However, standard treadmills, are unable to adapt to the slower walking speeds of stroke survivors and are unable to automate training progression. This study tests a Variable Automated Speed and Sensing Treadmill (VASST) using a standard clinical protocol. VASST is a semi-automated treadmill with multiple sensors and micro controllers, including wireless control to reposition a fall-prevention harness, variable pre-programmed exercise parameters and laser beam foot sensors positioned on the belt to detect subject's foot positions. An open-label study with assessor blinding was conducted in 10 community-dwelling chronic hemiplegic patients who could ambulate at least 0.1 m/s. Interventions included physiotherapist-supervised training on VASST for 60 min three times per week for 4 weeks (total 12 h). Outcome measures of gait speed, quantity, balance, and adverse events were assessed at baseline, 2, 4, and 8 weeks. Ten subjects (8 males, mean age 55.5 years, 2.1 years post stroke) completed VASST training. Mean 10-m walk test speed was 0.69 m/s (SD = 0.29) and mean 6-min walk test distance was 178.3 m (84.0). After 4 weeks of training, 70% had significant positive gains in gait speed (0.06 m/s, SD = 0.08 m/s, P = 0.037); and 90% improved in walking distance. (54.3 m, SD = 30.9 m, P = 0.005). There were no adverse events. This preliminary study demonstrates the initial feasibility and short-term efficacy of VASST for walking speed and distance for people with chronic post-stroke hemiplegia.

  13. Phototherapy during treadmill training improves quadriceps performance in postmenopausal women.

    PubMed

    Paolillo, F R; Corazza, A V; Paolillo, A R; Borghi-Silva, A; Arena, R; Kurachi, C; Bagnato, V S

    2014-06-01

    To evaluate the effects of infrared-light-emitting diode (LED) during treadmill training on functional performance. Thirty postmenopausal women aged 50-60 years were randomly assigned to one of three groups and successfully completed the full study. The three groups were: (1) the LED group, which performed treadmill training associated with phototherapy (n = 10); (2) the exercise group, which carried out treadmill training only (n = 10); and (3) the sedentary group, which neither performed physical training nor underwent phototherapy (n = 10). Training was performed over a period of 6 months, twice a week for 45 min per session at 85-90% of maximal heart rate, which was obtained during progressive exercise testing. The irradiation parameters were 100 mW, 39 mW/cm(2) and 108 J/cm(2) for 45 min. Quadriceps performance was measured during isokinetic exercise testing at 60°/s and 300°/s. Peak torque did not differ amongst the groups. However, the results showed significantly higher values of power and total work for the LED group (∆ = 21 ± 6 W and ∆ = 634 ± 156 J, p < 0.05) when compared to both the exercise group (∆ = 13 ± 10 W and = 410 ± 270 J) and the sedentary group (∆ = 10 ± 9 W and ∆ = 357 ± 327 J). Fatigue was also significantly lower in the LED group (∆ = -7 ± 4%, p < 0.05) compared to both the exercise group (∆ = 3 ± 8%) and the sedentary group (∆ = -2 ± 6%). Infrared-LED during treadmill training may improve quadriceps power and reduce peripheral fatigue in postmenopausal women.

  14. Peak Cardiorespiratory Responses of Patients with Subacute Stroke During Land and Aquatic Treadmill Exercise.

    PubMed

    Lee, Yong Ki; Kim, Bo Ryun; Han, Eun Young

    2017-05-01

    The aim of this work was to investigate the cardiorespiratory responses of patients with subacute stroke to exercise stress tests with aquatic and land treadmills. Twenty-one consecutive patients who presented with first-ever subacute stroke in 2013-2015. All subjects underwent symptom-limited incremental exercise testing with aquatic and land treadmills. Land treadmill speed started at 1.5 km/h and increased 0.5 km/h every 1 to 2 minutes until maximal tolerable speed was achieved. Thereafter, the grade was elevated by 2% every 2 minutes. In the aquatic treadmill test, subjects were submerged to the xiphoid in 28°C water. Treadmill speed started at 1.5 km/h and was increased 0.5 km/h every 2 minutes thereafter. Cardiorespiratory responses were recorded with aquatic and land treadmills. Compared to land treadmill exercise, aquatic treadmill exercise achieved significantly better peak VO2 (22.0 vs 20.0; P = 0.02), peak metabolic equivalents (6.3 vs 5.8; P = 0.02), and peak rating of perceived exertion (17.6 vs 18.4, P = 0.01). Heart rate and VO2 correlated significantly during both tests (land treadmill: r = 0.96, P < 0.001; aquatic treadmill: r = 0.99, P < 0.001). Aquatic treadmill exercise elicited significantly better peak cardiorespiratory responses than land treadmill exercise and may be as effective for early intensive aerobic training in subacute stroke patients.

  15. Cross-Validation of a PACER Prediction Equation for Assessing Aerobic Capacity in Hungarian Youth

    ERIC Educational Resources Information Center

    Saint-Maurice, Pedro F.; Welk, Gregory J.; Finn, Kevin J.; Kaj, Mónika

    2015-01-01

    Purpose: The purpose of this article was to evaluate the validity of the Progressive Aerobic Cardiovascular and Endurance Run (PACER) test in a sample of Hungarian youth. Method: Approximately 500 participants (aged 10-18 years old) were randomly selected across Hungary to complete both laboratory (maximal treadmill protocol) and field assessments…

  16. Establishing a Practical Treadmill Sprint as an Alternative to the Wingate Anaerobic Test

    ERIC Educational Resources Information Center

    McKie, Greg L.; Islam, Hashim; Townsend, Logan K.; Howe, Greg J.; Hazell, Tom J.

    2018-01-01

    This study examined the validity and reliability of a 30-second running sprint test using two non-motorized treadmills compared to the established Wingate Anaerobic Test. Twenty-four participants completed three sessions in a randomized order on a: (1) manual mode treadmill (Woodway); (2) specialized interval training treadmill (HiTrainer); and…

  17. Developing a Low-Cost Force Treadmill via Dynamic Modeling.

    PubMed

    Hong, Chih-Yuan; Guo, Lan-Yuen; Song, Rong; Nagurka, Mark L; Sung, Jia-Li; Yen, Chen-Wen

    2017-01-01

    By incorporating force transducers into treadmills, force platform-instrumented treadmills (commonly called force treadmills) can collect large amounts of gait data and enable the ground reaction force (GRF) to be calculated. However, the high cost of force treadmills has limited their adoption. This paper proposes a low-cost force treadmill system with force sensors installed underneath a standard exercise treadmill. It identifies and compensates for the force transmission dynamics from the actual GRF applied on the treadmill track surface to the force transmitted to the force sensors underneath the treadmill body. This study also proposes a testing procedure to assess the GRF measurement accuracy of force treadmills. Using this procedure in estimating the GRF of "walk-on-the-spot motion," it was found that the total harmonic distortion of the tested force treadmill system was about 1.69%, demonstrating the effectiveness of the approach.

  18. Prediction of energy cost of treadmill work.

    DOT National Transportation Integrated Search

    1962-04-01

    The relative contributions of rate progression (1.5 to 4.0 mph), grade (4 to 9%), and load (10 to 30 Kg), to the total energy cost of treadmill work were determined. The data obtained were integrated graphically with some of the available energy cost...

  19. The impact of firefighter personal protective equipment and treadmill protocol on maximal oxygen uptake.

    PubMed

    Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka

    2013-01-01

    This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO(2max)) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO(2max) between Bruce Light, PIP Light, and PSP Light. However, VO(2max) was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO(2) in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO(2) but not VO(2max). These results suggest that firefighters' maximal performance determined from a typical VO(2max) test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE.

  20. The Impact of Firefighter Personal Protective Equipment and Treadmill Protocol on Maximal Oxygen Uptake

    PubMed Central

    Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka

    2015-01-01

    This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO2max) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO2max between Bruce Light, PIP Light, and PSP Light. However, VO2max was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO2 in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO2 but not VO2max. These results suggest that firefighters’ maximal performance determined from a typical VO2max test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE. PMID:23668854

  1. Performance on a work-simulating firefighter test versus approved laboratory tests for firefighters and applicants.

    PubMed

    von Heimburg, Erna; Medbø, Jon Ingulf; Sandsund, Mariann; Reinertsen, Randi Eidsmo

    2013-01-01

    Firefighters must meet minimum physical demands. The Norwegian Labour Inspection Authority (NLIA) has approved a standardised treadmill walking test and 3 simple strength tests for smoke divers. The results of the Trondheim test were compared with those of the NLIA tests taking into account possible effects of age, experience level and gender. Four groups of participants took part in the tests: 19 young experienced firefighters, 24 senior male firefighters and inexperienced applicants, 12 male and 8 female. Oxygen uptake (VO2) at exhaustion rose linearly by the duration of the treadmill test. Time spent on the Trondheim test was closely related to performance time and peak VO2 on the treadmill test. Senior experienced firefighters did not perform better than equally fit young applicants. However, female applicants performed poorer on the Trondheim test than on the treadmill test. Performance on the Trondheim test was not closely related to muscle strength beyond a minimum. CONCLUSION. Firefighters completing the Trondheim test in under 19 min fit the requirements of the NLIA treadmill test. The Trondheim test can be used as an alternative to the NLIA tests for testing aerobic fitness but not for muscular strength. Women's result of the Trondheim test were poorer than the results of the NLIA treadmill test, probably because of their lower body mass.

  2. Progressive Return to Activity Following Acute Concussion/Mild Traumatic Brain Injury: Guidance for the Primary Care Manager in Deployed and Non-deployed Settings (Clinical Support Tool)

    DTIC Science & Technology

    2014-01-01

    testing following Stage 5 C. Symptoms • Confusion (24 hrs) • Irritability • Unsteady on feet • Vertigo /dizziness • Headaches • Photophobia • Phonophobia...stationary bike, treadmill and/or hand crank • Maintain this level of exertion for approximately two minutes • Assess for symptoms (headache, vertigo

  3. Age, experience and genetic background influence treadmill walking in mice

    PubMed Central

    Wooley, Christine M.; Xing, Shuqin; Burgess, Robert W.; Cox, Gregory A.; Seburn, Kevin L.

    2009-01-01

    WOOLEY, C.M., S. XING, R.W. BURGESS, G.A. COX, AND K.L. SEBURN. Age, experience and genetic background influence treadmill walking in mice. PHYSIOL. BEHAV. XX(X), XXX-XXX, 2008 – The use of a treadmill to gather data for gait analysis in mice is a convenient, sensitive method to evaluate motor performance. However, evidence from several species, including mice, shows that treadmill locomotion is a novel task that is not equivalent to over ground locomotion and that may be particularly sensitive to the test environment and protocol. We investigated the effects of age, genetic background and repeated trials on treadmill walking in mice and show that these factors are important considerations in the interpretation of gait data. Specifically we report that as C57BL/6J (B6) mice age, the animals use progressively longer, less frequent strides to maintain the same walking speed. The increase is most rapid between 1 and 6 months of age and is explained, in part, by changes in size and weight. We also extended previous findings showing that repeat trials cause mice to modify their treadmill gait pattern. In general, B6 mice tend to take shorter, more frequent steps and adopt a wider dynamic stance with repeated walking trials. The nature and extent of the response changes with both the number and timing of the trials and was observed with inter-trial intervals as long as 3 months. Finally, we compared the gait pattern of an additional seven inbred strains of mice and found significant variation in the length and frequency of strides used to maintain the same walking speed. The combined results offer the bases for further mechanistic studies and can be used to guide optimal experimental design. PMID:19027767

  4. Five clinical tests to assess balance following ball exercises and treadmill training in adult persons with intellectual disability.

    PubMed

    Carmeli, Eli; Bar-Chad, Shmuel; Lotan, Meir; Merrick, Joav; Coleman, Raymond

    2003-08-01

    Incidence rates of falling increase progressively with aging. Preventing or delaying the onset of functional decline is a crucial important goal, because more individuals with intellectual disability (ID) are living well into their sixth and seventh decades. The question of whether walking and ball exercises can effect balance performance has never been reported. This pilot study was conducted to determine the effects of therapeutic training on improving balance capabilities in adults with mild ID. The study included 13 women and 4 men, aged 50-67 years (mean age 56.5 years) residing in a residential care center. Five clinical tests were used to determine the "real" picture of the locomotor function and balance before and after the training protocol. Baseline values were determined using 2 control groups of age-matched adults with and without ID. The tests included modified get-up-and-go, full turn, forward reach, sit-to-stand, and one-legged standing. Therapeutic training for 6 months included dynamic ball exercises and treadmill walking with a 2-3% positive inclination. Participants in the program showed little to no improvement in terms of their static and dynamic balance compared to their initial values. Thus, only 2 of the tests showed statistical significance. Lack of improvement was noted in both postural and balance control in adults with mild ID as a result of 6 months of intervention by means of ball exercise and treadmill training.

  5. VO2 attained during treadmill running: the influence of a specialist (400-m or 800-m) event.

    PubMed

    James, David V B; Sandals, Leigh E; Draper, Stephen B; Maldonado-Martin, Sara; Wood, Dan M

    2007-06-01

    Previously it has been observed that, in well-trained 800-m athletes, VO2max is not attained during middle-distance running events on a treadmill, even when a race-type pacing strategy is adopted. Therefore, the authors investigated whether specialization in a particular running distance (400-m or 800-m) influences the VO2 attained during running on a treadmill. Six 400-m and six 800-m running specialists participated in the study.A 400-m trial and a progressive test to determine VO2max were completed in a counterbalanced order. Oxygen uptakes attained during the 400-m trial were compared to examine the influence of specialist event. A VO2 plateau was observed in all participants for the progressive test, demonstrating the attainment of VO2max. The VO2max values were 56.2 +/- 4.7 and 69.3 +/- 4.5 mL x kg-1 x min-1 for the 400-m- and 800-m-event specialists, respectively (P = .0003). Durations for the 400-m trial were 55.1 +/- 4.2 s and 55.8 +/- 2.3 s for the 400-m- and 800-m-event specialists, respectively. The VO2 responses achieved were 93.1% +/- 2.0% and 85.7% +/- 3.0% VO2max for the 400-m- and 800-m-event specialists, respectively (P = .001). These results demonstrate that specialist running events do appear to influence the percentage of VO2max achieved in the 400-m trial, with the 800-m specialists attaining a lower percentage of VO2max than the 400-m specialists. The 400-m specialists appear to compensate for a lower VO2max by attaining a higher percentage VO2max during a 400-m trial.

  6. Graded Aerobic Treadmill Testing in Adolescent Traumatic Brain Injury Patients.

    PubMed

    Cordingley, Dean M; Girardin, Richard; Morissette, Marc P; Reimer, Karen; Leiter, Jeff; Russell, Kelly; Ellis, Michael J

    2017-11-01

    To examine the safety and tolerability of clinical graded aerobic treadmill testing in recovering adolescent moderate and severe traumatic brain injury (TBI) patients referred to a multidisciplinary pediatric concussion program. We completed a retrospective case series of two moderate and five severe TBI patients (mean age, 17.3 years) who underwent initial Buffalo Concussion Treadmill Testing at a mean time of 71.6 days (range, 55-87) postinjury. Six patients completed one graded aerobic treadmill test each and one patient underwent initial and repeat testing. There were no complications. Five initial treadmill tests were completely tolerated and allowed an accurate assessment of exercise tolerance. Two initial tests were terminated early by the treatment team because of neurological and cardiorespiratory limitations. As a result of testing, two patients were cleared for aerobic exercise as tolerated and four patients were treated with individually tailored submaximal aerobic exercise programs resulting in subjective improvement in residual symptoms and/or exercise tolerance. Repeat treadmill testing in one patient performed after 1 month of treatment with submaximal aerobic exercise prescription was suggestive of improved exercise tolerance. One patient was able to tolerate aerobic exercise following surgery for posterior glottic stenosis. Preliminary results suggest that graded aerobic treadmill testing is a safe, well tolerated, and clinically useful tool to assess exercise tolerance in appropriately selected adolescent patients with TBI. Future prospective studies are needed to evaluate the effect of tailored submaximal aerobic exercise prescription on exercise tolerance and patient outcomes in recovering adolescent moderate and severe TBI patients.

  7. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis.

    PubMed

    Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2017-07-01

    In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p < 0.05). Between-group comparisons revealed that the experimental group improved significantly more than control group in hip range of motion and hip generated power at terminal stance at post-training. Our results support the perceived benefits of training programs that incorporate virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.

  8. Feasibility and safety of exercise stress testing using an anti-gravity treadmill with Tc-99m tetrofosmin single-photon emission computed tomography (SPECT) myocardial perfusion imaging: A pilot non-randomized controlled study.

    PubMed

    Daly, Patrick; Kayse, Regina; Rudick, Steven; Robbins, Nathan; Scheler, Jennifer; Harris, David; O'Donnell, Robert; Dwivedi, Alok K; Gerson, Myron C

    2017-08-31

    Exercise is the AHA/ACC guideline-recommended stress modality for myocardial perfusion imaging, but many patients are unable to exercise to target heart rate on a conventional treadmill. We examined the feasibility and safety of stress imaging using an anti-gravity treadmill in patients with perceived poor exercise capacity. 49 patients were recruited for stress testing by anti-gravity treadmill (n = 29) or to a regadenoson control group (n = 20). Seventeen anti-gravity test patients (59%) reached target heart rate obviating the need for a pharmacologic stress agent. Adverse effects of the anti-gravity treadmill were limited to minor muscle aches in 5 subjects. Stress myocardial perfusion image quality judged by 3 blinded readers on a 5-point scale was comparable for the anti-gravity treadmill (4.30 ± SD 0.87) vs pharmacologic stress (4.28 ± SD 0.66). Stress testing using an anti-gravity treadmill is feasible and may help some patients safely achieve target heart rate.

  9. The Oxidant-Antioxidant Equilibrium and Inflammatory Process Indicators after an Exercise Test on the AlterG Antigravity Treadmill in Young Amateur Female Athletes.

    PubMed

    Sielski, Łukasz; Sutkowy, Paweł; Skopowska, Agnieszka; Pawlak-Osińska, Katarzyna; Augustyńska, Zofia; Hewelt, Katarzyna; Drapała, Radosław; Woźniak, Alina

    2018-01-01

    The AlterG antigravity treadmill allows running with a considerable weight reduction. Physical exercise practiced on this treadmill is an innovative method supporting the treatment of injuries in sports and rehabilitation of patients. The aim of the study was to investigate the effect of a 30 min run on the AlterG treadmill with 80% body weight reduction comparing the effect to the similar effort on the classic treadmill on the redox equilibrium and the activity of selected lysosomal enzymes and a serine protease inhibitor in the blood of amateur minor female volleyball players. Venous blood samples were taken before the exercise and 30 minutes and 24 hours after its completion. The obtained results were analysed using Tukey's test and Pearson's linear correlations were calculated. 24 h after the running test on classic treadmill, the erythrocytic superoxide dismutase activity was higher than before and 30 min after it, as well as compared to the run on AlterG treadmill ( p < 0.001). The erythrocytic-conjugated diene concentration 24 h after the exercise on the classic treadmill was meaningly higher compared to that after the exercise on the AlterG treadmill ( p < 0.001). The cathepsin D activity was significantly lower after the exercise in AlterG conditions compared to the baseline value and that measured after the exercise on classic treadmill ( p < 0.001). It seems that the exercise on the AlterG treadmill keeps the oxidant-antioxidant equilibrium and stabilizes lysosomal membranes in young, physically active women in contrast to the exercise on the classic treadmill. This trial is registered with CTRI/2018/01/011344.

  10. The Oxidant–Antioxidant Equilibrium and Inflammatory Process Indicators after an Exercise Test on the AlterG Antigravity Treadmill in Young Amateur Female Athletes

    PubMed Central

    Sielski, Łukasz; Skopowska, Agnieszka; Pawlak-Osińska, Katarzyna; Augustyńska, Zofia; Hewelt, Katarzyna; Drapała, Radosław

    2018-01-01

    The AlterG antigravity treadmill allows running with a considerable weight reduction. Physical exercise practiced on this treadmill is an innovative method supporting the treatment of injuries in sports and rehabilitation of patients. The aim of the study was to investigate the effect of a 30 min run on the AlterG treadmill with 80% body weight reduction comparing the effect to the similar effort on the classic treadmill on the redox equilibrium and the activity of selected lysosomal enzymes and a serine protease inhibitor in the blood of amateur minor female volleyball players. Venous blood samples were taken before the exercise and 30 minutes and 24 hours after its completion. The obtained results were analysed using Tukey's test and Pearson's linear correlations were calculated. 24 h after the running test on classic treadmill, the erythrocytic superoxide dismutase activity was higher than before and 30 min after it, as well as compared to the run on AlterG treadmill (p < 0.001). The erythrocytic-conjugated diene concentration 24 h after the exercise on the classic treadmill was meaningly higher compared to that after the exercise on the AlterG treadmill (p < 0.001). The cathepsin D activity was significantly lower after the exercise in AlterG conditions compared to the baseline value and that measured after the exercise on classic treadmill (p < 0.001). It seems that the exercise on the AlterG treadmill keeps the oxidant–antioxidant equilibrium and stabilizes lysosomal membranes in young, physically active women in contrast to the exercise on the classic treadmill. This trial is registered with CTRI/2018/01/011344. PMID:29765494

  11. Prescribing water-based exercise from treadmill and arm ergometry in cardiac patients.

    PubMed

    Fernhall, B; Manfredi, T G; Congdon, K

    1992-01-01

    This study investigated the appropriateness of prescribing upright water-based exercise from treadmill and arm ergometry in uncomplicated, trained patients with cardiovascular disease (CVD) who were accustomed to water-based activities. Ten male patients with established CVD (mean age 59.4 +/- 8.7 yr) underwent maximal treadmill and arm ergometry in randomized counterbalanced order (half of the patients completed the treadmill test first and the other half completed the arm ergometer test first). Electrocardiographic (ECG), rating of perceived exertion (RPE), and oxygen uptake (VO2) measurements were made during both tests. Patients performed upright water-based exercise at 60, 70, and 80% of their maximal treadmill heart rate for 6 min at each intensity in a heated pool with a water temperature of 28-30 degrees C. They also performed an easy tethered swim, defined as performing at a comfortable exercise intensity, eliciting a heart rate of 86% of the treadmill maximum. VO2 and RPE were collected for all water-based exercise. To compare the RPE and VO2 between water-based, treadmill, and arm ergometry exercise, individual regression equations were constructed between heart rate, VO2, and RPE for both treadmill and arm ergometry tests. VO2 and RPE were then compared at the same heart rates between the three exercise modes. At 60% intensity, treadmill exercise exhibited a higher VO2 than water-based and arm ergometry exercise (P less than 0.05) but similar RPE. At 70%, treadmill exercise still yielded higher VO2, but also lower RPE than (P less than 0.05) and arm ergometry exercise (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Heading assessment by “tunnel vision” patients and control subjects standing or walking in a virtual reality environment

    PubMed Central

    APFELBAUM, HENRY; PELAH, ADAR; PELI, ELI

    2007-01-01

    Virtual reality locomotion simulators are a promising tool for evaluating the effectiveness of vision aids to mobility for people with low vision. This study examined two factors to gain insight into the verisimilitude requirements of the test environment: the effects of treadmill walking and the suitability of using controls as surrogate patients. Ten “tunnel vision” patients with retinitis pigmentosa (RP) were tasked with identifying which side of a clearly visible obstacle their heading through the virtual environment would lead them, and were scored both on accuracy and on their distance from the obstacle when they responded. They were tested both while walking on a treadmill and while standing, as they viewed a scene representing progress through a shopping mall. Control subjects, each wearing a head-mounted field restriction to simulate the vision of a paired patient, were also tested. At wide angles of approach, controls and patients performed with a comparably high degree of accuracy, and made their choices at comparable distances from the obstacle. At narrow angles of approach, patients’ accuracy increased when walking, while controls’ accuracy decreased. When walking, both patients and controls delayed their decisions until closer to the obstacle. We conclude that a head-mounted field restriction is not sufficient for simulating tunnel vision, but that the improved performance observed for walking compared to standing suggests that a walking interface (such as a treadmill) may be essential for eliciting natural perceptually-guided behavior in virtual reality locomotion simulators. PMID:18167511

  13. Heading assessment by "tunnel vision" patients and control subjects standing or walking in a virtual reality environment.

    PubMed

    Apfelbaum, Henry; Pelah, Adar; Peli, Eli

    2007-01-01

    Virtual reality locomotion simulators are a promising tool for evaluating the effectiveness of vision aids to mobility for people with low vision. This study examined two factors to gain insight into the verisimilitude requirements of the test environment: the effects of treadmill walking and the suitability of using controls as surrogate patients. Ten "tunnel vision" patients with retinitis pigmentosa (RP) were tasked with identifying which side of a clearly visible obstacle their heading through the virtual environment would lead them, and were scored both on accuracy and on their distance from the obstacle when they responded. They were tested both while walking on a treadmill and while standing, as they viewed a scene representing progress through a shopping mall. Control subjects, each wearing a head-mounted field restriction to simulate the vision of a paired patient, were also tested. At wide angles of approach, controls and patients performed with a comparably high degree of accuracy, and made their choices at comparable distances from the obstacle. At narrow angles of approach, patients' accuracy increased when walking, while controls' accuracy decreased. When walking, both patients and controls delayed their decisions until closer to the obstacle. We conclude that a head-mounted field restriction is not sufficient for simulating tunnel vision, but that the improved performance observed for walking compared to standing suggests that a walking interface (such as a treadmill) may be essential for eliciting natural perceptually-guided behavior in virtual reality locomotion simulators.

  14. Graded aerobic treadmill testing in pediatric sports-related concussion: safety, clinical use, and patient outcomes.

    PubMed

    Cordingley, Dean; Girardin, Richard; Reimer, Karen; Ritchie, Lesley; Leiter, Jeff; Russell, Kelly; Ellis, Michael J

    2016-12-01

    OBJECTIVE The objectives of this study were 2-fold: 1) to evaluate the safety, tolerability, and clinical use of graded aerobic treadmill testing in pediatric patients with sports-related concussion (SRC), and 2) to evaluate the clinical outcomes of treatment with a submaximal aerobic exercise program in patients with physiological post-concussion disorder (PCD). METHODS The authors conducted a retrospective chart review of pediatric patients (age < 20 years) with SRC who were referred to a multidisciplinary pediatric concussion program and underwent graded aerobic treadmill testing between October 9, 2014, and February 11, 2016. Clinical assessments were carried out by a single neurosurgeon and included clinical history taking, physical examination, and recording specific patient-reported concussion-related symptoms using the Post-Concussion Symptom Scale (PCSS). Graded aerobic treadmill testing using a modified Balke protocol for incremental increases in intensity was used as a diagnostic tool to assess physiological recovery, classify post-concussion syndrome (PCS) subtype, and reassess patients following treatment. Patients with a symptom-limited threshold on treadmill testing (physiological PCD) were treated with an individually tailored submaximal exercise prescription and multidisciplinary targeted therapies. RESULTS One hundred six patients (mean age 15.1 years, range 11-19 years) with SRC underwent a total of 141 treadmill tests. There were no serious complications related to treadmill testing in this study. Overall, 138 (97.9%) of 141 tests were well tolerated and contributed valuable clinical information. Treadmill testing confirmed physiological recovery in 63 (96.9%) of 65 patients tested, allowing successful return to play in 61 (93.8%). Treadmill testing was used to diagnose physiological PCD in 58 patients and cervicogenic PCD in 1 patient. Of the 41 patients with physiological PCD who had complete follow-up and were treated with tailored submaximal exercise prescription, 37 (90.2%) were classified as clinically improved and 33 (80.5%) successfully returned to sporting activities. Patients who did not respond or experienced an incomplete response to submaximal aerobic exercise treatment included 7 patients with migraine headaches and 1 patient with a postinjury psychiatric disorder. CONCLUSIONS Graded aerobic treadmill testing is a safe, tolerable, and clinically valuable tool that can assist in the evaluation and management of pediatric SRC. Future research is needed to confirm the clinical value of this tool in return-to-play decision making. Studies are also needed to understand the pathophysiology of physiological PCD and the effects of targeted treatment.

  15. Six-minute walking test done in a hallway or on a treadmill: how close do the two methods agree?

    PubMed

    Lenssen, Antoine F; Wijnen, Lambert C A M; Vankan, Dion G; Van Eck, Bart H; Berghmans, Danielle P; Roox, George M

    2010-12-01

    The 6-min walking test (6-MWT) is probably the most widely used test to measure the functional capacity in cardiac rehabilitation. Although the American Thoracic Society recommends testing on a flat surface, treadmills are also used for testing. Therefore, we want to investigate the interchangeability of results of treadmill and hallway 6-MWT in a population of patients participating in a cardiac rehabilitation programme. Preexperimental design. University hospital Department of Cardiology and Physiotherapy. Patients entering the cardiac rehabilitation programme of the Maastricht University Cardiology Department. Agreement in 6-min walking distance between the hallway and treadmill test results were calculated by taking the mean difference between the two methods and the 95% confidence interval of the difference and plotting this against the average of the two test results. A Bland and Altman plot was constructed, showing the mean difference and the 95% limits of agreement between the two methods. Sixty-nine patients participated in this study. Mean difference between walking on a treadmill and walking in a hallway was 9 m in favour of the hallway test. The 95% limits of agreement were±118 m. Results of the 6-MWT conducted in a hallway or on a treadmill are not interchangeable, because of large between-test variations in the distances walked by individual participants.

  16. Comparison of standardbred trotters exercising on a treadmill and a race track with identical draught resistances.

    PubMed

    Gottlieb-Vedi, M; Lindholm, A

    1997-05-17

    The responses in heart rate, plasma lactate and rectal temperature of standardbred trotters to draught loaded interval exercise on a treadmill and a race track were studied. The horses were exercised with incrementally increasing trotting speeds for two-minute intervals with draught loads of 10, 20 and 30 kilopond (kp) in three different tests. Each trotting interval was followed by two-minute periods at a walk without a draught load. Measurements of heart rate and plasma lactate were made at the end of each interval and the rectal temperature was taken at the end of the exercise. The heart rate and plasma lactate levels were significantly lower on the treadmill than on the track in the tests with 10 kp, but no significant differences were found between the treadmill and track exercise tests with the heavier draught resistances. No differences were observed in rectal temperature between treadmill and track conditions. From these findings it was concluded that the workload was significantly greater on the race track compared to the treadmill when the draught resistance was low (10 kp). Although the workload increased on both the race track and the treadmill as draught resistance increased, at the heavier draught resistances track exercise was no longer more demanding than exercise on the treadmill.

  17. Effect of added mass on treadmill performance and pulmonary function.

    PubMed

    Walker, Rachel E; Swain, David P; Ringleb, Stacie I; Colberg, Sheri R

    2015-04-01

    Military personnel engage in strenuous physical activity and load carriage. This study evaluated the role of body mass and of added mass on aerobic performance (uphill treadmill exercise) and pulmonary function. Performance on a traditional unloaded run test (4.8 km) was compared with performance on loaded tasks. Subjects performed an outdoor 4.8-km run and 4 maximal treadmill tests wearing loads of 0, 10, 20, and 30 kg. Subjects' pulmonary function (forced expired volume in 1 second [FEV1], forced vital capacity [FVC], and maximal voluntary ventilation [MVV]) was tested with each load, and peak values of heart rate, oxygen consumption ((Equation is included in full-text article.)), ventilation (VE), and respiratory exchange ratio (RER) were measured during each treadmill test. Performance on the 4.8-km run was correlated with treadmill performance, measured as time to exhaustion (TTE), with the strength of the correlation decreasing with load (r = 0.87 for 0 kg to 0.76 for 30 kg). Body mass was not correlated with TTE, other than among men with the 30-kg load (r = 0.48). During treadmill exercise, all peak responses other than RER decreased with load. Pulmonary function measures (FEV1, FVC, and MVV) decreased with load. Body mass was poorly correlated with treadmill performance, but added mass decreased performance. The decreased performance may be in part because of decreased pulmonary function. Unloaded 4.8-km run performance was correlated to unloaded uphill treadmill performance, but less so as load increased. Therefore, traditional run tests may not be an effective means of evaluating aerobic performance for military field operations.

  18. Aerobic fitness and performance in elite female futsal players

    PubMed Central

    Subiela, JV; Granda-Vera, J; Castagna, C; Gómez, M; Del Coso, J

    2015-01-01

    Despite its growing popularity, few studies have investigated specific physiological demands for elite female futsal. The aim of this study was to determine aerobic fitness in elite female futsal players using laboratory and field testing. Fourteen female futsal players from the Venezuelan National team (age =21.2±4.0 years; body mass =58.6±5.6 kg; height =161±5.0 cm) performed a progressive maximal treadmill test under laboratory conditions. Players also performed a progressive intermittent futsal-specific field test for endurance, the Futsal Intermittent Endurance Test (FIET), until volitional fatigue. Outcome variables were exercise heart rate (HR), VO2, post-exercise blood lactate concentrations ([La]b) and running speeds (km · h-1). During the treadmill test, VO2max, maximal aerobic speed (MAS), HR and peak [La]b were 45.3±5.6 ml · kg-1 · min-1, 12.5±1.77 km · h-1, 197±8 beats · min-1 and 11.3±1.4 mmol · l-1, respectively. The FIET total distance, peak running velocity, peak HR and [La]b were 1125.0±121.0 m, 15.2±0.5 km · h-1, 199±8 beats · min-1 and 12.5±2.2 mmol · l-1, respectively. The FIET distance and peak speed were strongly associated (r= 0.85-87, p < 0.0001) with VO2max and MAS, respectively. Peak HR and [La]b were not significantly different between tests. Elite female futsal players possess moderate aerobic fitness. Furthermore, the FIET can be considered as a valid field test to determine aerobic fitness in elite level female futsal players. PMID:28479664

  19. Aerobic fitness and performance in elite female futsal players.

    PubMed

    Barbero-Alvarez, J C; Subiela, J V; Granda-Vera, J; Castagna, C; Gómez, M; Del Coso, J

    2015-12-01

    Despite its growing popularity, few studies have investigated specific physiological demands for elite female futsal. The aim of this study was to determine aerobic fitness in elite female futsal players using laboratory and field testing. Fourteen female futsal players from the Venezuelan National team (age =21.2±4.0 years; body mass =58.6±5.6 kg; height =161±5.0 cm) performed a progressive maximal treadmill test under laboratory conditions. Players also performed a progressive intermittent futsal-specific field test for endurance, the Futsal Intermittent Endurance Test (FIET), until volitional fatigue. Outcome variables were exercise heart rate (HR), VO 2 , post-exercise blood lactate concentrations ([La]b) and running speeds (km · h -1 ). During the treadmill test, VO 2 max, maximal aerobic speed (MAS), HR and peak [La]b were 45.3±5.6 ml · kg -1 · min -1 , 12.5±1.77 km · h -1 , 197±8 beats · min -1 and 11.3±1.4 mmol · l -1 , respectively. The FIET total distance, peak running velocity, peak HR and [La]b were 1125.0±121.0 m, 15.2±0.5 km · h -1 , 199±8 beats · min -1 and 12.5±2.2 mmol · l -1 , respectively. The FIET distance and peak speed were strongly associated (r= 0.85-87, p < 0.0001) with VO 2 max and MAS, respectively. Peak HR and [La]b were not significantly different between tests. Elite female futsal players possess moderate aerobic fitness. Furthermore, the FIET can be considered as a valid field test to determine aerobic fitness in elite level female futsal players.

  20. Physiologic and Endocrine Correlates of Overweightness in African Americans and Caucasians

    DTIC Science & Technology

    2009-03-27

    aerobic graded exercise test (VO2 max test ) on a treadmill ( Philips StressVue Exercise Stress Testing System with Trackmaster Full Vision Inc...Pediatrics, 118 (6), 2434-42. Wang, J., Thornton, J.C., Bari, S., Williamson, B., Gallagher, D., Heymsfield, S.B., Horlick, M., Kotler , D...on a treadmill ( Philips StressVue Exercise Stress System, Trackmaster Full Vision Inc. Treadmill; Waltham, MA) to assess cardiovascular fitness. The

  1. Electrocardiographic responses to deer hunting activities in men with and without coronary artery disease.

    PubMed

    Haapaniemi, Susan; Franklin, Barry A; Wegner, James H; Hamar, Shelby; Gordon, Seymour; Timmis, Gerald C; O'Neill, William W

    2007-07-15

    To evaluate the cardiac demands of hunting deer, continuous ambulatory electrocardiograms were obtained in men with and without coronary artery disease (CAD) and compared with their responses to maximal treadmill testing. A volunteer sample of 25 middle-aged men (mean +/- SD 55 +/- 7 years of age), 17 of whom had known CAD, completed the study. Peak heart rate (HR) during 7 different deer hunting activities was expressed as the mean percentage of the maximal HR (HRmax) attained during treadmill testing. Periods of sustained sinus tachycardia were identified. Arrhythmias and ST-segment depression during deer hunting that were not apparent during treadmill testing were documented. Overall, 22 of 25 subjects demonstrated HR responses >85% HRmax for 1 to 65 minutes. Ten subjects exceeded the HRmax achieved during treadmill testing for 1 to 5 minutes. The relative HR response during ambulatory activity in the field was inversely related to cardiorespiratory fitness, expressed as METs (r = -0.59; p = 0.0020). Three subjects had ischemic electrocardiograms during deer hunting, but not during treadmill testing. Complex arrhythmias in the field not detected by treadmill testing included ventricular bi-trigeminy, ventricular couplets, and 8 runs of ventricular tachycardia (3 to 28 beats) in 3 subjects with documented CAD. In conclusion, deer hunting can evoke sustained HRs, ischemic ST-segment depression, and threatening ventricular arrhythmias in excess of those documented during maximal treadmill testing. The strenuous nature of deer hunting coupled with presumed hyperadrenergia and superimposed environmental stresses may contribute to the excessive cardiac demands associated with this activity.

  2. The Reliability of a 5km Run Test on a Motorized Treadmill

    ERIC Educational Resources Information Center

    Driller, Matthew; Brophy-Williams, Ned; Walker, Anthony

    2017-01-01

    The purpose of the present study was to determine the reliability of a 5km run test on a motorized treadmill. Over three consecutive weeks, 12 well-trained runners completed three 5km time trials on a treadmill following a standardized warm-up. Runners were partially-blinded to their running speed and distance covered. Total time to complete the…

  3. Objective determination of the predefined duration of a constant-load diagnostic tests in arterial claudication.

    PubMed

    Mahe, Guillaume; Abraham, Pierre; Zeenny, Maya; Bruneau, Antoine; Vielle, Bruno; Leftheriotis, Georges

    2010-04-01

    The predefined duration to arbitrarily stop the tests during constant-load treadmill exercise is a subject of debate and widely variable in the literature. We hypothesized that the upper and lower limits for predefined durations of constant-load 3.2 km/hour 10% grade tests could be derived from the distribution of walking distances observed on a treadmill in a population of subjects referred for claudication or from the optimal cutoff point distance on a treadmill to confirm a limitation self-reported by history. We conducted a retrospective analysis using a referral center, institutional practice, and ambulatory patients. We studied 1290 patients (86% male), 62.1 +/- 11.2 years of age, 169 +/- 8 cm height, 75.7 +/- 14.2 kg weight. Patients performed a standard constant-load treadmill test: 3.2 km hour(-1), 10% slope, maximized to 1000 meters (approximately 20 minutes). We analyzed the maximal walking distance self-reported (MWD(SR)) by history and the maximal walking distance measured on the treadmill (MWD(TT)). Patients reporting MWD(SR) >or=1000 meters were considered unlimited by history. Only 197 patients (15.3%) completed the 20-minute treadmill test. Among the 504 patients who did not stop before 250 meters, 47.8% stopped within the next 250 meters (were unable to walk 500 meters). This proportion falls to 7.5% among the 213 patients who did not stop before 750 meters. When the final goal was to estimate whether the treadmill test can discriminate patients with or without limitation by history, area under the receiver operating characteristic (ROC) curve was 0.809 +/- 0.016 (95% confidence interval [CI], 0.778-0.841; P < .0001), the best diagnostic performance was attained for an MWD(TT) of 299 meters (approximately 6.15 minutes). In patients undergoing constant-load treadmill exercise with a protocol of 3.2 km hour(-1) and 10% slope: a predefined duration of 7 minutes could be proposed as a lower limit for the predefined duration of the tests specifically if one aims at confirming the limitation by history with treadmill testing. Owing to the low risk that patients that could walk 750 meters (approximately 15 minutes) will have to stop in the next 250 meters, 15 minutes seems a reasonable upper limit for the predefined test duration in clinical routine.

  4. Over ground walking and body weight supported walking improve mobility equally in cerebral palsy: a randomised controlled trial.

    PubMed

    Swe, Ni Ni; Sendhilnnathan, Sunitha; van Den Berg, Maayken; Barr, Christopher

    2015-11-01

    To assess partial body weight supported treadmill training versus over ground training for walking ability in children with mild to moderate cerebral palsy. Randomised controlled trial. A Special Needs school in Singapore. Thirty children with cerebral palsy, aged 6-18, with a Gross Motor Function Classification System score of II-III. Two times 30 minute sessions of walking training per week for 8 weeks, progressed as tolerated, either over ground (control) or using partial body weight supported treadmill training (intervention). The 10 metre walk test, and the 6 minute walk test. Secondary measures were sub-sections D and E on the Gross Motor Function Measure. Outcomes were assessed at baseline, and after 4 and 8 weeks of training. There was no effect of group allocation on any outcome measure, while time was a significant factor for all outcomes. Walking speed improved significantly more in the intervention group by week 4 (0.109 (0.067)m/s vs 0.048 (0.071)m/s, P=0.024) however by week 8 the change from baseline was similar (intervention 0.0160 (0.069)m/s vs control 0.173 (0.109)m/s, P=0.697). All gains made by week 4 were significantly improved on by week 8 for the 10 metre walk test, 6 minute walk test, and the gross motor function measure. Partial body weight supported treadmill training is no more effective than over ground walking at improving aspects of walking and function in children with mild to moderate cerebral palsy. Gains seen in 4 weeks can be furthered by 8 weeks. © The Author(s) 2015.

  5. Comparison of cardiorespiratory responses during aquatic and land treadmill exercise in patients with coronary artery disease.

    PubMed

    Choi, Jun Hwan; Kim, Bo Ryun; Joo, Seung Jae; Han, Eun Young; Kim, Song Yi; Kim, Sun Mi; Lee, So Young; Yoon, Ho Min

    2015-01-01

    To investigate cardiorespiratory responses during exercise stress tests using an aquatic treadmill and a land-based treadmill in patients with coronary artery disease (CAD). Twenty-one stable CAD patients were enrolled. All patients participated in 2 symptom-limited incremental exercise tests, using both an aquatic and a land treadmill. For the aquatic treadmill protocol, patients were submerged to the upper waist in 28°C water. The treadmill speed started at 2.0 km/h and increased 0.5 km/h every minute thereafter. For the land treadmill protocol, the speed and gradient were started at 2.4 km/h and 1.5%, respectively. The speed was increased by 0.3 km/h and grade by 1% every minute thereafter. Oxygen consumption ((Equation is included in full-text article.)O2), heart rate (HR), and respiratory exchange ratio were measured continuously and peak values recorded. Rating of perceived exertion, percentage of age-predicted maximal HR, and total exercise duration were also recorded. Peak cardiorespiratory responses during both protocols were compared. The peak (Equation is included in full-text article.)O2 and peak HR did not show any significant differences. The peak respiratory exchange ratio was significantly greater using the land treadmill than the aquatic treadmill protocol. Rating of perceived exertion, age-predicted maximal HR percentage, and total exercise duration were similar for both protocols. There was a significant linear relationship between HR and (Equation is included in full-text article.)O2 with both protocols. This study demonstrated that aquatic treadmill exercise elicits similar peak cardiorespiratory responses compared with land treadmill exercise, suggesting that aquatic treadmill exercise may be effective for CAD patients in cardiac rehabilitation.

  6. Exercise activates compensatory thermoregulatory reaction in rats: a modeling study

    PubMed Central

    Yoo, Yeonjoo; LaPradd, Michelle; Kline, Hannah; Zaretskaia, Maria V.; Behrouzvaziri, Abolhassan; Rusyniak, Daniel E.; Molkov, Yaroslav I.

    2015-01-01

    The importance of exercise is increasingly emphasized for maintaining health. However, exercise itself can pose threats to health such as the development of exertional heat shock in warm environments. Therefore, it is important to understand how the thermoregulation system adjusts during exercise and how alterations of this can contribute to heat stroke. To explore this we measured the core body temperature of rats (Tc) running for 15 min on a treadmill at various speeds in two ambient temperatures (Ta = 25°C and 32°C). We assimilated the experimental data into a mathematical model that describes temperature changes in two compartments of the body, representing the muscles and the core. In our model the core body generates heat to maintain normal body temperature, and dissipates it into the environment. The muscles produce additional heat during exercise. According to the estimation of model parameters, at Ta = 25°C, the heat generation in the core was progressively reduced with the increase of the treadmill speed to compensate for a progressive increase in heat production by the muscles. This compensation was ineffective at Ta = 32°C, which resulted in an increased rate of heat accumulation with increasing speed, as opposed to the Ta = 25°C case. Interestingly, placing an animal on a treadmill increased heat production in the muscles even when the treadmill speed was zero. Quantitatively, this “ready-to-run” phenomenon accounted for over half of the heat generation in the muscles observed at maximal treadmill speed. We speculate that this anticipatory response utilizes stress-related circuitry. PMID:26472864

  7. Commercial Motion Sensor Based Low-Cost and Convenient Interactive Treadmill.

    PubMed

    Kim, Jonghyun; Gravunder, Andrew; Park, Hyung-Soon

    2015-09-17

    Interactive treadmills were developed to improve the simulation of overground walking when compared to conventional treadmills. However, currently available interactive treadmills are expensive and inconvenient, which limits their use. We propose a low-cost and convenient version of the interactive treadmill that does not require expensive equipment and a complicated setup. As a substitute for high-cost sensors, such as motion capture systems, a low-cost motion sensor was used to recognize the subject's intention for speed changing. Moreover, the sensor enables the subject to make a convenient and safe stop using gesture recognition. For further cost reduction, the novel interactive treadmill was based on an inexpensive treadmill platform and a novel high-level speed control scheme was applied to maximize performance for simulating overground walking. Pilot tests with ten healthy subjects were conducted and results demonstrated that the proposed treadmill achieves similar performance to a typical, costly, interactive treadmill that contains a motion capture system and an instrumented treadmill, while providing a convenient and safe method for stopping.

  8. A comparison of VO2max and metabolic variables between treadmill running and treadmill skating.

    PubMed

    Koepp, Kriston K; Janot, Jeffrey M

    2008-03-01

    The purpose of this study was to determine differences in VO2max and metabolic variables between treadmill running and treadmill skating. This study also examined VO2max responses during a continuous skating treadmill protocol and a discontinuous skating treadmill protocol. Sixteen male high school hockey players, who had a mean age of 16 +/- 1 years and were of an above-average fitness level, participated in this study. All subjects completed 4 exercise trials: a 1-hour skating treadmill familiarization trial, a treadmill running trial, and 2 randomized skating treadmill trials. Minute ventilation (VE), oxygen consumption VO2), carbon dioxide production VCO2), respiratory exchange ratio (RER), and heart rate were averaged every 15 seconds up to VO2max for each exercise test. The results showed that there was a significant difference (P < 0.05) for VO2max (mL.kg.min) and maximal VCO2 (L.min) between the running treadmill protocol and discontinuous skating treadmill protocol. There was also a significant difference for maximal RER between the discontinuous and continuous skating treadmill protocol and between the discontinuous skating treadmill protocol and running treadmill protocol. In conclusion, the running treadmill elicited a greater VO2max (mL.kg.min) than the skating treadmill did, but when it comes to specificity of ice skating, the skating treadmill may be ideal. Also, there was no significant difference between the discontinuous and continuous skating treadmill protocols. Therefore, a continuous protocol is possible on the skating treadmill without compromising correct skating position and physiologic responses. However, the continuous skating treadmill protocol should undergo validation before other scientists, coaches, and strength and conditioning professionals can apply it correctly.

  9. Treadmill exercise alleviates short-term memory impairment in 6-hydroxydopamine-induced Parkinson's rats.

    PubMed

    Cho, Han-Sam; Shin, Mal-Soon; Song, Wook; Jun, Tae-Won; Lim, Baek-Vin; Kim, Young-Pyo; Kim, Chang-Ju

    2013-01-01

    Progressive loss of dopaminergic neurons in substantia nigra is a key pathogenesis of Parkinson's disease. In the present study, we investigated the effects of treadmill exercise on short-term memory, apoptotic dopaminergic neuronal cell death and fiber loss in the nigrostriatum, and cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. Parkinson's rats were made by injection of 6-hydroxydopamine (6-OHDA) into the striatum using stereotaxic instrument. Four weeks after 6-OHDA injection, the rats in the 6-OHDA-injection group exhibited significant rotational asymmetry following apomorphine challenge. The rats in the exercise groups were put on the treadmill to run for 30 min once a day for 14 consecutive days starting 4 weeks after 6-OHDA injection. In the present results, extensive degeneration of the dopaminergic neurons in the substantia nigra with loss of dopaminergic fibers in the striatum were produced in the rats without treadmill running, which resulted in short-term memory impairment. However, the rats performing treadmill running for 2 weeks alleviated nigrostriatal dopaminergic cell loss and alleviated short-term memory impairment with increasing cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. The present results show that treadmill exercise may provide therapeutic value for the Parkinson's disease.

  10. Eryptosis and hemorheological responses to maximal exercise in athletes: Comparison between running and cycling.

    PubMed

    Nader, E; Guillot, N; Lavorel, L; Hancco, I; Fort, R; Stauffer, E; Renoux, C; Joly, P; Germain, M; Connes, P

    2018-05-01

    We compared the effects of cycling and running exercise on hemorheological and hematological properties, as well as eryptosis markers. Seven endurance-trained subjects randomly performed a progressive and maximal exercise test on a cycle ergometer and a treadmill. Blood was sampled at rest and at the end of the exercise to analyze hematological and blood rheological parameters including hematocrit (Hct), red blood cell (RBC) deformability, aggregation, and blood viscosity. Hemoglobin saturation (SpO2), blood lactate, and glucose levels were also monitored. Red blood cell oxidative stress, calcium content, and phosphatidylserine exposure were determined by flow cytometry to assess eryptosis level. Cycling exercise increased blood viscosity and RBC aggregation whereas it had no significant effect on RBC deformability. In contrast, blood viscosity remained unchanged and RBC deformability increased with running. The increase in Hct, lactate, and glucose concentrations and the loss of weight at the end of exercise were not different between running and cycling. Eryptosis markers were not affected by exercise. A significant drop in SpO2 was noted during running but not during cycling. Our study showed that a progressive and maximal exercise test conducted on a cycle ergometer increased blood viscosity while the same test conducted on a treadmill did not change this parameter because of different RBC rheological behavior between the 2 tests. We also demonstrated that a short maximal exercise does not alter RBC physiology in trained athletes. We suspect that exercise-induced hypoxemia occurring during running could be at the origin of the RBC rheological behavior differences with cycling. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Determinants of Time to Fatigue during Non-Motorized Treadmill Exercise

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Lee, M. C.; Wilson, Cassie A.; Hagan, R. Donald

    2007-01-01

    Treadmill exercise is commonly used for aerobic and anaerobic conditioning. During non-motorized treadmill exercise, the subject must provide the power necessary to drive the treadmill belt. The purpose of this study was to determine what factors affected the time to fatigue on a pair of non-motorized treadmills. Twenty subjects (10 males/10 females) attempted to complete five minutes of locomotion during separate trials at 3.22, 4.83, 6.44, 8.05, 9.66, and 11.27 km (raised dot) h(sup -1). Total exercise time (less than or equal to 5 min) was recorded. Exercise time was converted to the amount of 15 second intervals completed. Peak oxygen uptake (VO2) was measured using a graded exercise test on a standard treadmill, and anthropometric measures were collected from each subject before entering into the study. A Cox proportional hazards regression model was used to determine significant predictive factors in a multivariate analysis. Non-motorized treadmill speed and absolute peak VO2 were found to be significant predictors of exercise time, but there was no effect of anthropometric characteristics. Gender was found to be a predictor of treadmill time, but this was likely due to a higher peak VO2 in males than in females. These results were not affected by the type of treadmill tested in this study. Coaches and therapists should consider the cardiovascular fitness of an athlete or client when prescribing target speed since these factors are related to the total exercise time than can be achieved on a non-motorized treadmill.

  12. Agreement between the spatio-temporal gait parameters from treadmill-based photoelectric cell and the instrumented treadmill system in healthy young adults and stroke patients.

    PubMed

    Lee, Myungmo; Song, Changho; Lee, Kyoungjin; Shin, Doochul; Shin, Seungho

    2014-07-14

    Treadmill gait analysis was more advantageous than over-ground walking because it allowed continuous measurements of the gait parameters. The purpose of this study was to investigate the concurrent validity and the test-retest reliability of the OPTOGait photoelectric cell system against the treadmill-based gait analysis system by assessing spatio-temporal gait parameters. Twenty-six stroke patients and 18 healthy adults were asked to walk on the treadmill at their preferred speed. The concurrent validity was assessed by comparing data obtained from the 2 systems, and the test-retest reliability was determined by comparing data obtained from the 1st and the 2nd session of the OPTOGait system. The concurrent validity, identified by the intra-class correlation coefficients (ICC [2, 1]), coefficients of variation (CVME), and 95% limits of agreement (LOA) for the spatial-temporal gait parameters, were excellent but the temporal parameters expressed as a percentage of the gait cycle were poor. The test-retest reliability of the OPTOGait System, identified by ICC (3, 1), CVME, 95% LOA, standard error of measurement (SEM), and minimum detectable change (MDC95%) for the spatio-temporal gait parameters, was high. These findings indicated that the treadmill-based OPTOGait System had strong concurrent validity and test-retest reliability. This portable system could be useful for clinical assessments.

  13. Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality.

    PubMed

    Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis

    2015-11-01

    In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.

  14. Exercise training for intermittent claudication.

    PubMed

    McDermott, Mary M

    2017-11-01

    The objective of this study was to provide an overview of evidence regarding exercise therapies for patients with lower extremity peripheral artery disease (PAD). This manuscript summarizes the content of a lecture delivered as part of the 2016 Crawford Critical Issues Symposium. Multiple randomized clinical trials demonstrate that supervised treadmill exercise significantly improves treadmill walking performance in people with PAD and intermittent claudication symptoms. A meta-analysis of 25 randomized trials demonstrated a 180-meter increase in treadmill walking distance in response to supervised exercise interventions compared with a nonexercising control group. Supervised treadmill exercise has been inaccessible to many patients with PAD because of lack of medical insurance coverage. However, in 2017, the Centers for Medicare and Medicaid Services issued a decision memorandum to support health insurance coverage of 12 weeks of supervised treadmill exercise for patients with walking impairment due to PAD. Recent evidence also supports home-based walking exercise to improve walking performance in people with PAD. Effective home-exercise programs incorporate behavioral change interventions such as a remote coach, goal setting, and self-monitoring. Supervised treadmill exercise programs preferentially improve treadmill walking performance, whereas home-based walking exercise programs preferentially improve corridor walking, such as the 6-minute walk test. Clinical trial evidence also supports arm or leg ergometry exercise to improve walking endurance in people with PAD. Treadmill walking exercise appears superior to resistance training alone for improving walking endurance. Supervised treadmill exercise significantly improves treadmill walking performance in people with PAD by approximately 180 meters compared with no exercise. Recent evidence suggests that home-based exercise is also effective and preferentially improves over-ground walking performance, such as the 6-minute walk test. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  15. Managing Knee Osteoarthritis: The Effects of Body Weight Supported Physical Activity on Joint Pain, Function, and Thigh Muscle Strength.

    PubMed

    Peeler, Jason; Christian, Mathew; Cooper, Juliette; Leiter, Jeffrey; MacDonald, Peter

    2015-11-01

    To determine the effect of a 12-week lower body positive pressure (LBPP)-supported low-load treadmill walking program on knee joint pain, function, and thigh muscle strength in overweight patients with knee osteoarthritis (OA). Prospective, observational, repeated measures investigation. Community-based, multidisciplinary sports medicine clinic. Thirty-one patients aged between 55 and 75 years, with a body mass index ≥25 kg/m and mild-to-moderate knee OA. Twelve-week LBPP-supported low-load treadmill walking regimen. Acute knee joint pain (visual analog scale) during full weight bearing treadmill walking, chronic knee pain, and joint function [Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire] during normal activities of daily living, and thigh muscle strength (isokinetic testing). Appropriate methods of statistical analysis were used to compare data from baseline and follow-up evaluation. Participants reported significant improvements in knee joint pain and function and demonstrated significant increases in thigh muscle strength about the degenerative knee. Participants also experienced significant reductions in acute knee pain during full weight bearing treadmill walking and required dramatically less LBPP support to walk pain free on the treadmill. Data suggest that an LBPP-supported low-load exercise regimen can be used to significantly diminish knee pain, enhance joint function, and increase thigh muscle strength, while safely promoting pain-free walking exercise in overweight patients with knee OA. These findings have important implications for the development of nonoperative treatment strategies that can be used in the management of joint symptoms associated with progressive knee OA in at-risk patient populations. This research suggests that LBPP-supported low-load walking is a safe user-friendly mode of exercise that can be successfully used in the management of day-to-day joint symptoms associated with knee OA, helping to improve the physical health, quality of life, and social well-being of North America's aging population.

  16. Use of an antigravity treadmill for rehabilitation of a pelvic stress injury.

    PubMed

    Tenforde, Adam S; Watanabe, Laine M; Moreno, Tamara J; Fredericson, Michael

    2012-08-01

    Pelvic stress injuries are a relatively uncommon form of injury that require high index of clinician suspicion and usually MRI for definitive diagnosis. We present a case report of a 21-year-old female elite runner who was diagnosed with pelvic stress injury and used an antigravity treadmill during rehabilitation. She was able to return to pain-free ground running at 8 weeks after running at 95% body weight on the antigravity treadmill. Ten weeks from time of diagnosis, she competed at her conference championships and advanced to the NCAA Championships in the 10,000-meters. She competed in both races without residual pain. To our knowledge, this is the first published case report on use of an antigravity treadmill in rehabilitation of bone-related injuries. Our findings suggest that use of an antigravity treadmill for rehabilitation of a pelvic stress injury may result in appropriate bone loading and healing during progression to ground running and faster return to competition. Future research may identify appropriate protocols for recovery from overuse lower extremity injuries and other uses for this technology, including neuromuscular recovery and injury prevention. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. Effects of robotic treadmill training on functional mobility, walking capacity, motor symptoms and quality of life in ambulatory patients with Parkinson's disease: a preliminary prospective longitudinal study.

    PubMed

    Paker, Nurdan; Bugdayci, Derya; Goksenoglu, Goksen; Sen, Aysu; Kesiktas, Nur

    2013-01-01

    Decreased mobility and walking capacity occur frequently in Parkinson's disease (PD). Robotic treadmill training is a novel method to improve the walking capacity in rehabilitation. The primary aim of this study was to investigate the effects of robotic treadmill training on functional mobility and walking capacity in PD. Secondly, we aimed to assess the effects of the robotic treadmill training the motor symptoms and quality of life in patients with PD. Seventy patients with idiopathic Parkinson's disease who admitted to the outpatient clinic of the rehabilitation hospital were screened and 12 ambulatory volenteers who met the study criteria were included in this study. Patients were evaluated by Hoehn Yahr (HY) scale clinically. Two sessions robotic treadmill training per week during 5 weeks was planned for every patient. Patients were evaluated by the Timed Up and Go (TUG) test, 10 meter walking test (10 MWT), Unified Parkinson's Disease Rating Scale (UPDRS) motor section and Parkinson's Disease Questionnaire-39 (PDQ-39) at the baseline, at the 5 and 12 weeks. Cognitive and emotional states of the patients were assessed by Mini Mental State Examination (MMSE) test and Hospital Anxiety and Depression Scale (HADS) at the baseline. All patients were under medical treatment for the PD in this study and drug treatment was not changed during the study. Ten patients completed the study. The mean age was 65.6 ± 6.6 years. Five patients (50%) were women. Disease severity was between the HY stage 1-3. Two patients did not continue the robotic treadmill training after 7 sessions. They also did not want to come for control visits. TUG test, 10 MWT and UPDRS motor subscale scores showed statistically significant improvement after robotic treadmill training (p = 0.02, p = 0.001, p = 0.016). PDQ-39 scores improved significantly after robotic treadmill training (p = 0.03), however, the scores turned back to the baseline level at the 12. week control. As a result of this preliminary study, robotic treadmill training was useful to improve the functional mobility, walking capacity and motor symptoms in mild to moderate PD. Robotic treadmill training provided a transient improvement in the quality of life during the treatment.

  18. Treadmill exercise decreases incidence of Alzheimer's disease by suppressing glycogen synthase kinase-3β expression in streptozotocin-induced diabetic rats.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young; Kim, Tae-Woon; Lee, Kwang-Sik; Kim, Kijeong

    2015-04-01

    Diabetes is a metabolic disorder, and it is considered as a major risk factor for Alzheimer's disease (AD). In the present study, we evaluated whether treadmill exercise ameliorates progression of AD in relation with glycogen synthase kinase-3β (GSK-3β) activity using streptozotocin (STZ)-induced diabetic rats. For this study, step-down avoidance task, immunohistochemistry for glycogen synthase kinase-3β (GSK-3β) and tau, and western blot for phosphor-phosphoinositide 3 kinase (p-PI3K)/PI3K and phosphor-Akt (p-Akt)/Akt were performed. Diabetes mellitus was induced by intraperitoneal injection of STZ. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, five times a week, during 12 weeks. The present results showed that short-term and long-term latencies in the step-down avoidance task were decreased by induction of diabetes, and treadmill exercise inhibited these latencies in the diabetic rats. Induction of diabetes suppressed the ratio of p-PI3K to PI3K and the ratio of p-Akt to Akt, and treadmill exercise increased these ratios in the diabetic rats. The numbers of GSK-3β-positive and tau-positive cells in the hippocampal dentate gyrus was higher in the diabetes-induction group than that in the control group, and treadmill exercise inhibited these numbers in the diabetic rats. In the present study, treadmill exercise suppressed hyperphosphorylation of tau in the hippocampus by decreased GSK-3β activity through PI3K/Akt pathway activation in the diabetic rats. Based on the present results, treadmill exercise may helpful to prevent diabetes-associated AD occurrence.

  19. Hemodynamic changes after static and dynamic exercises and treadmill stress test; different patterns in patients with primary benign exertional headache?

    PubMed

    Kordi, Ramin; Mazaheri, Reza; Rostami, Mohsen; Mansournia, Mohammad Ali

    2012-01-01

    The pathophysiology of primary benign exertional headache (EH) is not still clearly defined. Some researchers have suggested an impaired vascular response as the etiology of this disorder. In this study we investigated whether there are any differences in blood pressure (BP) and heart rate (HR) of the subjects in course of the static and dynamic exercises and the treadmill stress test between those with and without EH. From university students, 22 patients with EH (mean age: 19.8 ± 2.10, Female to Male: 7:15) and 20 normal subjects (mean age: 19.3 ± 1.97, Female: Male: 8:12) were recruited. All the subjects performed the static and dynamic exercises at 30 and 20 percent of the maximal voluntary contraction (MVC) and Bruce treadmill stress test according to the standard protocols. HR and BP of all the cases at the baseline and during and immediately after each test were measured. No significant difference was found between the mean rise of HR, systolic and diastolic BP of the subjects with and without EH in static and dynamic exercises and also treadmill stress test. It seems that between those with and without EH, there is no significant difference in rise of HR and BP response to static and dynamic exercises and treadmill stress test. Further studies are required to find the pathophysiology and risk factors of EH.

  20. Pulmonary outcome of esophageal atresia patients and its potential causes in early childhood.

    PubMed

    Dittrich, René; Stock, Philippe; Rothe, Karin; Degenhardt, Petra

    2017-08-01

    The aim of this study was to illustrate the pulmonary long term outcome of patients with repaired esophageal atresia and to further examine causes and correlations that might have led to this outcome. Twenty-seven of 62 possible patients (43%) aged 5-20years, with repaired esophageal atresia were recruited. Body plethysmography and spirometry were performed to evaluate lung function, and the Bruce protocol treadmill exercise test to assess physical fitness. Results were correlated to conditions such as interpouch distance, gastroesophageal reflux or duration of post-operative mechanical ventilation. Seventeen participants (63%) showed abnormal lung function at rest or after exercise. Restrictive ventilatory defects (solely restrictive or combined) were found in 11 participants (41%), and obstructive ventilatory defects (solely obstructive or combined) in 13 subjects (48%). Twenty-two participants (81%) performed the Bruce protocol treadmill exercise test to standard. The treadmill exercise results were expressed in z-score and revealed to be significantly below the standard population mean (z-score=-1.40). Moreover, significant correlations between restrictive ventilatory defects and the interpouch distance; duration of post-operative ventilation; gastroesophageal reflux disease; plus recurrent aspiration pneumonia during infancy; were described. It was shown that esophageal atresia and associated early complications have significant impact on pulmonary long term outcomes such as abnormal lung function and, in particular restrictive ventilatory defects. Long-running and regular follow-ups of patients with congenital esophageal atresia are necessary in order to detect and react to the development and progression of associated complications such as ventilation disorders or gastroesophageal reflux disease. Prognosis study, Level II. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Different motor tasks impact differently on cognitive performance of older persons during dual task tests.

    PubMed

    Simoni, David; Rubbieri, Gaia; Baccini, Marco; Rinaldi, Lucio; Becheri, Dimitri; Forconi, Tatiana; Mossello, Enrico; Zanieri, Samanta; Marchionni, Niccolò; Di Bari, Mauro

    2013-07-01

    Dual task paradigm states that the introduction of a second task during a cognitive or motor performance results in a decreased performance in either task. Treadmill walk, often used in clinical applications of dual task testing, has never been compared to overground walk, to ascertain its susceptibility to interference from a second task. We compared the effects of overground and treadmill gait on dual task performance. Gait kinematic parameters and cognitive performance were obtained in 29 healthy older adults (mean age 75 years, 14 females) when they were walking freely on a sensorized carpet or during treadmill walking with an optoelectronic system, in single task or dual task conditions, using alternate repetition of letters as a cognitive verbal task. During overground walking, speed, cadence, step length stride length, and double support time (all with P value<0.001) and cognitive performance (number of correct words, P<0.001) decreased substantially from single to dual task testing. When subjects walked at a fixed speed on the treadmill, cadence decreased significantly (P=0.005), whereas cognitive performance remained unaffected. Both motor and cognitive performances decline during dual task testing with overground walking. Conversely, cognitive performance remains unaffected in dual task testing on the treadmill. In the light of current dual task paradigm, these findings may have relevant implication for our understanding of motor control, as they suggest that treadmill walk does not involve brain areas susceptible to interference from the introduction of a cognitive task. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial.

    PubMed

    Mirelman, Anat; Rochester, Lynn; Maidan, Inbal; Del Din, Silvia; Alcock, Lisa; Nieuwhof, Freek; Rikkert, Marcel Olde; Bloem, Bastiaan R; Pelosin, Elisa; Avanzino, Laura; Abbruzzese, Giovanni; Dockx, Kim; Bekkers, Esther; Giladi, Nir; Nieuwboer, Alice; Hausdorff, Jeffrey M

    2016-09-17

    Age-associated motor and cognitive deficits increase the risk of falls, a major cause of morbidity and mortality. Because of the significant ramifications of falls, many interventions have been proposed, but few have aimed to prevent falls via an integrated approach targeting both motor and cognitive function. We aimed to test the hypothesis that an intervention combining treadmill training with non-immersive virtual reality (VR) to target both cognitive aspects of safe ambulation and mobility would lead to fewer falls than would treadmill training alone. We carried out this randomised controlled trial at five clinical centres across five countries (Belgium, Israel, Italy, the Netherlands, and the UK). Adults aged 60-90 years with a high risk of falls based on a history of two or more falls in the 6 months before the study and with varied motor and cognitive deficits were randomly assigned by use of computer-based allocation to receive 6 weeks of either treadmill training plus VR or treadmill training alone. Randomisation was stratified by subgroups of patients (those with a history of idiopathic falls, those with mild cognitive impairment, and those with Parkinson's disease) and sex, with stratification per clinical site. Group allocation was done by a third party not involved in onsite study procedures. Both groups aimed to train three times per week for 6 weeks, with each session lasting about 45 min and structured training progression individualised to the participant's level of performance. The VR system consisted of a motion-capture camera and a computer-generated simulation projected on to a large screen, which was specifically designed to reduce fall risk in older adults by including real-life challenges such as obstacles, multiple pathways, and distracters that required continual adjustment of steps. The primary outcome was the incident rate of falls during the 6 months after the end of training, which was assessed in a modified intention-to-treat population. Safety was assessed in all patients who were assigned a treatment. This study is registered with ClinicalTrials.gov, NCT01732653. Between Jan 6, 2013, and April 3, 2015, 302 adults were randomly assigned to either the treadmill training plus VR group (n=154) or treadmill training alone group (n=148). Data from 282 (93%) participants were included in the prespecified, modified intention-to-treat analysis. Before training, the incident rate of falls was similar in both groups (10·7 [SD 35·6] falls per 6 months for treadmill training alone vs 11·9 [39·5] falls per 6 months for treadmill training plus VR). In the 6 months after training, the incident rate was significantly lower in the treadmill training plus VR group than it had been before training (6·00 [95% CI 4·36-8·25] falls per 6 months; p<0·0001 vs before training), whereas the incident rate did not decrease significantly in the treadmill training alone group (8·27 [5·55-12·31] falls per 6 months; p=0·49). 6 months after the end of training, the incident rate of falls was also significantly lower in the treadmill training plus VR group than in the treadmill training group (incident rate ratio 0·58, 95% CI 0·36-0·96; p=0·033). No serious training-related adverse events occurred. In a diverse group of older adults at high risk for falls, treadmill training plus VR led to reduced fall rates compared with treadmill training alone. European Commission. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Gait, Balance, Leg Strength, and Sprint Speed After Bedrest with LBNP Exercise

    NASA Technical Reports Server (NTRS)

    Boda, Wanda L.; Watenbaugh, D. E.; Ballard, R. E.; Fortney, S. M.; Ertl, A. C.; Lee, S. M. C.; William, J. M.; Hargens, Alan R.

    1997-01-01

    Microgravity and bedrest (BR) result in similar physiological decrements such as loss of muscle mass, muscle strength and balance. Previous studies analyzing exercise within lower body negative pressure (LBNP) have found that gait is similar in LBNP on a vertical treadmill and overground exercise on a horizontal treadmill. Since treadmill exercise is known to increase muscular strength and endurance, we tested the hypothesis that LBNP exercise on a vertical treadmill would prevent or attenuate many of the physical decrements which occur during bedrest. Based on our positive results from diverse tests of post-BR function, we believe that exercise within LBNP is worth pursuing as a countermeasure for reducing the physical deterioration that occurs during bedrest and microgravity.

  4. Treadmill Intervention Attenuates the Cafeteria Diet-Induced Impairment of Stress-Coping Strategies in Young Adult Female Rats

    PubMed Central

    Cigarroa, Igor; Lalanza, Jaume F.; Caimari, Antoni; del Bas, Josep M.; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M.

    2016-01-01

    The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy in terms of active avoidance behavior in the CAF-fed animals. This effect was not observed at lower doses of treadmill training. PMID:27099927

  5. Treadmill Intervention Attenuates the Cafeteria Diet-Induced Impairment of Stress-Coping Strategies in Young Adult Female Rats.

    PubMed

    Cigarroa, Igor; Lalanza, Jaume F; Caimari, Antoni; del Bas, Josep M; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M

    2016-01-01

    The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy in terms of active avoidance behavior in the CAF-fed animals. This effect was not observed at lower doses of treadmill training.

  6. Supported treadmill ambulation for amyotrophic lateral sclerosis: a pilot study.

    PubMed

    Sanjak, Mohammed; Bravver, Elena; Bockenek, William L; Norton, H James; Brooks, Benjamin R

    2010-12-01

    To determine the feasibility, tolerability, safety, and exercise treatment-effect size of repetitive rhythmic exercise mediated by supported treadmill ambulation training (STAT) for patients with amyotrophic lateral sclerosis (ALS). Interventional with repeated-measures design. Multidisciplinary ALS clinic at academic medical center. Convenience sample of patients with ALS (N=9) who were ambulatory with assistive devices (Sinaki-Mulder stages II-III). Repetitive rhythmic exercise-STAT (30min total; 5min of exercise intercalated with 5min of rest) performed 3 times a week for 8 weeks. ALS Functional Rating Scale-Revised (ALSFRS-R), percentage of predicted vital capacity (VC), total lower-extremities manual muscle test (MMT), rate of perceived exertion (RPE), Fatigue Severity Scale (FSS), and maximum voluntary isometric contraction (MVIC) in 10 lower and 10 upper extremities. Gait performance, which included walking distance, speed, steps, and stride length, was evaluated during treadmill and ground 6-minute walk tests (6MWTs) and 25-foot walk test (25FWT). Feasibility issues decreased screened participants by 4 patients (31%). Nine patients were enrolled, but 6 patients (67%) completed the study and 3 (23% of original cohort; 33% of enrolled cohort) could not complete the exercise intervention because of non-ALS-related medical problems. Tolerability of the intervention measures during the treadmill 6MWT showed improvement in RPE (P≤.05) and FSS score (P≥.05). Safety measures (ALSFRS-R, VC, MMT) showed no decrease and showed statistical improvement in ALSFRS-R score (P≤.05) during the study interval. Exercise treatment-effect size showed variable improvements. Gait speed, distance, and stride length during the treadmill 6MWT improved significantly (P≤.05) after 4 weeks and improvements were maintained after 8 weeks compared with baseline. Walking distance during the ground 6MWT increased significantly after 4 weeks and was maintained after 8 weeks compared with baseline (P≤.05). Walking speed during the 25FWT and lower-extremity MVIC improved, but were not statistically significant. Repetitive rhythmic exercise-STAT is feasible, tolerated, and safe for patients with ALS. Repetitive rhythmic exercise-STAT treatment-effect size across a number of ALS-related measures was consistent with improved work capacity and gait function in patients with ALS who are dependent on assistive devices for ambulation. Repetitive rhythmic exercise-STAT should be evaluated further in larger studies to determine the stability of this improved function in relation to the rate of progression of the underlying ALS. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Cardio-pulmonary fitness test by ultra-short heart rate variability.

    PubMed

    Aslani, Arsalan; Aslani, Amir; Kheirkhah, Jalal; Sobhani, Vahid

    2011-10-01

    It is known that exercise induces cardio-respiratory autonomic modulation. The aim of this study was to assess the cardio-pulmonary fitness by ultra-short heart rate variability. Study population was divided into 3 groups: Group-1 (n = 40) consisted of military sports man. Group-2 (n = 40) were healthy age-matched sedentary male subjects with normal body mass index [BMI = 19 - 25 kg/m(2)). Group-3 (n = 40) were healthy age-matched obese male subjects [BMI > 29 kg/m(2)). Standard deviation of normal-to-normal QRS intervals (SDNN) was recorded over 15 minutes. Bruce protocol treadmill test was used; and, maximum oxygen consumption (VO(2)max) was calculated. WHEN THE STUDY POPULATION WAS DIVIDED INTO QUARTILES OF SDNN (FIRST QUARTILE: < 60 msec; second quartile: > 60 and < 100 msec; third quartile: > 100 and <140 msec; and fourth quartile: >140 msec), progressive increase was found in VO(2)max; and, SDNN was significantly linked with estimated VO(2)max. In conclusion, the results of this study demonstrate that exercise training improves cardio-respiratory autonomic function (and increases heart rate variability). Improvement in cardio-respiratory autonomic function seems to translate into a lower rate of long term mortality. Ultra-short heart rate variability is a simple cardio-pulmonary fitness test which just requires 15 minutes, and involves no exercise such as in the treadmill or cycle test.

  8. Tissue oxygen partial pressure in the tibialis anterior muscle in patients with claudication before, during and after a two-stage treadmill stress test.

    PubMed

    Jung, F; Krüger, A; Pindur, G; Sternitzky, R; Franke, R P; Gori, T

    2014-01-01

    The role of the microcirculation in the pathophysiology and symptoms of peripheral arterial obliterative disease (PAOD) has been progressively emphasized during the past decades. Under resting conditions, already, the tissue oxygen partial pressure in the m. tibialis anterior (pO2im) is reduced to about 50% compared to healthy subjects. In the framework of this study the pO2im of patients with PAOD stage II according to Fontaine (n=16) in the m. tibialis anterior was measured under resting conditions and during walking on a treadmill in comparison to healthy subjects (n=10). Under resting conditions the pO2im only marginally differed between PAOD patients and healthy subjects. But during exercise the pO2im dropped significantly more severely in PAOD patients and a return to baseline values could only be reached when the treadmill was stopped and the patients stood still. The pO2im minima correlated clearly with the clinical symptom of calf pain. The data revealed that the pO2im values were lower in PAOD patients and dropped significantly faster during walking compared to the pO2im values in healthy subjects. The pO2im decrease correlated with the calf pain occurring when the pO2im values approached or fell below 10 mmHg.

  9. Anti-gravity treadmills are effective in reducing knee forces.

    PubMed

    Patil, Shantanu; Steklov, Nikolai; Bugbee, William D; Goldberg, Timothy; Colwell, Clifford W; D'Lima, Darryl D

    2013-05-01

    Lower body positive pressure (LBPP) treadmills permit significant unweighting of patients and have the potential to enhance recovery following lower limb surgery. We determined the efficacy of an LBPP treadmill in reducing knee forces in vivo. Subjects, implanted with custom electronic tibial prostheses to measure forces in the knee, were tested on a treadmill housed within a LBPP chamber. Tibiofemoral forces were monitored at treadmill speeds from 1.5 mph (0.67 m/s) to 4.5 mph (2.01 m/s), treadmill incline from -10° to +10°, and four treadmill chamber pressure settings adjusted to decrease net treadmill reaction force from 100% to 25% of the subject's body weight (BW). The peak axial tibiofemoral force ranged from 5.1 times BW at a treadmill speed of 4.5 mph (2.01 m/s) and a pressure setting of 100% BW to 0.8 times BW at 1.5 mph (0.67 m/s) and a pressure setting of 25% BW. Peak knee forces were significantly correlated with walking speed and treadmill reaction force (R(2)  = 0.77, p = 0.04). The LBPP treadmill might be an effective tool in the rehabilitation of patients following lower-extremity surgery. The strong correlation between tibiofemoral force and walking speed and treadmill reaction forces allows for more precisely achieving the target knee forces desired during early rehabilitation. Copyright © 2012 Orthopaedic Research Society.

  10. A new standardized treadmill walking test requiring low motor skills in children aged 4-10 years.

    PubMed

    Wäffler-Kammermann, Nathalie; Lacorcia, Ruth Stauffer; Wettstein, Markus; Radlinger, Lorenz; Frey, Urs

    2008-02-01

    Exercise intolerance may be reported by parents of young children with respiratory diseases. There is, however, a lack of standardized exercise protocols which allow verification of these reports especially in younger children. Consequently the aims of this pilot study were to develop a standardized treadmill walking test for children aged 4-10 years demanding low sensorimotor skills and achieving high physical exhaustion. In a prospective experimental cross sectional pilot study, 33 healthy Caucasian children were separated into three groups: G1 (4-6 years, n = 10), G2 (7-8 years, n = 12), and G3 (9-10 years, n = 11). Children performed the treadmill walking test with increasing exercise levels up to peak condition with maximal exhaustion. Gas exchange, heart rate, and lactate were measured during the test, spirometry before and after. Parameters were statistically calculated at all exercise levels as well as at 2 and 4 mmol/L lactate level for group differences (Kruskal-Wallis H-test, alpha = 0.05; post hoc: Mann-Whitney U-test with Bonferroni correction alpha = 0.05/n) and test-retest differences (Wilcoxon-rank-sum test) with SPSS. The treadmill walking test could be demonstrated to be feasible with a good repeatability within groups for most of the parameters. All children achieved a high exhaustion level. At peak level under exhaustion condition only the absolute VO2 and VCO2 differed significantly between age groups. In conclusion this newly designed treadmill walking test indicates a good feasibility, safety, and repeatability. It suggests the potential usefulness of exercise capacity monitoring for children aged from early 4 to 10 years. Various applications and test modifications will be investigated in further studies. Copyright 2007 Wiley-Liss, Inc.

  11. Metabolic cost of running is greater on a treadmill with a stiffer running platform.

    PubMed

    Smith, James A H; McKerrow, Alexander D; Kohn, Tertius A

    2017-08-01

    Exercise testing on motorised treadmills provides valuable information about running performance and metabolism; however, the impact of treadmill type on these tests has not been investigated. This study compared the energy demand of running on two laboratory treadmills: an HP Cosmos (C) and a Quinton (Q) model, with the latter having a 4.5 times stiffer running platform. Twelve experienced runners ran identical bouts on these treadmills at a range of four submaximal velocities (reported data is for the velocity that approximated 75-81% VO 2max ). The stiffer treadmill elicited higher oxygen consumption (C: 46.7 ± 3.8; Q: 50.1 ± 4.3 ml·kg -1 · min -1 ), energy expenditure (C: 16.0 ± 2.5; Q: 17.7 ± 2.9 kcal · min -1 ), carbohydrate oxidation (C: 9.6 ± 3.1; Q: 13.0 ± 3.9 kcal · min -1 ), heart rate (C: 155 ± 16; Q: 163 ± 16 beats · min -1 ) and rating of perceived exertion (C: 13.8 ± 1.2; Q: 14.7 ± 1.2), but lower fat oxidation (C: 6.4 ± 2.3; Q: 4.6 ± 2.5 kcal · min -1 ) (all analysis of variance treadmill comparisons P < 0.01). This study confirms that caution is required when comparing performance and metabolic results between different treadmills and suggests that treadmills will vary in their comparability to over-ground running depending on the running platform stiffness.

  12. Submaximal Treadmill Exercise Test to Predict VO[subscript 2]max in Fit Adults

    ERIC Educational Resources Information Center

    Vehrs, Pat R.; George, James D.; Fellingham, Gilbert W.; Plowman, Sharon A.; Dustman-Allen, Kymberli

    2007-01-01

    This study was designed to develop a single-stage submaximal treadmill jogging (TMJ) test to predict VO[subscript 2]max in fit adults. Participants (N = 400; men = 250 and women = 150), ages 18 to 40 years, successfully completed a maximal graded exercise test (GXT) at 1 of 3 laboratories to determine VO[subscript 2]max. The TMJ test was completed…

  13. Kinematic Differences Between Motorized and Nonmotorized Treadmill Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Bentley, Jason R.; Lee, Stuart M. C.; Norcross, Jason; Smith, Cassie; Hagan, R. Donald

    2006-01-01

    There are few scientific publications comparing human locomotion between motorized and nonmotorized treadmills. Lakomy (1987) and Gamble et al (1988) reported that forward lean is greater on a nonmotorized treadmill to aid in the generation of horizontal force necessary for belt propulsion, but there are no data concerning lower limb kinematics. During long-term spaceflight, astronauts use locomotive exercise to mitigate the physiological effects caused by long-term exposure to microgravity. A critical decision for mission planners concerns the requirements for a treadmill to be used during potential trips to the Moon and Mars. Treadmill operation in an un-powered configuration could reduce mission resource demands, but also may impact the efficacy of treadmill exercise countermeasures. To ascertain the most appropriate type of treadmill to be used, it is important to understand biomechanical differences between motorized (M) and nonmotorized (NM) locomotion. The purpose of this evaluation was to test for differences in lower limb kinematics that occur during M and NM treadmill locomotion at two speeds. It was hypothesized that hip and knee joint angle trajectories would differ between the conditions.

  14. An externally validated model for predicting long-term survival after exercise treadmill testing in patients with suspected coronary artery disease and a normal electrocardiogram.

    PubMed

    Lauer, Michael S; Pothier, Claire E; Magid, David J; Smith, S Scott; Kattan, Michael W

    2007-12-18

    The exercise treadmill test is recommended for risk stratification among patients with intermediate to high pretest probability of coronary artery disease. Posttest risk stratification is based on the Duke treadmill score, which includes only functional capacity and measures of ischemia. To develop and externally validate a post-treadmill test, multivariable mortality prediction rule for adults with suspected coronary artery disease and normal electrocardiograms. Prospective cohort study conducted from September 1990 to May 2004. Exercise treadmill laboratories in a major medical center (derivation set) and a separate HMO (validation set). 33,268 patients in the derivation set and 5821 in the validation set. All patients had normal electrocardiograms and were referred for evaluation of suspected coronary artery disease. The derivation set patients were followed for a median of 6.2 years. A nomogram-illustrated model was derived on the basis of variables easily obtained in the stress laboratory, including age; sex; history of smoking, hypertension, diabetes, or typical angina; and exercise findings of functional capacity, ST-segment changes, symptoms, heart rate recovery, and frequent ventricular ectopy in recovery. The derivation data set included 1619 deaths. Although both the Duke treadmill score and our nomogram-illustrated model were significantly associated with death (P < 0.001), the nomogram was better at discrimination (concordance index for right-censored data, 0.83 vs. 0.73) and calibration. We reclassified many patients with intermediate- to high-risk Duke treadmill scores as low risk on the basis of the nomogram. The model also predicted 3-year mortality rates well in the validation set: Based on an optimal cut-point for a negative predictive value of 0.97, derivation and validation rates were, respectively, 1.7% and 2.5% below the cut-point and 25% and 29% above the cut-point. Blood test-based measures or left ventricular ejection fraction were not included. The nomogram can be applied only to patients with a normal electrocardiogram. Clinical utility remains to be tested. A simple nomogram based on easily obtained pretest and exercise test variables predicted all-cause mortality in adults with suspected coronary artery disease and normal electrocardiograms.

  15. Evaluating Pekin duck walking ability using a treadmill performance test.

    PubMed

    Byrd, C J; Main, R P; Makagon, M M

    2016-10-01

    Gait scoring is the most popular method for assessing the walking ability of poultry species. Although inexpensive and easy to implement, gait scoring systems are often criticized for being subjective. Using a treadmill performance test we assessed whether observable differences in Pekin duck walking ability identified using a gait scoring system translated to differences in walking performance. One hundred and eighty ducks were selected using a three-category gait scoring system (GS0 = smooth gait, n = 55; GS0.5 = labored walk without easily identifiable impediment, n = 56; GS1 = obvious impediment, n = 59) and the amount of time each duck was able to sustain walking on a treadmill at a speed of 0.31 m/s was evaluated. The walking test ended when each duck met one of three elimination criteria: (1) The duck walked for a maximum time of ten minutes, (2) the duck required support from the observer's hand for more than three seconds in order to continue walking on the treadmill, or (3) the duck sat down on the treadmill and made no attempt to stand despite receiving assistance from the observer. Data were analyzed in SAS 9.4 using PROC GLM. Tukey's multiple comparison test was used to compare differences in time spent walking between gait scores. Significant differences were found between all gait scores (P < 0.05). Behavioral correlates of walking performance were investigated. Video recorded during the treadmill test was analyzed for counts of sitting, standing, and leaning behaviors. Data were analyzed in SAS 9.4 using a negative binomial model for count data. No differences were found between gait scores for counts of sitting, standing, and leaning behaviors (P > 0.05). In conclusion, the amount of time spent walking on the treadmill corresponded to gait score and was an effective measurement for quantifying Pekin duck walking ability. The test could be a valuable tool for assessing the development of walking issues or the effectiveness of treatments aimed at promoting leg health. © 2016 Poultry Science Association Inc.

  16. Habituation of 10-year-old hockey players to treadmill skating.

    PubMed

    Lockwood, Kelly L; Frost, Gail

    2007-05-01

    This study assessed changes in selected physiological and kinematic variables over 6 weeks of treadmill skating in an effort to understand the process of habituation to this novel training modality. Seven male, Atom-A hockey players who were injury-free and had no previous treadmill skating experience participated in the study. Players performed four 1-min skating bouts at progressively increasing speeds, each week, for 6 weeks. One speed (10.5 km/h) was repeated weekly to allow for assessment of the habituation process. Our criteria for habituation were: a decrease in stride rate, heart rate and rating of perceived exertion, and an increase in stride length, trunk angle and vertical movement of the centre of mass, leading to a plateau, over the course of the 6-week study. Significant decreases were seen in stride rate, heart rate and ratings of perceived exertion, and significant increases were found in stride length. Some of these changes were evident after only one week of training and all were present by week 4. After 6 weeks (24 min) of exposure to treadmill skating, all participants displayed a visibly more efficient skating style.

  17. The Behavioral Toxicology of High-Peak, Low Average Power, Pulsed Microwave Irradiation

    DTIC Science & Technology

    1993-01-25

    Psychometrika, 47, 95-99. Raslear, T. G. (1983). A test of the Pfanzagl bisection model in rats. Journal of Experimental Psychology : Animal Behavior Processes, 9...temporal bisection, Y-maze, treadmill running, food motivation (behavioraleconomics), and Persolt swim test . Reliable effects were found with the...subsequent task performance: temporal bisection, Y-maze, treadmill running, food motivation (behavioral economics), and Porsolt swim test . Reliable effects

  18. Oxygen uptake of overweight and obese children at different stages of a progressive treadmill test

    PubMed Central

    Meléndez-Ortega, Agustín; Lucy Davis, Catherine; Barbeau, Paule; Boyle, Colleen Ann

    2010-01-01

    Introduction Maximal oxygen uptake (VO2 max) is associated with cardiovascular and metabolic risks but it is difficult to assess in obese children. The objective of this study was to develop an equation to estimate VO2 (mL/kg/min) and to check the % of tests that were maximal according to recommended criteria. Methods Stress tests were analyzed of 222 subjects (94 male and 128 female with a BMI above the 85 percentile for age and sex), and repeated 4 months later. Mean age was 9.4 ± 1.1 years and weighed 52.4 ± 13.3 kg. Body fat % (40.5 + 6.2) was determined by DXA (Hologic QDR 4500W). The protocol on the treadmill started with a warm up at 2.5 and 3 mph with a slope of 0% and 2%. The speed was kept at 3 mph for all the stages and the slope was increased 2% every 2 minutes. Statistical analysis (descriptive, t-test and ANOVAS 2×2×2) was done with SPSS 15.0. Results Only 35% of the tests were maximal. The equation calculates was Y = 2.6x + 22.3 (x = protocol stage). Data pre and post treatment were not statistically different Discussion Increments in VO2 were consistent despite subject diversity (sex, % body fat, physical fitness, treatment). Conclusion To be able to estimate VO2 at the different stages of the test without complex equipment or specialized staff, will facilitate the performance of stress tests on a daily basis. PMID:21218170

  19. Proinflammatory cytokines correlate with early exercise attenuating anxiety-like behavior after cerebral ischemia.

    PubMed

    Zhang, Qi; Zhang, Jingjun; Yan, Yuzhong; Zhang, Pengyue; Zhang, Wei; Xia, Rong

    2017-11-01

    Stroke may cause neuropsychiatric problems, which have negative effects on cognitive functions and behavior. Exercise plays an important role in reducing the occurrence and development of stroke, the concrete mechanism is not fully clarified. In this study, we attempted to determine whether early treadmill exercise attenuates anxiety-like behavior by regulation of inflammation after brain ischemia. We subjected adult male rats to middle cerebral artery occlusion (MCAO) for 90 min and trained rats started to run on a treadmill from postoperative day 1 to day 14. The effects of treadmill on cognitive functions, anxiety-like behavior, and immune activation were analyzed by Morris water maze test, open field test, elevated plus maze test, and enzyme-linked immunosorbent assay. Early treadmill exercise significantly improved cognitive function, alleviated anxiety-like behavior in ischemic rats model; this improvement was associated with significantly decreased activation of astrocytes and microglia cells and proinflammatory markers (platelet-activating factor [PAF], interleukin-6 [IL-6], tumor necrosis factor-alpha [TNF-α], intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion molecule-1 [VCAM-1]). Our results indicated that early treadmill exercise attenuated anxiety-like behavior by decreasing inflammation response, exercise conferred a great benefit of attenuating anxiety-like behavior via anti-inflammatory treatment may prove to be a novel neuroprotective strategy for stroke.

  20. NeuroRecovery Network provides standardization of locomotor training for persons with incomplete spinal cord injury.

    PubMed

    Morrison, Sarah A; Forrest, Gail F; VanHiel, Leslie R; Davé, Michele; D'Urso, Denise

    2012-09-01

    To illustrate the continuity of care afforded by a standardized locomotor training program across a multisite network setting within the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN). Single patient case study. Two geographically different hospital-based outpatient facilities. This case highlights a 25-year-old man diagnosed with C4 motor incomplete spinal cord injury with American Spinal Injury Association Impairment Scale grade D. Standardized locomotor training program 5 sessions per week for 1.5 hours per session, for a total of 100 treatment sessions, with 40 sessions at 1 center and 60 at another. Ten-meter walk test and 6-minute walk test were assessed at admission and discharge across both facilities. For each of the 100 treatment sessions percent body weight support, average, and maximum treadmill speed were evaluated. Locomotor endurance, as measured by the 6-minute walk test, and overground gait speed showed consistent improvement from admission to discharge. Throughout training, the patient decreased the need for body weight support and was able to tolerate faster treadmill speeds. Data indicate that the patient continued to improve on both treatment parameters and walking function. Standardization across the NRN centers provided a mechanism for delivering consistent and reproducible locomotor training programs across 2 facilities without disrupting training or recovery progression. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Heritability, linkage, and genetic associations of exercise treadmill test responses.

    PubMed

    Ingelsson, Erik; Larson, Martin G; Vasan, Ramachandran S; O'Donnell, Christopher J; Yin, Xiaoyan; Hirschhorn, Joel N; Newton-Cheh, Christopher; Drake, Jared A; Musone, Stacey L; Heard-Costa, Nancy L; Benjamin, Emelia J; Levy, Daniel; Atwood, Larry D; Wang, Thomas J; Kathiresan, Sekar

    2007-06-12

    The blood pressure (BP) and heart rate responses to exercise treadmill testing predict incidence of cardiovascular disease, but the genetic determinants of hemodynamic and chronotropic responses to exercise are largely unknown. We assessed systolic BP, diastolic BP, and heart rate during the second stage of the Bruce protocol and at the third minute of recovery in 2982 Framingham Offspring participants (mean age 43 years; 53% women). With use of residuals from multivariable models adjusted for clinical correlates of exercise treadmill testing responses, we estimated the heritability (variance-components methods), genetic linkage (multipoint quantitative trait analyses), and association with 235 single-nucleotide polymorphisms in 14 candidate genes selected a priori from neurohormonal pathways for their potential role in exercise treadmill testing responses. Heritability estimates for heart rate during exercise and during recovery were 0.32 and 0.34, respectively. Heritability estimates for BP variables during exercise were 0.25 and 0.26 (systolic and diastolic BP) and during recovery, 0.16 and 0.13 (systolic and diastolic BP), respectively. Suggestive linkage was found for systolic BP during recovery from exercise (locus 1q43-44, log-of-the-odds score 2.59) and diastolic BP during recovery from exercise (locus 4p15.3, log-of-the-odds score 2.37). Among 235 single-nucleotide polymorphisms tested for association with exercise treadmill testing responses, the minimum nominal probability value was 0.003, which was nonsignificant after adjustment for multiple testing. Hemodynamic and chronotropic responses to exercise are heritable and demonstrate suggestive linkage to select loci. Genetic mapping with newer approaches such as genome-wide association may yield novel insights into the physiological responses to exercise.

  2. The ameliorative effects of exercise on cognitive impairment and white matter injury from blood-brain barrier disruption induced by chronic cerebral hypoperfusion in adolescent rats.

    PubMed

    Lee, Jae-Min; Park, Jong-Min; Song, Min Kyung; Oh, Yoo Joung; Kim, Chang-Ju; Kim, Youn-Jung

    2017-01-18

    Vascular dementia is the progressive change in blood vessels that leads to neuronal injuries in vulnerable areas induced by chronic cerebral hypoperfusion (CCH). CCH induces disruption of blood-brain barrier (BBB), and this BBB disruption can initiate the cognitive impairment and white matter injury. In the present study, we evaluated the effect of treadmill exercise on the cognitive impairment, white matter injury, and BBB disruption induced by CCH. Vascular dementia was induced by permanent bilateral common carotid arteries occlusion (BCCAO) in rats. The rats in the exercise group were made to run on a treadmill for 30min once a day for 14 weeks, starting 4 weeks after birth. Our results revealed that treadmill exercise group was alleviated the cognitive impairment and myelin degradation induced by CCH. The disruption of BBB after CCH indicates degradation of occludin, zonula occluden-1 (ZO-1), and up-regulation of matrix metalloproteinases (MMPs). Treadmill exercise may provide protective effects on BBB disruption from degradation of occludin, ZO-1, and overexpression of MMP-9 after CCH. These findings suggest that treadmill exercise ameliorates cognitive impairment and white matter injury from BBB disruption induced by CCH in rats. The present study will be valuable for means of prophylactic and therapeutic intervention for patients with CCH. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial.

    PubMed

    Rodrigues, Thais Amanda; Goroso, Daniel Gustavo; Westgate, Philip M; Carrico, Cheryl; Batistella, Linamara R; Sawaki, Lumy

    2017-10-01

    Robot-assisted locomotor training on a bodyweight-supported treadmill is a rehabilitation intervention that compels repetitive practice of gait movements. Standard treadmill speed may elicit rhythmic movements generated primarily by spinal circuits. Slower-than-standard treadmill speed may elicit discrete movements, which are more complex than rhythmic movements and involve cortical areas. Compare effects of fast (i.e., rhythmic) versus slow (i.e., discrete) robot-assisted locomotor training on a bodyweight-supported treadmill in subjects with chronic, severe gait deficit after stroke. Subjects (N = 18) were randomized to receive 30 sessions (5 d/wk) of either fast or slow robot-assisted locomotor training on a bodyweight-supported treadmill in an inpatient setting. Functional ambulation category, time up and go, 6-min walk test, 10-m walk test, Berg Balance Scale, and Fugl-Meyer Assessment were administered at baseline and postintervention. The slow group had statistically significant improvement on functional ambulation category (first quartile-third quartile, P = 0.004), 6-min walk test (95% confidence interval [CI] = 1.8 to 49.0, P = 0.040), Berg Balance Scale (95% CI = 7.4 to 14.8, P < 0.0001), time up and go (95% CI = -79.1 to 5.0, P < 0.0030), and Fugl-Meyer Assessment (95% CI = 24.1 to 45.1, P < 0.0001). The fast group had statistically significant improvement on Berg Balance Scale (95% CI = 1.5 to 10.5, P = 0.02). In initial stages of robot-assisted locomotor training on a bodyweight-supported treadmill after severe stroke, slow training targeting discrete movement may yield greater benefit than fast training.

  4. Compression socks and functional recovery following marathon running: a randomized controlled trial.

    PubMed

    Armstrong, Stuart A; Till, Eloise S; Maloney, Stephen R; Harris, Gregory A

    2015-02-01

    Compression socks have become a popular recovery aid for distance running athletes. Although some physiological markers have been shown to be influenced by wearing these garments, scant evidence exists on their effects on functional recovery. This research aims to shed light onto whether the wearing of compression socks for 48 hours after marathon running can improve functional recovery, as measured by a timed treadmill test to exhaustion 14 days following marathon running. Athletes (n = 33, age, 38.5 ± 7.2 years) participating in the 2012 Melbourne, 2013 Canberra, or 2013 Gold Coast marathons were recruited and randomized into the compression sock or placebo group. A graded treadmill test to exhaustion was performed 2 weeks before and 2 weeks after each marathon. Time to exhaustion, average and maximum heart rates were recorded. Participants were asked to wear their socks for 48 hours immediately after completion of the marathon. The change in treadmill times (seconds) was recorded for each participant. Thirty-three participants completed the treadmill protocols. In the compression group, average treadmill run to exhaustion time 2 weeks after the marathon increased by 2.6% (52 ± 103 seconds). In the placebo group, run to exhaustion time decreased by 3.4% (-62 ± 130 seconds), P = 0.009. This shows a significant beneficial effect of compression socks on recovery compared with placebo. The wearing of below-knee compression socks for 48 hours after marathon running has been shown to improve functional recovery as measured by a graduated treadmill test to exhaustion 2 weeks after the event.

  5. Individualized treadmill and strength training for chronic stroke rehabilitation: effects of imbalance.

    PubMed

    Al-Jarrah, Muhammed; Shaheen, Samira; Harries, Netta; Kissani, Najib; Molteni, Franco; Bar Haim, Simona

    2014-01-01

    Stroke survivors often have significant walking limitations and are at high risk for falling. Treadmill training, as a rehabilitation approach in stroke survivors, and its relationship to balance ability has not been widely studied. The main goal of this study was to investigate the effectiveness of an individualized treadmill-strength training protocol on functional outcomes in chronic stroke survivors. Thirty adult participants with chronic stroke were recruited from 1 European and 4 Middle Eastern countries. Each completed 36 sessions of treadmill-strength training. The rehabilitation protocol was individualized according to each patient's cardiovascular fitness. Ten-meter walk test (10MWT), Berg Balance Scale (BBS), and 6-minute walk test (6MWT) were measured before (T0) and after training (T1) and 6 months later (T2). Paired t tests were used to test differences with training (T1 - T0) and retention after training (T2 - T1). Increases in all 3 measures from T0 to T1 were significant. There were no changes in 10MWT and BBS from T1 to T2, but 6MWT tended to increase. Separate analyses for subjects with BBS scores <41 at T0 demonstrated comparatively greater improvements from T0 to T1 than in those with BBS scores ≯40. Those with low scores also significantly increased from T1 to T2 in both walk tests. These findings suggest that a protocol combining treadmill with strength training has beneficial long-term effects on functional walking measures after chronic stroke, especially in patients who initially have low balance ability.

  6. Vibration Isolation and Stabilization System for Spacecraft Exercise Treadmill Devices

    NASA Technical Reports Server (NTRS)

    Fialho, Ian; Tyer, Craig; Murphy, Bryan; Cotter, Paul; Thampi, Sreekumar

    2011-01-01

    A novel, passive system has been developed for isolating an exercise treadmill device from a spacecraft in a zero-G environment. The Treadmill 2 Vibration Isolation and Stabilization System (T2-VIS) mechanically isolates the exercise treadmill from the spacecraft/space station, thereby eliminating the detrimental effect that high impact loads generated during walking/running would have on the spacecraft structure and sensitive microgravity science experiments. This design uses a second stage spring, in series with the first stage, to achieve an order of magnitude higher exercise- frequency isolation than conventional systems have done, while maintaining desirable low-frequency stability performance. This novel isolator design, in conjunction with appropriately configured treadmill platform inertia properties, has been shown (by on-orbit zero-G testing onboard the International Space Station) to deliver exceedingly high levels of isolation/ stability performance.

  7. Aerobic fitness and yo-yo continuous and intermittent tests performances in soccer players: a correlation study.

    PubMed

    Castagna, Carlo; Impellizzeri, Franco M; Chamari, Karim; Carlomagno, Domenico; Rampinini, Ermanno

    2006-05-01

    Yo-yo tests are very popular in soccer; however, no study has addressed details of their relation to canonical aspects of aerobic fitness. Furthermore, no information is available on the effect of the individual levels of lower limbs' explosive strength on yo-yo tests in soccer players. The purpose of this study was to examine the physiological determinants of Yo-yo Endurance Test Level 2 (YYETL2) and Yo-yo Intermittent Recovery Test Level 1 (YYIRTL1) in soccer players. Twenty-four soccer players (body mass, 74.6 +/- 8.5 kg; height, 178.1 +/- 4.5 cm; age, 25.6 +/- 5.1 years) were tested for VO2max and ventilatory threshold (VT) on a motorized treadmill. Lower-limb explosive strength was assessed using vertical countermovement jumps (CMJ) performed on a force platform. Results showed that YYETL2 and YYIRTL1 performances (m) were significantly related (r = 0.75, p = 0.00002). YYETL2 results were significantly related to VO2max, VTVO2, and speed at VT (r = 0.75, 0.76, and 0.83, respectively; p < 0.00002). Peak treadmill speed results were significantly related to YYETL2 and YYIRTL1 (r = 0.87 and 0.71, respectively; p < 0.0003). YYIRTL1 was related to CMJ peak power (r = 0.57; p = 0.003). These findings show that YYETL2 and YYIRTL1, although adopting similar starting and progression speeds, are influenced by different physiological variables. From these results, YYETL2 can be considered an aerobic fitness-related field test, whereas YYIRTL1 can be regarded as an aerobic-anaerobic, soccer-specific field test.

  8. A comparison of the shuttle and 6 minute walking tests with measured peak oxygen consumption in patients with heart failure.

    PubMed

    Green, D J; Watts, K; Rankin, S; Wong, P; O'Driscoll, J G

    2001-09-01

    This study investigated the use of an incremental, externally-paced 10 m shuttle walk test (SWT) as an objective, reliable and predictive test of functional capacity in patients with heart failure (CHF). The SWT was compared to a 6 minute walk test (6WT) and a maximal symptom-limited treadmill peak oxygen consumption (VO2peak) test. Experiment 1 examined the reproducibility of the SWT. Two SWF trials were performed and distance ambulated (DA), heart rate (HR) and rate of perceived exertion (RPE) results compared. In experiment 2, SWT, 6WT, and VO2 peak tests were performed and HR. RPE and ambulatory VO2 compared. The SWT demonstrated strong test/retest reliability for DA (r = 0.98). HR (r = 0.96) and RPE (r = 0.89). Treadmill VO2 peak was significantly correlated with DA during the SWT (r = 0.83, P < 0.05), but not the 6WT. SWT peak VO2 (18.5 +/- 1.8 ml.kg(-1) x min(-1)) and treadmill VO2 peak (18.3 +/-2.0 ml.kg(-1) x min(-1)) were also highly correlated (r = 0.78, P < 0.05). Conversely, 6WT peak VO2 and treadmill VO2 peak were not significantly correlated. This study suggests the SWT is a reliable, objective test, highly predictive of VO2 peak which may be a more optimal field exercise test than the self paced 6WT.

  9. A method for automated control of belt velocity changes with an instrumented treadmill.

    PubMed

    Hinkel-Lipsker, Jacob W; Hahn, Michael E

    2016-01-04

    Increased practice difficulty during asymmetrical split-belt treadmill rehabilitation has been shown to improve gait outcomes during retention and transfer tests. However, research in this area has been limited by manual treadmill operation. In the case of variable practice, which requires stride-by-stride changes to treadmill belt velocities, the treadmill control must be automated. This paper presents a method for automation of asymmetrical split-belt treadmill walking, and evaluates how well this method performs with regards to timing of gait events. One participant walked asymmetrically for 100 strides, where the non-dominant limb was driven at their self-selected walking speed, while the other limb was driven randomly on a stride-by-stride basis. In the control loop, the key factors to insure that the treadmill belt had accelerated to its new velocity safely during the swing phase were the sampling rate of the A/D converter, processing time within the controller software, and acceleration of the treadmill belt. The combination of these three factors resulted in a total control loop time during each swing phase that satisfied these requirements with a factor of safety that was greater than 4. Further, a polynomial fit indicated that belt acceleration was the largest contributor to changes in this total time. This approach appears to be safe and reliable for stride-by-stride adjustment of treadmill belt speed, making it suitable for future asymmetrical split-belt walking studies. Further, it can be incorporated into virtual reality rehabilitation paradigms that utilize split-belt treadmill walking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Duration-dependence of the effect of treadmill exercise on hyperactivity in attention deficit hyperactivity disorder rats.

    PubMed

    Ji, Eun-Sang; Kim, Chang-Ju; Park, Jun Heon; Bahn, Geon Ho

    2014-04-01

    Attention-deficit hyperactivity disorder (ADHD) is a common neurobehavioral disorder, and its symptoms are hyperactivity and deficits in learning and memory. Physical exercise increases dopamine synthesis and neuronal activity in various brain regions. In the present study, we investigate the duration-dependence of the treadmill exercise on hyperactivity in relation with dopamine expression in ADHD. Spontaneously hypertensive rats were used for the ADHD rats and Wistar-Kyoto rats were used for the control rats. The rats in the exercise groups were forced to run on a treadmill for 10 min, 30 min, and 60 min once daily for 28 consecutive days. For this experiment, open field test and immunohistochemistry for tyrosine hydroxylase were conducted. The present results revealed that ADHD rats showed hyperactivity, and tyrosine hydroxylase expression in the striatum and substantia nigra were decreased in ADHD rats. Treadmill exercise alleviated hyperactivity and also increased TH expression in ADHD rats. Treadmill exercise for 30 min per day showed most potent suppressing effect on hyperactivity, and this dose of treadmill exercise also most potently inhibited tyrosine hydroxylase expression. The present study suggests that treadmill exercise for 30 min once a day is the most effective therapeutic intervention for ADHD patients.

  11. Predicting VO[subscript 2max] in College-Aged Participants Using Cycle Ergometry and Perceived Functional Ability

    ERIC Educational Resources Information Center

    Nielson, David E.; George, James D.; Vehrs, Pat R.; Hager, Ron L.; Webb, Carrie V.

    2010-01-01

    The purpose of this study was to develop a multiple linear regression model to predict treadmill VO[subscript 2max] scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill.…

  12. Oxygen uptake of overweight and obese children at different stages of a progressive treadmill test: Consumo de oxígeno de niños y niñas con sobrepeso y obesos en los diferentes estadios de una prueba progresiva en un tapiz rodante.

    PubMed

    Meléndez-Ortega, Agustín; Lucy Davis, Catherine; Barbeau, Paule; Boyle, Colleen Ann

    2010-01-01

    INTRODUCTION: Maximal oxygen uptake (VO2 max) is associated with cardiovascular and metabolic risks but it is difficult to assess in obese children. The objective of this study was to develop an equation to estimate VO2 (mL/kg/min) and to check the % of tests that were maximal according to recommended criteria. METHODS: Stress tests were analyzed of 222 subjects (94 male and 128 female with a BMI above the 85 percentile for age and sex), and repeated 4 months later. Mean age was 9.4 ± 1.1 years and weighed 52.4 ± 13.3 kg. Body fat % (40.5 + 6.2) was determined by DXA (Hologic QDR 4500W). The protocol on the treadmill started with a warm up at 2.5 and 3 mph with a slope of 0% and 2%. The speed was kept at 3 mph for all the stages and the slope was increased 2% every 2 minutes. Statistical analysis (descriptive, t-test and ANOVAS 2×2×2) was done with SPSS 15.0. RESULTS: Only 35% of the tests were maximal. The equation calculates was Y = 2.6x + 22.3 (x = protocol stage). Data pre and post treatment were not statistically different DISCUSSION: Increments in VO2 were consistent despite subject diversity (sex, % body fat, physical fitness, treatment). CONCLUSION: To be able to estimate VO2 at the different stages of the test without complex equipment or specialized staff, will facilitate the performance of stress tests on a daily basis.

  13. Measurement of cardiorespiratory fitness in children from two commonly used field tests after accounting for body fatness and maturity.

    PubMed

    Hamlin, Michael J; Fraser, Meegan; Lizamore, Catherine A; Draper, Nick; Shearman, Jeremy P; Kimber, Nicholas E

    2014-03-27

    Body fat and maturation both influence cardiorespiratory fitness, however few studies have taken these variables into account when using field tests to predict children's fitness levels. The purpose of this study was to determine the relationship between two field tests of cardiorespiratory fitness (20 m Maximal Multistage Shuttle Run [20-MST], 550 m distance run [550-m]) and direct measurement of VO2max after adjustment for body fatness and maturity levels. Fifty-three participants (25 boys, 28 girls, age 10.6 ± 1.2 y, mean ± SD) had their body fat levels estimated using bioelectrical impedance (16.6% ± 6.0% and 20.0% ± 5.8% for boys and girls, respectively). Participants performed in random order, the 20-MST and 550-m run followed by a progressive treadmill test to exhaustion during which gas exchange measures were taken. Pearson correlation coefficient analysis revealed that the participants' performance in the 20-MST and 550-m run were highly correlated to VO2max obtained during the treadmill test to exhaustion (r = 0.70 and 0.59 for 20-MST and 550-m run, respectively). Adjusting for body fatness and maturity levels in a multivariate regression analysis increased the associations between the field tests and VO2max (r = 0.73 for 20-MST and 0.65 for 550-m). We may conclude that both the 20-MST and the 550-m distance run are valid field tests of cardiorespiratory fitness in New Zealand 8-13 year old children and incorporating body fatness and maturity levels explains an additional 5-7% of the variance.

  14. [Potential analysis for research on physiotherapy-led treadmill training in Parkinson's disease].

    PubMed

    Lohkamp, Monika; Braun, Cordula; Wasner, Mieke; Voigt-Radloff, Sebastian

    2014-01-01

    Parkinson's disease is one of the major neurodegenerative disorders with prevalence rates between 0.1 and 0.2 % in the global population and 1.8 % in people aged 64 years and over. Future incidence rates are estimated to increase within aging societies. The progressive course of Parkinson's disease is clinically characterised by bradykinesia, rigidity and tremor. These limitations in motor functioning reduce the capacity to work, social participation and the clients' quality of life. Parkinson's disease causes incapacity to work and a large number of days off from work. The benefits clients expect from physiotherapy-led treatment include an improvement of gait, a better speed of motion and the decrease of fatigue and rigidity. A recent Cochrane review (Mehrholz et al., 2010) analysed seven randomised comparisons with 153 participants and found that treadmill training compared with no treatment improved gait speed (SMD 0.50; 95 % confidence interval [0.17 to 0.84]). A lack of evidence exists on how to reduce fatigue and rigidity. There is also need to evaluate long-term effects and cost-effectiveness. Furthermore, an updated meta-analysis should include eleven new randomised trials on treadmill training after 2009. Physiotherapy-led treadmill training can easily be transferred into the German healthcare context since the environmental and educational preconditions are met by German physiotherapeutic care. Within the German context, there is need to prepare a randomised clinical trial evaluating the impact of physiotherapy-led treadmill training on motor functioning, quality of life, costs, adverse events und long-term effects. Prior to this, a feasibility study should explore the acceptance and intensity of treadmill training as well as the access of private physiotherapy practices to people suffering from early- to mid-stage Parkinson's disease. Copyright © 2014. Published by Elsevier GmbH.

  15. Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis.

    PubMed

    Iijima, H; Aoyama, T; Ito, A; Yamaguchi, S; Nagai, M; Tajino, J; Zhang, X; Kuroki, H

    2015-09-01

    Subchondral bone cyst (SBC) growth, caused by osteoclast activity during early knee osteoarthritis (OA) pathogenesis, should be treated to prevent further progressions of OA. In the present study, we evaluated the effects of gentle treadmill walking on subchondral bone and cartilage changes in an experimental rat model of destabilized medial meniscus (DMM). Twelve-week-old Wistar rats underwent DMM surgery in their right knee and sham surgery in their left knee and were assigned to either the sedentary group or walking group (n = 42/group). Animals in the walking group were subjected to treadmill exercise 2 days after surgery, which included walking for 12 m/min, 30 min/day, 5 days/week for 1, 2, and 4 week(s). Subchondral bone and cartilage changes were evaluated by micro-CT analysis, histological analysis, and biomechanical analysis. Treadmill walking had a tendency to suppress SBC growth, which was confirmed by micro-CT (P = 0.06) and positive staining for tartrate-resistant acid phosphatase (TRAP) activity for the osteoclast number per bone surface (P = 0.09) 4 weeks after surgery. These changes coincide with the prevention of cartilage degeneration as evaluated by the Osteoarthritis Research Society International (OARSI) score (P < 0.05) and biomechanically softening (P < 0.05). Furthermore, treadmill walking could suppressed increasing osteocyte deaths (P < 0.01), which was positively correlated with the OARSI score (r = 0.77; P < 0.01). These results indicate biomechanical and biological links exist between cartilage and subchondral bone; preventive effects of treadmill walking on subchondral bone deterioration might be partly explained by the chondroprotective effects. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Effect of body-weight suspension training versus treadmill training on gross motor abilities of children with spastic diplegic cerebral palsy.

    PubMed

    Emara, Hatem A; El-Gohary, Tarek M; Al-Johany, Ahmed A

    2016-06-01

    Suspension training and treadmill training are commonly used for promoting functional gross motor skills in children with cerebral palsy. The aim of this study was to compare the effect of body-weight suspension training versus treadmill training on gross motor functional skills. Assessor-blinded, randomized, controlled intervention study. Outpatient rehabilitation facility. Twenty children with spastic diplegia (7 boys and 13 girls) in the age ranged from 6 to 8 years old were randomly allocated into two equal groups. All children were assessed at baseline, after 18-session and after 36-session. During the twelve-week outpatient rehabilitation program, both groups received traditional therapeutic exercises. Additionally, one group received locomotor training using the treadmill while the other group received locomotor training using body-weight suspension through the dynamic spider cage. Assessment included dimensions "D" standing and "E" walking of the gross motor function measure, in addition to the 10-m Walking Test and the five times sit to stand test. Training was applied three times per week for twelve consecutive weeks. No significant difference was found in standing or walking ability for measurements taken at baseline or after 18-session of therapy. Measurements taken at 36-session showed that suspension training achieved significantly (P<0.05) higher average score than treadmill training for dimension D as well as for dimension E. No significant difference was found between suspension training and treadmill training regarding walking speed or sit to stand transitional skills. Body-weight suspension training is effective in improving walking and locomotor capabilities in children with spastic diplegia. After three month suspension training was superior to treadmill training. Body-weight suspension training promotes adequate postural stability, good balance control, and less exertion which facilitates efficient and safe gait.

  17. Characterization and validation of a split belt treadmill for measuring hindlimb ground-reaction forces in able-bodied and spinalized felines

    PubMed Central

    Dimiskovski, Marko; Scheinfield, Richard; Higgin, Dwight; Krupka, Alexander; Lemay, Michel A.

    2017-01-01

    BACKGROUND The measurement of ground reaction forces (GRFs) in animals trained to locomote on a treadmill after spinal cord injury (SCI) could prove valuable for evaluating training outcomes; however, quantitative measures of the GRFs in spinal felines are limited. NEW METHOD A split belt treadmill was designed and constructed to measure the GRFs of feline hindlimbs during stepping. The treadmill consists of two independent treadmill assemblies, each mounted on a force plate. The design allows measurements of the vertical (Fz), fore-aft (Fy) and mediolateral (Fx) ground-reaction forces for both hindlimbs while the forelimbs are resting on a platform. RESULTS Static and dynamic noise tests revealed little to no noise at frequencies below 6 Hz. Validation of the force plate measurements with a hand-held force sensor force showed good agreement between the two force readings. Peak normalized (to body mass) vertical GRFs for intact cats were 4.89±0.85N/Kg for the left hindlimb and 4.79±0.97N/Kg for the right. In comparison, trained spinalized cats peak normalized vertical GRFs were 2.20±0.94N/Kg for the left hindlimb and 2.85±0.99N/Kg for the right. COMPARISON WITH OTHER EXISTING METHODS Previous methods of measuring GRFs used stationary single force plates or treadmill mounted to single force plate. Using independent treadmills for each hindlimb allows measurement of the individual hindlimb’s GRFs in spinalized cats following body-weight supported treadmill training. CONCLUSIONS The split belt force treadmill enables the simultaneous recording of ground-reaction forces for both hindlimbs in cats prior to spinalization, and following spinalization and body-weight-supported treadmill training (BWST). PMID:28069392

  18. A Laboratory Test for the Examination of Alactic Running Performance

    PubMed Central

    Kibele, Armin; Behm, David

    2005-01-01

    A new testing procedure is introduced to evaluate the alactic running performance in a 10s sprint task with near-maximal movement velocity. The test is performed on a motor-equipped treadmill with inverted polarity that increases mechanical resistance instead of driving the treadmill belt. As a result, a horizontal force has to be exerted against the treadmill surface in order to overcome the resistant force of the engine and to move the surface in a backward direction. For this task, subjects lean with their hands towards the front safety barrier of the treadmill railing with a slightly inclined body posture. The required skill resembles the pushing movement of bobsleigh pilots at the start of a race. Subjects are asked to overcome this mechanical resistance and to cover as much distance as possible within a time period of 10 seconds. Fifteen male students (age: 27.7 ± 4.1 years, body height: 1.82 ± 0.46 m, body mass: 78.3 ± 6.7 kg) participated in a study. As the resistance force was set to 134 N, subjects ran 35.4 ± 2.6 m on the average corresponding to a mean running velocity of 3.52 ± 0.25 m·s-1. The validity of the new test was examined by statistical inference with various measures related to alactic performance including a metabolic equivalent to estimate alactic capacity (2892 ± 525 mL O2), an estimate for the oxygen debt (2662 ± 315 ml), the step test by Margaria to estimate alactic energy flow (1691 ± 171 W), and a test to measure the maximal strength in the leg extensor muscles (2304 ± 351 N). The statistical evaluation showed that the new test is in good agreement with the theoretical assumptions for alactic performance. Significant correlation coefficients were found between the test criteria and the measures for alactic capacity (r = 0.79, p < 0.01) as well as alactic power (r = 0.77, p < 0.01). The testing procedure is easy to administer and it is best suited to evaluate the alactic capacity for bobsleigh pilots as well as for any other running discipline. Key Points New testing procedure for the evaluation of alactic running performance. 10s treadmill sprint task with near-maximal movement velocity similar to a bob sleigh start. Treadmill motor is used with inverted polarity to establish mechanical resistance rather than acceleration. Highly significant correlations found between test criteria and alactic performance measures. PMID:24501570

  19. Treadmill Training with HAL Exoskeleton-A Novel Approach for Symptomatic Therapy in Patients with Limb-Girdle Muscular Dystrophy-Preliminary Study.

    PubMed

    Sczesny-Kaiser, Matthias; Kowalewski, Rebecca; Schildhauer, Thomas A; Aach, Mirko; Jansen, Oliver; Grasmücke, Dennis; Güttsches, Anne-Katrin; Vorgerd, Matthias; Tegenthoff, Martin

    2017-01-01

    Purpose: Exoskeletons have been developed for rehabilitation of patients with walking impairment due to neurological disorders. Recent studies have shown that the voluntary-driven exoskeleton HAL® (hybrid assistive limb) can improve walking functions in spinal cord injury and stroke. The aim of this study was to assess safety and effects on walking function of HAL® supported treadmill therapy in patients with limb-girdle muscular dystrophy (LGMD). Materials and Methods: Three LGMD patients received 8 weeks of treadmill training with HAL® 3 times a week. Outcome parameters were 10-meter walk test (10 MWT), 6-minute walk test, and timed-up-and-go test (TUG). Parameters were assessed pre and post training and 6 weeks later (follow-up). Results: All patients completed the therapy without adverse reactions and reported about improvement in endurance. Improvements in outcome parameters after 8 weeks could be demonstrated. Persisting effects were observed after 6 weeks for the 10 MWT and TUG test (follow-up). Conclusions: HAL® treadmill training in LGMD patients can be performed safely and enables an intensive highly repetitive locomotor training. All patients benefitted from this innovative method. Upcoming controlled studies with larger cohorts should prove its effects in different types of LGMD and other myopathies.

  20. Treadmill Training with HAL Exoskeleton—A Novel Approach for Symptomatic Therapy in Patients with Limb-Girdle Muscular Dystrophy—Preliminary Study

    PubMed Central

    Sczesny-Kaiser, Matthias; Kowalewski, Rebecca; Schildhauer, Thomas A.; Aach, Mirko; Jansen, Oliver; Grasmücke, Dennis; Güttsches, Anne-Katrin; Vorgerd, Matthias; Tegenthoff, Martin

    2017-01-01

    Purpose: Exoskeletons have been developed for rehabilitation of patients with walking impairment due to neurological disorders. Recent studies have shown that the voluntary-driven exoskeleton HAL® (hybrid assistive limb) can improve walking functions in spinal cord injury and stroke. The aim of this study was to assess safety and effects on walking function of HAL® supported treadmill therapy in patients with limb-girdle muscular dystrophy (LGMD). Materials and Methods: Three LGMD patients received 8 weeks of treadmill training with HAL® 3 times a week. Outcome parameters were 10-meter walk test (10 MWT), 6-minute walk test, and timed-up-and-go test (TUG). Parameters were assessed pre and post training and 6 weeks later (follow-up). Results: All patients completed the therapy without adverse reactions and reported about improvement in endurance. Improvements in outcome parameters after 8 weeks could be demonstrated. Persisting effects were observed after 6 weeks for the 10 MWT and TUG test (follow-up). Conclusions: HAL® treadmill training in LGMD patients can be performed safely and enables an intensive highly repetitive locomotor training. All patients benefitted from this innovative method. Upcoming controlled studies with larger cohorts should prove its effects in different types of LGMD and other myopathies. PMID:28848377

  1. Depletion of nucleus accumbens dopamine leads to impaired reward and aversion processing in mice: Relevance to motivation pathologies.

    PubMed

    Bergamini, Giorgio; Sigrist, Hannes; Ferger, Boris; Singewald, Nicolas; Seifritz, Erich; Pryce, Christopher R

    2016-10-01

    Dopamine (DA) neurotransmission, particularly the ventral tegmental area-nucleus accumbens (VTA-NAcc) projection, underlies reward and aversion processing, and deficient DA function could underlie motivational impairments in psychiatric disorders. 6-hydroxydopamine (6-OHDA) injection is an established method for chronic DA depletion, principally applied in rat to study NAcc DA regulation of reward motivation. Given the increasing focus on studying environmental and genetic regulation of DA function in mouse models, it is important to establish the effects of 6-OHDA DA depletion in mice, in terms of reward and aversion processing. This mouse study investigated effects of 6-OHDA-induced NAcc DA depletion using the operant behavioural test battery of progressive ratio schedule (PRS), learned non-reward (LNR), learned helplessness (LH), treadmill, and in addition Pavlovian fear conditioning. 6-OHDA NAcc DA depletion, confirmed by ex vivo HPLC-ED, reduced operant responding: for gustatory reward under effortful conditions in the PRS test; to a stimulus recently associated with gustatory non-reward in the LNR test; to escape footshock recently experienced as uncontrollable in the LH test; and to avoid footshock by physical effort in the treadmill test. Evidence for specificity of effects to NAcc DA was provided by lack of effect of medial prefrontal cortex DA depletion in the LNR and LH tests. These findings add significantly to the evidence that NAcc DA is a major regulator of behavioural responding, particularly at the motivational level, to both reward and aversion. They demonstrate the suitability of mouse models for translational study of causation and reversal of pathophysiological DA function underlying motivation psychopathologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of endurance training and competition on exercise tests in relatively untrained people.

    PubMed

    Verstappen, F T; Janssen, G M; Does, R J

    1989-10-01

    One hundred fourteen subjects (34 +/- 8 years) without any competition background took part in an endurance training study to be completed after 1.5 years with running a marathon. Ultimately, 60 males and 18 females achieved that goal. The training program, carefully supervised, was divided into three phases with a maximum of 45, 70, and 110 km/week training volume and concluded with a performance race of 15, 25, and 42.195 km, respectively. Three days before and 3 and 5 days after each race, 35 subjects were selected to perform a progressive treadmill test and the remaining subjects participated in performing field tests of running 400 and 1000 m. The maximal velocity achieved in the treadmill test was 4.75 +/- 0.36 m.s-1 for males and 4.18 +/- 0.28 m.s-1 for females; it remained constant throughout the study. However, the running velocity at 4 mmol.1(-1) plasma lactate concentration increased about 10% from phase 1 to 3. In the females this rise already appeared to be completed in phase 2. Heart rate showed a tendency to increase at both submaximal and maximal exercise from training phase 1 to 2 and 3, whereas plasma lactate concentration showed a decreasing tendency. Three days after the 25 km and the marathon race the maximal running velocity in the exercise test was 2%-4% lower compared with the pre-race test (P less than 0.05). Five days after the race this difference again faded away. This small decline in running performance was not reflected in changes of physiologic responses such as heart rate or plasma lactate concentration.

  3. Validation of a Manually Oscillating Chair for In-The-Field Assessment of Dynamic Visual Acuity on Crewmembers Within Hours of Returning from Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Kreutzberg, G. A.; Rosenberg, M. J. F.; Peters, B. T.; Reschke, M. F.

    2017-01-01

    Due to the deconditioned state of crewmembers in the initial hours after landing, it is safer and more practical to perform a vision test while seated in a chair versus walking on a treadmill. The purpose of this study was to validate the ability of a manually operated oscillating chair to produce the oscillatory frequency and displacement equivalent of walking on a treadmill at a 4 mph pace. A fast Fourier transform (FFT)was performed on the vertical trunk acceleration to compare the peak and spread of the distribution of oscillation frequencies for each oscillating condition. Peak oscillation frequencies achieved with the manual chair were lower and more variable than those of treadmill walking and the automatic chair. This can mostly be attributed to operator fatigue. However, DVA scores across conditions were not significantly different, indicating that the manual chair can provide adequate vertical oscillation frequency and displacement with the added advantage of being portable enough for testing outside a laboratory. Furthermore the automatic chair very closely matches the oscillation frequency of treadmill walking, making it an ideal method for testing DVA in a laboratory setting.

  4. Modifications of Gait as Predictors of Natural Osteoarthritis Progression in STR/Ort Mice

    PubMed Central

    Poulet, Blandine; de Souza, Roberto; Knights, Chancie B; Gentry, Clive; Wilson, Alan M; Bevan, Stuart; Chang, Yu-Mei; Pitsillides, Andrew A

    2014-01-01

    Objective Osteoarthritis (OA) is a common chronic disease for which disease-modifying therapies are not currently available. Studies to seek new targets for slowing the progress of OA rely on mouse models, but these do not allow for longitudinal monitoring of disease development. This study was undertaken to determine whether gait can be used to measure disease severity in the STR/Ort mouse model of spontaneous OA and whether gait changes are related to OA joint pain. Methods Gait was monitored using a treadmill-based video system. Correlations between OA severity and gait at 3 treadmill speeds were assessed in STR/Ort mice. Gait and pain behaviors of STR/Ort mice and control CBA mice were analyzed longitudinally, with monthly assessments. Results The best speed to identify paw area changes associated with OA severity in STR/Ort mice was found to be 17 cm · seconds−1. Paw area was modified with age in CBA and STR/Ort mice, but this began earlier in STR/Ort mice and correlated with the onset of OA at 20 weeks of age. In addition, task noncompliance appeared at 20 weeks. Surprisingly, STR/Ort mice did not show any signs of pain with OA development, even when treated with the opioid antagonist naloxone, but did exhibit normal pain behaviors in response to complete Freund's adjuvant–induced arthritis. Conclusion The present results identify an animal model in which OA severity and OA pain can be studied in isolation from one another. The findings suggest that paw area and treadmill noncompliance may be useful tools to longitudinally monitor nonpainful OA development in STR/Ort mice. This will help in providing a noninvasive means of assessing new therapies to slow the progression of OA. PMID:24623711

  5. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  6. Randomized Controlled Trial Considering Varied Exercises for Reducing Proactive Memory Interference.

    PubMed

    Frith, Emily; Sng, Eveleen; Loprinzi, Paul D

    2018-06-11

    We evaluated the effects of exercise on proactive memory interference. Study 1 ( n = 88) employed a 15-min treadmill walking protocol, while Study 2 ( n = 88) included a 15-min bout of progressive maximal exertion treadmill exercise. Each study included four distinct groups, in which groups of 22 participants each were randomly assigned to: (a) exercise before memory encoding, (b) a control group with no exercise, (c) exercise during memory encoding, and (d) exercise after memory encoding (i.e., during memory consolidation). We used the Rey Auditory Verbal Learning Test (RAVLT) to assess proactive memory interference. In both studies, the group that exercised prior to memory encoding recalled the most words from list B (distractor list) of the RAVLT, though group differences were not statistically significant for Study 1 (walking exercise) ( p = 0.521) or Study 2 (high-intensity exercise) ( p = 0.068). In this sample of young adults, high intensity exercise prior to memory encoding showed a non-significant tendency to attenuate impairments in recall attributable to proactive memory interference. Thus, future work with larger samples is needed to clarify potential beneficial effects of exercise for reducing proactive memory interference.

  7. Maximal exercise testing variables and 10-year survival: fitness risk score derivation from the FIT Project.

    PubMed

    Ahmed, Haitham M; Al-Mallah, Mouaz H; McEvoy, John W; Nasir, Khurram; Blumenthal, Roger S; Jones, Steven R; Brawner, Clinton A; Keteyian, Steven J; Blaha, Michael J

    2015-03-01

    To determine which routinely collected exercise test variables most strongly correlate with survival and to derive a fitness risk score that can be used to predict 10-year survival. This was a retrospective cohort study of 58,020 adults aged 18 to 96 years who were free of established heart disease and were referred for an exercise stress test from January 1, 1991, through May 31, 2009. Demographic, clinical, exercise, and mortality data were collected on all patients as part of the Henry Ford ExercIse Testing (FIT) Project. Cox proportional hazards models were used to identify exercise test variables most predictive of survival. A "FIT Treadmill Score" was then derived from the β coefficients of the model with the highest survival discrimination. The median age of the 58,020 participants was 53 years (interquartile range, 45-62 years), and 28,201 (49%) were female. Over a median of 10 years (interquartile range, 8-14 years), 6456 patients (11%) died. After age and sex, peak metabolic equivalents of task and percentage of maximum predicted heart rate achieved were most highly predictive of survival (P<.001). Subsequent addition of baseline blood pressure and heart rate, change in vital signs, double product, and risk factor data did not further improve survival discrimination. The FIT Treadmill Score, calculated as [percentage of maximum predicted heart rate + 12(metabolic equivalents of task) - 4(age) + 43 if female], ranged from -200 to 200 across the cohort, was near normally distributed, and was found to be highly predictive of 10-year survival (Harrell C statistic, 0.811). The FIT Treadmill Score is easily attainable from any standard exercise test and translates basic treadmill performance measures into a fitness-related mortality risk score. The FIT Treadmill Score should be validated in external populations. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  8. Endurance capacity of mice selectively bred for high voluntary wheel running.

    PubMed

    Meek, Thomas H; Lonquich, Brian P; Hannon, Robert M; Garland, Theodore

    2009-09-15

    Mice from four lines bred for high voluntary wheel activity run approximately 3-fold more revolutions per day and have elevated maximal oxygen consumption during forced treadmill exercise, as compared with four unselected control (C) lines. We hypothesized that these high runner (HR) lines would have greater treadmill endurance-running capacity. Ninety-six mice from generation 49 were familiarized with running on a motorized treadmill for 3 days. On days 4 and 5, mice were given an incremental speed test (starting at 20 m min(-1), increased 1.5 m min(-1) every 2 min) and endurance was measured as the total time or distance run to exhaustion. Blood samples were taken to measure glucose and lactate concentrations at rest during the photophase, during peak nightly wheel running, and immediately following the second endurance test. Individual differences in endurance time were highly repeatable between days (r=0.79), and mice tended to run longer on the second day (paired t-test, P<0.0001). Blood glucose following the treadmill test was low for all animals ( approximately 53 mg dl(-1)) and lactate was high ( approximately 6.5 mmol l(-1)), suggesting that exhaustion occurred. The HR lines had significantly higher endurance than the C lines (1-tailed P<0.05), whether or not body mass was used as a covariate in the analysis. The relationship between line means for wheel running and treadmill endurance differed between the sexes, reinforcing previous studies that indicate sex-specific responses to selective breeding. HR mice appear to have a higher endurance capacity than reported in the literature for inbred strains of mice or transgenics intended to enhance endurance.

  9. A comparison of Hispanic middle school students' performance, and perceived and actual physical exertion, on the traditional and treadmill one-mile runs.

    PubMed

    Latham, Daniel T; Hill, Grant M; Petray, Clayre K

    2013-04-01

    The purpose of this study was to assess whether a treadmill mile is an acceptable FitnessGram Test substitute for the traditional one-mile run for middle school boys and girls. Peak heart rate and perceived physical exertion of the participants were also measured to assess students' effort. 48 boys and 40 girls participated, with approximately 85% classified as Hispanic. Boys' mean time for the traditional one-mile run, as well as peak heart rate and perceived exertion, were statistically significantly faster and higher, respectively, than for the treadmill mile. Girls' treadmill mile times were not statistically significantly different from the traditional one-mile run. There were no statistically significant differences for girl's peak heart rate or perceived exertion. The results suggest that providing middle school students a choice of completing the FitnessGram mile run in either traditional one-mile run or treadmill one-mile format may positively affect performance.

  10. Relationship between Running Speed and Cognitive Processes in Orienteering: Two Empirical Studies.

    ERIC Educational Resources Information Center

    Cheshikhina, Valentina V.

    1993-01-01

    Fourteen qualified orienteers completed a stepwise increased treadmill velocity test in which controls had to be transferred from a master map. Orienteering accuracy was greatest at the anaerobic threshold speed. In a second study, 17 orienteers performed arithmetic tasks before and after a treadmill workout. Performance was significantly better…

  11. Energetic cost of locomotion on different equine treadmills.

    PubMed

    Jones, J H; Ohmura, H; Stanley, S D; Hiraga, A

    2006-08-01

    Human athletes run faster and experience fewer injuries when running on surfaces with a stiffness 'tuned' to their bodies. We questioned if the same might be true for horses, and if so, would running on surfaces of different stiffness cause a measurable change in the amount of energy required to move at a given speed? Different brands of commercial treadmills have pans of unequal stiffness, and this difference would result in different metabolic power requirements to locomote at a given speed. We tested for differences in stiffness between a Mustang 2200 and a Säto I commercial treadmill by incrementally loading each treadmill near the centre of the pan with fixed weights and measuring the displacement of the pan as weights were added or removed from the pan. We trained six 3-year-old Thoroughbreds to run on the 2 treadmills. After 4 months the horses ran with reproducible specific maximum rates of O2 consumption (VO2max/kg bwt, 2.62 +/- 0.23 (s.d.) mlO2 STPD/sec/kg) at 14.2 +/- 0.7 (s.d.) m/sec. They were alternately run on the 2 treadmills at identical grade (0.40 +/- 0.02%) and speeds (1.83 (walk), 4.0 (trot) and 8.0 (canter) m/sec, all +/- 0.03 m/sec) while wearing an open-flow mask for measurement of VO2. The Mustang treadmill was over 6 times stiffer than the Säto. The VO2/kg bwt increased by approximately 4-fold over the range of speeds studied on both treadmills. Oxygen consumption was significantly lower at all speeds for the Mustang treadmill compared to the Säto. The fractional difference in energy cost decreased by a factor of 6 with increasing speed, although absolute difference in cost was relatively constant. We suggest it costs less energy for horses to walk, trot or canter on a stiffer treadmill than on a more compliant treadmill, at least within the ranges of stiffness evaluated. It may be possible to define a substrate stiffness 'tuned' to a horse's body enabling maximal energetic economy when running. The differences between treadmills allows more accurate comparisons between physiological studies conducted on treadmills of different stiffness, and might help to identify an ideal track stiffness to reduce locomotor injuries in equine athletes.

  12. [Temporal pattern of walking on various training facilities under the conditions of the earth's and simulated lunar gravity].

    PubMed

    Panfilov, V E; Gurfinkel', V S

    2009-01-01

    Eight test-subjects participated in 120 treadmill tests (drive power of 10 and 85 kW) aimed to compare the walking patterns at 1 and reduced gravity. The temporal pattern of steps was noted to change significantly on the low-power treadmill. On the strength of convergence of calculated and experimental data the suggestion has been made that the leg transfer movement follows the pattern of spontaneous oscillations.

  13. Cardiorespiratory responses to Yo-yo Intermittent Endurance Test in nonelite youth soccer players.

    PubMed

    Castagna, Carlo; Impellizzeri, Franco M; Belardinelli, Romualdo; Abt, Grant; Coutts, Aaron; Chamari, Karim; D'Ottavio, Stefano

    2006-05-01

    This study examined the validity of the Yo-yo Intermittent Endurance Test (Level 1; YYIET) as indicator of aerobic power in youth soccer players. Cardiorespiratory responses were determined in 18 moderately trained nonelite youth soccer players (age, 16.6 +/- 0.8 years; height, 178.7 +/- 6.2 cm; body mass, 69.8 +/- 6.0 kg; VO2peak, 52.8 +/- 7.4 ml x kg(-1) x min(-1)) while performing the YYIET and an incremental treadmill test. Maximal heart rate (HRmax), respiratory exchange ratio (RER), O2 pulse, VO2peak, and maximal ventilation (VEmax) were measured. Group YYIET VO2peak, HRmax, RER, and O2 pulse were not significantly different from treadmill responses (p > 0.05). VEmax was significantly lower (p < 0.05) during the YYIET compared to the treadmill condition. No significant correlation was found between treadmill VO2peak and YYIET performance (p > 0.05). This study showed that the YYIET elicits peak VO2 and HR responses. However, YYIET performance results were not related to VO2peak measured in laboratory. Furthermore, the individual VO2peak reached during the TM did not reflect the VO2peak obtained during the YYIET, as shown by the large limits of agreement. As a consequence, compared to other shuttle run field tests, YYIET seems to be a weak indicator of aerobic power in youth moderately trained youth soccer player.

  14. Exposure to a Rotating Virtual Environment During Treadmill Locomotion Causes Adaptation in Heading Direction

    NASA Technical Reports Server (NTRS)

    Ruttley, T; Marshburn, A.; Bloomberg, J. J.; Mulavara, A. P.; Richards, J. T.; Nomura, Y.

    2005-01-01

    The goal of the present study was to investigate the adaptive effects of variation in the direction of optic flow, experienced during linear treadmill walking, on modifying locomotor trajectory. Subjects (n = 30) walked on a motorized linear treadmill at 4.0 kilometers per hour for 24 minutes while viewing the interior of a 3D virtual scene projected onto a screen 1.5 in in front of them. The virtual scene depicted constant self-motion equivalent to either 1) walking around the perimeter of a room to one s left (Rotating Room group) 2) walking down the center of a hallway (Infinite Hallway group). The scene was static for the first 4 minutes, and then constant rate self-motion was simulated for the remaining 20 minutes. Before and after the treadmill locomotion adaptation period, subjects performed five stepping trials where in each trial they marched in place to the beat of a metronome at 90 steps/min while blindfolded in a quiet room. The subject's final heading direction (deg), final X (for-aft, cm) and final Y (medio-lateral, cm) positions were measured for each trial. During the treadmill locomotion adaptation period subject's 3D torso position was measured. We found that subjects in the Rotating Room group as compared to the Infinite Hallway group: 1) showed significantly greater deviation during post exposure testing in the heading direction and Y position opposite to the direction of optic flow experienced during treadmill walking 2) showed a significant monotonically increasing torso yaw angular rotation bias in the direction of optic flow during the treadmill adaptation exposure period. Subjects in both groups showed greater forward translation (in the +X direction) during the post treadmill stepping task that differed significantly from their pre exposure performance. Subjects in both groups reported no perceptual deviation in position during the stepping tasks. We infer that viewing simulated rotary self-motion during treadmill locomotion causes adaptive modification of sensory-motor integration in the control of position and trajectory during locomotion which functionally reflects adaptive changes in the integration of visual, vestibular, and proprioceptive cues. Such an adaptation in the control of position and heading direction during locomotion due to the congruence of sensory information demonstrates the potential for adaptive transfer between sensorimotor systems and suggests a common neural site for the processing and self-motion perception and concurrent adaptation in motor output. This will result in lack of subjects perception of deviation of position and trajectory during the post treadmill step test while blind folded.

  15. Exposure to a Rotating Virtual Environment During Treadmill Locomotion Causes Adaptation in Heading Direction

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Richards, J. T.; Marshburn, A.; Nomura, Y.; Bloomberg, J. J.

    2005-01-01

    The goal of the present study was to investigate the adaptive effects of variation in the direction of optic flow, experienced during linear treadmill walking, on modifying locomotor trajectory. Subjects (n = 30) walked on a motorized linear treadmill at 4.0 km/h for 24 minutes while viewing the interior of a 3D virtual scene projected onto a screen 1.5 m in front of them. The virtual scene depicted constant self-motion equivalent to either 1) walking around the perimeter of a room to one s left (Rotating Room group) 2) walking down the center of a hallway (Infinite Hallway group). The scene was static for the first 4 minutes, and then constant rate self-motion was simulated for the remaining 20 minutes. Before and after the treadmill locomotion adaptation period, subjects performed five stepping trials where in each trial they marched in place to the beat of a metronome at 90 steps/min while blindfolded in a quiet room. The subject s final heading direction (deg), final X (for-aft, cm) and final Y (medio-lateral, cm) positions were measured for each trial. During the treadmill locomotion adaptation period subject s 3D torso position was measured. We found that subjects in the Rotating Room group as compared to the Infinite Hallway group: 1) showed significantly greater deviation during post exposure testing in the heading direction and Y position opposite to the direction of optic flow experienced during treadmill walking 2) showed a significant monotonically increasing torso yaw angular rotation bias in the direction of optic flow during the treadmill adaptation exposure period. Subjects in both groups showed greater forward translation (in the +X direction) during the post treadmill stepping task that differed significantly from their pre exposure performance. Subjects in both groups reported no perceptual deviation in position during the stepping tasks. We infer that 3 viewing simulated rotary self-motion during treadmill locomotion causes adaptive modification of sensory-motor integration in the control of position and trajectory during locomotion which functionally reflects adaptive changes in the integration of visual, vestibular, and proprioceptive cues. Such an adaptation in the control of position and heading direction during locomotion due to the congruence of sensory information demonstrates the potential for adaptive transfer between sensorimotor systems and suggests a common neural site for the processing and self-motion perception and concurrent adaptation in motor output. This will result in lack of subjects perception of deviation of position and trajectory during the post treadmill step test while blind folded.

  16. Locomotor training with body weight support in SCI: EMG improvement is more optimally expressed at a low testing speed.

    PubMed

    Meyns, P; Van de Crommert, H W A A; Rijken, H; van Kuppevelt, D H J M; Duysens, J

    2014-12-01

    Case series. To determine the optimal testing speed at which the recovery of the EMG (electromyographic) activity should be assessed during and after body weight supported (BWS) locomotor training. Tertiary hospital, Sint Maartenskliniek, Nijmegen, The Netherlands. Four participants with incomplete chronic SCI were included for BWS locomotor training; one AIS-C and three AIS-D (according to the ASIA (American Spinal Injury Association) Impairment Scale or AIS). All were at least 5 years after injury. The SCI participants were trained three times a week for a period of 6 weeks. They improved their locomotor function in terms of higher walking speed, less BWS and less assistance needed. To investigate which treadmill speed for EMG assessment reflects the functional improvement most adequately, all participants were assessed weekly using the same two speeds (0.5 and 1.5 km h(-1), referred to as low and high speed, respectively) for 6 weeks. The change in root mean square EMG (RMS EMG) was assessed in four leg muscles; biceps femoris, rectus femoris, gastrocnemius medialis and tibialis anterior. The changes in RMS EMG occurred at similar phases of the step cycle for both walking conditions, but these changes were larger when the treadmill was set at a low speed (0.5 km h(-1)). Improvement in gait is feasible with BWS treadmill training even long after injury. The EMG changes after treadmill training are more optimally expressed using a low rather than a high testing treadmill speed.

  17. Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats.

    PubMed

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin

    2017-02-01

    Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.

  18. Treadmill Exercise with Increased Body Loading Enhances Post Flight Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. Given the importance of body-support loading we set out to determine if there is a relationship between the load experienced during inflight treadmill exercise (produced by a harness and bungee system) and postflight functional performance. ISS crewmembers (n=13) were tested using the FTT protocol before and after 6 months in space. Crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. To determine how differences in body-support loading experienced during inflight treadmill exercise impacts postflight functional performance, the loading history for each subject during inflight treadmill (T2) exercise was correlated with postflight measures of performance. Crewmembers who walked on the treadmill with higher pull-down loads had less decrement in postflight postural stability and dynamic locomotor control than those subjects who exercised with lighter loads. These data point to the importance of providing significant body loading during inflight treadmill exercise. This and the addition of specific balance training may further mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Inflight treadmill exercise provides a multi-disciplinary platform to provide sensorimotor, aerobic and bone mechanical stimuli benefits. Forward work will focus on the development of an inflight training system that will integrate aerobic, resistive and balance training modalities into a single interdisciplinary countermeasure system for exploration class missions.

  19. Safety and efficacy of extracorporeal shock wave myocardial revascularization therapy for refractory angina pectoris.

    PubMed

    Cassar, Andrew; Prasad, Megha; Rodriguez-Porcel, Martin; Reeder, Guy S; Karia, Darshak; DeMaria, Anthony N; Lerman, Amir

    2014-03-01

    To assess the safety and efficacy of extracorporeal shockwave myocardial revascularization (ESMR) therapy in treating patients with refractory angina pectoris. A single-arm multicenter prospective trial to assess safety and efficacy of the ESMR therapy in patients with refractory angina (class III/IV angina) was performed. Screening exercise treadmill tests and pharmacological single-photon emission computed tomography (SPECT) were performed for all patients to assess exercise capacity and ischemic burden. Patients were treated with 9 sessions of ESMR to ischemic areas over 9 weeks. Efficacy end points were exercise capacity by using treadmill test as well as ischemic burden on pharmacological SPECT at 4 months after the last ESMR treatment. Safety measures included electrocardiography, echocardiography, troponin, creatine kinase, and brain natriuretic peptide testing, and pain questionnaires. Fifteen patients with medically refractory angina and no revascularization options were enrolled. There was a statistically significant mean increase of 122.3±156.9 seconds (38% increase compared with baseline; P=.01) in exercise treadmill time from baseline (319.8±157.2 seconds) to last follow-up after the ESMR treatment (422.1±183.3 seconds). There was no improvement in the summed stress perfusion scores after pharmacologically induced stress SPECT at 4 months after the last ESMR treatment in comparison to that at screening; however, SPECT summed stress score revealed that untreated areas had greater progression in ischemic burden vs treated areas (3.69±6.2 vs 0.31±4.5; P=.03). There was no significant change in the mean summed echo score from baseline to posttreatment (0.4±5.1; P=.70). The ESMR therapy was performed safely without any adverse events in electrocardiography, echocardiography, troponins, creatine kinase, or brain natriuretic peptide. Pain during the ESMR treatment was minimal (a score of 0.5±1.2 to 1.1±1.2 out of 10). In this multicenter feasibility study, ESMR seems to be a safe and efficacious treatment for patients with refractory angina pectoris. However, larger sham-controlled trials will be required to confirm these findings. Copyright © 2014 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  20. Exercise Training in Progressive Multiple Sclerosis: A Comparison of Recumbent Stepping and Body Weight-Supported Treadmill Training.

    PubMed

    Pilutti, Lara A; Paulseth, John E; Dove, Carin; Jiang, Shucui; Rathbone, Michel P; Hicks, Audrey L

    2016-01-01

    Background: There is evidence of the benefits of exercise training in multiple sclerosis (MS); however, few studies have been conducted in individuals with progressive MS and severe mobility impairment. A potential exercise rehabilitation approach is total-body recumbent stepper training (TBRST). We evaluated the safety and participant-reported experience of TBRST in people with progressive MS and compared the efficacy of TBRST with that of body weight-supported treadmill training (BWSTT) on outcomes of function, fatigue, and health-related quality of life (HRQOL). Methods: Twelve participants with progressive MS (Expanded Disability Status Scale scores, 6.0-8.0) were randomized to receive TBRST or BWSTT. Participants completed three weekly sessions (30 minutes) of exercise training for 12 weeks. Primary outcomes included safety assessed as adverse events and patient-reported exercise experience assessed as postexercise response and evaluation of exercise equipment. Secondary outcomes included the Multiple Sclerosis Functional Composite, the Modified Fatigue Impact Scale, and the Multiple Sclerosis Quality of Life-54 questionnaire scores. Assessments were conducted at baseline and after 12 weeks. Results: Safety was confirmed in both exercise groups. Participants reported enjoying both exercise modalities; however, TBRST was reviewed more favorably. Both interventions reduced fatigue and improved HRQOL (P ≤ .05); there were no changes in function. Conclusions: Both TBRST and BWSTT seem to be safe, well tolerated, and enjoyable for participants with progressive MS with severe disability. Both interventions may also be efficacious for reducing fatigue and improving HRQOL. TBRST should be further explored as an exercise rehabilitation tool for patients with progressive MS.

  1. Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.

    PubMed

    Pinho, Ricardo A; Andrades, Michael E; Oliveira, Marcos R; Pirola, Aline C; Zago, Morgana S; Silveira, Paulo C L; Dal-Pizzol, Felipe; Moreira, José Cláudio F

    2006-10-01

    The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.

  2. Treadmill sideways gait training with visual blocking for patients with brain lesions.

    PubMed

    Kim, Tea-Woo; Kim, Yong-Wook

    2014-09-01

    [Purpose] The aim of this study was to verify the effect of sideways treadmill training with and without visual blocking on the balance and gait function of patients with brain lesions. [Subjects] Twenty-four stroke and traumatic brain injury subjects participated in this study. They were divided into two groups: an experimental group (12 subjects) and a control group (12 subjects). [Methods] Each group executed a treadmill training session for 20 minutes, three times a week, for 6 weeks. The sideways gait training on the treadmill was performed with visual blocking by the experimental group and with normal vision by the control group. A Biodex Gait Trainer 2 was used to assess the gait function. It was used to measure walking speed, walking distance, step length, and stance time on each foot. The Five-Times-Sit-To-Stand test (FTSST) and Timed Up and Go test (TUG) were used as balance measures. [Results] The sideways gait training with visual blocking group showed significantly improved walking speed, walking distance, step length, and stance time on each foot after training; FTSST and TUG times also significantly improved after training in the experimental group. Compared to the control group, the experimental group showed significant increases in stance time on each foot. [Conclusion] Sideways gait training on a treadmill with visual blocking performed by patients with brain lesions significantly improved their balance and gait function.

  3. Treadmill exercise alleviates chronic mild stress-induced depression in rats.

    PubMed

    Lee, Taeck-Hyun; Kim, Kijeong; Shin, Mal-Soon; Kim, Chang-Ju; Lim, Baek-Vin

    2015-12-01

    Depression is a major cause of disability and one of the most common public health problems. In the present study, antidepressive effect of treadmill exercise on chronic mild stress (CMS)-induced depression in rats was investigated. For this, sucrose intake test, immunohistochemistry for 5-bromo-2'-deoxyuridine, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot analysis for brain-derived neurotrophic factor, cyclic adenosine monophosphate response element binding protein, and endothelial nitric oxide synthase were conducted. Following adaptation to the animal vivarium and two baseline fluid intake tests, the animals were divided into four groups: the control group, the CMS-induced depression group, the CMS-induced depression and exercise group, and the CMS-induced depression and fluoxetine-treated group. The animals in the CMS groups were exposed to the CMS conditions for 8 weeks and those in the control group were exposed to the control conditions for 8 weeks. After 4 weeks of CMS, the rats in the CMS-induced depression and exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. In the present results, treadmill exercise alleviated CMS-induced depressive symptoms. Treadmill exercise restored sucrose consumption, increased cell proliferation, and decreased apoptotic cell death. The present results suggest the possibility that exercise may improve symptoms of depression.

  4. A comparative study of two protocols for treadmill walking exercise testing in ambulating subjects with incomplete spinal cord injury.

    PubMed

    Lundgaard, E; Wouda, M F; Strøm, V

    2017-10-01

    This is a comparative study of two exercise testing protocols. The objective of this study was to compare maximal oxygen uptake (VO 2 max) and achieved criteria for maximal exercise testing between the Sunnaas Protocol-a newly designed treadmill exercise test protocol-and the Modified Bruce Protocol in persons with incomplete spinal cord injury (SCI). This study was conducted in Sunnaas Rehabilitation Hospital, Norway. Twenty persons (19 men) with incomplete SCI (AIS D) capable of ambulating without assistive devices performed two treadmill walking exercise tests (Sunnaas Protocol and Modified Bruce Protocol) until exhaustion 1-3 days apart. The key differences between the protocols are the smaller increments in speed and shorter duration on each workload in the Sunnaas Protocol. Cardiovascular responses were measured continuously throughout both tests. The subjects exhibited statistically significantly higher VO 2 max when using the Sunnaas Protocol (37.1±9.9 vs 35.4±9.8 ml kg -1  min -1 , P=0.01), with a mean between-test difference of 1.8 ml kg -1  min -1 (95% confidence interval: 0.49-3.16). There was no significant difference in mean maximal heart rate (HR max). Nineteen (95%) subjects achieved at least three of the four criteria for maximal oxygen uptake using the Sunnaas Protocol. Thirteen (65%) subjects achieved at least three of the criteria using a Modified Bruce protocol. The small differences in both VO 2 max and achieved criteria in favor of the Sunnaas Protocol suggest that it could be a useful alternative treadmill exercise test protocol for ambulating persons with incomplete SCI.

  5. Prognostic value of exercise echocardiography: validation of a new risk index combining echocardiographic, treadmill, and exercise electrocardiographic parameters.

    PubMed

    Mazur, Wojciech; Rivera, Jose M; Khoury, Alexander F; Basu, Abhijeet G; Perez-Verdia, Alejandro; Marks, Gary F; Chang, Su Min; Olmos, Leopoldo; Quiñones, Miguel A; Zoghbi, William A

    2003-04-01

    Exercise (Ex) echocardiography has been shown to have significant prognostic power, independent of other known predictors of risk from an Ex stress test. The purpose of this study was to evaluate a risk index, incorporating echocardiographic and conventional Ex variables, for a more comprehensive risk stratification and identification of a very low-risk group. Two consecutive, mutually exclusive populations referred for treadmill Ex echocardiography with the Bruce protocol were investigated: hypothesis-generating (388 patients; 268 males; age 55 +/- 13 years) and hypothesis-testing (105 patients; 61 males age: 54 +/- 14 years).Cardiac events included cardiac death, myocardial infarction, late revascularization (>90 days), hospital admission for unstable angina, and admission for heart failure. Mean follow-up in the hypothesis-generating population was 3.1 years. There were 38 cardiac events. Independent predictors of events by multivariate analysis were: Ex wall motion score index (odds ratio [OR] = 2.77/Unit; P <.001); ischemic S-T depression > or = 1 mm (OR = 2.84; P =.002); and treadmill time (OR = 0.87/min; P =.037). A risk index was generated on the basis of the multivariate Cox regression model as: risk index = 1.02 (Ex wall motion score index) + 1.04 (S-T change) - 0.14 (treadmill time). The validity of this index was tested in the hypothesis-testing population. Event rates at 3 years were lowest (0%) in the lower quartile of risk index (-1.22 to -0.47), highest (29.6%) in the upper quartile (+0.66 to +2.02), and intermediate (19.2% to 15.3%) in the intermediate quartiles. The OR of the risk index for predicting cardiac events was 2.94/Unit ([95% confidence interval: 1.4 to 6.2]; P =.0043). Echocardiographic and Ex parameters are independent powerful predictors of cardiac events after treadmill stress testing. A risk index can be derived with these parameters for a more comprehensive risk stratification with Ex echocardiography.

  6. Mission Specialist (MS) Bluford exercises on middeck treadmill

    NASA Image and Video Library

    1983-09-05

    STS008-13-0361 (30 Aug.-5 Sept. 1983) --- Astronaut Guion S. Bluford, STS-8 mission specialist, assists Dr. William E. Thornton (out of frame) with a medical test that requires use of the treadmill exercising device designed for spaceflight by the STS-8 medical doctor. This frame was shot with a 35mm camera. Photo credit: NASA

  7. Long-Term Moderate Exercise Rescues Age-Related Decline in Hippocampal Neuronal Complexity and Memory.

    PubMed

    Tsai, Sheng-Feng; Ku, Nai-Wen; Wang, Tzu-Feng; Yang, Yan-Hsiang; Shih, Yao-Hsiang; Wu, Shih-Ying; Lee, Chu-Wan; Yu, Megan; Yang, Ting-Ting; Kuo, Yu-Min

    2018-05-07

    Aging impairs hippocampal neuroplasticity and hippocampus-related learning and memory. In contrast, exercise training is known to improve hippocampal neuronal function. However, whether exercise is capable of restoring memory function in old animals is less clear. Here, we investigated the effects of exercise on the hippocampal neuroplasticity and memory functions during aging. Young (3 months), middle-aged (9-12 months), and old (18 months) mice underwent moderate-intensity treadmill running training for 6 weeks, and their hippocampus-related learning and memory, and the plasticity of their CA1 neurons was evaluated. The memory performance (Morris water maze and novel object recognition tests), and dendritic complexity (branch and length) and spine density of their hippocampal CA1 neurons decreased as their age increased. The induction and maintenance of high-frequency stimulation-induced long-term potentiation in the CA1 area and the expressions of neuroplasticity-related proteins were not affected by age. Treadmill running increased CA1 neuron long-term potentiation and dendritic complexity in all three age groups, and it restored the learning and memory ability in middle-aged and old mice. Furthermore, treadmill running upregulated the hippocampal expressions of brain-derived neurotrophic factor and monocarboxylate transporter-4 in middle-aged mice, glutamine synthetase in old mice, and full-length TrkB in middle-aged and old mice. The hippocampus-related memory function declines from middle age, but long-term moderate-intensity running effectively increased hippocampal neuroplasticity and memory in mice of different ages, even when the memory impairment had progressed to an advanced stage. Thus, long-term, moderate intensity exercise training might be a way of delaying and treating aging-related memory decline. © 2018 S. Karger AG, Basel.

  8. Surgical Placement of Catheters for Long-term Cardiovascular Exercise Testing in Swine

    PubMed Central

    van Duin, Richard W B; Verzijl, Annemarie; Reiss, Irwin K; Duncker, Dirk J; Merkus, Daphne

    2016-01-01

    This protocol describes the surgical procedure to chronically instrument swine and the procedure to exercise swine on a motor-driven treadmill. Early cardiopulmonary dysfunction is difficult to diagnose, particularly in animal models, as cardiopulmonary function is often measured invasively, requiring anesthesia. As many anesthetic agents are cardiodepressive, subtle changes in cardiovascular function may be masked. In contrast, chronic instrumentation allows for measurement of cardiopulmonary function in the awake state, so that measurements can be obtained under quiet resting conditions, without the effects of anesthesia and acute surgical trauma. Furthermore, when animals are properly trained, measurements can also be obtained during graded treadmill exercise. Flow probes are placed around the aorta or pulmonary artery for measurement of cardiac output and around the left anterior descending coronary artery for measurement of coronary blood flow. Fluid-filled catheters are implanted in the aorta, pulmonary artery, left atrium, left ventricle and right ventricle for pressure measurement and blood sampling. In addition, a 20 G catheter is positioned in the anterior interventricular vein to allow coronary venous blood sampling. After a week of recovery, swine are placed on a motor-driven treadmill, the catheters are connected to pressure and flow meters, and swine are subjected to a five-stage progressive exercise protocol, with each stage lasting 3 min. Hemodynamic signals are continuously recorded and blood samples are taken during the last 30 sec of each exercise stage. The major advantage of studying chronically instrumented animals is that it allows serial assessment of cardiopulmonary function, not only at rest but also during physical stress such as exercise. Moreover, cardiopulmonary function can be assessed repeatedly during disease development and during chronic treatment, thereby increasing statistical power and hence limiting the number of animals required for a study. PMID:26889804

  9. Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats

    PubMed Central

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin

    2017-01-01

    Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe. PMID:28503522

  10. Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats.

    PubMed

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin

    2017-04-01

    Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe.

  11. The Integrated Virtual Environment Rehabilitation Treadmill System

    PubMed Central

    Feasel, Jeff; Whitton, Mary C.; Kassler, Laura; Brooks, Frederick P.; Lewek, Michael D.

    2015-01-01

    Slow gait speed and interlimb asymmetry are prevalent in a variety of disorders. Current approaches to locomotor retraining emphasize the need for appropriate feedback during intensive, task-specific practice. This paper describes the design and feasibility testing of the integrated virtual environment rehabilitation treadmill (IVERT) system intended to provide real-time, intuitive feedback regarding gait speed and asymmetry during training. The IVERT system integrates an instrumented, split-belt treadmill with a front-projection, immersive virtual environment. The novel adaptive control system uses only ground reaction force data from the treadmill to continuously update the speeds of the two treadmill belts independently, as well as to control the speed and heading in the virtual environment in real time. Feedback regarding gait asymmetry is presented 1) visually as walking a curved trajectory through the virtual environment and 2) proprioceptively in the form of different belt speeds on the split-belt treadmill. A feasibility study involving five individuals with asymmetric gait found that these individuals could effectively control the speed of locomotion and perceive gait asymmetry during the training session. Although minimal changes in overground gait symmetry were observed immediately following a single training session, further studies should be done to determine the IVERT’s potential as a tool for rehabilitation of asymmetric gait by providing patients with congruent visual and proprioceptive feedback. PMID:21652279

  12. Gender may have an influence on the relationship between Functional Movement Screen scores and gait parameters in elite junior athletes - A pilot study.

    PubMed

    Magyari, N; Szakács, V; Bartha, C; Szilágyi, B; Galamb, K; Magyar, M O; Hortobágyi, T; Kiss, R M; Tihanyi, J; Négyesi, J

    2017-09-01

    Aims The aim of this study was to examine the effects of gender on the relationship between Functional Movement Screen (FMS) and treadmill-based gait parameters. Methods Twenty elite junior athletes (10 women and 10 men) performed the FMS tests and gait analysis at a fixed speed. Between-gender differences were calculated for the relationship between FMS test scores and gait parameters, such as foot rotation, step length, and length of gait line. Results Gender did not affect the relationship between FMS and treadmill-based gait parameters. The nature of correlations between FMS test scores and gait parameters was different in women and men. Furthermore, different FMS test scores predicted different gait parameters in female and male athletes. FMS asymmetry and movement asymmetries measured by treadmill-based gait parameters did not correlate in either gender. Conclusion There were no interactions between FMS, gait parameters, and gender; however, correlation analyses support the idea that strength and conditioning coaches need to pay attention not only to how to score but also how to correctly use FMS.

  13. Energy expenditure during rest and treadmill gait training in quadriplegic subjects.

    PubMed

    de Carvalho, D C L; Cliquet, A

    2005-11-01

    The analysis of oxygen uptake (VO(2)) and energy consumption in quadriplegics after 6 months of treadmill gait with neuromuscular electrical stimulation (NMES). To compare metabolic responses in quadriplegics after 6 months of treadmill training, with NMES (30-50% body weight relief), with quadriplegics who did not perform gait. Ambulatory of University Hospital, Brazil. Quadriplegics were separated into gait and control groups (CGs). On inclusion, all subjects performed VO(2) test. In the gait group (GG) (n=11), the protocol consisted of 8 min of rest, 10 min of treadmill walking using NMES and 10 min of recovery. In the CG (n=10), testing consisted of 8 min rest, 15 min of quadriceps endurance exercise in sitting position with NMES and 10 min recovery. VO(2), carbon dioxide production (VCO(2)) and energy consumption were measured. The GG performed 6 months of treadmill training, using NMES, for 20 min, twice a week. The CG did not practice any activity with NMES, performing conventional physiotherapy only; the CG was stimulated only during the cardiorespiratory test. All parameters increased significantly for the GG: 36% for VO(2) (l/min), 43% for VCO(2) (l/min) and 32.5% for energy consumption (J/kg/s). For the CG, during knee extension exercise, VO(2) increased without changes in the energy consumption (P<0.05); smaller values were obtained for all parameters when compared to those obtained during gait. Quadriplegic gait was efficient towards increasing VO(2) and energy consumption, which can decrease the risk of cardiovascular diseases. Spinal Cord (2005) 43, 658-663. doi:10.1038/sj.sc.3101776; published online 21 June 2005.

  14. A Reactive Balance Rating Method that Correlates with Kinematics after Trip-Like Perturbations on a Treadmill and Fall Risk Among Residents of Older Adult Congregate Housing.

    PubMed

    Madigan, Michael L; Aviles, Jessica; Allin, Leigh J; Nussbaum, Maury A; Alexander, Neil B

    2018-04-16

    A growing number of studies are using modified treadmills to train reactive balance after trip-like perturbations that require multiple steps to recover balance. The goal of this study was thus to develop and validate a low-tech reactive balance rating method in the context of trip-like treadmill perturbations to facilitate the implementation of this training outside the research setting. Thirty-five residents of five senior congregate housing facilities participated in the study. Subjects completed a series of reactive balance tests on a modified treadmill from which the reactive balance rating was determined, along with a battery of standard clinical balance and mobility tests that predict fall risk. We investigated the strength of correlation between the reactive balance rating and reactive balance kinematics. We compared the strength of correlation between the reactive balance rating and clinical tests predictive of fall risk, with the strength of correlation between reactive balance kinematics and the same clinical tests. We also compared the reactive balance rating between subjects predicted to be at a high or low risk of falling. The reactive balance rating was correlated with reactive balance kinematics (Spearman's rho squared = .04 - .30), exhibited stronger correlations with clinical tests than most kinematic measures (Spearman's rho squared = .00 - .23), and was 42-60% lower among subjects predicted to be at a high risk for falling. The reactive balance rating method may provide a low-tech, valid measure of reactive balance kinematics, and an indicator of fall risk, after trip-like postural perturbations.

  15. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju

    2016-08-01

    Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2'-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.

  16. Improving Functional Skills and Physical Fitness in Children with Rett Syndrome

    ERIC Educational Resources Information Center

    Lotan, M.; Isakov, E.; Merrick, J.

    2004-01-01

    To investigate the feasibility of a physical exercise programme with treadmill for persons with Rett syndrome (RS) in order to promote fitness and health. A daily training programme on a treadmill was designed for four females with RS over a period of 2 months with tests performed in three intervals, at time 1, 2 and 3, 2 months apart with…

  17. Comparison of myocardial ischemia during intense mental stress using flight simulation in airline pilots with coronary artery disease to that produced with conventional mental and treadmill exercise stress testing.

    PubMed

    Doorey, Andrew; Denenberg, Barry; Sagar, Vidya; Hanna, Tracy; Newman, Jack; Stone, Peter H

    2011-09-01

    Mental stress increases cardiovascular morbidity and mortality. Although laboratory mental stress often causes less myocardial ischemia than exercise stress (ES), it is unclear whether mental stress is intrinsically different or differences are due to less hemodynamic stress with mental stress. We sought to evaluate the hemodynamic and ischemic response to intense realistic mental stress created by modern flight simulators and compare this response to that of exercise treadmill testing and conventional laboratory mental stress (CMS) testing in pilots with coronary disease. Sixteen airline pilots with angiographically documented coronary disease and documented myocardial ischemia during ES were studied using maximal treadmill ES, CMS, and aviation mental stress (AMS) testing. AMS testing was done in a sophisticated simulator using multiple system failures as stressors. Treadmill ES testing resulted in the highest heart rate, but AMS caused a higher blood pressure response than CMS. Maximal rate-pressure product was not significantly different between ES and AMS (25,646 vs 23,347, p = 0.08), although these were higher than CMS (16,336, p <0.0001). Despite similar hemodynamic stress induced by ES and AMS, AMS resulted in significantly less ST-segment depression and nuclear ischemia than ES. Differences in induction of ischemia by mental stress compared to ES do not appear to be due to the creation of less hemodynamic stress. In conclusion, even with equivalent hemodynamic stress, intense realistic mental stress induced by flight simulators results in significantly less myocardial ischemia than ES as measured by ST-segment depression and nuclear ischemia. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Google Maps offers a new way to evaluate claudication.

    PubMed

    Khambati, Husain; Boles, Kim; Jetty, Prasad

    2017-05-01

    Accurate determination of walking capacity is important for the clinical diagnosis and management plan for patients with peripheral arterial disease. The current "gold standard" of measurement is walking distance on a treadmill. However, treadmill testing is not always reflective of the patient's natural walking conditions, and it may not be fully accessible in every vascular clinic. The objective of this study was to determine whether Google Maps, the readily available GPS-based mapping tool, offers an accurate and accessible method of evaluating walking distances in vascular claudication patients. Patients presenting to the outpatient vascular surgery clinic between November 2013 and April 2014 at the Ottawa Hospital with vasculogenic calf, buttock, and thigh claudication symptoms were identified and prospectively enrolled in our study. Onset of claudication symptoms and maximal walking distance (MWD) were evaluated using four tools: history; Walking Impairment Questionnaire (WIQ), a validated claudication survey; Google Maps distance calculator (patients were asked to report their daily walking routes on the Google Maps-based tool runningmap.com, and walking distances were calculated accordingly); and treadmill testing for onset of symptoms and MWD, recorded in a double-blinded fashion. Fifteen patients were recruited for the study. Determination of walking distances using Google Maps proved to be more accurate than by both clinical history and WIQ, correlating highly with the gold standard of treadmill testing for both claudication onset (r = .805; P < .001) and MWD (r = .928; P < .0001). In addition, distances were generally under-reported on history and WIQ. The Google Maps tool was also efficient, with reporting times averaging below 4 minutes. For vascular claudicants with no other walking limitations, Google Maps is a promising new tool that combines the objective strengths of the treadmill test and incorporates real-world walking environments. It offers an accurate, efficient, inexpensive, and readily accessible way to assess walking distances in patients with peripheral vascular disease. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  19. The diagnostic accuracy of exercise electrocardiography - A review

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Bungo, M. W.

    1983-01-01

    The cardiovascular 'stress test', and particularly the graded treadmill exercist test, has gained wide acceptance as a diagnostic aid in searching for ischemic heart disease and as a prognostic indicator for those with known coronary artery disease. Controversies still exist, however, in its use in mass screening and in interpreting equivocal tests. A review of the use and value of electrocardiographic exercise testing is presented. Topics such as its use in asymptomatic individuals, the adjuvant use of clinical examination, and the examination of ancillary treadmill parameters are presented. No attempt is made to detail the very significant contributions of radionuclide scanning. The positive exercise electrocardiogram in the asymptomatic subject is discussed and guidelines for clinical management are offered.

  20. Improved clinical status, quality of life, and walking capacity in Parkinson's disease after body weight-supported high-intensity locomotor training.

    PubMed

    Rose, Martin H; Løkkegaard, Annemette; Sonne-Holm, Stig; Jensen, Bente R

    2013-04-01

    To evaluate the effect of body weight-supported progressive high-intensity locomotor training in Parkinson's disease (PD) on (1) clinical status; (2) quality of life; and (3) gait capacity. Open-label, fixed sequence crossover study. University motor control laboratory. Patients (N=13) with idiopathic PD (Hoehn and Yahr stage 2 or 3) and stable medication use. Patients completed an 8-week (3 × 1h/wk) training program on a lower-body positive-pressure treadmill. Body weight support was used to facilitate increased intensity and motor challenges during treadmill training. The training program contained combinations of (1) running and walking intervals, (2) the use of sudden changes (eg, in body weight support and speed), (3) different types of locomotion (eg, chassé, skipping, and jumps), and (4) sprints at 50 percent body weight. The Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Parkinson's Disease Questionnaire-39 items (PDQ-39), and the six-minute walk test were conducted 8 weeks before and pre- and posttraining. At the end of training, statistically significant improvements were found in all outcome measures compared with the control period. Total MDS-UPDRS score changed from (mean ± 1SD) 58±18 to 47±18, MDS-UPDRS motor part score changed from 35±10 to 29±12, PDQ-39 summary index score changed from 22±13 to 13±12, and the six-minute walking distance changed from 576±93 to 637±90m. Body weight-supported progressive high-intensity locomotor training is feasible and well tolerated by patients with PD. The training improved clinical status, quality of life, and gait capacity significantly. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Genetic polymorphisms of beta1 adrenergic receptor and their influence on the cardiovascular responses to metoprolol in a South Indian population.

    PubMed

    Mahesh Kumar, Koratagere Nagaraju; Ramu, Periasamy; Rajan, Subramanian; Shewade, Deepak Gopal; Balachander, Jayaraman; Adithan, Chandrasekaran

    2008-11-01

    Beta-blockers show interindividual and interethnic variability in their response. Such variability might be due to the polymorphic variations in the beta1 adrenergic receptor genes viz, Ser49Gly and Arg389Gly. The study evaluated the influence of Ser49Gly and Arg389Gly polymorphisms on the cardiovascular responses to metoprolol in a South Indian population. Forty-one genetically prescreened healthy male volunteers participated in the study. They were divided on the basis of genotype of each polymorphism: Ser49Ser, Ser49Gly, and Gly49Gly and Arg389Arg, Arg389Gly, and Gly389Gly. They were also grouped into combination genotypes viz, S49S R389R, S49G R389R, G49G R389R, S49S R389G, S49S G389G, and S49G R389G. They were subjected to treadmill exercise testing, and cardiovascular parameters were measured before and after metoprolol administration. Metoprolol concentration was determined by reversed phase high-performance liquid chromatography method. The diastolic blood pressure (DBP) was significantly lower in S49S/G389G group when compared to S49S/A389A group. The cardiac parameters were significantly increased in all the genotype groups during treadmill exercise test done for a period of 9 minutes. During predrug treadmill exercise at the end of third and sixth minute, Gly49Gly showed a higher increase in heart rate and volume of oxygen consumption compared to Ser49Ser. Same group showed a higher increase of volume of oxygen consumption at the end of ninth minute of exercise compared to the Ser49Ser. Systolic and diastolic blood pressures were not different between Ser49Gly polymorphisms. However, there was no statistical difference between the genotype groups of both polymorphisms at any stage of post-drug treadmill exercise. The analysis of combination of genotypes showed no significant difference during predrug and postdrug exercise testing. The increase in cardiac responses to treadmill test was influenced by Ser49Gly polymorphism. Nevertheless, the above polymorphisms did not alter the beta-blocker response during treadmill exercise in South Indian population.

  2. Accuracy of a step counter during treadmill and daily life walking by healthy adults and patients with cardiac disease

    PubMed Central

    Thorup, Charlotte Brun; Grønkjær, Mette; Dinesen, Birthe Irene

    2017-01-01

    Background Step counters have been used to observe activity and support physical activity, but there is limited evidence on their accuracy. Objective The purpose was to investigate the step accuracy of the Fitbit Zip (Zip) in healthy adults during treadmill walking and in patients with cardiac disease while hospitalised at home. Methods Twenty healthy adults aged 39±13.79 (mean ±SD) wore four Zips while walking on a treadmill at different speeds (1.7–6.1 km/hour), and 24 patients with cardiac disease (age 67±10.03) wore a Zip for 24 hours during hospitalisation and for 4 weeks thereafter at home. A Shimmer3 device was used as a criterion standard. Results At a treadmill speed of 3.6 km/hour, the relative error (±SD) for the Zips on the upper body was −0.02±0.67 on the right side and −0.09 (0.67) on the left side. For the Zips on the waist, this was 0.08±0.71 for the right side and -0.08 (0.47) on the left side. At a treadmill speed of 3.6 km/hour and higher, the average per cent of relative error was <3%. The 24-hour test for the hospitalised patients showed a relative error of −47.15±24.11 (interclass correlation coefficient (ICC): 0.60), and for the 24-hour test at home, the relative error was −27.51±28.78 (ICC: 0.87). Thus, none of the 24-hour tests had less than the expected 20% error. In time periods of evident walking during the 24 h test, the Zip had an average per cent relative error of <3% at 3.6 km/hour and higher speeds. Conclusions A speed of 3.6 km/hour or higher is required to expect acceptable accuracy in step measurement using a Zip, on a treadmill and in real life. Inaccuracies are directly related to slow speeds, which might be a problem for patients with cardiac disease who walk at a slow pace. PMID:28363918

  3. Ischemia Related Changes in Circulating Stem and Progenitor Cells and Associated Clinical Characteristics in Peripheral Artery Disease

    PubMed Central

    Saber, Rana; Liu, Kiang; Ferrucci, Luigi; Criqui, Michael H.; Zhao, Lihui; Tian, Lu; Guralnik, Jack; Liao, Yihua; Domanchuk, Kathryn; Kibbe, Melina R.; Green, David; Perlman, Harris; McDermott, Mary M.

    2017-01-01

    AIMS The extent and clinical significance of stem and progenitor cell (SPC) increases in response to lower extremity ischemia in people with peripheral artery disease (PAD) are unclear. We compared changes in SPC levels immediately following a treadmill exercise test between individuals with and without PAD. Among participants with PAD, we determined whether more severe PAD was associated with greater increases in SPCs following treadmill exercise induced lower extremity ischemia. APPROACH AND RESULTS We measured SPC levels in 25 participants with PAD and 20 without PAD before and immediately after a treadmill exercise test. Participants with PAD, compared to participants without PAD, had greater increases in CD34+CD45dim (+0.08±0.03 vs. −0.06±0.04, p=0.008), CD34+CD45dimCD133+ (+0.08±0.05 vs. −0.08±0.04, p=0.014), CD34+CD45dimCD31+ (+0.10±0.03 vs. −0.07±0.04, p=0.002), and CD34+CD45dimALDH+ SPCs (+0.18±0.07 vs. −0.05±0.08, p=0.054) measured as a percentage of all white blood cells. Among participants with PAD, those with any increases in the percent of SPCs immediately after the treadmill exercise test compared to those with no change or a decrease in SPCs had lower baseline ABI values (0.65±0.17 vs. 0.90±0.19, p=0.004) and shorter treadmill times to onset of ischemic leg symptoms (2.17±1.54 vs. 5.25±3.72 minutes, p=0.012). CONCLUSIONS In conclusion, treadmill exercise-induced lower extremity ischemia is associated with acute increases in circulating SPCs among people with PAD. More severe PAD is associated with a higher prevalence of SPC increases in response to lower extremity ischemia. Further prospective study is needed to establish the prognostic significance of ischemia related increases in SPCs among patients with PAD. PMID:26324152

  4. Home-based treadmill training improved seminal quality in adults with type 2 diabetes.

    PubMed

    Rosety-Rodriguez, M; Rosety, J M; Fornieles, G; Rosety, M A; Diaz, A J; Rosety, I; Rodríguez-Pareja, A; Rosety, M; Ordonez, F J; Elosegui, S

    2014-11-01

    This was the first study conducted to determine the influence of home-based treadmill training on seminal quality in adults with type 2 diabetes. Sixty sedentary adults with type 2 diabetes volunteered for the current study. Thirty were randomly allocated to the intervention group and performed a a 14-week, home-based, treadmill training program, 3 sessions per week, consisting of a warm-up (10-15min), 40min treadmill exercise at a work intensity of 55-70% of peak heart rate (increasing by 2.5% each two weeks) measured during a maximal treadmill test, and cooling-down (5-10min). The control group included 30, age and BMI matched adults with type 2 diabetes who did not take part in any training program. Seminal quality analysis included semen volume, sperm concentration, motility and normal morphologic features. Furthermore, total antioxidant status (TAS) as well as glutathione peroxidase (GPX) activity were assessed in seminal plasma. This protocol was approved by an Institutional Ethics Committee. The home-based treadmill training significantly increased sperm concentration as well as percentages of total sperm motility and normal spermatozoa. Furthermore, TAS and GPX activity were increased after the completion of the training program. No significant changes in any of the measured variables were found in the control group. Home-based treadmill training improved seminal quality in adults with type 2 diabetes. A secondary finding was that seminal antioxidant defense system was significantly increased after being exercised. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  5. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation.

    PubMed

    Vasudevan, Erin V L; Hamzey, Rami J; Kirk, Eileen M

    2017-08-23

    Understanding the mechanisms underlying locomotor learning helps researchers and clinicians optimize gait retraining as part of motor rehabilitation. However, studying human locomotor learning can be challenging. During infancy and childhood, the neuromuscular system is quite immature, and it is unlikely that locomotor learning during early stages of development is governed by the same mechanisms as in adulthood. By the time humans reach maturity, they are so proficient at walking that it is difficult to come up with a sufficiently novel task to study de novo locomotor learning. The split-belt treadmill, which has two belts that can drive each leg at a different speed, enables the study of both short- (i.e., immediate) and long-term (i.e., over minutes-days; a form of motor learning) gait modifications in response to a novel change in the walking environment. Individuals can easily be screened for previous exposure to the split-belt treadmill, thus ensuring that all experimental participants have no (or equivalent) prior experience. This paper describes a typical split-belt treadmill adaptation protocol that incorporates testing methods to quantify locomotor learning and generalization of this learning to other walking contexts. A discussion of important considerations for designing split-belt treadmill experiments follows, including factors like treadmill belt speeds, rest breaks, and distractors. Additionally, potential but understudied confounding variables (e.g., arm movements, prior experience) are considered in the discussion.

  6. The relationship of walking distances estimated by the patient, on the corridor and on a treadmill, and the Walking Impairment Questionnaire in intermittent claudication.

    PubMed

    Frans, Franceline Alkine; Zagers, Marjolein B; Jens, Sjoerd; Bipat, Shandra; Reekers, Jim A; Koelemay, Mark J W

    2013-03-01

    Physicians and patients consider the limited walking distance and perceived disability when they make decisions regarding (invasive) treatment of intermittent claudication (IC). We investigated the relationship between walking distances estimated by the patient, on the corridor and on a treadmill, and the Walking Impairment Questionnaire (WIQ) in patients with IC due to peripheral arterial disease. This was a single-center, prospective observational cohort study at a vascular laboratory in a university hospital in the Netherlands. The study consisted of 60 patients (41 male) with a median age of 64 years (range, 44-86 years) with IC and a walking distance ≤ 250 m on a standardized treadmill test. Main outcome measures were differences and Spearman rank correlations between pain-free walking distance, maximum walking distance (MWD) estimated by the patient, on the corridor and on a standardized treadmill test, and their correlation with the WIQ. The median patients' estimated, corridor, and treadmill MWD were 200, 200, and 123, respectively (P < .05). Although the median patients' estimated and corridor MWD were not significantly different, there was a difference on an individual basis. The correlation between the patients' estimated and corridor MWD was moderate (r = 0.61; 95% confidence interval [CI], 0.42-0.75). The correlation between patients' estimated and treadmill MWD was weak (r = 0.39; 95%, CI 0.15-0.58). Respective correlations for the pain-free walking distance were comparable. The patients' estimated MWD was moderately correlated with WIQ total score (r = 0.63; 95%, CI 0.45-0.76) and strongly correlated with WIQ distance score (r = 0.81; 95% CI, 0.69-0.88). The correlation between the corridor MWD and WIQ distance score was moderate (r = 0.59; 95% CI, 0.40-0.74). Patients' estimated walking distances and on a treadmill do not reflect walking distances in daily life. Instruments that take into account the perceived walking impairment, such as the WIQ, may help to better guide and evaluate treatment decisions. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  7. STS-32 crewmembers hold finish line banner as MS Low races on treadmill

    NASA Image and Video Library

    1990-01-20

    STS032-03-021 (9-20 Jan. 1990) --- Three crew members aboard the Space Shuttle Columbia enjoy one of the lighter moments of the 11-day mission on the flight deck. Astronaut G. David Low "runs" on a treadmill device while astronauts Daniel C. Brandenstein, left, and James D. Wetherbee look on. Wetherbee's mother competed in a marathon in Houston while the crew members had their own in-space version. The treadmill served as an exerciser and also was an important element of onboard biomedical testing. This picture was used by the astronauts at their January 30, 1990 Post Flight Press Conference (PFPC) at the Johnson Space Center (JSC).

  8. Comparison between treadmill training with rhythmic auditory stimulation and ground walking with rhythmic auditory stimulation on gait ability in chronic stroke patients: A pilot study.

    PubMed

    Park, Jin; Park, So-yeon; Kim, Yong-wook; Woo, Youngkeun

    2015-01-01

    Generally, treadmill training is very effective intervention, and rhythmic auditory stimulation is designed to feedback during gait training in stroke patients. The purpose of this study was to compare the gait abilities in chronic stroke patients following either treadmill walking training with rhythmic auditory stimulation (TRAS) or over ground walking training with rhythmic auditory stimulation (ORAS). Nineteen subjects were divided into two groups: a TRAS group (9 subjects) and an ORAS group (10 subjects). Temporal and spatial gait parameters and motor recovery ability were measured before and after the training period. Gait ability was measured by the Biodex Gait trainer treadmill system, Timed up and go test (TUG), 6 meter walking distance (6MWD) and Functional gait assessment (FGA). After the training periods, the TRAS group showed a significant improvement in walking speed, step cycle, step length of the unaffected limb, coefficient of variation, 6MWD, and, FGA when compared to the ORAS group (p <  0.05). Treadmill walking training during the rhythmic auditory stimulation may be useful for rehabilitation of patients with chronic stroke.

  9. Development of a VR-based Treadmill Control Interface for Gait Assessment of Patients with Parkinson’s Disease

    PubMed Central

    Park, Hyung-Soon; Yoon, Jung Won; Kim, Jonghyun; Iseki, Kazumi; Hallett, Mark

    2013-01-01

    Freezing of gait (FOG) is a commonly observed phenomenon in Parkinson’s disease, but its causes and mechanisms are not fully understood. This paper presents the development of a virtual reality (VR)-based body-weight supported treadmill interface (BWSTI) designed and applied to investigate FOG. The BWSTI provides a safe and controlled walking platform which allows investigators to assess gait impairments under various conditions that simulate real life. In order to be able to evoke FOG, our BWSTI employed a novel speed adaptation controller, which allows patients to drive the treadmill speed. Our interface responsively follows the subject’s intention of changing walking speed by the combined use of feedback and feedforward controllers. To provide realistic visual stimuli, a three dimensional VR system is interfaced with the speed adaptation controller and synchronously displays realistic visual cues. The VR-based BWSTI was tested with three patients with PD who are known to have FOG. Visual stimuli that might cause FOG were shown to them while the speed adaptation controller adjusted treadmill speed to follow the subjects’ intention. Two of the three subjects showed FOG during the treadmill walking. PMID:22275661

  10. The Robinson Protocol: a treadmill anaerobic performance test.

    PubMed

    Robinson, Ellyn M; Graham, Louise B; Headley, Samuel A

    2004-08-01

    The current investigation was designed to further examine the reliability of the Robinson protocol, which is a run-to-exhaustion treadmill test. Robinson (10) originally examined this protocol with 5 subjects. The significance of the initial exploratory study was the impetus for expanding the study to examine the reliability of the protocol with a larger sample. Fifteen male subjects participated in 3 trial runs on the treadmill. The first trial was a modified McConnell (7) test to determine the aerobic capacity of each subject. The second and third trials were identical Robinson protocols (10). The first trial run mean, in seconds (262.04 +/- 74.50), was not significantly different from the second trial run mean (257.30 +/- 72.65), p = 0.526 (2 tailed). As expected, trial 1 and trial 2 were highly correlated (intraclass) (r = 0.927, p < 0.001). These results provide additional support for the hypothesis that the Robinson protocol with a greater subject pool is a reliable protocol that can be used in research studies interested in examining various physiological interventions or anaerobic training.

  11. The effects of the length of rain boots on balance during treadmill walking

    PubMed Central

    Yang, Hee-Ra; Kim, Mi-Kyoung; Yoo, Kyung-Tae

    2015-01-01

    [Purpose] Effects of muscle fatigue on lower-extremity balance were evaluated in 12 healthy young women in their 20s while they walked on a treadmill wearing rain boots of different lengths. [Methods] The rain boots were divided into three groups based on the shaft length (Long, Middle, Short). Romberg’s test was applied and limits of stability were measured before and after treadmill walking. [Results] Romberg’s test showed a significant main effect for time. There were significant differences between the center of gravity area, length, and velocity when the eyes were open and the center of gravity length, velocity, and length/cm2 when the eyes were closed. Changes in the limits of stability also showed a significant main effect of time. There were significant differences in pre-test and post-test values in the left, right, forward, and total directions. [Conclusion] It was found that muscle fatigue in the lower extremities generated by walking in rain boots affected the joints and the adjuster muscles, depending on shaft lengths. Compensation due to visual feedback and the length of the boot shaft affected movement of the distal joints, resulting in a reduced ability to balance. PMID:26644688

  12. A 3-Month Aerobic Training Program Improves Brain Energy Metabolism in Mild Alzheimer's Disease: Preliminary Results from a Neuroimaging Study.

    PubMed

    Castellano, Christian-Alexandre; Paquet, Nancy; Dionne, Isabelle J; Imbeault, Hélène; Langlois, Francis; Croteau, Etienne; Tremblay, Sébastien; Fortier, Mélanie; Matte, J Jacques; Lacombe, Guy; Fülöp, Tamás; Bocti, Christian; Cunnane, Stephen C

    2017-01-01

    Aerobic training has some benefits for delaying the onset or progression of Alzheimer's disease (AD). Little is known about the implication of the brain's two main fuels, glucose and ketones (acetoacetate), associated with thesebenefits. To determine whether aerobic exercise training modifies brain energy metabolism in mild AD. In this uncontrolled study, ten patients with mild AD participated in a 3-month, individualized, moderate-intensity aerobic training on a treadmill (Walking). Quantitative measurement of brain uptake of glucose (CMRglu) and acetoacetate (CMRacac) using neuroimaging and cognitive testing were done before and after the Walking program. Four men and six women with an average global cognitive score (MMSE) of 26/30 and an average age of 73 y completed the Walking program. Average total distance and treadmill speed were 8 km/week and 4 km/h, respectively. Compared to the Baseline, after Walking, CMRacac was three-fold higher (0.6±0.4 versus 0.2±0.1 μmol/100 g/min; p = 0.01). Plasma acetoacetate concentration and the blood-to-brain acetoacetate influx rate constant were also increased by 2-3-fold (all p≤0.03). CMRglu was unchanged after Walking (28.0±0.1 μmol/100 g/min; p = 0.96). There was a tendency toward improvement in the Stroop-color naming test (-10% completion time, p = 0.06). Performance on the Trail Making A&B tests was also directly related to plasma acetoacetate and CMRacac (all p≤0.01). In mild AD, aerobic training improved brain energy metabolism by increasing ketone uptake and utilization while maintaining brain glucose uptake, and could potentially be associated with some cognitive improvement.

  13. Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation.

    PubMed

    Torres-Oviedo, Gelsy; Bastian, Amy J

    2010-12-15

    Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.

  14. Effects of 12-week supervised treadmill training on spatio-temporal gait parameters in patients with claudication.

    PubMed

    Konik, Anita; Kuklewicz, Stanisław; Rosłoniec, Ewelina; Zając, Marcin; Spannbauer, Anna; Nowobilski, Roman; Mika, Piotr

    2016-01-01

    The purpose of the study was to evaluate selected temporal and spatial gait parameters in patients with intermittent claudication after completion of 12-week supervised treadmill walking training. The study included 36 patients (26 males and 10 females) aged: mean 64 (SD 7.7) with intermittent claudication. All patients were tested on treadmill (Gait Trainer, Biodex). Before the programme and after its completion, the following gait biomechanical parameters were tested: step length (cm), step cycle (cycle/s), leg support time (%), coefficient of step variation (%) as well as pain-free walking time (PFWT) and maximal walking time (MWT) were measured. Training was conducted in accordance with the current TASC II guidelines. After 12 weeks of training, patients showed significant change in gait biomechanics consisting in decreased frequency of step cycle (p < 0.05) and extended step length (p < 0.05). PFWT increased by 96% (p < 0.05). MWT increased by 100% (p < 0.05). After completing the training, patients' gait was more regular, which was expressed via statistically significant decrease of coefficient of variation (p < 0.05) for both legs. No statistically significant relation between the post-training improvement of PFWT and MWT and step length increase and decreased frequency of step cycle was observed (p > 0.05). Twelve-week treadmill walking training programme may lead to significant improvement of temporal and spatial gait parameters in patients with intermittent claudication. Twelve-week treadmill walking training programme may lead to significant improvement of pain-free walking time and maximum walking time in patients with intermittent claudication.

  15. Comparison of Bruce treadmill exercise test protocols: is ramped Bruce equal or superior to standard bruce in producing clinically valid studies for patients presenting for evaluation of cardiac ischemia or arrhythmia with body mass index equal to or greater than 30?

    PubMed

    Bires, Angela Macci; Lawson, Dori; Wasser, Thomas E; Raber-Baer, Donna

    2013-12-01

    Clinically valid cardiac evaluation via treadmill stress testing requires patients to achieve specific target heart rates and to successfully complete the cardiac examination. A comparison of the standard Bruce protocol and the ramped Bruce protocol was performed using data collected over a 1-y period from a targeted patient population with a body mass index (BMI) equal to or greater than 30 to determine which treadmill protocol provided more successful examination results. The functional capacity, metabolic equivalent units achieved, pressure rate product, and total time on the treadmill as measured for the obese patients were clinically valid and comparable to normal-weight and overweight patients (P < 0.001). Data gathered from each protocol demonstrated that the usage of the ramped Bruce protocol achieved more consistent results in comparison across all BMI groups in achieving 80%-85% of their age-predicted maximum heart rate. This study did not adequately establish that the ramped Bruce protocol was superior to the standard Bruce protocol for the examination of patients with a BMI equal to or greater than 30.

  16. Mirror therapy and treadmill training for a patient with chronic stroke: A case report.

    PubMed

    Broderick, Patrick; Horgan, Frances; Blake, Catherine; Hickey, Paula; O'Reilly, Joanne; Ehrensberger, Monika; Simpson, Daniel; Roberts, David; Monaghan, Kenneth

    2018-03-28

    A large proportion of patients with chronic stroke have permanent lower limb functional disability leading to reduced levels of independent mobility. Individually, both mirror therapy and treadmill training have been shown to improve aspects of lower limb functioning in patients with stroke. This case report examined whether a new combination of both interventions would lead to improvements in lower limb functional disability for a patient with chronic stroke. The participant was a 50-year-old female who had a left middle cerebral artery infarction (47 months' post stroke). Due to hemiparesis, she had lower limb motor impairment and gait deficits. The participant engaged in a combination of mirror therapy and treadmill training for 30 minutes per day, 3 days per week, for 4 weeks. Modified Ashworth Scale, Fugl-Meyer Assessment-Lower Extremity and the 10 m Walk Test demonstrated clinically meaningful change. The 6 Minute Walk Test did not demonstrate meaningful change. The positive outcomes from this new combination therapy for this participant are encouraging given the relatively small dose of training and indicate the potential benefit of mirror therapy as an adjunct to treadmill training for enhancing lower limb muscle tone, motor function and walking velocity in patients with chronic stroke.

  17. Prediction of Maximal Aerobic Capacity in Severely Burned Children

    PubMed Central

    Porro, Laura; Rivero, Haidy G.; Gonzalez, Dante; Tan, Alai; Herndon, David N.; Suman, Oscar E.

    2011-01-01

    Introduction Maximal oxygen uptake (VO2 peak) is an indicator of cardiorespiratory fitness, but requires expensive equipment and a relatively high technical skill level. Purpose The aim of this study is to provide a formula for estimating VO2 peak in burned children, using information obtained without expensive equipment. Methods Children, with ≥40% total surface area burned (TBSA), underwent a modified Bruce treadmill test to asses VO2 peak at 6 months after injury. We recorded gender, age, %TBSA, %3rd degree burn, height, weight, treadmill time, maximal speed, maximal grade, and peak heart rate, and applied McHenry’s select algorithm to extract important independent variables and Robust multiple regression to establish prediction equations. Results 42 children; 7 to 17 years old were tested. Robust multiple regression model provided the equation: VO2=10.33 – 0.62 *Age (years) + 1.88 * Treadmill Time (min) + 2.3 (gender; Females = 0, Males = 1). The correlation between measured and estimated VO2 peak was R=0.80. We then validated the equation with a group of 33 burned children, which yielded a correlation between measured and estimated VO2 peak of R=0.79. Conclusions Using only a treadmill and easily gathered information, VO2 peak can be estimated in children with burns. PMID:21316155

  18. Treadmill exercise attenuates the severity of physical dependence, anxiety, depressive-like behavior and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment.

    PubMed

    Alizadeh, Maryam; Zahedi-Khorasani, Mahdi; Miladi-Gorji, Hossein

    2018-05-30

    This study was designed to examine whether treadmill exercise would attenuate the severity of physical dependence, methadone-induced anxiety, depression and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment (MMT). The rats were chronically treated with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 14 days. The exercising rats receiving MMT were forced to run on a motorized treadmill for 30 days during morphine withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that naloxone- precipitated opioid withdrawal signs were decreased in exercising morphine-dependent rats receiving MMT than sedentary rats. Also, the exercising morphine-dependent rats receiving MMT exhibited an increased time on open arms, preference for sucrose and a lower morphine preference ratio than sedentary rats. We conclude that treadmill exercise decreased the severity of physical dependence, anxiety/depressive-like behaviors and also the voluntary morphine consumption in morphine withdrawn rats receiving MMT. Thus, exercise may benefit in the treatment of addicts during MMT. Copyright © 2018. Published by Elsevier B.V.

  19. Physiologic Responses to Motorized and Non-Motorized Locomotion Utilizing the International Space Station Treadmill

    NASA Technical Reports Server (NTRS)

    Smith, Cassie; Lee, Stuart MC; Laughlin, Mitzi; Loehr, James; Norcross, Jason; DeWitt, John; Hagan, R. D.

    2006-01-01

    Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription. PURPOSE: To quantify heart rate (HR), oxygen consumption (VO2), perceived exertion (RPE), and blood lactate (BLa) during T-M and T-NM locomotion at 2 and 4 mph in normal ambulatory subjects. METHODS: Twenty subjects (10 men, 10 women; 31+/-5 yr, 172+/-10 cm, 68+/-13 kg, mean SD) with a treadmill peakVO2 of 45.5+/-5.4 ml/kg/min (mean+/-SD) exercised on the ground-based ISS treadmill. Following a familiarization session in each mode, subjects completed two data collection sessions, T-M and T-NM in random order, at 2 and 4 mph. Subjects attempted to complete 5 min of exercise at each speed; if they could not maintain the speed, the trial was discontinued. At least 5 minutes of rest separated each speed trial, and at least 48 hrs separated each session. VO2 was measured continuously (metabolic gas analysis), while HR (HR monitor) and RPE (Borg Chart, 6-20 scale) were recorded each min. Not all subjects completed 5 min during each condition, therefore the mean of the min 3 and 4 was taken as representative of steady-state. BLa was measured (finger stick) within 2 min post-exercise. Paired t-tests were used to test for differences (p<0.05) between treadmill modes within the same speed. RESULTS: All twenty subjects completed at least 4 min of exercise during all conditions, except T-NM 4 mph when only 11 subjects completed the minimum exercise duration. VO2, HR, RPE and BLa were significantly higher during T-NM locomotion at both speeds.

  20. Reliability of spatiotemporal and kinetic gait parameters determined by a new instrumented treadmill system.

    PubMed

    Reed, Lloyd F; Urry, Stephen R; Wearing, Scott C

    2013-08-21

    Despite the emerging use of treadmills integrated with pressure platforms as outcome tools in both clinical and research settings, published evidence regarding the measurement properties of these new systems is limited. This study evaluated the within- and between-day repeatability of spatial, temporal and vertical ground reaction force parameters measured by a treadmill system instrumented with a capacitance-based pressure platform. Thirty three healthy adults (mean age, 21.5 ± 2.8 years; height, 168.4 ± 9.9 cm; and mass, 67.8 ± 18.6 kg), walked barefoot on a treadmill system (FDM-THM-S, Zebris Medical GmbH) on three separate occasions. For each testing session, participants set their preferred pace but were blinded to treadmill speed. Spatial (foot rotation, step width, stride and step length), temporal (stride and step times, duration of stance, swing and single and double support) and peak vertical ground reaction force variables were collected over a 30-second capture period, equating to an average of 52 ± 5 steps of steady-state walking. Testing was repeated one week following the initial trial and again, for a third time, 20 minutes later. Repeated measures ANOVAs within a generalized linear modelling framework were used to assess between-session differences in gait parameters. Agreement between gait parameters measured within the same day (session 2 and 3) and between days (session 1 and 2; 1 and 3) were evaluated using the 95% repeatability coefficient. There were statistically significant differences in the majority (14/16) of temporal, spatial and kinetic gait parameters over the three test sessions (P < .01). The minimum change that could be detected with 95% confidence ranged between 3% and 17% for temporal parameters, 14% and 33% for spatial parameters, and 4% and 20% for kinetic parameters between days. Within-day repeatability was similar to that observed between days. Temporal and kinetic gait parameters were typically more consistent than spatial parameters. The 95% repeatability coefficient for vertical force peaks ranged between ± 53 and ± 63 N. The limits of agreement in spatial parameters and ground reaction forces for the treadmill system encompass previously reported changes with neuromuscular pathology and footwear interventions. These findings provide clinicians and researchers with an indication of the repeatability and sensitivity of the Zebris treadmill system to detect changes in common spatiotemporal gait parameters and vertical ground reaction forces.

  1. Stress-associated cardiovascular reaction masks heart rate dependence on physical load in mice.

    PubMed

    Andreev-Andrievskiy, A A; Popova, A S; Borovik, A S; Dolgov, O N; Tsvirkun, D V; Custaud, M; Vinogradova, O L

    2014-06-10

    When tested on the treadmill mice do not display a graded increase of heart rate (HR), but rather a sharp shift of cardiovascular indices to high levels at the onset of locomotion. We hypothesized that under test conditions cardiovascular reaction to physical load in mice is masked with stress-associated HR increase. To test this hypothesis we monitored mean arterial pressure (MAP) and heart rate in C57BL/6 mice after exposure to stressful stimuli, during spontaneous locomotion in the open-field test, treadmill running or running in a wheel installed in the home cage. Mice were treated with β1-adrenoblocker atenolol (2mg/kg ip, A), cholinolytic ipratropium bromide (2mg/kg ip, I), combination of blockers (A+I), anxiolytic diazepam (5mg/kg ip, D) or saline (control trials, SAL). MAP and HR in mice increased sharply after handling, despite 3weeks of habituation to the procedure. Under stressful conditions of open field test cardiovascular parameters in mice were elevated and did not depend on movement speed. HR values did not differ in I and SAL groups and were reduced with A or A+I. HR was lower at rest in D pretreated mice. In the treadmill test HR increase over speeds of 6, 12 and 18m/min was roughly 1/7-1/10 of HR increase observed after placing the mice on the treadmill. HR could not be increased with cholinolytic (I), but was reduced after sympatholytic (A) or A+I treatment. Anxiolytic (D) reduced heart rate at lower speeds of movement and its overall effect was to unmask the dependency of HR on running speed. During voluntary running in non-stressful conditions of the home cage HR in mice linearly increased with increasing running speeds. We conclude that in test situations cardiovascular reactions in mice are governed predominantly by stress-associated sympathetic activation, rendering efforts to evaluate HR and MAP reactions to workload unreliable. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The evolution of locomotor rhythmicity in tetrapods.

    PubMed

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  3. Pressure-controlled treadmill training in chronic stroke: a case study with AlterG.

    PubMed

    Lathan, Cherise; Myler, Andrew; Bagwell, Jennifer; Powers, Christopher M; Fisher, Beth E

    2015-04-01

    Body-weight-supported treadmill training has been shown to be an effective intervention to improve walking characteristics for individuals who have experienced a stroke. A pressure-controlled treadmill utilizes a sealed chamber in which air pressure can be altered in a controlled manner to counteract the effects of gravity. The focus of this case study was to assess the immediate and short-term impact of a pressure-controlled treadmill to improve gait parameters, reduce fall risk, improve participation, and reduce the self-perceived negative impact of stroke in an individual with chronic stroke. The subject was an 81-year-old man (14.5 months poststroke). He had slow walking speed, poor endurance, and multiple gait deviations. The subject trained 4 times per week for 4 weeks (40 minutes per session) on a pressure-controlled treadmill (AlterG M320) to counter the influence of gravity on the lower extremities. Following training, self-selected gait speed increased from 0.50 m/s to 0.96 m/s, as measured by the 10-meter walk test. Stride length increased from 0.58 m to 0.95 m after training and to 1.00 m at 1-month follow-up. Peak hip flexion increased from 3.7° to 24.6° after training and to 19.4° at 1-month follow-up. Peak knee flexion increased from 19.4° to 34.3° after training and to 42.7° at 1-month follow-up. Measures of endurance, fall risk, and percentage of perceived recovery also were found to improve posttraining. Training with a pressure-controlled treadmill may be a viable alternative to traditional body-weight-supported treadmill training for persons poststroke. Additional studies with larger sample sizes are needed to elucidate the role of pressure-controlled treadmill training in this population. Video abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A97).

  4. Forced treadmill running suppresses postincisional pain and inhibits upregulation of substance P and cytokines in rat dorsal root ganglion.

    PubMed

    Chen, Yu-Wen; Tzeng, Jann-Inn; Lin, Min-Fei; Hung, Ching-Hsia; Wang, Jhi-Joung

    2014-08-01

    Exercise causes a variety of psychophysical effects (eg, alterations in pain sensation). Tissue injury induces mediator releases in the spinal cord resulting in pain hypersensitivity; however, the contribution of the dorsal root ganglion (DRG) is poorly understood. In this study, we tested if forced treadmill running can attenuate postoperative pain and alter substance P (SP) or proinflammatory cytokine level in the DRG by using a rat model of skin/muscle incision and retraction (SMIR). We evaluated mechanical sensitivity to von Frey stimuli (6 and 15 g) and expression of SP, interleukin-1β, and interleukin-6 in the DRG of sham-operated sedentary rats, SMIR sedentary rats, sham-operated rats with forced treadmill running, and SMIR rats with forced treadmill running. At postoperative day 8, trained rats ran for 5 days per week for 4 weeks on a treadmill 70 minutes/d with an intensity of 18 m/min. On postoperative day 6, SMIR sedentary rats displayed a significant mechanical hypersensitivity that persisted until postoperative day 35. By comparison, SMIR-operated rats, which received forced treadmill running, exhibited a quick recovery from mechanical hypersensitivity. SMIR sedentary rats showed an upregulation of SP, interleukin-1β, and interleukin-6 in the DRG at postoperative days 14 and 28, whereas SMIR-operated rats receiving forced treadmill running reversed this upregulation at postoperative day 28. We concluded that forced treadmill running alleviated persistent postincisional pain caused by SMIR surgery. This appears to be protective against postoperative pain, which probably relates to the downturn in excess SP, interleukin-1β, and interleukin-6 in the DRG. Controlling the expression of SP, interleukin-6, and interleukin-1β in the DRG can help manage postoperative pain. This finding could potentially help clinicians and physical therapists who seek to examine how exercise may attenuate postsurgical pain and its mechanism. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  5. Physiological responses during intermittent running exercise differ between outdoor and treadmill running.

    PubMed

    Panascì, Marco; Lepers, Romuald; La Torre, Antonio; Bonato, Matteo; Assadi, Hervè

    2017-09-01

    The aim of this study was to compare the physiological responses during 15 min of intermittent running consisting of 30 s of high-intensity running exercise at maximal aerobic velocity (MAV) interspersed with 30 s of passive recovery (30-30) performed outdoor versus on a motorized treadmill. Fifteen collegiate physically active males (age, 22 ± 1 years old; body mass, 66 ± 7 kg; stature, 176 ± 06 cm; weekly training volume, 5 ± 2 h·week -1 ), performed the Fitness Intermittent Test 45-15 to determine maximal oxygen uptake (V̇O 2max ) and MAV and then completed in random order 3 different training sessions consisting of a 30-s run/30-s rest on an outdoor athletic track (30-30 Track) at MAV; a 30-s run/30-s rest on a treadmill (30-30 Treadmill) at MAV; a 30-s run/30-s rest at MAV+15% (30-30 + 15% MAV Treadmill). Oxygen uptake (V̇O 2 ), time above 90%V̇O 2max (t90%V̇O 2max ), and rating of perceived exertion (RPE) were measured during each training session. We observed a statistical significant underestimation of V̇O 2 (53.1 ± 5.4 mL·kg -1 ·min -1 vs 49.8 ± 6.7 mL·kg -1 ·min -1 , -6.3%, P = 0.012), t90%V̇O 2max (8.6% ± 11.5% vs 38.7% ± 32.5%, -77.8%, P = 0.008), RPE (11.4 ± 1.4 vs 16.5 ± 1.7, -31%, P < 0.0001) during the 30-30 Treadmill compared with the same training session performed on track. No statistical differences between 30-30 +15 % MAV Treadmill and 30-30 Track were observed. The present study demonstrates that a 15% increase in running velocity during a high-intensity intermittent treadmill training session is the optimal solution to reach the same physiological responses than an outdoor training session.

  6. Treadmill exercise within lower-body negative pressure attenuates simulated spaceflight-induced reductions of balance abilities in men but not women

    PubMed Central

    Macaulay, Timothy R; Macias, Brandon R; Lee, Stuart MC; Boda, Wanda L; Watenpaugh, Donald E; Hargens, Alan R

    2016-01-01

    Spaceflight causes sensorimotor adaptations that result in balance deficiencies on return to a gravitational environment. Treadmill exercise within lower-body negative pressure (LBNP) helps protect physiological function during microgravity as simulated by bed rest. Therefore, we hypothesized that treadmill exercise within LBNP would prevent balance losses in both male and female identical twins during 30 days of 6° head-down tilt bed rest. Fifteen (seven female and eight male) identical twin sets participated in this simulation of microgravity. Within each twin pair, one twin was randomly assigned to an exercise group that performed 40 min of supine treadmill exercise within LBNP set to generate 1.0–1.2 body weight, followed by 5 min of static feet-supported LBNP, 6 days per week. Their identical sibling was assigned to a non-exercise control group with all other bed rest conditions equivalent. Before and immediately after bed rest, subjects completed standing and walking rail balance tests with eyes open and eyes closed. In control subjects, standing rail balance times (men: −42%, women: −40%), rail walk distances (men: −44%, women: −32%) and rail walk times (men: −34%, women: −31%) significantly decreased after bed rest. Compared with controls, treadmill exercise within LBNP significantly attenuated losses of standing rail balance time by 63% in men, but the 41% attenuation in women was not significant. Treadmill exercise within LBNP did not affect rail walk abilities in men or women. Treadmill exercise within LBNP during simulated spaceflight attenuates loss of balance control in men but not in women. PMID:28725733

  7. Metabolic Rate and Ground Reaction Force During Motorized and Non-Motorized Treadmill Exercise

    NASA Technical Reports Server (NTRS)

    Everett, Meghan E.; Loehr, James A.; DeWitt, John K.; Laughlin, Mitzi; Lee, Stuart M. C.

    2010-01-01

    PURPOSE: To measure vertical ground reaction force (vGRF) and oxygen consumption (VO2) at several velocities during exercise using a ground-based version of the ISS treadmill in the M and NM modes. METHODS: Subjects (n = 20) walked or ran at 0.89, 1.34, 1.79, 2.24, 2.68, and 3.12 m/s while VO2 and vGRF data were collected. VO2 was measured using open-circuit spirometry (TrueOne 2400, Parvo-Medics). Data were averaged over the last 2 min of each 5-min stage. vGRF was measured in separate 15-s bouts at 125 Hz using custom-fitted pressure-sensing insoles (F-Scan Sport Sensors, Tekscan, Inc). A repeated-measures ANOVA was used to test for differences in VO2 and vGRF between M and NM and across speeds. Significance was set at P < 0.05. RESULTS: Most subjects were unable to exercise for 5 min at treadmill speeds above 1.79 m/s in the NM mode; however, vGRF data were obtained for all subjects at each speed in both modes. VO2 was approx.40% higher during NM than M exercise across treadmill speeds. vGRF increased with treadmill speed but was not different between modes. CONCLUSION: Higher VO2 with no change in vGRF suggests that the additional metabolic cost associated with NM treadmill exercise is accounted for in the horizontal forces required to move the treadmill belt. Although this may limit the exercise duration at faster speeds, high-intensity NM exercise activates the hamstrings and plantarflexors, which are not specifically targeted or well protected by other in-flight countermeasures.

  8. Treadmill exercise ameliorates symptoms of attention deficit/hyperactivity disorder through reducing Purkinje cell loss and astrocytic reaction in spontaneous hypertensive rats

    PubMed Central

    Yun, Hyo-Soon; Park, Mi-Sook; Ji, Eun-Sang; Kim, Tae-Woon; Ko, Il-Gyu; Kim, Hyun-Bae; Kim, Hong

    2014-01-01

    Attention deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder of cognition. We investigated the effects of treadmill exercise on Purkinje cell and astrocytic reaction in the cerebellum of the ADHD rat. Adult male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKYR) weighing 210± 10 g were used. The animals were randomly divided into four groups (n= 15): control group, ADHD group, ADHD and methylphenidate (MPH)-treated group, ADHD and treadmill exercise group. The rats in the MPH-treated group as a positive control received 1 mg/kg MPH orally once a day for 28 consecutive days. The rats in the treadmill exercise group were made to run on a treadmill for 30 min once a day for 28 days. Motor coordination and balance were determined by vertical pole test. Immunohistochemistry for the expression of calbindinD-28 and glial fibrillary acidic protein (GFAP) in the cerebellar vermis and Western blot for GFAP, Bax, and Bcl-2 were conducted. In the present results, ADHD significantly decreased balance and the number of calbindin-positive cells, while GFAP expression and Bax/Bcl-2 ratio in the cerebellum were significantly increased in the ADHD group compared to the control group (P< 0.05, respectively). In contrast, treadmill exercise and MPH alleviated the ADHD-induced the decrease of balance and the number of calbindine-positive cells, and the increase of GFAP expression and Bax/Bcl-2 ratio in the cerebellum (P< 0.05, respectively). Therefore, the present results suggested that treadmill exercise might exert ameliorating effect on ADHD through reduction of Purkinje cell loss and astrocytic reaction in the cerebellum. PMID:24678501

  9. Reproducibility of the exponential rise technique of CO(2) rebreathing for measuring P(v)CO(2) and C(v)CO(2 )to non-invasively estimate cardiac output during incremental, maximal treadmill exercise.

    PubMed

    Cade, W Todd; Nabar, Sharmila R; Keyser, Randall E

    2004-05-01

    The purpose of this study was to determine the reproducibility of the indirect Fick method for the measurement of mixed venous carbon dioxide partial pressure (P(v)CO(2)) and venous carbon dioxide content (C(v)CO(2)) for estimation of cardiac output (Q(c)), using the exponential rise method of carbon dioxide rebreathing, during non-steady-state treadmill exercise. Ten healthy participants (eight female and two male) performed three incremental, maximal exercise treadmill tests to exhaustion within 1 week. Non-invasive Q(c) measurements were evaluated at rest, during each 3-min stage, and at peak exercise, across three identical treadmill tests, using the exponential rise technique for measuring mixed venous PCO(2) and CCO(2) and estimating venous-arterio carbon dioxide content difference (C(v-a)CO(2)). Measurements were divided into measured or estimated variables [heart rate (HR), oxygen consumption (VO(2)), volume of expired carbon dioxide (VCO(2)), end-tidal carbon dioxide (P(ET)CO(2)), arterial carbon dioxide partial pressure (P(a)CO(2)), venous carbon dioxide partial pressure ( P(v)CO(2)), and C(v-a)CO(2)] and cardiorespiratory variables derived from the measured variables [Q(c), stroke volume (V(s)), and arteriovenous oxygen difference ( C(a-v)O(2))]. In general, the derived cardiorespiratory variables demonstrated acceptable (R=0.61) to high (R>0.80) reproducibility, especially at higher intensities and peak exercise. Measured variables, excluding P(a)CO(2) and C(v-a)CO(2), also demonstrated acceptable (R=0.6 to 0.79) to high reliability. The current study demonstrated acceptable to high reproducibility of the exponential rise indirect Fick method in measurement of mixed venous PCO(2) and CCO(2) for estimation of Q(c) during incremental treadmill exercise testing, especially at high-intensity and peak exercise.

  10. STS-32 crewmembers hold finish line banner as MS Low races on treadmill

    NASA Technical Reports Server (NTRS)

    1990-01-01

    On Columbia's, Orbiter Vehicle (OV) 102's, middeck, STS-32 crewmembers hold marathon finish line banner in front of Mission Specialist (MS) G. David Low as he races on the treadmill. Commander Daniel C. Brandenstein (left) and Pilot James D. Wetherbee (right) each hold an end of the banner reading 'Columbia/STS 32 Around-The-World Marathon' as Low raises his arms above it in runners fashion. The crewmembers are enjoying one of the lighter moments of the 11-day mission. Wetherbee's mother competed in a marathon in Houston while the STS-32 crewmembers had their own in-space version. The treadmill served as an exerciser and also was an important element of onboard biomedical testing.

  11. Treadmill exercise ameliorates social isolation-induced depression through neuronal generation in rat pups.

    PubMed

    Cho, Jung-Wan; Jung, Sun-Young; Lee, Sang-Won; Lee, Sam-Jun; Seo, Tae-Beom; Kim, Young-Pyo; Kim, Dae-Young

    2017-12-01

    Social isolation is known to induce emotional and behavioral changes in animals and humans. The effect of treadmill exercise on depression was investigated using social isolated rat pups. The rat pups in the social isolation groups were housed individually. The rat pups in the exercise groups were forced to run on treadmill for 30 min once a day from postnatal day 21 to postnatal day 34. In order to evaluate depression state of rat pups, forced swimming test was performed. Newly generated cells in the hippocampal dentate gyrus were determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. We examined the expression of 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase (TPH) in the dorsal raphe using immunofluorescence. The expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was detected by Western blot analysis. The present results demonstrated that social isolation increased resting time and decreased mobility time. Expression of 5-HT and TPH in the dorsal raphe and expression of BDNF and TrkB in the hippocampus were decreased by social isolation. The number of BrdU-positive cells in the hippocampal dentate gyrus was suppressed by social isolation. Treadmill exercise decreased resting time and increased mobility in the social isolated rat pups. Expression of 5-HT, TPH, BDNF, and TrkB was increased by treadmill exercise. The present results suggested that treadmill exercise may ameliorates social isolation-induced depression through increasing neuronal generation.

  12. Stepping responses to treadmill perturbations vary with severity of motor deficits in human SCI.

    PubMed

    Chu, Virginia Way Tong; Hornby, T George; Schmit, Brian D

    2018-04-18

    In this study, we investigated the responses to tread perturbations during human stepping on a treadmill. Our approach was to test the effects of perturbations to a single leg using a split-belt treadmill in healthy participants and in participants with varying severity of spinal cord injury (SCI). We recruited 11 people with incomplete SCI and 5 noninjured participants. As participants walked on an instrumented treadmill, the belt on one side was stopped or accelerated briefly during mid to late stance. A majority of participants initiated an unnecessary swing when the treadmill was stopped in mid stance, although the likelihood of initiating a step was decreased in participants with more severe SCI. Accelerating or decelerating one belt of the treadmill during stance altered the characteristics of swing. We observed delayed swing initiation when the belt was decelerated (i.e. the hip was in a more flexed position at time of swing) and advanced swing initiation with acceleration (i.e. hip extended at swing initiation). Further, the timing and leg posture of heel strike appeared to remain constant, reflected by a sagittal plane hip angle at heel strike that remained the same regardless of the perturbation. In summary, our results supported the current understanding of the role of sensory feedback and central drive in the control of stepping in participants with incomplete SCI and noninjured participants. In particular, the observation of unnecessary swing during a stop perturbation highlights the interdependence of central and sensory drive in walking control.

  13. One-minute heart rate recovery after cycloergometer exercise testing as a predictor of mortality in a large cohort of exercise test candidates: substantial differences with the treadmill-derived parameter.

    PubMed

    Gaibazzi, Nicola; Petrucci, Nicola; Ziacchi, Vigilio

    2004-03-01

    Previous work showed a strong inverse association between 1-min heart rate recovery (HRR) after exercising on a treadmill and all-cause mortality. The aim of this study was to determine whether the results could be replicated in a wide population of real-world exercise ECG candidates in our center, using a standard bicycle exercise test. Between 1991 and 1997, 1420 consecutive patients underwent ECG exercise testing performed according to our standard cycloergometer protocol. Three pre-specified cut-point values of 1-min HRR, derived from previous studies in the medical literature, were tested to see whether they could identify a higher-risk group for all-cause mortality; furthermore, we tested the possible association between 1-min HRR as a continuous variable and mortality using logistic regression. Both methods showed a lack of a statistically significant association between 1-min HRR and all-cause mortality. A weak trend toward an inverse association, although not statistically significant, could not be excluded. We could not validate the clear-cut results from some previous studies performed using the treadmill exercise test. The results in our study may only "not exclude" a mild inverse association between 1-min HRR measured after cycloergometer exercise testing and all-cause mortality. The 1-min HRR measured after cycloergometer exercise testing was not clinically useful as a prognostic marker.

  14. The Influence of Body Mass on Physical Fitness Test Performance in Male Firefighter Applicants.

    PubMed

    Phillips, Devin B; Scarlett, Michael P; Petersen, Stewart R

    2017-11-01

    The influence of body mass on test performance was investigated in 414 male firefighter applicants who completed a maximal treadmill test and five task-simulation tests while dressed in fire protective ensemble. Subjects were assigned to six mass categories from less than 70 kg to more than 110 kg, in 10 kg increments (n = 69 in each). Treadmill performance was lower (P < 0.05) in the two heaviest groups. Charged hose advance time was slower in the two lightest groups. The lightest group had slower times for weighted sled pull, forcible entry, and victim rescue tests. The heaviest group was slower on the ladder climb test. Lighter subjects had a small advantage in endurance-oriented tests while higher mass appeared to improve performance slightly in strength-oriented tests. However, mass explained only 4% to 19% of the variance in performance.

  15. 16 Weeks of Progressive Barefoot Running Training Changes Impact Force and Muscle Activation in Habitual Shod Runners

    PubMed Central

    Mezêncio, Bruno; Amadio, Alberto Carlos; Serrão, Julio Cerca

    2016-01-01

    Short-term effects of barefoot and simulated barefoot running have been widely discussed in recent years. Consequences of adopting barefoot running for a long period, including as a training approach, still remain unknown. The present study evaluated the influence of 16 weeks of progressive barefoot running training on impact force and muscle activation in habitual shod runners. Six habitual shod runners (3 men and 3 women, 29.5 ± 7.3 years) were tested barefoot (BF) and shod (SH), before and after 16 weeks of progressive barefoot running training. Tests consisted of running on instrumented treadmill at 9 km/h, for 10 minutes in each experimental condition. Nine data acquisitions (10 s) of vertical ground reaction force (VGRF) and electromyographic (EMG) signal were conducted in each experimental condition for each test. BF training was effective to alter VGRF and EMG parameters of running in habitual shod runners, regardless of footwear condition (SH or BF). The magnitude of first peak of VGRF (Fy1) and the impulse of the first 50 ms decreased after training for BF and SH (p<0.01). The activation reduced from PRE to POST training for four muscles in BF running (p<0.001), whereas only muscle gastrocnemius lateralis decreased significantly its activation (p<0.01) in SH running. A 16-week progressive barefoot running training seems to be an effective training strategy to reduce impact force, improve shock attenuation and to decrease muscle activation intensity, not only in BF running, but also in SH running, although BF condition seems to be more influenced by BF training. PMID:27907069

  16. Effects of body-weight supported treadmill training on kinetic symmetry in persons with chronic stroke.

    PubMed

    Combs, Stephanie A; Dugan, Eric L; Ozimek, Elicia N; Curtis, Amy B

    2012-11-01

    The purpose was to examine changes in kinetic symmetry in persons with chronic stroke immediately and 6-months after body-weight supported treadmill training. Fifteen participants at least six-months post stroke and able to ambulate between 0.4 and 0.8m/s and 20 participants without neurological conditions completed all phases of the study and were included in the analysis. The non-disabled group served as a comparison for describing changes in kinetic symmetry. The stroke group completed 24 sessions of body-weight supported treadmill training over 8-weeks with 20 minutes of total walking per session. Bilateral 3-dimensional motion analysis and gait speed were assessed 1-week before training (pre-test), 1-week after training (post-test) and 6-months after training (retention) in a repeated measures design. Relative propulsion of the paretic leg and relative positive work of the hip, knee and ankle joints of both legs were calculated to evaluate symmetry of kinetic forces. Statistically significant differences in relative propulsion and positive joint work within the paretic and non-paretic legs were not found over time. The stroke group significantly improved gait speed from pre- to post-test (p=.001) and pre-test to retention (p=.008). In comparison to the non-disabled group, forces produced by the stroke group were asymmetrical demonstrating compensatory adaptation. Although the participants with chronic stroke walked faster after body-weight supported treadmill training, the relative percentages of propulsion and positive work remained unchanged. These findings suggest that the increase in speed was likely due to strengthening existing compensatory strategies rather than through recovery of normal kinetic symmetry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Metabolic Rate and Perceived Exertion of Walking in Older Adults With Idiopathic Chronic Fatigue

    PubMed Central

    Corbett, Duane B.; Knaggs, Jeffrey D.; Manini, Todd M.

    2016-01-01

    Abstract Background: Fatigue is a common complaint in older adults, often not associated with underlying medical conditions. The purpose of this study was to investigate metabolic rate (MR) of walking, walking performance, and perception-based exertion during walking in older adults with and without idiopathic chronic fatigue (ICF). Methods: 20 older adults (aged 70.8±4.9 years), reporting 2 SD above normative values of the Functional Assessment of Chronic Illness Therapy-Fatigue scale and without overt health conditions that explained their symptoms, were compared with 25 age-matched older adults (73.2±5.1 years) without fatigue symptoms. Participants walked 400 m at a rapid pace on a 20-m course. On a separate visit, oxygen consumption was measured during treadmill test at standard (40.2 m/min), preferred paces (40–83 m/min) and peak capacity. Ratings of perceived exertion (RPE) were measured at each treadmill stage and after each lap of the 400-m walk test. Results: During the 400-m walk test, individuals with ICF showed lower overall walking speed and reported a steady increase in RPE with no change observed in non-fatigued group (1.63±1.72 vs 0.27±0.68, p < .01). Similar findings on RPE were noted on treadmill test. Gross MR, mass-specific MR, mass-specific net MR, and MR as a percent of peak oxygen consumption of walking were similar between groups during standard, preferred paces and peak capacity on treadmill. Conclusions: This study suggests that ICF in older adults is not related to elevated metabolic cost of walking. Higher RPE without concomitant decreases in performance indicate a potential disconnect between metabolic output and sensations during movement. PMID:27271253

  18. Effects of a 6-Week Aquatic Treadmill Exercise Program on Cardiorespiratory Fitness and Walking Endurance in Subacute Stroke Patients: A PILOT TRIAL.

    PubMed

    Han, Eun Young; Im, Sang Hee

    2017-03-15

    To assess the feasibility and safety of a 6-week course of water walking performed using a motorized aquatic treadmill in individuals with subacute stroke for cardiorespiratory fitness, walking endurance, and activities of daily living. Twenty subacute stroke patents were randomly assigned to aquatic treadmill exercise (ATE) or land-based exercise (LBE). The ATE group (n = 10) performed water-based aerobic exercise on a motorized aquatic treadmill, and the LBE group (n = 10) performed land-based aerobic exercise on a cycle ergometer. Both groups performed aerobic exercise for 30 minutes, 5 times per week for 6 weeks. Primary outcome measures were 6-minute walk test for walking endurance and cardiopulmonary fitness parameters of a symptom-limited exercise tolerance test, and secondary measures were Korean version of the Modified Barthel Index (K-MBI) for activities of daily living. All variables were assessed at baseline and at the end of the intervention. The ATE group showed significant improvements in 6-minute walk test (P = .005), peak oxygen uptake (V·o2peak; P = .005), peak heart rate (P = .007), exercise tolerance test duration (P = .005), and K-MBI (P = .008). The LBE group showed a significant improvement only in K-MBI (P = .012). In addition, improvement in V·o2peak was greater in the ATE than in the LBE group. This preliminary study showed that a 6-week ATE program improved peak aerobic capacity and walking endurance in patients with subacute stroke. The improvement in V·o2peak after an ATE exercise program was greater than that observed after an LBE program. Therefore, ATE effectively improves cardiopulmonary fitness in patients with subacute stroke.

  19. Validation of one-mile walk equations for the estimation of aerobic fitness in British military personnel under the age of 40 years.

    PubMed

    Lunt, Heather; Roiz De Sa, Daniel; Roiz De Sa, Julia; Allsopp, Adrian

    2013-07-01

    To provide an accurate estimate of peak oxygen uptake (VO2 peak) for British Royal Navy Personnel aged between 18 and 39, comparing a gold standard treadmill based maximal exercise test with a submaximal one-mile walk test. Two hundred military personnel consented to perform a treadmill-based VO2 peak test and two one-mile walk tests round an athletics track. The estimated VO2 peak values from three different one-mile walk equations were compared to directly measured VO2 peak values from the treadmill-based test. One hundred participants formed a validation group from which a new equation was derived and the other 100 participants formed the cross-validation group. Existing equations underestimated the VO2 peak values of the fittest personnel and overestimated the VO2 peak of the least aerobically fit by between 2% and 18%. The new equation derived from the validation group has less bias, the highest correlation with the measured values (r = 0.83), and classified the most people correctly according to the Royal Navy's Fitness Test standards, producing the fewest false positives and false negatives combined (9%). The new equation will provide a more accurate estimate of VO2 peak for a British military population aged 18 to 39. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  20. Criterion Related Validity of Karate Specific Aerobic Test (KSAT).

    PubMed

    Chaabene, Helmi; Hachana, Younes; Franchini, Emerson; Tabben, Montassar; Mkaouer, Bessem; Negra, Yassine; Hammami, Mehrez; Chamari, Karim

    2015-09-01

    Karate is one the most popular combat sports in the world. Physical fitness assessment on a regular manner is important for monitoring the effectiveness of the training program and the readiness of karatekas to compete. The aim of this research was to examine the criterion related to validity of the karate specific aerobic test (KSAT) as an indicator of aerobic level of karate practitioners. Cardiorespiratory responses, aerobic performance level through both treadmill laboratory test and YoYo intermittent recovery test level 1 (YoYoIRTL1) as well as time to exhaustion in the KSAT test (TE'KSAT) were determined in a total of fifteen healthy international karatekas (i.e. karate practitioners) (means ± SD: age: 22.2 ± 4.3 years; height: 176.4 ± 7.5 cm; body mass: 70.3 ± 9.7 kg and body fat: 13.2 ± 6%). Peak heart rate obtained from KSAT represented ~99% of maximal heart rate registered during the treadmill test showing that KSAT imposes high physiological demands. There was no significant correlation between KSAT's TE and relative (mL/min kg) treadmill maximal oxygen uptake (r = 0.14; P = 0.69; [small]). On the other hand, there was a significant relationship between KSAT's TE and the velocity associated with VO2max (vVO2max) (r = 0.67; P = 0.03; [large]) as well as the velocity at VO2 corresponding to the second ventilatory threshold (vVO2 VAT) (r = 0.64; P = 0.04; [large]). Moreover, significant relationship was found between TE's KSAT and both the total distance covered and parameters of intermittent endurance measured through YoYoIRTL1. The KSAT has not proved to have indirect criterion related validity as no significant correlations have been found between TE's KSAT and treadmill VO2max. Nevertheless, as correlated to other aerobic fitness variables, KSAT can be considered as an indicator of karate specific endurance. The establishment of the criterion related validity of the KSAT requires further investigation.

  1. Effect of virtual reality training on walking distance and physical fitness in individuals with Parkinson's disease.

    PubMed

    de Melo, Gileno Edu Lameira; Kleiner, Ana Francisca Rozin; Lopes, Jamile Benite Palma; Dumont, Arislander Jonathan Lopes; Lazzari, Roberta Delasta; Galli, Manuela; Oliveira, Claudia Santos

    2018-04-07

    To evaluate the effects of gait training with virtual reality (VR) on walking distance and physical fitness in individuals with Parkinson's Disease (PD). Thirty-seven individuals with PD participated in this prospective, randomized, controlled clinical trial. They were randomly allocated to a control group submitted to conventional training (n = 12), a treadmill group submitted to gait training on a treadmill (n = 13) and a VR group submitted to gait training using the XboxTM (n = 12). Clinical measures, gait variables and the Six-Minute Walk Test (6MWT) were evaluated: pre-intervention, after one intervention session, post-intervention and follow up (30 days after intervention). The VR and treadmill groups travelled longer distances on the 6MWT and had faster gait speed in comparison to the control group. The VR and treadmill groups demonstrated an increase in pre-6MWT HR. The VR group had more intense HR after the first session and throughout training, but these gains were not maintained at the follow-up. The present findings demonstrate that gait training with a VR program is as effective as treadmill training with regard to gains in walking distance and improvements in temporal gait variables in individuals with PD.

  2. Gait Parameter Adjustments for Walking on a Treadmill at Preferred, Slower, and Faster Speeds in Older Adults with Down Syndrome

    PubMed Central

    Smith, Beth A.; Kubo, Masayoshi; Ulrich, Beverly D.

    2012-01-01

    The combined effects of ligamentous laxity, hypotonia, and decrements associated with aging lead to stability-enhancing foot placement adaptations during routine overground walking at a younger age in adults with Down syndrome (DS) compared to their peers with typical development (TD). Our purpose here was to examine real-time adaptations in older adults with DS by testing their responses to walking on a treadmill at their preferred speed and at speeds slower and faster than preferred. We found that older adults with DS were able to adapt their gait to slower and faster than preferred treadmill speeds; however, they maintained their stability-enhancing foot placements at all speeds compared to their peers with TD. All adults adapted their gait patterns similarly in response to faster and slower than preferred treadmill-walking speeds. They increased stride frequency and stride length, maintained step width, and decreased percent stance as treadmill speed increased. Older adults with DS, however, adjusted their stride frequencies significantly less than their peers with TD. Our results show that older adults with DS have the capacity to adapt their gait parameters in response to different walking speeds while also supporting the need for intervention to increase gait stability. PMID:22693497

  3. Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats.

    PubMed

    Lalanza, Jaume F; Sanchez-Roige, Sandra; Cigarroa, Igor; Gagliano, Humberto; Fuentes, Silvia; Armario, Antonio; Capdevila, Lluís; Escorihuela, Rosa M

    2015-11-05

    Recent evidence has revealed the impact of exercise in alleviating anxiety and mood disorders; however, the exercise protocol that exerts such benefit is far from known. The current study was aimed to assess the effects of long-term moderate exercise on behavioural coping strategies (active vs. passive) and Hypothalamic-Pituitary-Adrenal response in rats. Sprague-Dawley male and female rats were exposed to 32-weeks of treadmill exercise and then tested for two-way active avoidance learning (shuttle-box). Two groups were used as controls: a non-handled sedentary group, receiving no manipulation, and a control group exposed to a stationary treadmill. Female rats displayed shorter escape responses and higher number of avoidance responses, reaching criterion for performance earlier than male rats. In both sexes, exercise shortened escape latencies, increased the total number of avoidances and diminished the number of trials needed to reach criterion for performance. Those effects were greater during acquisition in female rats, but remained over the shuttle-box sessions in treadmill trained male rats. In females, exercise did not change ACTH and corticosterone levels after shuttle-box acquisition. Collectively, treadmill exercise improved active coping strategies in a sex-dependent manner. In a broader context, moderate exercise could serve as a therapeutic intervention for anxiety and mood disorders.

  4. Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats

    PubMed Central

    Lalanza, Jaume F.; Sanchez-Roige, Sandra; Cigarroa, Igor; Gagliano, Humberto; Fuentes, Silvia; Armario, Antonio; Capdevila, Lluís; Escorihuela, Rosa M.

    2015-01-01

    Recent evidence has revealed the impact of exercise in alleviating anxiety and mood disorders; however, the exercise protocol that exerts such benefit is far from known. The current study was aimed to assess the effects of long-term moderate exercise on behavioural coping strategies (active vs. passive) and Hypothalamic-Pituitary-Adrenal response in rats. Sprague-Dawley male and female rats were exposed to 32-weeks of treadmill exercise and then tested for two-way active avoidance learning (shuttle-box). Two groups were used as controls: a non-handled sedentary group, receiving no manipulation, and a control group exposed to a stationary treadmill. Female rats displayed shorter escape responses and higher number of avoidance responses, reaching criterion for performance earlier than male rats. In both sexes, exercise shortened escape latencies, increased the total number of avoidances and diminished the number of trials needed to reach criterion for performance. Those effects were greater during acquisition in female rats, but remained over the shuttle-box sessions in treadmill trained male rats. In females, exercise did not change ACTH and corticosterone levels after shuttle-box acquisition. Collectively, treadmill exercise improved active coping strategies in a sex-dependent manner. In a broader context, moderate exercise could serve as a therapeutic intervention for anxiety and mood disorders. PMID:26538081

  5. Evaluation of Cooper 12-minute walk/run test as a marker of cardiorespiratory fitness in young urban children with persistent asthma.

    PubMed

    Weisgerber, Michael; Danduran, Michael; Meurer, John; Hartmann, Kathryn; Berger, Stuart; Flores, Glenn

    2009-07-01

    To evaluate Cooper 12-minute run/walk test (CT12) as a one-time estimate of cardiorespiratory fitness and marker of fitness change compared with treadmill fitness testing in young children with persistent asthma. A cohort of urban children with asthma participated in the asthma and exercise program and a subset completed pre- and postintervention fitness testing. Treadmill fitness testing was conducted by an exercise physiologist in the fitness laboratory at an academic children's hospital. CT12 was conducted in a college recreation center gymnasium. Forty-five urban children with persistent asthma aged 7 to 14 years participated in exercise interventions. A subset of 19 children completed pre- and postintervention exercise testing. Participants completed a 9-week exercise program where they participated in either swimming or golf 3 days a week for 1 hour. A subset of participants completed fitness testing by 2 methods before and after program completion. CT12 results (meters), maximal oxygen consumption ((.)Vo2max) (mL x kg(-1) x min(-1)), and treadmill exercise time (minutes). CT12 and maximal oxygen consumption were moderately correlated (preintervention: 0.55, P = 0.003; postintervention: 0.48, P = 0.04) as one-time measures of fitness. Correlations of the tests as markers of change over time were poor and nonsignificant. In children with asthma, CT12 is a reasonable one-time estimate of fitness but a poor marker of fitness change over time.

  6. Effects of Repeated Treadmill Testing and Electrical Stimulation on Post-Stroke Gait Kinematics

    PubMed Central

    Awad, Louis N.; Kesar, Trisha M.; Reisman, Darcy; Binder-Macleod, Stuart A.

    2012-01-01

    Improvements in task performance due to repeated testing have previously been documented in healthy and patient populations. The existence of a similar change in performance due to repeated testing has not been previously investigated at the level of gait kinematics in the post-stroke population. The presence of such changes may define the number of testing sessions necessary for measuring a stable baseline of pre-training gait performance, which is a necessary prerequisite for determining the effectiveness of gait interventions. Considering the emergence of treadmills as a popular tool for gait evaluation and retraining and the common addition of functional electrical stimulation (FES) to gait retraining protocols, the stability of gait kinematics during the repeated testing of post-stroke individuals on a treadmill, either with or without FES, needs to be determined. Nine individuals (age: 58.1 +/− 7.3 years), with hemi-paresis secondary to a stroke (onset: 7.3 +/− 6.0 years) participated in this study. An 8-camera motion analysis system was used to measure sagittal plane knee and ankle joint kinematics. Gait kinematics were compared across two (N=9) and five (N=5) testing sessions. No consistent changes in knee or ankle kinematics were observed during repeated testing. These findings indicate that clinicians and researchers may not need to spend valuable time and resources performing multiple testing and acclimatization sessions when assessing baseline gait kinematics in the post-stroke population for use in determining the effectiveness of gait interventions. PMID:22796242

  7. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.; Hodgson, J. A.; Prober, R. J.; de Guzman, C. P.; de Leon, R.

    1992-01-01

    The neural circuitry of the lumbar spinal cord can generate alternating extension and flexion of the hindlimbs. The hindlimbs of adult cats with complete transection of the spinal cord at a low thoracic level (T12-T13) can perform full weight-supporting locomotion on a treadmill belt moving at a range of speeds. Some limitations in the locomotor capacity can be associated with a deficit in the recruitment level of the fast extensors during the stance phase and the flexors during the swing phase of a step cycle. The level of locomotor performance, however, can be enhanced by daily training on a treadmill while emphasizing full weight-support stepping and by providing appropriately timed sensory stimulation, loading, and/or pharmacologic stimulation of the hindlimb neuromuscular apparatus. Furthermore, there appears to be an interactive effect of these interventions. For example, the maximum treadmill speed that a spinal adult cat can attain and maintain is significantly improved with daily full weight-supporting treadmill training, but progressive recruitment of fast extensors becomes apparent only when the hindlimbs are loaded by gently pulling down on the tail during the stepping. Stimulation of the sural nerve at the initiation of the flexion phase of the step cycle can likewise markedly improve the locomotor capability. Administration of clonidine, in particular in combination with an elevated load, resulted in the most distinct and consistent alternating bursts of electromyographic activity during spinal stepping. These data indicate that the spinal cord has the ability to execute alternating activation of the extensor and flexor musculature of the hindlimbs (stepping) and that this ability can be improved by several interventions such as training, sensory stimulation, and use of some pharmacologic agents. Thus, it appears that the spinal cord, without supraspinal input, is highly plastic and has the potential to "learn," that is, to acquire and improve its ability to execute full weight-supporting locomotion on a treadmill belt.

  8. 20 CFR 404.1519n - Informing the medical source of examination scheduling, report content, and signature requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ventilatory function tests, treadmill exercise tests, or audiological tests. The medical report must be... other abnormalities or lack thereof reported or found during examination or laboratory testing; (4) The...

  9. Effects of Gait Training With Body Weight Support on a Treadmill Versus Overground in Individuals With Stroke.

    PubMed

    Gama, Gabriela L; Celestino, Melissa L; Barela, José A; Forrester, Larry; Whitall, Jill; Barela, Ana M

    2017-04-01

    To investigate the effects of gait training with body weight support (BWS) on a treadmill versus overground in individuals with chronic stroke. Randomized controlled trial. University research laboratory. Individuals (N=28) with chronic stroke (>6mo from the stroke event). Participants were randomly assigned to receive gait training with BWS on a treadmill (n=14) or overground (n=14) 3 times a week for 6 weeks. Gait speed measured using the 10-meter walk test, endurance measured using the 6-minute walk test, functional independence measured using the motor domain of the FIM, lower limb recovery measured using the lower extremity domain of the Fugl-Meyer assessment, step length, step length symmetry ratio, and single-limb support duration. Measurements were obtained at baseline, immediately after the training session, and 6 weeks after the training session. At 1 week after the last training session, both groups improved in all outcome measures except paretic step length and step length symmetry ratio, which were improved only in the overground group (P=.01 and P=.01, respectively). At 6 weeks after the last training session, all improvements remained and the treadmill group also improved paretic step length (P<.001) but not step length symmetry ratio (P>.05). Individuals with chronic stroke equally improve gait speed and other gait parameters after 18 sessions of BWS gait training on either a treadmill or overground. Only the overground group improved step length symmetry ratio, suggesting a role of integrating overground walking into BWS interventions poststroke. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Maximum walking speeds obtained using treadmill and overground robot system in persons with post-stroke hemiplegia

    PubMed Central

    2012-01-01

    Background Previous studies demonstrated that stroke survivors have a limited capacity to increase their walking speeds beyond their self-selected maximum walking speed (SMWS). The purpose of this study was to determine the capacity of stroke survivors to reach faster speeds than their SMWS while walking on a treadmill belt or while being pushed by a robotic system (i.e. “push mode”). Methods Eighteen chronic stroke survivors with hemiplegia were involved in the study. We calculated their self-selected comfortable walking speed (SCWS) and SMWS overground using a 5-meter walk test (5-MWT). Then, they were exposed to walking at increased speeds, on a treadmill and while in “push mode” in an overground robotic device, the KineAssist, until they were tested at a speed that they could not sustain without losing balance. We recorded the time and number of steps during each trial and calculated gait speed, average cadence and average step length. Results Maximum walking speed in the “push mode” was 13% higher than the maximum walking speed on the treadmill and both were higher (“push mode”: 61%; treadmill: 40%) than the maximum walking speed overground. Subjects achieved these faster speeds by initially increasing both step length and cadence and, once individuals stopped increasing their step length, by only increasing cadence. Conclusions With post-stroke hemiplegia, individuals are able to walk at faster speeds than their SMWS overground, when provided with a safe environment that provides external forces that requires them to attempt dynamic stability maintenance at higher gait speeds. Therefore, this study suggests the possibility that, given the appropriate conditions, people post-stroke can be trained at higher speeds than previously attempted. PMID:23057500

  11. Physiological responses of young thoroughbred horses to intermittent high-intensity treadmill training

    PubMed Central

    2013-01-01

    Background Training of young Thoroughbred horses must balance development of cardiopulmonary function and aerobic capacity with loading of the musculoskeletal system that can potentially cause structural damage and/or lameness. High-speed equine treadmills are sometimes used to supplement exercise on a track in the training of young Thoroughbreds because the horse can run at high speeds but without the added weight of a rider. We tested the hypothesis that intermittent high-intensity exercise on a treadmill of young Thoroughbred horses entering training can enhance development of aerobic capacity (Vo2max) and running performance more than conventional training under saddle, and do so without causing lameness. Results Twelve yearling Thoroughbreds trained for 8 months with conventional riding (C) only, conventional riding plus a short (2 month, S) interval of once-per-week high-intensity treadmill exercise, or a long (8 month, L) interval of once-per-week high-intensity treadmill exercise. Three treadmill exercise tests evaluated Vo2max, oxygen transport and running performance variables in June of the yearling year (only for L), October of the yearling year and April of the 2-year-old year. No horses experienced lameness during the study. Aerobic capacity increased in all groups after training. In both October and April, Vo2max in L was higher than in C, but did not differ between L and S or S and C. Running speeds eliciting Vo2max also increased in all groups after training, with S (809 ± 3 m/s) and L (804 ± 9 m/s) higher than C (764 ± 27 m/s). Maximum heart rate decreased for all groups after training. Hematocrit and hemoglobin concentration increased for L throughout training. Conclusions Young Thoroughbred horses can increase aerobic capacity and running performance more than by strictly using track training under saddle with the addition of intermittent high-intensity treadmill exercise, and they can do so without experiencing lameness. This finding suggests that young racehorses might be able to achieve higher aerobic fitness during training without subjecting their musculoskeletal systems to increased loading and risk of developing lameness. The findings of this preliminary study do not indicate a specific protocol to best achieve this goal. PMID:23957961

  12. Evaluation of exercise capacity after severe stroke using robotics-assisted treadmill exercise: a proof-of-concept study.

    PubMed

    Stoller, O; de Bruin, E D; Schindelholz, M; Schuster, C; de Bie, R A; Hunt, K J

    2013-01-01

    Robotics-assisted treadmill exercise (RATE) with focus on motor recovery has become popular in early post-stroke rehabilitation but low endurance for exercise is highly prevalent in these individuals. This study aimed to develop an exercise testing method using robotics-assisted treadmill exercise to evaluate aerobic capacity after severe stroke. Constant load testing (CLT) based on body weight support (BWS) control, and incremental exercise testing (IET) based on guidance force (GF) control were implemented during RATE. Analyses focussed on step change, step response kinetics, and peak performance parameters of oxygen uptake. Three subjects with severe motor impairment 16-23 days post-stroke were included. CLT yielded reasonable step change values in oxygen uptake, whereas response kinetics of oxygen uptake showed low goodness of fit. Peak performance parameters were not obtained during IET. Exercise testing in post-stroke individuals with severe motor impairments using a BWS control strategy for CLT is deemed feasible and safe. Our approach yielded reasonable results regarding cardiovascular performance parameters. IET based on GF control does not provoke peak cardiovascular performance due to uncoordinated walking patterns. GF control needs further development to optimally demand active participation during RATE. The findings warrant further research regarding the evaluation of exercise capacity after severe stroke.

  13. Effects of exercise-induced fatigue on postural balance: a comparison of treadmill versus cycle fatiguing protocols.

    PubMed

    Wright, Katherine E; Lyons, Thomas S; Navalta, James W

    2013-05-01

    The authors of this study examined the effects of muscle fatigue on balance indices and recovery time in recreationally trained individuals after incremental tests on a treadmill and a cycle ergometer. Sixteen participants (male N = 11, female N = 5) (mean age = 21.2 ± 2 years) completed this study. Balance measures were performed on a Biodex Balance System via the Dynamic Balance Test. Balance was measured pre-exercise, immediately post-exercise, and at 3-, 6-, 9-, 12-, 15-, 18-, and 21-min post-exercise. Immediately following the fatiguing treadmill test, balance increased significantly in the overall stability index (SI) (from 4.38 ± 2.48 to 6.09 ± 1.80) and the anterior/posterior index (API) (from 3.49 ± 2.18 to 5.28 ± 1.81) (p < 0.01). Immediately following the fatiguing cycle test, balance was not altered significantly in SI or API. Balance was not altered significantly for the medial/lateral index for either exercise test at any time point. Additionally, there were no significant differences in time to recovery. At 12-min post-exercise, all indices were below pre-exercise values, indicating that fatiguing exercise has a positive effect on balance over time. These results are consistent with previous research, suggesting that any effects of fatigue on balance are seen immediately and are diminished as time after exercise increases.

  14. Should Body Weight–Supported Treadmill Training and Robotic-Assistive Steppers for Locomotor Training Trot Back to the Starting Gate?

    PubMed Central

    Dobkin, Bruce H.; Duncan, Pamela W.

    2014-01-01

    Body weight–supported treadmill training (BWSTT) and robotic-assisted step training (RAST) have not, so far, led to better outcomes than a comparable dose of progressive over-ground training (OGT) for disabled persons with stroke, spinal cord injury, multiple sclerosis, Parkinson’s disease, or cerebral palsy. The conceptual bases for these promising rehabilitation interventions had once seemed quite plausible, but the results of well-designed, randomized clinical trials have been disappointing. The authors reassess the underpinning concepts for BWSTT and RAST, which were derived from mammalian studies of treadmill-induced hind-limb stepping associated with central pattern generation after low thoracic spinal cord transection, as well as human studies of the triple crown icons of task-oriented locomotor training, massed practice, and activity-induced neuroplasticity. The authors retrospectively consider where theory and practice may have fallen short in the pilot studies that aimed to produce thoroughbred interventions. Based on these shortcomings, the authors move forward with recommendations for the future development of workhorse interventions for walking. In the absence of evidence for physical therapists to employ these strategies, however, BWSTT and RAST should not be provided routinely to disabled, vulnerable persons in place of OGT outside of a scientifically conducted efficacy trial. PMID:22412172

  15. The Effects of Combined Treatment with Naringin and Treadmill Exercise on Osteoporosis in Ovariectomized Rats

    PubMed Central

    SUN, Xiaolei; Fengbo, LI; Xinlong, MA; Jianxiong, MA; ZHAO, Bin; ZHANG, Yang; Yanjun, LI; Jianwei, LV; MENG, Xinmin

    2015-01-01

    Osteoporosis is a disease characterized by low bone mass and progressive destruction of bone microstructure, resulting in increased the risk of fracture. Previous studies have demonstrated the effect of naringin (NG) or treadmill exercise (EX) on osteoporosis, however, reports about effects of NG plus EX on osteoporosis are limited. This study was designed to investigate the impact of combined treatment with naringin and treadmill exercise on osteoporosis in ovariectomized (OVX) rats. Three months after bilateral ovariectomy, Seventy-five rats were randomly assigned to the following treatment groups: OVX, sham-operated (SHAM), NG, EX, or NG plus EX treatment. Treatments were administered for 60 days. Bone metabolism, bone mineral density, trabecular bone parameters, immunohistochemistry, and the bone strength were evaluated. Compared to the OVX groups, all treatments increased bone volume (BV/TV), trabecula number (Tb.N), trabecula thickness (Tb.Th), bone mineral density (BMD), and mechanical strength. NG + EX showed the strongest effects on BV/TV, Tb.Th, and biomechanical strength. Additionally, decreased C-terminal telopeptides of type I collagen (CTX-1) and enhanced osteocalcin (OCN) expression were observed in the NG + EX group. The present study demonstrates that the NG + EX may have a therapeutic advantage over each monotherapy for the treatment of osteoporosis. PMID:26260240

  16. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate?

    PubMed

    Dobkin, Bruce H; Duncan, Pamela W

    2012-05-01

    Body weight-supported treadmill training (BWSTT) and robotic-assisted step training (RAST) have not, so far, led to better outcomes than a comparable dose of progressive over-ground training (OGT) for disabled persons with stroke, spinal cord injury, multiple sclerosis, Parkinson's disease, or cerebral palsy. The conceptual bases for these promising rehabilitation interventions had once seemed quite plausible, but the results of well-designed, randomized clinical trials have been disappointing. The authors reassess the underpinning concepts for BWSTT and RAST, which were derived from mammalian studies of treadmill-induced hind-limb stepping associated with central pattern generation after low thoracic spinal cord transection, as well as human studies of the triple crown icons of task-oriented locomotor training, massed practice, and activity-induced neuroplasticity. The authors retrospectively consider where theory and practice may have fallen short in the pilot studies that aimed to produce thoroughbred interventions. Based on these shortcomings, the authors move forward with recommendations for the future development of workhorse interventions for walking. In the absence of evidence for physical therapists to employ these strategies, however, BWSTT and RAST should not be provided routinely to disabled, vulnerable persons in place of OGT outside of a scientifically conducted efficacy trial.

  17. Exercise performance, core temperature, and metabolism after prolonged restricted activity and retraining in dogs

    NASA Technical Reports Server (NTRS)

    Nazar, K.; Greenleaf, J. E.; Pohoska, E.; Turlejska, E.; Kaciuba-Uscilko, H.; Kozlowski, S.

    1992-01-01

    Physiological effects of restricted activity (RA) and subsequent retraining have been studied. Ten male mongrel dogs performed a submaximal exercise endurance test on a treadmill during kennel control, after 8 weeks of cage confinement and after eight weeks of retraining using the same treadmill protocol 1 h/d for 6 d/week. Data obtained show that RA reduces exercise endurance, the effectiveness of exercise thermoregulation, muscle glycogen stores, and the lipolytic response to exercise and to noradrenaline stimulation.

  18. Understanding the Physiological, Biomechanical, and Performance Effects of Body Armor Use

    DTIC Science & Technology

    2008-12-01

    force plates were collected through a single data acquisition (DAQ) system and were time-synchronized. 2.1 Testing Equipment Figure 1. Examples of 3...For analysis purposes, it was scaled to the volunteer’s body mass (ml/kg/min). For walking trials, the force plate treadmill was set at a speed of...familiarized with walking and running on the force plate treadmill at these speeds. For familiarization, a volunteer first walked at 1.34 mls without any

  19. Comparison of ventilation threshold and heart rate deflection point in fast and standard treadmill test protocols.

    PubMed

    Vucetić, Vlatko; Sentija, Davor; Sporis, Goran; Trajković, Nebojsa; Milanović, Zoran

    2014-06-01

    The purpose of this study was to compare two methods for determination of anaerobic threshold from two different treadmill protocols. Forty-eight Croatian runners of national rank (ten sprinters, fifteen 400-m runners, ten middle distance runners and thirteen long distance runners), mean age 21.7 +/- 5.1 years, participated in the study. They performed two graded maximal exercise tests on a treadmill, a standard ramp treadmill test (T(SR), speed increments of 1 km x h(-1) every 60 seconds) and a fast ramp treadmill test (T(FR), speed increments of 1 km x h(-1) every 30 seconds) to determine and compare the parameters at peak values and at heart rate at the deflection point (HR(DP)) and ventilation threshold (VT). There were no significant differences between protocols (p > 0.05) for peak values of oxygen uptake (VO(2max), 4.48 +/- 0.43 and 4.44 +/- 0.45 L x min(-1)), weight related VO(2max) (62.5 +/- 6.2 and 62.0 +/- 6.0 mL x kg(-1) x min(-1)), pulmonary ventilation (VE(max), 163.1 +/- 18.7 and 161.3 +/- 19.9 L x min(-1)) and heart rate (HR(max), 192.3 +/- 8.5 and 194.4 +/- 8.7 bpm) (T(FR) and T(SR), respectively). Moreover, no significant differences between T(FR) and T(SR) where found for VT and HR(DP) when expressed as VO2 and HR. However, there was a significant effect of ramp slope on running speed at VO(2max) and at the anaerobic threshold (AnT), independent of the method used (VT: 16.0 +/- 2.2 vs 14.9 +/- 2.2 km x h(-1);HR(DP): 16.5 +/- 1.9 vs 14.9 +/- 2.0 km x h(-1) for T(FR) and T(SR) respectively). Linear regression analysis revealed high between-test and between-method correlations for VO2, HR and running speed parameters (r = 0.78-0.89, p < 0.01). The present study has indicated that the VT and HR(DP) for running (VO2, ventilation, and heart rate at VT/HR(DP)) are independent of test protocol, while there is a significant effect of ramp slope on VT and HR(DP) when expressed as running speed. Moreover, this study demonstrates that the point of deflection from linearity of heart rate may be an accurate predictor of the anaerobic threshold in trained runners, independently of the protocol used.

  20. Oxygen consumption of elite distance runners on an anti-gravity treadmill®.

    PubMed

    McNeill, David K P; Kline, John R; de Heer, Hendrick D; Coast, J Richard

    2015-06-01

    Lower body positive pressure (LBPP), or 'anti-gravity' treadmills® have become increasingly popular among elite distance runners. However, to date, few studies have assessed the effect of body weight support (BWS) on the metabolic cost of running among elite runners. This study evaluated how BWS influenced the relationship between velocity and metabolic cost among 6 elite male distance runners. Participants ran three- 16 minute tests consisting of 4 stages of 4 minutes at 8, 7, 6 and 5 min·mile(-1) pace (3.35, 3.84, 4.47 and 5.36 m·s(-1)), while maintaining an aerobic effort (Respiratory Exchange Ratio ≤1.00). One test was run on a regular treadmill, one on an anti-gravity treadmill with 40% BWS and one with 20% BWS being provided. Expired gas data were collected and regression equations used to determine and compare slopes. Significant decreases in oxygen uptake (V̇O2) were found with each increase in BWS (p < 0.001). At 20% BWS, the average decrease in net VO2 was greater than proportional (34%), while at 40% BWS, the average net reduction in VO2 was close to proportional (38%). Across velocities, the slope of the relationship between VO2 and velocity (ΔV̇O2/Δv) was steeper with less support. The slopes at both the 20% and 40% BWS conditions were similar, especially when compared to the regular treadmill. Variability in VO2 between athletes was much greater on the LBPP treadmill and was greater with increased levels of BWS. In this study we evaluated the effect of body weight support on V̇O2 among elite distance runners. We have shown that oxygen uptake decreased with support, but not in direct proportion to that support. Further, because of the high variability in oxygen uptake between athletes on the LBPP treadmill, prediction equations may not be reliable and other indicators (heart rate, perceived exertion or directly measured oxygen uptake) should be used to guide training intensity when training on the LBPP treadmill. Key pointsWith increasing amounts of body weight-support (BWS), the slope of the relationship between velocity and oxygen consumption (ΔVO2/Δv) decreases significantly. This means the change in oxygen consumption (VO2) is significantly smaller over a given change in velocity at higher amounts of BWS.There is a non-linear decrease in VO2 with increasing BWS. As such, with each increment in the amount of BWS provided, the reduction in VO2 becomes increasingly smaller.This paper provides first of its kind data on the effects of BWS on the cost of running among highly trained, elite runners. The outcomes of this study are in line with previous findings among non-elite runners.

  1. Non-invasive coronary angiography for patients with acute atypical chest pain discharged after negative screening including maximal negative treadmill stress test. A prospective study.

    PubMed

    Bonello, L; Armero, S; Jacquier, A; Com, O; Sarran, A; Sbragia, P; Panuel, M; Arques, S; Paganelli, F

    2009-05-01

    Among patients admitted in the emergency department for acute atypical chest pain those with an acute coronary syndrome (ACS) who are mistakenly discharged home have high mortality. A recent retrospective study has demonstrated that multislice computed tomography (MSCT) coronary angiography could improve triage of these patients. We aimed to prospectively confirm these data on patients with a negative screening including maximal treadmill stress. 30 patients discharged from the emergency department after negative screening for an ACS were included. All patients underwent MSCT angiography of the coronary artery. Patients with coronary atheroma on MSCT had an invasive coronary angiography to confirm these findings. Seven patients (23%) had obstructive coronary artery disease on MSCT. Invasive coronary angiography (ICA) confirmed the diagnosis in all patients. In patients with no previously known coronary artery disease admitted to the emergency department with atypical acute chest pain and discharged after negative screening, including maximal treadmill stress test, MSCT coronary angiography is useful for the diagnosis of obstructive coronary artery disease.

  2. Cardiovascular response during submaximal underwater treadmill exercise in stroke patients.

    PubMed

    Yoo, Jeehyun; Lim, Kil-Byung; Lee, Hong-Jae; Kwon, Yong-Geol

    2014-10-01

    To evaluate the cardiovascular response during head-out water immersion, underwater treadmill gait, and land treadmill gait in stroke patients. Ten stroke patients were recruited for underwater and land treadmill gait sessions. Each session was 40 minutes long; 5 minutes for standing rest on land, 5 minutes for standing rest in water or on treadmill, 20 minutes for treadmill walking in water or on land, 5 minutes for standing rest in water or on treadmill, and 5 minutes for standing rest on land. Blood pressure (BP) and heart rate (HR) were measured during each session. In order to estimate the cardiovascular workload and myocardial oxygen demand, the rate pressure product (RPP) value was calculated by multiplying systolic BP (SBP) by HR. SBP, DBP, mean BP (mBP), and RPP decreased significantly after water immersion, but HR was unchanged. During underwater and land treadmill gait, SBP, mBP, DBP, RPP, and HR increased. However, the mean maximum increases in BP, HR and RPP of underwater treadmill walking were significantly lower than that of land treadmill walking. Stroke patients showed different cardiovascular responses during water immersion and underwater gait as opposed to standing and treadmill-walking on land. Water immersion and aquatic treadmill gait may reduce the workload of the cardiovascular system. This study suggested that underwater treadmill may be a safe and useful option for cardiovascular fitness and early ambulation in stroke rehabilitation.

  3. Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement

    PubMed Central

    2013-01-01

    Background Robot-assisted gait training and treadmill training can complement conventional physical therapy in children with neuro-orthopedic movement disorders. The aim of this study was to investigate surface electromyography (sEMG) activity patterns during robot-assisted gait training (with and without motivating instructions from a therapist) and unassisted treadmill walking and to compare these with physiological sEMG patterns. Methods Nine children with motor impairments and eight healthy children walked in various conditions: (a) on a treadmill in the driven gait orthosis Lokomat®, (b) same condition, with additional motivational instructions from a therapist, and (c) on the treadmill without assistance. sEMG recordings were made of the tibialis anterior, gastrocnemius lateralis, vastus medialis, and biceps femoris muscles. Differences in sEMG amplitudes between the three conditions were analyzed for the duration of stance and swing phase (for each group and muscle separately) using non-parametric tests. Spearman’s correlation coefficients illustrated similarity of muscle activation patterns between conditions, between groups, and with published reference trajectories. Results The relative duration of stance and swing phase differed between patients and controls, and between driven gait orthosis conditions and treadmill walking. While sEMG amplitudes were higher when being encouraged by a therapist compared to robot-assisted gait training without instructions (0.008 ≤ p-value ≤ 0.015), muscle activation patterns were highly comparable (0.648 ≤ Spearman correlation coefficients ≤ 0.969). In general, comparisons of the sEMG patterns with published reference data of over-ground walking revealed that walking in the driven gait orthosis could induce more physiological muscle activation patterns compared to unsupported treadmill walking. Conclusions Our results suggest that robotic-assisted gait training with therapeutic encouragement could appropriately increase muscle activity. Robotic-assisted gait training in general could induce physiological muscle activation patterns, which might indicate that this training exploits restorative rather than compensatory mechanisms. PMID:23867005

  4. Expert Systems In Medical Studies - A New Twist

    NASA Astrophysics Data System (ADS)

    Slagle, James R.; Long, John M.; Wick, Michael R.; Matts, John P.; Leon, Arthur S.

    1986-03-01

    The use of experts to evaluate large amounts of trial data results in increasingly expensive and time consuming research. We are investigating the role expert systems can play in reducing the time and expense of research projects. Current methods in large clinical studies for evaluating data are often crude and superficial. We have developed, for a large clinical trial, an expert system for analysis of treadmill exercise ECG test results. In the cases we are studying, a patient is given a treadmill exercise ECG test once a year for five years. Pairs of these exercise tests are then evaluated by cardiologists to determine the condition of the patient's heart. The results of our system show great promise for the use of expert systems in reducing the time and expense of large clinical trials.

  5. Intrinsic aerobic capacity sets a divide for aging and longevity

    PubMed Central

    Koch, Lauren Gerard; Kemi, Ole J.; Qi, Nathan; Leng, Sean X.; Bijma, Piter; Gilligan, Lori J.; Wilkinson, John E.; Wisløff, Helene; Høydal, Morten A.; Rolim, Natale; Abadir, Peter M.; Van Grevenhof, Ilse; Smith, Godfrey L.; Burant, Charles F.; Ellingsen, Øyvind; Britton, Steven L.; Wisløff, Ulrik

    2011-01-01

    Rationale Low aerobic exercise capacity is a powerful predictor of premature morbidity and mortality for healthy adults as well as those with cardiovascular disease For aged populations, poor performance on treadmill or extended walking tests indicates closer proximity to future health declines. Together, these findings suggest a fundamental connection between aerobic capacity and longevity. Objectives Through artificial selective breeding, we developed an animal model system to prospectively test the association between aerobic exercise capacity and survivability (aerobic hypothesis). Methods and Results Laboratory rats of widely diverse genetic backgrounds (N:NIH stock) were selectively bred for low or high intrinsic (inborn) treadmill running capacity. Cohorts of male and female rats from generations 14, 15 and 17 of selection were followed for survivability and assessed for age-related declines in cardiovascular fitness including maximal oxygen uptake (VO2max), myocardial function, endurance performance, and change in body mass. Median lifespan for low exercise capacity rats was 28-45% shorter than high capacity rats (hazard ratio, 0.06; P<.001). VO2max, measured across adulthood was a reliable predictor of lifespan (P<.001). During progression from adult to old age, left ventricular myocardial and cardiomyocyte morphology, contractility, and intracellular Ca2+ handling in both systole and diastole, as well as mean blood pressure, were more compromised in rats bred for low aerobic capacity. Physical activity levels, energy expenditure (VO2), and lean body mass were all better sustained with age in rats bred for high aerobic capacity. Conclusions These data obtained from a contrasting heterogeneous model system provide strong evidence that genetic segregation for aerobic exercise capacity can be linked with longevity and useful for deeper mechanistic exploration. PMID:21921265

  6. Objective evidence of myocardial ischemia in patients with posttraumatic stress disorder.

    PubMed

    Turner, Jesse H; Neylan, Thomas C; Schiller, Nelson B; Li, Yongmei; Cohen, Beth E

    2013-12-01

    Patients with posttraumatic stress disorder (PTSD) are at increased risk for cardiovascular disease (CVD), but few studies have included objective measures of CVD and how PTSD causes CVD remains unknown. We sought to determine the association between PTSD and objectively assessed CVD and examine potential underlying mechanisms. Outpatients from two Veterans Affairs Medical Centers were enrolled from 2008 to 2010. Posttraumatic stress disorder was identified using the Clinician Administered PTSD Scale, and standardized exercise treadmill tests were performed to detect myocardial ischemia. Of the 663 participants with complete data, ischemia was present in 17% of patients with PTSD versus 10% of patients without PTSD (p = .006). The association between PTSD and ischemia remained significant after adjusting for potential confounders (age, sex, prior CVD) and mediators (traditional cardiac risk factors, C-reactive protein, obesity, alcohol use, sleep quality, social support, and depression), adjusted odds ratio (OR) 2.42, 95% confidence interval (CI) 1.39 to 4.22, p = .002. Findings remained significant when those with prior CVD were excluded (fully adjusted OR 2.24, 95% CI 1.20-4.18, p = .01) and when continuous PTSD symptom score was used as the predictor (fully adjusted OR per 10-point change in Clinician Administered PTSD Scale score 1.12, 95% CI 1.03-1.22, p = .01). Posttraumatic stress disorder was associated with ischemic changes on exercise treadmill tests independent of traditional cardiac risk factors, C-reactive protein, and several health behaviors and psychosocial risk factors, suggesting additional mechanisms linking PTSD and ischemia should be explored. The association of PTSD and ischemia among patients without known CVD highlights an opportunity for early interventions to prevent progression of cardiovascular disease. Published by Elsevier Inc on behalf of Society of Biological Psychiatry.

  7. Intrinsic aerobic capacity sets a divide for aging and longevity.

    PubMed

    Koch, Lauren Gerard; Kemi, Ole J; Qi, Nathan; Leng, Sean X; Bijma, Piter; Gilligan, Lori J; Wilkinson, John E; Wisløff, Helene; Høydal, Morten A; Rolim, Natale; Abadir, Peter M; van Grevenhof, Elizabeth M; Smith, Godfrey L; Burant, Charles F; Ellingsen, Oyvind; Britton, Steven L; Wisløff, Ulrik

    2011-10-28

    Low aerobic exercise capacity is a powerful predictor of premature morbidity and mortality for healthy adults as well as those with cardiovascular disease. For aged populations, poor performance on treadmill or extended walking tests indicates closer proximity to future health declines. Together, these findings suggest a fundamental connection between aerobic capacity and longevity. Through artificial selective breeding, we developed an animal model system to prospectively test the association between aerobic exercise capacity and survivability (aerobic hypothesis). Laboratory rats of widely diverse genetic backgrounds (N:NIH stock) were selectively bred for low or high intrinsic (inborn) treadmill running capacity. Cohorts of male and female rats from generations 14, 15, and 17 of selection were followed for survivability and assessed for age-related declines in cardiovascular fitness including maximal oxygen uptake (VO(2max)), myocardial function, endurance performance, and change in body mass. Median lifespan for low exercise capacity rats was 28% to 45% shorter than high capacity rats (hazard ratio, 0.06; P<0.001). VO(2max), measured across adulthood was a reliable predictor of lifespan (P<0.001). During progression from adult to old age, left ventricular myocardial and cardiomyocyte morphology, contractility, and intracellular Ca(2+) handling in both systole and diastole, as well as mean blood pressure, were more compromised in rats bred for low aerobic capacity. Physical activity levels, energy expenditure (Vo(2)), and lean body mass were all better sustained with age in rats bred for high aerobic capacity. These data obtained from a contrasting heterogeneous model system provide strong evidence that genetic segregation for aerobic exercise capacity can be linked with longevity and are useful for deeper mechanistic exploration of aging.

  8. "What Is a Step?" Differences in How a Step Is Detected among Three Popular Activity Monitors That Have Impacted Physical Activity Research.

    PubMed

    John, Dinesh; Morton, Alvin; Arguello, Diego; Lyden, Kate; Bassett, David

    2018-04-15

    (1) Background: This study compared manually-counted treadmill walking steps from the hip-worn DigiwalkerSW200 and OmronHJ720ITC, and hip and wrist-worn ActiGraph GT3X+ and GT9X; determined brand-specific acceleration amplitude (g) and/or frequency (Hz) step-detection thresholds; and quantified key features of the acceleration signal during walking. (2) Methods: Twenty participants (Age: 26.7 ± 4.9 years) performed treadmill walking between 0.89-to-1.79 m/s (2-4 mph) while wearing a hip-worn DigiwalkerSW200, OmronHJ720ITC, GT3X+ and GT9X, and a wrist-worn GT3X+ and GT9X. A DigiwalkerSW200 and OmronHJ720ITC underwent shaker testing to determine device-specific frequency and amplitude step-detection thresholds. Simulated signal testing was used to determine thresholds for the ActiGraph step algorithm. Steps during human testing were compared using bias and confidence intervals. (3) Results: The OmronHJ720ITC was most accurate during treadmill walking. Hip and wrist-worn ActiGraph outputs were significantly different from the criterion. The DigiwalkerSW200 records steps for movements with a total acceleration of ≥1.21 g. The OmronHJ720ITC detects a step when movement has an acceleration ≥0.10 g with a dominant frequency of ≥1 Hz. The step-threshold for the ActiLife algorithm is variable based on signal frequency. Acceleration signals at the hip and wrist have distinctive patterns during treadmill walking. (4) Conclusions: Three common research-grade physical activity monitors employ different step-detection strategies, which causes variability in step output.

  9. “What Is a Step?” Differences in How a Step Is Detected among Three Popular Activity Monitors That Have Impacted Physical Activity Research

    PubMed Central

    John, Dinesh; Arguello, Diego; Lyden, Kate; Bassett, David

    2018-01-01

    (1) Background: This study compared manually-counted treadmill walking steps from the hip-worn DigiwalkerSW200 and OmronHJ720ITC, and hip and wrist-worn ActiGraph GT3X+ and GT9X; determined brand-specific acceleration amplitude (g) and/or frequency (Hz) step-detection thresholds; and quantified key features of the acceleration signal during walking. (2) Methods: Twenty participants (Age: 26.7 ± 4.9 years) performed treadmill walking between 0.89-to-1.79 m/s (2–4 mph) while wearing a hip-worn DigiwalkerSW200, OmronHJ720ITC, GT3X+ and GT9X, and a wrist-worn GT3X+ and GT9X. A DigiwalkerSW200 and OmronHJ720ITC underwent shaker testing to determine device-specific frequency and amplitude step-detection thresholds. Simulated signal testing was used to determine thresholds for the ActiGraph step algorithm. Steps during human testing were compared using bias and confidence intervals. (3) Results: The OmronHJ720ITC was most accurate during treadmill walking. Hip and wrist-worn ActiGraph outputs were significantly different from the criterion. The DigiwalkerSW200 records steps for movements with a total acceleration of ≥1.21 g. The OmronHJ720ITC detects a step when movement has an acceleration ≥0.10 g with a dominant frequency of ≥1 Hz. The step-threshold for the ActiLife algorithm is variable based on signal frequency. Acceleration signals at the hip and wrist have distinctive patterns during treadmill walking. (4) Conclusions: Three common research-grade physical activity monitors employ different step-detection strategies, which causes variability in step output. PMID:29662048

  10. The interplays among technology and content, immersant and VE

    NASA Astrophysics Data System (ADS)

    Song, Meehae; Gromala, Diane; Shaw, Chris; Barnes, Steven J.

    2010-01-01

    The research program aims to explore and examine the fine balance necessary for maintaining the interplays between technology and the immersant, including identifying qualities that contribute to creating and maintaining a sense of "presence" and "immersion" in an immersive virtual reality (IVR) experience. Building upon and extending previous work, we compare sitting meditation with walking meditation in a virtual environment (VE). The Virtual Meditative Walk, a new work-in-progress, integrates VR and biofeedback technologies with a self-directed, uni-directional treadmill. As immersants learn how to meditate while walking, robust, real-time biofeedback technology continuously measures breathing, skin conductance and heart rate. The physiological states of the immersant will in turn affect the audio and stereoscopic visual media through shutter glasses. We plan to test the potential benefits and limitations of this physically active form of meditation with data from a sitting form of meditation. A mixed-methods approach to testing user outcomes parallels the knowledge bases of the collaborative team: a physician, computer scientists and artists.

  11. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users.

    PubMed

    Gauthier, Cindy; Grangeon, Murielle; Ananos, Ludivine; Brosseau, Rachel; Gagnon, Dany H

    2017-09-01

    Cardiorespiratory fitness assessment and training among manual wheelchair (MW) users are predominantly done with an arm-crank ergometer. However, arm-crank ergometer biomechanics differ substantially from MW propulsion biomechanics. This study aimed to quantify cardiorespiratory responses resulting from speed and slope increments during MW propulsion on a motorized treadmill and to calculate a predictive equation based on speed and slope for estimating peak oxygen uptake (VO 2peak ) in MW users. In total, 17 long-term MW users completed 12 MW propulsion periods (PP), each lasting 2min, on a motorized treadmill, in a random order. Each PP was separated by a 2-min rest. PPs were characterized by a combination of 3 speeds (0.6, 0.8 and 1.0m/s) and 4 slopes (0°, 2.7°, 3.6° and 4.8°). Six key cardiorespiratory outcome measures (VO 2 , heart rate, respiratory rate, minute ventilation and tidal volume) were recorded by using a gas-exchange analysis system. Rate of perceived exertion (RPE) was measured by using the modified 10-point Borg scale after each PP. For the 14 participants who completed the test, cardiorespiratory responses increased in response to speed and/or slope increments, except those recorded between the 3.6 o and 4.8 o slope, for which most outcome measures were comparable. The RPE was positively associated with cardiorespiratory response (r s ≥0.85). A VO 2 predictive equation (R 2 =99.7%) based on speed and slope for each PP was computed. This equation informed the development of a future testing protocol to linearly increase VO 2 via 1-min stages during treadmill MW propulsion. Increasing speed and slope while propelling a MW on a motorized treadmill increases cardiorespiratory response along with RPE. RPE can be used to easily and accurately monitor cardiorespiratory responses during MW exercise. The VO 2 can be predicted to some extent by speed and slope during MW propulsion. A testing protocol is proposed to assess cardiorespiratory fitness during motorized MW propulsion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Cardiopulmonary exercise testing early after stroke using feedback-controlled robotics-assisted treadmill exercise: test-retest reliability and repeatability.

    PubMed

    Stoller, Oliver; de Bruin, Eling D; Schindelholz, Matthias; Schuster-Amft, Corina; de Bie, Rob A; Hunt, Kenneth J

    2014-10-11

    Exercise capacity is seriously reduced after stroke. While cardiopulmonary assessment and intervention strategies have been validated for the mildly and moderately impaired populations post-stroke, there is a lack of effective concepts for stroke survivors suffering from severe motor limitations. This study investigated the test-retest reliability and repeatability of cardiopulmonary exercise testing (CPET) using feedback-controlled robotics-assisted treadmill exercise (FC-RATE) in severely motor impaired individuals early after stroke. 20 subjects (age 44-84 years, <6 month post-stroke) with severe motor limitations (Functional Ambulatory Classification 0-2) were selected for consecutive constant load testing (CLT) and incremental exercise testing (IET) within a powered exoskeleton, synchronised with a treadmill and a body weight support system. A manual human-in-the-loop feedback system was used to guide individual work rate levels. Outcome variables focussed on standard cardiopulmonary performance parameters. Relative and absolute test-retest reliability were assessed by intraclass correlation coefficients (ICC), standard error of the measurement (SEM), and minimal detectable change (MDC). Mean difference, limits of agreement, and coefficient of variation (CoV) were estimated to assess repeatability. Peak performance parameters during IET yielded good to excellent relative reliability: absolute peak oxygen uptake (ICC =0.82), relative peak oxygen uptake (ICC =0.72), peak work rate (ICC =0.91), peak heart rate (ICC =0.80), absolute gas exchange threshold (ICC =0.91), relative gas exchange threshold (ICC =0.88), oxygen cost of work (ICC =0.87), oxygen pulse at peak oxygen uptake (ICC =0.92), ventilation rate versus carbon dioxide output slope (ICC =0.78). For these variables, SEM was 4-13%, MDC 12-36%, and CoV 0.10-0.36. CLT revealed high mean differences and insufficient test-retest reliability for all variables studied. This study presents first evidence on reliability and repeatability for CPET in severely motor impaired individuals early after stroke using a feedback-controlled robotics-assisted treadmill. The results demonstrate good to excellent test-retest reliability and appropriate repeatability for the most important peak cardiopulmonary performance parameters. These findings have important implications for the design and implementation of cardiovascular exercise interventions in severely impaired populations. Future research needs to develop advanced control strategies to enable the true limit of functional exercise capacity to be reached and to further assess test-retest reliability and repeatability in larger samples.

  13. Validity and repeatability of inertial measurement units for measuring gait parameters.

    PubMed

    Washabaugh, Edward P; Kalyanaraman, Tarun; Adamczyk, Peter G; Claflin, Edward S; Krishnan, Chandramouli

    2017-06-01

    Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking

    PubMed Central

    2011-01-01

    Background Motorized treadmills are widely used in research or in clinical therapy. Small kinematics, kinetics and energetics changes induced by Treadmill Walking (TW) as compared to Overground Walking (OW) have been reported in literature. The purpose of the present study was to characterize the differences between OW and TW in terms of stride-to-stride variability. Classical (Standard Deviation, SD) and non-linear (fractal dynamics, local dynamic stability) methods were used. In addition, the correlations between the different variability indexes were analyzed. Methods Twenty healthy subjects performed 10 min TW and OW in a random sequence. A triaxial accelerometer recorded trunk accelerations. Kinematic variability was computed as the average SD (MeanSD) of acceleration patterns among standardized strides. Fractal dynamics (scaling exponent α) was assessed by Detrended Fluctuation Analysis (DFA) of stride intervals. Short-term and long-term dynamic stability were estimated by computing the maximal Lyapunov exponents of acceleration signals. Results TW did not modify kinematic gait variability as compared to OW (multivariate T2, p = 0.87). Conversely, TW significantly modified fractal dynamics (t-test, p = 0.01), and both short and long term local dynamic stability (T2 p = 0.0002). No relationship was observed between variability indexes with the exception of significant negative correlation between MeanSD and dynamic stability in TW (3 × 6 canonical correlation, r = 0.94). Conclusions Treadmill induced a less correlated pattern in the stride intervals and increased gait stability, but did not modify kinematic variability in healthy subjects. This could be due to changes in perceptual information induced by treadmill walking that would affect locomotor control of the gait and hence specifically alter non-linear dependencies among consecutive strides. Consequently, the type of walking (i.e. treadmill or overground) is important to consider in each protocol design. PMID:21345241

  15. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats.

    PubMed

    Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee

    2015-03-01

    Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.

  16. Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.

    PubMed

    Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E

    2017-07-01

    Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P < 0.001), while being associated with lower overall HR (pooled difference, 11 bpm; P < 0.001). MCAvmean increased similarly during aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.

  17. Effect of Body Weight-supported Walking on Exercise Capacity and Walking Speed in Patients with Knee Osteoarthritis: A Randomized Controlled Trial

    PubMed Central

    Someya, Fujiko

    2013-01-01

    Abstract Objective: To compare the effect of body-weight-supported treadmill training (BWSTT) and full-body-weight treadmill training (FBWTT) on patients with knee osteoarthritis (OA). Methods: Design was Randomized controlled trial. Patients with knee osteoarthritis (n = 30; mean age, 76.0±7.5 y) were randomly assigned to BWSTT or FBWTT group. All patients performed 20 min walking exercise twice a week for 6 weeks under the supervision of the therapist. Main measures were 10-meter walking test (10MWT), functional reach test (FRT), timed get up and go test (TUG), one-leg standing test, 6-minute walking test (6MWT), the parameters set on the treadmill, MOS Short-Form 36-Item Health Survey (SF36), Japanese Knee Osteoarthritis Measure (JKOM). Results: Twenty-five patients (10 men, 15 women; mean age, 76.5 ± 8.0 y) completed the experiment. Exercise capacity, indicated by the heart rate, was similar in both groups. After 3 weeks of BWSTT, the patients performed significantly better in the 10-m and 6-min walking tests. This was not the case with FBWTT even after 6 weeks training. Pain levels assessed were significantly improved after 3 weeks of BWSTT and 6 weeks of FBWTT. There were no significant improvements in either group assessed by the FRT, one-leg standing time test, TUG, or SF -36 questionnaire. Conclusions: BWSTT enhanced exercise capacity in terms of walking speed and pain reduction after 3 weeks; however, there was no significant improvement in patients' functional abilities or quality of life. PMID:25792901

  18. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    PubMed

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  19. The effect of childhood obesity on cardiac functions.

    PubMed

    Üner, Abdurrahman; Doğan, Murat; Epcacan, Zerrin; Epçaçan, Serdar

    2014-03-01

    Obesity is a metabolic disorder defined as excessive accumulation of body fat, which is made up of genetic, environmental, and hormonal factors and has various social, psychological, and medical complications. Childhood obesity is a major indicator of adult obesity. The aim of this study is to evaluate the cardiac functions via electrocardiography (ECG), echocardiography (ECHO), and treadmill test in childhood obesity. A patient group consisting of 30 obese children and a control group consisting of 30 non-obese children were included in the study. The age range was between 8 and 17 years. Anthropometric measurements, physical examination, ECG, ECHO, and treadmill test were done in all patients. P-wave dispersion (PD) was found to be statistically significantly high in obese patients. In ECHO analysis, we found that end-diastolic diameter, end-systolic diameter, left ventricle posterior wall thickness, and interventricular septum were significantly greater in obese children. In treadmill test, exercise capacity was found to be significantly lower and the hemodynamic response to exercise was found to be defective in obese children. Various cardiac structural and functional changes occur in childhood obesity and this condition includes important cardiovascular risks. PD, left ventricle end-systolic and end-diastolic diameter, left ventricle posterior wall thickness, interventricular septum thickness, exercise capacity, and hemodynamic and ECG measurements during exercise testing are useful tests to determine cardiac dysfunctions and potential arrhythmias even in early stages of childhood obesity. Early recognition and taking precautions for obesity during childhood is very important to intercept complications that will occur in adulthood.

  20. Effect of using a treadmill workstation on performance of simulated office work tasks.

    PubMed

    John, Dinesh; Bassett, David; Thompson, Dixie; Fairbrother, Jeffrey; Baldwin, Debora

    2009-09-01

    Although using a treadmill workstation may change the sedentary nature of desk jobs, it is unknown if walking while working affects performance on office-work related tasks. To assess differences between seated and walking conditions on motor skills and cognitive function tests. Eleven males (24.6 +/- 3.5 y) and 9 females (27.0 +/- 3.9 y) completed a test battery to assess selective attention and processing speed, typing speed, mouse clicking/drag-and-drop speed, and GRE math and reading comprehension. Testing was performed under seated and walking conditions on 2 separate days using a counterbalanced, within subjects design. Participants did not have an acclimation period before the walking condition. Paired t tests (P < .05) revealed that in the seated condition, completion times were shorter for mouse clicking (26.6 +/- 3.0 vs. 28.2 +/- 2.5s) and drag-and-drop (40.3 +/- 4.2 vs. 43.9 +/- 2.5s) tests, typing speed was greater (40.2 +/- 9.1 vs. 36.9 +/- 10.2 adjusted words x min(-1)), and math scores were better (71.4 +/- 15.2 vs. 64.3 +/- 13.4%). There were no significant differences between conditions in selective attention and processing speed or in reading comprehension. Compared with the seated condition, treadmill walking caused a 6% to 11% decrease in measures of fine motor skills and math problem solving, but did not affect selective attention and processing speed or reading comprehension.

  1. A Novel Treadmill with a Function of Simulating Walkway-Walking

    NASA Astrophysics Data System (ADS)

    Funabiki, Shigeyuki; Nishiyama, Shinji; Tanaka, Toshihiko; Fujihara, Jun-Ichi; Maniwa, Sokichi; Sakai, Yasuo

    There are differences between walkway walking and walking on a treadmill. It is considered that these differences are based on the fact that the walking on the treadmill is a passive motion, while the walkway walking is an active motion. The differences in walking between on a floor and on a treadmill are investigated using the electromyograph and on the oral questionnaires from subjects. The obtained knowledge is as follows. (1) The muscular activity of the legs in walking on the treadmill without the tractive force is smaller than that in walking on the floor. (2) The walking on the treadmill with 60% of the tractive force being equivalent to the walkway walking from the rear downward of 30 degrees becomes similar to the usual walking on the floor. This paper proposes a novel treadmill with a function of simulating walkway-walking. The developed treadmill has a walking-load device towing the subject from the rear downward and controlling the walking speed according to the position of subject on the treadmill. The verification experiment of walking on the developed treadmill shows the availability to gait training and rehabilitation.

  2. Criterion Related Validity of Karate Specific Aerobic Test (KSAT)

    PubMed Central

    Chaabene, Helmi; Hachana, Younes; Franchini, Emerson; Tabben, Montassar; Mkaouer, Bessem; Negra, Yassine; Hammami, Mehrez; Chamari, Karim

    2015-01-01

    Background: Karate is one the most popular combat sports in the world. Physical fitness assessment on a regular manner is important for monitoring the effectiveness of the training program and the readiness of karatekas to compete. Objectives: The aim of this research was to examine the criterion related to validity of the karate specific aerobic test (KSAT) as an indicator of aerobic level of karate practitioners. Patients and Methods: Cardiorespiratory responses, aerobic performance level through both treadmill laboratory test and YoYo intermittent recovery test level 1 (YoYoIRTL1) as well as time to exhaustion in the KSAT test (TE’KSAT) were determined in a total of fifteen healthy international karatekas (i.e. karate practitioners) (means ± SD: age: 22.2 ± 4.3 years; height: 176.4 ± 7.5 cm; body mass: 70.3 ± 9.7 kg and body fat: 13.2 ± 6%). Results: Peak heart rate obtained from KSAT represented ~99% of maximal heart rate registered during the treadmill test showing that KSAT imposes high physiological demands. There was no significant correlation between KSAT’s TE and relative (mL/min kg) treadmill maximal oxygen uptake (r = 0.14; P = 0.69; [small]). On the other hand, there was a significant relationship between KSAT’s TE and the velocity associated with VO2max (vVO2max) (r = 0.67; P = 0.03; [large]) as well as the velocity at VO2 corresponding to the second ventilatory threshold (vVO2 VAT) (r = 0.64; P = 0.04; [large]). Moreover, significant relationship was found between TE’s KSAT and both the total distance covered and parameters of intermittent endurance measured through YoYoIRTL1. Conclusions: The KSAT has not proved to have indirect criterion related validity as no significant correlations have been found between TE’s KSAT and treadmill VO2max. Nevertheless, as correlated to other aerobic fitness variables, KSAT can be considered as an indicator of karate specific endurance. The establishment of the criterion related validity of the KSAT requires further investigation. PMID:26446345

  3. Validation of a Manually Oscillating Chair for In-The-Field Assessment of Dynamic Visual Acuity on Crewmembers Within Hours of Returning From Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Kreutzberg, G. A.; Rosenberg, M. J. F.; Peters, B. T.; Reschke,M. F.

    2017-01-01

    Long-duration spaceflight results in sensorimotor adaptations, which cause functional deficits during gravitational transitions, such as landing on a planetary surface after long-duration microgravity exposure. Both the vestibular system and the central nervous system are affected by gravitational transitions. These systems are responsible for coordinating head and eye movements via the vestibulo-ocular reflex (VOR) and go through an adaptation period upon exposure to microgravity. Consequently, they must also re-adapt to Earth's gravitational environment upon landing. This re-adaptation causes decrements in gaze control and dynamic visual acuity, with crewmembers reporting oscillopsia and blurred vision caused by retinal slip, or the inability to keep an image focused on their retina. This is thought to drive motion sickness symptoms experienced by most crewmembers following landing. Retinal slip can be estimated by dynamic visual acuity (DVA); visual acuity while in motion. Previously, DVA has been assessed in the laboratory where subjects walked at 6.4 km/hr on a motorized treadmill. Using this method, Peters et al. (2011) found that DVA is worsened in astronauts by an average of 0.75 eye-chart lines one day after landing. However, it is believed that re-adaptation occurs quickly and that DVA might be worse immediately upon re-exposure to a gravitational environment. Since many crewmembers are unable to walk safely upon landing, it was necessary to develop a method for replicating the vertical head movements associated with walking. In addition, the use of a chair to imitate the head displacement caused by walking isolates eye-head interactions without allowing for trunk and lower-body compensation, as seen with treadmill walking (Mulavara & Bloomberg 2003). Therefore, a modality for assessing DVA in the field within a few hours of landing was developed. In this study, we validated the ability of a manually operated oscillating chair to reproduce the oscillatory frequency of walking on a treadmill. Healthy non-astronaut subjects (n=14) participated in one test session and completed three static (seated) and three dynamic (walking/oscillated) visual acuity tests. DVA was assessed using a motorized treadmill, an automated oscillating chair, and a manually operated chair, both developed in the Neuroscience Laboratory at JSC. The automated chair was motor-driven and set to oscillate vertically at 2 Hz with a vertical displacement of +/- 5 cm to simulate vertical translation while walking. The manually operated chair was oscillated vertically by a test operator to the beat of a metronome at 120 beats/min (2 Hz) and a vertical displacement of approximately +/- 5 cm. As the subject was oscillated, they were asked to discern the direction gap of Landolt-C optotypes of varying sizes and verbally reported the direction while an operator recorded their response using a gamepad. Subjects were outfitted with accelerometers (sampling rate = 128 Hz) on their head, trunk and lumbar spine. A fast Fourier transform was performed on the vertical trunk acceleration to compare the peak and spread of the distribution of oscillation frequencies for each oscillating condition. The spread of the frequency distribution for the manual chair was not significantly different from either the treadmill or the automated chair. However, all three conditions had similar non-zero standard error values, suggesting a variance in head movement frequency which may affect DVA. The average oscillation frequency of the manual chair (1.85 Hz) was significantly different (a=0.05) from that of treadmill walking (2.24 Hz), but not significantly different from that of the automated chair (1.85 Hz) and all three conditions had small standard errors (SEM = 0.04, 0.06, and 0.08 Hz for manual, treadmill, and automated respectively). This implies that both chairs oscillate at a frequency below that of treadmill walking, but are comparable to each other and reproducible across sessions. Additionally, DVA scores did not vary significantly across conditions. The smaller spread values of the oscillating chairs' frequencies indicated mitigation of variation induced by locomotor strategies, which enables better examination of the issue of VOR adaptation. Furthermore, due to the deconditioned state of crewmembers in the initial hours after landing, it is easier to transport a manual bouncing chair into the field and safer to perform a vision test while seated in a chair versus walking on a treadmill. Therefore, the manually oscillating chair has been deemed to meet and exceed the DVA testing capabilities previously obtained by treadmill walking.

  4. Can coconut oil and treadmill exercise during the critical period of brain development ameliorate stress-related effects on anxiety-like behavior and episodic-like memory in young rats?

    PubMed

    da Silva, Débora de Cássia; Tavares, Maryane Gabriela; do Nascimento, Camila Karina Brito; Lira, Eduardo Carvalho; Dos Santos, Ângela Amâncio; Maia, Luciana Maria Silva de Seixas; Batista-de-Oliveira Hornsby, Manuella

    2018-03-01

    Virgin coconut oil (CO) and treadmill exercise have been reported to improve memory performance in young rats. CO has also been associated with antistress properties in young, stressed mice. Therefore, in this study we aimed to investigate whether CO and treadmill exercise could synergistically ameliorate the effects of chronic stress on anxiety-like behavior and episodic-like memory in young rats. The rats received CO and were exercised (Ex) from the 15 th to the 45 th day of life. The animals were supplemented with CO (10 mL kg -1 day -1 ) or a vehicle (V, distilled water and 0.009% Cremophor) via oral gavage. The Ex animals were placed for 30 min day -1 on a treadmill, with the speed gradually increasing from the first week to the last. From the 46 th to the 54 th postnatal day, with the exception of the 51 st and the 52 nd day, all rats were subjected to restraint stress. Afterwards, all rats underwent the open-field test to evaluate locomotor activity and anxiety-like behavior. To evaluate episodic-like memory, all animals underwent tests to recognize object identity and special location. Lastly, lipid profile and murinometric parameters were evaluated. A two-way ANOVA test followed by a Tukey test demonstrated that the CO&Ex group explored more of the unprotected central area of the OFT (27.04 ± 4.03 s, p < 0.01), when compared to the control group (15.36 ± 2.54 s). CO&Ex spent more time exploring the novel location of the object (71.62 ± 3.04%, p < 0.01), when compared to the control group (58.62 ± 2.48%). CO and exercise during lactation can ameliorate the effects of stress on anxiety-like behavior and episodic-like memory in young rats.

  5. Combination of robot-assisted and conventional body-weight-supported treadmill training improves gait in persons with multiple sclerosis: a pilot study.

    PubMed

    Ruiz, Jennifer; Labas, Michele P; Triche, Elizabeth W; Lo, Albert C

    2013-12-01

    The majority of persons with multiple sclerosis (MS) experience problems with gait, which they characterize as highly disabling impairments that adversely impact their quality of life. Thus, it is crucial to develop effective therapies to improve mobility for these individuals. The purpose of this study was to determine whether combination gait training, using robot-assisted treadmill training followed by conventional body-weight-supported treadmill training within the same session, improved gait and balance in individuals with MS. This study tested combination gait training in 7 persons with MS. The participants were randomized into the immediate therapy group (IT group) or the delayed therapy group (DT group). In phase I of the trial, the IT group received treatment while the DT group served as a concurrent comparison group. In phase II of the trial, the DT group received treatment identical to the treatment received by the IT group in phase I. Outcome measures included the 6-Minute Walk Test (6MWT), the Timed 25-Foot Walk Test, velocity, cadence, and the Functional Reach Test (FRT). Nonparametric statistical techniques were used for analysis. Combination gait training resulted in significantly greater improvements in the 6MWT for the IT group (median change = +59 m) compared with Phase I DT group (median change = -8 m) (P = 0.08) and FRT (median change = +3.3 cm in IT vs -0.8 cm in the DT group phase I; P = 0.03). Significant overall pre-post improvements following combination gait training were found in 6MWT (+32 m; P = 0.02) and FRT (+3.3 cm; P = 0.06) for IT and Phase II DT groups combined. Combination of robot with body-weight-supported treadmill training gait training is feasible and improved 6MWT and FRT distances in persons with MS.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A62) for more insights from the authors.

  6. Exaggerated Exercise Blood Pressure Response During Treadmill Testing as a Predictor of Future Hypertension in Men: A Longitudinal Study.

    PubMed

    Jae, Sae Young; Franklin, Barry A; Choo, Jina; Choi, Yoon-Ho; Fernhall, Bo

    2015-11-01

    The purpose of this study was to evaluate receiver operating characteristic curves to identify optimal cutoff values of exercise systolic blood pressure (SBP) using both peak SBP and relative SBP (peak SBP minus resting SBP) as predictors of future hypertension (HTN). Participants were 3,742 healthy normotensive men who underwent symptom-limited treadmill testing at baseline. Incident HTN was defined as SBP/diastolic blood pressure greater than 140/90 mm Hg and/or diagnosed HTN by a physician. During an average 5-year follow-up, 364 (9.7%) new cases of HTN were observed. The most discriminatory cutoff values for peak SBP and relative SBP for predicting incident HTN were 181 mm Hg (areas under the curve (AUC) = 0.644, sensitivity = 54%, and specificity = 69%) and 52 mm Hg (AUC = 0.549, sensitivity = 64.3%, and specificity = 44.6%), respectively. Participants with peak SBP greater than 181 mm Hg and relative SBP greater than 52 mm Hg had 1.54-fold (95% CI: 1.23-1.93) and 1.44-fold (95% CI: 1.16-1.80) risks of developing HTN after adjusting for potential confounding variables. When these 2 variables were entered simultaneously into the Cox proportional hazards regression model with adjustment for potential confounding variables, only peak SBP (relative risk: 1.39, 95% CI: 1.02-1.89) was a predictor of the development of HTN. The most accurate discriminators for peak and relative SBP during treadmill exercise testing to predict incident HTN were greater than 181 and 52 mm Hg, respectively, in normotensive men. A peak SBP greater than 181 mm Hg during treadmill exercise testing may provide a useful predictor for the development of HTN in clinical practice. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Effects of home-based locomotor treadmill training on gross motor function in young children with cerebral palsy: a quasi-randomized controlled trial.

    PubMed

    Mattern-Baxter, Katrin; McNeil, Stefani; Mansoor, Jim K

    2013-11-01

    To examine the effects of an intensive home-based program of treadmill training on motor skills related to walking in preambulatory children with cerebral palsy (CP). Quasi-randomized controlled trial. Homes of the participants. Children with CP (N=12) with Gross Motor Function Classification System levels I and II were assigned to the intervention group (n=6; mean age ± SD, 21.76±6.50mo) and control group (n=6; 21.25±6.07mo). All children were tested preintervention, postintervention, at a 1-month follow-up, and at a 4-month follow-up. All children received their weekly scheduled physical therapy sessions at their homes. In addition, children in the intervention group walked on a portable treadmill in their homes 6 times per week, twice daily for 10- to 20-minute sessions, for 6 weeks. The intervention was carried out by the children's parents with weekly supervision by a physical therapist. Gross Motor Function Measure-66 Dimensions D/E, Peabody Developmental Motor Scales-2 (PDMS-2), Pediatric Evaluation of Disability Inventory (PEDI), timed 10-m walk test (10MWT), and Functional Mobility Scale (FMS). The Friedman test and Mann-Whitney U test were conducted for within-group and between-group differences, respectively. There was a significant between-group treatment effect for the PDMS-2 at posttest (P=.01) and 1-month postintervention follow-up (P=.09), as well as for the PEDI at posttest (P=.01), the 1-month postintervention follow-up (P=.009), and the 4-month postintervention follow-up (P=.04). The FMS was significant at the posttest (P=.04). Home-based treadmill training accelerates the attainment of walking skills and decreases the amount of support used for walking in young children with CP. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Effects of lead and exercise on endurance and learning in young herring gulls.

    PubMed

    Burger, Joanna; Gochfeld, Michael

    2004-02-01

    In this paper, we report the use of young herring gulls, Larus argentatus, to examine the effect of lead and exercise on endurance, performance, and learning on a treadmill. Eighty 1-day-old herring gull chicks were randomly assigned to either a control group or a lead treatment group that received a single dose of lead acetate solution (100mg/kg) at day 2. Controls were injected with an equal volume of isotonic saline at the same age. Half of the lead treatment group and half of the control group were randomly assigned to an exercise regime of walking on a treadmill twice each day. The other group remained in their cages. We test the null hypotheses that neither lead nor exercise affected performance of herring gull chicks when subsequently tested on the treadmill at 7, 11, and 17 days post-injection. Performance measures included latency to orient forward initially, to move continuously, forward on the treadmill, and to avoiding being bumped against the back of the test chamber. Also measured were the number of calls per 15 s, and the time to tire out. Latency to face forward and avoiding being bumped against the back of the test chamber were measures of learning, and time to tire out was a measure of endurance. We found significant differences as a function of lead, exercise, and their interaction, and rejected the null hypotheses. For all measures of behavior and endurance, lead had the greatest contribution to accounting for variability. In general, lead-treated birds showed better performance improvement from the daily exercise than did controlled non-lead birds, with respect to endurance and learning. We suggest that in nature, exercise can improve performance of lead-exposed birds by partially mitigating the effects of lead, thereby increasing survival of lead-impaired chicks.

  9. Assessing gait adaptability in people with a unilateral amputation on an instrumented treadmill with a projected visual context.

    PubMed

    Houdijk, Han; van Ooijen, Mariëlle W; Kraal, Jos J; Wiggerts, Henri O; Polomski, Wojtek; Janssen, Thomas W J; Roerdink, Melvyn

    2012-11-01

    Gait adaptability, including the ability to avoid obstacles and to take visually guided steps, is essential for safe movement through a cluttered world. This aspect of walking ability is important for regaining independent mobility but is difficult to assess in clinical practice. The objective of this study was to investigate the validity of an instrumented treadmill with obstacles and stepping targets projected on the belt's surface for assessing prosthetic gait adaptability. This was an observational study. A control group of people who were able bodied (n=12) and groups of people with transtibial (n=12) and transfemoral (n=12) amputations participated. Participants walked at a self-selected speed on an instrumented treadmill with projected visual obstacles and stepping targets. Gait adaptability was evaluated in terms of anticipatory and reactive obstacle avoidance performance (for obstacles presented 4 steps and 1 step ahead, respectively) and accuracy of stepping on regular and irregular patterns of stepping targets. In addition, several clinical tests were administered, including timed walking tests and reports of incidence of falls and fear of falling. Obstacle avoidance performance and stepping accuracy were significantly lower in the groups with amputations than in the control group. Anticipatory obstacle avoidance performance was moderately correlated with timed walking test scores. Reactive obstacle avoidance performance and stepping accuracy performance were not related to timed walking tests. Gait adaptability scores did not differ in groups stratified by incidence of falls or fear of falling. Because gait adaptability was affected by walking speed, differences in self-selected walking speed may have diminished differences in gait adaptability between groups. Gait adaptability can be validly assessed by use of an instrumented treadmill with a projected visual context. When walking speed is taken into account, this assessment provides unique, quantitative information about walking ability in people with a lower-limb amputation.

  10. Effects of Reduced Strength on Self-Selected Pacing for Long-Duration Activities

    NASA Technical Reports Server (NTRS)

    Buxton, Roxanne E.; Ryder, Jeffrey W.; English, Kirk E.; Guined, Jamie R.; Ploutz-Snyder, Lori L.

    2015-01-01

    Strength and aerobic capacity are predictors of astronaut performance for extravehicular activities (EVA) during exploration missions. It is expected that astronauts will self-select a pace below their ventilatory threshold (VT). PURPOSE: To determine the percentage of VT that subjects self-select for prolonged occupational tasks. METHODS: Maximal aerobic capacity and a variety of lower-body strength and power variables were assessed in 17 subjects who climbed 480 rungs on a ladder ergometer and then completed 10 km on a treadmill as quickly as possible using a self-selected pace. The tasks were performed on 4 days, with a weighted suit providing 0% (suit fabric only), 40%, 60%, and 80% of additional bodyweight (BW), thereby altering the strength to BW ratio. Oxygen consumption and heart rate were continuously measured. Repeated measures ANOVA and post-hoc comparisons were performed on the percent of VT values under each suited condition. RESULTS: Subjects consistently self-paced at or below VT for both tasks and the pace was related to suit weight. At the midpoint for the ladder climb the 80% BW condition elicited the lowest metabolic cost (-19+/-14% below VT), significantly different than the 0% BW (-3+/-16%, P=0.002) and the 40% BW conditions (-5+/-22%, P=0.023). The 60% BW condition (-13+/-19%) was different than the 40% BW condition (P=0.034). Upon completion of the ladder task there were no differences among the conditions (0%BW: 3+/-18%; 40%BW: 3+/-21%; 60%BW: - 8+/-25%; 80%BW: -10+/-18%). All subjects failed to complete 5km at 80%BW. At the midpoint of the treadmill test the three remaining conditions were all significantly different (0%BW: -20+/-15%; 40%BW: - 33+/-15%; 60%BW: -41+/-19%). Upon completion of the treadmill test the 60% BW condition (-38+/-12%) was significantly different than the 40% BW (-28+/-15%, P=0.024). CONCLUSIONS: Decreasing relative strength results in progressive and disproportionate decreases (relative to VT) in self-selected pacing during long-duration activities. Thus, during prolonged, endurance-type activities, large reductions in strength cause notable performance decrements despite no changes in aerobic capacity. These data highlight the importance of both aerobic capacity and muscle strength to the performance of prolonged EVA in exploration mission scenarios.

  11. Oxygen consumption, oxygen cost, heart rate, and perceived effort during split-belt treadmill walking in young healthy adults.

    PubMed

    Roper, Jaimie A; Stegemöller, Elizabeth L; Tillman, Mark D; Hass, Chris J

    2013-03-01

    During split-belt treadmill walking the speed of the treadmill under one limb is faster than the belt under the contralateral limb. This unique intervention has shown evidence of acutely improving gait impairments in individuals with neurologic impairment such as stroke and Parkinson's disease. However, oxygen use, heart rate and perceived effort associated with split-belt treadmill walking are unknown and may limit the utility of this locomotor intervention. To better understand the intensity of this new intervention, this study was undertaken to examine the oxygen consumption, oxygen cost, heart rate, and rating of perceived exertion associated with split-belt treadmill walking in young healthy adults. Fifteen participants completed three sessions of treadmill walking: slow speed with belts tied, fast speed with belts tied, and split-belt walking with one leg walking at the fast speed and one leg walking at the slow speed. Oxygen consumption, heart rate, and rating of perceived exertion were collected during each walking condition and oxygen cost was calculated. Results revealed that oxygen consumption, heart rate, and perceived effort associated with split-belt walking were higher than slow treadmill walking, but only oxygen consumption was significantly lower during both split-belt walking than fast treadmill walking. Oxygen cost associated with slow treadmill walking was significantly higher than fast treadmill walking. These findings have implications for using split-belt treadmill walking as a rehabilitation tool as the cost associated with split-belt treadmill walking may not be higher or potentially more detrimental than that associated with previously used treadmill training rehabilitation strategies.

  12. Prognostic Value of Exercise Treadmill Testing in Asymptomatic Chronic Nonischemic Mitral Regurgitation

    PubMed Central

    Supino, Phyllis G.; Borer, Jeffrey S.; Schuleri, Karlheinz; Gupta, Anuj; Hochreiter, Clare; Kligfield, Paul; Herrold, Edmund McM.; Preibisz, Jacek J.

    2007-01-01

    In many heart diseases, exercise treadmill testing(ETT) has useful functional correlates and/or prognostic value. However, its predictive value in mitral regurgitation(MR) is undefined. To determine whether ETT descriptors predict death or indications for mitral valve surgery among patients with MR, we prospectively followed, for 7±3 endpoint-free years, a cohort of 38 patients with chronic severe nonischemic MR who underwent modified Bruce ETT; all lacked surgical indications at study entry. Their baseline exercise descriptors also were compared with those from 46 patients with severe MR who, at entry, already had reached surgical indications. Endpoints during follow-up among the cohort included sudden death(n=1), heart failure symptoms(n=2), atrial fibrillation(n=4), LVEF<60%(n=2), LV systolic dimensions(IDs)≥45 mm(n=12) and LVIDs>40mm(n=11), LVEF<60%+LVIDs 45 mm(n=3), and heart failure+LVIDs 45mm+LVEF<60%(n=1). In univariate analysis, exercise duration(p=.004), chronotropic response(p=.007), percent predicted peak heart rate(p=.01) and heart rate recovery(p<.02) predicted events; in multivariate analysis, only exercise duration was predictive(p<.02). Average annual event risk was 5-fold lower(4.62%) with exercise duration≥15 minutes vs. <15 minutes(average annual risk=23.48%, p=.004). Relative risks among patients with and without exercise-inducible ST segment depression were comparable(≤1.3[NS]) whether defined at entry and/or during follow-up. Exercise duration, but not prevalence of exercise-inducible ST segment depression, was lower(p<.001) among patients with surgical indications at entry vs. initially endpoint-free patients. In conclusion, among asymptomatic patients with chronic severe nonischemic MR and no objective criteria for operation, progression to surgical indications generally is rapid. However, those with excellent exercise tolerance have a relatively benign course. Exercise-inducible ST segment depression has no prognostic value in this population. We followed, for 7±3 endpoint-free years, 38 patients with chronic severe nonischemic mitral regurgitation (MR) who underwent modified Bruce exercise treadmill testing (ETT) to determine whether ETT descriptors predict death or indications for mitral valve surgery. At study entry, all lacked surgical indications. Exercise duration independently predicted subsequent events; event risks among patients with and without exercise-inducible ST segment depression were comparable. We conclude that among asymptomatic patients with chronic severe nonischemic MR and no objective criteria for operation, those with excellent exercise tolerance have a relatively benign course. Exercise-inducible ST segment depression has no prognostic value in this population. PMID:17920370

  13. Blood lactate thresholds and walking/running economy are determinants of backpack-running performance in trained soldiers.

    PubMed

    Simpson, Richard J; Graham, Scott M; Connaboy, Christopher; Clement, Richard; Pollonini, Luca; Florida-James, Geraint D

    2017-01-01

    We developed a standardized laboratory treadmill protocol for assessing physiological responses to a simulated backpack load-carriage task in trained soldiers, and assessed the efficacy of blood lactate thresholds (LTs) and economy in predicting future backpack running success over an 8-mile course in field conditions. LTs and corresponding physiological responses were determined in 17 elite British soldiers who completed an incremental treadmill walk/run protocol to exhaustion carrying 20 kg backpack load. Treadmill velocity at the breakpoint (r = -0.85) and Δ 1 mmol l(-1) (r = -0.80) LTs, and relative V˙O2 at 4 mmol l(-1) (r = 0.76) and treadmill walk/run velocities of 6.4 (r = 0.76), 7.4 (r = 0.80), 11.4 (r = 0.66) and 12.4 (r = 0.65) km h(-1) were significantly associated with field test completion time. We report for the first time that LTs and backpack walk/run economy are major determinants of backpack load-carriage performance in trained soldiers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. On-Orbit Evaluation of a New Treadmill Harness for Improved Crewmember Comfort and Load Distribution

    NASA Technical Reports Server (NTRS)

    Perusek, G. P.; Sheehan, C. C.; Savina, M. C.; Owings, T. M.; Davis, B. L.; Ryder, J. W.

    2011-01-01

    The current design of the International Space Station (ISS) Treadmill Harness has been reported to cause pain and discomfort to crewmembers during exercise. The Harness Station Development Test Objective (SDTO) provided participating crewmembers (n = 6) with a new harness design, the "Glenn Harness," to evaluate for comfort and loading as compared to the current Treadmill Harness. A novel suite of load-sensing instrumentation was developed to noninvasively measure load distribution and provided a first-ever quantification of actual dynamic loads during treadmill exercise. In addition, crew debriefs provided feedback on harness preference and overall impressions. Conclusions: Post-flight analysis in returned Glenn Harnesses (n = 3) showed minimal wear and tear. Four of the six subjects found the Glenn Harness to be more comfortable in this on-orbit, side-by-side comparison as measured by the crew comfort questionnaire and crew debriefs. Specific areas for improvement have been identified, and forward recommendations will be provided to the Human Research Program. The protocol developed for the SDTO provided valuable insight into crew comfort issues, design improvements, and loading preferences for exercise harnessing, which lays the groundwork for better harnessing systems and training protocols.

  15. A physiological and biomechanical comparison of over-ground, treadmill and ergometer wheelchair propulsion.

    PubMed

    Mason, Barry; Lenton, John; Leicht, Christof; Goosey-Tolfrey, Victoria

    2014-01-01

    The purpose of the study was to determine which laboratory-based modality provides the most valid physiological and biomechanical representation of over-ground sports wheelchair propulsion. Fifteen able-bodied participants with previous experience of wheelchair propulsion performed a 3-minute exercise trial at three speeds (4, 6 and 8 km ∙ h(-1)) in three testing modalities over separate sessions: (i) over-ground propulsion on a wooden sprung surface; (ii) wheelchair ergometer propulsion; (iii) treadmill propulsion at four different gradients (0%, 0.7%, 1.0% and 1,3%). A 0.7% treadmill gradient was shown to best reflect the oxygen uptake (7.3 to 9.1% coefficient of variation (CV)) and heart rate responses (4.9 to 6.4% CV) of over-ground propulsion at 4 and 6 km ∙ h(-1). A 1.0% treadmill gradient provided a more valid representation of oxygen uptake during over-ground propulsion at 8 km ∙ h(-1) (8.6% CV). Physiological demand was significantly underestimated in the 0% gradient and overestimated in the 1.3% gradient and wheelchair ergometer trials compared to over-ground trials (P<0.05). No laboratory-based modality provided a valid representation of the forces applied during OG (≥ 18.4% CV). To conclude, a 0.7% treadmill gradient is recommended to replicate over-ground wheelchair propulsion at lower speeds (4 and 6 km ∙ h(-1)) whereas a 1.0% gradient may be more suitable at 8 km ∙ h(-1).

  16. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke.

    PubMed

    Khanna, Ira; Roy, Anindo; Rodgers, Mary M; Krebs, Hermano I; Macko, Richard M; Forrester, Larry W

    2010-05-21

    Hemiparesis after stroke often leads to impaired ankle motor control that impacts gait function. In recent studies, robotic devices have been developed to address this impairment. While capable of imparting forces to assist during training and gait, these devices add mass to the paretic leg which might encumber patients' gait pattern. The purpose of this study was to assess the effects of the added mass of one of these robots, the MIT's Anklebot, while unpowered, on gait of chronic stroke survivors during overground and treadmill walking. Nine chronic stroke survivors walked overground and on a treadmill with and without the anklebot mounted on the paretic leg. Gait parameters, interlimb symmetry, and joint kinematics were collected for the four conditions. Repeated-measures analysis of variance (ANOVA) tests were conducted to examine for possible differences across four conditions for the paretic and nonparetic leg. The added inertia and friction of the unpowered anklebot had no statistically significant effect on spatio-temporal parameters of gait, including paretic and nonparetic step time and stance percentage, in both overground and treadmill conditions. Noteworthy, interlimb symmetry as characterized by relative stance duration was greater on the treadmill than overground regardless of loading conditions. The presence of the unpowered robot loading reduced the nonparetic knee peak flexion on the treadmill and paretic peak dorsiflexion overground (p < 0.05). Our results suggest that for these subjects the added inertia and friction of this backdriveable robot did not significantly alter their gait pattern.

  17. Acute and chronic effects of aquatic treadmill training on land treadmill running kinematics: A cross-over and single-subject design approach.

    PubMed

    Bressel, Eadric; Louder, Talin J; Hoover, James P; Roberts, Luke C; Dolny, Dennis G

    2017-11-01

    The aim of this study was to determine if selected kinematic measures (foot strike index [SI], knee contact angle and overstride angle) were different between aquatic treadmill (ATM) and land treadmill (LTM) running, and to determine if these measures were altered during LTM running as a result of 6 weeks of ATM training. Acute effects were tested using 15 competitive distance runners who completed 1 session of running on each treadmill type at 5 different running speeds. Subsequently, three recreational runners completed 6 weeks of ATM training following a single-subject baseline, intervention and withdrawal experiment. Kinematic measures were quantified from digitisation of video. Regardless of speed, SI values during ATM running (61.3 ± 17%) were significantly greater (P = 0.002) than LTM running (42.7 ± 23%). Training on the ATM did not change (pre/post) the SI (26 ± 3.2/27 ± 3.1), knee contact angle (165 ± 0.3/164 ± 0.8) or overstride angle (89 ± 0.4/89 ± 0.1) during LTM running. Although SI values were different between acute ATM and LTM running, 6 weeks of ATM training did not appear to alter LTM running kinematics as evidenced by no change in kinematic values from baseline to post intervention assessments.

  18. How valid are wearable physical activity trackers for measuring steps?

    PubMed

    An, Hyun-Sung; Jones, Gregory C; Kang, Seoung-Ki; Welk, Gregory J; Lee, Jung-Min

    2017-04-01

    Wearable activity trackers have become popular for tracking individual's daily physical activity, but little information is available to substantiate the validity of these devices in step counts. Thirty-five healthy individuals completed three conditions of activity tracker measurement: walking/jogging on a treadmill, walking over-ground on an indoor track, and a 24-hour free-living condition. Participants wore 10 activity trackers at the same time for both treadmill and over-ground protocol. Of these 10 activity trackers three were randomly given for 24-hour free-living condition. Correlations of steps measured to steps observed were r = 0.84 and r = 0.67 on a treadmill and over-ground protocol, respectively. The mean MAPE (mean absolute percentage error) score for all devices and speeds on a treadmill was 8.2% against manually counted steps. The MAPE value was higher for over-ground walking (9.9%) and even higher for the 24-hour free-living period (18.48%) on step counts. Equivalence testing for step count measurement resulted in a significant level within ±5% for the Fitbit Zip, Withings Pulse, and Jawbone UP24 and within ±10% for the Basis B1 band, Garmin VivoFit, and SenseWear Armband Mini. The results show that the Fitbit Zip and Withings Pulse provided the most accurate measures of step count under all three different conditions (i.e. treadmill, over-ground, and 24-hour condition), and considerable variability in accuracy across monitors and also by speeds and conditions.

  19. Physiological effects of bioceramic material: harvard step, resting metabolic rate and treadmill running assessments.

    PubMed

    Leung, Ting-Kai; Kuo, Chia-Hua; Lee, Chi-Ming; Kan, Nai-Wen; Hou, Chien-Wen

    2013-12-31

    Previous biomolecular and animal studies have shown that a room-temperature far-infrared-rayemitting ceramic material (bioceramic) demonstrates physical-biological effects, including the normalization of psychologically induced stress-conditioned elevated heart rate in animals. In this clinical study, the Harvard step test, the resting metabolic rate (RMR) assessment and the treadmill running test were conducted to evaluate possible physiological effects of the bioceramic material in human patients. The analysis of heart rate variability (HRV) during the Harvard step test indicated that the bioceramic material significantly increased the high-frequency (HF) power spectrum. In addition, the results of RMR analysis suggest that the bioceramic material reduced oxygen consumption (VO2). Our results demonstrate that the bioceramic material has the tendency to stimulate parasympathetic responses, which may reduce resting energy expenditure and improve cardiorespiratory recovery following exercise.

  20. Adaptation of the walking pattern to uphill walking in normal and spinal-cord injured subjects.

    PubMed

    Leroux, A; Fung, J; Barbeau, H

    1999-06-01

    Lower-limb movements and muscle-activity patterns were assessed from seven normal and seven ambulatory subjects with incomplete spinal-cord injury (SCI) during level and uphill treadmill walking (5, 10 and 15 degrees). Increasing the treadmill grade from 0 degrees to 15 degrees induced an increasingly flexed posture of the hip, knee and ankle during initial contact in all normal subjects, resulting in a larger excursion throughout stance. This adaptation process actually began in mid-swing with a graded increase in hip flexion and ankle dorsiflexion as well as a gradual decrease in knee extension. In SCI subjects, a similar trend was found at the hip joint for both swing and stance phases, whereas the knee angle showed very limited changes and the ankle angle showed large variations with grade throughout the walking cycle. A distinct coordination pattern between the hip and knee was observed in normal subjects, but not in SCI subjects during level walking. The same coordination pattern was preserved in all normal subjects and in five of seven SCI subjects during uphill walking. The duration of electromyographic (EMG) activity of thigh muscles was progressively increased during uphill walking, whereas no significant changes occurred in leg muscles. In SCI subjects, EMG durations of both thigh and leg muscles, which were already active throughout stance during level walking, were not significantly affected by uphill walking. The peak amplitude of EMG activity of the vastus lateralis, medial hamstrings, soleus, medial gastrocnemius and tibialis anterior was progressively increased during uphill walking in normal subjects. In SCI subjects, the peak amplitude of EMG activity of the medial hamstrings was adapted in a similar fashion, whereas the vastus lateralis, soleus and medial gastrocnemius showed very limited adaptation during uphill walking. We conclude that SCI subjects can adapt to uphill treadmill walking within certain limits, but they use different strategies to adapt to the changing locomotor demands.

  1. Oxygen Consumption of Elite Distance Runners on an Anti-Gravity Treadmill®

    PubMed Central

    McNeill, David K.P.; Kline, John R.; de Heer, Hendrick D.; Coast, J. Richard

    2015-01-01

    Lower body positive pressure (LBPP), or ‘anti-gravity’ treadmills® have become increasingly popular among elite distance runners. However, to date, few studies have assessed the effect of body weight support (BWS) on the metabolic cost of running among elite runners. This study evaluated how BWS influenced the relationship between velocity and metabolic cost among 6 elite male distance runners. Participants ran three- 16 minute tests consisting of 4 stages of 4 minutes at 8, 7, 6 and 5 min·mile−1 pace (3.35, 3.84, 4.47 and 5.36 m·s−1), while maintaining an aerobic effort (Respiratory Exchange Ratio ≤1.00). One test was run on a regular treadmill, one on an anti-gravity treadmill with 40% BWS and one with 20% BWS being provided. Expired gas data were collected and regression equations used to determine and compare slopes. Significant decreases in oxygen uptake (V̇O2) were found with each increase in BWS (p < 0.001). At 20% BWS, the average decrease in net VO2 was greater than proportional (34%), while at 40% BWS, the average net reduction in VO2 was close to proportional (38%). Across velocities, the slope of the relationship between VO2 and velocity (ΔV̇O2/Δv) was steeper with less support. The slopes at both the 20% and 40% BWS conditions were similar, especially when compared to the regular treadmill. Variability in VO2 between athletes was much greater on the LBPP treadmill and was greater with increased levels of BWS. In this study we evaluated the effect of body weight support on V̇O2 among elite distance runners. We have shown that oxygen uptake decreased with support, but not in direct proportion to that support. Further, because of the high variability in oxygen uptake between athletes on the LBPP treadmill, prediction equations may not be reliable and other indicators (heart rate, perceived exertion or directly measured oxygen uptake) should be used to guide training intensity when training on the LBPP treadmill. Key points With increasing amounts of body weight-support (BWS), the slope of the relationship between velocity and oxygen consumption (ΔVO2/Δv) decreases significantly. This means the change in oxygen consumption (VO2) is significantly smaller over a given change in velocity at higher amounts of BWS. There is a non-linear decrease in VO2 with increasing BWS. As such, with each increment in the amount of BWS provided, the reduction in VO2 becomes increasingly smaller. This paper provides first of its kind data on the effects of BWS on the cost of running among highly trained, elite runners. The outcomes of this study are in line with previous findings among non-elite runners. PMID:25983582

  2. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    PubMed Central

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning. PMID:26485148

  3. Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout

    PubMed Central

    Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle

    2015-01-01

    CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192

  4. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.

    PubMed

    Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle

    2015-09-29

    CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.

  5. Design and Validation of an Instrumented Uneven Terrain Treadmill.

    PubMed

    Voloshina, Alexandra S; Ferris, Daniel P

    2018-06-01

    Studying human and animal locomotion on an uneven terrain can be beneficial to basic science and applied studies for clinical and robotic applications. Traditional biomechanical analysis of human locomotion has often been limited to laboratory environments with flat, smooth runways and treadmills. The authors modified a regular exercise treadmill by attaching wooden blocks to the treadmill belt to yield an uneven locomotion surface. To ensure that these treadmill modifications facilitated biomechanical measurements, the authors compared ground reaction force data collected while a subject ran on the modified instrumented treadmill with a smooth surface with data collected using a conventional instrumented treadmill. Comparisons showed only minor differences. These results suggest that adding an uneven surface to a modified treadmill is a viable option for studying human or animal locomotion on an uneven terrain. Other types of surfaces (eg, compliant blocks) could be affixed in a similar manner for studies on other types of locomotion surfaces.

  6. Vitamin D status and V[combining dot above]O2peak during a skate treadmill graded exercise test in competitive ice hockey players.

    PubMed

    Fitzgerald, John S; Peterson, Ben J; Warpeha, Joseph M; Wilson, Patrick B; Rhodes, Greg S; Ingraham, Stacy J

    2014-11-01

    Vitamin D status has been associated with cardiorespiratory fitness (CRF) in cross-sectional investigations in the general population. Data characterizing the association between 25-hydroxyvitamin D (25(OH)D) concentration and CRF in athletes are lacking. Junior and collegiate ice hockey players were recruited from the Minneapolis, MN (44.9° N), area during the off-season period (May 16-June 28). The purpose of this study was to examine the cross-sectional association between 25(OH)D concentration and CRF in a sample population of competitive ice hockey players. Circulating 25(OH)D level was assessed from a capillary blood sample analyzed using liquid chromatography-tandem mass spectrometry. V[Combining Dot Above]O2peak during a skate treadmill graded exercise test (GXT) was used to assess CRF. Data on both 25(OH)D concentration and V[Combining Dot Above]O2peak were available for 52 athletes. Insufficient 25(OH)D concentrations were found in 37.7% of the athletes (<32 ng·ml). Vitamin D status was not significantly associated with any physiological or physical parameter during the skate treadmill GXT.

  7. Relationship between Serum Levels of Metalloproteinase-8 and Tissue Inhibitor of Metalloproteinases-1 and Exercise Test Results in Postmenopausal Women.

    PubMed

    Mieczkowska, J; Rutkowska, E; Mosiewicz, J; Mosiewicz, B

    2016-01-01

    Physical activity as a part of the lifestyle is a significant factor influencing health condition. Exercises that require stamina are of particular importance. Oxygen metabolism, which is a significant part of all longer training processes, has an influence on cardiovascular and respiratory system functioning as well as all the processes taking part in maintenance of efficient homeostasis. Presentation of the correlation between exercise test results and MMP-8 (metalloproteinase-8) and TIMP-1 (tissue inhibitor of metalloproteinases-1) levels was attempted in this work. MMP-8 is a proteolytic enzyme taking part in progression of diseases related to process of ageing. 62 healthy women in postmenopausal period were qualified for the study (mean age: 54 ± 3.6). There was exercise test on the treadmill according to Bruce's protocol performed. MMP-8 and TIMP-1 serum levels were measured. There was statistically important correlation between increased level of MMP-8 and increased level of TIMP-1 with lower results of exercise test observed. The conducted study provides further biochemical arguments for prophylactic role of physical activity, which lowers the risk of noninfectious diseases, typical for middle adulthood, by influencing physical capacity.

  8. Pediatric Treadmill Burns: Assessing the effectiveness of prevention strategies.

    PubMed

    Goltsman, David; Li, Zhe; Connolly, Siobhan; Meyerowitz-Katz, Daniel; Allan, James; Maitz, Peter K M

    2016-11-01

    Legislative changes in 2008 in Australia mandated that all new treadmills display a warning sticker about the risk of friction burns in children. This was accompanied by a health promotion campaign advising of the risks of treadmills to children. Analyses of pediatric burns data identified all cases of treadmill burns occurring between 2005 and 2014. The incidence of treadmill burns, associations with age and gender, characteristics of the burns and the adequacy of first aid provided immediately after the burn was examined. There were 298 cases of treadmill burns over the 10-year period (3.5% of all pediatric burns). The incidence rose until the introduction of legislation and health promotion in 2008, and then declined over the remaining study period. The majority of treadmill burns in children were inflicted on the upper limbs (91%), and 93% involved the hands. Most burns were full thickness (62%, n=182) and 49% (n=148) required skin grafts. Approximately one-third of treadmill burns (35%, n=105) occurred while someone else was using the treadmill. In the vast majority of treadmill burn injuries (74%, n=223), there was either no first aid or inadequate first aid provided immediately after the injury. A significant number of treadmill burns occur in children, and these often result in serious injuries that are not treated with appropriate first aid. A reduction in the incidence of these burns was associated with the introduction of legislation and health promotion targeted at child safety around treadmills. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  9. Treadmill Training with Virtual Reality Improves Gait, Balance, and Muscle Strength in Children with Cerebral Palsy.

    PubMed

    Cho, Chunhee; Hwang, Wonjeong; Hwang, Sujin; Chung, Yijung

    2016-03-01

    Independent walking is an important goal of clinical and community-based rehabilitation for children with cerebral palsy (CP). Virtual reality-based rehabilitation therapy is effective in motivating children with CP. This study investigated the effects of treadmill training with virtual reality on gait, balance, muscular strength, and gross motor function in children with CP. Eighteen children with spastic CP were randomly divided into the virtual reality treadmill training (VRTT) group (9 subjects, mean age, 10.2 years) and treadmill training (TT) group (9 subjects, mean age, 9.4 years). The groups performed their respective programs as well as conventional physical therapy 3 times/week for 8 weeks. Muscle strength was assessed using a digitalized manual muscle tester. Gross motor function was assessed using the Gross Motor Functional Measure (GMFM). Balance was assessed using the Pediatric Balance Scale (PBS). Gait speed was assessed using the 10-meter walk test (10MWT), and gait endurance was assessed using the 2-minute walk test (2MWT). After training, gait and balance was improved in the VRTT compared to the TT group (P < 0.05). Muscular strength was significantly greater in the VRTT group than the TT group, except for right hamstring strength. The improvements in GMFM (standing) and PBS scores were greater in the VRTT group than the TT group (P < 0.05). Furthermore, the VRTT group showed the higher values of 10MWT and 2MWT compared to the TT group (P < 0.05). In conclusion, VRTT programs are effective for improving gait, balance, muscular strength, and gross motor function in children with CP.

  10. Reproducibility of gastrocnemius medialis muscle architecture during treadmill running.

    PubMed

    Giannakou, Erasmia; Aggeloussis, Nickos; Arampatzis, Adamantios

    2011-12-01

    The purpose of this study was to assess the reproducibility of fascicle length (FL) and pennation angle (PA) of gastrocnemius medialis (GM) muscle during running in vivo. Twelve male recreational long distance runners (mean±SD; age: 24±3 years, mass: 76±7kg) ran on a treadmill at a speed of 3.0m/s, wearing their own running shoes, for two different 10min sessions that were at least 2 days apart. For each test day 10 acceptable trials were recorded. Ankle and knee joint angle data were recorded by a Vicon 624 system with three cameras operating at 120Hz. B-mode ultrasonography was used to examine fascicle length and pennation angle of gastrocnemius medialis muscle. The ultrasound probe was firmly secured on the muscle belly using a lightweight foam fixation. The results indicated that fascicle length and pennation angle demonstrated high reproducibility values during treadmill running both for within and between test days. The root mean square scores between the repeated waveforms of pennation angle and fascicle length were small (∼2° and ∼3.5mm, respectively). However, ∼14 trials for pennation angle and ∼9 trials for fascicle length may be required in order to record accurate data from muscle architecture parameters. In conclusion, ultrasound measurements may be highly reproducible during dynamic movements such as treadmill running, provided that a proper fixation is used in order to assure the constant location and orientation of the ultrasound probe throughout the movement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model.

    PubMed

    Chen, C C; Chang, M W; Chang, C P; Chan, S C; Chang, W Y; Yang, C L; Lin, M T

    2014-10-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.

  12. Long term treadmill exercise performed to chronic social isolated rats regulate anxiety behavior without improving learning.

    PubMed

    Cevik, Ozge Selin; Sahin, Leyla; Tamer, Lulufer

    2018-05-01

    The type and duration of exposure to stress is an important influence on emotional and cognitive functions. Learning is the adaptive response of the central nervous system that occurs in hippocampus which affects from environmental factors like exercise. In this study, we investigated effects of long term treadmill exercise on learning and behavior on chronic social isolated rat. Male Wistar rats (n = 32) randomly assigned into four groups: control, exercised, social isolation, social isolation + exercise during postnatal days (PNDs) 21-34. Social isolation protocol was applied during 14 days by placing rat in a cage one by one. Rats were exercised during 5 days, days were chosen randomly for overall 4 weeks (20, 30, 50, 60 min respectively). Finally, learning performance was evaluated by Morris water maze (MWM). Anxiety behavior was evaluated by Open field and elevated plus maze test. At the end of learning and behavior tests, the rats were decapitated to collect blood samples via intracardiac puncture and corticosterone analysis was performed with ELISA method. Animal weights and water consumption did not change significantly but food intake differed among groups. Corticosterone level did not change between groups. The frequency of entering to the target quadrant increased in exercised rat significantly. However, there was no difference in learning and memory in rats. Treadmill exercise reduced anxiety behavior significantly. Taken together these findings may point out that, long term treadmill exercise did not change learning and memory but reduced anxiety level of rat without changing corticosterone level. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model

    PubMed Central

    Chen, C.C.; Chang, M.W.; Chang, C.P.; Chan, S.C.; Chang, W.Y.; Yang, C.L.; Lin, M.T.

    2014-01-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use. PMID:25140816

  14. Comparative study to assess whether high sensitive C-reactive protein and carotid intima media thickness improve the predictive accuracy of exercise stress testing for coronary artery disease in perimenopausal women with typical angina.

    PubMed

    Sinha, Dhurjati Prasad; Das, Munna; Banerjee, Amal Kumar; Ahmed, Shageer; Majumdar, Sonali

    2008-02-01

    Anginal symptoms are less predictive of abnormal coronary anatomy in women. The diagnostic accuracy of exercise treadmill test for obstructive coronary artery disease is less in young and middle aged women. High sensitive C-reactive protein has shown a strong and consistent relationship to the risk of incident cardiovascular events. Carotid intima media thickness is a non-invasive marker of atherosclerosis burden and also predicts prognosis in patients with coronary artery disease. We investigated whether incorporation of high sensitive C-reactive protein and carotid intima media thickness along with exercise stress results improved the predictive accuracy in perimenopausal non-diabetic women subset. Fifty perimenopausal non-diabetic patients (age 45 +/- 7 years) presenting with typical angina were subjected to treadmill test (Bruce protocol). Also carotid artery images at both sides of neck were acquired by B-mode ultrasound and carotid intima media thickness were measured. High sensitive C-reactive protein was measured. Of 50 patients, 22 had a positive exercise stress result. Coronary angiography done in all 50 patients revealed coronary artery disease in 10 patients with positive exercise stress result and in 4 patients with negative exercise stress result. Treadmill exercise stress test had a sensitivity of 71.4%, specificity of 66.7% and a negative predictive accuracy of 85.7% in this study group. High sensitive C-reactive protein in patients with documented coronary artery disease was not significantly different from those without coronary artery disease (4.8 +/- 0.9 mg/l versus 3.9 +/- 1.7 mg/l, p=NS). Also carotid intima media thickness was not significantly different between either of the groups with coronary artery disease positivity and negativity respectively (left: 1.25 +/- 0.55 versus 1.20 +/- 0.51 mm, p=NS; right:1.18 +/- 0.54 versus 1.15 +/- 0.41 mm, p=NS). High sensitive C-reactive protein and carotid intima media thickness were not helpful in further adding to the predictability of coronary artery disease in perimenopausal patients with typical angina as assessed by treadmill exercise stress test.

  15. Effects of treadmill training with the eyes closed on gait and balance ability of chronic stroke patients.

    PubMed

    Kim, Yong-Wook; Moon, Sung-Jun

    2015-09-01

    [Purpose] The purpose of this study was to compare the effect of treadmill walking with the eyes closed and open on the gait and balance abilities of chronic stroke patients. [Subjects and Methods] Thirty patients with chronic stroke participated in this study. The treadmill gait training for each group lasted 40 minutes, and sessions were held 3 times a week for 4 weeks. Gait ability was measured using a Biodex Gait Trainer Treadmill System. Balance ability was measured using a Biodex Balance System. [Results] After the treadmill training' the treadmill training with eyes closed (TEC) group showed significant improvements in walking distance' step length' coefficient of variation' and limit of stability (overall' lateral affected' forward lateral unaffected) compared to the treadmill training with eyes open (TEO) group. [Conclusion] The walking and balance abilities of the TEC participants showed more improvement after the treadmill walking sessions than those of the TEO participants. Therefore' treadmill walking with visual deprivation may be useful for the rehabilitation of patients with chronic stroke.

  16. Health-related physical fitness assessment in a community-based cancer rehabilitation setting.

    PubMed

    Kirkham, Amy A; Neil-Sztramko, Sarah E; Morgan, Joanne; Hodson, Sara; Weller, Sarah; McRae, Tasha; Campbell, Kristin L

    2015-09-01

    Assessment of physical fitness is important in order to set goals, appropriately prescribe exercise, and monitor change over time. This study aimed to determine the utility of a standardized physical fitness assessment for use in cancer-specific, community-based exercise programs. Tests anticipated to be feasible and suitable for a community setting and a wide range of ages and physical function were chosen to measure body composition, aerobic fitness, strength, flexibility, and balance. Cancer Exercise Trainers/Specialists at cancer-specific, community-based exercise programs assessed new clients (n = 60) at enrollment, designed individualized exercise programs, and then performed a re-assessment 3-6 months later (n = 34). Resting heart rate, blood pressure, body mass index, waist circumference, handgrip strength, chair stands, sit-and-reach, back scratch, single-leg standing, and timed up-and-go tests were considered suitable and feasible tests/measures, as they were performed in most (≥88 %) participants. The ability to capture change was also noted for resting blood pressure (-7/-5 mmHg, p = 0.02), chair stands (+4, p < 0.01), handgrip strength (+2 kg, p < 0.01), and sit-and-reach (+3 cm, p = 0.03). While the submaximal treadmill test captured a meaningful improvement in aerobic fitness (+62 s, p = 0.17), it was not completed in 33 % of participants. Change in mobility, using the timed up-and-go was nominal and was not performed in 27 %. Submaximal treadmill testing, handgrip dynamometry, chair stands, and sit-and-reach tests were feasible, suitable, and provided meaningful physical fitness information in a cancer-specific, community-based, exercise program setting. However, a shorter treadmill protocol and more sensitive balance and upper body flexibility tests should be investigated.

  17. The gradational step test for assessing cardiorespiratory capacity : an experimental evaluation of treadmill and step test procedures.

    DOT National Transportation Integrated Search

    1964-01-01

    "Physical fitness" - the potential capacity for making adequate functional adjustments to increased metabolic demands - is most meaningful and accurately assessed in the laboratory by making physiological measurements on the experimental subject whil...

  18. Brain or strain? Symptoms alone do not distinguish physiologic concussion from cervical/vestibular injury.

    PubMed

    Leddy, John J; Baker, John G; Merchant, Asim; Picano, John; Gaile, Daniel; Matuszak, Jason; Willer, Barry

    2015-05-01

    To compare symptoms in patients with physiologic postconcussion disorder (PCD) versus cervicogenic/vestibular PCD. We hypothesized that most symptoms would not be equivalent. In particular, we hypothesized that cognitive symptoms would be more often associated with physiologic PCD. Retrospective review of symptom reports from patients who completed a 22-item symptom questionnaire. University-based concussion clinic. Convenience sample of 128 patients who had symptoms after head injury for more than 3 weeks and who had provocative treadmill exercise testing. Subjects were classified as either physiologic PCD (abnormal treadmill performance and a normal cervical/vestibular physical examination) or cervicogenic/vestibular PCD (CGV, normal treadmill performance, and an abnormal cervical/vestibular physical examination). Self-reported symptoms. Univariate and multivariate methods, including t tests, tests of equivalence, a logistic regression model, k-nearest neighbor analysis, multidimensional scaling, and principle components analysis were used to see whether symptoms could distinguish PCD from CGV. None of the statistical methods used to analyze self-reported symptoms was able to adequately distinguish patients with PCD from patients with CGV. Symptoms after head injury, including cognitive symptoms, have traditionally been ascribed to brain injury, but they do not reliably discriminate between physiologic PCD and cervicogenic/vestibular PCD. Clinicians should consider specific testing of exercise tolerance and perform a physical examination of the cervical spine and the vestibular/ocular systems to determine the etiology of postconcussion symptoms. Symptoms after head injury, including cognitive symptoms, do not discriminate between concussion and cervical/vestibular injury.

  19. A cable-driven locomotor training system for restoration of gait in human SCI.

    PubMed

    Wu, Ming; Hornby, T George; Landry, Jill M; Roth, Heidi; Schmit, Brian D

    2011-02-01

    A novel cable-driven robotic locomotor training system was developed to provide compliant assistance/resistance forces to the legs during treadmill training in patients with incomplete spinal cord injury (SCI). Eleven subjects with incomplete SCI were recruited to participate in two experiments to test the feasibility of the robotic gait training system. Specifically, 10 subjects participated in one experimental session to test the characteristics of the robotic gait training system and one subject participated in repeated testing sessions over 8 weeks with the robotic device to test improvements in locomotor function. Limb kinematics were recorded in one experiment to evaluate the system characteristics of the cable-driven locomotor trainer and the overground gait speed and 6 min walking distance were evaluated at pre, 4 and 8 weeks post treadmill training of a single subject as well. The results indicated that the cable driven robotic gait training system improved the kinematic performance of the leg during treadmill walking and had no significant impact on the variability of lower leg trajectory, suggesting a high backdrivability of the cable system. In addition, results from a patient with incomplete SCI indicated that prolonged robotic gait training using the cable robot improved overground gait speed. Results from this study suggested that a cable driven robotic gait training system is effective in improving leg kinematic performance, yet allows variability of gait kinematics. Thus, it seems feasible to improve the locomotor function in human SCI using this cable driven robotic system, warranting testing with a larger group of patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Opposite effects of training in rats with stable and progressive pulmonary hypertension.

    PubMed

    Handoko, M L; de Man, F S; Happé, C M; Schalij, I; Musters, R J P; Westerhof, N; Postmus, P E; Paulus, W J; van der Laarse, W J; Vonk-Noordegraaf, A

    2009-07-07

    Exercise training in pulmonary arterial hypertension (PH) is a promising adjunct to medical treatment. However, it is still unclear whether training is beneficial for all PH patients. We hypothesized that right ventricular adaptation plays a pivotal role in the response to training. Two different dosages of monocrotaline were used in rats to model stable PH with preserved cardiac output and progressive PH developing right heart failure. Two weeks after injection, PH was confirmed by echocardiography, and treadmill training was initiated. Rats were trained for 4 weeks unless manifest right heart failure developed earlier. At the end of the study protocol, all rats were functionally assessed by endurance testing, echocardiography, and invasive pressure measurements. Lungs and hearts were further analyzed in quantitative histomorphologic analyses. In stable PH, exercise training was well tolerated and markedly increased exercise endurance (from 25+/-3.9 to 62+/-3.9 minutes; P<0.001). Moreover, capillary density increased significantly (from 1.21+/-0.12 to 1.51+/-0.07 capillaries per cardiomyocyte; P<0.05). However, in progressive PH, exercise training worsened survival (hazard ratio, 2.7; 95% confidence interval, 1.1 to 14.2) and increased pulmonary vascular remodeling. In addition, training induced widespread leukocyte infiltration into the right ventricle (from 135+/-14 to 276+/-18 leukocytes per 1 mm(2); P<0.001). In our rat model, exercise training was found to be beneficial in stable PH but detrimental in progressive PH. Future studies are necessary to address the clinical implications of our findings.

  1. Improving balance skills in patients who had stroke through virtual reality treadmill training.

    PubMed

    Yang, Saiwei; Hwang, Wei-Hsung; Tsai, Yi-Ching; Liu, Fu-Kang; Hsieh, Lin-Fen; Chern, Jen-Suh

    2011-12-01

    The aim of this study was to evaluate the effects of virtual reality (VR) treadmill training on the balance skills of patients who have had a stroke. A total of 14 patients with strokes were recruited and randomly assigned to receive VR treadmill or traditional treadmill training. The outcome measures that were included for the study were center of pressure (COP) sway excursion, COP maximum sway in anterior-posterior direction, COP maximum sway in medial-lateral direction, COP sway area, bilateral limb-loading symmetric index, the sway excursion values for the paretic foot (sway excursion/P), paretic limb stance time (stance time/P), number of steps of the paretic limb (number of steps/P), and contact area of the paretic foot (contact A/P) during quiet stance, sit-to-stand transfer, and level walking. There were no significant improvements in COP-related measures and symmetric index during the quiet stance, either in the VR treadmill or traditional treadmill training group (P > 0.05). However, the difference between groups after training in COP maximum sway in medial-lateral direction during the quiet stance was significant (P = 0.038). Traditional treadmill training failed to improve sit-to-stand performance, whereas VR treadmill training improved symmetric index (P = 0.028) and sway excursion (P = 0.046) significantly during sit-to-stand transfer. The changes of symmetric index between groups were markedly different (P = 0.045). Finally, both groups improved significantly in stance time/P, but only VR treadmill training increased contact A/P (P = 0.034) after training during level walking. The difference between groups during level walking was not significant. Neither traditional treadmill nor VR treadmill training had any effect on balance skill during quiet stance, but VR treadmill training improved balance skill in the medial-lateral direction better than traditional training did. VR treadmill training also improved balance skill during sit-to-stand transfers and the involvement of paretic limb in level walking more than the traditional one did.

  2. The effect of changing condition of walking speed on the knee angle of rats with osteoarthritis.

    PubMed

    Nam, Chan-Woo; Kim, Kyoung; Na, Sang-Su

    2017-08-01

    [Purpose] The purpose of this study was to investigate the positive effect of exercise on knee osteoarthritis in rats with osteoarthritis induced by applying effective walking speed when changing speed conditions during walking. [Subjects and Methods] The rats used in this study were male Sprague-Dawley rats weighing 300 g and 7 weeks old, and 20 rats were used. The Osteoarthritis (OA) rats model was induced by MIA (monoiodoacetate). The rats was randomly divided into experimental group (MIA injection group) and control group (normal cell line injection group). Treadmill exercise was provided two groups for 2 weeks, 4 days per week. The knee joint angle of the stance was divided into pre-test and post-test, and each group was subjected to paired sample test. Independent sample t-test was conducted to examine the difference between experimental group and control group. [Results] There were statistically significant changes in the control and experimental groups. The knee angle was changed from 99.70 ± 2.40 to 85.60 ± 2.67 in the control group. The knee angle was changed from 100.96 ± 1.36 to 87.71 ± 1.57 in the experimental group. [Conclusion] In conclusion, the angle of the knee gradually decreases. It is considered a characteristic of progressive osteoarthritis. The change of knee angle was less in the experimental group than in the control group. This means that the stiffness of the joints during the walking exercise was less progressed in the experimental group than in the control group.

  3. The effect of changing condition of walking speed on the knee angle of rats with osteoarthritis

    PubMed Central

    Nam, Chan-Woo; Kim, Kyoung; Na, Sang-Su

    2017-01-01

    [Purpose] The purpose of this study was to investigate the positive effect of exercise on knee osteoarthritis in rats with osteoarthritis induced by applying effective walking speed when changing speed conditions during walking. [Subjects and Methods] The rats used in this study were male Sprague-Dawley rats weighing 300 g and 7 weeks old, and 20 rats were used. The Osteoarthritis (OA) rats model was induced by MIA (monoiodoacetate). The rats was randomly divided into experimental group (MIA injection group) and control group (normal cell line injection group). Treadmill exercise was provided two groups for 2 weeks, 4 days per week. The knee joint angle of the stance was divided into pre-test and post-test, and each group was subjected to paired sample test. Independent sample t-test was conducted to examine the difference between experimental group and control group. [Results] There were statistically significant changes in the control and experimental groups. The knee angle was changed from 99.70 ± 2.40 to 85.60 ± 2.67 in the control group. The knee angle was changed from 100.96 ± 1.36 to 87.71 ± 1.57 in the experimental group. [Conclusion] In conclusion, the angle of the knee gradually decreases. It is considered a characteristic of progressive osteoarthritis. The change of knee angle was less in the experimental group than in the control group. This means that the stiffness of the joints during the walking exercise was less progressed in the experimental group than in the control group. PMID:28878468

  4. Effect of transcranial direct current stimulation combined with gait and mobility training on functionality in children with cerebral palsy: study protocol for a double-blind randomized controlled clinical trial

    PubMed Central

    2013-01-01

    Background The project proposes three innovative intervention techniques (treadmill training, mobility training with virtual reality and transcranial direct current stimulation that can be safely administered to children with cerebral palsy. The combination of transcranial stimulation and physical therapy resources will provide the training of a specific task with multiple rhythmic repetitions of the phases of the gait cycle, providing rich sensory stimuli with a modified excitability threshold of the primary motor cortex to enhance local synaptic efficacy and potentiate motor learning. Methods/design A prospective, double-blind, randomized, controlled, analytical, clinical trial will be carried out.Eligible participants will be children with cerebral palsy classified on levels I, II and III of the Gross Motor Function Classification System between four and ten years of age. The participants will be randomly allocated to four groups: 1) gait training on a treadmill with placebo transcranial stimulation; 2) gait training on a treadmill with active transcranial stimulation; 3) mobility training with virtual reality and placebo transcranial stimulation; 4) mobility training with virtual reality and active transcranial stimulation. Transcranial direct current stimulation will be applied with the anodal electrode positioned in the region of the dominant hemisphere over C3, corresponding to the primary motor cortex, and the cathode positioned in the supraorbital region contralateral to the anode. A 1 mA current will be applied for 20 minutes. Treadmill training and mobility training with virtual reality will be performed in 30-minute sessions five times a week for two weeks (total of 10 sessions). Evaluations will be performed on four occasions: one week prior to the intervention; one week following the intervention; one month after the end of the intervention;and 3 months after the end of the intervention. The evaluations will involve three-dimensional gait analysis, analysis of cortex excitability (motor threshold and motor evoked potential), Six-Minute Walk Test, Timed Up-and-Go Test, Pediatric Evaluation Disability Inventory, Gross Motor Function Measure, Berg Balance Scale, stabilometry, maximum respiratory pressure and an effort test. Discussion This paper offers a detailed description of a prospective, double-blind, randomized, controlled, analytical, clinical trial aimed at demonstrating the effect combining transcranial stimulation with treadmill and mobility training on functionality and primary cortex excitability in children with Cerebral Palsy classified on Gross Motor Function Classification System levels I, II and III. The results will be published and will contribute to evidence regarding the use of treadmill training on this population. Trial registration ReBEC RBR-9B5DH7 PMID:24112817

  5. Changes in Gait Symmetry After Training on a Treadmill with Biofeedback in Chronic Stroke Patients: A 6-Month Follow-Up from a Randomized Controlled Trial

    PubMed Central

    Drużbicki, Mariusz; Guzik, Agnieszka; Przysada, Grzegorz; Kwolek, Andrzej; Brzozowska-Magoń, Agnieszka; Sobolewski, Marek

    2016-01-01

    Background One of the most significant challenges for patients who survive a stroke is relearning basic motor tasks such as walking. The goal of this study was to evaluate whether training on a treadmill with visual biofeedback improves gait symmetry, as well as spatiotemporal and kinematic gait parameters, in stroke patients. Material/Methods Thirty patients in the chronic phase after a stroke were randomly allocated into groups with a rehabilitation program of treadmill training with or without visual biofeedback. The training program lasted 10 days. Spatiotemporal and kinematic gait parameters were evaluated. For all parameters analyzed, a symmetrical index was calculated. Follow-up studies were performed 6 months after completion of the program. Results The symmetrical index had significantly normalized in terms of the step length (p=0.006), stance phase time, and inter-limb ratio in the intervention group. After 6 months, the improvement in the symmetry of the step length had been maintained. In the control group, no statistically significant change was observed in any of the parameters tested. There was no significant difference between the intervention group and the control group on completion of the program or at 6 months following the completion of the program. Conclusions Training on a treadmill has a significant effect on the improvement of spatiotemporal parameters and symmetry of gait in patients with chronic stroke. In the group with the treadmill training using visual biofeedback, no significantly greater improvement was observed. PMID:27941712

  6. Daily Supine LBNP Treadmill Exercise Maintains Upright Exercise Capacity During 14 Days of Bed Rest

    NASA Technical Reports Server (NTRS)

    Ertl, Andy C.; Watenpaugh, D. E.; Hargens, Alan R.; Fortney, S. M.; Lee, S. M. C.; Ballard, R. E.; William, J. M.

    1996-01-01

    Exposure to microgravity or bed rest reduces upright exercise capacity. Exercise modes, durations, and intensities which will effectively and efficiently counteract such deconditioning are presently unresolved. We that daily supine treadmill interval training with lower body negative pressure (LBNP) would prevent reduction in upright exercise capacity during 14 days of 6 deg. head-down bed rest (BR). Eight healthy male subjects underwent two 14 day BR protocols separated by 3 months. In a crossover design, subjects either remained at strict BR or performed 40 min of daily exercise consisting of supine walking and running at intensities varying from 40-80% of pre-BR upright peak oxygen uptake (VO2). LBNP during supine exercise was used to provide 1.0 to 1.2 times body weight of footward force. An incremental upright treadmill test to measure submaximal and peak exercise responses was given pre- and post-BR. In the non-exercise condition, peak VO2 and time to exhaustion were reduced 16 +/- 4% and 10 +/- 1% (p less than 0.05), respectively, from pre-BR. With LBNP exercise these variables were not significantly different (NS) from pre-BR. During submaximal treadmill speeds after BR, heart rate was higher (11 +/- 11 bpm, p less than 0.05) and respiratory exchange ratio was elevated (p less than 0.05) in the no exercise condition. Both were maintained at pre-BR levels in the LBNP exercise condition (NS from pre-BR). Since this supine treadmill interval training with addition of LBNP maintained upright exercise responses and capacity during BR, this countermeasure may also be effective during space flight.

  7. 42 CFR 84.303 - General testing conditions and requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Closed... quantitative evaluations and human subjects on a treadmill to provide qualitative evaluations. Information on...

  8. 42 CFR 84.303 - General testing conditions and requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Closed... quantitative evaluations and human subjects on a treadmill to provide qualitative evaluations. Information on...

  9. 42 CFR 84.303 - General testing conditions and requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Closed... quantitative evaluations and human subjects on a treadmill to provide qualitative evaluations. Information on...

  10. Effects of furosemide on hemorheologic alterations induced by incremental treadmill exercise in thoroughbreds.

    PubMed

    Weiss, D J; Geor, R J; Burger, K

    1996-06-01

    To determine whether furosemide treatment altered the blood flow properties and serum and RBC electrolyte concentrations of Thoroughbreds during submaximal treadmill exercise. Thoroughbreds were subjected to submaximal treadmill exercise with and without treatment with furosemide (1 mg/kg of body weight, IV). 5 healthy Throughbreds that had raced within the past year and had no history of exercise-induced pulmonary hemorrhage. Venous blood samples were obtained before exercise, at treadmill speeds of 9 and 13 m/s, and 10 minutes after exercise, and hemorheologic and electrolyte test results were determined. Hemorheologic changes 60 minutes after furosemide administration included increased PCV, plasma total protein concentration, whole blood viscosity, mean RBC volume, and RBC potassium concentration, and decreased serum potassium concentration, serum chloride concentration, and RBC chloride concentration. Furosemide treatment attenuated the exercise-associated changes in RBC size, serum sodium concentration, serum potassium concentration, RBC potassium and chloride concentrations, and RBC density; exacerbated exercise-associated increases in whole blood viscosity; and had no effect on RBC filterability. The hemorheologic effects of furosemide probably occurred secondary to total body and transmembrane fluid and electrolyte fluxes and would not improve blood flow properties. The beneficial effects of furosemide treatment in reducing the severity of bleeding in horses with exercise-induced pulmonary hemorrhage cannot be explained by improved blood flow properties.

  11. The influence of water depth on kinematic and spatiotemporal gait parameters during aquatic treadmill walking.

    PubMed

    Jung, Taeyou; Kim, Yumi; Lim, Hyosok; Vrongistinos, Konstantinos

    2018-01-16

    The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant's self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values < 0.05). The participants walked with increased stride length and decreased cadence during neck level as compared to waist and chest level. They also showed increased ankle ROM and decreased hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.

  12. Effects of Speed and Visual-Target Distance on Toe Trajectory During the Swing Phase of Treadmill Walking

    NASA Technical Reports Server (NTRS)

    Miller, Christopher A.; Feiveson, Al; Bloomberg, Jacob J.

    2007-01-01

    Toe trajectory during swing phase is a precise motor control task that can provide insights into the sensorimotor control of the legs. The purpose of this study was to determine changes in vertical toe trajectory during treadmill walking due to changes in walking speed and target distance. For each trial, subjects walked on a treadmill at one of five speeds while performing a dynamic visual acuity task at either a far or near target distance (five speeds two targets distances = ten trials). Toe clearance decreased with increasing speed, and the vertical toe peak just before heel strike increased with increasing speed, regardless of target distance. The vertical toe peak just after toe-off was lower during near-target visual acuity tasks than during far-target tasks, but was not affected by speed. The ankle of the swing leg appeared to be the main joint angle that significantly affected all three toe trajectory events. The foot angle of the swing leg significantly affected toe clearance and the toe peak just before heel strike. These results will be used to enhance the analysis of lower limb kinematics during the sensorimotor treadmill testing, where differing speeds and/or visual target distances may be used.

  13. Effects of virtual reality training on mobility in individuals with Parkinson's disease.

    PubMed

    Melo, G; Kleiner, A F R; Lopes, J; Zen, G Z D; Marson, N; Santos, T; Dumont, A; Galli, M; Oliveira, C

    2018-06-19

    The aim of the present study was to evaluate the effects of gait training with virtual reality (VR) on mobility in patients with Parkinson's disease (PD). Thirty-seven individuals with PD were allocated to three groups (control = 12, VR = 12 and treadmill = 13) submitted to 12 twenty-minute training sessions. Evaluations involved the Timed Up and Go (TUG) test before the intervention, after one session, after all 12 sessions and 30 days after the end of the intervention. The groups submitted to VR and treadmill training took less time to execute the TUG test than the control group. Individuals with PD submitted to VR and treadmill gait training presented mobility improvements in comparison to traditional physiotherapeutic training. Copyright © 2018. Published by Elsevier B.V.

  14. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats

    PubMed Central

    Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee

    2015-01-01

    Purpose: Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Methods: Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. Results: A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Conclusions: Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function. PMID:25833478

  15. Trunk motion visual feedback during walking improves dynamic balance in older adults: Assessor blinded randomized controlled trial.

    PubMed

    Anson, Eric; Ma, Lei; Meetam, Tippawan; Thompson, Elizabeth; Rathore, Roshita; Dean, Victoria; Jeka, John

    2018-05-01

    Virtual reality and augmented feedback have become more prevalent as training methods to improve balance. Few reports exist on the benefits of providing trunk motion visual feedback (VFB) during treadmill walking, and most of those reports only describe within session changes. To determine whether trunk motion VFB treadmill walking would improve over-ground balance for older adults with self-reported balance problems. 40 adults (75.8 years (SD 6.5)) with self-reported balance difficulties or a history of falling were randomized to a control or experimental group. Everyone walked on a treadmill at a comfortable speed 3×/week for 4 weeks in 2 min bouts separated by a seated rest. The control group was instructed to look at a stationary bulls-eye target while the experimental group also saw a moving cursor superimposed on the stationary bulls-eye that represented VFB of their walking trunk motion. The experimental group was instructed to keep the cursor in the center of the bulls-eye. Somatosensory (monofilaments and joint position testing) and vestibular function (canal specific clinical head impulses) was evaluated prior to intervention. Balance and mobility were tested before and after the intervention using Berg Balance Test, BESTest, mini-BESTest, and Six Minute Walk. There were no significant differences between groups before the intervention. The experimental group significantly improved on the BESTest (p = 0.031) and the mini-BEST (p = 0.019). The control group did not improve significantly on any measure. Individuals with more profound sensory impairments had a larger improvement on dynamic balance subtests of the BESTest. Older adults with self-reported balance problems improve their dynamic balance after training using trunk motion VFB treadmill walking. Individuals with worse sensory function may benefit more from trunk motion VFB during walking than individuals with intact sensory function. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Analysis of physical exercises and exercise protocols for space transportation system operation

    NASA Technical Reports Server (NTRS)

    Coleman, A. E.

    1982-01-01

    A quantitative evaluation of the Thornton-Whitmore treadmill was made so that informed management decisions regarding the role of this treadmill in operational flight crew exercise programs could be made. Specific tasks to be completed were: The Thornton-Whitmore passive treadmill as an exercise device at one-g was evaluated. Hardware, harness and restraint systems for use with the Thornton-Whitmore treadmill in the laboratory and in Shuttle flights were established. The quantitative and qualitative performance of human subjects on the Thorton-Whitmore treadmill with forces in excess of one-g, was evaluated. The performance of human subjects on the Thornton-Whitmore treadmill in weightlessness (onboard Shuttle flights) was also determined.

  17. The effect of anti-gravity treadmill training for prosthetic rehabilitation of a case with below-knee amputation.

    PubMed

    Mikami, Yukio; Fukuhara, Kouki; Kawae, Toshihiro; Kimura, Hiroaki; Ochi, Mitsuo

    2015-12-01

    The aim of this case study was to verify the efficacy and safety of anti-gravity treadmill training for prosthetic rehabilitation following below-knee amputation. The patient underwent left below-knee amputation as a result of diabetic foot gangrene. Since his physical strength and vitality had declined during the perioperative period, anti-gravity treadmill training was introduced for his outpatient prosthetic rehabilitation. Stable prosthetic gait exercise could be carried out under guidance on the anti-gravity treadmill, quickly resulting in improved gait. Furthermore, the patient's self-efficacy and exercise tolerance were elevated after the period of anti-gravity treadmill training. At the final evaluation following 6 weeks of rehabilitation with the anti-gravity treadmill, he had acquired prosthetic gait with the assistance of a T-cane. The anti-gravity treadmill was found to be a useful instrument for prosthetic rehabilitation following below-knee amputation. Anti-gravity treadmill training has the potential to support the prosthetic rehabilitation of below-knee amputees, especially for patients whose physical strength and vitality are decreased. © The International Society for Prosthetics and Orthotics 2014.

  18. Exercise performance in patients with peripheral arterial disease who have different types of exertional leg pain.

    PubMed

    Gardner, Andrew W; Montgomery, Polly S; Afaq, Azhar

    2007-07-01

    This study compared the exercise performance of patients with peripheral arterial disease (PAD) who have different types of exertional leg pain. Patients with PAD were classified into one of four groups according to the San Diego Claudication Questionnaire: intermittent claudication (n = 406), atypical exertional leg pain causing patients to stop (n = 125), atypical exertional leg pain in which patients were able to continue walking (n = 81), and leg pain on exertion and rest (n = 103). Patients were assessed on the primary outcome measures of ankle-brachial index (ABI), treadmill exercise measures, and ischemic window. All patients experienced leg pain consistent with intermittent claudication during a standardized treadmill test. The mean (+/- SD) initial claudication distance (ICD) was similar (P = .642) among patients with intermittent claudication (168 +/- 160 meters), atypical exertional leg pain causing patients to stop (157 +/- 130 meters), atypical exertional leg pain in which patients were able to continue walking (180 +/- 149 meters), and leg pain on exertion and rest (151 +/- 136 meters). The absolute claudication distance (ACD) was similar (P = .648) in the four respective groups (382 +/- 232, 378 +/- 237, 400 +/- 245, and 369 +/- 236 meters). Similarly, the ischemic window, expressed as the area under the curve (AUC) after treadmill exercise, was similar (P = .863) in these groups (189 +/- 137, 208 +/- 183, 193 +/- 143, and 199 +/- 119 AUC). PAD patients with different types of exertional leg pain, all limited by intermittent claudication during a standardized treadmill test, were remarkably similar in ICD, ACD, and ischemic window. Thus, the presence of ambulatory symptoms should be of primary clinical concern in evaluating PAD patients regardless of whether they are consistent with classic intermittent claudication.

  19. Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.

    PubMed

    Wang, Xiao-Qin; Wang, Gong-Wu

    2016-03-15

    Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A Dual Track Treadmill in a Virtual Reality Environment as a Countermeasure for Neurovestibular Adaptations in Microgravity

    NASA Technical Reports Server (NTRS)

    DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.

    2004-01-01

    While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to giant and postural instabilities when returning to a gravity environment and may create serious problems in future mission to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running a treadmill can help to read just the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality, VR, displays.

  1. A Dual Track Treadmill in a Virtual Reality Environment as a Countermeasure for Neurovestibular Adaptations in Microgravity

    NASA Technical Reports Server (NTRS)

    DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.

    2004-01-01

    While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to gait and postural instabilities when returning to a gravity environment and may create serious problems in future missions to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running, a treadmill can help to readjust the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality,

  2. Effects of Physical Activity and Ginkgo Biloba on Cognitive Function and Oxidative Stress Modulation in Ischemic Rats.

    PubMed

    Vaghef, Ladan; Bafandeh Gharamaleki, Hassan

    2017-09-01

    Either exercise or Ginkgo biloba is reported to improve cognitive functioning. The aim of this study is to compare the protective effects of forced exercise and Ginkgo biloba on oxidative stress as well as memory impairments induced by transient cerebral ischemia. Adult male Wistar rats were treated with treadmill running or Ginkgo biloba extract for 2 weeks before cerebral ischemia. Memory was assessed using a Morris water maze (MWM) task. At the end of the behavioral testing, oxidative stress biomarkers were evaluated in the hippocampus tissue. As expected, the cerebral ischemia induced memory impairment in the MWM task, and oxidative stress in the hippocampus. These effects were significantly prevented by treadmill running. Indeed, it ameliorated oxidative stress and memory deficits induced by ischemia. In contrast, Ginkgo biloba was not as effective as exercise in preventing ischemia-induced memory impairments. The results confirmed the neuroprotective effects of treadmill running on hippocampus-dependent memory.

  3. Treadmill training improves overground walking economy in Parkinson's disease: a randomized, controlled pilot study.

    PubMed

    Fernández-Del-Olmo, Miguel Angel; Sanchez, Jose Andres; Bello, Olalla; Lopez-Alonso, Virginia; Márquez, Gonzalo; Morenilla, Luis; Castro, Xabier; Giraldez, Manolo; Santos-García, Diego

    2014-01-01

    Gait disturbances are one of the principal and most incapacitating symptoms of Parkinson's disease (PD). In addition, walking economy is impaired in PD patients and could contribute to excess fatigue in this population. An important number of studies have shown that treadmill training can improve kinematic parameters in PD patients. However, the effects of treadmill and overground walking on the walking economy remain unknown. The goal of this study was to explore the walking economy changes in response to a treadmill and an overground training program, as well as the differences in the walking economy during treadmill and overground walking. Twenty-two mild PD patients were randomly assigned to a treadmill or overground training group. The training program consisted of 5 weeks (3 sessions/week). We evaluated the energy expenditure of overground walking, before and after each of the training programs. The energy expenditure of treadmill walking (before the program) was also evaluated. The treadmill, but not the overground training program, lead to an improvement in the walking economy (the rate of oxygen consumed per distance during overground walking at a preferred speed) in PD patients. In addition, walking on a treadmill required more energy expenditure compared with overground walking at the same speed. This study provides evidence that in mild PD patients, treadmill training is more beneficial compared with that of walking overground, leading to a greater improvement in the walking economy. This finding is of clinical importance for the therapeutic administration of exercise in PD.

  4. Exercise Equipment Usability Assessment for a Deep Space Concept Vehicle

    NASA Technical Reports Server (NTRS)

    Rhodes, Brooke M.; Reynolds, David W.

    2015-01-01

    With international aspirations to send astronauts to deep space, the world is now faced with the complex problem of keeping astronauts healthy in unexplored hostile environments for durations of time never before attempted by humans. The great physical demands imparted by space exploration compound the problem of astronaut health, as the astronauts must not only be healthy, but physically fit upon destination arrival in order to perform the scientific tasks required of them. Additionally, future deep space exploration necessitates the development of environments conducive to long-duration habitation that would supplement propulsive vehicles. Space Launch System (SLS) core stage barrel sections present large volumes of robust structure that can be recycled and used for long duration habitation. This assessment will focus on one such conceptual craft, referred to as the SLS Derived Habitat (SLS-DH). Marshall Space Flight Center's (MSFC) Advanced Concepts Office (ACO) has formulated a high-level layout of this SLS-DH with parameters such as floor number and orientation, floor designations, grid dimensions, wall placement, etc. Yet to be determined, however, is the layout of the exercise area. Currently the SLS-DH features three floors laid out longitudinally, leaving 2m of height between the floor and ceilings. This short distance between levels introduces challenges for proper placement of exercise equipment such as treadmills and stationary bicycles, as the dynamic envelope for the 95th percentile male astronauts is greater than 2m. This study aims to assess the optimal equipment layout and sizing for the exercise area of this habitat. Figure 1 illustrates the layout of the DSH concept demonstrator located at MSFC. The exercise area is located on the lower level, seen here as the front half of the level occupied by a crew member. This small volume does not allow for numerous or bulky exercise machines, so the conceptual equipment has been limited to a treadmill and stationary bicycle. With the most current treadmill aboard the International Space Station (ISS), the Combined Operational Load-Bearing External Resistance Treadmill (COLBERT), being located in an International Standard Payload Rack (ISPR), the bottom of the conceptual treadmill features a height of 38in. Making the treadmill flush with the floor would be impossible in this rack configuration, as the distance from the outer wall of the spacecraft to the bottom floor would be too shallow. From preliminary sizing, the 38in required for the bottom of the treadmill combined with a 78in operational envelope for a 95th percentile may not be accommodated in the exercise area in a vertical orientation. Figure 2 demonstrates the volume required (in maroon) for an ISPR-bound treadmill in the concept demonstrator. Early indications as seen in this figure indicate that the crew members would contact the ceiling in such an arrangement. An assessment will be conducted to evaluate various orientations of exercise equipment in the concept demonstrator. Orientations to be tested include putting the bottom of the treadmill on the wall, having the treadmill at an angle in the floor both horizontally and vertically, and having a shorter (non-rack bound) treadmill in a vertical orientation on the floor. This assessment will yield findings regarding sizing of the area and how well participants feel they could exercise in such an environment. Due to the restrictions of assessing a microgravity vehicle in a normal-gravity environment, simulations in MSFC's Virtual Environments Lab (VEL) may be necessary. Final deliverables will include recommendations regarding the location and size of possible exercise equipment aboard the SLS-Derived DSH.

  5. Effects of moderate treadmill exercise and fluoxetine on behavioural and cognitive deficits, hypothalamic-pituitary-adrenal axis dysfunction and alternations in hippocampal BDNF and mRNA expression of apoptosis - related proteins in a rat model of post-traumatic stress disorder.

    PubMed

    Shafia, Sakineh; Vafaei, Abbas Ali; Samaei, Seyed Afshin; Bandegi, Ahmad Reza; Rafiei, Alireza; Valadan, Reza; Hosseini-Khah, Zahra; Mohammadkhani, Raziyeh; Rashidy-Pour, Ali

    2017-03-01

    Post-traumatic stress disorder (PTSD) is a condition that develops after an individual has experienced a major trauma. Currently, selective serotonin reuptake inhibitors (SSRIs) like fluoxetine are the first-line choice in PTSD drug treatment but their moderate response rates and side effects indicate an urgent need for the development of new treatment. Physical activity is known to improve symptoms of certain neuropsychiatric disorders. The present study investigated the effects of moderate treadmill exercise, the antidepressant fluoxetine and the combined treatment on behavioural deficits, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. We also examined alternations in hippocampal brain-derived neurotrophic factor (BDNF) and mRNA expression of apoptosis - related proteins in a rat model of PTSD: the single prolonged stress (SPS) model. Rats were exposed to SPS (restraint for 2h, forced swimming for 20min and ether anaesthesia) and were then kept undisturbed for 14days. After that, SPS rats were subjected to chronic treatment with fluoxetine (10mg/kg/day, for 4weeks), moderate treadmill running (4weeks, 5day per week) and the combined treatment (fluoxetine plus treadmill exercise), followed by behavioural, biochemical and apoptosis markers assessments. SPS rats exhibited increased anxiety levels in the elevated plus maze and light/dark box, impaired fear conditioning and extinction in inhibitory avoidance (IA) task, impaired spatial memory in a recognition location memory task and enhanced negative feedback on the HPA axis following a dexamethasone suppression test. SPS rats also showed reduced hippocampal BDNF and enhanced apoptosis. Moderate treadmill exercise, fluoxetine and the combined treatment alleviated the SPS-induced alterations in terms of anxiety levels, HPA axis inhibition, IA conditioning and extinction, hippocampal BDNF and apoptosis markers. Furthermore, the combined treatment was more effective than fluoxetine alone, but in most tests, the effects of the combined treatment were similar to those of exercise alone, suggesting that exercise is the main factor in the beneficial effects of the combined therapy in PTSD patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Running speed increases plantar load more than per cent body weight on an AlterG® treadmill.

    PubMed

    Thomson, Athol; Einarsson, Einar; Witvrouw, Erik; Whiteley, Rod

    2017-02-01

    AlterG® treadmills allow for running at different speeds as well as at reduced bodyweight (BW), and are used during rehabilitation to reduce the impact load. The aim of this study was to quantify plantar loads borne by the athlete during rehabilitation. Twenty trained male participants ran on the AlterG® treadmill in 36 conditions: all combinations of indicated BW (50-100%) paired with different walking and running speeds (range 6-16 km · hr -1 ) in a random order. In-shoe maximum plantar force (Fmax) was recorded using the Pedar-X system. Fmax was lowest at the 6 km · hr -1 at 50% indicated BW condition at 1.02 ± 0.21BW and peaked at 2.31 ± 0.22BW for the 16 km · hr -1 at 100% BW condition. Greater increases in Fmax were seen when increasing running speed while holding per cent BW constant than the reverse (0.74BW-0.91BW increase compared to 0.19-0.31BW). A table is presented with each of the 36 combinations of BW and running speed to allow a more objective progression of plantar loading during rehabilitation. Increasing running speed rather than increasing indicated per cent BW was shown to have the strongest effect on the magnitude of Fmax across the ranges of speeds and indicated per cent BWs examined.

  7. Body weight supported treadmill training versus traditional training in patients dependent on walking assistance after stroke: a randomized controlled trial.

    PubMed

    Høyer, Ellen; Jahnsen, Reidun; Stanghelle, Johan Kvalvik; Strand, Liv Inger

    2012-01-01

    Treadmill training with body weight support (TTBWS) for relearning walking ability after brain damage is an approach under current investigation. Efficiency of this method beyond traditional training is lacking evidence, especially in patients needing walking assistance after stroke. The objective of this study was to investigate change in walking and transfer abilities, comparing TTBWS with traditional walking training. A single-blinded, randomized controlled trial was conducted. Sixty patients referred for multi-disciplinary primary rehabilitation were assigned into one of two intervention groups, one received 30 sessions of TTBWS plus traditional training, the other traditional training alone. Daily training was 1 hr. Outcome measures were Functional Ambulation Categories (FAC), Walking, Functional Independence Measure (FIM); shorter transfer and stairs, 10 m and 6-min walk tests. Substantial improvements in walking and transfer were shown within both groups after 5 and 11 weeks of intervention. Overall no statistical significant differences were found between the groups, but 12 of 17 physical measures tended to show improvements in favour of the treadmill approach. Both training strategies provided significant improvements in the tested activities, suggesting that similar outcomes can be obtained in the two modalities by systematic, intensive and goal directed training.

  8. Evaluation of quality of commercial pedometers.

    PubMed

    Tudor-Locke, Catrine; Sisson, Susan B; Lee, Sarah M; Craig, Cora L; Plotnikoff, Ronald C; Bauman, Adrian

    2006-01-01

    The purpose of this study was to: 1) evaluate the quality of promotional pedometers widely distributed through cereal boxes at the time of the 2004 Canada on the Move campaign; and 2) establish a battery of testing protocols to provide direction for future consensus on industry standards for pedometer quality. Fifteen Kellogg's* Special K* Step Counters (K pedometers or K; manufactured for Kellogg Canada by Sasco, Inc.) and 9 Yamax pedometers (Yamax; Yamax Corporation, Tokyo, Japan) were tested with 9 participants accordingly: 1) 20 Step Test; 2) treadmill at 80m x min(-1) (3 miles x hr(-1)) and motor vehicle controlled conditions; and 3) 24-hour free-living conditions against an accelerometer criterion. Fifty-three percent of the K pedometers passed the 20 Step Test compared to 100% of the Yamax. Mean absolute percent error for the K during treadmill walking was 24.2+/-33.9 vs. 3.9+/-6.6% for the Yamax. The K detected 5.7-fold more non-steps compared to the Yamax during the motor vehicle condition. In the free-living condition, mean absolute percent error relative to the ActiGraph was 44.9+/-34.5% for the K vs. 19.5+/-21.2% for the Yamax. K pedometers are unacceptably inaccurate. We suggest that research grade pedometers: 1) be manufactured to a sensitivity threshold of 0.35 Gs; 2) detect +/-1 step error on the 20 Step Test (i.e., within 5%); 3) detect +/-1% error most of the time during treadmill walking at 80m x min(-1) (3 miles x hr(-1)); as well as, 4) detect steps/day within 10% of the ActiGraph at least 60% of the time, or be within 10% of the Yamax under free-living conditions.

  9. Impaired chronotropic response to physical activities in heart failure patients.

    PubMed

    Shen, Hong; Zhao, Jianrong; Zhou, Xiaohong; Li, Jingbo; Wan, Qing; Huang, Jing; Li, Hui; Wu, Liqun; Yang, Shungang; Wang, Ping

    2017-05-25

    While exercise-based cardiac rehabilitation has a beneficial effect on heart failure hospitalization and mortality, it is limited by the presence of chronotropic incompetence (CI) in some patients. This study explored the feasibility of using wearable devices to assess impaired chronotropic response in heart failure patients. Forty patients with heart failure (left ventricular ejection fraction, LVEF: 44.6 ± 5.8; age: 54.4 ± 11.7) received ECG Holter and accelerometer to monitor heart rate (HR) and physical activities during symptom-limited treadmill exercise testing, 6-min hall walk (6MHW), and 24-h daily living. CI was defined as maximal HR during peak exercise testing failing to reach 70% of age-predicted maximal HR (APMHR, 220 - age). The correlation between HR and physical activities in Holter-accelerometer recording was analyzed. Of 40 enrolled patients, 26 were able to perform treadmill exercise testing. Based on exercise test reports, 13 (50%) of 26 patients did not achieve at least 70% of APMHR (CI patients). CI patients achieved a lower % APMHR (62.0 ± 6.3%) than non-CI patients who achieved 72.0 ± 1.2% of APMHR (P < 0.0001). When Holter-accelerometer recording was used to assess chronotropic response, the percent APMHR achieved during 6MHW and physical activities was significantly lower in CI patients than in non-CI patients. CI patients had a significantly shorter 6MHW distance and less physical activity intensity than non-CI patients. The study found impaired chronotropic response in 50% of heart failure patients who took treadmill exercise testing. The wearable Holter-accelerometer recording could help to identify impaired chronotropic response to physical activities in heart failure patients. ClinicalTrials.gov ID NCT02358603 . Registered 16 May 2014.

  10. Influence of running stride frequency in heart rate variability analysis during treadmill exercise testing.

    PubMed

    Bailón, Raquel; Garatachea, Nuria; de la Iglesia, Ignacio; Casajús, Jose Antonio; Laguna, Pablo

    2013-07-01

    The analysis and interpretation of heart rate variability (HRV) during exercise is challenging not only because of the nonstationary nature of exercise, the time-varying mean heart rate, and the fact that respiratory frequency exceeds 0.4 Hz, but there are also other factors, such as the component centered at the pedaling frequency observed in maximal cycling tests, which may confuse the interpretation of HRV analysis. The objectives of this study are to test the hypothesis that a component centered at the running stride frequency (SF) appears in the HRV of subjects during maximal treadmill exercise testing, and to study its influence in the interpretation of the low-frequency (LF) and high-frequency (HF) components of HRV during exercise. The HRV of 23 subjects during maximal treadmill exercise testing is analyzed. The instantaneous power of different HRV components is computed from the smoothed pseudo-Wigner-Ville distribution of the modulating signal assumed to carry information from the autonomic nervous system, which is estimated based on the time-varying integral pulse frequency modulation model. Besides the LF and HF components, the appearance is revealed of a component centered at the running SF as well as its aliases. The power associated with the SF component and its aliases represents 22±7% (median±median absolute deviation) of the total HRV power in all the subjects. Normalized LF power decreases as the exercise intensity increases, while normalized HF power increases. The power associated with the SF does not change significantly with exercise intensity. Consideration of the running SF component and its aliases is very important in HRV analysis since stride frequency aliases may overlap with LF and HF components.

  11. The role of resistance and aerobic exercise training on insulin sensitivity measures in STZ-induced Type 1 diabetic rodents.

    PubMed

    Hall, Katharine E; McDonald, Matthew W; Grisé, Kenneth N; Campos, Oscar A; Noble, Earl G; Melling, C W James

    2013-10-01

    Individuals with Type 1 Diabetes Mellitus (T1DM) can develop insulin resistance. Regular exercise may improve insulin resistance partially through increased expression of skeletal muscle GLUT4 content. To examine if different exercise training modalities can alter glucose tolerance through changes in skeletal muscle GLUT4 content in T1DM rats. Fifty rats were divided into 5 groups; control, diabetic control, diabetic resistance exercised, and diabetic high and low intensity treadmill exercised. Diabetes was induced using multiple low dose Streptozotocin (20 mg/kg/day) injections and blood glucose concentrations were maintained moderately hyperglycemic through subcutaneous insulin pellets. Resistance trained rats climbed a ladder with incremental loads, while treadmill trained rats ran on a treadmill at 27 or 15 m/min, respectively, all for 6 weeks. At weeks 3 and 6, area under the curve measurements following an intravenous glucose tolerance test (AUC-IVGTT) in all diabetic groups were higher than control rats (p<0.05). At 6 weeks, all exercise groups had significantly lower AUC-IVGTT values than diabetic control animals (p<0.05). Treadmill trained rats had the lowest insulin dose requirement of the T1DM rats and the greatest reduction in insulin dosage was evident in high intensity treadmill exercise. Concomitant with improvements in glucose handling improvements, tissue-specific elevations in GLUT4 content were demonstrated in both red and white portions of vastus lateralis and gastrocnemius muscles, suggesting that glucose handling capacity was altered in the skeletal muscle of exercised T1DM rats. These results suggest that, while all exercise modalities can improve glucose tolerance, each mode leads to differential improvements in insulin requirements and protein content alterations. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. V̇O2 and Muscle Deoxygenation Kinetics During Skating: Comparison Between Slide Board and Treadmill Skating.

    PubMed

    Piucco, Tatiane; Soares, Rogério; Diefenthaeler, Fernando; Millet, Guillaume; Murias, Juan

    2017-11-15

    this study aimed to compare the oxygen uptake (V̇O 2 ) kinetics during skating on a treadmill and skating on a slide board and discuss potential mechanisms that might control the V̇O 2 kinetics responses during skating. breath-by-breath pulmonary V̇O 2 and near-infrared spectroscopy-derived muscle deoxygenation ([HHbMb]) were monitored continuously in 12 well-trained young long track speed skaters. On-transient V̇O 2 and [HHbMb] responses to skating on a treadmill and skating on a slide board at 80% of the estimated gas exchange threshold were fitted as mono-exponential function. The signals were time aligned, and the individual [HHbMb]-to-V̇O 2 ratio was calculated as the average value from 20-120 s after exercise starts. the time constants for the adjustment of phase II V̇O 2 (τ V̇O 2 ) and [HHbMb] (τ[HHbMb]) were low and similar between slide board vs. treadmill skating (18.1 ± 3.4 vs. 18.9 ± 3.6 for τ V̇O 2 and 12.6 ± 4.0 vs. 12.4 ± 4.0 s for τ[HHbMb]). The [HHbMb]/V̇O 2 ratio was not different from 1.0 (p > 0.05) in both conditions. the fast V̇O 2 kinetics during skating suggest that chronical adaptation to skating might overcome any possible restriction in leg blood flow during low intensity exercise. The [HHbMb]/V̇O 2 ratio values also suggest a good matching of O 2 delivery to O 2 utilization in trained speed skaters. The similar τ V̇O 2 and τ [HHbMb] values between slide board and treadmill further reinforce the validity of using a slide board for skating testing and training purposes.

  13. Task-specific ankle robotics gait training after stroke: a randomized pilot study.

    PubMed

    Forrester, Larry W; Roy, Anindo; Hafer-Macko, Charlene; Krebs, Hermano I; Macko, Richard F

    2016-06-02

    An unsettled question in the use of robotics for post-stroke gait rehabilitation is whether task-specific locomotor training is more effective than targeting individual joint impairments to improve walking function. The paretic ankle is implicated in gait instability and fall risk, but is difficult to therapeutically isolate and refractory to recovery. We hypothesize that in chronic stroke, treadmill-integrated ankle robotics training is more effective to improve gait function than robotics focused on paretic ankle impairments. Participants with chronic hemiparetic gait were randomized to either six weeks of treadmill-integrated ankle robotics (n = 14) or dose-matched seated ankle robotics (n = 12) videogame training. Selected gait measures were collected at baseline, post-training, and six-week retention. Friedman, and Wilcoxon Sign Rank and Fisher's exact tests evaluated within and between group differences across time, respectively. Six weeks post-training, treadmill robotics proved more effective than seated robotics to increase walking velocity, paretic single support, paretic push-off impulse, and active dorsiflexion range of motion. Treadmill robotics durably improved gait dorsiflexion swing angle leading 6/7 initially requiring ankle braces to self-discarded them, while their unassisted paretic heel-first contacts increased from 44 % to 99.6 %, versus no change in assistive device usage (0/9) following seated robotics. Treadmill-integrated, but not seated ankle robotics training, durably improves gait biomechanics, reversing foot drop, restoring walking propulsion, and establishing safer foot landing in chronic stroke that may reduce reliance on assistive devices. These findings support a task-specific approach integrating adaptive ankle robotics with locomotor training to optimize mobility recovery. NCT01337960. https://clinicaltrials.gov/ct2/show/NCT01337960?term=NCT01337960&rank=1.

  14. Challenging gait leads to stronger lower-limb kinematic synergies: The effects of walking within a more narrow pathway.

    PubMed

    Rosenblatt, N J; Latash, M L; Hurt, C P; Grabiner, M D

    2015-07-23

    Previous studies using the uncontrolled manifold (UCM) analysis demonstrated that during the swing phase of gait, multi-joint kinematic synergies act to stabilize, i.e., minimize the variance of, the mediolateral trajectory of the swinging limb. Importantly, these synergies are strongest during midswing, suggesting that during gait, individuals may employ strategies to avoid collisions between the limbs at this instance. The purpose of the current study was to test this hypothesis by quantifying whether the synergy index (ΔV) during the middle period of the swing phase of treadmill walking was affected when the width of the treadmill belt was narrowed, a task expected to increase the risk of limb collisions. Eleven healthy young adults walked on a dual-belt treadmill under two conditions: (1) dual-belt - both belts of the treadmill moved at 1.2 m/s (total width: 62.5 cm) and the subject walked with one foot on each of the moving belts and (2) single-belt - one treadmill belt moved at 1.2m/s while the other belt remained stationary and the subject walked with both feet on the moving belt (total width: 30.5 cm). During both conditions, motion capture recorded the positions of 22 passive reflective markers from which UCM analysis was used to quantify ΔV in the joint configuration space. Results indicate that ΔV during the middle-third of swing phase significantly increased by 20% during single-belt walking (p<.01). We interpret this as evidence that the stronger synergies at midswing are needed to stabilize the limb trajectory in order to reduce the risk of between-limb collisions during a period when the lower limbs are nearest each other in the frontal plane. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. CI2 for creating and comparing confidence-intervals for time-series bivariate plots.

    PubMed

    Mullineaux, David R

    2017-02-01

    Currently no method exists for calculating and comparing the confidence-intervals (CI) for the time-series of a bivariate plot. The study's aim was to develop 'CI2' as a method to calculate the CI on time-series bivariate plots, and to identify if the CI between two bivariate time-series overlap. The test data were the knee and ankle angles from 10 healthy participants running on a motorised standard-treadmill and non-motorised curved-treadmill. For a recommended 10+ trials, CI2 involved calculating 95% confidence-ellipses at each time-point, then taking as the CI the points on the ellipses that were perpendicular to the direction vector between the means of two adjacent time-points. Consecutive pairs of CI created convex quadrilaterals, and any overlap of these quadrilaterals at the same time or ±1 frame as a time-lag calculated using cross-correlations, indicated where the two time-series differed. CI2 showed no group differences between left and right legs on both treadmills, but the same legs between treadmills for all participants showed differences of less knee extension on the curved-treadmill before heel-strike. To improve and standardise the use of CI2 it is recommended to remove outlier time-series, use 95% confidence-ellipses, and scale the ellipse by the fixed Chi-square value as opposed to the sample-size dependent F-value. For practical use, and to aid in standardisation or future development of CI2, Matlab code is provided. CI2 provides an effective method to quantify the CI of bivariate plots, and to explore the differences in CI between two bivariate time-series. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dynamic Visual Acuity While Walking in Normals and Labyrinthine-Deficient Patients

    NASA Technical Reports Server (NTRS)

    Hillman, Edward J.; Bloomberg, Jacob J.; McDonald, P. Vernon; Cohen, Helen S.

    1996-01-01

    We describe a new, objective, easily administered test of dynamic visual acuity (DVA) while walking. Ten normal subjects and five patients with histories of severe bilateral vestibular dysfunctions participated in this study. Subjects viewed a visual display of numerals of different font sizes presented on a laptop computer while they stood still and while they walked on a motorized treadmill. Treadmill speed was adapted for 4 of 5 patients. Subjects were asked to identify the numerals as they appeared on the computer screen. Test results were reasonably repeatable in normals. The percent correct responses at each font size dropped slightly while walking in normals and dropped significantly more in patients. Patients performed significantly worse than normals while standing still and while walking. This task may be useful for evaluating post-flight astronauts and vestibularly impaired patients.

  17. Complexity, fractal dynamics and determinism in treadmill ambulation: Implications for clinical biomechanists.

    PubMed

    Hollman, John H; Watkins, Molly K; Imhoff, Angela C; Braun, Carly E; Akervik, Kristen A; Ness, Debra K

    2016-08-01

    Reduced inter-stride complexity during ambulation may represent a pathologic state. Evidence is emerging that treadmill training for rehabilitative purposes may constrain the locomotor system and alter gait dynamics in a way that mimics pathological states. The purpose of this study was to examine the dynamical system components of gait complexity, fractal dynamics and determinism during treadmill ambulation. Twenty healthy participants aged 23.8 (1.2) years walked at preferred walking speeds for 6min on a motorized treadmill and overground while wearing APDM 6 Opal inertial monitors. Stride times, stride lengths and peak sagittal plane trunk velocities were measured. Mean values and estimates of complexity, fractal dynamics and determinism were calculated for each parameter. Data were compared between overground and treadmill walking conditions. Mean values for each gait parameter were statistically equivalent between overground and treadmill ambulation (P>0.05). Through nonlinear analyses, however, we found that complexity in stride time signals (P<0.001), and long-range correlations in stride time and stride length signals (P=0.005 and P=0.024, respectively), were reduced on the treadmill. Treadmill ambulation induces more predictable inter-stride time dynamics and constrains fluctuations in stride times and stride lengths, which may alter feedback from destabilizing perturbations normally experienced by the locomotor control system during overground ambulation. Treadmill ambulation, therefore, may provide less opportunity for experiencing the adaptability necessary to successfully ambulate overground. Investigators and clinicians should be aware that treadmill ambulation will alter dynamic gait characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Robot-assisted walking with the Lokomat: the influence of different levels of guidance force on thorax and pelvis kinematics.

    PubMed

    Swinnen, Eva; Baeyens, Jean-Pierre; Knaepen, Kristel; Michielsen, Marc; Clijsen, Ron; Beckwée, David; Kerckhofs, Eric

    2015-03-01

    Little attention has been devoted to the thorax and pelvis movements during gait. The aim of this study is to compare differences in the thorax and pelvis kinematics during unassisted walking on a treadmill and during walking with robot assistance (Lokomat-system (Hocoma, Volketswil, Switzerland)). 18 healthy persons walked on a treadmill with and without the Lokomat system at 2kmph. Three different conditions of guidance force (30%, 60% and 100%) were used during robot-assisted treadmill walking (30% body weight support). The maximal movement amplitudes of the thorax and pelvis were measured (Polhemus Liberty™ (Polhemus, Colchester, Vermont, USA) (240/16)). A repeated measurement ANOVA was conducted. Robot-assisted treadmill walking with different levels of guidance force showed significantly smaller maximal movement amplitudes for thorax and pelvis, compared to treadmill walking. Only the antero-posterior tilting of the pelvis was significantly increased during robot-assisted treadmill walking compared to treadmill walking. No significant changes of kinematic parameters were found between the different levels of guidance force. With regard to the thorax and pelvis movements, robot-assisted treadmill walking is significantly different compared to treadmill walking. It can be concluded that when using robot assistance, the thorax is stimulated in a different way than during walking without robot assistance, influencing the balance training during gait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Increasing physician activity with treadmill desks.

    PubMed

    Thompson, Warren G; Koepp, Gabriel A; Levine, James A

    2014-01-01

    Prolonged sitting has been shown to increase mortality and obesity. We sought to determine whether physicians would use a treadmill desk, increase their daily physical activity and lose weight. 20 overweight and obese physicians aged 25 to 70 with Body Mass Index > 25. Participants used a treadmill desk, a triaxial accelerometer, and received exercise counseling in a randomized, cross-over trial over 24 weeks. Group 1 received exercise counseling, accelerometer feedback, and a treadmill desk for 12 weeks and then accelerometer only for 12 weeks. Group 2 received an accelerometer without feedback for 12 weeks followed by exercise counseling, accelerometer feedback, and the treadmill desk for 12 weeks. Daily physical activity increased while using the treadmill desk compared to not using the desk by 197 kcal per day (p=0.003). The difference in weight during the two 12 week periods was 1.85 kg (p=0.03). Percent body fat was 1.9% lower while using the treadmill desk (p=0.02). There were no differences in metabolic or well-being measures. This study suggests that physicians will use a treadmill desk, that it does increase their activity, and that it may help with weight loss. Further studies are warranted.

  20. Physiological Profiles of High School Female Cross Country Runners.

    ERIC Educational Resources Information Center

    Butts, Nancy Kay

    1982-01-01

    Percentage of body fat, ratings of perceived exertion, and maximal oxygen consumption were obtained during a continuous running treadmill test on 127 high school female cross country runners. The relatively low relationships between the variables tested and running performance indicated that other factors may be more important determinants of…

  1. Validation of a Maximal Incremental Skating Test Performed on a Slide Board: Comparison With Treadmill Skating.

    PubMed

    Piucco, Tatiane; Diefenthaeler, Fernando; Soares, Rogério; Murias, Juan M; Millet, Guillaume Y

    2017-11-01

    To investigate the criterion validity of a maximal incremental skating test performed on a slide board (SB). Twelve subelite speed skaters performed a maximal skating test on a treadmill and on a SB. Gas exchange threshold (GET), respiratory compensation point (RCP), and maximal variables were determined. Oxygen uptake ([Formula: see text]) (31.0 ± 3.2 and 31.4 ± 4.1 mL·min -1 ·kg -1 ), percentage of maximal [Formula: see text] ([Formula: see text]) (66.3 ± 4 and 67.7 ± 7.1%), HR (153 ± 14 and 150 ±12 bpm), and ventilation (59.8 ± 11.8 and 57.0 ± 10.7 L·min -1 ) at GET, and [Formula: see text] (42.5 ± 4.4 and 42.9 ± 4.8 mL·min -1 ·kg -1 ), percentage of [Formula: see text] (91.1 ± 3.3 and 92.4 ± 2.1%), heart rate (HR) (178 ± 9 and 178 ± 6 bpm), and ventilation (96.5 ± 19.2 and 92.1 ± 12.7 L·min -1 ) at RCP were not different between skating on a treadmill and on a SB. [Formula: see text] (46.7 ± 4.4 vs 46.4 ±6.1 mL·min -1 ·kg -1 ) and maximal HR (195 ± 6 vs 196 ± 10 bpm) were not significantly different and correlated (r = .80 and r = .87, respectively; P < .05) between the treadmill and SB. [Formula: see text] at GET, RCP, and [Formula: see text] obtained on a SB were correlated (r > .8) with athletes' best times on 1500 m. The incremental skating test on a SB was capable to distinguish maximal ([Formula: see text] and HR) and submaximal ([Formula: see text], % [Formula: see text], HR, and ventilation) parameters known to determine endurance performance. Therefore, the SB test can be considered as a specific and practical alternative to evaluate speed skaters.

  2. The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control.

    PubMed

    O'Leary, Kevin C; Pontifex, Matthew B; Scudder, Mark R; Brown, Michael L; Hillman, Charles H

    2011-08-01

    The effects of single bouts of aerobic exercise, exergaming, and action videogame play on event-related brain potentials (ERPs) and task performance indices of cognitive control were investigated using a modified flanker task that manipulated demands of attentional inhibition. Participants completed four counterbalanced sessions of 20 min of activity intervention (i.e., seated rest, seated videogame play, and treadmill-based and exergame-based aerobic exercise at 60% HR(max)) followed by cognitive testing once heart rate (HR) returned to within 10% of pre-activity levels. Results indicated decreased RT interference following treadmill exercise relative to seated rest and videogame play. P3 amplitude was increased following treadmill exercise relative to rest, suggesting an increased allocation of attentional resources during stimulus engagement. The seated videogame and exergame conditions did not differ from any other condition. The findings indicate that single bouts of treadmill exercise may improve cognitive control through an increase in the allocation of attentional resources and greater interference control during cognitively demanding tasks. However, similar benefits may not be derived following short bouts of aerobic exergaming or seated videogame participation. Although exergames may increase physical activity participation, they may not exert the same benefits to brain and cognition as more traditional physical activity behaviors. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Treadmill training with partial body-weight support after anterior cruciate ligament reconstruction: a randomized controlled trial.

    PubMed

    Luo, Yuan; Shen, Weizhong; Jiang, Zhong; Sha, Jiao

    2016-12-01

    [Purpose] To compare the effects of treadmill training with partial body weight support (TTPBWS) and conventional physical therapy (PT) on subjects with anterior cruciate ligament reconstructions. [Subjects and Methods] A total of 40 subjects were randomly allocated to either a treatment group or a control group. Subjects received either treadmill training with partial body weight support (treatment group) or conventional physical therapy (control group). The circumferences of the lower extremities, Holden classifications, 10-meter walking times and the International Knee Documentation Committee (IKDC) scores were compared at 12 and 24 weeks post-operation. The knee joint stability was tested at 24 weeks post-operation using a KT-1000. [Results] Significant differences were found between the two groups at the 12 weeks post-operation. For most of the measures, there was no significant difference between the groups at 24 weeks post-operation. Interestingly, for most of the measures, there was no significant difference between their values in the treatment group at 12 weeks and their values in the control group at 24 weeks post-operation. [Conclusion] The function of a subject's lower extremities can be improved and the improvement was clearly accelerated by the intervention of treadmill training with partial body weight support, without compromising the stability of the knee joints in a given follow-up period.

  4. The Dangers of Estimating V˙O2max Using Linear, Nonexercise Prediction Models.

    PubMed

    Nevill, Alan M; Cooke, Carlton B

    2017-05-01

    This study aimed to compare the accuracy and goodness of fit of two competing models (linear vs allometric) when estimating V˙O2max (mL·kg·min) using nonexercise prediction models. The two competing models were fitted to the V˙O2max (mL·kg·min) data taken from two previously published studies. Study 1 (the Allied Dunbar National Fitness Survey) recruited 1732 randomly selected healthy participants, 16 yr and older, from 30 English parliamentary constituencies. Estimates of V˙O2max were obtained using a progressive incremental test on a motorized treadmill. In study 2, maximal oxygen uptake was measured directly during a fatigue limited treadmill test in older men (n = 152) and women (n = 146) 55 to 86 yr old. In both studies, the quality of fit associated with estimating V˙O2max (mL·kg·min) was superior using allometric rather than linear (additive) models based on all criteria (R, maximum log-likelihood, and Akaike information criteria). Results suggest that linear models will systematically overestimate V˙O2max for participants in their 20s and underestimate V˙O2max for participants in their 60s and older. The residuals saved from the linear models were neither normally distributed nor independent of the predicted values nor age. This will probably explain the absence of a key quadratic age term in the linear models, crucially identified using allometric models. Not only does the curvilinear age decline within an exponential function follow a more realistic age decline (the right-hand side of a bell-shaped curve), but the allometric models identified either a stature-to-body mass ratio (study 1) or a fat-free mass-to-body mass ratio (study 2), both associated with leanness when estimating V˙O2max. Adopting allometric models will provide more accurate predictions of V˙O2max (mL·kg·min) using plausible, biologically sound, and interpretable models.

  5. Influence of Systematic Increases in Treadmill Walking Speed on Gait Kinematics After Stroke

    PubMed Central

    Tyrell, Christine M.; Roos, Margaret A.; Rudolph, Katherine S.

    2011-01-01

    Background Fast treadmill training improves walking speed to a greater extent than training at a self-selected speed after stroke. It is unclear whether fast treadmill walking facilitates a more normal gait pattern after stroke, as has been suggested for treadmill training at self-selected speeds. Given the massed stepping practice that occurs during treadmill training, it is important for therapists to understand how the treadmill speed selected influences the gait pattern that is practiced on the treadmill. Objective The purpose of this study was to characterize the effect of systematic increases in treadmill speed on common gait deviations observed after stroke. Design A repeated-measures design was used. Methods Twenty patients with stroke walked on a treadmill at their self-selected walking speed, their fastest speed, and 2 speeds in between. Using a motion capture system, spatiotemporal gait parameters and kinematic gait compensations were measured. Results Significant improvements in paretic- and nonparetic-limb step length and in single- and double-limb support were found. Asymmetry of these measures improved only for step length. Significant improvements in paretic hip extension, trailing limb position, and knee flexion during swing also were found as speed increased. No increases in circumduction or hip hiking were found with increasing speed. Limitations Caution should be used when generalizing these results to survivors of a stroke with a self-selected walking speed of less than 0.4 m/s. This study did not address changes with speed during overground walking. Conclusions Faster treadmill walking facilitates a more normal walking pattern after stroke, without concomitant increases in common gait compensations, such as circumduction. The improvements in gait deviations were observed with small increases in walking speed. PMID:21252308

  6. 500-m and 1000-m moderate walks equally assess cardiorespiratory fitness in male outpatients with cardiovascular diseases.

    PubMed

    Mazzoni, Gianni; Chiaranda, Giorgio; Myers, Jonathan; Sassone, Biagio; Pasanisi, Giovanni; Mandini, Simona; Volpato, Stefano; Conconi, Francesco; Grazzi, Giovanni

    2017-09-29

    The walking speed maintained during a moderate 1-km treadmill walk (1k-TWT) has been demonstrated to be a valid tool for estimating peak oxygen uptake (VO2peak), and to be inversely related to long-term survival and hospitalization in outpatients with cardiovascular disease (CVD). We aimed to examine whether 500-m and 1-k moderate treadmill-walking tests equally estimate VO2peak in male outpatients with CVD. 142 clinically stable male outpatients with CVD, aged 34-92 years, referred to an exercise-based secondary prevention program, performed a moderate and perceptually-regulated (11-13/20 on the Borg scale) 1k- TWT. Age, height, weight, time to walk 500-m and the entire 1000-m, and the corresponding heart rates were entered into validated equations to estimate VO2peak. VO2peak estimated from the 500-m test was not different from that estimated from the 1k test (25.2±5.1 vs 25.1±5.2 mL/kg/min). The correlation coefficient between the two was 0.98. The slope and the intercept of the relationship between the 500-m and 1k tests were not different from the line of identity. Bland-Altman analysis demonstrated that 96% of the data points were within two standard deviations (from -1.9 to 1.7 mL/kg/min). The 500-m treadmill-walking test is a reliable method for estimating VO2peak in stable male outpatients with CVD. A shorter version of the test, 500-m, provides similar information as that from the original 1k test, but is more time efficient. These findings have practical implications in the context of transitioning patients from clinically based and supervised programs to fitness facilities or self-guided exercise programs.

  7. SM, TVIS Chassis Assembly, Treadmill Belt Assembly, Top

    NASA Image and Video Library

    2002-01-01

    jsc2002e38738 (2002) --- Top view of the Treadmill Belt Assembly on the Treadmill Vibration Isolation System (TVIS) Chassis Assembly for use in the International Space Station (ISS) Service Module (SM).

  8. A user-driven treadmill control scheme for simulating overground locomotion.

    PubMed

    Kim, Jonghyun; Stanley, Christopher J; Curatalo, Lindsey A; Park, Hyung-Soon

    2012-01-01

    Treadmill-based locomotor training should simulate overground walking as closely as possible for optimal skill transfer. The constant speed of a standard treadmill encourages automaticity rather than engagement and fails to simulate the variable speeds encountered during real-world walking. To address this limitation, this paper proposes a user-driven treadmill velocity control scheme that allows the user to experience natural fluctuations in walking velocity with minimal unwanted inertial force due to acceleration/deceleration of the treadmill belt. A smart estimation limiter in the scheme effectively attenuates the inertial force during velocity changes. The proposed scheme requires measurement of pelvic and swing foot motions, and is developed for a treadmill of typical belt length (1.5 m). The proposed scheme is quantitatively evaluated here with four healthy subjects by comparing it with the most advanced control scheme identified in the literature.

  9. Comparison of Gait During Treadmill Exercise While Supine in Lower Body Negative Pressure (LBNP), Supine with Bungee Resistance and Upright in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James

    1994-01-01

    The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity.

  10. [The clinical economic analysis of the methods of ischemic heart disease diagnostics].

    PubMed

    Kalashnikov, V Iu; Mitriagina, S N; Syrkin, A L; Poltavskaia, M G; Sorokina, E G

    2007-01-01

    The clinical economical analysis was applied to assess the application of different techniques of ischemic heart disease diagnostics - the electro-cardiographic monitoring, the treadmill-testing, the stress-echo cardiographic with dobutamine, the single-photon computerized axial tomography with load, the multi-spiral computerized axial tomography with coronary arteries staining in patients with different initial probability of disease occurrence. In all groups, the best value of "cost-effectiveness" had the treadmill-test. The patients with low risk needed 17.4 rubles to precise the probability of ischemic heart disease occurrence at 1%. In the group with medium and high risk this indicator was 9.4 and 24.7 rubles correspondingly. It is concluded that to precise the probability of ischemic heart disease occurrence after tredmil-test in the patients with high probability it is appropriate to use the single-photon computerized axial tomography with load and in the case of patients with low probability the multi-spiral computerized axial tomography with coronary arteries staining.

  11. Validity of wearable activity monitors for tracking steps and estimating energy expenditure during a graded maximal treadmill test.

    PubMed

    Kendall, Bradley; Bellovary, Bryanne; Gothe, Neha P

    2018-06-04

    The purpose of this study was to assess the accuracy of energy expenditure (EE) estimation and step tracking abilities of six activity monitors (AMs) in relation to indirect calorimetry and hand counted steps and assess the accuracy of the AMs between high and low fit individuals in order to assess the impact of exercise intensity. Fifty participants wore the Basis watch, Fitbit Flex, Polar FT7, Jawbone, Omron pedometer, and Actigraph during a maximal graded treadmill test. Correlations, intra-class correlations, and t-tests determined accuracy and agreement between AMs and criterions. The results indicate that the Omron, Fitbit, and Actigraph were accurate for measuring steps while the Basis and Jawbone significantly underestimated steps. All AMs were significantly correlated with indirect calorimetry, however, no devices showed agreement (p < .05). When comparing low and high fit groups, correlations between AMs and indirect calorimetry improved for the low fit group, suggesting AMs may be better at measuring EE at lower intensity exercise.

  12. Effects of treadmill running on rat gastrocnemius function following botulinum toxin A injection.

    PubMed

    Tsai, Sen-Wei; Chen, Chun-Jung; Chen, Hsiao-Lin; Chen, Chuan-Mu; Chang, Yin-Yi

    2012-02-01

    Exercise can improve and maintain neural or muscular function, but the effects of exercise in physiological adaptation to paralysis caused by botulinum toxin A has not been well studied. Twenty-four rats were randomly assigned into control and treadmill groups. The rats assigned to the treadmill group were trained on a treadmill three times per week with the running speed set at 15 m/min. The duration of training was 20 min/session. Muscle strength, nerve conduction study and sciatic functional index (SFI) were used for functional analysis. Treadmill training improved the SFI at 2, 3, and 4 weeks (p = 0.01, 0.004, and 0.01, respectively). The maximal contraction force of the gastrocnemius muscle in the treadmill group was greater than in the control group (p < 0.05). The percentage of activated fibers was higher in the treadmill botox group than the percentage for the control botox group, which was demonstrated by differences in amplitude and area of compound muscle action potential (CMAP) under the curve between the groups (p < 0.05). After BoNT-A injection, treadmill improved the physiological properties of muscle contraction strength, CMAP amplitude, and the recovery of SFI. Copyright © 2011 Orthopaedic Research Society.

  13. The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial.

    PubMed

    Straudi, Sofia; Manfredini, Fabio; Lamberti, Nicola; Zamboni, Paolo; Bernardi, Francesco; Marchetti, Giovanna; Pinton, Paolo; Bonora, Massimo; Secchiero, Paola; Tisato, Veronica; Volpato, Stefano; Basaglia, Nino

    2017-02-27

    Gait and mobility impairments affect the quality of life (QoL) of patients with progressive multiple sclerosis (MS). Robot-assisted gait training (RAGT) is an effective rehabilitative treatment but evidence of its superiority compared to other options is lacking. Furthermore, the response to rehabilitation is multidimensional, person-specific and possibly involves functional reorganization processes. The aims of this study are: (1) to test the effectiveness on gait speed, mobility, balance, fatigue and QoL of RAGT compared to conventional therapy (CT) in progressive MS and (2) to explore changes of clinical and circulating biomarkers of neural plasticity. This will be a parallel-group, randomized controlled trial design with the assessor blinded to the group allocation of participants. Ninety-eight (49 per arm) progressive MS patients (EDSS scale 6-7) will be randomly assigned to receive twelve 2-h training sessions over a 4-week period (three sessions/week) of either: (1) RAGT intervention on a robotic-driven gait orthosis (Lokomat, Hocoma, Switzerland). The training parameters (torque of the knee and hip drives, treadmill speed, body weight support) are set during the first session and progressively adjusted during training progression or (2) individual conventional physiotherapy focusing on over-ground walking training performed with the habitual walking device. The same assessors will perform outcome measurements at four time points: baseline (before the first intervention session); intermediate (after six training sessions); end of treatment (after the completion of 12 sessions); and follow-up (after 3 months from the end of the training program). The primary outcome is gait speed, assessed by the Timed 25-Foot Walk Test. We will also assess walking endurance, balance, depression, fatigue and QoL as well as instrumental laboratory markers (muscle metabolism, cerebral venous hemodynamics, cortical activation) and circulating laboratory markers (rare circulating cell populations pro and anti-inflammatory cytokines/chemokines, growth factors, neurotrophic factors, coagulation factors, other plasma proteins suggested by transcriptomic analysis and metabolic parameters). The RAGT training is expected to improve mobility compared to the active control intervention in progressive MS. Unique to this study is the analysis of various potential markers of plasticity in relation with clinical outcomes. ClinicalTrials.gov, identifier: NCT02421731 . Registered on 19 January 2015 (retrospectively registered).

  14. The comparison of stepping responses following perturbations applied to pelvis during overground and treadmill walking.

    PubMed

    Zadravec, Matjaž; Olenšek, Andrej; Matjačić, Zlatko

    2017-08-09

    Treadmills are used frequently in rehabilitation enabling neurologically impaired subjects to train walking while being assisted by therapists. Numerous studies compared walking on treadmill and overground for unperturbed but not also perturbed conditions. The objective of this study was to compare stepping responses (step length, step width and step time) during overground and treadmill walking in a group of healthy subjects where balance assessment robots applied perturbing pushes to the subject's pelvis in sagittal and frontal planes. During walking in both balance assessment robots (overground and treadmill-based) with applied perturbations the stepping responses of a group of seven healthy subjects were assessed with a motion tracking camera. The results show high degree of similarity of stepping responses between overground and treadmill walking for all perturbation directions. Both devices reproduced similar experimental conditions with relatively small standard deviations in the unperturbed walking as well as in perturbed walking. Based on these results we may conclude that stepping responses following perturbations can be studied on an instrumented treadmill where ground reaction forces can be readily assessed which is not the case during perturbed overground walking.

  15. Cardiovascular rehabilitation soon after stroke using feedback-controlled robotics-assisted treadmill exercise: study protocol of a randomised controlled pilot trial.

    PubMed

    Stoller, Oliver; de Bruin, Eling D; Schuster-Amft, Corina; Schindelholz, Matthias; de Bie, Rob A; Hunt, Kenneth J

    2013-09-22

    After experiencing a stroke, most individuals also suffer from cardiac disease, are immobile and thus have low endurance for exercise. Aerobic capacity is seriously reduced in these individuals and does not reach reasonable levels after conventional rehabilitation programmes. Cardiovascular exercise is beneficial for improvement of aerobic capacity in mild to moderate stroke. However, less is known about its impact on aerobic capacity, motor recovery, and quality-of-life in severely impaired individuals. The aim of this pilot study is to explore the clinical efficacy and feasibility of cardiovascular exercise with regard to aerobic capacity, motor recovery, and quality-of-life using feedback-controlled robotics-assisted treadmill exercise in non-ambulatory individuals soon after experiencing a stroke. This will be a single-centred single blind, randomised control trial with a pre-post intervention design. Subjects will be recruited early after their first stroke (≤20 weeks) at a neurological rehabilitation clinic and will be randomly allocated to an inpatient cardiovascular exercise programme that uses feedback-controlled robotics-assisted treadmill exercise (experimental) or to conventional robotics-assisted treadmill exercise (control). Intervention duration depends on the duration of each subject's inpatient rehabilitation period. Aerobic capacity, as the primary outcome measure, will be assessed using feedback-controlled robotics-assisted treadmill-based cardiopulmonary exercise testing. Secondary outcome measures will include gait speed, walking endurance, standing function, and quality-of-life. Outcome assessment will be conducted at baseline, after each 4-week intervention period, and before clinical discharge. Ethical approval has been obtained. Whether cardiovascular exercise in non-ambulatory individuals early after stroke has an impact on aerobic capacity, motor recovery, and quality-of-life is not yet known. Feedback-controlled robotics-assisted treadmill exercise is a relatively recent intervention method and might be used to train and evaluate aerobic capacity in this population. The present pilot trial is expected to provide new insights into the implementation of early cardiovascular exercise for individuals with severe motor impairment. The findings of this study may guide future research to explore the effects of early cardiovascular activation after severe neurological events. This trial is registered with the Clinical Trials.gov Registry (NCT01679600).

  16. The effect of prolonged light intensity exercise in the heat on executive function.

    PubMed

    Parker, Sarah M; Erin, Jennifer R; Pryor, Riana R; Khorana, Priya; Suyama, Joe; Guyette, Frank X; Reis, Steven E; Hostler, David

    2013-09-01

    When people are involved in outdoor activities, it is important to be able to assess a situation and make rational decisions. The goal of this study is to determine the effects of 90 minutes of light-intensity exercise in a hot environment on executive functioning capabilities of healthy individuals. In this prospective laboratory study, 40 healthy male and female subjects 18 to 45 years of age performed treadmill exercise while wearing athletic clothing and a backpack in either a hot or temperate environment. Vital signs, core and skin temperature, and perceptual measures (thermal sensation, sweating, comfort, and perceived exertion) were measured before, during, and after the treadmill test. Cognitive function was measured before and after the treadmill test using the Wisconsin Card Sorting Test (WCST) and a Psychomotor Vigilance Test (PVT). Subjects in the hot condition reached a similar core temp of 38.2° ± 0.5°C vs 37.7° ± 0.3°C (P = .325) in the temperate group but had a higher heart rate (P < .001) and skin temperature (P < .001). Hot and normal temperature groups did not differ in their PVT performance. There were more correct responses (P < .001), fewer errors (P < .001), and more conceptual responses (P = .001) on the WCST after exertion in both the hot room and normal temperature room conditions. Perseverations and perseverative errors (P = .002) decreased in both groups after exertion. Conditions of mild heat stress coupled with modest rehydration and short hiking treks do not appear to negatively affect executive function or vigilance. Copyright © 2013 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  17. Feasibility of visual instrumented movement feedback therapy in individuals with motor incomplete spinal cord injury walking on a treadmill

    PubMed Central

    Schließmann, Daniel; Schuld, Christian; Schneiders, Matthias; Derlien, Steffen; Glöckner, Maria; Gladow, Till; Weidner, Norbert; Rupp, Rüdiger

    2014-01-01

    Background: Incomplete spinal cord injury (iSCI) leads to motor and sensory deficits. Even in ambulatory persons with good motor function an impaired proprioception may result in an insecure gait. Limited internal afferent feedback (FB) can be compensated by provision of external FB by therapists or technical systems. Progress in computational power of motion analysis systems allows for implementation of instrumented real-time FB. The aim of this study was to test if individuals with iSCI can normalize their gait kinematics during FB and more importantly maintain an improvement after therapy. Methods: Individuals with chronic iSCI had to complete 6 days (1 day per week) of treadmill-based FB training with a 2 weeks pause after 3 days of training. Each day consists of an initial gait analysis followed by 2 blocks with FB/no-FB. During FB the deviation of the mean knee angle during swing from a speed matched reference (norm distance, ND) is visualized as a number. The task consists of lowering the ND, which was updated after every stride. Prior to the tests in patients the in-house developed FB implementation was tested in healthy subjects with an artificial movement task. Results: Four of five study participants benefited from FB in the short and medium term. Decrease of mean ND was highest during the first 3 sessions (from 3.93 ± 1.54 to 2.18 ± 1.04). After the pause mean ND stayed in the same range than before. In the last 3 sessions the mean ND decreased slower (2.40 ± 1.18 to 2.20 ± 0.90). Direct influences of FB ranged from 60 to 15% of reduction in mean ND compared to initial gait analysis and from 20 to 1% compared to no-FB sessions. Conclusions: Instrumented kinematic real-time FB may serve as an effective adjunct to established gait therapies in normalizing the gait pattern after incomplete spinal cord injury. Further studies with larger patient groups need to prove long term learning and the successful transfer of newly acquired skills to activities of daily living. PMID:24987344

  18. Effects of Inclined Treadmill Walking on Pelvic Anterior Tilt Angle, Hamstring Muscle Length, and Trunk Muscle Endurance of Seated Workers with Flat-back Syndrome.

    PubMed

    Kim, Min-Hee; Yoo, Won-Gyu

    2014-06-01

    [Purpose] This study investigated the effects of inclined treadmill walking on pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance of seated workers with flat-back syndrome. [Subjects] Eight seated workers with flat-back syndrome who complained of low-back pain in the L3-5 region participated in this study. [Methods] The subjects performed a walking exercise on a 30° inclined treadmill. We measured the pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance before and after inclined treadmill walking. [Results] Anterior pelvic tilt angle and active knee extension angle significantly increased after inclined treadmill walking. Trunk extensor and flexor muscle endurance times were also significantly increased compared to the baseline. [Conclusion] Inclined treadmill walking may be an effective approach for the prevention or treatment of low-back pain in flat-back syndrome.

  19. Product-evaluation registry of Meriva®, a curcumin-phosphatidylcholine complex, for the complementary management of osteoarthritis.

    PubMed

    Belcaro, G; Cesarone, M R; Dugall, M; Pellegrini, L; Ledda, A; Grossi, M G; Togni, S; Appendino, G

    2010-06-01

    A proprietary complex of curcumin with soy phosphatidylcholine (Meriva®, Indena SpA) was evaluated in a registry study to define its efficacy in 50 patients with osteoarthritis (OA) at dosages corresponding to 200 mg curcumin per diem. OA signs/symptoms were evaluated by the WOMAC scores. Mobility was studied by walking performance (treadmill), and inflammatory status was assessed by measurements of C-reactive protein (CRP). After three months of treatment, the global WOMAC score decreased by 58% (P<0.05), walking distance in the treadmill test was prolonged from 76 m to 332 m (P<0.05), and CRP levels decreased from 168 +/- 18 to 11.3 +/-. 4.1 mg/L in the subpopulation with high CRP. In comparison, the control group experienced only a modest improvement in these parameters (2% in the WOMAC score, from 82 m to 129 m in the treadmill test, and from 175 +/- 12.3 to 112 +/- 22.2 mg/L in the CRP plasma concentration), while the treatment costs (use of anti-inflammatory drugs, treatment and hospitalization) were reduced significantly in the treatment group. These results show that Meriva® is clinically effective in the management and treatment of osteoarthritis and suggest that the increased stability and better absorption of curcumin induced by complexation with phospholipids have clinical relevance, setting the stage for larger and more prolonged studies.

  20. Preventive and therapeutic effect of treadmill running on chronic stress-induced memory deficit in rats.

    PubMed

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-04-01

    Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Techniques for determination of impact forces during walking and running in a zero-G environment

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael; Walton, Marlei; Bishop, Phillip; Squires, William

    1992-01-01

    One of the deleterious adaptations to the microgravity conditions of space flight is the loss of bone mineral content. This loss appears to be at least partially attributable to the minimal skeletal axial loading concomitant with microgravity. The purpose of this study was to develop and fabricate the instruments and hardware necessary to quantify the vertical impact forces (Fz) imparted to users of the space shuttle passive treadmill during human locomotion in a three-dimensional zero-gravity environment. The shuttle treadmill was instrumented using a Kistler forceplate to measure vertical impact forces. To verify that the instruments and hardware were functional, they were tested both in the one-G environment and aboard the KC-135 reduced gravity aircraft. The magnitude of the impact loads generated in one-G on the shuttle treadmill for walking at 0.9 m/sec and running at 1.6 and 2.2 m/sec were 1.1, 1.7, and 1.7 G, respectively, compared with loads of 0.95, 1.2, and 1.5 G in the zero-G environment.

  2. Effects of treadmill inclination on electromyographic activity and hind limb kinematics in healthy hounds at a walk.

    PubMed

    Lauer, Susanne K; Hillman, Robert B; Li, Li; Hosgood, Giselle L

    2009-05-01

    To evaluate the effect of treadmill incline on muscle activity and joint range of motion (ROM) in hind limbs of dogs. 8 purpose-bred healthy adult hounds. Activities of the hamstring (semimembranosus, semitendinosus, and biceps femoris muscles), gluteal (superficial, middle, and deep gluteal muscles), and quadriceps (femoris, vastus lateralis, vastus intermedius, and vastus medialis muscles) muscle groups and hip and stifle joint ROM were measured with surface electrogoniometric and myographic sensors in hounds walking on a treadmill at 0.54 m/s at inclines of 5%, 0%, and -5% in random order. Mean electromyographic activities and mean ROMs at each inclination were compared for swing and stance phases. Treadmill inclination did not affect duration of the stance and swing phases or the whole stride. When treadmill inclination was increased from -5% to 5%, hip joint ROM increased and the degree of stifle joint extension decreased significantly. In the beginning of the stance phase, activity of the hamstring muscle group was significantly increased when walking at a 5% incline versus a 5% decline. In the end of the stance phase, that activity was significantly increased when walking at a 5% incline versus at a 5% decline or on a flat surface. Activity of the gluteal and quadriceps muscle groups was not affected when treadmill inclination changed. Treadmill inclination affected joint kinematics only slightly. Walking on a treadmill at a 5% incline had more potential to strengthen the hamstring muscle group than walking on a treadmill with a flat or declined surface.

  3. The efficacy of treadmill training with and without projected visual context for improving walking ability and reducing fall incidence and fear of falling in older adults with fall-related hip fracture: a randomized controlled trial.

    PubMed

    van Ooijen, Mariëlle W; Roerdink, Melvyn; Trekop, Marga; Janssen, Thomas W J; Beek, Peter J

    2016-12-28

    The ability to adjust walking to environmental context is often reduced in older adults and, partly as result of this, falls are common in this population. A treadmill with visual context projected on its belt (e.g., obstacles and targets) allows for practicing step adjustments relative to that context, while concurrently exploiting the great amount of walking practice associated with conventional treadmill training. The present study was conducted to compare the efficacy of adaptability treadmill training, conventional treadmill training and usual physical therapy in improving walking ability and reducing fear of falling and fall incidence in older adults during rehabilitation from a fall-related hip fracture. In this parallel-group, open randomized controlled trial, seventy older adults with a recent fall-related hip fracture (83.3 ± 6.7 years, mean ± standard deviation) were recruited from inpatient rehabilitation care and block randomized to six weeks inpatient adaptability treadmill training (n = 24), conventional treadmill training (n = 23) or usual physical therapy (n = 23). Group allocation was only blind for assessors. Measures related to walking ability were assessed as the primary outcome before and after the intervention and at 4-week and 12-month follow-up. Secondary outcomes included general health, fear of falling, fall rate and proportion of fallers. Measures of general walking ability, general health and fear of falling improved significantly over time. Significant differences among the three intervention groups were only found for the Functional Ambulation Category and the dual-task effect on walking speed, which were in favor of respectively conventional treadmill training and adaptability treadmill training. Overall, adaptability treadmill training, conventional treadmill training and usual physical therapy resulted in similar effects on walking ability, fear of falling and fall incidence in older adults rehabilitating from a fall-related hip fracture. Additional post hoc subgroup analyses, with stratification for pre-fracture tolerated walking distance and executive function, revealed several intervention effects in favor of adaptability and conventional treadmill training, indicating superiority over usual physical therapy for certain subgroups. Future well-powered studies are necessary to univocally identify the characteristics of individuals who will benefit most from a particular intervention. The Netherlands Trial Register ( NTR3222 , 3 January 2012).

  4. Heart Rate Response During Mission-Critical Tasks After Space Flight

    NASA Technical Reports Server (NTRS)

    Arzeno, Natalia M.; Lee, S. M. C.; Stenger, M. B.; Lawrence, E. L.; Platts, S. H.; Bloomberg, J. J.

    2010-01-01

    Adaptation to microgravity could impair crewmembers? ability to perform required tasks upon entry into a gravity environment, such as return to Earth, or during extraterrestrial exploration. Historically, data have been collected in a controlled testing environment, but it is unclear whether these physiologic measures result in changes in functional performance. NASA?s Functional Task Test (FTT) aims to investigate whether adaptation to microgravity increases physiologic stress and impairs performance during mission-critical tasks. PURPOSE: To determine whether the well-accepted postflight tachycardia observed during standard laboratory tests also would be observed during simulations of mission-critical tasks during and after recovery from short-duration spaceflight. METHODS: Five astronauts participated in the FTT 30 days before launch, on landing day, and 1, 6, and 30 days after landing. Mean heart rate (HR) was measured during 5 simulations of mission-critical tasks: rising from (1) a chair or (2) recumbent seated position followed by walking through an obstacle course (egress from a space vehicle), (3) translating graduated masses from one location to another (geological sample collection), (4) walking on a treadmill at 6.4 km/h (ambulation on planetary surface), and (5) climbing 40 steps on a passive treadmill ladder (ingress to lander). For tasks 1, 2, 3, and 5, astronauts were encouraged to complete the task as quickly as possible. Time to complete tasks and mean HR during each task were analyzed using repeated measures ANOVA and ANCOVA respectively, in which task duration was a covariate. RESULTS: Landing day HR was higher (P < 0.05) than preflight during the upright seat egress (7%+/-3), treadmill walk (13%+/-3) and ladder climb (10%+/-4), and HR remained elevated during the treadmill walk 1 day after landing. During tasks in which HR was not elevated on landing day, task duration was significantly greater on landing day (recumbent seat egress: 25%+/-14 and mass translation: 26%+/-12; P < 0.05). CONCLUSION: Elevated HR and increased task duration during postflight simulations of mission-critical tasks is suggestive of spaceflight-induced deconditioning. Following short-duration microgravity missions (< 16 d), work performance may be transiently impaired, but recovery is rapid.

  5. [Russian treadmill BD-1 as a backup of the NASA TVIS].

    PubMed

    Iarmanova, E N; Kozlovskaia, I B; Bogomolov, V V; Rumiantseva, O N; Sukhachev, V I; Mel'nik, K A

    2006-01-01

    Already during the early ISS increments malfunctioning of NASA TVIS (treadmill with vibration isolation system) posed major problems for regular crew training and particularly scamper, one of the key exercises on the Russian physical training program. During ISS increment-3, TVIS unscheduled repairs took virtually all the training time. In search for TVIS backup, Russian and NASA engineers considered jointly Russian treadmill BD-1, originally designed for Russian "shuttle" Buran and accepted it as a suitable backup in case of complete TVIS failure. To enter into the "dialogue" with BD-1, i.e., to record and downlink training data, the treadmill speed indicator, a part of the treadmill stand, was replaced by PC.

  6. From phase drift to synchronisation - pedestrian stepping behaviour on laterally oscillating structures and consequences for dynamic stability

    NASA Astrophysics Data System (ADS)

    Bocian, Mateusz; Burn, Jeremy F.; Macdonald, John H. G.; Brownjohn, James M. W.

    2017-03-01

    The subject of this paper pertains to the contentious issue of synchronisation of walking pedestrians to lateral structural motion, which is the mechanism most commonly purported to cause lateral dynamic instability. Tests have been conducted on a custom-built experimental setup consisting of an instrumented treadmill laterally driven by a hydraulic shaking table. The experimental setup can accommodate adaptive pedestrian behaviour via a bespoke speed feedback control mechanism that allows automatic adjustment of the treadmill belt speed to that of the walker. 15 people participated in a total of 137 walking tests during which the treadmill underwent lateral sinusoidal motion. The amplitude of this motion was set from 5 to 15 mm and the frequency was set from 0.54 to 1.1 Hz. A variety of stepping behaviours are identified in the kinematic data obtained using a motion capture system. The most common behaviour is for the timing of footsteps to be essentially unaffected by the structural motion, but a few instances of synchronisation are found. A plausible mechanism comprising an intermediate state between unsynchronised and synchronised pedestrian and structural motion is observed. This mechanism, characterised by a weak form of modulation of the timing of footsteps, could possibly explain the under-estimation of negative damping coefficients in models and laboratory trials compared with previously reported site measurements. The results from tests conducted on the setup for which synchronisation is identified are evaluated in the context of structural stability and related to the predictions of the inverted pendulum model, providing insight into fundamental relations governing pedestrian behaviour on laterally oscillating structures.

  7. THE EFFECT OF CAFFEINE SUPPLEMENTATION ON TRAINED INDIVIDUALS SUBJECTED TO MAXIMAL TREADMILL TEST.

    PubMed Central

    Salicio, Viviane Martins Mana; Fett, Carlos Alexandre; Salicio, Marcos Adriano; Brandäo, Camila Fernanda Costa Cunha Moraes; Stoppiglia, Luiz Fabrizio; Fett, Waléria Christiane Rezende; Botelho, and Clovis

    2017-01-01

    Background: Intense physical training increases oxidative stress and inflammation, resulting into muscle and cellular damage. The aim of this study was to analyze the effect of caffeine supplementation on trained young individuals subjected to two treadmill maximal tests. Materials and Methods: It was a double-blind and crossover study comprising 24 active individuals within the age group 18-30 years. The comparisons were conducted: the effect of exercise (week 1 x 2) and caffeine intake (GC x GP) on thiobarbituric acid (TBARS), interleukin 6 (IL-6), interleukin 10 (IL-10) and superoxide dismutase (SOD) variables during pre-exercise time (30 min. after caffeine or placebo intake) and post-exercise (5 min after treadmill test). Results: The comparison between weeks 1 and 2 showed increase in the first week, in the following items: TBARS, IL-6 and IL-10 in the GC and GP groups. The comparison within the same week showed that GC individuals presented lower post-exercise TBARS values in the first and second weeks; IL- 6 presented higher post-exercise values in the GC group in both weeks. The paired analysis comparing pre- and post-exercise, with and without caffeine showed that IL-6 presented higher post-exercise values in the GC group. Conclusion: Caffeine used by athletes can decrease oxidative stress. The increased IL-6 suggest that this ergogenic supplement may stimulate muscle hypertrophy, since IL-6 has myokine effect. However, the caffeine effect on IL-6 level and muscle hypertrophy increase should be better investigated in future studies. PMID:28480382

  8. Specific physiological and biomechanical performance in elite, sub-elite and in non-elite male team handball players.

    PubMed

    Wagner, Herbert; Fuchs, Philip X; von Duvillard, Serge P

    2018-01-01

    Team handball is a dynamic sport game that is played professionally in numerous countries. However, knowledge about training and competition is based mostly on practical experience due to limited scientific studies. Consequently, the aims of our study were to compare specific physiological and biomechanical performance in elite, sub-elite and in non-elite male team handball players. Thirty-six elite, sub-elite and non-elite male team handball players performed a game based performance test, upper-body and lower-body strength tests, 30-m sprint test, counter movement jump test and an incremental treadmill running test. Significant differences (P<0.05) were found for the peak oxygen uptake, heart rate, offense and defense time, jump height and ball velocity during the jump throw in the game based performance test, maximal oxygen uptake in the incremental treadmill running test as well as in maximal leg strength and leg explosive strength in the isometric strength test. Elite male players have an enhanced specific agility, a better throwing performance, a higher team handball specific oxygen uptake and higher leg strength compared to sub-elite and non-elite players. Based on these results we recommend that training in team handball should focus on game based training methods to improve performance in specific agility, endurance and technique.

  9. Task-oriented aerobic exercise in chronic hemiparetic stroke: training protocols and treatment effects.

    PubMed

    Macko, R F; Ivey, F M; Forrester, L W

    2005-01-01

    Stroke is the leading cause of disability in older Americans. Each year 750,000 Americans suffer a stroke, two thirds of whom are left with neurological deficits that persistently impair function. Principal among them is hemiparetic gait that limits mobility and increases fall risk, promoting a sedentary lifestyle. These events propagate disability by physical deconditioning and "learned non-use," with further functional declines accelerated by the sarcopenia and fitness decrements of advancing age. Conventional rehabilitation care typically provides little or no structured therapeutic exercise beyond the subacute stroke recovery period, based on natural history studies showing little or no further functional motor recovery beyond 6 months after stroke. Emerging evidence suggests that new models of task-oriented exercise have the potential to improve motor function even years after stroke. This article presents treadmill as a task-oriented training paradigm to optimize locomotor relearning while eliciting cardiovascular conditioning in chronic stroke patients. Protocols for exercise testing and longitudinal aerobic training progression are presented that provide fundamental formulas that safely approach the complex task of customizing aerobic training to gait deficit severity in the high CVD risk stroke population. The beneficial effects of 6 months task-oriented treadmill exercise on cardiovascular-metabolic fitness, energy cost of hemiparetic gait, ADL mobility task performance, and leg strength are discussed with respect to the central and peripheral neuromuscular adaptations targeted by the training. Collectively, these findings constitute one initial experience in a much broader neuroscience and exercise rehabilitation development of task-oriented training paradigms that offer a multisystems approach to improving both neurological and cardiovascular health outcomes in the chronic stroke population.

  10. Treadmill running frequency on anxiety and hippocampal adenosine receptors density in adult and middle-aged rats.

    PubMed

    Costa, Marcelo S; Ardais, Ana Paula; Fioreze, Gabriela T; Mioranzza, Sabrina; Botton, Paulo Henrique S; Portela, Luis Valmor; Souza, Diogo O; Porciúncula, Lisiane O

    2012-01-10

    Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors. Copyright © 2011. Published by Elsevier Inc.

  11. Assessing fitness in endurance horses

    PubMed Central

    Fraipont, Audrey; Van Erck, Emmanuelle; Ramery, Eve; Fortier, Guillaume; Lekeux, Pierre; Art, Tatiana

    2012-01-01

    A field test and a standardized treadmill test were used to assess fitness in endurance horses. These tests discriminated horses of different race levels: horses participating in races of 120 km and more showed higher values of VLA4 (velocity at which blood lactate reached 4 mmol/L) and V200 (velocity at which heart rates reached 200 beats per min) than horses of lower race levels. PMID:22942450

  12. The effects of a supportive knee brace on leg performance in healthy subjects.

    PubMed

    Veldhuizen, J W; Koene, F M; Oostvogel, H J; von Thiel, T P; Verstappen, F T

    1991-12-01

    Eight healthy volunteers were fitted with a supportive knee brace (Push Brace 'Heavy') to one knee for a duration of four weeks wherein they were tested before, during and after the application to establish the effect of bracing on performance. The tests consisted of isokinetic strength measurement of knee flexion and extension, 60 meter dash, vertical jump height and a progressive horizontal treadmill test until exhaustion (Vmax) with determination of oxygen uptake, heart rate and plasma lactate concentration. Wearing the brace for one day, the performance indicators showed a decline compared with the test before application (base values). Sprint time was 4% longer (p less than 0.01) and Vmax 6% slower (p less than 0.01). Peak torque of knee flexion at 60 and 240 deg.sec-1 was 6% (p less than 0.05) respectively 9% (p less than 0.05) less. Peak extension torque at 60 deg.sec-1 was 9% less (p less than 0.05). While wearing the brace for four weeks, the test performances were practically identical to their base values. After removal of the brace, all test parameters were statistically similar to the base values. Heart rate at submaximal exercise levels was even lower (p less than 0.05). In conclusion, performance in sports with test-like exercise patterns is not affected by the brace tested. Bracing does not "weaken the knee" as it is widely believed in sports practice.

  13. Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson’s disease

    PubMed Central

    Glajch, Kelly E.; Fleming, Sheila M.; Surmeier, D. James; Osten, Pavel

    2012-01-01

    Parkinson’s disease (PD), the second most common neurodegenerative disorder, is characterized by marked impairments in motor function caused by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Animal models of PD have traditionally been based on toxins, such as 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), that selectively lesion dopaminergic neurons. Motor impairments from 6-OHDA lesions of SNc neurons are well characterized in rats, but much less work has been done in mice. In this study, we compare the effectiveness of a series of drug-free behavioral tests in assessing sensorimotor impairments in the unilateral 6-OHDA mouse model, including six tests used for the first time in this PD mouse model (the automated treadmill “DigiGait” test, the challenging beam test, the adhesive removal test, the pole test, the adjusting steps test, and the test of spontaneous activity) and two tests used previously in 6-OHDA-lesioned mice (the limb-use asymmetry “cylinder” test and the manual gait test). We demonstrate that the limb-use asymmetry, challenging beam, pole, adjusting steps, and spontaneous activity tests are all highly robust assays for detecting sensorimotor impairments in the 6-OHDA mouse model. We also discuss the use of the behavioral tests for specific experimental objectives, such as simple screening for well-lesioned mice in studies of PD cellular pathophysiology or comprehensive behavioral analysis in preclinical therapeutic testing using a battery of sensorimotor tests. PMID:22178078

  14. Physiological responses during graded treadmill exercise in chemical-resistant personal protective equipment.

    PubMed

    Northington, William E; Suyama, Joe; Goss, Fredric L; Randall, Colby; Gallagher, Michael; Hostler, David

    2007-01-01

    As the likelihood of terrorist acts increases, prehospital personnel have been forced to train in the proper use of chemical-resistant personal protective equipment (PPE). This protective ensemble has been reported to be physiologically taxing for the wearer, imposing an additional thermal load resulting in hypohydration, hyperthermia, and reduced work time. Victim extrication, the rescue-the-rescuer role of the rapid intervention team and rapid self-extrication, typically requires high-intensity work that can be maintained only for short time intervals. The additional physiological burden imparted by the level C PPE during high-intensity work is unknown. We hypothesized that the added thermal burden resulting from work in PPE would shorten work time and result in a higher core temperature during incremental treadmill exercise. In this prospective, crossover, laboratory study, EMS providers (n = 8, 5 male) completed a Bruce treadmill test on two occasions: once in a chemical-resistant coverall and air-purifying respirator (PPE) and once in shorts and t-shirt (CON). Oxygen consumption, vital signs, core and skin temperature, and perceptual measures of exertion, thermal sensation, and comfort were monitored throughout the test. Subjects achieved maximal oxygen consumption and more than 90% of age-predicted maximum heart rate in both conditions. Heart rate, skin temperature, and measures of perceived exertion, comfort, and thermal sensation increased during the treadmill exercise but did not differ between the PPE and CON conditions. Core temperature increased in both the CON and PPE conditions (0.8 +/- 0.5 vs. 0.7 +/- 0.3, p = 0.40). High-intensity work in level C PPE is primarily limited by cardiovascular capacity. The thermal burden associated with this short bout of work in PPE (approximately 10 minutes) is not different than high-intensity work in short pants and cotton t-shirt. Consideration should be given to cardiorespiratory fitness when assigning providers to work in chemical-resistant PPE, especially on tasks that require high-intensity work.

  15. Give Your Ideas Some Legs: The Positive Effect of Walking on Creative Thinking

    ERIC Educational Resources Information Center

    Oppezzo, Marily; Schwartz, Daniel L.

    2014-01-01

    Four experiments demonstrate that walking boosts creative ideation in real time and shortly after. In Experiment 1, while seated and then when walking on a treadmill, adults completed Guilford's alternate uses (GAU) test of creative divergent thinking and the compound remote associates (CRA) test of convergent thinking. Walking increased 81% of…

  16. Treadmill Desks at LANL - Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellows, Samara Kia

    It is well established that sedentariness is the largest, preventable contributor to premature death, eclipsing smoking in recent years. One approach to reduce sedentariness is by using a treadmill desk to perform office work while walking at a low speed.We found an increased interest level when the treadmill desks were first introduced to LANL, but after a few months interest appeared to drop. It is possible that treadmill desk use was occurring, but subjects did not record their use. The treadmill desks will not be readily available for purchase by employees due to the study outcome. Additionally, conclusive changes inmore » body measurements could not be performed due to lack of follow up by 58% of the participants.« less

  17. Comparing handrim biomechanics for treadmill and overground wheelchair propulsion

    PubMed Central

    Kwarciak, Andrew M.; Turner, Jeffrey T.; Guo, Liyun; Richter, W. Mark

    2010-01-01

    Study design Cross-sectional study. Objectives To compare handrim biomechanics recorded during overground propulsion to those recorded during propulsion on a motor-driven treadmill. Setting Biomechanics laboratory. Methods Twenty-eight manual wheelchair users propelled their own wheelchairs, at a self-selected speed, on a low-pile carpet and on a wheelchair accessible treadmill. Handrim biomechanics were recorded with an OptiPush instrumented wheelchair wheel. Results Across the two conditions, all handrim biomechanics were found to be similar and highly correlated (r > 0.85). Contact angle, peak force, average force, and peak axle moment differed by 1.6% or less across the two conditions. While not significant, power output and cadence tended to be slightly higher for the treadmill condition (3.5% and 3.6%, respectively), due to limitations in adjusting the treadmill grade. Conclusion Based on the results of this study, a motor-driven treadmill can serve as a valid surrogate for overground studies of wheelchair propulsion. PMID:21042332

  18. Treadmill workstations: the effects of walking while working on physical activity and work performance.

    PubMed

    Ben-Ner, Avner; Hamann, Darla J; Koepp, Gabriel; Manohar, Chimnay U; Levine, James

    2014-01-01

    We conducted a 12-month-long experiment in a financial services company to study how the availability of treadmill workstations affects employees' physical activity and work performance. We enlisted sedentary volunteers, half of whom received treadmill workstations during the first two months of the study and the rest in the seventh month of the study. Participants could operate the treadmills at speeds of 0-2 mph and could use a standard chair-desk arrangement at will. (a) Weekly online performance surveys were administered to participants and their supervisors, as well as to all other sedentary employees and their supervisors. Using within-person statistical analyses, we find that overall work performance, quality and quantity of performance, and interactions with coworkers improved as a result of adoption of treadmill workstations. (b) Participants were outfitted with accelerometers at the start of the study. We find that daily total physical activity increased as a result of the adoption of treadmill workstations.

  19. Treadmill Workstations: The Effects of Walking while Working on Physical Activity and Work Performance

    PubMed Central

    Ben-Ner, Avner; Hamann, Darla J.; Koepp, Gabriel; Manohar, Chimnay U.; Levine, James

    2014-01-01

    We conducted a 12-month-long experiment in a financial services company to study how the availability of treadmill workstations affects employees’ physical activity and work performance. We enlisted sedentary volunteers, half of whom received treadmill workstations during the first two months of the study and the rest in the seventh month of the study. Participants could operate the treadmills at speeds of 0–2 mph and could use a standard chair-desk arrangement at will. (a) Weekly online performance surveys were administered to participants and their supervisors, as well as to all other sedentary employees and their supervisors. Using within-person statistical analyses, we find that overall work performance, quality and quantity of performance, and interactions with coworkers improved as a result of adoption of treadmill workstations. (b) Participants were outfitted with accelerometers at the start of the study. We find that daily total physical activity increased as a result of the adoption of treadmill workstations. PMID:24586359

  20. Everyday multitasking habits: University students seamlessly text and walk on a split-belt treadmill.

    PubMed

    Hinton, Dorelle Clare; Cheng, Yeu-Yao; Paquette, Caroline

    2018-01-01

    With increasing numbers of adults owning a cell phone, walking while texting has become common in daily life. Previous research has shown that walking is not entirely automated and when challenged with a secondary task, normal walking patterns are disrupted. This study investigated the effects of texting on the walking patterns of healthy young adults while walking on a split-belt treadmill. Following full adaptation to the split-belt treadmill, thirteen healthy adults (23±3years) walked on a tied-belt and split-belt treadmill, both with and without a simultaneous texting task. Inertial-based movement monitors recorded spatiotemporal components of gait and stability. Measures of spatial and temporal gait symmetry were calculated to compare gait patterns between treadmill (tied-belt and split-belt) and between texting (absent or present) conditions. Typing speed and accuracy were recorded to monitor texting performance. Similar to previous research, the split-belt treadmill caused an alteration to both spatial and temporal aspects of gait, but not to time spent in dual support or stability. However, all participants successfully maintained balance while walking and were able to perform the texting task with no significant change to accuracy or speed on either treadmill. From this paradigm it is evident that when university students are challenged to text while walking on either a tied-belt or split-belt treadmill, without any other distraction, their gait is minimally affected and they are able to maintain texting performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of long-term post-ischemic treadmill exercise on gliosis in the aged gerbil hippocampus induced by transient cerebral ischemia

    PubMed Central

    Ahn, Ji Hyeon; Shin, Myoung Cheol; Park, Joon Ha; Kim, In Hye; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich Na; Tae, Hyun-Jin; Park, Jinseu; Choi, Soo Young; Lee, Yun Lyul; Kim, Dae Won; Kim, Yang Hee; Won, Moo-Ho; Cho, Jun Hwi

    2017-01-01

    Therapeutic exercise is an integral component of the rehabilitation of patients who have suffered a stroke. The objective of the present study was to use immunohistochemistry to investigate the effects of post-ischemic exercise on neuronal damage or death and gliosis in the aged gerbil hippocampus following transient cerebral ischemia. Aged gerbils (male; age, 22–24 months) underwent ischemia and were subjected to treadmill exercise for 1 or 4 weeks. Neuronal death was detected in the stratum pyramidale of the hippocampal CA1 region and in the polymorphic layer of the dentate gyrus using cresyl violet and Fluoro-Jade B histofluorescence staining. No significant difference in neuronal death was identified following 1 or 4 weeks of post-ischemic treadmill exercise. However, post-ischemic treadmill exercise affected gliosis (the activation of astrocytes and microglia). Glial fibrillary acidic protein-immunoreactive astrocytes and ionized calcium binding adaptor molecule 1-immunoreactive microglia were activated in the CA1 and polymorphic layer of the dentate gyrus of the group without treadmill exercise. Conversely, 4 weeks of treadmill exercise significantly alleviated ischemia-induced astrocyte and microglial activation; however, 1 week of treadmill exercise did not alleviate gliosis. These findings suggest that long-term post-ischemic treadmill exercise following transient cerebral ischemia does not influence neuronal protection; however, it may effectively alleviate transient cerebral ischemia-induced astrocyte and microglial activation in the aged hippocampus. PMID:28440411

  2. A Challenge-Based Approach to Body Weight-Supported Treadmill Training Poststroke: Protocol for a Randomized Controlled Trial.

    PubMed

    Naidu, Avantika; Brown, David; Roth, Elliot

    2018-05-03

    Body weight support treadmill training protocols in conjunction with other modalities are commonly used to improve poststroke balance and walking function. However, typical body weight support paradigms tend to use consistently stable balance conditions, often with handrail support and or manual assistance. In this paper, we describe our study protocol, which involved 2 unique body weight support treadmill training paradigms of similar training intensity that integrated dynamic balance challenges to help improve ambulatory function post stroke. The first paradigm emphasized walking without any handrails or manual assistance, that is, hands-free walking, and served as the control group, whereas the second paradigm incorporated practicing 9 essential challenging mobility skills, akin to environmental barriers encountered during community ambulation along with hands-free walking (ie hands-free + challenge walking). We recruited individuals with chronic poststroke hemiparesis and randomized them to either group. Participants trained for 6 weeks on a self-driven, robotic treadmill interface that provided body weight support and a safe gait-training environment. We assessed participants at pre-, mid- and post 6 weeks of intervention-training, with a 6-month follow-up. We hypothesized greater walking improvements in the hands-free + challenge walking group following training because of increased practice opportunity of essential mobility skills along with hands-free walking. We assessed 77 individuals with chronic hemiparesis, and enrolled and randomized 30 individuals poststroke for our study (hands-free group=19 and hands-free + challenge walking group=20) from June 2012 to January 2015. Data collection along with 6-month follow-up continued until January 2016. Our primary outcome measure is change in comfortable walking speed from pre to post intervention for each group. We will also assess feasibility, adherence, postintervention efficacy, and changes in various exploratory secondary outcome measures. Additionally, we will also assess participant responses to a study survey, conducted at the end of training week, to gauge each group's training experiences. Our treadmill training paradigms, and study protocol represent advances in standardized approaches to selecting body weight support levels without the necessity for using handrails or manual assistance, while progressively providing dynamic challenges for improving poststroke ambulatory function during rehabilitation. ClinicalTrials.gov NCT02787759; https://clinicaltrials.gov/ct2/show/NCT02787759 (Archived by Webcite at http://www.webcitation.org/6yJZCrIea). ©Avantika Naidu, David Brown, Elliot Roth. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 03.05.2018.

  3. The effects of locomotor-respiratory coupling on the pattern of breathing in horses.

    PubMed Central

    Lafortuna, C L; Reinach, E; Saibene, F

    1996-01-01

    1. To investigate the effect of locomotor activity on the pattern of breathing in quadrupeds, ventilatory response was studied in four healthy horses during horizontal and inclined (7%) treadmill exercise at different velocities (1.4-6.9 m s(-1)) and during chemical stimulation with a rebreathing method. Stride frequency (f(s)) and locomotor-respiratory coupling (LRC) were also simultaneously determined by means of video recordings synchronized with respiratory events. 2. Tidal volume (V(T)) was positively correlated with pulmonary ventilation (V(E)) but significantly different linear regression equations were found between the experimental conditions (P < 0.0001), since the chemical hyperventilation was mainly due to increases in V(T), whereas the major contribution to exercise hyperpnoea came from changes in respiratory frequency (f(R)). 3. The average f(R) at each exercise level was not significantly different from f(S), although there was not always a tight 1:1 LRC. At constant speeds, f(S) was independent of the treadmill slope and hence the greater V(E) during inclined exercise was due to increased V(T). 4. At any ventilatory level, the differences in breathing patterns between locomotion and rebreathing or locomotion at different slopes derived from different set points of the inspiratory off-switch mechanism. 5. The percentage of single breaths entrained with locomotor rhythm rose progressively and significantly with treadmill speed (P < 0.0001) up to a 1:1 LRC and was significantly affected by treadmill slope (P < 0.001). 6. A LRC of 1:1 was systematically observed at canter (10 out of 10 trials) and sometimes at trot (5 out of 14) and it entailed (i) a 4- to 5-fold reduction in both V(T) and f(R) variability, and (ii) a gait-specific phase locking of inspiratory onset during the locomotor cycle. 7. It is concluded that different patterns of breathing are employed during locomotion and rebreathing due to the interference between locomotor and respiratory functions, which may play a role in the optimization and control of exercise ventilation in horses. PMID:9019552

  4. DEVELOPMENT OF AN INFLIGHT COUNTERMEASURE TO MITIGATE POSTFLIGHT GAIT DYSFUNCTION

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Cohen, H. S.; Richards, J. T.; Miller, C. A.

    2005-01-01

    Following spaceflight crewmembers experience gait and postural instabilities due to inflight adaptive alterations in sensorimotor function. These changes can pose a risk to crew safety if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate postflight locomotor disturbances. Therefore, the goal of this study is to develop an inflight training regimen that facilitates the recovery of locomotor function after long-duration spaceflight. The countermeasure we are developing is based on the concept of variable practice. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. This countermeasure is built around current ISS treadmill exercise activities. Crewmembers will conduct their nominal inflight treadmill exercise while being exposed to variations in visual flow patterns. These variations will challenge the postural and locomotor systems repeatedly, thereby promoting adaptive reorganization in locomotor behavior. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, Le., the subject learns response generalizability or the ability to "learn to learn" under a variety of environmental constraints. We anticipate that this training will accelerate recovery of postural and locomotor function during readaptation to gravitational environments following spaceflight facilitating neural adaptation to unit (Earth) and partial (Mars) gravity after long-duration spaceflight. The study calls for one group of subjects to perform the inflight treadmill training regimen while a control group of subjects performs only the nominal exercise procedures. Locomotor function in both groups is assessed before and after spaceflight using two tests of gait function: The Integrated Treadmill Locomotion Test (ITLT) and the Functional Mobility Test (FMT). The ITLT characterizes alterations in the integrated function of multiple sensorimotor subsystems responsible for the control of locomotion. This test calls for subjects to walk on a motorized treadmill while we assess changes in dynamic postural stability, head-trunk coordination, short-latency head stabilization responses, dynamic visual acuity, lower limb coordination strategies and gait cycle timing. To make these assessments we measure the following parameters while subjects walk on the treadmill: 1) full body 3-dimensional kinematics using a motion capture system (Motion Analysis Corp., Santa Rosa, CA); 2) the shock-wave transmitted from heel-strike to the head using triaxial accelerometers placed on the tibia and head (Entran, Fairfield, NJ); 3) vertical forces using an instrumented treadmill (Kistler Instrument Corp., Amherst, NY); 4) Dynamic visual acuity using Landolt Cs presented on a laptop computer located 4m from the eyes and 5) Gait cycle timing using foot-switches (Motion Lab Systems, Inc., Baton Rouge, LA) attached to the plantar surface of each shoe at the heel and toe. The FMT evaluates a subject's ability to perform challenging locomotor maneuvers similar to those encountered during an egress from a space vehicle. Subjects step over and duck under obstacles along with negotiating a series of pylons set up on a base of 10 cm thick medium density foam. The dependent measures for the FMT are time to complete the course and the number of obstacles touched. To date, we have collected pre and postflight locomotion data from Expeditions 5-9 who will serve as part of the control group for this study. Preliminary results comparing the recovery rates in gait control sub-systems obtained from the ITLT and FMT performance showed two recovery patterns: 1) a concordant recovery trend between gait control parameters and FMT performance indicating a restitution pattern of recovery and 2) gait controecovery that lagged recovery in FMT performance suggesting that improvement in locomotor function was attained through a pattern of substitution. These data suggest that recovery of postflight locomotor function may occur through adaptive mechanisms that lead to either restitution or substitution of function. Understanding the modes of postflight readaptation has implications for countermeasure development and testing and in astronaut postflight rehabilitation.

  5. Development of an Inflight Countermeasure to Mitigate Postflight Gait Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.

    2005-01-01

    Following spaceflight crewmembers experience gait and postural instabilities due to inflight adaptive alterations in sensorimotor function. These changes can pose a risk to crew safety if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate postflight locomotor disturbances. Therefore, the goal of this study is to develop an inflight training regimen that facilitates the recovery of locomotor function after long-duration spaceflight. The countermeasure we are developing is based on the concept of variable practice. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. This countermeasure is built around current ISS treadmill exercise activities. Crewmembers will conduct their nominal inflight treadmill exercise while being exposed to variations in visual flow patterns. These variations will challenge the postural and locomotor systems repeatedly, thereby promoting adaptive reorganization in locomotor behavior. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, Le., the subject learns response generalizability or the ability to "learn to learn" under a variety of environmental constraints. We anticipate that this training will accelerate recovery of postural and locomotor function during readaptation to gravitational environments following spaceflight facilitating neural adaptation to unit (Earth) and partial (Mars) gravity after long-duration spaceflight. The study calls for one group of subjects to perform the inflight treadmill training regimen while a control group of subjects performs only the nominal exercise procedures. Locomotor function in both groups is assessed before and after spaceflight using two tests of gait function: The Integrated Treadmill Locomotion Test (ITLT) and the Functional Mobility Test (FMT). The ITLT characterizes alterations in the integrated function of multiple sensorimotor subsystems responsible for the control of locomotion. This test calls for subjects to walk on a motorized treadmill while we assess changes in dynamic postural stability, head-trunk coordination, short-latency head stabilization responses, dynamic visual acuity, lower limb coordination strategies and gait cycle timing. To make these assessments we measure the following parameters while subjects walk on the treadmill: 1) full body 3-dimensional kinematics using a motion capture system (Motion Analysis Corp., Santa Rosa, CA); 2) the shock-wave transmitted from heel-strike to the head using triaxial accelerometers placed on the tibia and head (Entran, Fairfield, NJ); 3) vertical forces using an instumented treadmill (Kistler Instrument Corp., Amherst, NY); 4) Dynamic visual acuity using Landolt Cs presented on a laptop computer located 4m from the eyes and 5) Gait cycle timing using foot-switches (Motion Lab Systems, Inc., Baton Rouge, LA) attached to the plantar surface of each shoe at the heel and toe. The FMT evaluates s. subject's ability to perform challenging locomotor maneuvers similar to those encountered during an egress from a space vehicle. Subjects step over and duck under obstacles along with negotiating a series of pylons set up on a base of 10 cm thick medium density foam. The dependent measures for the FMT are time to complete the course and the number of obstacles touched. To date, we have collected pre and postflight locomotion data from Expeditions 5-9 who will serve as part of the control group for this study. Preliminary results comparing the recovery rates in gait control sub-systems obtained from the ITLT and FMT performance showed two recovery patterns: 1) a concordant recovery trend between gait control parameters and FMT performance indicating a restitution pattern of recovery and 2) gait controecovery that lagged recovery in FMT performance suggesting that improvement in locomotor function was attained through a pattern of substitution. These data suggest that recovery of postflight locomotor function may occur through adaptive mechanisms that lead to either restitution or substitution of function. Understanding the modes of postflight readaptation has implications for countermeasure development and testing and in astronaut postflight rehabilitation.

  6. Training Modalities to Increase Sensorimotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Cohen, H. S.

    2009-01-01

    During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of our current series of studies is develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project has conducted a series of studies investigating the efficacy of treadmill training combined with a variety of sensory challenges (incongruent visual input, support surface instability) designed to increase adaptability. SA training using a treadmill combined with exposure to altered visual input was effective in producing increased adaptability in a more complex over-ground ambulatory task on an obstacle course. This confirms that for a complex task like walking, treadmill training contains enough of the critical features of overground walking to be an effective training modality. SA training can be optimized by using a periodized training schedule. Test sessions that each contain short-duration exposures to multiple perturbation stimuli allows subjects to acquire a greater ability to rapidly reorganize appropriate response strategies when encountering a novel sensory environment. Using a treadmill mounted on top of a six degree-of-freedom motion base platform we investigated locomotor training responses produced by subjects introduced to a dynamic walking surface combined with alterations in visual flow. Subjects who received this training had improved locomotor performance and faster reaction times when exposed to the novel sensory stimuli compared to control subjects. Results also demonstrate that individual sensory biases (i.e. increased visual dependency) can predict adaptive responses to novel sensory environments suggesting that individual training prescription can be developed to enhance adaptability. These data indicate that SA training can be effectively integrated with treadmill exercise and optimized to provide a unique system that combines multiple training requirements in a single countermeasure system. Learning Objectives: The development of a new countermeasure approach that enhances sensorimotor adaptability will be discussed.

  7. Biofeedback for robotic gait rehabilitation.

    PubMed

    Lünenburger, Lars; Colombo, Gery; Riener, Robert

    2007-01-23

    Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback values to the patients and therapists. The therapists can adapt the therapy and give further instructions to the patients. The feedback might help the patients to adapt their movement patterns and to improve their motivation. While it is assumed that these novel methods also improve training efficacy, the proof will only be possible with future in-depth clinical studies.

  8. Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients With De Novo Parkinson Disease: A Phase 2 Randomized Clinical Trial.

    PubMed

    Schenkman, Margaret; Moore, Charity G; Kohrt, Wendy M; Hall, Deborah A; Delitto, Anthony; Comella, Cynthia L; Josbeno, Deborah A; Christiansen, Cory L; Berman, Brian D; Kluger, Benzi M; Melanson, Edward L; Jain, Samay; Robichaud, Julie A; Poon, Cynthia; Corcos, Daniel M

    2018-02-01

    Parkinson disease is a progressive neurologic disorder. Limited evidence suggests endurance exercise modifies disease severity, particularly high-intensity exercise. To examine the feasibility and safety of high-intensity treadmill exercise in patients with de novo Parkinson disease who are not taking medication and whether the effect on motor symptoms warrants a phase 3 trial. The Study in Parkinson Disease of Exercise (SPARX) was a phase 2, multicenter randomized clinical trial with 3 groups and masked assessors. Individuals from outpatient and community-based clinics were enrolled from May 1, 2012, through November 30, 2015, with the primary end point at 6 months. Individuals with idiopathic Parkinson disease (Hoehn and Yahr stages 1 or 2) aged 40 to 80 years within 5 years of diagnosis who were not exercising at moderate intensity greater than 3 times per week and not expected to need dopaminergic medication within 6 months participated in this study. A total of 384 volunteers were screened by telephone; 128 were randomly assigned to 1 of 3 groups (high-intensity exercise, moderate-intensity exercise, or control). High-intensity treadmill exercise (4 days per week, 80%-85% maximum heart rate [n = 43]), moderate-intensity treadmill exercise (4 days per week, 60%-65% maximum heart rate [n = 45]), or wait-list control (n = 40) for 6 months. Feasibility measures were adherence to prescribed heart rate and exercise frequency of 3 days per week and safety. The clinical outcome was 6-month change in Unified Parkinson's Disease Rating Scale motor score. A total of 128 patients were included in the study (mean [SD] age, 64 [9] years; age range, 40-80 years; 73 [57.0%] male; and 108 [84.4%] non-Hispanic white). Exercise rates were 2.8 (95% CI, 2.4-3.2) days per week at 80.2% (95% CI, 78.8%-81.7%) maximum heart rate in the high-intensity group and 3.2 (95% CI, 2.8-3.6; P = .13) days per week at 65.9% (95% CI, 64.2%-67.7%) maximum heart rate in the moderate-intensity group (P < .001). The mean change in Unified Parkinson's Disease Rating Scale motor score in the high-intensity group was 0.3 (95% CI, -1.7 to 2.3) compared with 3.2 (95% CI, 1.4 to 5.1) in the usual care group (P = .03). The high-intensity group, but not the moderate-intensity group, reached the predefined nonfutility threshold compared with the control group. Anticipated adverse musculoskeletal events were not severe. High-intensity treadmill exercise may be feasible and prescribed safely for patients with Parkinson disease. An efficacy trial is warranted to determine whether high-intensity treadmill exercise produces meaningful clinical benefits in de novo Parkinson disease. clinicaltrials.gov Identifier: NCT01506479.

  9. Inorganic Nitrate in Angina Study: A Randomized Double-Blind Placebo-Controlled Trial.

    PubMed

    Schwarz, Konstantin; Singh, Satnam; Parasuraman, Satish K; Rudd, Amelia; Shepstone, Lee; Feelisch, Martin; Minnion, Magdalena; Ahmad, Shakil; Madhani, Melanie; Horowitz, John; Dawson, Dana K; Frenneaux, Michael P

    2017-09-08

    In this double-blind randomized placebo-controlled crossover trial, we investigated whether oral sodium nitrate, when added to existing background medication, reduces exertional ischemia in patients with angina. Seventy patients with stable angina, positive electrocardiogram treadmill test, and either angiographic or functional test evidence of significant ischemic heart disease were randomized to receive oral treatment with either placebo or sodium nitrate (600 mg; 7 mmol) for 7 to 10 days, followed by a 2-week washout period before crossing over to the other treatment (n=34 placebo-nitrate, n=36 nitrate-placebo). At baseline and at the end of each treatment, patients underwent modified Bruce electrocardiogram treadmill test, modified Seattle Questionnaire, and subgroups were investigated with dobutamine stress, echocardiogram, and blood tests. The primary outcome was time to 1 mm ST depression on electrocardiogram treadmill test. Compared with placebo, inorganic nitrate treatment tended to increase the primary outcome exercise time to 1 mm ST segment depression (645.6 [603.1, 688.0] seconds versus 661.2 [6183, 704.0] seconds, P =0.10) and significantly increased total exercise time (744.4 [702.4, 786.4] seconds versus 760.9 [719.5, 802.2] seconds, P =0.04; mean [95% confidence interval]). Nitrate treatment robustly increased plasma nitrate (18.3 [15.2, 21.5] versus 297.6 [218.4, 376.8] μmol/L, P <0.0001) and almost doubled circulating nitrite concentrations (346 [285, 405] versus 552 [398, 706] nmol/L, P =0.003; placebo versus nitrate treatment). Other secondary outcomes were not significantly altered by the intervention. Patients on antacid medication appeared to benefit less from nitrate supplementation. Sodium nitrate treatment may confer a modest exercise capacity benefit in patients with chronic angina who are taking other background medication. URL: https://www.clinicaltrials.gov/. Unique identifier: NCT02078921. EudraCT number: 2012-000196-17. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  10. Physiologic Responses to Treadmill and Water Running.

    ERIC Educational Resources Information Center

    Bishop, Phillip A.; And Others

    1989-01-01

    Presents results of a study of the physiological responses of uninjured runners to running on a treadmill and in water. Water running may lessen an injured athlete's rate of deconditioning, but indications are that the metabolic cost of water running is not significantly greater than that of treadmill running. (SM)

  11. Physiological exercise loading suppresses post-traumatic osteoarthritis progression via an increase in bone morphogenetic proteins expression in an experimental rat knee model.

    PubMed

    Iijima, H; Ito, A; Nagai, M; Tajino, J; Yamaguchi, S; Kiyan, W; Nakahata, A; Zhang, J; Wang, T; Aoyama, T; Nishitani, K; Kuroki, H

    2017-06-01

    To evaluate the dose-response relationship of exercise loading in the cartilage-subchondral bone (SB) unit in surgically-induced post-traumatic osteoarthritis (PTOA) of the knee. Destabilized medial meniscus (DMM) surgery was performed on the right knee of 12-week-old male Wistar rats, and sham surgery was performed on the contralateral knee. Four weeks after the surgery, the animals were subjected to moderate (12 m/min) or intense (21 m/min) treadmill exercises for 30 min/day, 5 days/week for 4 weeks. PTOA development in articular cartilage and SB was examined using histological and immunohistochemical analyses, micro-computed tomography (micro-CT) analysis, and biomechanical testing at 8 weeks after surgery. Gremlin-1 was injected to determine the role of bone morphogenetic protein (BMP) signaling on PTOA development following moderate exercise. Moderate exercise increased BMP-2, BMP-4, BMP-6, BMP receptor 2, pSmad-5, and inhibitor of DNA binding protein-1 expression in the superficial zone chondrocytes and suppressed cartilage degeneration, osteophyte growth, SB damage, and osteoclast-mediated SB resorption. However, intense exercise had little effect on BMP expression and even caused progression of these osteoarthritis (OA) changes. Gremlin-1 injection following moderate exercise caused progression of the PTOA development down to the level of the non-exercise DMM-operated knee. Exercise regulated cartilage-SB PTOA development in DMM-operated knees in a dose-dependent manner. Our findings shed light on the important role of BMP expression in superficial zone chondrocytes in attenuation of PTOA development following physiological exercise loading. Further studies to support a mechanism by which BMPs would be beneficial in preventing PTOA progression are warranted. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. A systematic review of standing and treadmill desks in the workplace.

    PubMed

    MacEwen, Brittany T; MacDonald, Dany J; Burr, Jamie F

    2015-01-01

    Standing and treadmill desks are intended to reduce the amount of time spent sitting in today's otherwise sedentary office. Proponents of these desks suggest that health benefits may be acquired as standing desk use discourages long periods of sitting, which has been identified as an independent health risk factor. Our objectives were thus to analyze the evidence for standing and treadmill desk use in relation to physiological (chronic disease prevention and management) and psychological (worker productivity, well-being) outcomes. A computer-assisted systematic search of Medline, PubMed, PsycINFO, SPORTDiscus, CINAHL, CENTRAL, and EMBASE databases was employed to identify all relevant articles related to standing and treadmill desk use. Treadmill desks led to the greatest improvement in physiological outcomes including postprandial glucose, HDL cholesterol, and anthropometrics, while standing desk use was associated with few physiological changes. Standing and treadmill desks both showed mixed results for improving psychological well-being with little impact on work performance. Standing and treadmill desks show some utility for breaking up sitting time and potentially improving select components of health. At present; however, there exist substantial evidence gaps to comprehensively evaluate the utility of each type of desk to enhance health benefits by reducing sedentary time. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Generalization of improved step length symmetry from treadmill to overground walking in persons with stroke and hemiparesis†

    PubMed Central

    Savin, Douglas N.; Morton, Susanne M.; Whitall, Jill

    2013-01-01

    Objectives Determine whether adaptation to a swing phase perturbation during gait transferred from treadmill to overground walking, the rate of overground deadaptation, and whether overground aftereffects improved step length asymmetry in persons with hemiparetic stroke and gait asymmetry. Methods Ten participants with stroke and hemiparesis and 10 controls walked overground on an instrumented gait mat, adapted gait to a swing phase perturbation on a treadmill, then walked overground on the gait mat again. Outcome measures, primary: overground step length symmetry, rates of treadmill step length symmetry adaptation and overground step length symmetry deadaptation; secondary: overground gait velocity, stride length, and stride cycle duration. Results Step length symmetry aftereffects generalized to overground walking and adapted at a similar rate on the treadmill in both groups. Aftereffects decayed at a slower rate overground in participants with stroke and temporarily improved overground step length asymmetry. Both groups’ overground gait velocity increased post adaptation due to increased stride length and decreased stride duration. Conclusions Stroke and hemiparesis do not impair generalization of step length symmetry changes from adapted treadmill to overground walking, but prolong overground aftereffects. Significance Motor adaptation during treadmill walking may be an effective treatment for improving overground gait asymmetries post-stroke. PMID:24286858

  14. Novel Kinetic Strategies Adopted in Asymmetric Split-Belt Treadmill Walking.

    PubMed

    Hinkel-Lipsker, Jacob W; Hahn, Michael E

    2016-01-01

    The hip and ankle strategies that affect learning of a novel gait have not been fully determined, and could be of importance in design of clinical gait interventions. The authors' purpose was to determine the effects of asymmetric split-belt treadmill walking on ankle and hip work during propulsion. Participants were randomized into either a gradual training group or a sudden training group and later returned for a retention test. The gradual training group performed significantly more work at the hip joint of the slow limb during acquisition, and decreased the hip joint work performed during retention. These findings reveal the hip joint on the slow limb during initial swing as a possible site of adaptation to a novel locomotor pattern.

  15. Evaluation of a New Shirt-Based Electrocardiogram Device for Cardiac Screening in Soccer Players: Comparative Study With Treadmill Ergospirometry.

    PubMed

    Fabregat-Andres, Oscar; Munoz-Macho, Adolfo; Adell-Beltran, Guillermo; Ibanez-Catala, Xavier; Macia, Agustin; Facila, Lorenzo

    2014-08-01

    Prevention of cardiac events during competitive sports is fundamental. New technologies with remote monitoring systems integrated into clothing could facilitate the screening of heart disease. Our aim was to evaluate the feasibility of Nuubo system during a field stress test performed by soccer players, comparing results with treadmill ergospirometry as test reference. Nineteen male professional soccer players (19.2 ± 1.6 years) were studied. Wireless electrocardiographic monitoring during a Yo-Yo intermittent recovery test level 1 in soccer field and subsequent analysis of arrhythmias were firstly performed. Subsequently, in a period no longer than 4 weeks, each player underwent cardiopulmonary exercise testing in hospital. During Yo-Yo test, electrocardiogram (ECG) signal was interpretable in 16 players (84.2%). In the other three players, ECG artifacts did not allow a proper analysis. Estimation of maximum oxygen consumption was comparable between two exercise tests (VO 2 max 53.3 ± 2.4 vs. 53.7 ± 3.0 mL/kg/min for Yo-Yo test and ergometry respectively; intra-class correlation coefficient 0.84 (0.63 - 0.93), P < 0.001). No arrhythmias were detected in any player during both tests. The use of Nuubo's technology allows an accurate single-lead electrocardiographic recording and estimation of reliable performance variables during exercise testing in field, and provides a new perspective to cardiac remote monitoring in collective sports.

  16. Hopkins works on T2 COLBERT

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046404 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, works on the COLBERT treadmill in the Unity node of the International Space Station. He replaced a failed accelerometer in the exercise device then activated COLBERT for a speed test.

  17. Hopkins works on T2 COLBERT

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046401 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, works on the COLBERT treadmill in the Unity node of the International Space Station. He replaced a failed accelerometer in the exercise device then activated COLBERT for a speed test.

  18. Hopkins works on T2 COLBERT

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046405 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, works on the COLBERT treadmill in the Unity node of the International Space Station. He replaced a failed accelerometer in the exercise device then activated COLBERT for a speed test.

  19. The Kinematics of Treadmill Locomotion in Space

    NASA Technical Reports Server (NTRS)

    Thornton, W. E.; Cavanagh, P. R.; Buczek, F. L.; Burgess-Milliron, M. J.; Davis, B. L.

    1997-01-01

    Locomotion on a treadmill in 0 G will probably remain a centerpiece of NASA's exercise countermeasures programme. This form of physical activity has the potential to cause large bone and muscle forces as well as loading during a period of continuous treadmill exercise. A critical concern is the provision of a treadmill which can approximate 1 G performance in space. At this point, no adequate objective measurements of in-flight treadmill kinetics or of the human response to this activity have been made. Interpretation of the results obtained in the present study is limited by the following: (1) bungee tensions were not measured; (2) ground reaction forces were not measured in parallel with the kinematic measurements; and (3) the instrumentation used to film the astronauts could itself have been affected by microgravity. Despite these shortcomings, what is apparent is that exercise during NASA missions STS 7 and STS 8 resulted in leg motions that were similar to those found during 1 G locomotion on an inclined passive treadmill and on an active treadmill at an even steeper grade. In addition, it was apparent that the majority of the loads were transmitted through the forefoot, and one can surmise that this style of running would result in physiologically significant tensions in the calf musculature and resultant ankle compressive loading. Further speculation regarding limb loading is complicated by the fact that varying amounts of force are transmitted through (1) the treadmill handle and (2) bungee cords that act as a tether. New generations of treadmills are being manufactured that could provide I important information for planners of long-duration space missions. If these types of treadmill are flown on future missions, it will be possible to control bungee tensions more precisely, control for grade and speed, and, most importantly, provide data on the rates and magnitudes of limb loading. These data could then be incorporated into biomechanical models of the lower limb to more fully understand mechanisms of load transmission from distal to proximal structures and to optimize in-flight exercise protocols in such a way that muscle and bone loss could be reduced.

  20. Training to Facilitate Adaptation to Novel Sensory Environments

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    After spaceflight, the process of readapting to Earth s gravity causes locomotor dysfunction. We are developing a gait training countermeasure to facilitate adaptive responses in locomotor function. Our training system is comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to train subjects to rapidly adapt their gait patterns to changes in the sensory environment. The goal of our present study was to determine if training improved both the locomotor and dual-tasking ability responses to a novel sensory environment and to quantify the retention of training. Subjects completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill without any support surface or visual alterations. To determine the efficacy of training, all subjects were then tested using a novel visual flow and support surface movement not previously experienced during training. This test was performed 20 minutes, 1 week, and 1, 3, and 6 months after the final training session. Stride frequency and auditory reaction time were collected as measures of postural stability and cognitive effort, respectively. Subjects who received training showed less alteration in stride frequency and auditory reaction time compared to controls. Trained subjects maintained their level of performance over 6 months. We conclude that, with training, individuals became more proficient at walking in novel discordant sensorimotor conditions and were able to devote more attention to competing tasks.

  1. Spatiotemporal Parameters are not Substantially Influenced by Load Carriage or Inclination During Treadmill and Overground Walking

    PubMed Central

    Seay, Joseph F.; Gregorczyk, Karen N.; Hasselquist, Leif

    2016-01-01

    Abstract Influences of load carriage and inclination on spatiotemporal parameters were examined during treadmill and overground walking. Ten soldiers walked on a treadmill and overground with three load conditions (00 kg, 20 kg, 40 kg) during level, uphill (6% grade) and downhill (-6% grade) inclinations at self-selected speed, which was constant across conditions. Mean values and standard deviations for double support percentage, stride length and a step rate were compared across conditions. Double support percentage increased with load and inclination change from uphill to level walking, with a 0.4% stance greater increase at the 20 kg condition compared to 00 kg. As inclination changed from uphill to downhill, the step rate increased more overground (4.3 ± 3.5 steps/min) than during treadmill walking (1.7 ± 2.3 steps/min). For the 40 kg condition, the standard deviations were larger than the 00 kg condition for both the step rate and double support percentage. There was no change between modes for step rate standard deviation. For overground compared to treadmill walking, standard deviation for stride length and double support percentage increased and decreased, respectively. Changes in the load of up to 40 kg, inclination of 6% grade away from the level (i.e., uphill or downhill) and mode (treadmill and overground) produced small, yet statistically significant changes in spatiotemporal parameters. Variability, as assessed by standard deviation, was not systematically lower during treadmill walking compared to overground walking. Due to the small magnitude of changes, treadmill walking appears to replicate the spatiotemporal parameters of overground walking. PMID:28149338

  2. Effects of adding a virtual reality environment to different modes of treadmill walking.

    PubMed

    Sloot, L H; van der Krogt, M M; Harlaar, J

    2014-03-01

    Differences in gait between overground and treadmill walking are suggested to result from imposed treadmill speed and lack of visual flow. To counteract this effect, feedback-controlled treadmills that allow the subject to control the belt speed along with an immersive virtual reality (VR) have recently been developed. We studied the effect of adding a VR during both fixed speed (FS) and self-paced (SP) treadmill walking. Nineteen subjects walked on a dual-belt instrumented treadmill with a simple endless road projected on a 180° circular screen. A main effect of VR was found for hip flexion offset, peak hip extension, peak knee extension moment, knee flexion moment gain and ankle power during push off. A consistent interaction effect between VR and treadmill mode was found for 12 out of 30 parameters, although the differences were small and did not exceed 50% of the within subject stride variance. At FS, the VR seemed to slightly improve the walking pattern towards overground walking, with for example a 6.5mm increase in stride length. At SP, gait became slightly more cautious by adding a VR, with a 9.1mm decrease in stride length. Irrespective of treadmill mode, subjects rated walking with the VR as more similar to overground walking. In the context of clinical gait analysis, the effects of VR are too small to be relevant and are outweighed by the gains of adding a VR, such as a more stimulating experience and possibility of augmenting it by real-time feedback. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Influence of work clothing on physiological responses and performance during treadmill exercise and the Wildland Firefighter Pack Test.

    PubMed

    Phillips, Devin B; Ehnes, Cameron M; Welch, Bradley G; Lee, Lauren N; Simin, Irina; Petersen, Stewart R

    2018-04-01

    This study investigated physiological responses and performance during three separate exercise challenges (Parts I, II, and III) with wildland firefighting work clothing ensemble (boots and coveralls) and a 20.4 kg backpack in four conditions: U-EX (no pack, exercise clothing); L-EX (pack, exercise clothing); U-W (no pack, work clothing); and, L-W (pack and work clothing). Part I consisted of randomly-ordered graded exercise tests, on separate days, in U-EX, L-EX and L-W conditions. Part II consisted of randomly-ordered bouts of sub-maximal treadmill exercise in the four conditions. In Part III, subjects completed, in random-order on separate days, 4.83 km Pack Tests in L-EX or L-W conditions. In Part I, peak oxygen uptake was reduced (p < .05) in L-W. In Part II, mass-specific oxygen uptake was significantly higher in both work clothing conditions. In Part III, Pack Test time was slower (p < .05) in L-W. These results demonstrate the negative impact of work clothing and load carriage on physiological responses to exercise and performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Potential benefits of maximal exercise just prior to return from weightlessness

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1987-01-01

    The purpose of this study was to determine whether performance of a single maximal bout of exercise during weightlessness within hours of return to earth would enhance recovery of aerobic fitness and physical work capacities under a 1G environment. Ten healthy men were subjected to a 10-d bedrest period in the 6-deg headdown position. A graded maximal supine cycle ergometer test was performed before and at the end of bedrest to simulate exercise during weightlessness. Following 3 h of resumption of the upright posture, a second maximal exercise test was performed on a treadmill to measure work capacity under conditions of 1G. Compared to before bedrest, peak oxygen consumption, V(O2), decreased by 8.7 percent and peak heart rate (HR) increased by 5.6 percent in the supine cycle test at the end of bedrest. However, there were no significant changes in peak V(O2) and peak HR in the upright treadmill test following bedrest. These data suggest that one bout of maximal leg exercise prior to return from 10 d of weightlessness may be adequate to restore preflight aerobic fitness and physical work capacity.

  5. Cardiovascular rehabilitation soon after stroke using feedback-controlled robotics-assisted treadmill exercise: study protocol of a randomised controlled pilot trial

    PubMed Central

    2013-01-01

    Background After experiencing a stroke, most individuals also suffer from cardiac disease, are immobile and thus have low endurance for exercise. Aerobic capacity is seriously reduced in these individuals and does not reach reasonable levels after conventional rehabilitation programmes. Cardiovascular exercise is beneficial for improvement of aerobic capacity in mild to moderate stroke. However, less is known about its impact on aerobic capacity, motor recovery, and quality-of-life in severely impaired individuals. The aim of this pilot study is to explore the clinical efficacy and feasibility of cardiovascular exercise with regard to aerobic capacity, motor recovery, and quality-of-life using feedback-controlled robotics-assisted treadmill exercise in non-ambulatory individuals soon after experiencing a stroke. Methods/Design This will be a single-centred single blind, randomised control trial with a pre-post intervention design. Subjects will be recruited early after their first stroke (≤20 weeks) at a neurological rehabilitation clinic and will be randomly allocated to an inpatient cardiovascular exercise programme that uses feedback-controlled robotics-assisted treadmill exercise (experimental) or to conventional robotics-assisted treadmill exercise (control). Intervention duration depends on the duration of each subject’s inpatient rehabilitation period. Aerobic capacity, as the primary outcome measure, will be assessed using feedback-controlled robotics-assisted treadmill-based cardiopulmonary exercise testing. Secondary outcome measures will include gait speed, walking endurance, standing function, and quality-of-life. Outcome assessment will be conducted at baseline, after each 4-week intervention period, and before clinical discharge. Ethical approval has been obtained. Discussion Whether cardiovascular exercise in non-ambulatory individuals early after stroke has an impact on aerobic capacity, motor recovery, and quality-of-life is not yet known. Feedback-controlled robotics-assisted treadmill exercise is a relatively recent intervention method and might be used to train and evaluate aerobic capacity in this population. The present pilot trial is expected to provide new insights into the implementation of early cardiovascular exercise for individuals with severe motor impairment. The findings of this study may guide future research to explore the effects of early cardiovascular activation after severe neurological events. Trial registration This trial is registered with the Clinical Trials.gov Registry (NCT01679600). PMID:24053609

  6. Bilateral coordination and gait symmetry after body-weight supported treadmill training for persons with chronic stroke.

    PubMed

    Combs, Stephanie A; Dugan, Eric L; Ozimek, Elicia N; Curtis, Amy B

    2013-04-01

    Locomotor interventions are commonly assessed using functional outcomes, but these outcomes provide limited information about changes toward recovery or compensatory mechanisms. The study purposes were to examine changes in gait symmetry and bilateral coordination following body-weight supported treadmill training in individuals with chronic hemiparesis due to stroke and to compare findings to participants without disability. Nineteen participants with stroke (>6 months) who ambulated between 0.4 and 0.8 m/s and 22 participants without disability were enrolled in this repeated-measures study. The stroke group completed 24 intervention sessions over 8 weeks with 20 minutes of walking/session. The non-disabled group served as a comparison for describing changes in symmetry and coordination. Bilateral 3-dimensional motion analysis and gait speed were assessed across 3 time points (pre-test, immediate post-test, and 6-month retention). Continuous relative phase was used to evaluate bilateral coordination (thigh-thigh, shank-shank, foot-foot) and gait symmetry was assessed with spatiotemporal ratios (step length, swing time, stance time). Significant improvements in continuous relative phase (shank-shank and foot-foot couplings) were found at post-test and retention for the stroke group. Significant differences in spatiotemporal symmetry ratios were not found over time. Compared to the non-disabled group, changes in bilateral coordination moved in the direction of normal recovery. Most measures of continuous relative phase were more responsive to change after training than the spatiotemporal ratios. After body-weight supported treadmill training, the stroke group made improvements toward recovery of normal bilateral coordination. Bilateral coordination and gait symmetry measures may assess different aspects of gait. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. [Improvement in health care quality for patients from the thoracic/chest pain unit in a regional hospital].

    PubMed

    Castellano Ortega, M A; Romero de Castilla, R J; Rus Mansilla, C; Cortez Quiroga, G A; Bayona Gómez, A J; Duran Torralba, M C

    2011-01-01

    The evaluation of an improvement cycle in patients suffering thoracic/chest pain in hospital emergencies, especially in those who could benefit from the early Bruce Treadmill Test. A multidisciplinary group care protocol was designed, which identified improvement opportunities and gave priority to the fact that «an early Bruce Treadmill Test was carried out on fewer occasions than recommended». Causes were analysed (Ishikawa diagram) and six quality criteria were defined. These criteria were evaluated in a random sample of 30 patients out of the total of 180 who used the ergometer at the Hospital in the first six months of 2007, as well as questionnaire for the doctors. Corrective measures were introduced: circulation, accessibility through intranet and explicit information for new employees (doctors). The second evaluation was carried out during the first six-months of 2008 using another random sample of 30 patients from a total of 120. In the first evaluation, the classification of the risk according to the protocol was very low (100% non-compliance) and patients whose admission to the Chest Pain Unit was recommended and an early Bruce Treadmill Test (74% criteria failure) were referred to cardiology clinics. After implementation of the corrective measures, we obtain a general improvement in all the criteria, but very significant from the previous ones, with non-compliances being reduced to 17% in classification and to the 23% in referrals. The structured cycle has helped resolve the priority problem in the short-term. The adopted measures have mainly been organisational, dependent on the professionals involved, and at a very low cost. Simple but organised methodological approaches should be taken into account before the incorporation of higher cost technologies. Copyright © 2010 SECA. Published by Elsevier Espana. All rights reserved.

  8. Gender-related associations of genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase and bradykinin B2 receptor with treadmill exercise test responses.

    PubMed

    Nunes, Rafael Amorim Belo; Barroso, Lúcia Pereira; Pereira, Alexandre da Costa; Krieger, José Eduardo; Mansur, Alfredo José

    2014-01-01

    Treadmill exercise test responses have been associated with cardiovascular prognosis in individuals without overt heart disease. Neurohumoral and nitric oxide responses may influence cardiovascular performance during exercise testing. Therefore, we evaluated associations between functional genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase, bradykinin receptor B2 and treadmill exercise test responses in men and women without overt heart disease. We enrolled 766 (417 women; 349 men) individuals without established heart disease from a check-up programme at the Heart Institute, University of São Paulo Medical School. Exercise capacity, chronotropic reserve, maximum heart-rate achieved, heart-rate recovery, exercise systolic blood pressure (SBP), exercise diastolic blood pressure (DBP) and SBP recovery were assessed during exercise testing. Genotypes for the α-adrenergic receptors ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C>T (rs553668), ADRA2B Del 301-303 (rs28365031), endothelial nitric synthase (eNOS) 786 T>C (rs2070744), eNOS Glu298Asp (rs1799983) and BK2R (rs5810761) polymorphisms were assessed by PCR and high-resolution melting analysis. Maximum SBP was associated with ADRA1A rs1048101 (p=0.008) and BK2R rs5810761 (p=0.008) polymorphisms in men and ADRA2A rs553668 (p=0.008) and ADRA2B rs28365031 (p=0.022) in women. Maximum DBP pressure was associated with ADRA2A rs553668 (p=0.002) and eNOS rs1799983 (p=0.015) polymorphisms in women. Exercise capacity was associated with eNOS rs2070744 polymorphisms in women (p=0.01) and with eNOS rs1799983 in men and women (p=0.038 and p=0.024). The findings suggest that genetic variants of α-adrenergic receptors and bradykinin B2 receptor may be involved with blood pressure responses during exercise tests. Genetic variants of endothelial nitric oxide synthase may be involved with exercise capacity and blood pressure responses during exercise tests. These responses may be gender-related.

  9. Reproducibility and Validity of the 6-Minute Walk Test Using the Gait Real-Time Analysis Interactive Lab in Patients with COPD and Healthy Elderly

    PubMed Central

    Meijer, Kenneth; Delbressine, Jeannet M.; Willems, Paul J.; Franssen, Frits M. E.; Wouters, Emiel F. M.; Spruit, Martijn A.

    2016-01-01

    Background The 6-minute walk test (6MWT) in a regular hallway is commonly used to assess functional exercise capacity in patients with chronic obstructive pulmonary disease (COPD). However, treadmill walking might provide additional advantages over overground walking, especially if virtual reality and self-paced treadmill walking are combined. Therefore, this study aimed to assess the reproducibility and validity of the 6MWT using the Gait Real-time Analysis Interactive Lab (GRAIL) in patients with COPD and healthy elderly. Methodology/Results Sixty-one patients with COPD and 48 healthy elderly performed two 6MWTs on the GRAIL. Patients performed two overground 6MWTs and healthy elderly performed one overground test. Differences between consecutive 6MWTs and the test conditions (GRAIL vs. overground) were analysed. Patients walked further in the second overground test (24.8 m, 95% CI 15.2–34.4 m, p<0.001) and in the second GRAIL test (26.8 m, 95% CI 13.9–39.6 m). Healthy elderly improved their second GRAIL test (49.6 m, 95% CI 37.0–62.3 m). The GRAIL 6MWT was reproducible (intra-class coefficients = 0.65–0.80). The best GRAIL 6-minute walk distance (6MWD) in patients was shorter than the best overground 6MWD (-27.3 ± 49.1 m, p<0.001). Healthy elderly walked further on the GRAIL than in the overground condition (23.6 ± 41.4 m, p<0.001). Validity of the GRAIL 6MWT was assessed and intra-class coefficient values ranging from 0.74–0.77 were found. Conclusion The GRAIL is a promising system to assess the 6MWD in patients with COPD and healthy elderly. The GRAIL 6MWD seems to be more comparable to the 6MWDs assessed overground than previous studies on treadmills have reported. Furthermore, good construct validity and reproducibility were established in assessing the 6MWD using the GRAIL in patients with COPD and healthy elderly. PMID:27607426

  10. Gender-related associations of genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase and bradykinin B2 receptor with treadmill exercise test responses

    PubMed Central

    Nunes, Rafael Amorim Belo; Barroso, Lúcia Pereira; Pereira, Alexandre da Costa; Krieger, José Eduardo; Mansur, Alfredo José

    2014-01-01

    Background Treadmill exercise test responses have been associated with cardiovascular prognosis in individuals without overt heart disease. Neurohumoral and nitric oxide responses may influence cardiovascular performance during exercise testing. Therefore, we evaluated associations between functional genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase, bradykinin receptor B2 and treadmill exercise test responses in men and women without overt heart disease. Methods We enrolled 766 (417 women; 349 men) individuals without established heart disease from a check-up programme at the Heart Institute, University of São Paulo Medical School. Exercise capacity, chronotropic reserve, maximum heart-rate achieved, heart-rate recovery, exercise systolic blood pressure (SBP), exercise diastolic blood pressure (DBP) and SBP recovery were assessed during exercise testing. Genotypes for the α-adrenergic receptors ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C>T (rs553668), ADRA2B Del 301–303 (rs28365031), endothelial nitric synthase (eNOS) 786 T>C (rs2070744), eNOS Glu298Asp (rs1799983) and BK2R (rs5810761) polymorphisms were assessed by PCR and high-resolution melting analysis. Results Maximum SBP was associated with ADRA1A rs1048101 (p=0.008) and BK2R rs5810761 (p=0.008) polymorphisms in men and ADRA2A rs553668 (p=0.008) and ADRA2B rs28365031 (p=0.022) in women. Maximum DBP pressure was associated with ADRA2A rs553668 (p=0.002) and eNOS rs1799983 (p=0.015) polymorphisms in women. Exercise capacity was associated with eNOS rs2070744 polymorphisms in women (p=0.01) and with eNOS rs1799983 in men and women (p=0.038 and p=0.024). Conclusions The findings suggest that genetic variants of α-adrenergic receptors and bradykinin B2 receptor may be involved with blood pressure responses during exercise tests. Genetic variants of endothelial nitric oxide synthase may be involved with exercise capacity and blood pressure responses during exercise tests. These responses may be gender-related. PMID:25544888

  11. Peak impact accelerations during track and treadmill running.

    PubMed

    Bigelow, Erin M R; Elvin, Niell G; Elvin, Alex A; Arnoczky, Steven P

    2013-10-01

    To determine whether peak vertical and horizontal impact accelerations were different while running on a track or on a treadmill, 12 healthy subjects (average age 32.8 ± 9.8 y), were fitted with a novel, wireless accelerometer capable of recording triaxial acceleration over time. The accelerometer was attached to a custom-made acrylic plate and secured at the level of the L5 vertebra via a tight fitting triathlon belt. Each subject ran 4 miles on a synthetic, indoor track at a self-selected pace and accelerations were recorded on three perpendicular axes. Seven days later, the subjects ran 4 miles on a treadmill set at the individual runner's average pace on the track and the peak vertical and horizontal impact magnitudes between the track and treadmill were compared. There was no difference (P = .52) in the average peak vertical impact accelerations between the track and treadmill over the 4 mile run. However, peak horizontal impact accelerations were greater (P = .0012) on the track when compared with the treadmill. This study demonstrated the feasibility for long-term impact accelerations monitoring using a novel wireless accelerometer.

  12. Activity restriction in mild COPD: a challenging clinical problem

    PubMed Central

    O’Donnell, Denis E; Gebke, Kevin B

    2014-01-01

    Dyspnea, exercise intolerance, and activity restriction are already apparent in mild chronic obstructive pulmonary disease (COPD). However, patients may not seek medical help until their symptoms become troublesome and persistent and significant respiratory impairment is already present; as a consequence, further sustained physical inactivity may contribute to disease progression. Ventilatory and gas exchange impairment, cardiac dysfunction, and skeletal muscle dysfunction are present to a variable degree in patients with mild COPD, and collectively may contribute to exercise intolerance. As such, there is increasing interest in evaluating exercise tolerance and physical activity in symptomatic patients with COPD who have mild airway obstruction, as defined by spirometry. Simple questionnaires, eg, the modified British Medical Research Council dyspnea scale and the COPD Assessment Test, or exercise tests, eg, the 6-minute or incremental and endurance exercise tests can be used to assess exercise performance and functional status. Pedometers and accelerometers are used to evaluate physical activity, and endurance tests (cycle or treadmill) using constant work rate protocols are used to assess the effects of interventions such as pulmonary rehabilitation. In addition, alternative outcome measurements, such as tests of small airway dysfunction and laboratory-based exercise tests, are used to measure the extent of physiological impairment in individuals with persistent dyspnea. This review describes the mechanisms of exercise limitation in patients with mild COPD and the interventions that can potentially improve exercise tolerance. Also discussed are the benefits of pulmonary rehabilitation and the potential role of pharmacologic treatment in symptomatic patients with mild COPD. PMID:24940054

  13. A multi-channel biomimetic neuroprosthesis to support treadmill gait training in stroke patients.

    PubMed

    Chia, Noelia; Ambrosini, Emilia; Baccinelli, Walter; Nardone, Antonio; Monticone, Marco; Ferrigno, Giancarlo; Pedrocchi, Alessandra; Ferrante, Simona

    2015-01-01

    This study presents an innovative multi-channel neuroprosthesis that induces a biomimetic activation of the main lower-limb muscles during treadmill gait training to be used in the rehabilitation of stroke patients. The electrostimulation strategy replicates the physiological muscle synergies used by healthy subjects to walk on a treadmill at their self-selected speed. This strategy is mapped to the current gait sub-phases, which are identified in real time by a custom algorithm. This algorithm divides the gait cycle into six sub-phases, based on two inertial sensors placed laterally on the shanks. Therefore, the pre-defined stimulation profiles are expanded or stretched based on the actual gait pattern of each single subject. A preliminary experimental protocol, involving 10 healthy volunteers, was carried out to extract the muscle synergies and validate the gait-detection algorithm, which were afterwards used in the development of the neuroprosthesis. The feasibility of the neuroprosthesis was tested on one healthy subject who simulated different gait patterns, and a chronic stroke patient. The results showed the correct functioning of the system. A pilot study of the neurorehabilitation treatment for stroke patients is currently being carried out.

  14. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats

    PubMed Central

    Zhang, Jianying; Yuan, Ting; Wang, James H-C.

    2016-01-01

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients. PMID:26885754

  15. Investigating the correlation between paediatric stride interval persistence and gross energy expenditure.

    PubMed

    Fairley, Jillian A; Sejdić, Ervin; Chau, Tom

    2010-02-26

    Stride interval persistence, a term used to describe the correlation structure of stride interval time series, is thought to provide insight into neuromotor control, though its exact clinical meaning has not yet been realized. Since human locomotion is shaped by energy efficient movements, it has been hypothesized that stride interval dynamics and energy expenditure may be inherently tied, both having demonstrated similar sensitivities to age, disease, and pace-constrained walking. This study tested for correlations between stride interval persistence and measures of energy expenditure including mass-specific gross oxygen consumption per minute (VO₂), mass-specific gross oxygen cost per meter (VO₂) and heart rate (HR). Metabolic and stride interval data were collected from 30 asymptomatic children who completed one 10-minute walking trial under each of the following conditions: (i) overground walking, (ii) hands-free treadmill walking, and (iii) handrail-supported treadmill walking. Stride interval persistence was not significantly correlated with (p > 0.32), VO₂ (p > 0.18) or HR (p > 0.56). No simple linear dependence exists between stride interval persistence and measures of gross energy expenditure in asymptomatic children when walking overground and on a treadmill.

  16. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats.

    PubMed

    Zhang, Jianying; Yuan, Ting; Wang, James H-C

    2016-02-23

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients.

  17. Evaluation of a Treadmill with Vibration Isolation and Stabilization (TVIS) for Use on the International Space Station

    NASA Technical Reports Server (NTRS)

    McCrory, Jean L.; Lemmon, David R.; Sommer, H. Joseph; Prout, Brian; Smith, Damon; Korth, Deborah W.; Lucero, Javier; Greenisen, Michael; Moore, Jim

    1999-01-01

    A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 deg, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.

  18. Evaluation of a Treadmill with Vibration Isolation and Stabilization (TVIS) for use on the International Space Station.

    PubMed

    McCrory, J L; Lemmon, D R; Sommer, H J; Prout, B; Smith, D; Korth, D W; Lucero, J; Greenisen, M; Moore, J; Kozlovskaya, I; Pestov, I; Stepansov, V; Miyakinchenko, Y; Cavanagh, P R

    1999-08-01

    A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 degrees, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.

  19. Treadmills: a preventable source of pediatric friction burn injuries.

    PubMed

    Maguiña, Pirko; Palmieri, Tina L; Greenhalgh, David G

    2004-01-01

    Treadmills are a burn risk for children. A child's hand can get trapped in the conveyor belt, causing friction burns to the underlying tissue. The purpose of this retrospective study was to review the characteristics and treatment of treadmill-related burns in children from 1998 to 2002. Ten patients, at a mean age of 3.4 years, sustained injuries associated with treadmill use. Trapping of the hand between the conveyor belt and the base was the most frequent injury mechanism. Burn location was predominantly on fingers and palms. Four patients required operative intervention. All patients required specialized wound care as well as scar management and occupational therapy. Treadmills pose a danger to children. Current safety devices are ineffective for preventing serious hand injuries in children. New design modifications and public awareness are needed to improve child safety.

  20. Task-oriented treadmill exercise training in chronic hemiparetic stroke

    PubMed Central

    Ivey, Frederick M.; Hafer-Macko, Charlene E.; Macko, Richard F.

    2010-01-01

    Patients with stroke have elevated hemiparetic gait costs secondary to low activity levels and are often severely deconditioned. Decrements in peak aerobic capacity affect functional ability and cardiovascular-metabolic health and may be partially mediated by molecular changes in hemiparetic skeletal muscle. Conventional rehabilitation is time delimited in the subacute stroke phase and does not provide adequate aerobic intensity to reverse the profound detriments to fitness and function that result from stroke. Hence, we have studied progressive full body weight-support treadmill (TM) training as an adjunct therapy in the chronic stroke phase. Task-oriented TM training has produced measurable changes in fitness, function, and indices of cardiovascular-metabolic health after stroke, but the precise mechanisms for these changes remain under investigation. Further, the optimal dose of this therapy has yet to be identified for individuals with stroke and may vary as a function of deficit severity and outcome goals. This article summarizes the functional and metabolic decline caused by inactivity after stroke and provides current evidence that supports the use of TM training during the chronic stroke phase, with protocols and inclusion/exclusion criteria described. Our research findings are discussed in relation to associated research. PMID:18566943

  1. Recovery of heart rate variability after treadmill exercise analyzed by lagged Poincaré plot and spectral characteristics.

    PubMed

    Shi, Ping; Hu, Sijung; Yu, Hongliu

    2018-02-01

    The aim of this study was to analyze the recovery of heart rate variability (HRV) after treadmill exercise and to investigate the autonomic nervous system response after exercise. Frequency domain indices, i.e., LF(ms 2 ), HF(ms 2 ), LF(n.u.), HF(n.u.) and LF/HF, and lagged Poincaré plot width (SD1 m ) and length (SD2 m ) were introduced for comparison between the baseline period (Pre-E) before treadmill running and two periods after treadmill running (Post-E1 and Post-E2). The correlations between lagged Poincaré plot indices and frequency domain indices were applied to reveal the long-range correlation between linear and nonlinear indices during the recovery of HRV. The results suggested entirely attenuated autonomic nervous activity to the heart following the treadmill exercise. After the treadmill running, the sympathetic nerves achieved dominance and the parasympathetic activity was suppressed, which lasted for more than 4 min. The correlation coefficients between lagged Poincaré plot indices and spectral power indices could separate not only Pre-E and two sessions after the treadmill running, but also the two sessions in recovery periods, i.e., Post-E1 and Post-E2. Lagged Poincaré plot as an innovative nonlinear method showed a better performance over linear frequency domain analysis and conventional nonlinear Poincaré plot.

  2. Effect of the treadmill training factors on the locomotor ability after space flight

    NASA Astrophysics Data System (ADS)

    Lysova, Nataliya; Fomina, Elena

    Training on the treadmill constitutes the central component of the Russian system of countermeasures against the negative effects of microgravity. Effectiveness of the treadmill training is influenced by three main factors. Namely, these are intensity (velocity and regularity), axial loading with the use of elastic bungee cords and percentage of time for training on the non-motorized treadmill within the overall training program. Previously we have demonstrated the significance of each factor separately: intensity (Kozlovskaya I.B. et al., 2011), passive mode (Fomina E.V. et al., 2012) and axial loading (Fomina E.V. et al., 2013). The Russian system of in-flight countermeasures gives preference to interval training sessions in which walking alternates with short episodes of intensive running. Locomotion on the non-motorized treadmill should make approx. 30% of the total time of locomotor training. The ISS RS treadmill can be utilized with the motor in motion (active mode) or out of motion so that the cosmonaut has to push the belt with his feet (passive mode). Axial loading of the cosmonaut must be 60-70% of his body weight. However, there is a huge variety of strategies cosmonauts choose of when they exercise on the treadmill in the course of long-duration ISS missions. Purpose of the investigation was comparative analysis of different locomotion training regimens from the standpoint of their effectiveness in microgravity. Criteria of effectiveness evaluation were the results of the locomotion test that includes walking along the fixed support at the preset rate of 90 steps/min. Peak amplitude on the m. soleus electromyogram was analyzed. The experiment was performed with participation of 18 Russian members of extended ISS missions. Each locomotion training factors was rated using the score scale from 0 to 10: Intensity (0 to 10), Percentage of passive mode training (recommended 30% was taken as 10 and could go down to 0 if the passive mode was not applied) and Axial loading (10 was taken as recommended 70% of the body weight). Significant differences in the m. soleus peak amplitude were found between groups of cosmonauts with different sums of the rating scores. On the third day post landing, myogram amplitudes in the group with the rating score sums < 11 were much higher in comparison with the group in which the rating score sums exceeded 12. These data strongly supported high preventive effectiveness of the locomotor training with the optimal combination of the factors of intensity, percentage of passive mode training and axial loading. Besides, they brought out the possibility of training regimen individualization by “tailoring” two factors, i.e. passive mode and axial loading.

  3. VO[subscript 2] Prediction and Cardiorespiratory Responses during Underwater Treadmill Exercise

    ERIC Educational Resources Information Center

    Greene, Nicholas P.; Greene, Elizabeth S.; Carbuhn, Aaron F.; Green, John S.; Crouse, Stephen F.

    2011-01-01

    We compared cardiorespiratory responses to exercise on an underwater treadmill (UTM) and land treadmill (LTM) and derived an equation to estimate oxygen consumption (VO[subscript 2]) during UTM exercise. Fifty-five men and women completed one LTM and five UTM exercise sessions on separate days. The UTM sessions consisted of chest-deep immersion,…

  4. Compliance of Children with Moderate to Severe Intellectual Disability to Treadmill Walking: A Pilot Study

    ERIC Educational Resources Information Center

    Vashdi, E.; Hutzler, Y.; Roth, D.

    2008-01-01

    Background: Individuals with Intellectual Disability (ID) exhibit reduced levels of compliance to exercise, including treadmill walking. The purpose of this study was to measure the effects of several training conditions on compliance to participation in treadmill walking of children with moderate to severe ID. Method: Criteria for compliance were…

  5. Operational Art and the Incident Command System: Public Health’s Bridge in Bioterrorism Preparedness and Response

    DTIC Science & Technology

    2003-03-22

    e.g., tuberculosis screening or a maximal treadmill test ); and 3) tertiary prevention limits disability and rehabilitation where the disease or injury...major city/county laboratories to develop the capacity to conduct rapid and accurate diagnostic and reference testing for select biologic agents likely...system, but it has not been thoroughly tested and coordinated in the civilian sector. The association of mass casualty care with hospital

  6. The effect of shoe type on static and dynamic balance during treadmill walking in young healthy women.

    PubMed

    Kim, Mi-Kyoung; Kong, Byung-Sun; Yoo, Kyung-Tae

    2017-09-01

    [Purpose] The purpose of this study was to analyze the effect of various shoes on the static and dynamic balance of young women in their 20s. [Subjects and Methods] The subjects of the study were 15 healthy young women and repeated measured design. The subjects walked on the treadmill at a speed of 4 km/h for 30 minutes wearing three types of shoes: sneaker, rain boots, and combat boots. Balance was measured by a Romberg test and a limits of stability test. One-way ANOVA was used for statistical analysis. [Results] As the results of the Romberg test, the main effect of time was shown in the EO-COG area, EO-COG length, and EO-COG velocity. As the results of the limits of stability test, the main effects of time in LT, RT, FW, and total. There were significant differences in the LT in the sneaker group, the rain boots group, and the LT and RT in the combat boots group between the pre- and post-test. [Conclusion] The characteristics of shoes such as the materials, hardness, and thickness of the soles, the coefficient of friction of the outsoles, and the collar height affected the static and dynamic balance.

  7. The effect of shoe type on static and dynamic balance during treadmill walking in young healthy women

    PubMed Central

    Kim, Mi-Kyoung; Kong, Byung-Sun; Yoo, Kyung-Tae

    2017-01-01

    [Purpose] The purpose of this study was to analyze the effect of various shoes on the static and dynamic balance of young women in their 20s. [Subjects and Methods] The subjects of the study were 15 healthy young women and repeated measured design. The subjects walked on the treadmill at a speed of 4 km/h for 30 minutes wearing three types of shoes: sneaker, rain boots, and combat boots. Balance was measured by a Romberg test and a limits of stability test. One-way ANOVA was used for statistical analysis. [Results] As the results of the Romberg test, the main effect of time was shown in the EO-COG area, EO-COG length, and EO-COG velocity. As the results of the limits of stability test, the main effects of time in LT, RT, FW, and total. There were significant differences in the LT in the sneaker group, the rain boots group, and the LT and RT in the combat boots group between the pre- and post-test. [Conclusion] The characteristics of shoes such as the materials, hardness, and thickness of the soles, the coefficient of friction of the outsoles, and the collar height affected the static and dynamic balance. PMID:28932007

  8. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury

    PubMed Central

    Nicola, F.C.; Rodrigues, L.P.; Crestani, T.; Quintiliano, K.; Sanches, E.F.; Willborn, S.; Aristimunha, D.; Boisserand, L.; Pranke, P.; Netto, C.A.

    2016-01-01

    Spinal cord injury (SCI) is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs) transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10); SCI (laminectomy followed by SCI, n=12); SHEDs (SCI treated with SHEDs, n=11); TT (SCI treated with treadmill training, n=11); SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10). Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action. PMID:27509306

  9. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury.

    PubMed

    Nicola, F C; Rodrigues, L P; Crestani, T; Quintiliano, K; Sanches, E F; Willborn, S; Aristimunha, D; Boisserand, L; Pranke, P; Netto, C A

    2016-08-08

    Spinal cord injury (SCI) is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs) transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10); SCI (laminectomy followed by SCI, n=12); SHEDs (SCI treated with SHEDs, n=11); TT (SCI treated with treadmill training, n=11); SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10). Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action.

  10. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer’s Disease

    PubMed Central

    Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang

    2017-01-01

    Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer’s disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment. PMID:28157094

  11. External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy

    PubMed Central

    Zollinger, Marie; Degache, Francis; Currat, Gabriel; Pochon, Ludmila; Peyrot, Nicolas; Newman, Christopher J.; Malatesta, Davide

    2016-01-01

    Purpose: Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both for gait analysis and training in children and adolescents. The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass. Methods: Spatiotemporal parameters, external mechanical work and pendular energy transduction of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 10 UCP (14.2 ± 1.7 year) and 10 TD (14.1 ± 1.9 year) adolescents during treadmill and overground walking at standard and preferred speeds. Results: The treadmill induced almost identical mechanical changes to overground walking in TD adolescents and those with UCP, with the exception of potential and kinetic vertical and lateral mechanical works, which are both significantly increased in the overground-treadmill transition only in UCP (P < 0.05). Conclusions: Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents. This may have an important implication in rehabilitation programs that assess and train gait by using a treadmill in adolescents with UCP. PMID:27148062

  12. External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy.

    PubMed

    Zollinger, Marie; Degache, Francis; Currat, Gabriel; Pochon, Ludmila; Peyrot, Nicolas; Newman, Christopher J; Malatesta, Davide

    2016-01-01

    Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both for gait analysis and training in children and adolescents. The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass. Spatiotemporal parameters, external mechanical work and pendular energy transduction of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 10 UCP (14.2 ± 1.7 year) and 10 TD (14.1 ± 1.9 year) adolescents during treadmill and overground walking at standard and preferred speeds. The treadmill induced almost identical mechanical changes to overground walking in TD adolescents and those with UCP, with the exception of potential and kinetic vertical and lateral mechanical works, which are both significantly increased in the overground-treadmill transition only in UCP (P < 0.05). Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents. This may have an important implication in rehabilitation programs that assess and train gait by using a treadmill in adolescents with UCP.

  13. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease.

    PubMed

    Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang

    2017-01-01

    Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer's disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment.

  14. Treadmill training with partial body weight support after stroke.

    PubMed

    Hesse, Stefan; Werner, Cordula; von Frankenberg, Sophie; Bardeleben, Anita

    2003-02-01

    Treadmill therapy with partial BWS is a promising new approach to improve gait ability after stroke. This task-specific approach enables nonambulatory patients the repetitive practice of complex gait cycles instead of single-limb gait-preparatory maneuvers. Patients walk more symmetrically with less spasticity and better cardiovascular efficiency on the treadmill than with floor walking. Several controlled, clinical studies have shown the potential of treadmill training as a therapeutic intervention for nonambulatory patients with chronic stroke-related hemiplegia. Furthermore, controlled trials in acute stroke survivors have shown that treadmill training is as effective as other physiotherapy approaches that stress the repetitive practice of gait. Controlled multicenter trials comparing locomotor training with conventional therapy will be forthcoming. An electromechanical gait trainer that relieves the strenuous effort of the therapists and provides control of the trunk in a phase-dependent manner is a new technical alternative for gait training in severely impaired stroke patients.

  15. Performance parameters and post exercise heart rate recovery in Warmblood sports horses of different performance levels.

    PubMed

    Bitschnau, C; Wiestner, T; Trachsel, D S; Auer, J A; Weishaupt, M A

    2010-11-01

    Standardised exercise tests are used for fitness evaluation of sports horses. Standards are described for Thoroughbreds and Standardbreds; however, limited information is available for Warmbloods. To establish normative standards of performance parameters and heart rate recovery (HRR) in Warmblood riding horses of different levels of fitness using a submaximal incremental exercise test (SIET) performed on a treadmill. A SIET was carried out with 29 healthy and treadmill-accustomed Warmbloods: eleven 3-day event horses (TDE) and 18 horses from the National Equestrian Centre (NEC) competing in amateur jumping and/or dressage events. After a warm-up phase, horses performed 2 stages at trot and 3-5 stages at gallop at 6% incline. The first stage lasted 120 s, all others 90 s. Velocity (V) and heart rate (HR) were measured continuously and blood lactate concentration (LAC) at the end of each exercise stage. V at HR 150 and 200 beats/min (V(150), V(200)), V and HR at 2 and 4 mmol/l LAC (V(2), V(4) and HR(2), HR(4), respectively) were calculated and compared between discipline groups. For reference values, horses were divided on the basis of the V(4) -results in good (GP) and average performers (AP) (performance groups). Five minute passive HRR was compared between performance groups. Fifteen NEC horses were retested within 1-3 months. Groups were compared with t tests and P < 0.05 considered significant. Three-day event horses had higher V(150), V(2) and V(4) values than NEC. GP had higher values in all performance parameters compared to AP. No differences were found between test and retest. GP mean recovery HR was different from that of AP from 120 s of recovery onwards. Treadmill SIETs are suitable to objectify aerobic capacity in Warmblood riding horses. Normative standards were assessed for well and averagely-trained horses. The results can be referred to when diagnosing patients with exercise intolerance. © 2010 EVJ Ltd.

  16. A Maximal Graded Exercise Test to Accurately Predict VO2max in 18-65-Year-Old Adults

    ERIC Educational Resources Information Center

    George, James D.; Bradshaw, Danielle I.; Hyde, Annette; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2007-01-01

    The purpose of this study was to develop an age-generalized regression model to predict maximal oxygen uptake (VO sub 2 max) based on a maximal treadmill graded exercise test (GXT; George, 1996). Participants (N = 100), ages 18-65 years, reached a maximal level of exertion (mean plus or minus standard deviation [SD]; maximal heart rate [HR sub…

  17. Muscle Activation Patterns in Infants with Myelomeningocele Stepping on a Treadmill

    PubMed Central

    Sansom, Jennifer K.; Teulier, Caroline; Smith, Beth A.; Moerchen, Victoria; Muraszko, Karin; Ulrich, Beverly D.

    2013-01-01

    Purpose To characterize how infants with myelomeningocele (MMC) activate lower limb muscles over the first year of life, without practice, while stepping on a motorized treadmill. Methods Twelve infants with MMC were tested longitudinally at 1, 6, 12 months. Electromyography (EMG) was used to collect data from the tibialis anterior (TA), lateral gastrocnemius (LG), rectus femoris (RF), biceps femoris (BF). Results Across the first year, infants showed no EMG activity for ~50% of the stride cycle w/poor rhythmicity and timing of muscles, when activated. Single muscle activation predominated; agonist-antagonist co-activation was low. Probability of individual muscle activity across the stride decreased w/age. Conclusions Infants with MMC show high variability in timing and duration of muscle activity, few complex combinations, and very little change over time. PMID:23685739

  18. Tire-to-Surface Friction Especially Under Wet Conditions

    NASA Technical Reports Server (NTRS)

    Sawyer, Richard H.; Batterson, Sidney A.; Harrin, Eziaslav N.

    1959-01-01

    The results of measurements of the maximum friction available in braking on various runway surfaces under various conditions is shown for a C-123B airplane and comparisons of measurements with a tire-friction cart on the same runways are made. The.results of studies of wet-surface friction made with a 12-inch-diameter low-pressure tire on a tire-friction treadmill, with an automobile tire on the tire-friction cart, and with a 44 x 13 extra-high-pressure type VII aircraft tire at the Langley landing-loads track are compared. Preliminary results of tests on the tire-friction treadmill under wet-surface conditions to determine the effect of the wiping action of the front wheel of a tandem-wheel arrangement on the friction available in braking for the rear wheel are given.

  19. Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: Pre/post 2 treatment experimental design.

    PubMed

    Jordan, Thomas; Lukaszuk, Judith; Misic, Mark; Umoren, Josephine

    2010-05-19

    beta-Alanine (betaA) has been shown to improve performance during cycling. This study was the first to examine the effects of betaA supplementation on the onset of blood lactate accumulation (OBLA) during incremental treadmill running. Seventeen recreationally-active men (mean +/- SE 24.9 +/- 4.7 yrs, 180.6 +/- 8.9 cm, 79.25 +/- 9.0 kg) participated in this randomized, double-blind, placebo-controlled pre/post test 2-treatment experimental design. Subjects participated in two incremental treadmill tests before and after 28 days of supplementation with either betaA (6.0 g.d-1)(betaA, n = 8) or an equivalent dose of Maltodextrin as the Placebo (PL, n = 9). Heart rate, percent heart rate maximum (%HRmax), %VO2max@OBLA (4.0 mmol.L-1 blood lactate concentration) and VO2max (L.min-1) were determined for each treadmill test. Friedman test was used to determine within group differences; and Mann-Whitney was used to determine between group differences for pre and post values (p < 0.05). The betaA group experienced a significant rightward shift in HR@OBLA beats.min-1 (p < 0.01) pre/post (161.6 +/- 19.2 to 173.6 +/- 9.9) but remained unchanged in the PL group (166.8 +/- 15.8 to 169.6 +/- 16.1). The %HRmax@OBLA increased (p < 0.05) pre/post in the betaA group (83.0% +/- 9.7 to 88.6% +/- 3.7) versus no change in the PL group (86.3 +/- % 4.8 to 87.9% +/- 7.2). The %VO2max@OBLA increased (p < 0.05) in the betaA group pre/post (69.1 +/- 11.0 to 75.6 +/- 10.7) but remained unchanged in the PL group (73.3 +/- 7.3 to 74.3 +/- 7.3). VO2max (L.min-1) decreased (p < 0.01) in the betaA group pre/post (4.57 +/- 0.8 to 4.31 +/- 0.8) versus no change in the PL group (4.04 +/- 0.7 to 4.18 +/- 0.8). Body mass kg increased (p < 0.05) in the betaA group pre/post (77.9 +/- 9.0 to 78.3 +/- 9.3) while the PL group was unchanged (80.6 +/- 9.1 to 80.4 +/- 9.0). betaA supplementation for 28 days enhanced sub-maximal endurance performance by delaying OBLA. However, betaA supplemented individuals had a reduced aerobic capacity as evidenced by the decrease in VO2max values post supplementation.

  20. SpeedyTime_3_Treadmill_2

    NASA Image and Video Library

    2017-07-31

    When you live in a place where your heart doesn’t even have to work against the pull of gravity, you need help with exercise: the astronauts on the International Space Station have a suite of exercise equipment at their disposal, including a treadmill. In this “SpeedyTime” segment Expedition 52 flight engineer Jack Fischer runs through the workout they get on the Combined Operational Load Bearing External Resistance Treadmill (COLBERT) in the station’s Tranquility module. HD Link: https://archive.org/details/jsc2017m000676_SpeedyTime_3_Treadmill_2 _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  1. Productivity of transcriptionists using a treadmill desk.

    PubMed

    Thompson, Warren G; Levine, James A

    2011-01-01

    Time spent sitting increases all-cause mortality. Sedentary occupations are a major contributor to the obesity epidemic. A treadmill desk offers the potential to increase activity while working; however, it is important to make sure that productivity does not decline. The purpose of this study is to evaluate productivity while using a treadmill desk. Eleven experienced medical transcriptionists participated in the study. Transcriptionists were given 4 hours training in the use of a treadmill desk. They were asked to transcribe tapes for 8 hours both while sitting and while using the treadmill desk. Speed and accuracy of transcription were compared as were the average expended calories per hour. The accuracy of transcription did not differ between sitting and walking transcriptions. The speed of transcription was 16% slower while walking than while sitting (p < 0.001). The transcriptionists expended 100 calories per hour more when they transcribed while walking than when they transcribed while sitting (p < 0.001). The treadmill desk offers a way to reduce sedentariness in the workplace and has potential to reduce employee obesity and health care costs. However, more than 4 hours of training will be necessary to prevent a significant drop in employee productivity.

  2. Kinetic comparison of walking on a treadmill versus over ground in children with cerebral palsy.

    PubMed

    van der Krogt, Marjolein M; Sloot, Lizeth H; Buizer, Annemieke I; Harlaar, Jaap

    2015-10-15

    Kinetic outcomes are an essential part of clinical gait analysis, and can be collected for many consecutive strides using instrumented treadmills. However, the validity of treadmill kinetic outcomes has not been demonstrated for children with cerebral palsy (CP). In this study we compared ground reaction forces (GRF), center of pressure, and hip, knee and ankle moments, powers and work, between overground (OG) and self-paced treadmill (TM) walking for 11 typically developing (TD) children and 9 children with spastic CP. Considerable differences were found in several outcome parameters. In TM, subjects demonstrated lower ankle power generation and more absorption, and increased hip moments and work. This shift from ankle to hip strategy was likely due to a more backward positioning of the hip and a slightly more forward trunk lean. In mediolateral direction, GRF and hip and knee joint moments were increased in TM due to wider step width. These findings indicate that kinetic data collected on a TM cannot be readily compared with OG data in TD children and children with CP, and that treadmill-specific normative data sets should be used when performing kinetic gait analysis on a treadmill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Treadmill desks: A 1-year prospective trial.

    PubMed

    Koepp, Gabriel A; Manohar, Chinmay U; McCrady-Spitzer, Shelly K; Ben-Ner, Avner; Hamann, Darla J; Runge, Carlisle F; Levine, James A

    2013-04-01

    Sedentariness is associated with weight gain and obesity. A treadmill desk is the combination of a standing desk and a treadmill that allow employees to work while walking at low speed. The hypothesis was that a 1-year intervention with treadmill desks is associated with an increase in employee daily physical activity (summation of all activity per minute) and a decrease in daily sedentary time (zero activity). Employees (n = 36; 25 women, 11 men) with sedentary jobs (87 ± 27 kg, BMI 29 ± 7 kg/m(2) , n = 10 Lean BMI < 25 kg/m(2) , n = 15 Overweight 25 < BMI < 30 kg/m(2) , n = 11 Obese BMI > 30 kg/m(2) ) volunteered to have their traditional desk replaced with a treadmill desk to promote physical activity for 1 year. Daily physical activity (using accelerometers), work performance, body composition, and blood variables were measured at Baseline and 6 and 12 months after the treadmill desk intervention. Subjects who used the treadmill desk increased daily physical activity from baseline 3,353 ± 1,802 activity units (AU)/day to, at 6 months, 4,460 ± 2,376 AU/day (P < 0.001), and at 12 months, 4,205 ± 2,238 AU/day (P < 0.001). Access to the treadmill desks was associated with significant decreases in daily sedentary time (zero activity) from at baseline 1,020 ± 75 min/day to, at 6 months, 929 ± 84 min/day (P < 0.001), and at 12 months, 978 ± 95 min/day (P < 0.001). For the whole group, weight loss averaged 1.4 ± 3.3 kg (P < 0.05). Weight loss for obese subjects was 2.3 ± 3.5 kg (P < 0.03). Access to the treadmill desks was associated with increased daily physical activity compared to traditional chair-based desks; their deployment was not associated with altered performance. For the 36 participants, fat mass did not change significantly, however, those who lost weight (n = 22) lost 3.4 ± 5.4 kg (P < 0.001) of fat mass. Weight loss was greatest in people with obesity. Access to treadmill desks may improve the health of office workers without affecting work performance. Copyright © 2012 The Obesity Society.

  4. NASA's Functional Task Test: Providing Information for an Integrated Countermeasure System

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Feiveson, A. H.; Laurie, S. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.; hide

    2015-01-01

    Exposure to the microgravity conditions of spaceflight causes astronauts to experience alterations in multiple physiological systems. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. Some or all of these changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on a planetary surface. The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the key physiological factors that contribute to decrements in performance. The FTT was comprised of seven functional tests and a corresponding set of interdisciplinary physiological measures targeting the sensorimotor, cardiovascular and muscular changes associated with exposure to spaceflight. Both Shuttle and ISS crewmembers participated in this study. Additionally, we conducted a supporting study using the FTT protocol on subjects before and after 70 days of 6? head-down bed rest. The bed rest analog allowed us to investigate the impact of body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance, and then to compare them with the results obtained in our spaceflight study. Spaceflight data were collected on three sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Bed rest subjects were tested three times before bed rest and immediately after getting up from bed rest as well as 1, 6, and 12 days after reambulation. We have shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. Bed rest subjects experienced similar deficits both in functional tests with balance challenges and in sensorimotor tests designed to evaluate postural and gait control as spaceflight subjects indicating that body support unloading experienced during spaceflight plays a central role in post-flight alteration of functional task performance. To determine how differences in body-support loading experienced during in-flight treadmill exercise affect postflight functional performance, the loading history for each subject during in-flight treadmill (T2) exercise was correlated with postflight measures of performance. ISS crewmembers who walked on the treadmill with higher pull-down loads had enhanced post-flight performance on tests requiring mobility. Taken together the spaceflight and bed rest data point to the importance of supplementing inflight exercise countermeasures with balance and sensorimotor adaptability training. These data also support the notion that inflight treadmill exercise performed with higher body loading provides sensorimotor benefits leading to improved performance on functional tasks that require dynamic postural stability and mobility.

  5. Does a single gait training session performed either overground or on a treadmill induce specific short-term effects on gait parameters in patients with hemiparesis? A randomized controlled study.

    PubMed

    Bonnyaud, Céline; Pradon, Didier; Zory, Raphael; Bensmail, Djamel; Vuillerme, Nicolas; Roche, Nicolas

    2013-01-01

    Gait training for patients with hemiparesis is carried out independently overground or on a treadmill. Several studies have shown differences in hemiparetic gait parameters during overground versus treadmill walking. However, few studies have compared the effects of these 2 gait training conditions on gait parameters, and no study has compared the short-term effects of these techniques on all biomechanical gait parameters. To determine whether a gait training session performed overground or on a treadmill induces specific short-term effects on biomechanical gait parameters in patients with hemiparesis. Twenty-six subjects with hemiparesis were randomly assigned to a single session of either overground or treadmill gait training. The short-term effects on spatiotemporal, kinematic, and kinetic gait parameters were assessed using gait analysis before and immediately after the training and after a 20-minute rest. Speed, cadence, percentage of single support phase, peak knee extension, peak propulsion, and braking on the paretic side were significantly increased after the gait training session. However, there were no specific changes dependent on the type of gait training performed (overground or on a treadmill). A gait training session performed by subjects with hemiparesis overground or on a treadmill did not induce specific short-term effects on biomechanical gait parameters. The increase in gait velocity that followed a gait training session seemed to reflect specific modifications of the paretic lower limb and adaptation of the nonparetic lower limb.

  6. The effect of the hypohydration on the lactate threshold in a hot and humid environment.

    PubMed

    Papadopoulos, C; Doyle, J; Rupp, J; Brandon, L; Benardot, D; Thompson, W

    2008-09-01

    The purpose of this study was to investigate the effect of hypohydration (HH) on the lactate threshold (LT) in a hot and humid environment. Ten apparently healthy males (age 25+/-3 yrs; height 1.8+/-0.04 m; mass 78+/-12 kg; VO2peak 3.7+/-0.4 L/min) underwent four randomly assigned maximal treadmill tests. Two trials were at room temperature (22+/-1 degrees C; RH = 50%) under two different hydration conditions: euhydrated (EH-RM) and hypohydrated (HH-RM), and two trials were performed in a warm chamber (37+/-0.5 degrees C; RH = 70%) under two different hydration conditions: euhydrated (EH-HT) and hypohydrated (HH-HT). The desired HH level (2-4%) was accomplished in the 24+ hours before testing by fluid restriction. Mean HH was 2.6+/-1.0% body weight. Capillary blood samples were collected at the end of each stage and analyzed for lactic acid (LA). LA concentrations were plotted for each exercise stage, and the LT was determined by visual inspection as the highest exercise stage at which blood LA concentration began to increase above each individual's resting levels. LT and body temperature were analyzed with a two-way repeated measures ANOVA (P < 0.05). During the trials in the warm chamber, the LT occurred at a significantly earlier stage compared to the thermoneutral environment (4.4+/-0.09 vs 5.8+/-0.10) and with a significantly lower oxygen consumption (2.38+/-0.09 L.min(-1) vs 2.86+/-0.13 L.min(-1)). Body temperature at the LT was significantly higher in the heat trials compared to room temperature (38.7+/-0.12 degrees C vs 37.6+/-0.14 degrees C). LT determination was not significantly altered by hydration. These results suggest that during progressive incremental maximal treadmill exercise, moderate HH does not affect the LT, whereas exercise in a hot and humid environment induces a downward shift in the LT. The elevated body temperature during the heat trials suggests that body temperature may affect running performance associated with the LT.

  7. Physical Performance in Elite Male and Female Team Handball Players.

    PubMed

    Wagner, Herbert; Fuchs, Patrick; Fusco, Andrea; Fuchs, Philip; Bell, W Jeffrey; Duvillard, Serge P

    2018-06-12

    Biological differences between men and women are well known; however, literature-addressing knowledge about the influence of sex to specific and general performance in team handball is almost nonexistent. Consequently, the aim of the study was to assess and compare specific and general physical performance in male and female elite team handball players, to determine if the differences are consequential for general compared to specific physical performance characteristics and the relationship between general and specific physical performance. Twelve male and ten female elite team handball players performed a game based performance test, upper- und lower-body strength and power tests, a sprinting test, and an incremental treadmill-running test. Significant differences (P<.05) between male and female players were found for peak oxygen uptake and total running time during the treadmill test, 30m sprinting time, leg extension strength, trunk and shoulder rotation torque, counter movement jump height as well as offense and defense time, ball velocity and jump height in the game based performance test. An interaction (sex × test) was found for time and oxygen uptake and except shoulder rotation torque and ball velocity in females, we found only a low relationship between specific and general physical performance. The results of the study revealed that male players are heavier, taller, faster, stronger, jump higher and have a better aerobic performance. However, female players performed relatively better in the team handball specific tests compared to the general tests. Our findings also suggest that female players should focus more on strength training.

  8. Evaluation of a New Shirt-Based Electrocardiogram Device for Cardiac Screening in Soccer Players: Comparative Study With Treadmill Ergospirometry

    PubMed Central

    Fabregat-Andres, Oscar; Munoz-Macho, Adolfo; Adell-Beltran, Guillermo; Ibanez-Catala, Xavier; Macia, Agustin; Facila, Lorenzo

    2014-01-01

    Background Prevention of cardiac events during competitive sports is fundamental. New technologies with remote monitoring systems integrated into clothing could facilitate the screening of heart disease. Our aim was to evaluate the feasibility of Nuubo system during a field stress test performed by soccer players, comparing results with treadmill ergospirometry as test reference. Methods Nineteen male professional soccer players (19.2 ± 1.6 years) were studied. Wireless electrocardiographic monitoring during a Yo-Yo intermittent recovery test level 1 in soccer field and subsequent analysis of arrhythmias were firstly performed. Subsequently, in a period no longer than 4 weeks, each player underwent cardiopulmonary exercise testing in hospital. Results During Yo-Yo test, electrocardiogram (ECG) signal was interpretable in 16 players (84.2%). In the other three players, ECG artifacts did not allow a proper analysis. Estimation of maximum oxygen consumption was comparable between two exercise tests (VO2 max 53.3 ± 2.4 vs. 53.7 ± 3.0 mL/kg/min for Yo-Yo test and ergometry respectively; intra-class correlation coefficient 0.84 (0.63 - 0.93), P < 0.001). No arrhythmias were detected in any player during both tests. Conclusions The use of Nuubo’s technology allows an accurate single-lead electrocardiographic recording and estimation of reliable performance variables during exercise testing in field, and provides a new perspective to cardiac remote monitoring in collective sports. PMID:28348705

  9. Effects of a short burst of gait training with body weight-supported treadmill training for a person with chronic stroke: a single-subject study.

    PubMed

    Combs, Stephanie A; Miller, Ellen Winchell

    2011-04-01

    The purpose of this study was to investigate the effects of a short-burst dose of intense gait training with body weight-supported treadmill training (BWSTT) on walking speed, endurance, and quality of life of a participant with chronic stroke. A single-subject experimental (A-B-A-A) design with immediate and 3-month retention phases was used. The participant was a 66-year-old woman, 1 year after left cerebrovascular accident. Repeated baseline walking performance was established during 2 weeks of testing using the comfortable 10-meter walk test (CWT) and the 6-minute walk test (6MWT). The Stroke Impact Scale (SIS) was measured one time during baseline. Baseline testing was followed by ten 30-minute sessions of BWSTT over a 2-week duration. Retention testing was conducted immediately and 3 months following the intervention. Statistically significant improvements from baseline with the CWT and the 6MWT were achieved and maintained by the participant across all subsequent measurement phases. Improvements considered to be clinically meaningful changes in the SIS domains of strength and mobility achieved immediately after the intervention were not maintained at 3-month retention testing. For the participant in this study, the short-burst dosage of BWSTT provided a feasible and effective means for improving goal-oriented functional walking ability.

  10. Treadmill stress test after diesel exhaust particulate exposure reveals a time-dependent shift from parasympathetic to sympathetic dominance

    EPA Science Inventory

    Epidemiological studies suggest that particulate matter (PM) air pollution is a major trigger of acute cardiac events-including arrhythmia-especially in those with preexisting cardiac disease. Diesel exhaust (DE) contributes the majority of urban fine and ultrafine PM, and is thu...

  11. Diurnal Variations in Maximal Oxygen Uptake.

    ERIC Educational Resources Information Center

    McClellan, Powell D.

    A study attempted to determine if diurnal (daily cyclical) variations were present during maximal exercise. The subjects' (30 female undergraduate physical education majors) oxygen consumption and heart rates were monitored while they walked on a treadmill on which the grade was raised every minute. Each subject was tested for maximal oxygen…

  12. The impact of cell phone use on the intensity and liking of a bout of treadmill exercise.

    PubMed

    Rebold, Michael J; Lepp, Andrew; Sanders, Gabriel J; Barkley, Jacob E

    2015-01-01

    This study used a within-subjects design to assess the effect of three common cellular telephone (cell phone) functions (texting, talking, listening to music) on planned exercise. Forty-four young adults (n = 33 females, 21.8 ± 1.3 years) each participated in four, separate, 30-minute exercise conditions on a treadmill in a random order. During each condition, the treadmill speed display was covered and grade was fixed at zero. However, participants were able to alter treadmill speed as desired. Throughout the texting and talking conditions, research personnel used a pre-determined script to simulate cell phone conversations. During the music condition, participants used their cell phone to listen to music of their choice. Finally, participants completed a control condition with no cell phone access. For each condition, average treadmill speed, heart rate and liking (via visual analog scale) were assessed. Treadmill speed (3.4 ± 1.3 miles∙hour(-1)), heart rate (122.3 ± 24.3 beats∙min(-1)) and liking (7.5 ± 1.5 cm) in the music condition were significantly (p ≤ 0.014) greater than all other conditions. Treadmill speed in the control condition (3.1 ± 1.2 miles∙hour(-1)) was significantly (p = 0.04) greater than both texting and talking (2.8 ± 1.1 miles∙hour(-1) each). Heart rate during the control condition (115.4 ± 22.8 beats∙min(-1)) was significantly (p = 0.04) greater than texting (109.9 ± 16.4 beats∙min(-1)) but not talking (112.6 ± 16.1 beats∙min(-1)). Finally, liking during the talking condition (5.4 ± 2.2 cm) was greater (p = 0.05) than the control (4.3 ± 2.2 cm) but not the texting (5.1 ± 2.2 cm) conditions. In conclusion, using a cell phone for listening to music can increase the intensity (speed and heart rate) and liking of a bout of treadmill exercise. However, other common cell phone uses (texting and talking) can interfere with treadmill exercise and reduce intensity.

  13. The Impact of Cell Phone Use on the Intensity and Liking of a Bout of Treadmill Exercise

    PubMed Central

    Rebold, Michael J.; Lepp, Andrew; Sanders, Gabriel J.; Barkley, Jacob E.

    2015-01-01

    This study used a within-subjects design to assess the effect of three common cellular telephone (cell phone) functions (texting, talking, listening to music) on planned exercise. Forty-four young adults (n = 33 females, 21.8 ± 1.3 years) each participated in four, separate, 30-minute exercise conditions on a treadmill in a random order. During each condition, the treadmill speed display was covered and grade was fixed at zero. However, participants were able to alter treadmill speed as desired. Throughout the texting and talking conditions, research personnel used a pre-determined script to simulate cell phone conversations. During the music condition, participants used their cell phone to listen to music of their choice. Finally, participants completed a control condition with no cell phone access. For each condition, average treadmill speed, heart rate and liking (via visual analog scale) were assessed. Treadmill speed (3.4 ± 1.3 miles∙hour-1), heart rate (122.3 ± 24.3 beats∙min-1) and liking (7.5 ± 1.5 cm) in the music condition were significantly (p ≤ 0.014) greater than all other conditions. Treadmill speed in the control condition (3.1 ± 1.2 miles∙hour-1) was significantly (p = 0.04) greater than both texting and talking (2.8 ± 1.1 miles∙hour-1 each). Heart rate during the control condition (115.4 ± 22.8 beats∙min-1) was significantly (p = 0.04) greater than texting (109.9 ± 16.4 beats∙min-1) but not talking (112.6 ± 16.1 beats∙min-1). Finally, liking during the talking condition (5.4 ± 2.2 cm) was greater (p = 0.05) than the control (4.3 ± 2.2 cm) but not the texting (5.1 ± 2.2 cm) conditions. In conclusion, using a cell phone for listening to music can increase the intensity (speed and heart rate) and liking of a bout of treadmill exercise. However, other common cell phone uses (texting and talking) can interfere with treadmill exercise and reduce intensity. PMID:25970553

  14. Functional Mobility Performance and Balance Confidence in Older Adults after Sensorimotor Adaptation Training

    NASA Technical Reports Server (NTRS)

    Buccello-Stout, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.; Weaver, G. D.

    2010-01-01

    Research indicates a main contributor of injury in older adults is from falling. The decline in sensory systems limits information needed to successfully maneuver through the environment. The objective of this study was to determine if prolonged exposure to the realignment of perceptual-motor systems increases adaptability of balance, and if balance confidence improves after training. A total of 16 older adults between ages 65-85 were randomized to a control group (walking on a treadmill while viewing a static visual scene) and an experimental group (walking on a treadmill while viewing a rotating visual scene). Prior to visual exposure, participants completed six trials of walking through a soft foamed obstacle course. Participants came in twice a week for 4 weeks to complete training of walking on a treadmill and viewing the visual scene for 20 minutes each session. Participants completed the obstacle course after training and four weeks later. Average time, penalty, and Activity Balance Confidence Scale scores were computed for both groups across testing times. The older adults who trained, significantly improved their time through the obstacle course F (2, 28) = 9.41, p < 0.05, as well as reduced their penalty scores F (2, 28) = 21.03, p < 0.05, compared to those who did not train. There was no difference in balance confidence scores between groups across testing times F (2, 28) = 0.503, p > 0.05. Although the training group improved mobility through the obstacle course, there were no differences between the groups in balance confidence.

  15. Robot-Applied Resistance Augments the Effects of Body Weight-Supported Treadmill Training on Stepping and Synaptic Plasticity in a Rodent Model of Spinal Cord Injury.

    PubMed

    Hinahon, Erika; Estrada, Christina; Tong, Lin; Won, Deborah S; de Leon, Ray D

    2017-08-01

    The application of resistive forces has been used during body weight-supported treadmill training (BWSTT) to improve walking function after spinal cord injury (SCI). Whether this form of training actually augments the effects of BWSTT is not yet known. To determine if robotic-applied resistance augments the effects of BWSTT using a controlled experimental design in a rodent model of SCI. Spinally contused rats were treadmill trained using robotic resistance against horizontal (n = 9) or vertical (n = 8) hind limb movements. Hind limb stepping was tested before and after 6 weeks of training. Two control groups, one receiving standard training (ie, without resistance; n = 9) and one untrained (n = 8), were also tested. At the terminal experiment, the spinal cords were prepared for immunohistochemical analysis of synaptophysin. Six weeks of training with horizontal resistance increased step length, whereas training with vertical resistance enhanced step height and movement velocity. None of these changes occurred in the group that received standard (ie, no resistance) training or in the untrained group. Only standard training increased the number of step cycles and shortened cycle period toward normal values. Synaptophysin expression in the ventral horn was highest in rats trained with horizontal resistance and in untrained rats and was positively correlated with step length. Adding robotic-applied resistance to BWSTT produced gains in locomotor function over BWSTT alone. The impact of resistive forces on spinal connections may depend on the nature of the resistive forces and the synaptic milieu that is present after SCI.

  16. Water depth modifies back kinematics of horses during water treadmill exercise.

    PubMed

    Nankervis, K J; Finney, P; Launder, L

    2016-11-01

    Water treadmill exercise can be incorporated into the rehabilitation programmes of horses recovering from back pathology, yet little is known about the effect of this type of exercise on thoracolumbar movement ranges. To measure the flexion-extension range of motion (FE ROM) of the thoracolumbar spine and pelvic vertical displacement during water treadmill walking at 3 water depths and compare these with the control condition. Within-subject trial using a crossover design in healthy horses. A total of 14 horses walked at 0.8 m/s on a water treadmill for 3 min at each of the following depths; hoof (control), metatarsophalangeal joint (low), tarsal joint (medium) and femoropatellar joint (high). Skin surface markers on T6, T10, T13, T18, L3, L5 and S3 were used to obtain FE ROM and the minimum and maximum angular motion pattern values (AMPmin and AMPmax) for T10, T13, T18, L3 and L5. Markers placed on left and right tuber coxae were used to obtain pelvic vertical displacement. Friedman's tests and post hoc Wilcoxon's signed ranks tests were used to determine the effects of water depth on measured variables. The FE ROM of T10 (8.4°), T13 (8.1°), T18 (6.9°) and L3 (6.4°) when walking at high depth was significantly greater than control (5.5, 5.7, 5.1 and 5.1°, respectively; P<0.008); T13 AMPmin was significantly lower in high water (-3.0°) than control (0.1°, P = 0.001) and L3 AMPmax significantly greater in high water (-1.9°) than control (-4.8°, P = 0.001). There was no significant association between pelvic vertical displacement and water depth. Walking in high water causes cranial thoracic extension and thoracolumbar flexion when compared with walking in water at hoof depth. This postural change should be considered when designing rehabilitation programmes for horses with back and/or hindlimb pathology. © 2015 EVJ Ltd.

  17. Generalization of treadmill perturbation to overground slip during gait: Effect of different perturbation distances on slip recovery.

    PubMed

    Lee, Anna; Bhatt, Tanvi; Pai, Yi-Chung

    2016-01-25

    Treadmill-perturbation training (TM-training) may improve a person׳s fall-resistance, whereby adjusting slip distance can be a simple way to manipulate training intensity. The purpose of this study was to determine the effects of different slip distances in TM-training (12-cm vs. 18-cm) on its generalization to the recovery from a novel "free" slip during overground walking. Generalization here means the ability to apply learned skill from TM-training to slip recovery during overground walking. Thirty-six young adults in the TM_12 or the TM_18 group underwent either a 12-cm or an 18-cm slip during the treadmill walking for seven times, or in the control group were not exposed to any perturbation. Their responses were also contrasted with previously reported results from overground-perturbation training (OG-training) in which participants received either a 12-cm or an 18-cm slip during level walking with the same number of repetitions. Everyone was then exposed to the same generalization test during a novel "free" slip in overground walking. Their proactive and reactive control of stability was measured and compared. TM-training displayed a significant training effect in comparison to the control group (p<0.05), while most of the improvements were found in the reactive control of stability and were much-limited in comparison to that of OG-training. Also unlike OG-training, no significant differences were found between the results obtained from the TM_12 and the TM_18 groups (p>0.05). These results underscore the further needs to investigate the potential of the treadmill as a convenient instrument that can effectively deliver perturbation training. Published by Elsevier Ltd.

  18. Generalization of treadmill perturbation to overground slip during gait: Effect of different perturbation distances on slip recovery

    PubMed Central

    Lee, Anna; Bhatt, Tanvi; Pai, Yi-Chung

    2016-01-01

    Treadmill-perturbation training (TM-training) may improve a person’s fall-resistance, whereby adjusting slip distance can be a simple way to manipulate training intensity. The purpose of this study was to determine the effects of different slip distances in TM-training (12-cm vs. 18-cm) on its generalization to the recovery from a novel “free” slip during overground walking. Generalization here means the ability to apply learned skill from TM-training to slip recovery during overground walking. Thirty-six young adults in the TM_12 or the TM_18 group underwent either a 12-cm or an 18-cm slip during the treadmill walking for seven times, or in the control group were not exposed to any perturbation. Their responses were also contrasted with previously reported results from overground-perturbation training (OG-training) in which participants received either a 12-cm or an 18-cm slip during level walking with the same number of repetitions. Everyone was then exposed to the same generalization test during a novel “free” slip in overground walking. Their proactive and reactive control of stability was measured and compared. TM-training displayed a significant training effect in comparison to the control group (p<0.05), while most of the improvements were found in the reactive control of stability and were much-limited in comparison to that of OG-training. Also unlike OG-training, no significant differences were found between the results obtained from the TM_12 and the TM_18 groups (p>0.05). These results underscore the further needs to investigate the potential of the treadmill as a convenient instrument that can effectively deliver perturbation training. PMID:26653674

  19. Workload of horses on a water treadmill: effect of speed and water height on oxygen consumption and cardiorespiratory parameters.

    PubMed

    Greco-Otto, Persephone; Bond, Stephanie; Sides, Raymond; Kwong, Grace P S; Bayly, Warwick; Léguillette, Renaud

    2017-11-28

    Despite the use of water treadmills (WT) in conditioning horses, the intensity of WT exercise has not been well documented. The workload on a WT is a function of water height and treadmill speed. Therefore, the purpose of this study was to determine the effects of these factors on workload during WT exercise. Fifteen client-owned Quarter Horses were used in a randomized, controlled study. Three belt speeds and three water heights (mid cannon, carpus and stifle), along with the control condition (dry treadmill, all three speeds), were tested. Measured outcomes were oxygen consumption (V̇O 2 ), ventilation (respiratory frequency, tidal volume (V T )), heart rate (HR), and blood lactate. An ergospirometry system was used to measure V̇O 2 and ventilation. Linear mixed effects models were used to examine the effects of presence or absence of water, water height and speed (as fixed effects) on measured outcomes. Water height and its interaction with speed had a significant effect on V̇O 2 , V T and HR, all peaking at the highest water level and speed (stifle at 1.39 m/s, median V̇O 2  = 16.70 ml/(kg.min), V T  = 6 L, HR = 69 bpm). Respiratory frequency peaked with water at the carpus at 1.39 m/s (median 49 breaths/min). For a given water height, the small increments in speed did not affect the measured outcomes. Post-exercise blood lactate concentration did not change. Varying water height and speed affects the workload associated with WT exercise. The conditions utilized in this study were associated with low intensity exercise. Water height had a greater impact on exercise intensity than speed.

  20. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: feasibility and effectiveness in 6 subjects.

    PubMed

    Walker, Martha L; Ringleb, Stacie I; Maihafer, George C; Walker, Robert; Crouch, Jessica R; Van Lunen, Bonnie; Morrison, Steven

    2010-01-01

    Walker ML, Ringleb SI, Maihafer GC, Walker R, Crouch JR, Van Lunen B, Morrison S. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: feasibility and effectiveness in 6 subjects. To determine whether the use of a low-cost virtual reality (VR) system used in conjunction with partial body weight-supported treadmill training (BWSTT) was feasible and effective in improving the walking and balance abilities of patients poststroke. A before-after comparison of a single group with BWSTT intervention. University research laboratory. A convenience sample of 7 adults who were within 1 year poststroke and who had completed traditional rehabilitation but still exhibited gait deficits. Six participants completed the study. Twelve treatment sessions of BWSTT with VR. The VR system generated a virtual environment that showed on a television screen in front of the treadmill to give participants the sensation of walking down a city street. A head-mounted position sensor provided postural feedback. Functional Gait Assessment (FGA) score, Berg Balance Scale (BBS) score, and overground walking speed. One subject dropped out of the study. All other participants made significant improvements in their ability to walk. FGA scores increased from mean of 13.8 to 18. BBS scores increased from mean of 43.8 to 48.8, although a ceiling effect was seen for this test. Overground walking speed increased from mean of .49m/s to .68m/s. A low-cost VR system combined with BWSTT is feasible for improved gait and balance of patients poststroke. Copyright (c) 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Exercise Testing Reveals Everyday Physical Challenges of Bariatric Surgery Candidates.

    PubMed

    Creel, David B; Schuh, Leslie M; Newton, Robert L; Stote, Joseph J; Cacucci, Brenda M

    2017-12-01

    Few studies have quantified cardiorespiratory fitness among individuals seeking bariatric surgery. Treadmill testing allows researchers to determine exercise capacity through metabolic equivalents. These findings can assist clinicians in understanding patients' capabilities to carry out various activities of daily living. The purpose of this study was to determine exercise tolerance and the variables associated with fitness, among individuals seeking bariatric surgery. Bariatric surgery candidates completed submaximal treadmill testing and provided ratings of perceived exertion. Each participant also completed questionnaires related to history of exercise, mood, and perceived barriers/benefits of exercise. Over half of participants reported that exercise was "hard to very hard" before reaching 70% of heart rate reserve, and one-third of participants reported that exercise was "moderately hard" at less than 3 metabolic equivalents (light activity). Body mass index and age accounted for the majority of the variance in exercise tolerance, but athletic history, employment status, and perceived health benefits also contributed. Perceived benefit scores were higher than barrier scores. Categories commonly used to describe moderate-intensity exercise (3-6 metabolic equivalents) do not coincide with perceptions of intensity among many bariatric surgery candidates, especially those with a body mass index of 50 or more.

  2. Give your ideas some legs: the positive effect of walking on creative thinking.

    PubMed

    Oppezzo, Marily; Schwartz, Daniel L

    2014-07-01

    Four experiments demonstrate that walking boosts creative ideation in real time and shortly after. In Experiment 1, while seated and then when walking on a treadmill, adults completed Guilford's alternate uses (GAU) test of creative divergent thinking and the compound remote associates (CRA) test of convergent thinking. Walking increased 81% of participants' creativity on the GAU, but only increased 23% of participants' scores for the CRA. In Experiment 2, participants completed the GAU when seated and then walking, when walking and then seated, or when seated twice. Again, walking led to higher GAU scores. Moreover, when seated after walking, participants exhibited a residual creative boost. Experiment 3 generalized the prior effects to outdoor walking. Experiment 4 tested the effect of walking on creative analogy generation. Participants sat inside, walked on a treadmill inside, walked outside, or were rolled outside in a wheelchair. Walking outside produced the most novel and highest quality analogies. The effects of outdoor stimulation and walking were separable. Walking opens up the free flow of ideas, and it is a simple and robust solution to the goals of increasing creativity and increasing physical activity. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. Evaluation of respiratory dynamics by volumetric capnography during submaximal exercise protocol of six minutes on treadmill in cystic fibrosis patients.

    PubMed

    Parazzi, Paloma L F; Marson, Fernando A L; Ribeiro, Maria A G O; Schivinski, Camila I S; Ribeiro, José D

    2017-11-29

    Volumetric capnography provides the standard CO 2 elimination by the volume expired per respiratory cycle and is a measure to assess pulmonary involvement. Thus, the objective of this study was to evaluate the respiratory dynamics of healthy control subjects and those with cystic fibrosis in a submaximal exercise protocol for six minutes on the treadmill, using volumetric capnography parameters (slope 3 [Slp3], Slp3/tidal volume [Slp3/TV], and slope 2 [Slp2]). This was a cross-sectional study with 128 subjects (cystic fibrosis, 64 subjects; controls, 64 subjects]. Participants underwent volumetric capnography before, during, and after six minutes on the treadmill. Statistical analysis was performed using the Friedman, Mann-Whitney, and Kruskal-Wallis tests, considering age and sex. An alpha=0.05 was considered. Six minutes on the treadmill evaluation: in cystic fibrosis, volumetric capnography parameters were different before, during, and after six minutes on the treadmill; the same was observed for the controls, except for Slp2. Regarding age, an Slp3 difference was observed in cystic fibrosis patients regardless of age, at all moments, and in controls for age≥12 years; a difference in Slp3/TV was observed in cystic fibrosis and controls, regardless of age; and an Slp2 difference in the cystic fibrosis, regardless of age. Regarding sex, Slp3 and Slp3/TV differences were observed in cystic fibrosis regardless of sex, and in controls in male participants; an Slp2 difference was observed in the cystic fibrosis and female participants. The analysis between groups (cystic fibrosis and controls) indicated that Slp3 and Slp3/TV has identified the CF, regardless of age and sex, while the Slp2 showed the CF considering age. Cystic fibrosis showed greater values of the parameters before, during, and after exercise, even when stratified by age and sex, which may indicate ventilation inhomogeneity in the peripheral pathways in the cystic fibrosis. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  4. Overspeed HIIT in Lower-Body Positive Pressure Treadmill Improves Running Performance.

    PubMed

    Gojanovic, Boris; Shultz, Rebecca; Feihl, Francois; Matheson, Gordon

    2015-12-01

    Optimal high-intensity interval training (HIIT) regimens for running performance are unknown, although most protocols result in some benefit to key performance factors (running economy (RE), anaerobic threshold (AT), or maximal oxygen uptake (VO2max)). Lower-body positive pressure (LBPP) treadmills offer the unique possibility to partially unload runners and reach supramaximal speeds. We studied the use of LBPP to test an overspeed HIIT protocol in trained runners. Eleven trained runners (35 ± 8 yr, VO2max, 55.7 ± 6.4 mL·kg⁻¹·min⁻¹) were randomized to an LBPP (n = 6) or a regular treadmill (CON, n = 5), eight sessions over 4 wk of HIIT program. Four to five intervals were run at 100% of velocity at VO2max (vVO2max) during 60% of time to exhaustion at vVO2max (Tlim) with a 1:1 work:recovery ratio. Performance outcomes were 2-mile track time trial, VO2max, vVO2max, vAT, Tlim, and RE. LBPP sessions were carried out at 90% body weight. Group-time effects were present for vVO2max (CON, 17.5 vs. 18.3, P = 0.03; LBPP, 19.7 vs. 22.3 km·h⁻¹; P < 0.001) and Tlim (CON, 307.0 vs. 404.4 s, P = 0.28; LBPP, 444.5 vs. 855.5, P < 0.001). Simple main effects for time were present for field performance (CON, -18; LBPP, -25 s; P = 0.002), VO2max (CON, 57.6 vs. 59.6; LBPP, 54.1 vs. 55.1 mL·kg⁻¹·min⁻¹; P = 0.04) and submaximal HR (157.7 vs. 154.3 and 151.4 vs. 148.5 bpm; P = 0.002). RE was unchanged. A 4-wk HIIT protocol at 100% vVO2max improves field performance, vVO2max, VO2max and submaximal HR in trained runners. Improvements are similar if intervals are run on a regular treadmill or at higher speeds on a LPBB treadmill with 10% body weight reduction. LBPP could provide an alternative for taxing HIIT sessions.

  5. Biofeedback for robotic gait rehabilitation

    PubMed Central

    Lünenburger, Lars; Colombo, Gery; Riener, Robert

    2007-01-01

    Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback values to the patients and therapists. The therapists can adapt the therapy and give further instructions to the patients. The feedback might help the patients to adapt their movement patterns and to improve their motivation. While it is assumed that these novel methods also improve training efficacy, the proof will only be possible with future in-depth clinical studies. PMID:17244363

  6. Development of an anaerobic threshold (HRLT, HRVT) estimation equation using the heart rate threshold (HRT) during the treadmill incremental exercise test

    PubMed Central

    Ham, Joo-ho; Park, Hun-Young; Kim, Youn-ho; Bae, Sang-kon; Ko, Byung-hoon

    2017-01-01

    [Purpose] The purpose of this study was to develop a regression model to estimate the heart rate at the lactate threshold (HRLT) and the heart rate at the ventilatory threshold (HRVT) using the heart rate threshold (HRT), and to test the validity of the regression model. [Methods] We performed a graded exercise test with a treadmill in 220 normal individuals (men: 112, women: 108) aged 20–59 years. HRT, HRLT, and HRVT were measured in all subjects. A regression model was developed to estimate HRLT and HRVT using HRT with 70% of the data (men: 79, women: 76) through randomization (7:3), with the Bernoulli trial. The validity of the regression model developed with the remaining 30% of the data (men: 33, women: 32) was also examined. [Results] Based on the regression coefficient, we found that the independent variable HRT was a significant variable in all regression models. The adjusted R2 of the developed regression models averaged about 70%, and the standard error of estimation of the validity test results was 11 bpm, which is similar to that of the developed model. [Conclusion] These results suggest that HRT is a useful parameter for predicting HRLT and HRVT. PMID:29036765

  7. Development of an anaerobic threshold (HRLT, HRVT) estimation equation using the heart rate threshold (HRT) during the treadmill incremental exercise test.

    PubMed

    Ham, Joo-Ho; Park, Hun-Young; Kim, Youn-Ho; Bae, Sang-Kon; Ko, Byung-Hoon; Nam, Sang-Seok

    2017-09-30

    The purpose of this study was to develop a regression model to estimate the heart rate at the lactate threshold (HRLT) and the heart rate at the ventilatory threshold (HRVT) using the heart rate threshold (HRT), and to test the validity of the regression model. We performed a graded exercise test with a treadmill in 220 normal individuals (men: 112, women: 108) aged 20-59 years. HRT, HRLT, and HRVT were measured in all subjects. A regression model was developed to estimate HRLT and HRVT using HRT with 70% of the data (men: 79, women: 76) through randomization (7:3), with the Bernoulli trial. The validity of the regression model developed with the remaining 30% of the data (men: 33, women: 32) was also examined. Based on the regression coefficient, we found that the independent variable HRT was a significant variable in all regression models. The adjusted R2 of the developed regression models averaged about 70%, and the standard error of estimation of the validity test results was 11 bpm, which is similar to that of the developed model. These results suggest that HRT is a useful parameter for predicting HRLT and HRVT. ©2017 The Korean Society for Exercise Nutrition

  8. Mini Treadmill for Musculoskeletal Health

    NASA Technical Reports Server (NTRS)

    Humphreys, Bradley

    2015-01-01

    Because NASA's approach to space exploration calls for long-term extended missions, there is a pressing need to equip astronauts with effective exercise regimens that will maintain musculoskeletal and cardiovascular health. ZIN Technologies, Inc., has developed an innovative miniature treadmill for use in both zero-gravity and terrestrial environments. The treadmill offers excellent periodic impact exercise to stimulate cardiovascular activity and bone remodeling as well as resistive capability to encourage full-body muscle maintenance. A novel speed-control algorithm allows users to modulate treadmill speed by adjusting stride, and a new subject load device provides a more Earth-like gravity replacement load. This new and compact treadmill offers a unique approach to managing astronaut health while addressing the inherent and stringent challenges of space flight. The innovation also has the potential to offer numerous terrestrial applications, as a real-time daily load stimulus (DLS) measurement feature provides an effective mechanism to combat or manage osteoporosis, a major public health threat for 55 percent of Americans over the age of 50.

  9. Treadmill performance of mice with cerebellar lesions: 1. Purkinje cell degeneration mutant mice.

    PubMed

    Le Marec, N; Lalonde, R

    1998-02-01

    The purpose of this study was to evaluate the sensorimotor skills of a spontaneous mouse mutant, Purkinje cell degeneration (PCD), marked by selective cerebellar cortical atrophy on a treadmill activated at 1 of 2 speeds and at 1 of 3 slopes, requiring forward movements to avoid footshocks. There was no difference in latencies before falling from the belt between PCD mutants and controls during acquisition. However, PCD mutants were impaired on the fast treadmill during retention, implicating the cerebellum in the memory of a motor skill. During acquisition of the slow treadmill task at the 2 lowest slopes of inclination, PCD mutants spent more time walking than controls, an indication of a decreased ability of coordinating whole body movements. The same pattern of higher walking time on the slow treadmill in PCD mutants was evident during retention. These results indicate that the cerebellar cortex is involved in the acquisition and the retention of a task requiring equilibrium.

  10. Positive force feedback in human walking

    PubMed Central

    Grey, Michael J; Nielsen, Jens Bo; Mazzaro, Nazarena; Sinkjær, Thomas

    2007-01-01

    The objective of this study was to determine if load receptors contribute to the afferent-mediated enhancement of ankle extensor muscle activity during the late stance phase of the step cycle. Plantar flexion perturbations were presented in late stance while able-bodied human subjects walked on a treadmill that was declined by 4%, inclined by 4% or held level. The plantar flexion perturbation produced a transient, but marked, presumably spinally mediated decrease in soleus EMG that varied directly with the treadmill inclination. Similarly, the magnitude of the control step soleus EMG and Achilles' tendon force also varied directly with the treadmill inclination. In contrast, the ankle angular displacement and velocity were inversely related to the treadmill inclination. These results suggest that Golgi tendon organ feedback, via the group Ib pathway, is reduced when the muscle–tendon complex is unloaded by a rapid plantar flexion perturbation in late stance phase. The changes in the unload response with treadmill inclination suggest that the late stance phase soleus activity may be enhanced by force feedback. PMID:17331984

  11. Compliance of children with moderate to severe intellectual disability to treadmill walking: a pilot study.

    PubMed

    Vashdi, E; Hutzler, Y; Roth, D

    2008-05-01

    Individuals with Intellectual Disability (ID) exhibit reduced levels of compliance to exercise, including treadmill walking. The purpose of this study was to measure the effects of several training conditions on compliance to participation in treadmill walking of children with moderate to severe ID. Criteria for compliance were the averaged number of times participants attempted to discontinue walking during two 5-min exercise sessions of treadmill walking at an intensity of 65-75% of predicted maximal HR. Fifteen children aged 5-11 with moderate to severe ID participated in the study. Training conditions were (a) close supervisor's position, (b) distant supervisor's position, (c) positive reinforcement, and (d) paired modeling. General linear mixed model statistics revealed significant differences in favor of the paired modeling and positive reinforcement compared to the other conditions. Leaning forward was the most frequent type of participants' attempt to stop exercising. Paired modeling and positive reinforcement should be considered within treadmill training programs for children with moderate to severe ID.

  12. Objectively assessing treadmill walking during the second and third pregnancy trimesters.

    PubMed

    DiNallo, Jennifer M; Downs, Danielle Symons; Le Masurier, Guy

    2012-01-01

    To effectively promote physical activity (PA) and quantify the effects of PA interventions for pregnant women, PA measurement during pregnancy needs improvement. The purpose of this study was to assess PA monitor output during a controlled, treadmill walking protocol among pregnant women at 20- and 32-weeks gestation. Women (N = 43) wore an Actigraph accelerometer, NL1000, and Yamax pedometer during a 20-minute treadmill walking test [5-minute periods at 4 different speeds (54, 67, 80, and 94 m·min(-1))] at 20- and 32-weeks gestation. Repeated-measures ANOVAs indicated that Actigraph total counts/minute and minutes of moderate-vigorous PA (MVPA), NL1000 steps and minutes MVPA, and Yamax steps decreased from 20- to 32-weeks gestation (P ≤ .05), while body girth circumference and activity monitor tilt increased (P ≤ .05). Repeated measures ANCOVAs, controlling for changes in body girth and monitor tilt, yielded no significant differences in any outcome measures from 20- to 32-weeks gestation. Preliminary results suggest physical changes during pregnancy impact activity monitor output in controlled settings. Accurately measuring and statistically controlling for changes in body girth at monitor placement site and monitor tilt may improve the accuracy of activity monitors for use with pregnant populations.

  13. What Did We Learn from the Animal Studies of Body Weight–Supported Treadmill Training and Where Do We Go from Here?

    PubMed Central

    Dy, Christine J.

    2017-01-01

    Abstract Body weight–supported treadmill training (BWSTT) developed from animal studies of spinal cord injury (SCI). Evidence that spinal cats (i.e., cats that have a complete surgical transection of the cord) could regain the ability to step on a moving treadmill indicated a vast potential for spinal circuits to generate walking without the brain. BWSTT represented a means to unlock that potential. As the technique was adapted as a rehabilitation intervention for humans with SCI, shortcomings in the translation to walking in the real world were exposed. Evidence that BWSTT has not been as successful for humans with SCI leads us to revisit key animal studies. In this short review, we describe the task-specific nature of BWSTT and discuss how this specificity may pose limits on the recovery of overground walking. Also discussed are more recent studies that have introduced new strategies and tools that adapt BWSTT ideas to more functionally-relevant tasks. We introduce a new device for weight-supported overground walking in rats called Circular BART (Body weight supported Ambulatory Rat Trainer) and demonstrate that it is relatively easy and inexpensive to produce. Future animal studies will benefit from the development of simple tools that facilitate training and testing of overground walking. PMID:27863455

  14. What Did We Learn from the Animal Studies of Body Weight-Supported Treadmill Training and Where Do We Go from Here?

    PubMed

    de Leon, Ray D; Dy, Christine J

    2017-05-01

    Body weight-supported treadmill training (BWSTT) developed from animal studies of spinal cord injury (SCI). Evidence that spinal cats (i.e., cats that have a complete surgical transection of the cord) could regain the ability to step on a moving treadmill indicated a vast potential for spinal circuits to generate walking without the brain. BWSTT represented a means to unlock that potential. As the technique was adapted as a rehabilitation intervention for humans with SCI, shortcomings in the translation to walking in the real world were exposed. Evidence that BWSTT has not been as successful for humans with SCI leads us to revisit key animal studies. In this short review, we describe the task-specific nature of BWSTT and discuss how this specificity may pose limits on the recovery of overground walking. Also discussed are more recent studies that have introduced new strategies and tools that adapt BWSTT ideas to more functionally-relevant tasks. We introduce a new device for weight-supported overground walking in rats called Circular BART (Body weight supported Ambulatory Rat Trainer) and demonstrate that it is relatively easy and inexpensive to produce. Future animal studies will benefit from the development of simple tools that facilitate training and testing of overground walking.

  15. Myocardial work during endurance training and resistance training: a daily comparison, from workout session 1 through completion of cardiac rehabilitation

    PubMed Central

    Hubbard, Matthew; McCullough-Shock, Tiffany; Simms, Kay; Cheng, Dunlei; Hartman, Julie; Strauss, Danielle; Anderson, Valerie; Lawrence, Anne; Malorzo, Emily

    2010-01-01

    Patients in cardiac rehabilitation are typically advised to complete a period of supervised endurance training before beginning resistance training. In this study, however, we compared the peak rate-pressure product (RPP, a calculated indicator of myocardial work) of patients during two types of exercise—treadmill walking and chest press—from workout session 1 through completion of cardiac rehabilitation. Twenty-one patients (4 women and 17 men, aged 35 to 70 years) were enrolled in the study; they were referred for cardiac rehabilitation after myocardial infarction, percutaneous coronary intervention, or both. The participants did treadmill walking and chest press exercises during each workout session. Peak values for heart rate (HR) and systolic blood pressure (SBP) were recorded, and the peak RPP was calculated (peak HR ⊠ peak SBP). Paired t tests were used to compare the data collected during the two types of exercise across 19 workout sessions. The mean peak values for HR, SBP, and RPP were lower during resistance training than during endurance training; the differences were statistically significant (P < 0.05), with only one exception (the SBP for session 1). Across all 19 workout sessions, the participants performed more myocardial work, as indicated by the peak RPP, during treadmill walking than during the chest press. PMID:20396420

  16. Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats.

    PubMed

    Salim, Samina; Sarraj, Nada; Taneja, Manish; Saha, Kaustuv; Tejada-Simon, Maria Victoria; Chugh, Gaurav

    2010-04-02

    Recent work has suggested correlation of oxidative stress with anxiety-like behavior. There also is evidence for anxiolytic effects of physical exercise. However, a direct role of oxidative stress in anxiety is not clear and a protective role of physical exercise in oxidative stress-mediated anxiety has never been addressed. In this study, we have utilized rats to test direct involvement of oxidative stress with anxiety-like behavior and have identified oxidative stress mechanisms likely involved in anxiolytic effects of physical exercise. Intraperitoneal injections at non-toxic dose of l-buthionine-(S,R)-sulfoximine (BSO), an agent that increases oxidative stress markers, increased anxiety-like behavior of rats compared to vehicle-treated control rats. Prior 2 weeks treatment with the antioxidant, tempol attenuated BSO-induced anxiety-like behavior of rats suggesting a role of oxidative stress in this phenomenon. Moreover, moderate treadmill exercise prevented BSO-induced anxiety-like behavior of rats and also prevented BSO-mediated increase in oxidative stress markers in serum, urine and brain tissue homogenates from hippocampus, amygdala and locus coeruleus. Thus increasing oxidative stress increases anxiety-like behavior of rats. Moreover, antioxidant or treadmill exercise training both reduce oxidative stress in the rat brain regions implicated in anxiety response and prevent anxiety-like behavior of rats. Published by Elsevier B.V.

  17. Energy expenditure and physiological responses during walking on a treadmill and moving on the Torqway vehicle.

    PubMed

    Maciejczyk, Marcin; Wiecek, Magdalena; Szymura, Jadwiga; Szygula, Zbigniew

    2016-01-01

    One of the new products which can be used to increase physical activity and energy expenditure is the Torqway vehicle, powered by the upper limbs. The aim of this study was to (1) assess the usefulness and repeatability of the Torqway vehicle for physical exercise, (2) compare energy expenditure and physiological responses during walking on a treadmill and during physical effort while moving on the Torqway at a constant speed. The participants (11 men, aged 20.2 ± 1.3) performed the incremental test and submaximal exercises (walking on the treadmill and moving on the Torqway vehicle at the same speed). Energy expenditure during the exercise on the Torqway was significantly higher (p = 0.001) than during the walking performed at the same speed. The intensity of the exercise performed on the Torqway expressed as %VO2max and %HRmax was significantly ( p < 0.001) higher than during walking (respectively: 35.0 ± 6.0 vs. 29.4 ± 7.4 %VO2max and 65.1 ± 7.3 vs. 47.2 ± 7.4 %HRmax). Exercise on the Torqway vehicle allows for the intensification of the exercise at a low movement speed, comparable to walking. Moving on the Torqway vehicle could be an effective alternative activity for physical fitness and exercise rehabilitation programs.

  18. Firefighter exercise protocols conducted in an environmental chamber: developing a laboratory-based simulated firefighting protocol.

    PubMed

    Ensari, Ipek; Motl, Robert W; Klaren, Rachel E; Fernhall, Bo; Smith, Denise L; Horn, Gavin P

    2017-05-01

    A standard exercise protocol that allows comparisons across various ergonomic studies would be of great value for researchers investigating the physical and physiological strains of firefighting and possible interventions for reducing the demands. We compared the pattern of cardiorespiratory changes from 21 firefighters during simulated firefighting activities using a newly developed firefighting activity station (FAS) and treadmill walking both performed within an identical laboratory setting. Data on cardiorespiratory parameters and core temperature were collected continuously using a portable metabolic unit and a wireless ingestible temperature probe. Repeated measures ANOVA indicated distinct patterns of change in cardiorespiratory parameters and heart rate between conditions. The pattern consisted of alternating periods of peaks and nadirs in the FAS that were qualitatively and quantitatively similar to live fire activities, whereas the same parameters increased logarithmically in the treadmill condition. Core temperature increased in a similarly for both conditions, although more rapidly in the FAS. Practitioner Summary: The firefighting activity station (FAS) yields a pattern of cardiorespiratory responses qualitatively and quantitatively similar to live fire activities, significantly different than treadmill walking. The FAS can be performed in a laboratory/clinic, providing a potentially standardised protocol for testing interventions to improve health and safety and conducting return to duty decisions.

  19. Why Is It Harder to Run on an Inclined Exercise Treadmill?

    ERIC Educational Resources Information Center

    Nave, Carla M. A. P. F.; Amoreira, Luis J. M.

    2014-01-01

    It is a known fact that it takes a greater effort to run on an exercise treadmill when it is inclined with positive slope than when it is in a horizontal position. The reason seems simple: walking on an inclined treadmill is somehow equivalent to walking up a hill with the same inclination; when we walk up a hill, our own weight does negative work…

  20. Molecular Mechanisms of Treadmill Therapy on Neuromuscular Atrophy Induced via Botulinum Toxin A

    PubMed Central

    Tsai, Sen-Wei; Chen, Hsiao-Ling

    2013-01-01

    Botulinum toxin A (BoNT-A) is a bacterial zinc-dependent endopeptidase that acts specifically on neuromuscular junctions. BoNT-A blocks the release of acetylcholine, thereby decreasing the ability of a spastic muscle to generate forceful contraction, which results in a temporal local weakness and the atrophy of targeted muscles. BoNT-A-induced temporal muscle weakness has been used to manage skeletal muscle spasticity, such as poststroke spasticity, cerebral palsy, and cervical dystonia. However, the combined effect of treadmill exercise and BoNT-A treatment is not well understood. We previously demonstrated that for rats, following BoNT-A injection in the gastrocnemius muscle, treadmill running improved the recovery of the sciatic functional index (SFI), muscle contraction strength, and compound muscle action potential (CMAP) amplitude and area. Treadmill training had no influence on gastrocnemius mass that received BoNT-A injection, but it improved the maximal contraction force of the gastrocnemius, and upregulation of GAP-43, IGF-1, Myo-D, Myf-5, myogenin, and acetylcholine receptor (AChR) subunits α and β was found following treadmill training. Taken together, these results suggest that the upregulation of genes associated with neurite and AChR regeneration following treadmill training may contribute to enhanced gastrocnemius strength recovery following BoNT-A injection. PMID:24327926

  1. Treadmill exercise prevents diabetes-induced increases in lipid peroxidation and decreases in Cu,Zn-superoxide dismutase levels in the hippocampus of Zucker diabetic fatty rats.

    PubMed

    Kim, Jong Whi; Chae, Junghyun; Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Choi, Jung Hoon; Jung, Hyo Young; Song, Wook; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung

    2015-01-01

    In the present study, we investigated the effects of treadmill exercise on lipid peroxidation and Cu,Zn-superoxide dismutase (SOD1) levels in the hippocampus of Zucker diabetic fatty (ZDF) rats and lean control rats (ZLC) during the onset of diabetes. At 7 weeks of age, ZLC and ZDF rats were either placed on a stationary treadmill or made to run for 1 h/day for 5 consecutive days at 16~22 m/min for 5 weeks. At 12 weeks of age, the ZDF rats had significantly higher blood glucose levels and body weight than the ZLC rats. In addition, malondialdehyde (MDA) levels in the hippocampus of the ZDF rats were significantly higher than those of the ZLC rats whereas SOD1 levels in the hippocampus of the ZDF rats were moderately decreased. Notably, treadmill exercise prevented the increase of blood glucose levels in ZDF rats. In addition, treadmill exercise significantly ameliorated changes in MDA and SOD1 levels in the hippocampus although SOD activity was not altered. These findings suggest that diabetes increases lipid peroxidation and decreases SOD1 levels, and treadmill exercise can mitigate diabetes-induced oxidative damage in the hippocampus.

  2. Walking economy during cued versus non-cued self-selected treadmill walking in persons with Parkinson's disease.

    PubMed

    Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing

    2014-01-01

    Gait impairments related to Parkinson's disease (PD) include variable step length and decreased walking velocity, which may result in poorer walking economy. Auditory cueing is a common method used to improve gait mechanics in PD that has been shown to worsen walking economy at set treadmill walking speeds. It is unknown if auditory cueing has the same effects on walking economy at self-selected treadmill walking speeds. To determine if auditory cueing will affect walking economy at self-selected treadmill walking speeds and at speeds slightly faster and slower than self-selected. Twenty-two participants with moderate PD performed three, 6-minute bouts of treadmill walking at three speeds (self-selected and ± 0.22 m·sec-1). One session used cueing and the other without cueing. Energy expenditure was measured and walking economy was calculated (energy expenditure/power). Poorer walking economy and higher energy expenditure occurred during cued walking at a self-selected and a slightly faster walking speed, but there was no apparent difference at the slightly slower speed. These results suggest that potential gait benefits of auditory cueing may come at an energy cost and poorer walking economy for persons with PD at least at some treadmill walking speeds.

  3. Implementation and adherence issues in a workplace treadmill desk intervention.

    PubMed

    Tudor-Locke, Catrine; Hendrick, Chelsea A; Duet, Megan T; Swift, Damon L; Schuna, John M; Martin, Corby K; Johnson, William D; Church, Timothy S

    2014-10-01

    We report experiences, observations, and general lessons learned, specifically with regards to participant recruitment and adherence, while implementing a 6-month randomized controlled treadmill desk intervention (the WorkStation Pilot Study) in a real-world office-based health insurance workplace. Despite support from the company's upper administration, relatively few employees responded to the company-generated e-mail to participate in the study. Ultimately only 41 overweight/obese participants were deemed eligible and enrolled from a recruitment pool of 728 workers. Participants allocated to the Treadmill Desk Group found the treadmill desk difficult to use for 45 min twice a day as scheduled. Overall attendance averaged 45%-50% of all possible scheduled sessions. The most frequently reported reasons for missing sessions included work conflict (35%), out of office (30%), and illness/injury/drop-out (20%). Although focus groups indicated consistently positive comments about treadmill desks, an apparent challenge was fitting a rigid schedule of shared use to an equally rigid and demanding work schedule punctuated with numerous tasks and obligations that could not easily be interrupted. Regardless, we documented that sedentary office workers average ∼43 min of light-intensity (∼2 METs) treadmill walking daily in response to a scheduled, facilitated, and shared access workplace intervention. Workstation alternatives that combine computer-based work with light-intensity physical activity are a potential solution to health problems associated with excessive sedentary behavior; however, there are numerous administrative, capital, and human resource challenges confronting employers considering providing treadmill desks to workers in a cost-effective and equitable manner.

  4. Walking during body-weight-supported treadmill training and acute responses to varying walking speed and body-weight support in ambulatory patients post-stroke.

    PubMed

    Aaslund, Mona Kristin; Helbostad, Jorunn Lægdheim; Moe-Nilssen, Rolf

    2013-05-01

    Rehabilitating walking in ambulatory patients post-stroke, with training that is safe, task-specific, intensive, and of sufficient duration, can be challenging. Some challenges can be met by using body-weight-supported treadmill training (BWSTT). However, it is not known to what degree walking characteristics are similar during BWSTT and overground walking. In addition, important questions regarding the training protocol of BWSTT remain unanswered, such as how proportion of body-weight support (BWS) and walking speed affect walking characteristics during training. The objective was therefore to investigate if and how kinematic walking characteristics are different between overground walking and treadmill walking with BWS in ambulatory patients post-stroke, and the acute response of altering walking speed and percent BWS during treadmill walking with BWS. A cross-sectional repeated-measures design was used. Ambulating patients post-stroke walked in slow, preferred, and fast walking speed overground and at comparable speeds on the treadmill with 20% and 40% BWS. Kinematic walking characteristics were obtained using a kinematic sensor attached over the lower back. Forty-four patients completed the protocol. Kinematic walking characteristics were similar during treadmill walking with BWS, compared to walking overground. During treadmill walking, choice of walking speed had greater impact on kinematic walking characteristics than proportion of BWS. Faster walking speeds tended to affect the kinematic walking characteristics positively. This implies that in order to train safely and with sufficient intensity and duration, therapists may choose to include BWSTT in walking rehabilitation also for ambulatory patients post-stroke without aggravating gait pattern during training.

  5. Run Economy on a Normal and Lower Body Positive Pressure Treadmill.

    PubMed

    Temple, Corey; Lind, Erik; VAN Langen, Deborah; True, Larissa; Hupman, Saige; Hokanson, James F

    2017-01-01

    Lower body positive pressure (LBPP) treadmill running is used more frequently in clinical and athletic settings. Accurate caloric expenditure is required for proper exercise prescription, especially for obese patients performing LBPP exercise. It is unclear if running on LBPP changes running economy (RE) in proportion to the changes in body weight. The purpose of the study was to measure the oxygen consumption (VO 2 ) and running economy (RE) of treadmill running at normal body weight and on LBPP. Twenty-three active, non-obese participants (25.8±7.2 years; BMI = 25.52±3.29 kg·m -2 ) completed two bouts of running exercise in a counterbalanced manner: (a) on a normal treadmill (NT) and (b) on a LBPP treadmill at 60% (40% of body weight supported) for 4 min at 2.24 (5 mph), 2.68 (6 mph), and 3.13 m·s -1 (7 mph). Repeated measures ANOVA showed a statistically significant interaction in RE among trials, F(2, 44) = 6.510, p <.0005, partial η 2 = 0.228. An examination of pairwise comparisons indicated that RE was significantly greater for LBPP across the three speeds ( p < 0.005). As expected, LBPP treadmill running resulted in significantly lower oxygen consumption at all three running speeds. We conclude that RE (ml O 2 ·kg -1 ·km -1 ) of LBPP running is significantly poorer than normal treadmill running, and the ~30% change in absolute energy cost is not as great as predicted by the change in body weight (40%).

  6. Outcome of patients after lower limb fracture with partial weight bearing postoperatively treated with or without anti-gravity treadmill (alter G®) during six weeks of rehabilitation - a protocol of a prospective randomized trial.

    PubMed

    Henkelmann, Ralf; Schneider, Sebastian; Müller, Daniel; Gahr, Ralf; Josten, Christoph; Böhme, Jörg

    2017-03-14

    Partial or complete immobilization leads to different adjustment processes like higher risk of muscle atrophy or a decrease of general performance. The present study is designed to prove efficacy of the anti-gravity treadmill (alter G®) compared to a standard rehabilitation protocol in patients with tibial plateau (group 1)or ankle fractures (group 2) with six weeks of partial weight bearing of 20 kg. This prospective randomized study will include a total of 60 patients for each group according to predefined inclusion and exclusion criteria. 1:1 randomization will be performed centrally via fax supported by the Clinical Trial Centre Leipzig (ZKS Leipzig). Patients in the treatment arm will be treated with an anti-gravity treadmill (alter G®) instead of physiotherapy. The protocol is designed parallel to standard physiotherapy with a frequency of two to three times of training with the treadmill per week with duration of 20 min for six weeks. Up to date no published randomized controlled trial with an anti-gravity treadmill is available. The findings of this study can help to modify rehabilitation of patients with partial weight bearing due to their injury or postoperative protocol. It will deliver interesting results if an anti-gravity treadmill is useful in rehabilitation in those patients. Further ongoing studies will identify different indications for an anti-gravity treadmill. Thus, in connection with those studies, a more valid statement regarding safety and efficacy is possible. NCT02790229 registered on May 29, 2016.

  7. Acute aquatic treadmill exercise improves gait and pain in people with knee osteoarthritis.

    PubMed

    Roper, Jaimie A; Bressel, Eadric; Tillman, Mark D

    2013-03-01

    To examine the acute effects of aquatic and land treadmill exercise on gait kinematics as well as the level of disease-specific and movement-related pain for individuals with osteoarthritis. Quasi-experimental crossover design. Biomechanics laboratory. Participants (N=14; age, 43-64y) diagnosed with osteoarthritis at the knee (n=12), osteoarthritis at the knee and ankle (n=1), or osteoarthritis at the knee and hip (n=1). Participants performed 3 exercise sessions separated by at least 24 hours in 1 week for each mode of exercise (aquatic treadmill and land treadmill). Gait kinematics and pain were measured before and after each intervention. The angular velocity gain score during stance for left knee extension was improved by 38% after aquatic treadmill exercise (P=.004). Similarly, during swing, the gain scores for angular velocity were also greater for left knee internal rotation and extension by 65% and 20%, respectively (P=.004, P=.008, respectively). During stance, the joint angle gain score for left hip flexion was 7.23% greater after land exercise (P=.007). During swing, the angular velocity gain score for right hip extension was significantly greater for aquatic exercise by 28% (P=.01). Only the joint angle gain score for left ankle abduction during stance was significantly higher after land exercise (4.72%, P=.003). No other joint angle gain scores for either stance or swing were significantly different for either condition (P=.06-.96). Perceived pain was 100% greater after land than aquatic treadmill exercise (P=.02). Step rate and step length were not different between conditions (P=.31-.92). An acute training period on an aquatic treadmill positively influenced joint angular velocity and arthritis-related joint pain. Acute aquatic treadmill exercise may be useful as a conservative treatment to improve angular speed of the lower-extremity joints and pain related to osteoarthritis. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Effects of repetitive transcranial magnetic stimulation and trans-spinal direct current stimulation associated with treadmill exercise in spinal cord and cortical excitability of healthy subjects: A triple-blind, randomized and sham-controlled study

    PubMed Central

    Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos

    2018-01-01

    Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP’s amplitude and NFR’s area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR’s area. High-frequency rTMS increased MEP’s amplitude and NFR’s area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes. PMID:29596524

  9. Effects of repetitive transcranial magnetic stimulation and trans-spinal direct current stimulation associated with treadmill exercise in spinal cord and cortical excitability of healthy subjects: A triple-blind, randomized and sham-controlled study.

    PubMed

    Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos; Monte-Silva, Katia

    2018-01-01

    Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP's amplitude and NFR's area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR's area. High-frequency rTMS increased MEP's amplitude and NFR's area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes.

  10. Multivisceral Transplantation Rehabilitation Program-Case Report.

    PubMed

    Loschi, T M; Cinacchi, M P R G; Baccan, M D T A; Marques, F; Pedroso, P T; Meira Filho, S P; Scacchetti, T; Pavão, D N

    2018-04-01

    Multivisceral transplantation is the treatment for multiple abdominal organ failure. The patient experiences reduced food intake and absorption of nutrients, contributing to weight loss and decreased muscle mass, reducing functional capacity. A physical and nutritional rehabilitation program based on adequate caloric intake associated with supervised physical exercise seems to support a gain of muscle mass, re-establishing its capacity and functional independence. A rehabilitation program was carried out, consisting of low-intensity aerobic exercise on treadmill, exercises of global strengthening (50% of 1 maximum repetition [1RM], with progressive increase), and nutritional monitoring (oral hypercaloric diet, hyperproteic supplementation daily and after exercise). Initial and final evaluation included weight, muscle mass index, brachial circumference (BC), tricipital cutaneous fold (TCF), hand grip strength (HGS), 6-minute walk test (6MWT), 1RM, vital capacity (VC), and respiratory muscle strength. After the program, functional capacity was evaluated through the 6MWT (92%), 1RM test, VC (55%), respiratory muscle strength, HGS at 5 kg, weight gain (4.75%), increase of BC in 2 cm, and TCF in 2 mm. The program contributed to functional independence, improved quality of life, and social reintegration, suggesting the importance of a supervised physical activity program associated with adequate nutritional intake after multivisceral transplantation. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Plasma renin activity, aldosterone and catecholamine levels when swimming and running.

    PubMed

    Guezennec, C Y; Defer, G; Cazorla, G; Sabathier, C; Lhoste, F

    1986-01-01

    The purpose of this study was to determine the response of plasma renin activity (PRA), plasma aldosterone concentration (PAC) and catecholamines to two graded exercises differing by posture. Seven male subjects (19-25 years) performed successively a running rest on a treadmill and a swimming test in a 50-m swimming pool. Each exercise was increased in severity in 5-min steps with intervals of 1 min. Oxygen consumption, heart rate and blood lactate, measured every 5 min, showed a similar progression in energy expenditure until exhaustion, but there was a shorter time to exhaustion in the last step of the running test. PRA, PAC and catecholamines were increased after both types of exercise. The PRA increase was higher after the running test (20.9 ng AngI X ml-1 X h-1) than after swimming (8.66 ng AngI X ml-1 X h-1). The PAC increase was slightly greater after running (123 pg X ml-1) than swimming (102 pg X ml-1), buth the difference was not significant. Plasma catecholamine was higher after the swimming test. These results suggest that the volume shift induced by the supine position and water pressure during swimming decreased the PRA response. The association after swimming compared to running of a decreased PRA and an enhanced catecholamine response rule out a strict dependence of renin release under the effect of plasma catecholamines and is evidence of the major role of neural pathways for renin secretion during physical exercise.

  12. Rehabilitation and return to running after lower limb stress fractures.

    PubMed

    Liem, Brian C; Truswell, Hallie J; Harrast, Mark A

    2013-01-01

    Lower limb stress fractures are common injuries in runners. In terms of treatment, much of the medical literature has focused primarily on rest and cessation of running, but little has been written about the rehabilitation and functional progression of runners following a lower limb stress fracture. This article reviews the scientific evidence behind common rehabilitation concepts used for runners recovering from these injuries and also discusses sport-specific training modalities such as deep water running and antigravity treadmill training. Overall this article is intended to be a practical resource for clinicians to guide runners in functional rehabilitation and return to running following lower limb stress injury.

  13. Self-Motion Perception during Locomotor Recalibration: More than Meets the Eye

    ERIC Educational Resources Information Center

    Durgin, Frank H.; Pelah, Adar; Fox, Laura F.; Lewis, Jed; Kane, Rachel; Walley, Katherine A.

    2005-01-01

    Do locomotor after effects depend specifically on visual feedback? In 7 experiments, 116 college students were tested, with closed eyes, at stationary running or at walking to a previewed target after adaptation, with closed eyes, to treadmill locomotion. Subjects showed faster inadvertent drift during stationary running and increased distance…

  14. Development of a Single High Fat Meal Challenge to Unmask Latent Cardiopulmonary Effects of Air Pollution Exposure in Rats

    EPA Science Inventory

    Stress tests are used clinically to determine the presence of underlying disease and predict future cardiovascular risk. In previous studies, we used treadmill exercise stress in rats to unmask the priming effects of air pollution inhalation. Other day-to-day activities stress th...

  15. Effects of an Aerobic Rowing Training Regimen in Young Adults with Down Syndrome.

    ERIC Educational Resources Information Center

    Varela, Ana Maria; Sardinha, Luis Bettencount; Pitetti, Kenneth H.

    2001-01-01

    Eight young adult males with Down syndrome received a 16-week rowing ergometry training regimen. Following training, no changes in cardiovascular fitness were found but participants did achieve significantly higher levels of work performance on both treadmill and rowing ergometer tests than did a control group. (Contains references.) (Author/DB)

  16. Conventional testing methods produce submaximal values of maximum oxygen consumption.

    PubMed

    Beltrami, Fernando G; Froyd, Christian; Mauger, Alexis R; Metcalfe, Alan J; Marino, Frank; Noakes, Timothy D

    2012-01-01

    This study used a novel protocol to test the hypothesis that a plateau in oxygen consumption (VO(2 max)) during incremental exercise testing to exhaustion represents the maximal capacity of the cardiovascular system to transport oxygen. Twenty-six subjects were randomly divided into two groups matched by their initial VO(2 max). On separate days, the reverse group performed (i) an incremental uphill running test on a treadmill (INC(1)) plus verification test (VER) at a constant workload 1 km h(-1) higher than the last completed stage in INC(1); (ii) a decremental test (DEC) in which speed started as same as the VER but was reduced progressively and (iii) a final incremental test (INC(F)). The control group performed only INC on the same days that the reverse group was tested. VO(2 max) remained within 0.6 ml kg(-1) min(-1) across the three trials for the control group (p=0.93) but was 4.4% higher during DEC compared with INC(1) (63.9 ± 3.8 vs 61.2 ± 4.8 ml kg(-1) min(-1), respectively, p=0.004) in the reverse group, even though speed at VO(2 max) was lower (14.3 ± 1.1 vs 16.2 ± 0.7 km h(-1) for DEC and INC(1), respectively, p=0.0001). VO(2 max) remained significantly higher during INC(F) (63.6 ± 3.68 ml kg(-1) min(-1), p=0.01), despite an unchanged exercise time between INC(1) and INC(F). These findings go against the concept that a plateau in oxygen consumption measured during the classically described INC and VER represents a systemic limitation to oxygen use. The reasons for a higher VO(2) during INC(F) following the DEC test are unclear.

  17. A simulation of cross-country skiing on varying terrain by using a mathematical power balance model

    PubMed Central

    Moxnes, John F; Sandbakk, Øyvind; Hausken, Kjell

    2013-01-01

    The current study simulated cross-country skiing on varying terrain by using a power balance model. By applying the hypothetical inductive deductive method, we compared the simulated position along the track with actual skiing on snow, and calculated the theoretical effect of friction and air drag on skiing performance. As input values in the model, air drag and friction were estimated from the literature, whereas the model included relationships between heart rate, metabolic rate, and work rate based on the treadmill roller-ski testing of an elite cross-country skier. We verified this procedure by testing four models of metabolic rate against experimental data on the treadmill. The experimental data corresponded well with the simulations, with the best fit when work rate was increased on uphill and decreased on downhill terrain. The simulations predicted that skiing time increases by 3%–4% when either friction or air drag increases by 10%. In conclusion, the power balance model was found to be a useful tool for predicting how various factors influence racing performance in cross-country skiing. PMID:24379718

  18. Christa McAuliffe runs in place on a treadmill to test physiological response

    NASA Image and Video Library

    1985-07-12

    S85-37165 (8-12 July 1985) -- Sharon C. (Christa) McAuliffe of Concord High, Concord, New Hampshire, runs in place on treadmill to test physiological responses at Johnson Space Center. Christa McAuliffe was eventually chosen as the first Teacher in Space and was a member of the seven-member Challenger shuttle crew which died tragically in the explosion of the spacecraft during the launch of STS-51L from the Kennedy Space Center about 11:40 a.m., EST, on Jan. 28, 1986. The explosion occurred 73 seconds into the flight as a result of a leak in one of two Solid Rocket Boosters that ignited the main liquid fuel tank. The crew members of the Challenger represented a cross-section of the American population in terms of race, gender, geography, background, and religion. The explosion became one of the most significant events of the 1980s, as billions around the world saw the accident on television and empathized with any one of the several crew members killed. Photo credit: NASA

  19. A simulation of cross-country skiing on varying terrain by using a mathematical power balance model.

    PubMed

    Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell

    2013-01-01

    The current study simulated cross-country skiing on varying terrain by using a power balance model. By applying the hypothetical inductive deductive method, we compared the simulated position along the track with actual skiing on snow, and calculated the theoretical effect of friction and air drag on skiing performance. As input values in the model, air drag and friction were estimated from the literature, whereas the model included relationships between heart rate, metabolic rate, and work rate based on the treadmill roller-ski testing of an elite cross-country skier. We verified this procedure by testing four models of metabolic rate against experimental data on the treadmill. The experimental data corresponded well with the simulations, with the best fit when work rate was increased on uphill and decreased on downhill terrain. The simulations predicted that skiing time increases by 3%-4% when either friction or air drag increases by 10%. In conclusion, the power balance model was found to be a useful tool for predicting how various factors influence racing performance in cross-country skiing.

  20. [STUDYING SOME PHARMACOLOGICAL EFFECTS OF NEW 3-HYDROXYPYRIDINE DERIVATIVE].

    PubMed

    Yasnetsov, V V; Tsublova, E G; Yasnetsov, Vic V; Skachilova, S Ya; Karsanova, S K; Ivanov, Yu V

    2016-01-01

    It was established that a new 3-hydroxypyridine (3-HP) derivative, 2-ethyl-6-methyl-3-hydroxypyridine L-aspartate (3-HP), in small doses (1 and 5 mg/kg) increased physical performance in treadmill and swimming tests on rats. The new substance showed greater or equal effects compared to the reference actoprotector drugs metaprot and ladasten in much higher doses. The gluconeogenesis inhibitor tryptophan significantly (74 ± 5%, p < 0.01) prevented this stimulatory effect of 3-HPA in the treadmill test on rats. 3-HPA at a higher dose (30 mg/kg) had marked antiamnesic effect on various models of amnesia in mice. It was more effective than reference drugs mexidol (another 3-HP derivative) in a dose of 30 mg/kg and nootropic drug piracetam in a dose of 200 mg/kg, but had equal effect with these drugs in doses of 50 and 800 mg/kg, respectively. 3-HPA (30 mg/kg per day) had neuroprotective effect in rats with brain ischemia and decreased the neurologic deficiency more effectively than mexidol (50 mg/kg per day).

  1. Effect of selected exercises on in-shoe plantar pressures in people with diabetes and peripheral neuropathy

    PubMed Central

    Shah, Kshamata M.; Mueller, Michael J.

    2012-01-01

    BACKGROUND In people with diabetes and peripheral neuropathy (DM+PN), injury risk is not clearly known for weight bearing (WB) vs. non-weight bearing (NWB) exercise. In-shoe peak plantar pressures (PPP) often are used as a surrogate indicator of injury to the insensitive foot. OBJECTIVE Compare PPPs in people with DM+PN during selected WB and NWB exercises. METHODS 15 subjects with DM+PN participated. PPPs were recorded for the forefoot, midfoot, and heel during level walking and compared to; WB exercises - treadmill walking, heel and toe raises, sit to stands, stair climbing, single leg standing; and NWB exercises - stationary bicycling, balance ball exercise and plantar flexion exercise. RESULTS Compared to level walking; mean forefoot PPP during treadmill walking was 13% higher, but this difference was eliminated when walking speed was used as a covariate. Mean PPPs were similar or substantially lower for other exercises, except for higher forefoot PPP with heel raise exercises. CONCLUSIONS Slow progression and regular monitoring of insensitive feet are recommended for all exercises, but especially for heel raises, and increases in walking speed. The remaining WB and NWB exercises pose no greater risk to the insensitive foot due to increases in PPP compared to level walking. PMID:22677098

  2. A Treadmill to Localize, Exercise, and Measure the Propulsive Power of Nematodes

    NASA Astrophysics Data System (ADS)

    Yuan, Jinzhou; Chuan, Han-Sheng; Gnatt, Michael; Raizen, David; Bau, Haim

    2011-11-01

    The nematodes C. elegans is often used as model biological system to study the genetic basis of behavior, disease-progression, and aging, as well as to develop new therapies and screen drugs. On occasion, it is desirable to quantify the nematode's muscle power. Here, we present a kind of nematode treadmill. The device consists of a tapered conduit filled with aqueous solution. The conduit is subjected to a DC electric field and to pressure-driven flow directed from the narrow end. The nematode is inserted at the conduit's wide end. Directed by the electric field (through electrotaxis), the nematode swims deliberately upstream toward the negative pole. As the conduit narrows, the average fluid velocity and the drag force on the nematode increase. Eventually, the nematode arrives at an equilibrium position, at which its propulsive power balances the viscous drag force. The nematode's propulsive power is estimated with direct numerical simulations of the flow field around the nematode. The calculations utilize the experimentally imaged gait as a boundary condition. The device is useful to retain the nematode at a nearly fixed position for prolonged observations under a microscope, to keep the nematode exercising, and to estimate the nematode's power based on the conduit's width at the equilibrium position.

  3. Can the mammalian lumbar spinal cord learn a motor task?

    PubMed

    Hodgson, J A; Roy, R R; de Leon, R; Dobkin, B; Edgerton, V R

    1994-12-01

    Progress toward restoring locomotor function in low thoracic spinal transected cats and the application of similar techniques to patients with spinal cord injury is reviewed. Complete spinal cord transection (T12-T13) in adult cats results in an immediate loss of locomotor function in the hindlimbs. Limited locomotor function returns after several months in cats that have not received specific therapies designed to restore hindlimb stepping. Training transected cats to step on a treadmill for 30 min.d-1 and 5 d.wk-1 greatly improves their stepping ability. The most successful outcome was in cats where training began early, i.e., 1 wk after spinal transection. Cats trained to stand instead of stepping had great difficulty using the hindlimbs for locomotion. These effects were reversible over a 20-month period such that cats unable to step as a result of standing training could be trained to step and, conversely, locomotion in stepping-trained cats could be abolished by standing training. These results indicate that the spinal cord is capable of learning specific motor tasks. It has not been possible to elicit locomotion in patients with clinically complete spinal injuries, but appropriately coordinated EMG activity has been demonstrated in musculature of the legs during assisted locomotion on a treadmill.

  4. Prediction of VO[subscript 2]max in Children and Adolescents Using Exercise Testing and Physical Activity Questionnaire Data

    ERIC Educational Resources Information Center

    Black, Nate E.; Vehrs, Pat R.; Fellingham, Gilbert W.; George, James D.; Hager, Ron

    2016-01-01

    Purpose: The purpose of this study was to evaluate the use of a treadmill walk-jog-run exercise test previously validated in adults and physical activity questionnaire data to estimate maximum oxygen consumption (VO[subscript 2]max) in boys (n = 62) and girls (n = 66) aged 12 to 17 years old. Methods: Data were collected from Physical Activity…

  5. Effects of treadmill exercise on behavioral recovery and neural changes in the substantia nigra and striatum of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse

    PubMed Central

    Goldberg, Natalie R.S.; Meshul, Charles K.

    2011-01-01

    Our goal was to extend our understanding of the neural changes behind motor recovery with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse. We determined the extent of dopamine (DA) terminal changes using western immunoblotting [striatal dopamine transporter (DAT) and tyrosine hydroxylase (TH)] and alterations in the mean number of DA cells/section by immunohistochemistry and Nissl staining [TH-labeled cells and thionin-stained cells in the substantia nigra pars compacta (SN-PC)]. We measured recovery of gait performance and amount of spontaneous physical activity using the parallel rod activity chamber (PRAC). We hypothesized that the decrease in TH-labeled neurons in the SN-PC due to MPTP will be partially reversed by treadmill exercise, leading to recovery of motor behavior as measured by the PRAC. Following MPTP or vehicle administration, mice ran on the treadmill for 1 hour per day at 18 cm/s, 5 days per week. Results showed that treadmill exercise improves gait performance and increases physical activity while promoting increased protein expression of striatal DAT and TH. Exercise was effective for all mice, however effects of early treadmill-based intervention appear to have an additional and unique benefit in mice who received MPTP. We are the first to show that, even following a nearly 50% decrease in the mean number of TH-labeled neurons/section in the SN-PC following MPTP, treadmill exercise leads to an increase of neurons in the SN-PC and improved motor behavior. PMID:21315689

  6. GENERALIZATION OF TREADMILL-SLIP TRAINING TO PREVENT A FALL FOLLLOWING A SUDDEN (NOVEL) SLIP IN OVER-GROUND WALKING

    PubMed Central

    Yang, Feng; Bhatt, Tanvi; Pai, Yi-Chung

    2012-01-01

    The purposes of the study were to determine 1) whether treadmill-slip training could reduce the likelihood of falls during a novel slip in over-ground walking, and 2) to what extent such (indirect) training would be comparable to (direct) over-ground-slip training. A treadmill-slip training group (Group A, n=17) initially experienced repeated perturbations on treadmill intended to simulate forward-slip in over-ground walking. Perturbation continued and its intensity reduced when necessary to ensure subjects’ successful adaptation (i.e., when they could land their trailing foot ahead of the slipping foot in at least 3 of 5 consecutive trials). They then experienced a novel slip during over-ground walking. Another 17 young adults in Group B experienced an identical novel slip that served as the controls. They then underwent more slip trials during over-ground walking. Their 16th slip trial was analyzed to represent the over-ground-slip training effect. Eight subjects (47%) in Group A fell upon their first treadmill slip, while all adapted successfully after a minimum of 15 slip trials. Upon the novel slip during over-ground walking, none of them fell in comparison to four subjects (23.5%) fell in Group B upon the same trial (p<0.05). Group A’s control of stability, both proactive and reactive, was significantly better than that of Group B’s on their first over-ground slip, while the level of improvement derived from indirect treadmill training was not as strong as that from direct over-ground-slip training, as demonstrated in Group B’s 16th slip trial (p<0.001). These results clearly demonstrated the feasibility of fall reduction through treadmill-slip training. PMID:23141636

  7. Treadmill Training Enhances Axon Regeneration In Injured Mouse Peripheral Nerves Without Increased Loss of Topographic Specificity

    PubMed Central

    English, Arthur W.; Cucoranu, Delia; Mulligan, Amanda; Sabatier, Manning

    2009-01-01

    We investigated the extent of misdirection of regenerating axons when that regeneration was enhanced using treadmill training. Retrograde fluorescent tracers were applied to the cut proximal stumps of the tibial and common fibular nerves two or four weeks after transection and surgical repair of the mouse sciatic nerve. The spatial locations of retrogradely labeled motoneurons were studied in untreated control mice and in mice receiving two weeks of treadmill training, either according to a continuous protocol (10 m/min, one hour/day, five day/week) or an interval protocol (20 m/min for two minutes, followed by a five minute rest, repeated 4 times, five days/week). More retrogradely labeled motoneurons were found in both treadmill trained groups. The magnitude of this increase was as great as or greater than that found after using other enhancement strategies. In both treadmill trained groups, the proportions of motoneurons labeled from tracer applied to the common fibular nerve that were found in spinal cord locations reserved for tibial motoneurons in intact mice was no greater than in untreated control mice and significantly less than found after electrical stimulation or chondroitinase treatment. Treadmill training in the first two weeks following peripheral nerve injury produces a marked enhancement of motor axon regeneration without increasing the propensity of those axons to choose pathways leading to functionally inappropriate targets. PMID:19731339

  8. Running exercise enhances motor functional recovery with inhibition of dendritic regression in the motor cortex after collagenase-induced intracerebral hemorrhage in rats.

    PubMed

    Takamatsu, Yasuyuki; Tamakoshi, Keigo; Waseda, Yuya; Ishida, Kazuto

    2016-03-01

    Rehabilitative approaches benefit motor functional recovery after stroke and relate to neuronal plasticity. We investigated the effects of a treadmill running exercise on the motor functional recovery and neuronal plasticity after collagenase-induced striatal intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with type IV collagenase into the left striatum to induce ICH. Sham-operated animals were injected with saline instead of collagenase. The animals were randomly assigned to the sham control (SC), the sham exercise (SE), the ICH control (IC), or the ICH exercise (IE) group. The exercise groups were forced to run on a treadmill at a speed of 9 m/min for 30 min/day between days 4 and 14 after surgery. Behavioral tests were performed using a motor deficit score, a beam-walking test and a cylinder test. At fifteen days after surgery, the animals were sacrificed, and their brains were removed. The motor function of the IE group significantly improved compared with the motor function of the IC group. No significant differences in cortical thickness were found between the groups. The IC group had fewer branches and shorter dendrite lengths compared with the sham groups. However, dendritic branches and lengths were not significantly different between the IE and the other groups. Tropomyosin-related kinase B (TrkB) expression levels increased in the IE compared with IC group, but no significant differences in other protein (brain-derived neurotrophic factor, BDNF; Nogo-A; Rho-A/Rho-associated protein kinase 2, ROCK2) expression levels were found between the groups. These results suggest that improved motor function after a treadmill running exercise after ICH may be related to the prevention of dendritic regression due to TrkB upregulation. Copyright © 2015. Published by Elsevier B.V.

  9. Clinical experience using a 5-week treadmill training program with virtual reality to enhance gait in an ambulatory physical therapy service.

    PubMed

    Shema, Shirley Roth; Brozgol, Marina; Dorfman, Moran; Maidan, Inbal; Sharaby-Yeshayahu, Lior; Malik-Kozuch, Hila; Wachsler Yannai, Orly; Giladi, Nir; Hausdorff, Jeffrey M; Mirelman, Anat

    2014-09-01

    Current literature views safe gait as a complex task, relying on motor and cognitive resources. The use of virtual reality (VR) in gait training offers a multifactorial approach, showing positive effects on mobility, balance, and fall risk in elderly people and individuals with neurological disorders. This form of training has been described as a viable research tool; however, it has not been applied routinely in clinical practice. Recently, VR was used to develop an adjunct training method for use by physical therapists in an ambulatory clinical setting. The aim of this article is to describe the initial clinical experience of applying a 5-week VR clinical service to improve gait and mobility in people with a history of falls, poor mobility, or postural instability. A retrospective data analysis was conducted. The clinical records of the first 60 patients who completed the VR gait training program were examined. Training was provided 3 times per week for 5 weeks, with each session lasting approximately 1 hour and consisting of walking on a treadmill while negotiating virtual obstacles. Main outcome measures were compared across time and included the Timed "Up & Go" Test (TUG), the Two-Minute Walk Test (2MWT), and the Four Square Step Test (FSST). After 5 weeks of training, time to complete the TUG decreased by 10.3%, the distance walked during the 2MWT increased by 9.5%, and performance on the FSST improved by 13%. Limitations of the study include the use of a retrospective analysis with no control group and the lack of objective cognitive assessment. Treadmill training with VR appears to be an effective and practical tool that can be applied in an outpatient physical therapy clinic. This training apparently leads to improvements in gait, mobility, and postural control. It, perhaps, also may augment cognitive and functional aspects. © 2014 American Physical Therapy Association.

  10. Training Enhances Both Locomotor and Cognitive Adaptability to a Novel Sensory Environment

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    During adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. The goal of our present study was to determine if SA training improved both the locomotor and cognitive responses to a novel sensory environment and to quantify the extent to which training would be retained. Methods: Twenty subjects (10 training, 10 control) completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill but did not receive any support surface or visual alterations. To determine the efficacy of training all subjects performed the Transfer Test upon completion of training. For this test, subjects were exposed to novel visual flow and support surface movement, not previously experienced during training. The Transfer Test was performed 20 minutes, 1 week, 1, 3 and 6 months after the final training session. Stride frequency, auditory reaction time, and heart rate data were collected as measures of postural stability, cognitive effort and anxiety, respectively. Results: Using mixed effects regression methods we determined that subjects who received SA training showed less alterations in stride frequency, auditory reaction time and heart rate compared to controls. Conclusion: Subjects who received SA training improved performance across a number of modalities including enhanced locomotor function, increased multi-tasking capability and reduced anxiety during adaptation to novel discordant sensory information. Trained subjects maintained their level of performance over six months.

  11. A comparison of three-dimensional breast displacement and breast comfort during overground and treadmill running.

    PubMed

    White, Jennifer; Scurr, Joanna; Hedger, Wendy

    2011-02-01

    Comparisons of breast support requirements during overground and treadmill running have yet to be explored. The purpose of this study was to investigate 3D breast displacement and breast comfort during overground and treadmill running. Six female D cup participants had retro-reflective markers placed on the nipples, anterior superior iliac spines and clavicles. Five ProReflex infrared cameras (100 Hz) measured 3D marker displacement in four breast support conditions. For overground running, participants completed 5 running trials (3.1 m/s ± 0.1 m/s) over a 10 m indoor runway; for treadmill running, speed was steadily increased to 3.1 m/s and 5 gait cycles were analyzed. Subjective feedback on breast discomfort was collected using a visual analog scale. Running modality had no significant effect on breast displacement (p > .05). Moderate correlations (r = .45 to .68, p < .05) were found between breast discomfort and displacement. Stride length (m) and frequency (Hz) did not differ (p < .05) between breast support conditions or running modalities. Findings suggest that breast motion studies that examine treadmill running are applicable to overground running.

  12. The Effects of Treadmill Running on Aging Laryngeal Muscle Structure

    PubMed Central

    Kletzien, Heidi; Russell, John A.; Connor, Nadine P.

    2015-01-01

    Levels of Evidence NA (animal study) Objective Age-related changes in laryngeal muscle structure and function may contribute to deficits in voice and swallowing observed in elderly people. We hypothesized that treadmill running, an exercise that increases respiratory drive to upper airway muscles, would induce changes in thyroarytenoid muscle myosin heavy chain (MHC) isoforms consistent with a fast-slow transformation in muscle fiber type. Study Design Randomized parallel group controlled trial. Methods Fifteen young adult and 14 old Fischer 344/Brown Norway rats received either treadmill running or no exercise (5 days/week/8 weeks). Myosin heavy chain isoform composition in the thyroarytenoid muscle was examined at the end of 8 weeks. Results Significant age and treatment effects were found. The young adult group had the greatest proportion of superfast contracting MHCIIL. The treadmill running group had the lowest proportion of MHCIIL and the greatest proportion of MHCIIx. Conclusion Thyroarytenoid muscle structure was affected both by age and treadmill running in a fast-slow transition that is characteristic of exercise manipulations in other skeletal muscles. PMID:26256100

  13. Female False Positive Exercise Stress ECG Testing - Fact Verses Fiction.

    PubMed

    Fitzgerald, Benjamin T; Scalia, William M; Scalia, Gregory M

    2018-03-07

    Exercise stress testing is a well validated cardiovascular investigation. Accuracy for treadmill stress electrocardiograph (ECG) testing has been documented at 60%. False positive stress ECGs (exercise ECG changes with non-obstructive disease on anatomical testing) are common, especially in women, limiting the effectiveness of the test. This study investigates the incidence and predictors of false positive stress ECG findings, referenced against stress echocardiography (SE) as a standard. Stress echocardiography was performed using the Bruce treadmill protocol. False positive stress ECG tests were defined as greater than 1mm of ST depression on ECG during exertion, without pain, with a normal SE. Potential causes for false positive tests were recorded before the test. Three thousand consecutive negative stress echocardiograms (1036 females, 34.5%) were analysed (age 59+/-14 years. False positive (F+) stress ECGs were documented in 565/3000 tests (18.8%). F+ stress ECGs were equally prevalent in females (194/1036, 18.7%) and males (371/1964, 18.9%, p=0.85 for the difference). Potential causes (hypertension, left ventricular hypertrophy, known coronary disease, arrhythmia, diabetes mellitus, valvular heart disease) were recorded in 36/194 (18.6%) of the female F+ ECG tests and 249/371 (68.2%) of the male F+ ECG tests (p<0.0001 for the difference). These data suggest that F+ stress ECG tests are frequent and equally common in women and men. However, most F+ stress ECGs in men can be predicted before the test, while most in women cannot. Being female may be a risk factor in itself. These data reinforce the value of stress imaging, particularly in women. Copyright © 2018 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). All rights reserved.

  14. Estimation of Energy Expenditure during Treadmill Exercise via Thermal Imaging.

    PubMed

    Jensen, Martin Møller; Poulsen, Mathias Krogh; Alldieck, Thiemo; Larsen, Ryan Godsk; Gade, Rikke; Moeslund, Thomas Baltzer; Franch, Jesper

    2016-12-01

    Noninvasive imaging of oxygen uptake may provide a useful tool for the quantification of energy expenditure during human locomotion. A novel thermal imaging method (optical flow) was validated against indirect calorimetry for the estimation of energy expenditure during human walking and running. Fourteen endurance-trained subjects completed a discontinuous incremental exercise test on a treadmill. Subjects performed 4-min intervals at 3, 5, and 7 km·h (walking) and at 8, 10, 12, 14, 16, and 18 km·h (running) with 30 s of rest between intervals. Heart rate, gas exchange, and mean accelerations of ankle, thigh, wrist, and hip were measured throughout the exercise test. A thermal camera (30 frames per second) was used to quantify optical flow, calculated as the movements of the limbs relative to the trunk (internal mechanical work) and vertical movement of the trunk (external vertical mechanical work). Heart rate, gross oxygen uptake (mL·kg·min) together with gross and net energy expenditure (J·kg·min) rose with increasing treadmill velocities, as did optical flow measurements and mean accelerations (g) of ankle, thigh, wrist, and hip. Oxygen uptake was linearly correlated with optical flow across all exercise intensities (R = 0.96, P < 0.0001; V˙O2 [mL·kg·min] = 7.35 + 9.85 × optical flow [arbitrary units]). Only 3-4 s of camera recording was required to estimate an optical flow value at each velocity. Optical flow measurements provide an accurate estimation of energy expenditure during horizontal walking and running. The technique offers a novel experimental method of estimating energy expenditure during human locomotion, without use of interfering equipment attached to the subject.

  15. Wrist-worn accelerometers in assessment of energy expenditure during intensive training.

    PubMed

    Kinnunen, H; Tanskanen, M; Kyröläinen, H; Westerterp, K R

    2012-11-01

    We assessed the ability of the Polar activity recorder (AR) to measure energy expenditure (EE) during military training. Twenty-four voluntary male conscripts participated in the study and wore an AR on the non-dominant wrist 24 h a day for 7 d. The AR analyzed and stored the frequency of hand movements (f_hand) into memory at 1 min intervals. The relationship between f_hand and EE was studied over a 7 d period of military training using the doubly labeled water (DLW) technique. In addition, the relationship between f_hand and EE was analyzed during walking and running on a treadmill with an indirect calorimeter (IC), and f_hand was measured during a supervised 45 min field march test where the conscripts carried combat gear. EE was expressed as physical activity level (PAL), total energy expenditure (TEE), and activity-induced energy expenditure adjusted for body mass (AEE/BM). Over the 7 d period, f_hand alone explained 46% of inter-individual variation in PAL(DLW). After inclusion of body height and mass in the model used to predict PAL(DLW) from f_hand, a very high positive correlation and a low standard error of estimate (SEE) were observed between the AR and DLW techniques: for TEE r = 0.86 (p < 0.001), the SEE was 6.3%, and for AEE/BM r = 0.84 (p < 0.001), the SEE was 12.8%. In the treadmill exercise, f_hand correlated highly with PAL(IC) (r = 0.97 ± 0.02). In the 45 min field march test, the AR measured similar f_hand as on the treadmill at the same speed. In conclusion, the wrist-worn AR can be regarded as a reliable and valid method for assessing EE during intensive training.

  16. Maximal metabolic rates during voluntary exercise, forced exercise, and cold exposure in house mice selectively bred for high wheel-running.

    PubMed

    Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Malisch, Jessica L; Garland, Theodore

    2005-06-01

    Selective breeding for high wheel-running activity has generated four lines of laboratory house mice (S lines) that run about 170% more than their control counterparts (C lines) on a daily basis, mostly because they run faster. We tested whether maximum aerobic metabolic rates (V(O2max)) have evolved in concert with wheel-running, using 48 females from generation 35. Voluntary activity and metabolic rates were measured on days 5+6 of wheel access (mimicking conditions during selection), using wheels enclosed in metabolic chambers. Following this, V(O2max) was measured twice on a motorized treadmill and twice during cold-exposure in a heliox atmosphere (HeO2). Almost all measurements, except heliox V(O2max), were significantly repeatable. After accounting for differences in body mass (S < C) and variation in age at testing, S and C did not differ in V(O2max) during forced exercise or in heliox, nor in maximal running speeds on the treadmill. However, running speeds and V(O2max) during voluntary exercise were significantly higher in S lines. Nevertheless, S mice never voluntarily achieved the V(O2max) elicited during their forced treadmill trials, suggesting that aerobic capacity per se is not limiting the evolution of even higher wheel-running speeds in these lines. Our results support the hypothesis that S mice have genetically higher motivation for wheel-running and they demonstrate that behavior can sometimes evolve independently of performance capacities. We also discuss the possible importance of domestication as a confounding factor to extrapolate results from this animal model to natural populations.

  17. Effects of Walking Speed and Visual-Target Distance on Toe Trajectory During Swing Phase

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Peters, Brian; Brady, Rachel; Warren, Liz; Richards, Jason; Mulavara, Ajitkumar; Sung, Hsi-Guang; Bloomberg, Jacob

    2006-01-01

    After spaceflight, astronauts experience disturbances in their ability to walk and maintain postural stability (Bloomberg, et al., 1997). One of the post-flight neurovestibular assessments requires that the astronaut walk on a treadmill at 1.8 m/sec (4.0 mph), while performing a visual acuity test, set at two different distances ( far and near ). For the first few days after landing, some crewmembers can not maintain the required pace, so a lower speed may be used. The slower velocity must be considered in the kinematic analysis, because Andriacchi, et al. (1977) showed that in clinical populations, changes in gait parameters may be attributable more to slower gait speed than pathology. Studying toe trajectory gives a global view of control of the leg, since it involves coordination of muscles and joints in both the swing and stance legs (Karst, et al., 1999). Winter (1992) and Murray, et al. (1984) reported that toe clearance during overground walking increased slightly as speed increased, but not significantly. Also, toe vertical peaks in both early and late swing phase did increase significantly with increasing speed. During conventional testing of overground locomotion, subjects are usually asked to fix their gaze on the end of the walkway a far target. But target (i.e., visual fixation) distance has been shown to affect head and trunk motion during treadmill walking (Bloomberg, et al., 1992; Peters, et al., in review). Since the head and trunk can not maintain stable gaze without proper coordination with the lower body (Mulavara & Bloomberg, 2003), it would stand to reason that lower body kinematics may be altered as well when target distance is modified. The purpose of this study was to determine changes in toe vertical trajectory during treadmill walking due to changes in walking speed and target distance.

  18. Sex differences in the oxygen delivery, extraction, and uptake during moderate-walking exercise transition.

    PubMed

    Beltrame, Thomas; Villar, Rodrigo; Hughson, Richard L

    2017-09-01

    Previous studies in children and older adults demonstrated faster oxygen uptake (V̇O 2 ) kinetics in males compared with females, but young healthy adults have not been studied. We hypothesized that young men would have faster aerobic system dynamics in response to the onset of exercise than women. Interactions between oxygen supply and utilization were characterized by the dynamics of V̇O 2 , deoxyhemoglobin (HHb), tissue saturation index (TSI), cardiac output (Q̇), and calculated arteriovenous O 2 difference (a-vO 2 diff ) in women and men. Eighteen healthy active young women and men (9 of each sex) with similar aerobic fitness levels volunteered for this study. Participants performed an incremental cardiopulmonary treadmill exercise test and 3 moderate-intensity treadmill exercise tests (at 80% V̇O 2 of gas exchange threshold). Data related to the moderate exercise were submitted to exponential data modelling to obtain parameters related to the aerobic system dynamics. The time constants of V̇O 2 , a-vO 2 diff , HHb, and TSI (30 ± 6, 29 ± 1, 16 ± 1, and 15 ± 2 s, respectively) in women were statistically (p < 0.05) faster than the time constants in men (42 ± 10, 49 ± 21, 19 ± 3, and 20 ± 4 s, respectively). Although Q̇ dynamics were not statistically different (p = 0.06) between groups, there was a trend to slower Q̇ dynamics in men corresponding with the slower V̇O 2 kinetics. These results indicated that the peripheral and pulmonary oxygen extraction dynamics were remarkably faster in women. Thus, contrary to the hypothesis, V̇O 2 dynamics measured at the mouth at the onset of submaximal treadmill walking were faster in women compared with men.

  19. Inflight Treadmill Exercise Can Serve as Multi-Disciplinary Countermeasure System

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions [1]. Therefore, we conclude that providing significant body-support loading during inflight treadmill along with balance training is necessary to mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Data obtained from space flight and bed rest support the notion that in-flight treadmill exercise, in addition to providing aerobic exercise and mechanical stimuli to the bone, also has a number of sensorimotor benefits by providing: 1) A balance challenge during locomotion requiring segmental coordination in response to a downward force. 2) Body-support loading during performance of a full-body active motor task. 3) Oscillatory stimulation of the otoliths and synchronized periodic foot impacts that facilitate the coordination of gait motions and tune the full-body gaze control system. 4) Appropriate sensory input (foot tactile input, muscle and tendon stretch input) to spinal locomotor central pattern generators required for the control of locomotion. Forward work will focus on a follow-up bed rest study that incorporates aerobic and resistance exercise with a treadmill balance and gait training system that can serve as an integrated interdisciplinary countermeasure system for future exploration class missions.

  20. Treadmill Kinematics Baseline Data Collection

    NASA Image and Video Library

    2011-05-12

    PHOTO DATE: 5-12-11 LOCATION: Building 261 - Room 138 SUBJECT: Expedition 29 Preflight Training with Dan Burbank during Treadmill Kinematics Baseline Data Collection. WORK ORDER: 2011-1214 PHOTOGRAPHER: Lauren Harnett

  1. Effects of a New Cooling Technology on Physical Performance in US Air Force Military Personnel.

    PubMed

    O'Hara, Reginald; Vojta, Christopher; Henry, Amy; Caldwell, Lydia; Wade, Molly; Swanton, Stacie; Linderman, Jon K; Ordway, Jason

    2016-01-01

    Heat-related illness is a critical factor for military personnel operating in hyperthermic environments. Heat illness can alter cognitive and physical performance during sustained operations missions. Therefore, the primary purpose of this investigation was to determine the effects of a novel cooling shirt on core body temperature in highly trained US Air Force personnel. Twelve trained (at least 80th percentile for aerobic fitness according to the American College of Sports Medicine, at least 90% on the US Air Force fitness test), male Air Force participants (mean values: age, 25 ± 2.8 years; height, 178 ± 7.9cm; body weight 78 ± 9.6kg; maximal oxygen uptake, 57 ± 1.9mL/kg/ min; and body fat, 10% ± 0.03%) completed this study. Subjects performed a 70-minute weighted treadmill walking test and 10-minute, 22.7kg sandbag shuttle test under two conditions: (1) "loaded" (shirt with cooling inserts) and (2) "unloaded" (shirt with no cooling inserts). Core body temperature, exercise heart rate, capillary blood lactate, and ratings of perceived exertion were recorded. Core body temperature was lower (ρ = .001) during the 70-minute treadmill walking test in the loaded condition. Peak core temperature during the 70-minute walking test was also significantly lower (ρ = .038) in the loaded condition. This lightweight (471g), passive cooling technology offers multiple hours of sustained cooling and reduced core and peak body temperature during a 70-minute, 22.7kg weighted-vest walking test. 2016.

  2. Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells.

    PubMed

    Sakharov, Dmitry A; Maltseva, Diana V; Riabenko, Evgeniy A; Shkurnikov, Maxim U; Northoff, Hinnak; Tonevitsky, Alexander G; Grigoriev, Anatoly I

    2012-03-01

    High and moderate intensity endurance exercise alters gene expression in human white blood cells (WBCs), but the understanding of how this effect occurs is limited. To increase our knowledge of the nature of this process, we investigated the effects of passing the anaerobic threshold (AnT) on the gene expression profile in WBCs of athletes. Nineteen highly trained skiers participated in a treadmill test with an incremental step protocol until exhaustion (ramp test to exhaustion, RTE). The average total time to exhaustion was 14:40 min and time after AnT was 4:50 min. Two weeks later, seven of these skiers participated in a moderate treadmill test (MT) at 80% peak O(2) uptake for 30 min, which was slightly below their AnTs. Blood samples were obtained before and immediately after both tests. RTE was associated with substantially greater leukocytosis and acidosis than MT. Gene expression in WBCs was measured using whole genome microarray expression analysis before and immediately after each test. A total of 310 upregulated genes were found after RTE, and 69 genes after MT of which 64 were identical to RTE. Both tests influenced a variety of known gene pathways related to inflammation, stress response, signal transduction and apoptosis. A large group of differentially expressed previously unknown small nucleolar RNA and small Cajal body RNA was found. In conclusion, a 15-min test to exhaustion was associated with substantially greater changes of gene expression than a 30-min test just below the AnT.

  3. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.

    PubMed

    Aach, Mirko; Cruciger, Oliver; Sczesny-Kaiser, Matthias; Höffken, Oliver; Meindl, Renate Ch; Tegenthoff, Martin; Schwenkreis, Peter; Sankai, Yoshiyuki; Schildhauer, Thomas A

    2014-12-01

    Treadmill training after traumatic spinal cord injury (SCI) has become an established therapy to improve walking capabilities. The hybrid assistive limb (HAL) exoskeleton has been developed to support motor function and is tailored to the patients' voluntary drive. To determine whether locomotor training with the exoskeleton HAL is safe and can increase functional mobility in chronic paraplegic patients after SCI. A single case experimental A-B (pre-post) design study by repeated assessments of the same patients. The subjects performed 90 days (five times per week) of HAL exoskeleton body weight supported treadmill training with variable gait speed and body weight support. Eight patients with chronic SCI classified by the American Spinal Injury Association (ASIA) Impairment Scale (AIS) consisting of ASIA A (zones of partial preservation [ZPP] L3-S1), n=4; ASIA B (with motor ZPP L3-S1), n=1; and ASIA C/D, n=3, who received full rehabilitation in the acute and subacute phases of SCI. Functional measures included treadmill-associated walking distance, speed, and time, with additional analysis of functional improvements using the 10-m walk test (10MWT), timed-up and go test (TUG test), 6-minute walk test (6MWT), and the walking index for SCI II (WISCI II) score. Secondary physiologic measures including the AIS with the lower extremity motor score (LEMS), the spinal spasticity (Ashworth scale), and the lower extremity circumferences. Subjects performed standardized functional testing before and after the 90 days of intervention. Highly significant improvements of HAL-associated walking time, distance, and speed were noticed. Furthermore, significant improvements have been especially shown in the functional abilities without the exoskeleton for over-ground walking obtained in the 6MWT, TUG test, and the 10MWT, including an increase in the WISCI II score of three patients. Muscle strength (LEMS) increased in all patients accompanied by a gain of the lower limb circumferences. A conversion in the AIS was ascertained in one patient (ASIA B to ASIA C). One patient reported a decrease of spinal spasticity. Hybrid assistive limb exoskeleton training results in improved over-ground walking and leads to the assumption of a beneficial effect on ambulatory mobility. However, evaluation in larger clinical trials is required. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Functional effects of treadmill-based gait training at faster speeds in stroke survivors: a prospective, single-group study.

    PubMed

    Mohammadi, Roghayeh; Ershad, Navid; Rezayinejad, Marziyeh; Fatemi, Elham; Phadke, Chetan P

    2017-09-01

    To examine the functional effects of walking retraining at faster than self-selected speed (SSS). Ten individuals with chronic stroke participated in a 4-week training over a treadmill at walking speeds 40% faster than SSS, three times per week, 30 min/session. Outcome measures assessed before, after, and 2 months after the end of intervention were the Timed Up and Go, the 6-Minute Walk, the 10-Meter Walk test, the Modified Ashworth Scale, SSS, and fastest comfortable speed. After 4 weeks of training, all outcome measures showed clinically meaningful and statistically significant improvements (P<0.05) that were maintained at 2 months after the end of the training. The results showed that a strategy of training at a speed 40% faster than SSS can improve functional activity in individuals with chronic stroke, with effects lasting up to 2 months after the intervention.

  5. Coronary heart disease index based on longitudinal electrocardiography

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Cronin, J. P.

    1977-01-01

    A coronary heart disease index was developed from longitudinal ECG (LCG) tracings to serve as a cardiac health measure in studies of working and, essentially, asymptomatic populations, such as pilots and executives. For a given subject, the index consisted of a composite score based on the presence of LCG aberrations and weighted values previously assigned to them. The index was validated by correlating it with the known presence or absence of CHD as determined by a complete physical examination, including treadmill, resting ECG, and risk factor information. The validating sample consisted of 111 subjects drawn by a stratified-random procedure from 5000 available case histories. The CHD index was found to be significantly more valid as a sole indicator of CHD than the LCG without the use of the index. The index consistently produced higher validity coefficients in identifying CHD than did treadmill testing, resting ECG, or risk factor analysis.

  6. Vande Hei exercises on COLBERT/T2 Treadmill

    NASA Image and Video Library

    2017-09-23

    iss053e040103 (ept. 23, 2017) --- Astronaut Mark Vande Hei, Expedition 53 Flight Engineer, exercises on the COLBERT (Combined Operational Load Bearing External Resistance Treadmill) in the Tranquility module.

  7. Biomechanical Analysis of Treadmill Locomotion on the International Space Station

    NASA Technical Reports Server (NTRS)

    De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.

    2011-01-01

    Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to Spaceflight (Gap B15), Risk of Impaired Performance Due to Reduced Muscle Mass, Strength, and Endurance (Gaps M3, M4, M6, Ml, M8, M9) and Risk of reduced Physical Performance Capabilities Due to Reduce Aerobic Capacity (Gaps M7, M8, M9).

  8. Mild peripheral neuropathy prevents both leg muscular ischaemia and activation of exercise-induced coagulation in Type 2 diabetic patients with peripheral artery disease.

    PubMed

    Piarulli, F; Sambataro, M; Minicuci, N; Scarano, L; Laverda, B; Baiocchi, M R; Baldo-Enzi, G; Galasso, S; Bax, G; Fedele, D

    2007-10-01

    To study the influence of peripheral neuropathy on intermittent claudication in patients with Type 2 diabetes (T2DM). Twenty-five patients with T2DM were grouped according to the ankle/brachial index (ABI): 10 with ABI > 0.9 without peripheral artery disease (PAD; group T2DM) and 15 with ABI < 0.9 with PAD (group T2DM + PAD). Twelve individuals without T2DM with PAD (group PAD without T2DM) were also enrolled. Tests for peripheral neuropathy were performed in all patients. ABI, rate pressure product, prothrombin fragments 1 + 2 (F1+2), thrombin-anti-thrombin complex (TAT), and d-dimer were measured before and after a treadmill test. During exercise both initial and absolute claudication distance and electrocardiogram readings were recorded. We found mild peripheral neuropathy in 20% of group T2DM and 46.7% of group T2DM + PAD (P < 0.01). After exercise, the rate pressure product increased in each group; ABI fell in T2DM + PAD (P < 0.0001) and in PAD without T2DM (P = 0.0005); the fall was greater in the latter group. Initial and absolute claudication distances were similar in PAD patients. In group T2DM + PAD, absolute claudication distance was longer in the subgroup without peripheral neuropathy (P < 0.05), whereas ABI and rate pressure products were similar. F1+2 values at rest were higher in group T2DM + PAD. After exercise, F1+2 values and TAT increased only in group PAD without T2DM. Only group PAD without T2DM experienced muscular ischaemia, whereas group T2DM + PAD did not. Mild peripheral neuropathy may have prevented them from reaching the point of muscular ischaemia during the treadmill test, because they stopped exercising with the early onset of pain. Reaching a false absolute claudication distance may induce ischaemic preconditioning. These findings suggest a possible protective role of mild peripheral neuropathy in T2DM patients with intermittent claudication, by preventing further activation of coagulation during treadmill testing.

  9. [Determination of the anaerobic threshold by the rate of ventilation and cardio interval variability].

    PubMed

    Seluianov, V N; Kalinin, E M; Pak, G D; Maevskaia, V I; Konrad, A H

    2011-01-01

    The aim of this work is to develop methods for determining the anaerobic threshold according to the rate of ventilation and cardio interval variability during the test with stepwise increases load on the cycle ergometer and treadmill. In the first phase developed the method for determining the anaerobic threshold for lung ventilation. 49 highly skilled skiers took part in the experiment. They performed a treadmill ski-walking test with sticks with gradually increasing slope from 0 to 25 degrees, the slope increased by one degree every minute. In the second phase we developed a method for determining the anaerobic threshold according dynamics ofcardio interval variability during the test. The study included 86 athletes of different sports specialties who performed pedaling on the cycle ergometer "Monarch" in advance. Initial output was 25 W, power increased by 25 W every 2 min. The pace was steady--75 rev/min. Measurement of pulmonary ventilation and oxygen and carbon dioxide content was performed using gas analyzer COSMED K4. Sampling of arterial blood was carried from the ear lobe or finger, blood lactate concentration was determined using an "Akusport" instrument. RR-intervals registration was performed using heart rate monitor Polar s810i. As a result, it was shown that the graphical method for determining the onset of anaerobic threshold ventilation (VAnP) coincides with the accumulation of blood lactate 3.8 +/- 0.1 mmol/l when testing on a treadmill and 4.1 +/- 0.6 mmol/1 on the cycle ergometer. The connection between the measure of oxygen consumption at VAnP and the dispersion of cardio intervals (SD1), derived regression equation: VO2AnT = 0.35 + 0.01SD1W + 0.0016SD1HR + + 0.106SD1(ms), l/min; (R = 0.98, error evaluation function 0.26 L/min, p < 0.001), where W (W)--Power, HR--heart rate (beats/min), SD1--cardio intervals dispersion (ms) at the moment of registration of cardio interval threshold.

  10. A Comparison of Exercise and Meditation in Reducing Physiological Response to Stress.

    ERIC Educational Resources Information Center

    Sime, Wesley E.

    The purpose of this investigation was to compare the effects of brief treadmill exercise and meditation with a placebo-control treatment for reduction in several physiological and psychological measures of stress, anxiety, and tension before and after a written final examination in 48 high-test anxiety subjects. The subjects, 24 men and 24 women,…

  11. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

    PubMed

    Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C

    2017-10-01

    Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.

  12. Dynamic visual acuity using "far" and "near" targets

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; Bloomberg, Jacob J.

    2005-01-01

    CONCLUSIONS: DVA may be useful for assessing the functional consequences of an impaired gaze stabilization mechanism or for testing the effectiveness of a rehabilitation paradigm. Because target distance influences the relative contributions of canal and otolith inputs, the ability to measure DVA at near and far viewing distances may also lead to tests that will independently assess canal and otolith function. OBJECTIVE: To present and test a methodology that uses dynamic visual acuity (DVA) to assess the efficacy of compensatory gaze mechanisms during a functionally relevant activity that differentially measures canal and otolith function. MATERIAL AND METHODS: The effect of treadmill walking at a velocity of 1.79 m/s on subjects' visual acuity was assessed at each of two viewing distances. A custom-written threshold determination program was used to display Landolt C optotypes on a laptop computer screen during a "far" (4 m) target condition and on a micro-display for a "near" (50 cm) target condition. The walking acuity scores for each target distance were normalized by subtracting a corresponding acuity measure obtained while standing still on the treadmill belt. RESULTS: As predicted by subjective reports of relative target motion, the decrease in visual acuity was significantly greater (p < 0.00001) for the near compared to the far condition.

  13. Construct validity of self-reported historical physical activity.

    PubMed

    Bowles, Heather R; FitzGerald, Shannon J; Morrow, James R; Jackson, Allen W; Blair, Steven N

    2004-08-01

    The purpose of this study was to determine the construct-related validity of self-reported historical walking, running, and jogging (WRJ) activity on the basis of data from the Aerobics Center Longitudinal Study (Dallas, Texas). A total of 4,100 men and 963 women underwent at least one medical examination between 1976 and 1985 and completed a follow-up questionnaire in 1986. Levels of glucose, cholesterol, and triglycerides, resting systolic blood pressure, body mass index (weight (kg)/height (m)(2)), and cardiorespiratory fitness were measured at the time of the medical examination. The follow-up questionnaire assessed WRJ and other strenuous activities for each year from 1976 through 1985. Data analysis included Spearman and partial correlations, analysis of variance, analysis of covariance, and t tests. Results indicated significant correlations between recalled WRJ and treadmill times for each year throughout the 10-year period (r = 0.40-0.61). Participants were classified as historically either sufficiently physically active to receive a health benefit or insufficiently active for a health benefit. Engaging in sufficient levels of historical WRJ was associated with higher treadmill times and lower body mass indices for men and women and lower triglyceride levels for men. Self-reported historical WRJ can be assessed with reasonable validity in comparison with measured treadmill performance, with no decay in accuracy of reporting for up to 10 years in the past.

  14. Methods for a Randomized Trial of Weight-Supported Treadmill Training versus Conventional Training for Walking during Inpatient Rehabilitation after Incomplete Traumatic Spinal Cord Injury

    PubMed Central

    Dobkin, Bruce H.; Apple, David; Barbeau, Hugues; Basso, Michele; Behrman, Andrea; Deforge, Dan; Ditunno, John; Dudley, Gary; Elashoff, Robert; Fugate, Lisa; Harkema, Susan; Saulino, Michael; Scott, Michael

    2014-01-01

    The authors describe the rationale and methodology for the first prospective, multicenter, randomized clinical trial (RCT) of a task-oriented walking intervention for subjects during early rehabilitation for an acute traumatic spinal cord injury (SCI). The experimental strategy, body weight–supported treadmill training (BWSTT), allows physical therapists to systematically train patients to walk on a treadmill at increasing speeds typical of community ambulation with increasing weight bearing. The therapists provide verbal and tactile cues to facilitate the kinematic, kinetic, and temporal features of walking. Subjects were randomly assigned to a conventional therapy program for mobility versus the same intensity and duration of a combination of BWSTT and over-ground locomotor retraining. Subjects had an incomplete SCI (American Spinal Injury Association grades B, C, and D) from C-4 to T-10 (upper motoneuron group) or from T-11 to L-3 (lower motoneuron group). Within 8 weeks of a SCI, 146 subjects were entered for 12 weeks of intervention. The 2 single-blinded primary outcome measures are the level of independence for ambulation and, for those who are able to walk, the maximal speed for walking 50 feet, tested 6 and 12 months after randomization. The trial’s methodology offers a model for the feasibility of translating neuroscientific experiments into a RCT to develop evidence-based rehabilitation practices. PMID:14503436

  15. Physiological and biomechanical responses to walking underwater on a non-motorised treadmill: effects of different exercise intensities and depths in middle-aged healthy women.

    PubMed

    Benelli, Piero; Colasanti, Franca; Ditroilo, Massimiliano; Cuesta-Vargas, Antonio; Gatta, Giorgio; Giacomini, Francesco; Lucertini, Francesco

    2014-01-01

    Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64-76% of peak VO2 and 71-90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the "vigorous" range of exercise intensity, at any of the step frequencies used in this study.

  16. Hypothalamic GABAergic influences on treadmill exercise responses in rats.

    PubMed

    Overton, J M; Redding, M W; Yancey, S L; Stremel, R W

    1994-01-01

    Microinjection of GABAergic antagonists in the posterior hypothalamus (PH) produces exercise-like adjustments in cardiovascular function. To test the hypothesis that a hypothalamic GABAergic mechanism within the PH modulates the cardiovascular adjustments to dynamic exercise in conscious animals, Sprague-Dawley rats (n = 10) were instrumented with bilateral guide cannula directed at the pH, an arterial cannula, and Doppler flow probes on the iliac and mesenteric arteries. Saline (100 nl) or the GABAA receptor agonist muscimol (125 ng.100 nl-1) was bilaterally injected into the PH during treadmill exercise (20 m.min-1). Microinjection of saline had no effect on mean arterial pressure (MAP), heart rate (HR), mesenteric vascular resistance (MR), or iliac vascular resistance (IR) during exercise. Microinjection of muscimol during exercise produced no significant changes in MAP (mean change +/- SE; +0 +/- 1 mmHg), HR (+17 +/- 12 b.min-1), or MR (+7 +/- 13%). However, microinjection of muscimol produced a significant increase in IR during exercise (16 +/- 6%). In addition, muscimol significantly decreased treadmill run time (saline = 19.6 +/- 0.4 min; muscimol = 17.8 +/- 0.6 min) and produced behavioral effects (including mild sedation) that were most evident after exercise. The results of these experiments suggest that while the posterior hypothalamic GABAergic system may modulate iliac blood flow during exercise in rats, this system does not modulate HR and MR responses to dynamic exercise.

  17. Efficacy of Aquatic Treadmill Training on Gait Symmetry and Balance in Subacute Stroke Patients

    PubMed Central

    2017-01-01

    Objective To determine the efficacy of aquatic treadmill training (ATT) as a new modality for stroke rehabilitation, by assessing changes in gait symmetry, balance function, and subjective balance confidence for the paretic and non-paretic leg in stroke patients. Methods Twenty-one subacute stroke patients participated in 15 intervention sessions of aquatic treadmill training. The Comfortable 10-Meter Walk Test (CWT), spatiotemporal gait parameters, Berg Balance Scale (BBS), and Activities-specific Balance Confidence scale (ABC) were assessed pre- and post-interventions. Results From pre- to post-intervention, statistically significant improvements were observed in the CWT (0.471±0.21 to 0.558±0.23, p<0.001), BBS (39.66±8.63 to 43.80±5.21, p<0.001), and ABC (38.39±13.46 to 46.93±12.32, p<0.001). The step-length symmetry (1.017±0.25 to 0.990±0.19, p=0.720) and overall temporal symmetry (1.404±0.36 to 1.314±0.34, p=0.218) showed improvement without statistical significance. Conclusion ATT improves the functional aspects of gait, including CWT, BBS and ABC, and spatiotemporal gait symmetry, though without statistical significance. Further studies are required to examine and compare the potential benefits of ATT as a new modality for stroke therapy, with other modalities. PMID:28758074

  18. Efficacy of Aquatic Treadmill Training on Gait Symmetry and Balance in Subacute Stroke Patients.

    PubMed

    Lee, Mi Eun; Jo, Geun Yeol; Do, Hwan Kwon; Choi, Hee Eun; Kim, Woo Jin

    2017-06-01

    To determine the efficacy of aquatic treadmill training (ATT) as a new modality for stroke rehabilitation, by assessing changes in gait symmetry, balance function, and subjective balance confidence for the paretic and non-paretic leg in stroke patients. Twenty-one subacute stroke patients participated in 15 intervention sessions of aquatic treadmill training. The Comfortable 10-Meter Walk Test (CWT), spatiotemporal gait parameters, Berg Balance Scale (BBS), and Activities-specific Balance Confidence scale (ABC) were assessed pre- and post-interventions. From pre- to post-intervention, statistically significant improvements were observed in the CWT (0.471±0.21 to 0.558±0.23, p<0.001), BBS (39.66±8.63 to 43.80±5.21, p<0.001), and ABC (38.39±13.46 to 46.93±12.32, p<0.001). The step-length symmetry (1.017±0.25 to 0.990±0.19, p=0.720) and overall temporal symmetry (1.404±0.36 to 1.314±0.34, p=0.218) showed improvement without statistical significance. ATT improves the functional aspects of gait, including CWT, BBS and ABC, and spatiotemporal gait symmetry, though without statistical significance. Further studies are required to examine and compare the potential benefits of ATT as a new modality for stroke therapy, with other modalities.

  19. Validation of the Hexoskin wearable vest during lying, sitting, standing, and walking activities.

    PubMed

    Villar, Rodrigo; Beltrame, Thomas; Hughson, Richard L

    2015-10-01

    We tested the validity of the Hexoskin wearable vest to monitor heart rate (HR), breathing rate (BR), tidal volume (VT), minute ventilation, and hip motion intensity (HMI) in comparison with laboratory standard devices during lying, sitting, standing, and walking. Twenty healthy young volunteers participated in this study. First, participants walked 6 min on a treadmill at speeds of 1, 3, and 4.5 km/h followed by increasing treadmill grades until 80% of their predicted maximal heart rate. Second, lying, sitting, and standing tasks were performed (5 min each) followed by 6 min of treadmill walking at 80% of their ventilatory threshold. Analysis of each individual's mean values under each resting or exercise condition by the 2 measurement systems revealed low coefficient of variation and high intraclass correlation values for HR, BR, and HMI. The Bland-Altman results from HR, BR, and HMI indicated no deviation of the mean value from zero and relatively small variability about the mean. VT and minute ventilation were provided in arbitrary units by the Hexoskin device; however, relative magnitude of change from Hexoskin closely tracked the laboratory standard method. Hexoskin presented low variability, good agreement, and consistency. The Hexoskin wearable vest was a valid and consistent tool to monitor activities typical of daily living such as different body positions (lying, sitting, and standing) and various walking speeds.

  20. Use of an Anti-Gravity Treadmill for Early Postoperative Rehabilitation After Total Knee Replacement: A Pilot Study to Determine Safety and Feasibility.

    PubMed

    Bugbee, William D; Pulido, Pamela A; Goldberg, Timothy; D'Lima, Darryl D

    2016-01-01

    The objective was to determine the safety, feasibility, and effects of anti-gravity gait training on functional outcomes (Knee Injury and Osteoarthritis Outcome Score [KOOS], the Timed Up and Go test [TUG], Numerical Rating Scale [NRS] for pain) with the AlterG® Anti-Gravity Treadmill® device for total knee arthroplasty (TKA) rehabilitation. Subjects (N = 30) were randomized to land-based vs anti-gravity gait training over 4 weeks of physical therapy after TKA. Adverse events, complications, and therapist satisfaction were recorded. All patients completed rehabilitation protocols without adverse events. KOOS, TUG, and NRS scores improved in both groups with no significant differences between groups. For the AlterG group, Sports/Recreation and Quality of Life subscales of the KOOS had the most improvement. At the end of physical therapy, TUG and NRS pain scores improved from 14 seconds to 8 seconds and from 2.8 to 1.1, respectively. Subjectively, therapists reported 100% satisfaction with the AlterG. This initial pilot study demonstrated that the AlterG Anti-Gravity Treadmill device was safe and feasible. While functional outcomes improved over time with use of the anti-gravity gait training, further studies are needed to define the role of this device as an alternative or adjunct to established rehabilitation protocols.

Top