Sample records for project conceptual design

  1. SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO CA

    2010-03-09

    This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysismore » is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.« less

  2. AGRI Grain Power ethanol-for-fuel project feasibility-study report. Volume I. Project conceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-04-01

    The AGRI GRAIN POWER (AGP) Project, hereafter referred to as the Project, was formed to evaluate the commercial viability and assess the desireability of implementing a large grain based grass-roots anhydrous ethanol fuel project to be sited near Des Moines, Iowa. This report presents the results of a Project feasibility evaluation. The Project concept is based on involving a very strong managerial, financial and technical joint venture that is extremely expert in all facets of planning and implementing a large ethanol project; on locating the ethanol project at a highly desireable site; on utilizing a proven ethanol process; and onmore » developing a Project that is well suited to market requirements, resource availability and competitive factors. The Project conceptual design is presented in this volume.« less

  3. PRA and Conceptual Design

    NASA Technical Reports Server (NTRS)

    DeMott, Diana; Fuqua, Bryan; Wilson, Paul

    2013-01-01

    Once a project obtains approval, decision makers have to consider a variety of alternative paths for completing the project and meeting the project objectives. How decisions are made involves a variety of elements including: cost, experience, current technology, ideologies, politics, future needs and desires, capabilities, manpower, timing, available information, and for many ventures management needs to assess the elements of risk versus reward. The use of high level Probabilistic Risk Assessment (PRA) Models during conceptual design phases provides management with additional information during the decision making process regarding the risk potential for proposed operations and design prototypes. The methodology can be used as a tool to: 1) allow trade studies to compare alternatives based on risk, 2) determine which elements (equipment, process or operational parameters) drives the risk, and 3) provide information to mitigate or eliminate risks early in the conceptual design to lower costs. Creating system models using conceptual design proposals and generic key systems based on what is known today can provide an understanding of the magnitudes of proposed systems and operational risks and facilitates trade study comparisons early in the decision making process. Identifying the "best" way to achieve the desired results is difficult, and generally occurs based on limited information. PRA provides a tool for decision makers to explore how some decisions will affect risk before the project is committed to that path, which can ultimately save time and money.

  4. Application of Deterministic and Probabilistic System Design Methods and Enhancements of Conceptual Design Tools for ERA Project

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.; Schutte, Jeff S.

    2016-01-01

    This report documents work done by the Aerospace Systems Design Lab (ASDL) at the Georgia Institute of Technology, Daniel Guggenheim School of Aerospace Engineering for the National Aeronautics and Space Administration, Aeronautics Research Mission Directorate, Integrated System Research Program, Environmentally Responsible Aviation (ERA) Project. This report was prepared under contract NNL12AA12C, "Application of Deterministic and Probabilistic System Design Methods and Enhancement of Conceptual Design Tools for ERA Project". The research within this report addressed the Environmentally Responsible Aviation (ERA) project goal stated in the NRA solicitation "to advance vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions." To identify technology and vehicle solutions that simultaneously meet these three metrics requires the use of system-level analysis with the appropriate level of fidelity to quantify feasibility, benefits and degradations, and associated risk. In order to perform the system level analysis, the Environmental Design Space (EDS) [Kirby 2008, Schutte 2012a] environment developed by ASDL was used to model both conventional and unconventional configurations as well as to assess technologies from the ERA and N+2 timeframe portfolios. A well-established system design approach was used to perform aircraft conceptual design studies, including technology trade studies to identify technology portfolios capable of accomplishing the ERA project goal and to obtain accurate tradeoffs between performance, noise, and emissions. The ERA goal, shown in Figure 1, is to simultaneously achieve the N+2 benefits of a cumulative noise margin of 42 EPNdB relative to stage 4, a 75 percent reduction in LTO NOx emissions relative to CAEP 6 and a 50 percent reduction in fuel burn relative to the 2005 best in class aircraft. There were 5 research task associated with this research: 1) identify technology collectors, 2) model

  5. Transitioning from conceptual design to construction performance specification

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Warner, Mark; Craig, Simon; Hubbard, Robert; Marshall, Heather

    2012-09-01

    On successful completion of a conceptual design review by a funding agency or customer, there is a transition phase before construction contracts can be placed. The nature of this transition phase depends on the Project's approach to construction and the particular subsystem being considered. There are generically two approaches; project retention of design authority and issuance of build to print contracts, or issuance of subsystem performance specifications with controlled interfaces. This paper relates to the latter where a proof of concept (conceptual or reference design) is translated into performance based sub-system specifications for competitive tender. This translation is not a straightforward process and there are a number of different issues to consider in the process. This paper deals with primarily the Telescope mount and Enclosure subsystems. The main subjects considered in this paper are: • Typical status of design at Conceptual Design Review compared with the desired status of Specifications and Interface Control Documents at Request for Quotation. • Options for capture and tracking of system requirements flow down from science / operating requirements and sub-system requirements, and functional requirements derived from reference design. • Requirements that may come specifically from the contracting approach. • Methods for effective use of reference design work without compromising a performance based specification. • Management of project team's expectation relating to design. • Effects on cost estimates from reference design to actual. This paper is based on experience and lessons learned through this process on both the VISTA and the ATST projects.

  6. Conceptual design of the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Paisner, Jeffrey A.; Boyes, John D.; Kumpan, Steven A.; Lowdermilk, W. Howard; Sorem, Michael S.

    1995-12-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a conceptual design report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a key decision zero (KD0), justification of mission need. Motivated by the progress to date by the inertial confinement fusion (ICF) program in meeting the Nova technical contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 micrometer) of neodymium (Nd) glass. The participating ICF laboratories signed a memorandum of agreement in August 1993, and established a project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE defense program's site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a facilities requirements document, a conceptual design scope and plan, a target physics design document, a laser design cost basis document, a functional requirements document, an experimental plan for indirect drive ignition, and a preliminary hazards analysis (PHA) document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a key decision one (KD1) for the NIF, which approved the project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. In February 1995, the NIF Project was

  7. GridAPPS-D Conceptual Design v1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melton, Ronald B.; Schneider, Kevin P.; McDermott, Thomas E.

    2017-05-31

    The purpose of this document is to provide a conceptual design of the distribution system application development platform being developed for the U.S. Department of Energy’s Advanced Distribution Management System (ADMS) Program by the Grid Modernization Laboratory Consortium project GM0063. The platform will be referred to as GridAPPS-D. This document provides a high level, conceptual view of the platform and provides related background and contextual information. This document is intended to both educate readers about the technical work of the project and to serve as a point of reference for the project team. The document will be updated as themore » project progresses.« less

  8. Conceptual Design of an APT Reusable Spaceplane

    NASA Astrophysics Data System (ADS)

    Corpino, S.; Viola, N.

    This paper concerns the conceptual design of an Aerial Propellant Transfer reusable spaceplane carried out during our PhD course under the supervision of prof. Chiesa. The new conceptual design methodology employed in order to develop the APT concept and the main characteristics of the spaceplane itself will be presented and discussed. The methodology for conceptual design has been worked out during the last three years. It was originally thought for atmospheric vehicle design but, thanks to its modular structure which makes it very flexible, it has been possible to convert it to space transportation systems design by adding and/or modifying a few modules. One of the major improvements has been for example the conception and development of the mission simulation and trajectory optimisation module. The methodology includes as main characteristics and innovations the latest techniques of geometric modelling and logistic, operational and cost aspects since the first stages of the project. Computer aided design techniques are used to obtain a better definition of the product at the end of the conceptual design phase and virtual reality concepts are employed to visualise three-dimensional installation and operational aspects, at least in part replacing full-scale mock- ups. The introduction of parametric three-dimensional CAD software integrated into the conceptual design methodology represents a great improvement because it allows to carry out different layouts and to assess them immediately. It is also possible to link the CAD system to a digital prototyping software which combines 3D visualisation and assembly analysis, useful to define the so-called Digital Mock-Up at Conceptual Level (DMUCL) which studies the integration between the on board systems, sized with simulation algorithms, and the airframe. DMUCL represents a very good means to integrate the conceptual design with a methodology turned towards dealing with Reliability, Availability, Maintainability and

  9. Spent nuclear fuel canister storage building conceptual design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, C.E.

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  10. Conceptual design optimization study

    NASA Technical Reports Server (NTRS)

    Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.

    1990-01-01

    The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.

  11. Winged cargo return vehicle. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Advanced Design Project (ADP) allows an opportunity for students to work in conjunction with NASA and other aerospace companies on NASA Advanced Design Projects. The following volumes represent the design report: Volume 1 Conceptual Design; Volume 2 Wind Tunnel Tests; Volume 3 Structural Analysis; and Volume 4 Water Tunnel Tests. The project chosen by the University of Minnesota in conjunction with NASA Marshall Space Flight Center for this year is a Cargo Return Vehicle (CRV) to support the Space Station Freedom. The vehicle is the third generation of vehicles to be built by NASA, the first two being the Apollo program, and the Space Shuttle program. The CRV is to work in conjunction with a personnel launch system (PLS) to further subdivide and specialize the vehicles that NASA will operate in the year 2000. The cargo return vehicle will carry payload to and from the Space Station Freedom (SSF).

  12. Conceptual design report for the project to install leak detection in FAST-FT-534/548/549

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, K.J.

    1992-07-01

    This report provides conceptual designs and design recommendations for installing secondary containment and leak detection systems for three sumps at the Fluorinel and Storage Facility (FAST), CPP-666. The FAST facility is located at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). The three sumps receive various materials from the FAST water treatment process. This project involves sump upgrades to meet appropriate environmental requirements. The steps include: providing sump modifications or designs for the installation of leak chases and/or leakage accumulation, coating the sump concrete with a chemical resistant sealant (except for sump VES-FT-534 which ismore » already lined with stainless steel) to act as secondary containment, lining the sumps with a primary containment system, and providing a means to detect and remove primary containment leakage that may occur.« less

  13. Sustainability of partnership projects: a conceptual framework and checklist.

    PubMed

    Edwards, Janine C; Feldman, Penny Hollander; Sangl, Judy; Polakoff, David; Stern, Glen; Casey, Don

    2007-12-01

    There is growing recognition that the health care delivery system in the United States must make major changes. Intervention projects focusing on quality and patient safety offer the potential for reshaping the future of medicine. Sustainability of the Partnerships for Quality (PFQ) projects and other patient safety and quality improvement projects that provide evidence of effectiveness is essential if progress is to be made. For the purposes of these projects, a conceptual framework and a checklist for sustainability were developed. The framework consists of two dimensions: (1) the goals--what is to be sustained--and (2) elements for sustainability--infrastructure, incentives, incremental opportunities for involvement, and integration. The checklist is designed to trigger planning for sustainability early in a project's design. Specific questions about each of the elements can cue planners and project leaders to build in the goals for sustainability and change processes. A pilot test showed that the framework and checklist are relevant and helpful across a variety of projects. Two extended examples of planning and action for sustainability from the PFQ projects are described. It is too early to claim sustainability for these project. However, continued monitoring for at least three years with the checklist could result in valuable national data with which to design and implement future projects.

  14. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.

  15. Conceptual design of a two stage to orbit spacecraft

    NASA Technical Reports Server (NTRS)

    Armiger, Scott C.; Kwarta, Jennifer S.; Horsley, Kevin B.; Snow, Glenn A.; Koe, Eric C.; Single, Thomas G.

    1993-01-01

    This project, undertaken through the Advanced Space Design Program, developed a 'Conceptual Design of a Two Stage To Orbit Spacecraft (TSTO).' The design developed utilizes a combination of air breathing and rocket propulsion systems and is fully reusable, with horizontal takeoff and landing capability. The orbiter is carried in an aerodynamically designed bay in the aft section of the booster vehicle to the staging altitude. This TSTO Spacecraft design meets the requirements of replacing the aging Space Shuttle system with a more easily maintained vehicle with more flexible mission capability.

  16. Conceptual design of the AE481 Demon Remotely Piloted Vehicle (RPV)

    NASA Technical Reports Server (NTRS)

    Hailes, Chris; Kolver, Jill; Nestor, Julie; Patterson, Mike; Selow, Jan; Sagdeo, Pradip; Katz, Kenneth

    1994-01-01

    This project report presents a conceptual design for a high speed remotely piloted vehicle (RPV). The AE481 Demon RPV is capable of performing video reconnaissance missions and electronic jamming over hostile territory. The RPV cruises at a speed of Mach 0.8 and an altitude of 300 feet above the ground throughout its mission. It incorporates a rocket assisted takeoff and a parachute-airbag landing. Missions are preprogrammed, but in-flight changes are possible. The Demon is the answer to a military need for a high speed, low altitude RPV. The design methods, onboard systems, and avionics payload are discussed in this conceptual design report along with economic viability.

  17. Guidelines for conceptual design and evaluation of aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Meyer, C. F.; Hauz, W.

    1980-10-01

    Guidelines are presented for use as a tool by those considering application of aquifer thermal energy storage (ATES) technology. The guidelines assist utilities, municipalities, industries, and other entities in the conceptual design and evaluation of systems employing ATES. The potential benefits of ATES are described, an overview is presented of the technology and its applications, and rules of thumb are provided for quickly judging whether a proposed project has sufficient promise to warrant detailed conceptual design and evaluation. The characteristics of sources and end uses of heat and chill which are seasonally mismatched and may benefit from ATES are discussed. Storage and transport subsystems and their expected performance and cost are described. A methodology is presented for conceptual design of an ATES system and evaluation of its technical and economic feasibility in terms of energy conservation, cost savings, fuel substitution, improved dependability of supply, and abatement of pollution.

  18. Analysis of the TREAT LEU Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.

    2016-03-01

    Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Managementmore » and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO 2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.« less

  19. CONCEPTUAL DESIGN REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROBINSON,K.

    2006-12-31

    Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron radiation. This facility, called the ''National Synchrotron Light Source II'' (NSLS-II), will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopymore » on a single atom. The overall objective of the NSLS-II project is to deliver a research facility to advance fundamental science and have the capability to characterize and understand physical properties at the nanoscale, the processes by which nanomaterials can be manipulated and assembled into more complex hierarchical structures, and the new phenomena resulting from such assemblages. It will also be a user facility made available to researchers engaged in a broad spectrum of disciplines from universities, industries, and other laboratories.« less

  20. Solar-C Conceptual Spacecraft Design Study: Final Review. Release 2

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall; Baysinger, Mike; Thomas, Dan; Heaton, Andy; Stough, Rob; Hill, Spencer; Owens, Jerry; Young, Roy; Fabisinski, Leo; Thomas, Scott; hide

    2010-01-01

    This briefing package contains the conceptual spacecraft design completed by the Advanced Concepts Office (ED04) in support of the Solar-C Study. The mission is to succeed Hinode (Solar B), and is designed to study the polar regions of the sun. Included in the slide presentation are sections that review the payload data, and overall ground rules and assumptions, mission analysis and trajectory design, the conceptual spacecraft design section includes: (1) Integrated Systems Design, (2) Mass Properties (3) Cost, (4) Solar Sail Systems, (6) Propulsion, (7) Structures, (8) Thermal (9) Power (10) Avionics / GN&C. There are also conclusions and follow-up work that must be done. In the Back-up section there is information about the JAXA H-11A Launch Vehicle, scalability and spiral development, Mass Projections, a comparison of the TRL assessment for two potential vendors of solar sails, and a chart with the mass properties,

  1. Assessing Students' Conceptual Understanding in Science: An Introduction about a National Project in Taiwan

    ERIC Educational Resources Information Center

    Chiu, Mei-Hung; Guo, Chorng-Jee; Treagust, David F.

    2007-01-01

    In this article, we discuss several aspects of the national project, the National Science Concept Learning Study, designed to assess elementary, middle, and secondary students' conceptual understanding in science. After a short introduction to provide some history of the project, we describe the processes used in the integrative study, the…

  2. FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT

    EPA Science Inventory

    The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....

  3. The conceptual framework of the International Tobacco Control (ITC) Policy Evaluation Project

    PubMed Central

    Fong, G T; Cummings, K M; Borland, R; Hastings, G; Hyland, A; Giovino, G A; Hammond, D; Thompson, M E

    2006-01-01

    This paper describes the conceptual model that underlies the International Tobacco Control Policy Evaluation Project (ITC Project), whose mission is to measure the psychosocial and behavioural impact of key policies of the Framework Convention on Tobacco Control (FCTC) among adult smokers, and in some countries, among adult non‐smokers and among youth. The evaluation framework utilises multiple country controls, a longitudinal design, and a pre‐specified, theory‐driven conceptual model to test hypotheses about the anticipated effects of specific policies. The ITC Project consists of parallel prospective cohort surveys of representative samples of adult smokers currently in nine countries (inhabited by over 45% of the world's smokers), with other countries being added in the future. Collectively, the ITC Surveys constitute the first‐ever international cohort study of tobacco use. The conceptual model of the ITC Project draws on the psychosocial and health communication literature and assumes that tobacco control policies influence tobacco related behaviours through a causal chain of psychological events, with some variables more closely related to the policy itself (policy‐specific variables) and other variables that are more downstream from the policy, which have been identified by health behaviour and social psychological theories as being important causal precursors of behaviour (psychosocial mediators). We discuss the objectives of the ITC Project and its potential for building the evidence base for the FCTC. PMID:16754944

  4. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Joe Iovenitti

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  5. LUX-ZEPLIN (LZ) Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, D. S.

    2015-03-09

    The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c 2 to hundreds of TeV/c 2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experimentmore » is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given.« less

  6. ISTAR: Project Status and Ground Test Engine Design

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene

    2003-01-01

    Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.

  7. Structural Analysis in a Conceptual Design Framework

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  8. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  9. Design Oriented Structural Modeling for Airplane Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Livne, Eli

    1999-01-01

    The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.

  10. Design of an UML conceptual model and implementation of a GIS with metadata information for a seismic hazard assessment cooperative project.

    NASA Astrophysics Data System (ADS)

    Torres, Y.; Escalante, M. P.

    2009-04-01

    This work illustrates the advantages of using a Geographic Information System in a cooperative project with researchers of different countries, such as the RESIS II project (financed by the Norwegian Government and managed by CEPREDENAC) for seismic hazard assessment of Central America. As input data present different formats, cover distinct geographical areas and are subjected to different interpretations, data inconsistencies may appear and their management get complicated. To achieve data homogenization and to integrate them in a GIS, it is required previously to develop a conceptual model. This is accomplished in two phases: requirements analysis and conceptualization. The Unified Modeling Language (UML) is used to compose the conceptual model of the GIS. UML complies with ISO 19100 norms and allows the designer defining model architecture and interoperability. The GIS provides a frame for the combination of large geographic-based data volumes, with an uniform geographic reference and avoiding duplications. All this information contains its own metadata following ISO 19115 normative. In this work, the integration in the same environment of active faults and subduction slabs geometries, combined with the epicentres location, has facilitated the definition of seismogenetic regions. This is a great support for national specialists of different countries to make easier their teamwork. The GIS capacity for making queries (by location and by attributes) and geostatistical analyses is used to interpolate discrete data resulting from seismic hazard calculations and to create continuous maps as well as to check and validate partial results of the study. GIS-based products, such as complete, homogenised databases and thematic cartography of the region, are distributed to all researchers, facilitating cross-national communication, the project execution and results dissemination.

  11. FAST FLUX TEST FACILITY CONCEPTUAL FACILTY DESIGN DESCRIPTION FOR THE INERT GAS CELL EXAMINATION FACILITY NO. 71

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1968-12-12

    The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.

  12. Aircraft Conceptual Design Using Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.

    2010-01-01

    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  13. Handling Qualities Optimization for Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Lawrence, Ben; Theodore, Colin R.; Berger, Tom

    2016-01-01

    Over the past decade, NASA, under a succession of rotary-wing programs has been moving towards coupling multiple discipline analyses in a rigorous consistent manner to evaluate rotorcraft conceptual designs. Handling qualities is one of the component analyses to be included in a future NASA Multidisciplinary Analysis and Optimization framework for conceptual design of VTOL aircraft. Similarly, the future vision for the capability of the Concept Design and Assessment Technology Area (CD&A-TA) of the U.S Army Aviation Development Directorate also includes a handling qualities component. SIMPLI-FLYD is a tool jointly developed by NASA and the U.S. Army to perform modeling and analysis for the assessment of flight dynamics and control aspects of the handling qualities of rotorcraft conceptual designs. An exploration of handling qualities analysis has been carried out using SIMPLI-FLYD in illustrative scenarios of a tiltrotor in forward flight and single-main rotor helicopter at hover. Using SIMPLI-FLYD and the conceptual design tool NDARC integrated into a single process, the effects of variations of design parameters such as tail or rotor size were evaluated in the form of margins to fixed- and rotary-wing handling qualities metrics as well as the vehicle empty weight. The handling qualities design margins are shown to vary across the flight envelope due to both changing flight dynamic and control characteristics and changing handling qualities specification requirements. The current SIMPLI-FLYD capability and future developments are discussed in the context of an overall rotorcraft conceptual design process.

  14. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  15. Conceptual design of flapping-wing micro air vehicles.

    PubMed

    Whitney, J P; Wood, R J

    2012-09-01

    Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.

  16. Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument

    NASA Astrophysics Data System (ADS)

    Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.

    2012-09-01

    We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.

  17. Engineering the IOOS: A Conceptual Design and Conceptual Operations Plan

    NASA Astrophysics Data System (ADS)

    Lampel, M.; Hood, C.; Kleinert, J.; Morgan, R. A.; Morris, P.

    2007-12-01

    The Integrated Ocean Observing System is the United States component in a world wide effort to provide global coverage of the world's oceans using the Global Ocean Observing System (GOOS). The US contribution includes systems supporting three major IOOS components: the Observation Subsystem, the Modeling and Analysis Subsystem, and the Data Management and Communications (DMAC) Subsystem. The assets to be used in these subsystems include hundreds of existing satellite sensors, buoy arrays, water level monitoring networks, wave monitoring networks, specialized systems for commerce, such as the Physical Oceanographic Real-Time System (PORTS®), and health and safety monitoring systems such as NOAA's (National Oceanic and Atmospheric Administration) Harmful Algal Bloom Forecasting System for the Gulf of Mexico. Conceptual design addresses the interconnectivity of these systems, while Conceptual Operations provides understanding of the motivators for interconnectivity and a methodology for how useful products are created and distributed. This paper will report on the conceptual design and the concept of operations devleoped by the authors under contract to NOAA.

  18. Towards a theoretical clarification of biomimetics using conceptual tools from engineering design.

    PubMed

    Drack, M; Limpinsel, M; de Bruyn, G; Nebelsick, J H; Betz, O

    2017-12-13

    Many successful examples of biomimetic products are available, and most research efforts in this emerging field are directed towards the development of specific applications. The theoretical and conceptual underpinnings of the knowledge transfer between biologists, engineers and architects are, however, poorly investigated. The present article addresses this gap. We use a 'technomorphic' approach, i.e. the application of conceptual tools derived from engineering design, to better understand the processes operating during a typical biomimetic research project. This helps to elucidate the formal connections between functions, working principles and constructions (in a broad sense)-because the 'form-function-relationship' is a recurring issue in biology and engineering. The presented schema also serves as a conceptual framework that can be implemented for future biomimetic projects. The concepts of 'function' and 'working principle' are identified as the core elements in the biomimetic knowledge transfer towards applications. This schema not only facilitates the development of a common language in the emerging science of biomimetics, but also promotes the interdisciplinary dialogue among its subdisciplines.

  19. Development of Conceptual Design Support Tool Founded on Formalization of Conceptual Design Process for Regenerative Life Support Systems

    NASA Astrophysics Data System (ADS)

    Miyajima, Hiroyuki; Yuhara, Naohiro

    Regenerative Life Support Systems (RLSS), which maintain human lives by recycling substances essential for living, are comprised of humans, plants, and material circulation systems. The plants supply food to the humans or reproduce water and gases by photosynthesis, while the material circulation systems recycle physicochemically and circulate substances disposed by humans and plants. RLSS attracts attention since manned space activities have been shifted from previous short trips to long-term stay activities as such base as a space station, a lunar base, and a Mars base. The present typical space base is the International Space Station (ISS), a manned experimental base for prolonged stays, where RLSS recycles only water and air. In order to accommodate prolonged and extended manned activity in future space bases, developing RLSS that implements food production and regeneration of resources at once using plants is expected. The configuration of RLSS should be designed to suit its own duty, for which design requirements for RLSS with an unprecedented configuration may arise. Accordingly, it is necessary to establish a conceptual design method for generalized RLSS. It is difficult, however, to systematize the design process by analyzing previous design because there are only a few ground-experimental facilities, namely CEEF (Closed Ecology Experiment Facilities) of Japan, BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) of the U.S., and BIOS3 of Russia. Thus a conceptual design method which doesn’t rely on previous design examples is required for generalized RLSS from the above reasons. This study formalizes a conceptual design process, and develops a conceptual design support tool for RLSS based on this design process.

  20. Conceptual FOM design tool

    NASA Astrophysics Data System (ADS)

    Krause, Lee S.; Burns, Carla L.

    2000-06-01

    This paper discusses the research currently in progress to develop the Conceptual Federation Object Model Design Tool. The objective of the Conceptual FOM (C-FOM) Design Tool effort is to provide domain and subject matter experts, such as scenario developers, with automated support for understanding and utilizing available HLA simulation and other simulation assets during HLA Federation development. The C-FOM Design Tool will import Simulation Object Models from HLA reuse repositories, such as the MSSR, to populate the domain space that will contain all the objects and their supported interactions. In addition, the C-FOM tool will support the conversion of non-HLA legacy models into HLA- compliant models by applying proven abstraction techniques against the legacy models. Domain experts will be able to build scenarios based on the domain objects and interactions in both a text and graphical form and export a minimal FOM. The ability for domain and subject matter experts to effectively access HLA and non-HLA assets is critical to the long-term acceptance of the HLA initiative.

  1. Conceptual Design of a Z-Pinch Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Polsgrove, Tara; Fincher, Sharon; Fabinski, Leo; Maples, Charlotte; Miernik, Janie; Stratham, Geoffrey; Cassibry, Jason; Cortez, Ross; Turner, Matthew; hide

    2010-01-01

    This slide presentation reviews a project that aims to develop a conceptual design for a Z-pinch thruster, that could be applied to develop advanced thruster designs which promise high thrust/high specific impulse propulsion. Overviews shows the concept of the design, which use annular nozzles with deuterium-tritium (D-T) fuel and a Lithium mixture as a cathode, Charts show the engine performance as a function of linear mass, nozzle performance (i.e., plasma segment trajectories), and mission analysis for possible Mars and Jupiter missions using this concept for propulsion. Slides show views of the concepts for the vehicle configuration, thrust coil configuration, the power management system, the structural analysis of the magnetic nozzle, the thermal management system, and the avionics suite,

  2. Conceptual design of a water treatment system to support a manned Mars colony

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The initial tasks addressed by the Prairie View A&M University team were the conceptual design of a breathable-air manufacturing system, a means of drilling for underground water, and a method for storing water for future use. Subsequently, the design objective of the team for the 1987-1988 academic year was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use. The source of water for these applications is assumed to be artesian or subsurface. The first step of the project was to establish design criteria and major assumptions. The second step of the effort was to generate a block diagram of the expected treatment system and assign tasks to individual students. The list of processes for water purification and wastewater treatment given above suggests that there will be a need for on-site chemicals manufacturing for ion-exchange regeneration and disinfection. The third step of the project was to establish a basis for the design capacity of the system. A total need of 10,000 gal/day was assumed to be required. It was also assumed that 30,000 gallon raw-water intake volume is needed to produce the desired effluent volume.

  3. Conceptual Design Oriented Wing Structural Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Lau, May Yuen

    1996-01-01

    Airplane optimization has always been the goal of airplane designers. In the conceptual design phase, a designer's goal could be tradeoffs between maximum structural integrity, minimum aerodynamic drag, or maximum stability and control, many times achieved separately. Bringing all of these factors into an iterative preliminary design procedure was time consuming, tedious, and not always accurate. For example, the final weight estimate would often be based upon statistical data from past airplanes. The new design would be classified based on gross characteristics, such as number of engines, wingspan, etc., to see which airplanes of the past most closely resembled the new design. This procedure works well for conventional airplane designs, but not very well for new innovative designs. With the computing power of today, new methods are emerging for the conceptual design phase of airplanes. Using finite element methods, computational fluid dynamics, and other computer techniques, designers can make very accurate disciplinary-analyses of an airplane design. These tools are computationally intensive, and when used repeatedly, they consume a great deal of computing time. In order to reduce the time required to analyze a design and still bring together all of the disciplines (such as structures, aerodynamics, and controls) into the analysis, simplified design computer analyses are linked together into one computer program. These design codes are very efficient for conceptual design. The work in this thesis is focused on a finite element based conceptual design oriented structural synthesis capability (CDOSS) tailored to be linked into ACSYNT.

  4. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  5. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Astrophysics Data System (ADS)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  6. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  7. Government conceptual estimating for contracting and management

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1986-01-01

    The use of the Aerospace Price Book, a cost index, and conceptual cost estimating for cost-effective design and construction of space facilities is discussed. The price book consists of over 200 commonly used conceptual elements and 100 systems summaries of projects such as launch pads, processing facilities, and air locks. The cost index is composed of three divisions: (1) bid summaries of major Shuttle projects, (2) budget cost data sheets, and (3) cost management summaries; each of these divisions is described. Conceptual estimates of facilities and ground support equipment are required to provide the most probable project cost for budget, funding, and project approval purposes. Similar buildings, systems, and elements already designed are located in the cost index in order to make the best rough order of magnitude conceptual estimates for development of Space Shuttle facilities. An example displaying the applicability of the conceptual cost estimating procedure for the development of the KSC facilities is presented.

  8. A Conceptual Model and Database to Integrate Data and Project Management

    NASA Astrophysics Data System (ADS)

    Guarinello, M. L.; Edsall, R.; Helbling, J.; Evaldt, E.; Glenn, N. F.; Delparte, D.; Sheneman, L.; Schumaker, R.

    2015-12-01

    Data management is critically foundational to doing effective science in our data-intensive research era and done well can enhance collaboration, increase the value of research data, and support requirements by funding agencies to make scientific data and other research products available through publically accessible online repositories. However, there are few examples (but see the Long-term Ecological Research Network Data Portal) of these data being provided in such a manner that allows exploration within the context of the research process - what specific research questions do these data seek to answer? what data were used to answer these questions? what data would have been helpful to answer these questions but were not available? We propose an agile conceptual model and database design, as well as example results, that integrate data management with project management not only to maximize the value of research data products but to enhance collaboration during the project and the process of project management itself. In our project, which we call 'Data Map,' we used agile principles by adopting a user-focused approach and by designing our database to be simple, responsive, and expandable. We initially designed Data Map for the Idaho EPSCoR project "Managing Idaho's Landscapes for Ecosystem Services (MILES)" (see https://www.idahoecosystems.org//) and will present example results for this work. We consulted with our primary users- project managers, data managers, and researchers to design the Data Map. Results will be useful to project managers and to funding agencies reviewing progress because they will readily provide answers to the questions "For which research projects/questions are data available and/or being generated by MILES researchers?" and "Which research projects/questions are associated with each of the 3 primary questions from the MILES proposal?" To be responsive to the needs of the project, we chose to streamline our design for the prototype

  9. Design and Evaluation of the NFL PLAY 60 FITNESSGRAM® Partnership Project

    ERIC Educational Resources Information Center

    Welk, Gregory J.; Bai, Yang; Saint-Maurice, Pedro F.; Allums-Featherston, Kelly; Candelaria, Norma

    2016-01-01

    This article describes the conceptual design and evaluation strategies used in the NFL PLAY 60 FITNESSGRAM® Partnership Project, a large participatory research network focused on building effective school physical education programming. The article summarizes the unique participatory design, recruitment methods, programming strategies, and…

  10. Conceptual Chemical Process Design for Sustainability.

    EPA Science Inventory

    This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyse...

  11. Rotorcraft Conceptual Design Environment

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Sinsay, Jeffrey

    2009-01-01

    Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.

  12. Rotorcraft Conceptual Design Environment

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Sinsay, Jeffrey D.

    2010-01-01

    Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.

  13. Forest Fire Advanced System Technology (FFAST): A Conceptual Design for Detection and Mapping

    Treesearch

    J. David Nichols; John R. Warren

    1987-01-01

    The Forest Fire Advanced System Technology (FFAST) project is developing a data system to provide near-real-time forest fire information to fire management at the fire Incident Command Post (ICP). The completed conceptual design defined an integrated forest fire detection and mapping system that is based upon technology available in the 1990's. System component...

  14. AI applications to conceptual aircraft design

    NASA Technical Reports Server (NTRS)

    Chalfan, Kathryn M.

    1990-01-01

    This paper presents in viewgraph form several applications of artificial intelligence (AI) to the conceptual design of aircraft, including: an access manager for automated data management, AI techniques applied to optimization, and virtual reality for scientific visualization of the design prototype.

  15. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  16. Conceptual Design of the Chornobyl New Safe Confinement - an Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulishenko, Valery N.; Hogg, Charles; Schmieman, Eric A.

    2006-05-01

    The Object Shelter, constructed over the Chornobyl nuclear power plant that was destroyed by a 1986 accident, is at risk of collapse. The Consortium of Bechtel, Electricité De France, and Battelle, in cooperation with subcontractor КСК, recently completed the conceptual design for a New Safe Confinement (NSC) building to reduce Shelter corrosion, to mitigate the consequences of potential collapse, and to enable the safe deconstruction of unstable structures. The arch-shaped NSC will be constructed at a distance from the Shelter to minimize radiation exposure to construction workers, and then slid into place over the Shelter. After sliding, cranes and othermore » tools inside the NSC will be remotely operated for deconstruction of the Shelter. The NSC is designed for a 100-year life. Bechtel designed the arch structure and was responsible for project management functions. Electricité De France designed the foundations and designed deconstruction of the Object Shelter unstable elements. Battelle performed safety analyses and environmental impact assessment. КСК (a consortium of КIЕЛ [KIEP], НДIБК [NIISK], and МНТЦ [ISTC]), as a working partner in all aspects of the design and analysis processes, was the Ukrainian licensed engineer for conceptual design. The design is currently being reviewed by Ukrainian regulatory authorities. An open international tender for detailed design and construction is anticipated to be announced by the European Bank for Reconstruction and Development in December, 2003, with two-stage bid evaluation beginning in April, 2004.« less

  17. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 1. Executive summary. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    The conceptual design of an advanced central receiver power system using liquid sodium as a heat transport medium has been completed by a team consisting of the Energy Systems Group (prime contractor), McDonnell Douglas, Stearns-Roger, The University of Houston, and Salt River Project. The purpose of this study was to determine the technical and economic advantages of this concept for commercial-scale power plants. This final report covers all tasks of the project. These tasks were as follows: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) select commercial configuration; (4) commercial plant conceptual design; (5) assessment of commercialmore » plant; (6) advanced central receiver power system development plan; (7) program plan; (8) reports and data; (9) program management; and (10) safety analysis. A programmatic overview of the accomplishments of this program is given. The 100-MW conceptual commercial plant, the 281-MW optimum plant, and the 10-MW pilot plant are described. (WHK)« less

  18. Shuttle/tethered satellite system conceptual design study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.

  19. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  20. Block 2 SRM conceptual design studies. Volume 1, Book 1: Conceptual design package

    NASA Technical Reports Server (NTRS)

    Smith, Brad; Williams, Neal; Miller, John; Ralston, Joe; Richardson, Jennifer; Moore, Walt; Doll, Dan; Maughan, Jeff; Hayes, Fred

    1986-01-01

    The conceptual design studies of a Block 2 Solid Rocket Motor (SRM) require the elimination of asbestos-filled insulation and was open to alternate designs, such as case changes, different propellants, modified burn rate - to improve reliability and performance. Limitations were placed on SRM changes such that the outside geometry should not impact the physical interfaces with other Space Shuttle elements and should have minimum changes to the aerodynamic and dynamic characteristics of the Space Shuttle vehicle. Previous Space Shuttle SRM experience was assessed and new design concepts combined to define a valid approach to assured flight success and economic operation of the STS. Trade studies, preliminary designs, analyses, plans, and cost estimates are documented.

  1. A conceptual design for the attitude control and determination system for the Magnetosphere Imager spacecraft

    NASA Technical Reports Server (NTRS)

    Polites, M. E.; Carrington, C. K.

    1995-01-01

    This paper presents a conceptual design for the attitude control and determination (ACAD) system for the Magnetosphere Imager (Ml) spacecraft. The MI is a small spin-stabilized spacecraft that has been proposed for launch on a Taurus-S expendable launch vehicle into a highly-ellipdcal polar Earth orbit. Presently, launch is projected for 1999. The paper describes the MI mission and ACAD requirements and then proposes an ACAD system for meeting these requirements. The proposed design is low-power, low-mass, very simple conceptually, highly passive, and consistent with the overall MI design philosophy, which is faster-better-cheaper. Still, the MI ACAD system is extremely robust and can handle a number of unexpected, adverse situations on orbit without impacting the mission as a whole. Simulation results are presented that support the soundness of the design approach.

  2. The effect of requirements prioritization on avionics system conceptual design

    NASA Astrophysics Data System (ADS)

    Lorentz, John

    This dissertation will provide a detailed approach and analysis of a new collaborative requirements prioritization methodology that has been used successfully on four Coast Guard avionics acquisition and development programs valued at $400M+. A statistical representation of participant study results will be discussed and analyzed in detail. Many technically compliant projects fail to deliver levels of performance and capability that the customer desires. Some of these systems completely meet "threshold" levels of performance; however, the distribution of resources in the process devoted to the development and management of the requirements does not always represent the voice of the customer. This is especially true for technically complex projects such as modern avionics systems. A simplified facilitated process for prioritization of system requirements will be described. The collaborative prioritization process, and resulting artifacts, aids the systems engineer during early conceptual design. All requirements are not the same in terms of customer priority. While there is a tendency to have many thresholds inside of a system design, there is usually a subset of requirements and system performance that is of the utmost importance to the design. These critical capabilities and critical levels of performance typically represent the reason the system is being built. The systems engineer needs processes to identify these critical capabilities, the associated desired levels of performance, and the risks associated with the specific requirements that define the critical capability. The facilitated prioritization exercise is designed to collaboratively draw out these critical capabilities and levels of performance so they can be emphasized in system design. Developing the purpose, scheduling and process for prioritization events are key elements of systems engineering and modern project management. The benefits of early collaborative prioritization flow throughout the

  3. Modular biowaste monitoring system conceptual design

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1974-01-01

    The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.

  4. Mechanical conceptual design of 6.5 meter telescope: Telescopio San Pedro Mártir (TSPM)

    NASA Astrophysics Data System (ADS)

    Uribe, Jorge; Bringas, Vicente; Reyes, Noe; Tovar, Carlos; López, Aldo; Caballero, Xóchitl; Martínez, César; Toledo, Gengis; Lee, William; Carramiñana, Alberto; González, Jesús; Richer, Michael; Sánchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Rubio, Saúl; González, Germán.; Hernández, Obed; Segura, José; Macias, Eduardo; García, Mary; Lazaro, José; Rosales, Fabián.; del Llano, Luis

    2016-07-01

    Telescopio San Pedro Mártir (TSPM) project intends to build a 6.5 meters telescope with alt-azimuth design, currently at the conceptual design. The project is an association between Instituto de Astronomía de la Universidad Nacional Autónoma de México (IA-UNAM) and the Instituto Nacional de Astrofísica, Óptica Electrónica (INAOE) in partnership with department of Astronomy and Steward Observatory of University of Arizona and Smithsonian Astrophysical Observatory of Harvard University. Conceptual design of the telescope is lead and developed by the Centro de Ingeniería y Desarrollo Industrial (CIDESI). An overview of the feasibility study and the structural conceptual design are summarized in this paper. The telescope concept is based on telescopes already commissioned such as MMT and the Baade and Clay Magellan telescopes, building up on these proven concepts. The main differences relative to the Magellan pair are; the elevation axis is located 1 meter above the primary mirror vertex, allowing for a similar field of view at the Cassegrain and both Nasmyth focal stations; instead of using a vane ends to position the secondary mirror TSPM considers an Steward platform like MMT; finally TSPM has a larger floor distance to m1 cell than Magellans and MMT. Initially TSPM will operate with an f/5 Cassegrain station, but the design considers further Nasmyth configurations from a Cassegrain f/5 up to a Gregorian f/11. The telescope design includes 7 focal stations: 1 Cassegrain; 2 Nasmyth; and 4 folded-Cassegrain. The telescope will be designed and manufactured in Mexico, will be design in Queretaro by CIDESI and built between Queretaro and Michoacán manufacturing facilities; it will be preassembled in these facilities and disassembled to send it to the San Pedro Mártir Observatory for final integration. The azimuth and altitude structure is planned to be constructed in modules and transported by truck and shipped to Ensenada and finally to the OAN where is going

  5. Application of the generalized reduced gradient method to conceptual aircraft design

    NASA Technical Reports Server (NTRS)

    Gabriele, G. A.

    1984-01-01

    The complete aircraft design process can be broken into three phases of increasing depth: conceptual design, preliminary design, and detail design. Conceptual design consists primarily of developing general arrangements and selecting the configuration that optimally satisfies all mission requirements. The result of the conceptual phase is a conceptual baseline configuration that serves as the starting point for the preliminary design phase. The conceptual design of an aircraft involves a complex trade-off of many independent variables that must be investigated before deciding upon the basic configuration. Some of these variables are discrete (number of engines), some represent different configurations (canard vs conventional tail) and some may represent incorporation of new technologies (aluminum vs composite materials). At Lockheed-Georgia, the sizing program is known as GASP (Generalized Aircraft Sizing Program). GASP is a large program containing analysis modules covering the many different disciplines involved fin defining the aricraft, such as aerodynamics, structures, stability and control, mission performance, and cost. These analysis modules provide first-level estimates the aircraft properties that are derived from handbook, experimental, and historical sources.

  6. Conceptual design of a synchronous Mars telecommunications satellite

    NASA Technical Reports Server (NTRS)

    Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.

    1989-01-01

    Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.

  7. Shuttle mission simulator software conceptual design

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1973-01-01

    Software conceptual designs (SCD) are presented for meeting the simulator requirements for the shuttle missions. The major areas of the SCD discussed include: malfunction insertion, flight software, applications software, systems software, and computer complex.

  8. Risk Evaluation in the Pre-Phase A Conceptual Design of Spacecraft

    NASA Technical Reports Server (NTRS)

    Fabisinski, Leo L., III; Maples, Charlotte Dauphne

    2010-01-01

    Typically, the most important decisions in the design of a spacecraft are made in the earliest stages of its conceptual design the Pre-Phase A stages. It is in these stages that the greatest number of design alternatives is considered, and the greatest number of alternatives is rejected. The focus of Pre-Phase A conceptual development is on the evaluation and comparison of whole concepts and the larger-scale systems comprising those concepts. This comparison typically uses general Figures of Merit (FOMs) to quantify the comparative benefits of designs and alternative design features. Along with mass, performance, and cost, risk should be one of the major FOMs in evaluating design decisions during the conceptual design phases. However, risk is often given inadequate consideration in conceptual design practice. The reasons frequently given for this lack of attention to risk include: inadequate mission definition, lack of rigorous design requirements in early concept phases, lack of fidelity in risk assessment methods, and under-evaluation of risk as a viable FOM for design evaluation. In this paper, the role of risk evaluation in early conceptual design is discussed. The various requirements of a viable risk evaluation tool at the Pre-Phase A level are considered in light of the needs of a typical spacecraft design study. A technique for risk identification and evaluation is presented. The application of the risk identification and evaluation approach to the conceptual design process is discussed. Finally, a computational tool for risk profiling is presented and applied to assess the risk for an existing Pre-Phase A proposal. The resulting profile is compared to the risks identified for the proposal by other means.

  9. Mars orbiter conceptual systems design study

    NASA Technical Reports Server (NTRS)

    Dixon, W.; Vogl, J.

    1982-01-01

    Spacecraft system and subsystem designs at the conceptual level to perform either of two Mars Orbiter missions, a Climatology Mission and an Aeronomy Mission were developed. The objectives of these missions are to obtain and return data.

  10. Conceptual design statement of work for the immobilized low-activity waste interim storage facility project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, T.A., Fluor Daniel Hanford

    1997-02-06

    The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.

  11. Use of theoretical and conceptual frameworks in qualitative research.

    PubMed

    Green, Helen Elise

    2014-07-01

    To debate the definition and use of theoretical and conceptual frameworks in qualitative research. There is a paucity of literature to help the novice researcher to understand what theoretical and conceptual frameworks are and how they should be used. This paper acknowledges the interchangeable usage of these terms and researchers' confusion about the differences between the two. It discusses how researchers have used theoretical and conceptual frameworks and the notion of conceptual models. Detail is given about how one researcher incorporated a conceptual framework throughout a research project, the purpose for doing so and how this led to a resultant conceptual model. Concepts from Abbott (1988) and Witz ( 1992 ) were used to provide a framework for research involving two case study sites. The framework was used to determine research questions and give direction to interviews and discussions to focus the research. Some research methods do not overtly use a theoretical framework or conceptual framework in their design, but this is implicit and underpins the method design, for example in grounded theory. Other qualitative methods use one or the other to frame the design of a research project or to explain the outcomes. An example is given of how a conceptual framework was used throughout a research project. Theoretical and conceptual frameworks are terms that are regularly used in research but rarely explained. Textbooks should discuss what they are and how they can be used, so novice researchers understand how they can help with research design. Theoretical and conceptual frameworks need to be more clearly understood by researchers and correct terminology used to ensure clarity for novice researchers.

  12. Improving Conceptual Design for Launch Vehicles. The Bimese Concept: A Study of Mission and Economic Options

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Tooley, Jeffrey

    1999-01-01

    This report summarizes key activities conducted in the third and final year of the cooperative agreement NCC1-229 entitled "Improving Conceptual Design for Launch Vehicles." This project has been funded by the Vehicle Analysis Branch at NASA's Langley Research Center in Hampton, VA. Work has been performed by the Space Systems Design Lab (SSDL) at the Georgia Institute of Technology, Atlanta, GA. Accomplishments during the first and second years of this project have been previously reported in annual progress reports. This report will focus on the third and final year of the three year activity.

  13. Conceptual Model Learning Objects and Design Recommendations for Small Screens

    ERIC Educational Resources Information Center

    Churchill, Daniel

    2011-01-01

    This article presents recommendations for the design of conceptual models for applications via handheld devices such as personal digital assistants and some mobile phones. The recommendations were developed over a number of years through experience that involves design of conceptual models, and applications of these multimedia representations with…

  14. Conceptual design for the Space Station Freedom fluid physics/dynamics facility

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.

    1993-01-01

    A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.

  15. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less

  16. Data management in an object-oriented distributed aircraft conceptual design environment

    NASA Astrophysics Data System (ADS)

    Lu, Zhijie

    In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the

  17. Integrating Flight Dynamics & Control Analysis and Simulation in Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Lawrence, Ben; Berger, Tom; Tischler, Mark B.; Theodore, Colin R; Elmore, Josh; Gallaher, Andrew; Tobias, Eric L.

    2016-01-01

    The development of a toolset, SIMPLI-FLYD ('SIMPLIfied FLight dynamics for conceptual Design') is described. SIMPLI-FLYD is a collection of tools that perform flight dynamics and control modeling and analysis of rotorcraft conceptual designs including a capability to evaluate the designs in an X-Plane-based real-time simulation. The establishment of this framework is now facilitating the exploration of this new capability, in terms of modeling fidelity and data requirements, and the investigation of which stability and control and handling qualities requirements are appropriate for conceptual design. Illustrative design variation studies for single main rotor and tiltrotor vehicle configurations show sensitivity of the stability and control characteristics and an approach to highlight potential weight savings by identifying over-design.

  18. Conceptual design for a lunar-base CELSS

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Cullingford, Hatice S.

    1990-01-01

    Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.

  19. A Summary of the NASA Design Environment for Novel Vertical Lift Vehicles (DELIVER) Project

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.

    2018-01-01

    The number of new markets and use cases being developed for vertical take-off and landing vehicles continues to explode, including the highly publicized urban air taxi and package deliver applications. There is an equally exploding variety of novel vehicle configurations and sizes that are being proposed to fill these new market applications. The challenge for vehicle designers is that there is currently no easy and consistent way to go from a compelling mission or use case to a vehicle that is best configured and sized for the particular mission. This is because the availability of accurate and validated conceptual design tools for these novel types and sizes of vehicles have not kept pace with the new markets and vehicles themselves. The Design Environment for Novel Vertical Lift Vehicles (DELIVER) project was formulated to address this vehicle design challenge by demonstrating the use of current conceptual design tools, that have been used for decades to design and size conventional rotorcraft, applied to these novel vehicle types, configurations and sizes. In addition to demonstrating the applicability of current design and sizing tools to novel vehicle configurations and sizes, DELIVER also demonstrated the addition of key transformational technologies of noise, autonomy, and hybrid-electric and all-electric propulsion into the vehicle conceptual design process. Noise is key for community acceptance, autonomy and the need to operate autonomously are key for efficient, reliable and safe operations, and electrification of the propulsion system is a key enabler for these new vehicle types and sizes. This paper provides a summary of the DELIVER project and shows the applicability of current conceptual design and sizing tools novel vehicle configurations and sizes that are being proposed for urban air taxi and package delivery type applications.

  20. Conceptual Chemical Process Design for Sustainability. ...

    EPA Pesticide Factsheets

    This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyses throughout the conceptual design. Hierarchical and short-cut decision-making methods will be used to approach sustainability. An example showing a sustainability-based evaluation of chlor-alkali production processes is presented with economic analysis and five pollutants described as emissions. These emissions are analyzed according to their human toxicity potential by ingestion using the Waste Reduction Algorithm and a method based on US Environmental Protection Agency reference doses, with the addition of biodegradation for suitable components. Among the emissions, mercury as an element will not biodegrade, and results show the importance of this pollutant to the potential toxicity results and therefore the sustainability of the process design. The dominance of mercury in determining the long-term toxicity results when energy use is included suggests that all process system evaluations should (re)consider the role of mercury and other non-/slow-degrading pollutants in sustainability analyses. The cycling of nondegrading pollutants through the biosphere suggests the need for a complete analysis based on the economic, environmental, and social aspects of sustainability. Chapter reviews

  1. Incorporating Handling Qualities Analysis into Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Lawrence, Ben

    2014-01-01

    This paper describes the initial development of a framework to incorporate handling qualities analyses into a rotorcraft conceptual design process. In particular, the paper describes how rotorcraft conceptual design level data can be used to generate flight dynamics models for handling qualities analyses. Also, methods are described that couple a basic stability augmentation system to the rotorcraft flight dynamics model to extend analysis to beyond that of the bare airframe. A methodology for calculating the handling qualities characteristics of the flight dynamics models and for comparing the results to ADS-33E criteria is described. Preliminary results from the application of the handling qualities analysis for variations in key rotorcraft design parameters of main rotor radius, blade chord, hub stiffness and flap moment of inertia are shown. Varying relationships, with counteracting trends for different handling qualities criteria and different flight speeds are exhibited, with the action of the control system playing a complex part in the outcomes. Overall, the paper demonstrates how a broad array of technical issues across flight dynamics stability and control, simulation and modeling, control law design and handling qualities testing and evaluation had to be confronted to implement even a moderately comprehensive handling qualities analysis of relatively low fidelity models. A key outstanding issue is to how to 'close the loop' with an overall design process, and options for the exploration of how to feedback handling qualities results to a conceptual design process are proposed for future work.

  2. Conceptual Design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for the Subaru Telescope

    NASA Technical Reports Server (NTRS)

    Peters, Mary Anne; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Galvin, Michael; Carr, Michael A.; Lupton, Robert; Gunn, James E.; Knapp, Gillian; Gong, Qian; hide

    2012-01-01

    Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 140 x 140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (lambda = 0.9 - 2.5 micron) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and the design challenges.

  3. AFB/open cycle gas turbine conceptual design study

    NASA Technical Reports Server (NTRS)

    Dickinson, T. W.; Tashjian, R.

    1983-01-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  4. AFB/open cycle gas turbine conceptual design study

    NASA Astrophysics Data System (ADS)

    Dickinson, T. W.; Tashjian, R.

    1983-09-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  5. OTEC riser cable system, Phase II: conceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    Studies are summarized of conceptual designs of riser cable systems for OTEC pilot plants of both the spar and plantship configurations located at sites off the southeast coast of Puerto Rico. The studies utilize a baseline pilot plant riser cable, the design of which has been developed and reported on in other reports. Baseline riser cable systems for OTEC pilot plants are identified, system hardware consistent with these designs are conceptualized, and comparisons of the various system concepts are provided. It is concluded that there are three riser cable systems feasible for a spar pilot plant platform at the Puntamore » Yeguas site, and two riser cable systems feasible at the plantship pilot plant at the Punta Tuna site. Recommendations for further investigations in the areas of materials, hardware design and pre-installation site surveys are also addressed.« less

  6. Conceptual design of an in-space cryogenic fluid management facility, executive summary

    NASA Technical Reports Server (NTRS)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.

  7. Conceptual design for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Gratzer, Louis B.

    1989-01-01

    The designers of aircraft and more recently, aerospace vehicles have always struggled with the problems of evolving their designs to produce a machine which would perform its assigned task(s) in some optimum fashion. Almost invariably this involved dealing with more variables and constraints than could be handled in any computationally feasible way. With the advent of the electronic digital computer, the possibilities for introducing more variable and constraints into the initial design process led to greater expectations for improvement in vehicle (system) efficiency. The creation of the large scale systems necessary to achieve optimum designs has, for many reason, proved to be difficult. From a technical standpoint, significant problems arise in the development of satisfactory algorithms for processing of data from the various technical disciplines in a way that would be compatible with the complex optimization function. Also, the creation of effective optimization routines for multi-variable and constraint situations which could lead to consistent results has lagged. The current capability for carrying out the conceptual design of an aircraft on an interdisciplinary bases was evaluated to determine the need for extending this capability, and if necessary, to recommend means by which this could be carried out. Based on a review of available documentation and individual consultations, it appears that there is extensive interest at Langley Research Center as well as in the aerospace community in providing a higher level of capability that meets the technical challenges. By implication, the current design capability is inadequate and it does not operate in a way that allows the various technical disciplines to participate and cooperately interact in the design process. Based on this assessment, it was concluded that substantial effort should be devoted to developing a computer-based conceptual design system that would provide the capability needed for the near

  8. A prototype computerized synthesis methodology for generic space access vehicle (SAV) conceptual design

    NASA Astrophysics Data System (ADS)

    Huang, Xiao

    2006-04-01

    Today's and especially tomorrow's competitive launch vehicle design environment requires the development of a dedicated generic Space Access Vehicle (SAV) design methodology. A total of 115 industrial, research, and academic aircraft, helicopter, missile, and launch vehicle design synthesis methodologies have been evaluated. As the survey indicates, each synthesis methodology tends to focus on a specific flight vehicle configuration, thus precluding the key capability to systematically compare flight vehicle design alternatives. The aim of the research investigation is to provide decision-making bodies and the practicing engineer a design process and tool box for robust modeling and simulation of flight vehicles where the ultimate performance characteristics may hinge on numerical subtleties. This will enable the designer of a SAV for the first time to consistently compare different classes of SAV configurations on an impartial basis. This dissertation presents the development steps required towards a generic (configuration independent) hands-on flight vehicle conceptual design synthesis methodology. This process is developed such that it can be applied to any flight vehicle class if desired. In the present context, the methodology has been put into operation for the conceptual design of a tourist Space Access Vehicle. The case study illustrates elements of the design methodology & algorithm for the class of Horizontal Takeoff and Horizontal Landing (HTHL) SAVs. The HTHL SAV design application clearly outlines how the conceptual design process can be centrally organized, executed and documented with focus on design transparency, physical understanding and the capability to reproduce results. This approach offers the project lead and creative design team a management process and tool which iteratively refines the individual design logic chosen, leading to mature design methods and algorithms. As illustrated, the HTHL SAV hands-on design methodology offers growth

  9. Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design

    NASA Astrophysics Data System (ADS)

    Iqbal, Liaquat Ullah

    An integrated design and optimization methodology has been developed for the conceptual design of an aircraft. The methodology brings higher fidelity Computer Aided Design, Engineering and Manufacturing (CAD, CAE and CAM) Tools such as CATIA, FLUENT, ANSYS and SURFCAM into the conceptual design by utilizing Excel as the integrator and controller. The approach is demonstrated to integrate with many of the existing low to medium fidelity codes such as the aerodynamic panel code called CMARC and sizing and constraint analysis codes, thus providing the multi-fidelity capabilities to the aircraft designer. The higher fidelity design information from the CAD and CAE tools for the geometry, aerodynamics, structural and environmental performance is provided for the application of the structured design methods such as the Quality Function Deployment (QFD) and the Pugh's Method. The higher fidelity tools bring the quantitative aspects of a design such as precise measurements of weight, volume, surface areas, center of gravity (CG) location, lift over drag ratio, and structural weight, as well as the qualitative aspects such as external geometry definition, internal layout, and coloring scheme early in the design process. The performance and safety risks involved with the new technologies can be reduced by modeling and assessing their impact more accurately on the performance of the aircraft. The methodology also enables the design and evaluation of the novel concepts such as the blended (BWB) and the hybrid wing body (HWB) concepts. Higher fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) allow verification of the claims for the performance gains in aerodynamics and ascertain risks of structural failure due to different pressure distribution in the fuselage as compared with the tube and wing design. The higher fidelity aerodynamics and structural models can lead to better cost estimates that help reduce the financial risks as well. This helps in

  10. A Study on the Efficacy of Project-Based Learning Approach on Social Studies Education: Conceptual Achievement and Academic Motivation

    ERIC Educational Resources Information Center

    Ilter, Ilhan

    2014-01-01

    In this research, an experimental study was carried out in social studies 4th grade students to develop students' conceptual achievement and motivation to succeed academically. The study aims to investigate the effectiveness of project-based learning (PBL) in social studies. A quasi-experimental research design (pre- and posttest) was used in the…

  11. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, A. G., E-mail: mclean@fusion.gat.com; Soukhanovskii, V. A.; Allen, S. L.

    2014-11-15

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, T{sub e}, and density, n{sub e}, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring T{sub e} to 0.5 eV. If implemented onmore » NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma.« less

  12. Design and Validation of the Quantum Mechanics Conceptual Survey

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

  13. Conceptual designs study for a Personnel Launch System (PLS)

    NASA Technical Reports Server (NTRS)

    Wetzel, E. D.

    1990-01-01

    A series of conceptual designs for a manned, Earth to Low Earth Orbit transportation system was developed. Non-winged, low L/D vehicle shapes are discussed. System and subsystem trades emphasized safety, operability, and affordability using near-term technology. The resultant conceptual design includes lessons learned from commercial aviation that result in a safe, routine, operationally efficient system. The primary mission for this Personnel Launch System (PLS) would be crew rotation to the SSF; other missions, including satellite servicing, orbital sortie, and space rescue were also explored.

  14. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  15. Shuttle freezer conceptual design

    NASA Technical Reports Server (NTRS)

    Proctor, B. W.; Russell, D. J.

    1975-01-01

    A conceptual design for a kit freezer for operation onboard shuttle was developed. The freezer features a self-contained unit which can be mounted in the orbiter crew compartment and is capable of storing food at launch and returning with medical samples. Packaging schemes were investigated to provide the optimum storage capacity with a minimum weight and volume penalty. Several types of refrigeration systems were evaluated to select one which would offer the most efficient performance and lowest hazard of safety to the crew. Detailed performance data on the selected, Stirling cycle principled refrigeration unit were developed to validate the feasibility of its application to this freezer. Thermal analyses were performed to determine the adequacy of the thermal insulation to maintain the desired storage temperature with the design cooling capacity. Stress analyses were made to insure the design structure integrity could be maintained over the shuttle flight regime. A proposed prototype freezer development plan is presented.

  16. Brownfields Green Avenue Sites: Technical Memorandum - Conceptual Design for Sustainable Redevelopment

    EPA Pesticide Factsheets

    This technical memorandum briefly describes the site and proposed conceptual site plan, indicates conceptual design considerations, specifies recommended green and sustainable features, and offers other recommendations

  17. Conceptual design of liquid droplet radiator shuttle-attached experiment

    NASA Technical Reports Server (NTRS)

    Pfeiffer, Shlomo L.

    1989-01-01

    The conceptual design of a shuttle-attached liquid droplet radiator (LDR) experiment is discussed. The LDR is an advanced, lightweight heat rejection concept that can be used to reject heat from future high-powered space platforms. In the LDR concept, submillimeter-sized droplets are generated, pass through space, radiate heat before they are collected, and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. The conceptual designs of the droplet radiator, droplet collector, and the optical diagnostic system are discussed in detail. Shuttle integration and safety design issues are also discussed.

  18. Forest fire advanced system technology (FFAST) conceptual design study

    NASA Technical Reports Server (NTRS)

    Nichols, J. David; Warren, John R.

    1987-01-01

    The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  19. CLARA conceptual design report

    NASA Astrophysics Data System (ADS)

    Clarke, J. A.; Angal-Kalinin, D.; Bliss, N.; Buckley, R.; Buckley, S.; Cash, R.; Corlett, P.; Cowie, L.; Cox, G.; Diakun, G. P.; Dunning, D. J.; Fell, B. D.; Gallagher, A.; Goudket, P.; Goulden, A. R.; Holland, D. M. P.; Jamison, S. P.; Jones, J. K.; Kalinin, A. S.; Liggins, W.; Ma, L.; Marinov, K. B.; Martlew, B.; McIntosh, P. A.; McKenzie, J. W.; Middleman, K. J.; Militsyn, B. L.; Moss, A. J.; Muratori, B. D.; Roper, M. D.; Santer, R.; Saveliev, Y.; Snedden, E.; Smith, R. J.; Smith, S. L.; Surman, M.; Thakker, T.; Thompson, N. R.; Valizadeh, R.; Wheelhouse, A. E.; Williams, P. H.; Bartolini, R.; Martin, I.; Barlow, R.; Kolano, A.; Burt, G.; Chattopadhyay, S.; Newton, D.; Wolski, A.; Appleby, R. B.; Owen, H. L.; Serluca, M.; Xia, G.; Boogert, S.; Lyapin, A.; Campbell, L.; McNeil, B. W. J.; Paramonov, V. V.

    2014-05-01

    This report describes the conceptual design of a proposed free electron laser test facility called CLARA that will be a major upgrade to the existing VELA accelerator test facility at Daresbury Laboratory in the UK. CLARA will be able to test a number of new free electron laser schemes that have been proposed but require a proof of principle experiment to confirm that they perform as predicted. The primary focus of CLARA will be on ultra short photon pulse generation which will take free electron lasers into a whole new regime, enabling a new area of photon science to emerge.

  20. Deep Borehole Field Test Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest L.

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBDmore » concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.« less

  1. Lunar base launch and landing facility conceptual design, 2nd edition

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report documents the Lunar Base Launch and Landing Facility Conceptual Design study. The purpose of this study was to examine the requirements for launch and landing facilities for early lunar bases and to prepare conceptual designs for some of these facilities. The emphasis of this study is on the facilities needed from the first manned landing until permanent occupancy. Surface characteristics and flight vehicle interactions are described, and various facility operations are related. Specific recommendations for equipment, facilities, and evolutionary planning are made, and effects of different aspects of lunar development scenarios on facilities and operations are detailed. Finally, for a given scenario, a specific conceptual design is developed and presented.

  2. Shuttle mission simulator hardware conceptual design report

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1973-01-01

    The detailed shuttle mission simulator hardware requirements are discussed. The conceptual design methods, or existing technology, whereby those requirements will be fulfilled are described. Information of a general nature on the total design problem plus specific details on how these requirements are to be satisfied are reported. The configuration of the simulator is described and the capabilities for various types of training are identified.

  3. Landing Gear Integration in Aircraft Conceptual Design. Revision

    NASA Technical Reports Server (NTRS)

    Chai, Sonny T.; Mason, William H.

    1997-01-01

    The design of the landing gear is one of the more fundamental aspects of aircraft design. The design and integration process encompasses numerous engineering disciplines, e.g., structure, weights, runway design, and economics, and has become extremely sophisticated in the last few decades. Although the design process is well-documented, no attempt has been made until now in the development of a design methodology that can be used within an automated environment. As a result, the process remains to be a key responsibility for the configuration designer and is largely experience-based and graphically-oriented. However, as industry and government try to incorporate multidisciplinary design optimization (MDO) methods in the conceptual design phase, the need for a more systematic procedure has become apparent. The development of an MDO-capable design methodology as described in this work is focused on providing the conceptual designer with tools to help automate the disciplinary analyses, i.e., geometry, kinematics, flotation, and weight. Documented design procedures and analyses were examined to determine their applicability, and to ensure compliance with current practices and regulations. Using the latest information as obtained from industry during initial industry survey, the analyses were in terms modified and expanded to accommodate the design criteria associated with the advanced large subsonic transports. Algorithms were then developed based on the updated analysis procedures to be incorporated into existing MDO codes.

  4. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4

  5. Conceptual design proposal: HUGO global range/mobility transport aircraft

    NASA Technical Reports Server (NTRS)

    Johnston, Tom; Perretta, Dave; Mcbane, Doug; Morin, Greg; Thomas, Greg; Woodward, Joe; Gulakowski, Steve

    1993-01-01

    With the collapse of the former Soviet Union and the emergence of the United Nations actively pursuing a peace keeping role in world affairs, the United States has been forced into a position as the world's leading peace enforcer. It is still a very dangerous world with seemingly never ending ideological, territorial, and economic disputes requiring the U.S. to maintain a credible deterrent posture in this uncertain environment. This has created an urgent need to rapidly transport large numbers of troops and equipment from the continental United States (CONUS) to any potential world trouble spot by means of a global range/mobility transport aircraft. The most recent examples being Operation Desert Shield/Storm and Operation Restore Hope. To meet this challenge head-on, a request for proposal (RFP) was developed and incorporated into the 1992/1993 AIAA/McDonnell Douglas Corporation Graduate Team Aircraft Design Competition. The RFP calls for the conceptual design and justification of a large aircraft capable of power projecting a significant military force without surface transportation reliance.

  6. QFD-ANP Approach for the Conceptual Design of Research Vessels: A Case Study

    NASA Astrophysics Data System (ADS)

    Venkata Subbaiah, Kambagowni; Yeshwanth Sai, Koneru; Suresh, Challa

    2016-10-01

    Conceptual design is a subset of concept art wherein a new idea of product is created instead of a visual representation which would directly be used in a final product. The purpose is to understand the needs of conceptual design which are being used in engineering designs and to clarify the current conceptual design practice. Quality function deployment (QFD) is a customer oriented design approach for developing new or improved products and services to enhance customer satisfaction. House of quality (HOQ) has been traditionally used as planning tool of QFD which translates customer requirements (CRs) into design requirements (DRs). Factor analysis is carried out in order to reduce the CR portions of HOQ. The analytical hierarchical process is employed to obtain the priority ratings of CR's which are used in constructing HOQ. This paper mainly discusses about the conceptual design of an oceanographic research vessel using analytical network process (ANP) technique. Finally the QFD-ANP integrated methodology helps to establish the importance ratings of DRs.

  7. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  8. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  9. Improved Casting Furnace Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielding, Randall Sidney; Tolman, David Donald

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  10. Complex multidisciplinary systems decomposition for aerospace vehicle conceptual design and technology acquisition

    NASA Astrophysics Data System (ADS)

    Omoragbon, Amen

    Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.

  11. EarthCube as an information resource marketplace; the GEAR Project conceptual design

    NASA Astrophysics Data System (ADS)

    Richard, S. M.; Zaslavsky, I.; Gupta, A.; Valentine, D.

    2015-12-01

    Geoscience Architecture for Research (GEAR) is approaching EarthCube design as a complex and evolving socio-technical federation of systems. EarthCube is intended to support the science research enterprise, for which there is no centralized command and control, requirements are a moving target, the function and behavior of the system must evolve and adapt as new scientific paradigms emerge, and system participants are conducting research that inherently implies seeking new ways of doing things. EarthCube must address evolving user requirements and enable domain and project systems developed under different management and for different purposes to work together. The EC architecture must focus on creating a technical environment that enables new capabilities by combining existing and newly developed resources in various ways, and encourages development of new resource designs intended for re-use and interoperability. In a sense, instead of a single architecture design, GEAR provides a way to accommodate multiple designs tuned to different tasks. This agile, adaptive, evolutionary software development style is based on a continuously updated portfolio of compatible components that enable new sub-system architecture. System users make decisions about which components to use in this marketplace based on performance, satisfaction, and impact metrics collected continuously to evaluate components, determine priorities, and guide resource allocation decisions by the system governance agency. EC is designed as a federation of independent systems, and although the coordinator of the EC system may be named an enterprise architect, the focus of the role needs to be organizing resources, assessing their readiness for interoperability with the existing EC component inventory, managing dependencies between transient subsystems, mechanisms of stakeholder engagement and inclusion, and negotiation of standard interfaces, rather than actual specification of components. Composition of

  12. A Conceptual Design of a Short Takeoff and Landing Regional Jet Airliner

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2010-01-01

    Most jet airliner conceptual designs adhere to conventional takeoff and landing performance. Given this predominance, takeoff and landing performance has not been critical, since it has not been an active constraint in the design. Given that the demand for air travel is projected to increase dramatically, there is interest in operational concepts, such as Metroplex operations that seek to unload the major hub airports by using underutilized surrounding regional airports, as well as using underutilized runways at the major hub airports. Both of these operations require shorter takeoff and landing performance than is currently available for airliners of approximately 100-passenger capacity. This study examines the issues of modeling performance in this now critical flight regime as well as the impact of progressively reducing takeoff and landing field length requirements on the aircraft s characteristics.

  13. Conceptual Design of the ITER Plasma Control System

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.

    2013-10-01

    The conceptual design of the ITER Plasma Control System (PCS) has been approved and the preliminary design has begun for the 1st plasma PCS. This is a collaboration of many plasma control experts from existing devices to design and test plasma control techniques applicable to ITER on existing machines. The conceptual design considered all phases of plasma operation, ranging from non-active H/He plasmas through high fusion gain inductive DT plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture can satisfy the demands of the ITER Research Plan. The PCS will control plasma equilibrium and density, plasma heat exhaust, a range of MHD instabilities (including disruption mitigation), and the non-inductive current profile required to maintain stable steady-state scenarios. The PCS architecture requires sophisticated shared actuator management and event handling systems to prioritize control goals, algorithms, and actuators according to dynamic control needs and monitor plasma and plant system events to trigger automatic changes in the control algorithms or operational scenario, depending on real-time operating limits and conditions.

  14. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strait, James; McCluskey, Elaine; Lundin, Tracy

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  15. Personalizing knowledge delivery services: a conceptual framework

    NASA Technical Reports Server (NTRS)

    Majchrzak, Ann; Chelleppa, Ramnath K.; Cooper, Lynne P.; Hars, Alexander

    2003-01-01

    Consistent with the call of the Minnesota Symposium for new theory in knowledge management, we offer a new conceptualization of Knowledge Management Systems (KMS) as a portfolio of personalized knowledge delivery services. Borrowing from research on online consumer behavior, we describe the challenges imposed by personalized knowledge delivery services, and suggest design parameters that can help to overcome these challenges. We develop our design constructs through a set of hypotheses and discuss the research implications of our new conceptualization. Finally, we describe practical implications suggested by our conceptualization - practical suggestions that we hope to gain some experience with as part of an ongoing action research project at our partner organization.

  16. Toward Right-Fidelity Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Sinsay, Jeffrey D.; Johnson, Wayne

    2010-01-01

    The aviation Advanced Design Office (ADO) of the US Army Aeroflightdynamics Directorate (AMRDEC) performs conceptual design of advanced Vertical Takeoff and Landing (VTOL) concepts in support of the Army's development and acquisition of new aviation systems. In particular, ADO engages in system synthesis to assess the impact of new technologies and their application to satisfy emerging warfighter needs and requirements. Fundamental to ADO being successful in accomplishing its role; is the ability to evaluate a wide array of proposed air vehicle concepts, and independently synthesize new concepts to inform Army and DoD decision makers about the tradespace in which decisions will be made (Figure 1). ADO utilizes a conceptual design (CD) process in the execution of its role. Benefiting from colocation with NASA rotorcraft researchers at the Ames Research Center, ADO and NASA have engaged in a survey of the current rotorcraft PD practices and begun the process of improving those capabilities to enable effective design and development of the next generation of VTOL systems. A unique aspect of CD in ADO is the fact that actual designs developed in-house are not intended to move forward in the development process. Rather, they are used as reference points in discussions about requirements development and technology impact. The ultimate products of ADO CD efforts are technology impact assessments and specifications which guide industry design activity. The fact that both the requirement and design are variables in the tradespace adds to the complexity of the CD process. A frequent need is ability to assess the relative "cost" of variations in requirement for a diverse set of VTOL configurations. Each of these configurations may have fundamentally different response characteristics to this requirement variation, and such insight into how different requirements drive different designs is a critical insight ADO attempts to provide decision makers. The processes and tools

  17. The Conceptual Design of the Magdalena Ridge Observatory Interferometer

    NASA Astrophysics Data System (ADS)

    Buscher, D. F.; Creech-Eakman, M.; Farris, A.; Haniff, C. A.; Young, J. S.

    We describe the scientific motivation for and conceptual design of the Magdalena Ridge Observatory Interferometer, an imaging interferometer designed to operate at visible and near-infrared wavelengths. The rationale for the major technical decisions in the interferometer design is discussed, the success of the concept is appraised, and the implications of this analysis for the design of future arrays are drawn out.

  18. Move-tecture: A Conceptual Framework for Designing Movement in Architecture

    NASA Astrophysics Data System (ADS)

    Yilmaz, Irem

    2017-10-01

    Along with the technological improvements in our age, it is now possible for the movement to become one of the basic components of the architectural space. Accordingly, architectural construction of movement changes both our architectural production practices and our understanding of architectural space. However, existing design concepts and approaches are insufficient to discuss and understand this change. In this respect, this study aims to form a conceptual framework on the relationship of architecture and movement. In this sense, the conceptualization of move-tecture is developed to research on the architectural construction of movement and the potentials of spatial creation through architecturally constructed movement. Move-tecture, is a conceptualization that treats movement as a basic component of spatial creation. It presents the framework of a qualitative categorization on the design of moving architectural structures. However, this categorization is a flexible one that can evolve in the direction of the expanding possibilities of the architectural design and the changing living conditions. With this understanding, six categories have been defined within the context of the article: Topological Organization, Choreographic Formation, Kinetic Structuring, Corporeal Constitution, Technological Configuration and Interactional Patterning. In line with these categories, a multifaceted perspective on the moving architectural structures is promoted. It is aimed that such an understanding constitutes a new initiative in the design practices carried out in this area and provides a conceptual basis for the discussions to be developed.

  19. Conceptual design of reduced energy transports

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Harper, M.; Smith, C. L.; Waters, M. H.; Williams, L. J.

    1975-01-01

    This paper reports the results of a conceptual design study of new, near-term fuel-conservative aircraft. A parametric study was made to determine the effects of cruise Mach number and fuel cost on the 'optimum' configuration characteristics and on economic performance. Supercritical wing technology and advanced engine cycles were assumed. For each design, the wing geometry was optimized to give maximum return on investment at a particular fuel cost. Based on the results of the parametric study, a reduced energy configuration was selected. Compared with existing transport designs, the reduced energy design has a higher aspect ratio wing with lower sweep, and cruises at a lower Mach number. It yields about 30% more seat-miles/gal than current wide-body aircraft. At the higher fuel costs anticipated in the future, the reduced energy design has about the same economic performance as existing designs.

  20. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; SR Morrell; AE Wright

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizesmore » that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.« less

  1. CONCEPTUAL DESIGNS FOR A NEW HIGHWAY VEHICLE EMISSIONS ESTIMATION METHODOLOGY

    EPA Science Inventory

    The report discusses six conceptual designs for a new highway vehicle emissions estimation methodology and summarizes the recommendations of each design for improving the emissions and activity factors in the emissions estimation process. he complete design reports are included a...

  2. Control/structure interaction conceptual design tool

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1990-01-01

    The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.

  3. Conceptual spacecraft systems design and synthesis

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.

    1984-01-01

    An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.

  4. Conceptual design of the MHD Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    1981-01-01

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  5. Conceptual Learning in a Principled Design Problem Solving Environment

    ERIC Educational Resources Information Center

    Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.

    2013-01-01

    To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…

  6. Designing Public Library Websites for Teens: A Conceptual Model

    ERIC Educational Resources Information Center

    Naughton, Robin Amanda

    2012-01-01

    The main goal of this research study was to develop a conceptual model for the design of public library websites for teens (TLWs) that would enable designers and librarians to create library websites that better suit teens' information needs and practices. It bridges a gap in the research literature between user interface design in human-computer…

  7. Structural analysis at aircraft conceptual design stage

    NASA Astrophysics Data System (ADS)

    Mansouri, Reza

    . Considering the strength and limitations of both methodologies, the question to be answered in this thesis is: How valuable and compatible are the classical analytical methods in today's conceptual design environment? And can these methods complement each other? To answer these questions, this thesis investigates the pros and cons of classical analytical structural analysis methods during the conceptual design stage through the following objectives: Illustrate structural design methodology of these methods within the framework of Aerospace Vehicle Design (AVD) lab's design lifecycle. Demonstrate the effectiveness of moment distribution method through four case studies. This will be done by considering and evaluating the strength and limitation of these methods. In order to objectively quantify the limitation and capabilities of the analytical method at the conceptual design stage, each case study becomes more complex than the one before.

  8. Robust Bayesian Experimental Design for Conceptual Model Discrimination

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Tsai, F. T. C.

    2015-12-01

    A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.

  9. Mod-5A Wind Turbine Generator Program Design Report. Volume 2: Conceptual and Preliminary Design, Book 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.

  10. Conceptual design for a laminar-flying-wing aircraft

    NASA Astrophysics Data System (ADS)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is

  11. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  12. Conceptual design of single turbofan engine powered light aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.

    1977-01-01

    The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.

  13. Conceptual design study of a nuclear Brayton turboalternator-compressor

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A comprehensive analysis and conceptual design study of the turboalternator-compressor components using HeXe as the working fluid was performed. The study was conducted in three phases: general configuration analysis (Phase 1), design variations (Phase 2), and conceptual design study (Phase 3). During the Phase 1 analysis, individual turbine, alternator, compressor, and bearing and seal designs were evaluated. Six turboalternator-compressor (TAC) configurations were completed. Phase 2 consisted of evaluating one selected Phase 1 TAC configuration to calculate its performance when operating under new cycle conditions, namely, one higher and one lower turbine inlet temperature and one case with krypton as the working fluid. Based on the Phase 1 and 2 results, a TAC configuration that incorporated a radial compressor, a radial turbine, a Lundell alternator, and gas bearings was selected. During Phase 3 a new layout of the TAC was prepared that reflects the cycle state points necessary to accommodate a zirconium hydride moderated reactor and a 400 Hz alternator. The final TAC design rotates at 24,000 rpm and produces 160 kWe, 480 V, 3-phase, 400 hertz power.

  14. Lunar surface transportation systems conceptual design lunar base systems study Task 5.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Conceptual designs for three categories of lunar surface transportation were described. The level of understanding for the capabilities and design approach varies between the vehicles representing these categories. A summary of the vehicle categories and current state of conceptual design is provided. Finally, a brief evaluation and discussion is provided for a systematic comparison of transportation categories and effectiveness in supporting transportation objectives.

  15. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    NASA Technical Reports Server (NTRS)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  16. Hot conditioning equipment conceptual design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hotmore » Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.« less

  17. Development, design, and conceptual issues of project zero exposure: A program to protect young children from tobacco smoke exposure

    PubMed Central

    2011-01-01

    Background Tobacco smoke exposure (TSE) is a serious threat to child health. Roughly 40% of children worldwide are exposed to tobacco smoke, and the very young are often "captive smokers" in homes in which others smoke. The goal of this research project is to develop and evaluate an intervention to reduce young child tobacco smoke exposure. The objective of this paper is to document our approach to building the intervention, to describe the planned intervention, and to explore the conceptual issues regarding the intervention and its evaluation. Methods/Design This project is being developed using an iterative approach. We are currently in the middle of Stage 1. In this first stage, Intervention Development, we have already conducted a comprehensive search of the professional literature and internet resources, consulted with experts in the field, and conducted several Design Workshops. The planned intervention consists of parental group support therapy, a website to allow use of an "online/offline" approach, involvement of pediatricians, use of a video simulation game ("Dr. Cruz") to teach parents about child TSE, and personalized biochemical feedback on exposure levels. As part of this stage we will draw on a social marketing approach. We plan to use in-depth interviews and focus groups in order to identify barriers for behavior change, and to test the acceptability of program components. In Stage II, we plan to pilot the planned intervention with 5-10 groups of 10 parents each. In Stage III, we plan to implement and evaluate the intervention using a cluster randomized controlled trial with an estimated 540 participants. Discussion The major challenges in this research are twofold: building an effective intervention and measuring the effects of the intervention. Creation of an effective intervention to protect children from TSE is a challenging but sorely needed public health endeavor. We hope that our approach will contribute to building a stronger evidence base

  18. Conceptual second-generation lunar equipment

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The spring 1990 Introduction to Design class was asked to conceptually design second-generation lunar vehicles and equipment as a semester design project. The basic assumption made in designing second-generation lunar vehicles and equipment was that a network of permanent lunar bases already existed. The designs were to facilitate the transportation of personnel and materials. The eight topics to choose from included flying vehicles, ground-based vehicles, robotic arms, and life support systems. Two teams of two or three members competed on each topic and results were exhibited at a formal presentation. A clean-propellant powered lunar flying transport vehicle, an extra-vehicular activity life support system, a pressurized lunar rover for greater distances, and a robotic arm design project are discussed.

  19. Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2013-01-01

    Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.

  20. Research on conceptual/innovative design for the life cycle

    NASA Technical Reports Server (NTRS)

    Cagan, Jonathan; Agogino, Alice M.

    1990-01-01

    The goal of this research is developing and integrating qualitative and quantitative methods for life cycle design. The definition of the problem includes formal computer-based methods limited to final detailing stages of design; CAD data bases do not capture design intent or design history; and life cycle issues were ignored during early stages of design. Viewgraphs outline research in conceptual design; the SYMON (SYmbolic MONotonicity analyzer) algorithm; multistart vector quantization optimization algorithm; intelligent manufacturing: IDES - Influence Diagram Architecture; and 1st PRINCE (FIRST PRINciple Computational Evaluator).

  1. Conceptual design of a laser fusion power plant. Part I. An integrated facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be requiredmore » for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost.« less

  2. Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.; Mavris, Dimitri N.

    2006-01-01

    An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.

  3. Fifth Graders as App Designers: How Diverse Learners Conceptualize Educational Apps

    ERIC Educational Resources Information Center

    Israel, Maya; Marino, Matthew T.; Basham, James D.; Spivak, Wenonoa

    2013-01-01

    Instructional designers are increasingly considering how to include students as participants in the design of instructional technologies. This study provides a lens into participatory design with students by examining how students conceptualized learning applications in science, technology, engineering, and mathematics (STEM) by designing paper…

  4. Cost estimates and economic evaluations for conceptual LLRW disposal facility designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, R.D.; Chau, N.; Breeds, C.D.

    1995-12-31

    Total life-cycle costs were estimated in support of the New York LLRW Siting Commission`s project to select a disposal method from four near-surface LLRW disposal methods (namely, uncovered above-grade vaults, covered above-grade vaults, below-grade vaults, and augered holes) and two mined methods (namely, vertical shaft mines and drift mines). Conceptual designs for the disposal methods were prepared and used as the basis for the cost estimates. Typical economic performance of each disposal method was assessed. Life-cycle costs expressed in 1994 dollars ranged from $ 1,100 million (for below-grade vaults and both mined disposal methods) to $2,000 million (for augered holes).more » Present values ranged from $620 million (for below-grade vaults) to $ 1,100 million (for augered holes).« less

  5. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  6. Scenario for concurrent conceptual assembly line design: A case study

    NASA Astrophysics Data System (ADS)

    Mas, F.; Ríos, J.; Menéndez, J. L.

    2012-04-01

    The decision to design and build a new aircraft is preceded by years of research and study. Different disciplines work together throughout the lifecycle to ensure not only a complete functional definition of the product, but also a complete industrialization, a marketing plan, a maintenance plan, etc. This case study focuses on the conceptual design phase. During this phase, the design solutions that will meet the functional and industrial requirements are defined, i.e.: the basic requirements of industrialization. During this phase, several alternatives are studied, and the most attractive in terms of performance and cost requirements is selected. As a result of the study of these alternatives, it is possible to define an early conceptual design of the assembly line and its basic parameters. The plant needs, long cycle jigs & tools or industrial means and human resources with the necessary skills can be determined in advance.

  7. Conceptual Design For Interplanetary Spaceship Discovery

    NASA Astrophysics Data System (ADS)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR

  8. Aircraft conceptual design - an adaptable parametric sizing methodology

    NASA Astrophysics Data System (ADS)

    Coleman, Gary John, Jr.

    Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to

  9. Data base architecture for instrument characteristics critical to spacecraft conceptual design

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Allen, Cheryl L.

    1990-01-01

    Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.

  10. Conceptual Design and Performance Analysis for a Large Civil Compound Helicopter

    NASA Technical Reports Server (NTRS)

    Russell, Carl; Johnson, Wayne

    2012-01-01

    A conceptual design study of a large civil compound helicopter is presented. The objective is to determine how a compound helicopter performs when compared to both a conventional helicopter and a tiltrotor using a design mission that is shorter than optimal for a tiltrotor and longer than optimal for a helicopter. The designs are generated and analyzed using conceptual design software and are further evaluated with a comprehensive rotorcraft analysis code. Multiple metrics are used to determine the suitability of each design for the given mission. Plots of various trade studies and parameter sweeps as well as comprehensive analysis results are presented. The results suggest that the compound helicopter examined for this study would not be competitive with a tiltrotor or conventional helicopter, but multiple possibilities are identified for improving the performance of the compound helicopter in future research.

  11. The Impact of the Type of Projects on Preservice Teachers' Conceptualization of Service Learning

    ERIC Educational Resources Information Center

    Seban, Demet

    2013-01-01

    This paper discusses the effects of the type of project undertaken for a community practice course on preservice teachers' conceptualization of service learning. The goal of the projects is to enable participants to engage with service practice in a reflective manner. Through the examination of the reflective logs kept by students using Butin's…

  12. Tank Remote Repair System Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.

    2002-12-06

    This document describes two conceptual designs for a Tank Remote Repair System to perform leak site repairs of double shell waste tank walls (Types I, II, III, and IIIA) from the annulus space. The first concept uses a magnetic wall crawler and an epoxy patch system and the second concept uses a magnetic wall crawler and a magnetic patch system. The recommended concept uses the magnetic patch system, since it is simpler to deliver, easier to apply, and has a higher probability of stopping an active leak.

  13. Conceptual Design of a Two Spool Compressor for the NASA Large Civil Tilt Rotor Engine

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Thurman, Douglas R.

    2010-01-01

    This paper focuses on the conceptual design of a two spool compressor for the NASA Large Civil Tilt Rotor engine, which has a design-point pressure ratio goal of 30:1 and an inlet weight flow of 30.0 lbm/sec. The compressor notional design requirements of pressure ratio and low-pressure compressor (LPC) and high pressure ratio compressor (HPC) work split were based on a previous engine system study to meet the mission requirements of the NASA Subsonic Rotary Wing Projects Large Civil Tilt Rotor vehicle concept. Three mean line compressor design and flow analysis codes were utilized for the conceptual design of a two-spool compressor configuration. This study assesses the technical challenges of design for various compressor configuration options to meet the given engine cycle results. In the process of sizing, the technical challenges of the compressor became apparent as the aerodynamics were taken into consideration. Mechanical constraints were considered in the study such as maximum rotor tip speeds and conceptual sizing of rotor disks and shafts. The rotor clearance-to-span ratio in the last stage of the LPC is 1.5% and in the last stage of the HPC is 2.8%. Four different configurations to meet the HPC requirements were studied, ranging from a single stage centrifugal, two axi-centrifugals, and all axial stages. Challenges of the HPC design include the high temperature (1,560deg R) at the exit which could limit the maximum allowable peripheral tip speed for centrifugals, and is dependent on material selection. The mean line design also resulted in the definition of the flow path geometry of the axial and centrifugal compressor stages, rotor and stator vane angles, velocity components, and flow conditions at the leading and trailing edges of each blade row at the hub, mean and tip. A mean line compressor analysis code was used to estimate the compressor performance maps at off-design speeds and to determine the required variable geometry reset schedules of the

  14. POWER-BURST FACILITY (PBF) CONCEPTUAL DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasserman, A.A.; Johnson, S.O.; Heffner, R.E.

    1963-06-21

    A description is presented of the conceptual design of a high- performance, pulsed reactor called the Power Burst Facility (PBF). This reactor is designed to generate power bursts with initial asymptotic periods as short as 1 msec, producing energy releases large enough to destroy entire fuel subassemblies placed in a capsule or flow loop mounted in the reactor, all without damage to the reactor itself. It will be used primarily to evaluate the consequences and hazards of very rapid destructive accidents in reactors representing the entire range of current nuclear technology as applied to power generation, propulsion, and testing. Itmore » will also be used to carry out detailed studies of nondestructive reactivity feedback mechanisms in the shortperiod domain. The facility was designed to be sufficiently flexible to accommodate future cores of even more advanced design. The design for the first reactor core is based upon proven technology; hence, completion of the final design of this core will involve no significant development delays. Construction of the PBF is proposed to begin in September 1984, and is expected to take approximately 20 months to complete. (auth)« less

  15. Results from conceptual design study of potential early commercial MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1981-01-01

    This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.

  16. An Overview of Demise Calculations, Conceptual Design Studies, and Hydrazine Compatibility Testing for the GPM Core Spacecraft Propellant Tank

    NASA Technical Reports Server (NTRS)

    Estes, Robert H.; Moore, N. R.

    2007-01-01

    NASA's Global Precipitation Measurement (GPM) mission is an ongoing Goddard Space Flight Center (GSFC) project whose basic objective is to improve global precipitation measurements. It has been decided that the GPM spacecraft is to be a "design for demise" spacecraft. This requirement resulted in the need for a propellant tank that would also demise or ablate to an appropriate degree upon re-entry. This paper will describe GSFC-performed spacecraft and tankage demise analyses, vendor conceptual design studies, and vendor performed hydrazine compatibility and wettability tests performed on 6061 and 2219 aluminum alloys.

  17. A Conceptual Design Study of a High Temperature Solar Thermal Receiver

    NASA Technical Reports Server (NTRS)

    Robertson, C. S.; Ehde, C. L.; Stacy, L. E.; Abujawdeh, S. S.; Narayanan, R.; Mccreight, L. R.; Gatti, A.; Rauch, H. W., Sr.

    1980-01-01

    A conceptual design was made for a solar thermal receiver capable of operation in the 1095 to 1650 C (2000 to 3000 F) temperature range. This receiver is designed for use with a two-axis paraboloidal concentrator in the 25 to 150 kW sub t power range, and is intended for industrial process heat, Brayton engines, or chemical/fuels reactions. Three concepts were analyzed parametrically. One was selected for conceptual design. Its key feature is a helical coiled tube of sintered silicon nitride which serves as the heat exchanger between the incident solar radiation and the working fluid. A mechanical design of this concept was prepared, and both thermal and stress analysis performed. The analysis showed good performance, low potential cost in mass production, and adaptability to both Brayton cycle engines and chemical/fuels production.

  18. Enabling Rapid Naval Architecture Design Space Exploration

    NASA Technical Reports Server (NTRS)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  19. [Evaluation of outpatient rehabilitation: goals, conceptual framework and study design of a health and pension insurance joint research project].

    PubMed

    Haaf, H G; Badura, B; Bürger, W; Koch, U; Schliehe, F; Schott, T

    2002-01-01

    In Germany the statutory health and pension insurance schemes are the main providers of medical rehabilitation, the majority of rehabilitation measures being given in an inpatient setting. Over the last few years, the health and pension insurance schemes have strengthened the extension of outpatient rehabilitation, and have funded a comprehensive evaluation study in this context. In this evaluation study outpatient rehabilitation in centres with different conceptual backgrounds is compared with inpatient rehabilitation in rehab clinics, indications considered being cardiology and orthopaedics. Overall, 14 rehab centres and more than 2000 patients were included in the project. The patients were interviewed and medically examined before and after the measure. A follow-up was done after six and twelve months. In addition to the rehabilitants themselves, the rehab centre physicians as well as the office-practice physicians were interviewed about the outcome of the rehab measure. One year after rehabilitation, data were collected from the relevant health and pension insurance funds concerning the benefits the patients had received. Due to the study's non-experimental design, validity of the results is confined to rehabilitants participating on an outpatient basis and who had been found medically suited for this type of rehabilitation, were capable of travelling to the rehab centre on their own within less than 45 minutes and had voluntarily opted for the outpatient setting. The findings of the study show that outpatient rehabilitants' motivation and expectations differ from those found in inpatient rehabilitation. The health economics analysis performed is restricted to the costs involved in the rehabilitation measure as such as well as the health-related benefits provided to the rehabilitants in the twelve-month study period. The issue of whether increasing outpatient rehab measures will lead to decreasing costs in the rehab system as a whole had not been considered in

  20. Conceptual design of an aircraft automated coating removal system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, J.E.; Draper, J.V.; Pin, F.G.

    1996-05-01

    Paint stripping of the U.S. Air Force`s large transport aircrafts is currently a labor-intensive, manual process. Significant reductions in costs, personnel and turnaround time can be accomplished by the judicious use of automation in some process tasks. This paper presents the conceptual design of a coating removal systems for the tail surfaces of the C-5 plane. Emphasis is placed on the technology selection to optimize human-automation synergy with respect to overall costs, throughput, quality, safety, and reliability. Trade- offs between field-proven vs. research-requiring technologies, and between expected gain vs. cost and complexity, have led to a conceptual design which ismore » semi-autonomous (relying on the human for task specification and disturbance handling) yet incorporates sensor- based automation (for sweep path generation and tracking, surface following, stripping quality control and tape/breach handling).« less

  1. Block 2 Solid Rocket Motor (SRM) conceptual design study, volume 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Segmented and monolithic Solid Rocket Motor (SRM) design concepts were evaluated with emphasis on joints and seals. Particular attention was directed to eliminating deficiencies in the SRM High Performance Motor (HPM). The selected conceptual design is described and discussed.

  2. Using conceptual work products of health care to design health IT.

    PubMed

    Berry, Andrew B L; Butler, Keith A; Harrington, Craig; Braxton, Melissa O; Walker, Amy J; Pete, Nikki; Johnson, Trevor; Oberle, Mark W; Haselkorn, Jodie; Paul Nichol, W; Haselkorn, Mark

    2016-02-01

    This paper introduces a new, model-based design method for interactive health information technology (IT) systems. This method extends workflow models with models of conceptual work products. When the health care work being modeled is substantially cognitive, tacit, and complex in nature, graphical workflow models can become too complex to be useful to designers. Conceptual models complement and simplify workflows by providing an explicit specification for the information product they must produce. We illustrate how conceptual work products can be modeled using standard software modeling language, which allows them to provide fundamental requirements for what the workflow must accomplish and the information that a new system should provide. Developers can use these specifications to envision how health IT could enable an effective cognitive strategy as a workflow with precise information requirements. We illustrate the new method with a study conducted in an outpatient multiple sclerosis (MS) clinic. This study shows specifically how the different phases of the method can be carried out, how the method allows for iteration across phases, and how the method generated a health IT design for case management of MS that is efficient and easy to use. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Terahertz-Regime, Micro-VEDs: Evaluation of Micromachined TWT Conceptual Designs

    NASA Technical Reports Server (NTRS)

    Booske, John H.; Kory, Carol L.; Gallagher, D.; van der Weide, Daniel W.; Limbach, S; Gustafson, P; Lee, W.-J.; Gallagher, S.; Jain, K.

    2001-01-01

    Summary form only given. The Terahertz (THz) region of the electromagnetic spectrum (approx.300-3000 GHz) has enormous potential for high-data-rate communications, spectroscopy, astronomy, space research, medicine, biology, surveillance, remote sensing, industrial process control, etc. The most critical roadblock to full exploitation of the THz band is lack of coherent radiation sources that are powerful (0.01-10.0 W continuous wave), efficient (>1 %), frequency agile (instantaneously tunable over 1% bandwidths or more), reliable, and relatively inexpensive. Micro-machined Vacuum Electron Devices (micro-VEDs) represent a promising solution. We describe prospects for miniature, THz-regime TWTs fabricated using micromachining techniques. Several approx.600 GHz conceptual designs are compared. Their expected performance has been analyzed using SD, 2.51), and 3D TWT codes. A folded waveguide (FWG) TWT forward-wave amplifier design is presented based on a Northrop Grumman (NGC) optimized design procedure. This conceptual device is compared to the simulated performance of a novel, micro-VED helix TWT. Conceptual FWG TWT backward-wave amplifiers and oscillators are also discussed. A scaled (100 GHz) FWG TWT operating at a relatively low voltage (-12 kV) is under development at NGC. Also, actual-size micromachining experiments are planned to evaluate the feasibility of arrays of micro-VED TWTs. Progress and results of these efforts are described. This work was supported, in part by AFOSR, ONR, and NSF.

  4. An Expert System-Driven Method for Parametric Trajectory Optimization During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen; Diaz, Manuel J.; Holt, James B.

    2015-01-01

    During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle cost. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult in both cost and schedule to enact. The current capability-based paradigm, which has emerged because of the constrained economic environment, calls for the infusion of knowledge usually acquired during later design phases into earlier design phases, i.e. bringing knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture yet little of the information required to successfully optimize a trajectory is known early in the design phase. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. When these obstacles are coupled with the Program to Optimize Simulated Trajectories (POST), an industry standard program to optimize ascent trajectories that is difficult to use, expert trajectory analysts are required to effectively optimize a vehicle's ascent trajectory. Over the course of this paper, the authors discuss a methodology developed at NASA Marshall's Advanced Concepts Office to address these issues

  5. Propulsion System Models for Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2014-01-01

    The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.

  6. System design projects for undergraduate design education

    NASA Technical Reports Server (NTRS)

    Batill, S. M.; Pinkelman, J.

    1993-01-01

    Design education has received considerable in the recent past. This paper is intended to address one aspect of undergraduate design education and that is the selection and development of the design project for a capstone design course. Specific goals for a capstone design course are presented and their influence on the project selection are discussed. The evolution of a series of projects based upon the design of remotely piloted aircraft is presented along with students' perspective on the capstone experience.

  7. A Study of Child Variance, Volume 2: Interventions; Conceptual Project in Emotional Disturbance.

    ERIC Educational Resources Information Center

    Rhodes, William C.; Tracy, Michael L.

    Presented in the second volume of a series emanating from a conceptual project on emotional disturbance are six papers on general aspects of interventions as well as biophysical, behavioral, psychodynamic, environmental, and counter theoretical interventions. In an "Overview of Interventions", W. Rhodes discusses a framework for viewing…

  8. Conceptual design study for an advanced cab and visual system, volume 1

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    A conceptual design study was conducted to define requirements for an advanced cab and visual system. The rotorcraft system integration simulator is for engineering studies in the area of mission associated vehicle handling qualities. Principally a technology survey and assessment of existing and proposed simulator visual display systems, image generation systems, modular cab designs, and simulator control station designs were performed and are discussed. State of the art survey data were used to synthesize a set of preliminary visual display system concepts of which five candidate display configurations were selected for further evaluation. Basic display concepts incorporated in these configurations included: real image projection, using either periscopes, fiber optic bundles, or scanned laser optics; and virtual imaging with helmet mounted displays. These display concepts were integrated in the study with a simulator cab concept employing a modular base for aircraft controls, crew seating, and instrumentation (or other) displays. A simple concept to induce vibration in the various modules was developed and is described. Results of evaluations and trade offs related to the candidate system concepts are given, along with a suggested weighting scheme for numerically comparing visual system performance characteristics.

  9. Mauna Kea Spectrographic Explorer (MSE): a conceptual design for multi-object high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.

  10. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Stecklein, J. M.; Petro, A. J.; Stump, W. R.; Adorjan, A. S.; Chambers, T. V.; Donofrio, M.; Hirasaki, J. K.; Morris, O. G.; Nudd, G.; Rawlings, R. P.

    1992-01-01

    This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers.

  11. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward

    1989-01-01

    A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.

  12. Conceptual design of distillation-based hybrid separation processes.

    PubMed

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  13. HOMOGENEOUS CLASSROOM GROUPING BASED ON CONCEPTUAL SYSTEMS THEORY IN AN EDUCATION ENRICHMENT PROJECT -- AN EXPLORATORY STUDY.

    ERIC Educational Resources Information Center

    HUNT, DAVID E.

    EDUCATIONAL ENVIRONMENTS, HIGHLY STRUCTURED OR UNSTRUCTURED, WERE DIFFERENTIALLY EFFECTIVE WITH STUDENTS OF VARYING PERSONALITIES. THE REPORT CONSIDERED THE UTILITY AND RELEVANCE OF THE CONCEPTUAL SYSTEMS MODEL BY DESCRIBING A SPECIFIC PROJECT IN WHICH THE MODEL SERVED AS THE BASIS FOR FORMING HOMOGENEOUS CLASSROOM GROUPS. THE PROJECT WAS…

  14. PERLE. Powerful energy recovery linac for experiments. Conceptual design report

    NASA Astrophysics Data System (ADS)

    Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.

    2018-06-01

    A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.

  15. Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.

    The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are themore » MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.« less

  16. Conceptual design study for a teleoperator visual system, phase 1

    NASA Technical Reports Server (NTRS)

    Adams, D.; Grant, C.; Johnson, C.; Meirick, R.; Polhemus, C.; Ray, A.; Rittenhouse, D.; Skidmore, R.

    1972-01-01

    Results are reported for work performed during the first phase of the conceptual design study for a teleoperator visual system. This phase consists of four tasks: General requirements, concept development, subsystem requirements and analysis, and concept evaluation.

  17. Conceptual modeling for Prospective Health Technology Assessment.

    PubMed

    Gantner-Bär, Marion; Djanatliev, Anatoli; Prokosch, Hans-Ulrich; Sedlmayr, Martin

    2012-01-01

    Prospective Health Technology Assessment (ProHTA) is a new and innovative approach to analyze and assess new technologies, methods and procedures in health care. Simulation processes are used to model innovations before the cost-intensive design and development phase. Thus effects on patient care, the health care system as well as health economics aspects can be estimated. To generate simulation models a valid information base is necessary and therefore conceptual modeling is most suitable. Project-specifically improved methods and characteristics of simulation modeling are combined in the ProHTA Conceptual Modeling Process and initially implemented for acute ischemic stroke treatment in Germany. Additionally the project aims at simulation of other diseases and health care systems as well. ProHTA is an interdisciplinary research project within the Cluster of Excellence for Medical Technology - Medical Valley European Metropolitan Region Nuremberg (EMN), which is funded by the German Federal Ministry of Education and Research (BMBF), project grant No. 01EX1013B.

  18. Multistage aerospace craft. [perspective drawings of conceptual design

    NASA Technical Reports Server (NTRS)

    Kelly, D. L. (Inventor)

    1973-01-01

    A conceptual design of a multi-stage aerospace craft is presented. Two perspective views of the vehicle are developed to show the two component configuration with delta wing, four vertical tail surfaces, tricycle landing gear, and two rocket exhaust nozzles at the rear of the fuselage. Engines for propulsion in the atmosphere are mounted on the fuselage in front of the wing root attachment.

  19. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 3: Refined conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.

  20. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The Final Scientific Report (FSR) is submitted in two parts (I and II). FSR part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by terra-gen power, llc, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method

  1. Project Lifespan-based Nonstationary Hydrologic Design Methods for Changing Environment

    NASA Astrophysics Data System (ADS)

    Xiong, L.

    2017-12-01

    Under changing environment, we must associate design floods with the design life period of projects to ensure the hydrologic design is really relevant to the operation of the hydrologic projects, because the design value for a given exceedance probability over the project life period would be significantly different from that over other time periods of the same length due to the nonstationarity of probability distributions. Several hydrologic design methods that take the design life period of projects into account have been proposed in recent years, i.e. the expected number of exceedances (ENE), design life level (DLL), equivalent reliability (ER), and average design life level (ADLL). Among the four methods to be compared, both the ENE and ER methods are return period-based methods, while DLL and ADLL are risk/reliability- based methods which estimate design values for given probability values of risk or reliability. However, the four methods can be unified together under a general framework through a relationship transforming the so-called representative reliability (RRE) into the return period, i.e. m=1/1(1-RRE), in which we compute the return period m using the representative reliability RRE.The results of nonstationary design quantiles and associated confidence intervals calculated by ENE, ER and ADLL were very similar, since ENE or ER was a special case or had a similar expression form with respect to ADLL. In particular, the design quantiles calculated by ENE and ADLL were the same when return period was equal to the length of the design life. In addition, DLL can yield similar design values if the relationship between DLL and ER/ADLL return periods is considered. Furthermore, ENE, ER and ADLL had good adaptability to either an increasing or decreasing situation, yielding not too large or too small design quantiles. This is important for applications of nonstationary hydrologic design methods in actual practice because of the concern of choosing the emerging

  2. Conceptual Design and Structural Optimization of NASA Environmentally Responsible Aviation (ERA) Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study.

  3. Conceptual design of ACB-CP for ITER cryogenic system

    NASA Astrophysics Data System (ADS)

    Jiang, Yongcheng; Xiong, Lianyou; Peng, Nan; Tang, Jiancheng; Liu, Liqiang; Zhang, Liang

    2012-06-01

    ACB-CP (Auxiliary Cold Box for Cryopumps) is used to supply the cryopumps system with necessary cryogen in ITER (International Thermonuclear Experimental Reactor) cryogenic distribution system. The conceptual design of ACB-CP contains thermo-hydraulic analysis, 3D structure design and strength checking. Through the thermohydraulic analysis, the main specifications of process valves, pressure safety valves, pipes, heat exchangers can be decided. During the 3D structure design process, vacuum requirement, adiabatic requirement, assembly constraints and maintenance requirement have been considered to arrange the pipes, valves and other components. The strength checking has been performed to crosscheck if the 3D design meets the strength requirements for the ACB-CP.

  4. ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft

    NASA Technical Reports Server (NTRS)

    Jayaram, S.; Myklebust, A.; Gelhausen, P.

    1992-01-01

    A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.

  5. Parametric study of a canard-configured transport using conceptual design optimization

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.

    1985-01-01

    Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.

  6. Rotorcraft Conceptual Design Environment

    DTIC Science & Technology

    2009-10-01

    systems engineering design tool sets. The DaVinci Project vision is to develop software architecture and tools specifically for acquisition system...enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described. Introduction...information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION

  7. Multidisciplinary Conceptual Design for Reduced-Emission Rotorcraft

    NASA Technical Reports Server (NTRS)

    Silva, Christopher; Johnson, Wayne; Solis, Eduardo

    2018-01-01

    Python-based wrappers for OpenMDAO are used to integrate disparate software for practical conceptual design of rotorcraft. The suite of tools which are connected thus far include aircraft sizing, comprehensive analysis, and parametric geometry. The tools are exercised to design aircraft with aggressive goals for emission reductions relative to fielded state-of-the-art rotorcraft. Several advanced reduced-emission rotorcraft are designed and analyzed, demonstrating the flexibility of the tools to consider a wide variety of potentially transformative vertical flight vehicles. To explore scale effects, aircraft have been sized for 5, 24, or 76 passengers in their design missions. Aircraft types evaluated include tiltrotor, single-main-rotor, coaxial, and side-by-side helicopters. Energy and drive systems modeled include Lithium-ion battery, hydrogen fuel cell, turboelectric hybrid, and turboshaft drive systems. Observations include the complex nature of the trade space for this simple problem, with many potential aircraft design and operational solutions for achieving significant emission reductions. Also interesting is that achieving greatly reduced emissions may not require exotic component technologies, but may be achieved with a dedicated design objective of reducing emissions.

  8. Decoding the "CoDe": A Framework for Conceptualizing and Designing Help Options in Computer-Based Second Language Listening

    ERIC Educational Resources Information Center

    Cardenas-Claros, Monica Stella; Gruba, Paul A.

    2013-01-01

    This paper proposes a theoretical framework for the conceptualization and design of help options in computer-based second language (L2) listening. Based on four empirical studies, it aims at clarifying both conceptualization and design (CoDe) components. The elements of conceptualization consist of a novel four-part classification of help options:…

  9. Advanced heat receiver conceptual design study

    NASA Technical Reports Server (NTRS)

    Kesseli, James; Saunders, Roger; Batchelder, Gary

    1988-01-01

    Solar Dynamic space power systems are candidate electrical power generating systems for future NASA missions. One of the key components of the solar dynamic power system is the solar receiver/thermal energy storage (TES) subsystem. Receiver development was conducted by NASA in the late 1960's and since then a very limited amount of work has been done in this area. Consequently the state of the art (SOA) receivers designed for the IOC space station are large and massive. The objective of the Advanced Heat Receiver Conceptual Design Study is to conceive and analyze advanced high temperature solar dynamic Brayton and Stirling receivers. The goal is to generate innovative receiver concepts that are half of the mass, smaller, and more efficient than the SOA. It is also necessary that these innovative receivers offer ease of manufacturing, less structural complexity and fewer thermal stress problems. Advanced Brayton and Stirling receiver storage units are proposed and analyzed in this study which can potentially meet these goals.

  10. Development, design, and conceptual issues of project zero exposure: A program to protect young children from tobacco smoke exposure.

    PubMed

    Rosen, Laura J; Guttman, Nurit; Hovell, Melbourne F; Noach, Michal Ben; Winickoff, Jonathan P; Tchernokovski, Shosh; Rosenblum, Joseph K; Rubenstein, Uri; Seidmann, Vered; Vardavas, Constantine I; Klepeis, Neil E; Zucker, David M

    2011-06-28

    Tobacco smoke exposure (TSE) is a serious threat to child health. Roughly 40% of children worldwide are exposed to tobacco smoke, and the very young are often "captive smokers" in homes in which others smoke.The goal of this research project is to develop and evaluate an intervention to reduce young child tobacco smoke exposure. The objective of this paper is to document our approach to building the intervention, to describe the planned intervention, and to explore the conceptual issues regarding the intervention and its evaluation. This project is being developed using an iterative approach. We are currently in the middle of Stage 1. In this first stage, Intervention Development, we have already conducted a comprehensive search of the professional literature and internet resources, consulted with experts in the field, and conducted several Design Workshops. The planned intervention consists of parental group support therapy, a website to allow use of an "online/offline" approach, involvement of pediatricians, use of a video simulation game ("Dr. Cruz") to teach parents about child TSE, and personalized biochemical feedback on exposure levels. As part of this stage we will draw on a social marketing approach. We plan to use in-depth interviews and focus groups in order to identify barriers for behavior change, and to test the acceptability of program components.In Stage II, we plan to pilot the planned intervention with 5-10 groups of 10 parents each.In Stage III, we plan to implement and evaluate the intervention using a cluster randomized controlled trial with an estimated 540 participants. The major challenges in this research are twofold: building an effective intervention and measuring the effects of the intervention. Creation of an effective intervention to protect children from TSE is a challenging but sorely needed public health endeavor. We hope that our approach will contribute to building a stronger evidence base for control of child exposure to tobacco

  11. Exoskeleton for gait rehabilitation of children: Conceptual design.

    PubMed

    Cornejo, Jorge L; Santana, Jesus F; Salinas, Sergio A

    2017-07-01

    This paper presents the conceptual design of an exoskeleton for gait rehabilitation of children. This system has electronics, mechanicals and software sections, which are implemented and tested using a mannequin of a child. The prototype uses servomotors to move robotic joints that are attached to simulated patient's legs. The design has 4 DOF (degrees of freedom) two for hip joints and other two for knee joints, in the sagittal plane. A microcontroller measures sensor signals, controls motors and exchanges data with a computer. The user interacts with a graphical interface to configure, control and monitor the exoskeleton activities. The laboratory tests show soften movements in joint angle tracking.

  12. Lunar base launch and landing facilities conceptual design

    NASA Technical Reports Server (NTRS)

    Phillips, Paul G.; Simonds, Charles H.; Stump, William R.

    1992-01-01

    The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established.

  13. New conceptual design of portable bamboo bridge for emergency purposes

    NASA Astrophysics Data System (ADS)

    Musthaffa, A. A.; Nor, N. M.; Yusof, M. A.; Yuhazri, M. Y.

    2018-02-01

    Portable bridges serve as routes for troops during the military operations and the disaster relief operation. Nowadays, bamboo has been regarded as one of the alternative construction materials for building and bridge structures. This paper presents the conceptual design of the portable bridge. Several types of portable bridges and bamboo bridges are reviewed in the current work. The characteristics, capability and method of construction of each bridge are discussed. Finally, the conceptual of the portable bamboo bridge for emergency purposes is presented. The idea of producing portable bridge is proposed in the current work as it is crucial for providing route for communities affected by natural disasters.

  14. Conceptual design of a data reduction system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A telemetry data processing system was defined of the Data Reduction. Data reduction activities in support of the developmental flights of the Space Shuttle were used as references against which requirements are assessed in general terms. A conceptual system design believed to offer significant throughput for the anticipated types of data reduction activities is presented. The design identifies the use of a large, intermediate data store as a key element in a complex of high speed, single purpose processors, each of which performs predesignated, repetitive operations on either raw or partially processed data. The recommended approach to implement the design concept is to adopt an established interface standard and rely heavily on mature or promising technologies which are considered main stream of the integrated circuit industry. The design system concept, is believed to be implementable without reliance on exotic devices and/or operational procedures. Numerical methods were employed to examine the feasibility of digital discrimination of FDM composite signals, and of eliminating line frequency noises in data measurements.

  15. Conceptual Design and Structural Analysis of an Open Rotor Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2013-01-01

    Through a recent NASA contract, Boeing Research and Technology in Huntington Beach, CA developed and optimized a conceptual design of an open rotor hybrid wing body aircraft (HWB). Open rotor engines offer a significant potential for fuel burn savings over turbofan engines, while the HWB configuration potentially allows to offset noise penalties through possible engine shielding. Researchers at NASA Langley converted the Boeing design to a FLOPS model which will be used to develop take-off and landing trajectories for community noise analyses. The FLOPS model was calibrated using Boeing data and shows good agreement with the original Boeing design. To complement Boeing s detailed aerodynamics and propulsion airframe integration work, a newly developed and validated conceptual structural analysis and optimization tool was used for a conceptual loads analysis and structural weights estimate. Structural optimization and weight calculation are based on a Nastran finite element model of the primary HWB structure, featuring centerbody, mid section, outboard wing, and aft body. Results for flight loads, deformations, wing weight, and centerbody weight are presented and compared to Boeing and FLOPS analyses.

  16. A Proposed Conceptual Framework for Curriculum Design in Physical Fitness.

    ERIC Educational Resources Information Center

    Miller, Peter V.; Beauchamp, Larry S.

    A physical fitness curriculum, designed to provide cumulative benefits in a sequential pattern, is based upon a framework of a conceptual structure. The curriculum's ultimate goal is the achievement of greater physiological efficiency through a holistic approach that would strengthen circulatory-respiratory, mechanical, and neuro-muscular…

  17. Conceptual design of the cryostat for the new high luminosity (HL-LHC) triplet magnets

    NASA Astrophysics Data System (ADS)

    Ramos, D.; Parma, V.; Moretti, M.; Eymin, C.; Todesco, E.; Van Weelderen, R.; Prin, H.; Berkowitz Zamora, D.

    2017-12-01

    The High Luminosity LHC (HL-LHC) is a project to upgrade the LHC collider after 2020-2025 to increase the integrated luminosity by about one order of magnitude and extend the physics production until 2035. An upgrade of the focusing triplets insertion system for the ATLAS and CMS experiments is foreseen using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. This will require the design and construction of four continuous cryostats, each about sixty meters in length and one meter in diameter, for the final beam focusing quadrupoles, corrector magnets and beam separation dipoles. The design is constrained by the dimensions of the existing tunnel and accessibility restrictions imposing the integration of cryogenic piping inside the cryostat, thus resulting in a very compact integration. As the alignment and position stability of the magnets is crucial for the luminosity performance of the machine, the magnet support system must be carefully designed in order to cope with parasitic forces and thermo-mechanical load cycles. In this paper, we present the conceptual design of the cryostat and discuss the approach to address the stringent and often conflicting requirements of alignment, integration and thermal aspects.

  18. Developing a Conceptual Framework: The Case of MAGICC

    ERIC Educational Resources Information Center

    Natri, Teija; Räsänen, Anne

    2015-01-01

    This paper reports the steps taken to develop the conceptual framework of the MAGICC project (2013), which aimed to provide action-oriented descriptions of multilingual and multicultural academic and professional communication competence, instructional designs to promote these in higher education language teaching, and multidimensional forms of…

  19. Rubber airplane: Constraint-based component-modeling for knowledge representation in computer-aided conceptual design

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1990-01-01

    Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.

  20. The potential of genetic algorithms for conceptual design of rotor systems

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Wells, Valana L.; Laananen, David H.

    1993-01-01

    The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.

  1. Cryogenic Propellant Management Device: Conceptual Design Study

    NASA Technical Reports Server (NTRS)

    Wollen, Mark; Merino, Fred; Schuster, John; Newton, Christopher

    2010-01-01

    Concepts of Propellant Management Devices (PMDs) were designed for lunar descent stage reaction control system (RCS) and lunar ascent stage (main and RCS propulsion) missions using liquid oxygen (LO2) and liquid methane (LCH4). Study ground rules set a maximum of 19 days from launch to lunar touchdown, and an additional 210 days on the lunar surface before liftoff. Two PMDs were conceptually designed for each of the descent stage RCS propellant tanks, and two designs for each of the ascent stage main propellant tanks. One of the two PMD types is a traditional partial four-screen channel device. The other type is a novel, expanding volume device which uses a stretched, flexing screen. It was found that several unique design features simplified the PMD designs. These features are (1) high propellant tank operating pressures, (2) aluminum tanks for propellant storage, and (3) stringent insulation requirements. Consequently, it was possible to treat LO2 and LCH4 as if they were equivalent to Earth-storable propellants because they would remain substantially subcooled during the lunar mission. In fact, prelaunch procedures are simplified with cryogens, because any trapped vapor will condense once the propellant tanks are pressurized in space.

  2. Conceptual design studies of lift/cruise fans for military transports

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A study program for conceptual design studies of remote lift and lift/cruise fan systems to meet the requirements of military V/STOL aircraft was conducted. Parametric performance and design data are presented for fans covering a range of pressure ratios, including both single and two stage fan concepts. The gas generator selected for these fan systems was the J101-GE-100 engine. Noise generation and transient response were determined for selected fan systems.

  3. Conceptual Design of a 150-Passenger Civil Tiltrotor

    NASA Technical Reports Server (NTRS)

    Costa, Guillermo

    2012-01-01

    The conceptual design of a short-haul civil tiltrotor aircraft is presented. The concept vehicle is designed for runway-independent operations to increase the capacity of the National Airspace System without the need for increased infrastructure. This necessitates a vehicle that is capable of integrating with conventional air traffic without interfering with established flightpaths. The NASA Design and Analysis of Rotorcraft software was used to size the concept vehicle based on the mission requirements of this market. The final configuration was selected based upon performance metrics such as acquisition and maintenance costs, fuel fraction, empty weight, and required engine power. The concept presented herein has a proposed initial operating capability date of 2035, and is intended to integrate with conventional air traffic as well as proposed future air transportation concepts.

  4. Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 2

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Clark, R.; Alexander, H. R.

    1974-01-01

    Results of conceptual design studies of tilt rotor and tandem helicopter aircraft for a 200 nautical mile commercial short haul transport mission are presented. The trade study data used in selecting the design point aircraft and technology details necessary to support the design conclusions are included.

  5. CONCEPTUAL DESIGN ASSESSMENT FOR THE COFIRING OF BIOREFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David J. Webster; Jeffrey T. Ranney; Jacqueline G. Broder

    2002-07-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed. Processing of biosolids and pilot facility hydrolysis production have been completed to produce lignin for cofire testing. EERC had received all the biomass and baseline coal fuels for use in testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary cofire test results indicate that the blending of lignin and biosolids with the Colbert coal blendmore » generally reduces NOx emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. A draft of the final cofire technical report entitled ''Effects of Cofiring Lignin and Biosolids with Coal on Fireside Performance and Combustion Products'' has been prepared and is currently being reviewed by project team members. A final report is expected by mid-third quarter 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The environmental review, preferred steam supply connection points and steam pipeline routing, and assessment of steam export impacts have been completed without major issue. A cost estimate for the steam supply system was also completed. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility. TVA has provided a draft final report that is under review by team members.« less

  6. Multidisciplinary conceptual design optimization of aircraft using a sound-matching-based objective function

    NASA Astrophysics Data System (ADS)

    Diez, Matteo; Iemma, Umberto

    2012-05-01

    The article presents a novel approach to include community noise considerations based on sound quality in the Multidisciplinary Conceptual Design Optimization (MCDO) of civil transportation aircraft. The novelty stems from the use of an unconventional objective function, defined as a measure of the difference between the noise emission of the aircraft under analysis and a reference 'weakly annoying' noise, the target sound. The minimization of such a merit factor yields an aircraft concept with a noise signature as close as possible to the given target. The reference sound is one of the outcomes of the European Research Project SEFA (Sound Engineering For Aircraft, VI Framework Programme, 2004-2007), and used here as an external input. The aim of the present work is to address the definition and the inclusion of the sound-matching-based objective function in the MCDO of aircraft.

  7. Evaluating a normalized conceptual representation produced from natural language patient discharge summaries.

    PubMed Central

    Zweigenbaum, P.; Bouaud, J.; Bachimont, B.; Charlet, J.; Boisvieux, J. F.

    1997-01-01

    The Menelas project aimed to produce a normalized conceptual representation from natural language patient discharge summaries. Because of the complex and detailed nature of conceptual representations, evaluating the quality of output of such a system is difficult. We present the method designed to measure the quality of Menelas output, and its application to the state of the French Menelas prototype as of the end of the project. We examine this method in the framework recently proposed by Friedman and Hripcsak. We also propose two conditions which enable to reduce the evaluation preparation workload. PMID:9357694

  8. Conceptualization and application of an approach for designing healthcare software interfaces.

    PubMed

    Kumar, Ajit; Maskara, Reena; Maskara, Sanjeev; Chiang, I-Jen

    2014-06-01

    The aim of this study is to conceptualize a novel approach, which facilitates us to design prototype interfaces for healthcare software. Concepts and techniques from various disciplines were used to conceptualize an interface design approach named MORTARS (Map Original Rhetorical To Adapted Rhetorical Situation). The concepts and techniques included in this approach are (1) rhetorical situation - a concept of philosophy provided by Bitzer (1968); (2) move analysis - an applied linguistic technique provided by Swales (1990) and Bhatia (1993); (3) interface design guidelines - a cognitive and computer science concept provided by Johnson (2010); (4) usability evaluation instrument - an interface evaluation questionnaire provided by Lund (2001); (5) user modeling via stereotyping - a cognitive and computer science concept provided by Rich (1979). A prototype interface for outpatient clinic software was designed to introduce the underlying concepts of MORTARS. The prototype interface was evaluated by thirty-two medical informaticians. The medical informaticians found the designed prototype interface to be useful (73.3%), easy to use (71.9%), easy to learn (93.1%), and satisfactory (53.2%). MORTARS approach was found to be effective in designing the prototype user interface for the outpatient clinic software. This approach might be further used to design interfaces for various software pertaining to healthcare and other domains. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER) supplement. Magnet system special investigations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.

  10. Introductory Statistics Students' Conceptual Understanding of Study Design and Conclusions

    NASA Astrophysics Data System (ADS)

    Fry, Elizabeth Brondos

    Recommended learning goals for students in introductory statistics courses include the ability to recognize and explain the key role of randomness in designing studies and in drawing conclusions from those studies involving generalizations to a population or causal claims (GAISE College Report ASA Revision Committee, 2016). The purpose of this study was to explore introductory statistics students' understanding of the distinct roles that random sampling and random assignment play in study design and the conclusions that can be made from each. A study design unit lasting two and a half weeks was designed and implemented in four sections of an undergraduate introductory statistics course based on modeling and simulation. The research question that this study attempted to answer is: How does introductory statistics students' conceptual understanding of study design and conclusions (in particular, unbiased estimation and establishing causation) change after participating in a learning intervention designed to promote conceptual change in these areas? In order to answer this research question, a forced-choice assessment called the Inferences from Design Assessment (IDEA) was developed as a pretest and posttest, along with two open-ended assignments, a group quiz and a lab assignment. Quantitative analysis of IDEA results and qualitative analysis of the group quiz and lab assignment revealed that overall, students' mastery of study design concepts significantly increased after the unit, and the great majority of students successfully made the appropriate connections between random sampling and generalization, and between random assignment and causal claims. However, a small, but noticeable portion of students continued to demonstrate misunderstandings, such as confusion between random sampling and random assignment.

  11. C-130 Advanced Technology Center wing box conceptual design/cost study

    NASA Technical Reports Server (NTRS)

    Whitehead, R. S.; Foreman, C. R.; Silva, K.

    1992-01-01

    A conceptual design was developed by Northrop/LTV for an advanced C-130 Center Wing Box (CWB) which could meet the severe mission requirements of the SOF C-130 aircraft. The goals for the advanced technology CWB relative to the current C-130H CWB were: (1) the same acquisition cost; (2) lower operating support costs; (3) equal or lower weight; (4) a 30,000 hour service life for the SOF mission; and (5) minimum impact on the current maintenance concept. Initially, the structural arrangement, weight, external and internal loads, fatigue spectrum, flutter envelope and design criteria for the SOF C-130 aircraft CWB were developed. An advanced materials assessment was then conducted to determine the suitability of advanced materials for a 1994 production availability and detailed trade studies were performed on candidate CWB conceptual designs. Finally, a life-cycle cost analysis was performed on the advanced CWB. The study results showed that a hybrid composite/metallic CWB could meet the severe SOF design requirements, reduce the CWB weight by 14 pct., and was cost effective relative to an all metal beefed up C-130H CWB.

  12. Conceptual design studies of the Electron Cyclotron launcher for DEMO reactor

    NASA Astrophysics Data System (ADS)

    Moro, Alessandro; Bruschi, Alex; Franke, Thomas; Garavaglia, Saul; Granucci, Gustavo; Grossetti, Giovanni; Hizanidis, Kyriakos; Tigelis, Ioannis; Tran, Minh-Quang; Tsironis, Christos

    2017-10-01

    A demonstration fusion power plant (DEMO) producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral beam systems for the DEMO reactor is being performed by Work Package Heating and Current Drive (WPHCD) in the framework of EUROfusion Consortium activities. The EC target power to the plasma is about 50 MW, in which the required power for NTM control and burn control is included. EC launcher conceptual design studies are here presented, showing how the main design drivers of the system have been taken into account (physics requirements, reactor relevant operations, issues related to its integration as in-vessel components). Different options for the antenna are studied in a parameters space including a selection of frequencies, injection angles and launch points to get the best performances for the antenna configuration, using beam tracing calculations to evaluate plasma accessibility and deposited power. This conceptual design studies comes up with the identification of possible limits, constraints and critical issues, essential in the selection process of launcher setup solution.

  13. Etherospermia: Conceptual art, science and allegory in the sky-seeding project

    NASA Astrophysics Data System (ADS)

    Michaloudis, Ioannis; Seats, Michael

    2014-11-01

    This paper presents the practice of the artist/researcher Ioannis Michaloudis. It showcases his use of a space technology nanomaterial, silica aerogel, and its potential in the cultural utilization of space. Since 2001, his projects have centered around the esthetic, sculptural and conceptual use of silica aerogel. For Michaloudis, this material is highly allegorical of what he terms 'our breaking sky'. For the authors, the step towards space is a real 'bridge moment', analogous to the evolutionary progression of organisms from water to earth. In this current era of space exploration, it is clear that humans need to develop new organs and survival skills - or, cultivate new skies in response to the breaking of our atmosphere's dome. It is also clear that science and art need to collaborate more productively. To this end, it is argued that allegory provides the link between imaginability, experiment and representation in both scientific and artistic practices. Etherospermia (εθεροσπερμία) is an invented word from ether and panspermia. The Etherospermia project pursues, allegorically, the creation of new atmospheres on other planets, in order to draw attention to the degradation and destruction of the earth's protective veil. Imagine an astronaut who, during a space walk, scatters fragments of Michaloudis' silica aerogel as seed material to alter the atmospheres of other planets, making them habitable. The paper discusses nine artworks as a way of presenting the conceptual core of the etherospermia allegory.

  14. Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT

    NASA Technical Reports Server (NTRS)

    Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.

    1988-01-01

    A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.

  15. Defining Support Requirements During Conceptual Design of Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Morris, W. D.; White, N. H.; Davis, W. T.; Ebeling, C. E.

    1995-01-01

    Current methods for defining the operational support requirements of new systems are data intensive and require significant design information. Methods are being developed to aid in the analysis process of defining support requirements for new launch vehicles during their conceptual design phase that work with the level of information available during this phase. These methods will provide support assessments based on the vehicle design and the operating scenarios. The results can be used both to define expected support requirements for new launch vehicle designs and to help evaluate the benefits of using new technologies. This paper describes the models, their current status, and provides examples of their use.

  16. Nuclear Brayton turboalternator-compressor (TAC) conceptual design study

    NASA Technical Reports Server (NTRS)

    Mock, E. A.; Davis, J. E.

    1972-01-01

    A comprehensive analysis and conceptual design study of the turboalternator-compressor components was performed using HeXe as the working fluid. Individual turbine, alternator, compressor, and bearing and seal designs were evaluated. Six turboalternator-compressor TAC configurations were completed. One TAC configuration was evaluated to calculate its performance when operating under new cycle conditions,namely, one higher and one lower turbine inlet temperature and one case with krypton as the working fluid. Based on the results, a TAC configuration that incorporated a radial compressor, a radial turbine, a Lundell Alternator, and gas bearings was selected. A new layout of the TAC was prepared that reflects the cycle state points necessary to accommodate a zirconium hydride moderated reactor and a 400 Hz alternator. The final TAC design rotates at 24,000 rpm and produces 160 kWe, 480V, 3-phase, 400 hertz power.

  17. Reengineering the Project Design Process

    NASA Technical Reports Server (NTRS)

    Casani, E.; Metzger, R.

    1994-01-01

    In response to NASA's goal of working faster, better and cheaper, JPL has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center and the Flight System Testbed. Reengineering at JPL implies a cultural change whereby the character of its design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and cost estimating.

  18. Engineering Design Activities and Conceptual Change in Middle School Science

    ERIC Educational Resources Information Center

    Schnittka, Christine G.

    2009-01-01

    The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative…

  19. Conceptual Design of the ITER ECE Diagnostic - An Update

    NASA Astrophysics Data System (ADS)

    Austin, M. E.; Pandya, H. K. B.; Beno, J.; Bryant, A. D.; Danani, S.; Ellis, R. F.; Feder, R.; Hubbard, A. E.; Kumar, S.; Ouroua, A.; Phillips, P. E.; Rowan, W. L.

    2012-09-01

    The ITER ECE diagnostic has recently been through a conceptual design review for the entire system including front end optics, transmission line, and back-end instruments. The basic design of two viewing lines, each with a single ellipsoidal mirror focussing into the plasma near the midplane of the typical operating scenarios is agreed upon. The location and design of the hot calibration source and the design of the shutter that directs its radiation to the transmission line are issues that need further investigation. In light of recent measurements and discussion, the design of the broadband transmission line is being revisited and new options contemplated. For the instruments, current systems for millimeter wave radiometers and broad-band spectrometers will be adequate for ITER, but the option for employing new state-of-the-art techniques will be left open.

  20. Conceptual design of a monitoring system for the Charters of Freedom

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.

    1984-01-01

    A conceptual design of a monitoring system for the Charters of Freedom was developed for the National Archives and Records Service. The monitoring system would be installed at the National Archives and used to document the condition of the Charters as part of a regular inspection program. The results of an experimental measurements program that led to the definition of analysis system requirements are presented, a conceptual design of the monitoring system is described and the alternative approaches to implementing this design were discussed. The monitoring system is required to optically detect and measure deterioration in documents that are permanently encapsulated in glass cases. An electronic imaging system with the capability for precise photometric measurements of the contrast of the script on the documents can perform this task. Two general types of imaging systems are considered (line and area array), and their suitability for performing these required measurements are compared. A digital processing capability for analyzing the electronic imaging data is also required, and several optional levels of complexity for this digital analysis system are evaluated.

  1. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  2. Cockpit control system conceptual design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    The purpose of this project was to provide a means for operating the ailerons, elevator, elevator trim, rudder, nosewheel steering, and brakes in the Triton primary flight trainer. The main design goals under consideration were to illustrate system and subsystem integration, control function ability, and producibility. Weight and maintenance goals were addressed.

  3. Conceptual Design of Low-Boom Aircraft with Flight Trim Requirement

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Geiselhart, Karl A.; Fenbert, James W.

    2014-01-01

    A new low-boom target generation approach is presented which allows the introduction of a trim requirement during the early conceptual design of supersonic aircraft. The formulation provides an approximation of the center of pressure for a presumed aircraft configuration with a reversed equivalent area matching a low-boom equivalent area target. The center of pressure is approximated from a surrogate lift distribution that is based on the lift component of the classical equivalent area. The assumptions of the formulation are verified to be sufficiently accurate for a supersonic aircraft of high fineness ratio through three case studies. The first two quantify and verify the accuracy and the sensitivity of the surrogate center of pressure corresponding to shape deformation of lifting components. The third verification case shows the capability of the approach to achieve a trim state while maintaining the low-boom characteristics of a previously untrimmed configuration. Finally, the new low-boom target generation approach is demonstrated through the early conceptual design of a demonstrator concept that is low-boom feasible, trimmed, and stable in cruise.

  4. System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1994-01-01

    This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.

  5. Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer (COLD-SAT) Experiment Conceptual Design and Feasibility Study

    NASA Technical Reports Server (NTRS)

    Kramer, Edward (Editor)

    1998-01-01

    The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.

  6. Maximum projection designs for computer experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, V. Roshan; Gul, Evren; Ba, Shan

    Space-filling properties are important in designing computer experiments. The traditional maximin and minimax distance designs only consider space-filling in the full dimensional space. This can result in poor projections onto lower dimensional spaces, which is undesirable when only a few factors are active. Restricting maximin distance design to the class of Latin hypercubes can improve one-dimensional projections, but cannot guarantee good space-filling properties in larger subspaces. We propose designs that maximize space-filling properties on projections to all subsets of factors. We call our designs maximum projection designs. As a result, our design criterion can be computed at a cost nomore » more than a design criterion that ignores projection properties.« less

  7. Maximum projection designs for computer experiments

    DOE PAGES

    Joseph, V. Roshan; Gul, Evren; Ba, Shan

    2015-03-18

    Space-filling properties are important in designing computer experiments. The traditional maximin and minimax distance designs only consider space-filling in the full dimensional space. This can result in poor projections onto lower dimensional spaces, which is undesirable when only a few factors are active. Restricting maximin distance design to the class of Latin hypercubes can improve one-dimensional projections, but cannot guarantee good space-filling properties in larger subspaces. We propose designs that maximize space-filling properties on projections to all subsets of factors. We call our designs maximum projection designs. As a result, our design criterion can be computed at a cost nomore » more than a design criterion that ignores projection properties.« less

  8. Conceptual design of a mobile remote manipulator system

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Mikulas, M. M., Jr.; Wallsom, R. E.; Jensen, J. K.

    1984-01-01

    A mobile remote manipulator system has been identified as a necessary device for space station. A conceptual design for an MRMS is presented which features (1) tracks on the MRMS and guide pins only on the truss structure, (2) a push/pull drive mechanism which rotates to permit movement in four directions, and (3) spacecrane and mobile foot restraint manipulators (or arms). Operational and design features of the MRMS elements are described and illustrated. Concepts are also presented which permit rotating the operational plane of the MRMS through 90 deg. Such a system has been found to have great utility for initial space station construction, maintenance and repair, and to provide a construction capability for future station growth or large spacecraft assembly and/or servicing.

  9. New Methods in Design Education: The Systemic Methodology and the Use of Sketch in the Conceptual Design Stage

    ERIC Educational Resources Information Center

    Westermeyer, Juan Carlos Briede; Ortuno, Bernabe Hernandis

    2011-01-01

    This study describes the application of a new product concurrent design methodologies in the context in the education of industrial design. The use of the sketch has been utilized many times as a tool of creative expression especially in the conceptual design stage, in an intuitive way and a little out of the context of the reality needs that the…

  10. The use of COSMIC NASTRAN in an integrated conceptual design environment

    NASA Technical Reports Server (NTRS)

    White, Gil

    1989-01-01

    Changes in both software and hardware are rapidly bringing conceptual engineering tools like finite element analysis into mainstream mechanical design. Systems that integrate all phases of the manufacturing process provide the most cost benefits. The application of programming concepts like object oriented programming allow for the encapsulation of intelligent data within the design geometry. This combined with declining cost in per seat hardware bring new alternatives to the user.

  11. Measuring Conceptual Gains and Benefits of Student Problem Designs

    NASA Astrophysics Data System (ADS)

    Mandell, Eric; Snyder, Rachel; Oswald, Wayne

    2011-10-01

    Writing assignments can be an effective way of getting students to practice higher-order learning skills in physics. One example of such an assignment is that of problem design. One version of the problem design assignment asks the student to evaluate the material from a chapter, after all instruction and other activities are complete. The student is to decide what concepts and ideas are most central, or critical in the chapter, and construct a problem that he or she feels best encompasses the major themes. Here, we use two concept surveys (FCI and EMCS) to measure conceptual gains for students completing the problem design assignment and present the preliminary results, comparing across several categories including gender, age, degree program, and class standing.

  12. Conceptual design of a neutron camera for MAST Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiszflog, M., E-mail: matthias.weiszflog@physics.uu.se; Sangaroon, S.; Cecconello, M.

    2014-11-15

    This paper presents two different conceptual designs of neutron cameras for Mega Ampere Spherical Tokamak (MAST) Upgrade. The first one consists of two horizontal cameras, one equatorial and one vertically down-shifted by 65 cm. The second design, viewing the plasma in a poloidal section, also consists of two cameras, one radial and the other one with a diagonal view. Design parameters for the different cameras were selected on the basis of neutron transport calculations and on a set of target measurement requirements taking into account the predicted neutron emissivities in the different MAST Upgrade operating scenarios. Based on a comparisonmore » of the cameras’ profile resolving power, the horizontal cameras are suggested as the best option.« less

  13. Conceptual design considerations and neutronics of lithium fall laser fusion target chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W.R.; Thomson, W.B.

    1978-05-31

    Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage.

  14. Optimization of entry-vehicle shapes during conceptual design

    NASA Astrophysics Data System (ADS)

    Dirkx, D.; Mooij, E.

    2014-01-01

    During the conceptual design of a re-entry vehicle, the vehicle shape and geometry can be varied and its impact on performance can be evaluated. In this study, the shape optimization of two classes of vehicles has been studied: a capsule and a winged vehicle. Their aerodynamic characteristics were analyzed using local-inclination methods, automatically selected per vehicle segment. Entry trajectories down to Mach 3 were calculated assuming trimmed conditions. For the winged vehicle, which has both a body flap and elevons, a guidance algorithm to track a reference heat-rate was used. Multi-objective particle swarm optimization was used to optimize the shape using objectives related to mass, volume and range. The optimizations show a large variation in vehicle performance over the explored parameter space. Areas of very strong non-linearity are observed in the direct neighborhood of the two-dimensional Pareto fronts. This indicates the need for robust exploration of the influence of vehicle shapes on system performance during engineering trade-offs, which are performed during conceptual design. A number of important aspects of the influence of vehicle behavior on the Pareto fronts are observed and discussed. There is a nearly complete convergence to narrow-wing solutions for the winged vehicle. Also, it is found that imposing pitch-stability for the winged vehicle at all angles of attack results in vehicle shapes which require upward control surface deflections during the majority of the entry.

  15. Conceptual design of a piloted Mars sprint life support system

    NASA Technical Reports Server (NTRS)

    Cullingford, H. S.; Novara, M.

    1988-01-01

    This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse.

  16. Conceptual design and issues of the laser inertial fusion test (LIFT) reactor—targets and chamber systems

    NASA Astrophysics Data System (ADS)

    Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team

    2017-11-01

    We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.

  17. Research on Product Conceptual Design Based on Integrated of TRIZ and HOQ

    NASA Astrophysics Data System (ADS)

    Xie, Jianmin; Tang, Xiaowo; Shao, Yunfei

    The conceptual design determines the success of the final product quality and competition of market. The determination of design parameters and the effective method to resolve parameters contradiction are the key to success. In this paper, the concept of HOQ products designed to determine the parameters, then using the TRIZ contradiction matrix and inventive principles of design parameters to solve the problem of contradictions. Facts have proved that the effective method is to obtain the product concept design parameters and to resolve contradictions line parameters.

  18. A conceptual design study for the secondary mirror drive of the shuttle infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Sager, R. E.; Cox, D. W.

    1983-01-01

    Various conceptual designs for the secondary mirror actuator system to be used in the Shuttle Infrared Telescope Facility (SIRTF) were evaluated. In addition, a set of design concepts was developed to assist in the solution of problems crucial for optimum performance of the secondary mirror actuator system. A specific conceptual approach was presented along with a plan for developing that approach and identifying issues of critical importance in the developmental effort.

  19. Planning for a data base system to support satellite conceptual design

    NASA Technical Reports Server (NTRS)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  20. 18 CFR 157.37 - Project design.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Project design. 157.37... Seasons for Alaska Natural Gas Transportation Projects § 157.37 Project design. In reviewing any... proposed project has been designed to accommodate the needs of shippers who have made conforming bids...

  1. 18 CFR 157.37 - Project design.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Project design. 157.37... Seasons for Alaska Natural Gas Transportation Projects § 157.37 Project design. In reviewing any... proposed project has been designed to accommodate the needs of shippers who have made conforming bids...

  2. Reengineering the project design process

    NASA Astrophysics Data System (ADS)

    Kane Casani, E.; Metzger, Robert M.

    1995-01-01

    In response to the National Aeronautics and Space Administration's goal of working faster, better, and cheaper, the Jet Propulsion Laboratory (JPL) has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Development Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center (PDC) and the Flight System Testbed (FST). Reengineering at JPL implies a cultural change whereby the character of the Laboratory's design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and more accurate cost estimating. These improvements signal JPL's commitment to meeting the challenges of space exploration in the next century.

  3. Conceptual design of BNCT facility based on the TRR medical room

    NASA Astrophysics Data System (ADS)

    Golshanian, M.; Rajabi, A. A.; Kasesaz, Y.

    2017-10-01

    This paper presents a conceptual design of the Boron Neutron Capture Therapy (BNCT) facility based on the medical room of Tehran Research Reactor (TRR). The medical room is located behind the east wall of the reactor pool. The designed beam line is an in-pool Beam Shaping Assembly (BSA) which is considered between the reactor core and the medical room wall. The final designed BSA can provide 2.96× 109 n/cm2ṡs epithermal neutron flux at the irradiation position with acceptable beam contamination to use as a clinical BNCT.

  4. Requirements for the conceptual design of advanced underground coal extraction systems

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lavin, M. L.

    1981-01-01

    Conceptual design requirements are presented for underground coal mining systems having substantially improved performance in the areas of production cost and miner safety. Mandatory performance levels are also set for miner health, environmental impact, and coal recovery. In addition to mandatory design goals and constraints, a number of desirable system characteristics are identified which must be assessed in terms of their impact on production cost and their compatibility with other system elements. Although developed for the flat lying, moderately thick seams of Central Appalachia, these requirements are designed to be easily adaptable to other coals.

  5. Development of a Top-View Numeric Coding Teaching-Learning Trajectory within an Elementary Grades 3-D Visualization Design Research Project

    ERIC Educational Resources Information Center

    Sack, Jacqueline J.

    2013-01-01

    This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…

  6. Conceptual design study of the moderate size superconducting spherical tokamak power plant

    NASA Astrophysics Data System (ADS)

    Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki

    2015-06-01

    A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.

  7. Designing and Evaluating a Context-Based Lesson Sequence Promoting Conceptual Coherence in Biology

    ERIC Educational Resources Information Center

    Ummels, M. H. J.; Kamp, M. J. A.; de Kroon, H.; Boersma, K. Th.

    2015-01-01

    Context-based education, in which students deal with biological concepts in a meaningful way, is showing promise in promoting the development of students' conceptual coherence. However, literature gives little guidance about how this kind of education should be designed. Therefore, our study aims at designing and evaluating the practicability of a…

  8. Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.

    1975-01-01

    The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.

  9. Evidence-Based Design and Research-Informed Design: What's the Difference? Conceptual Definitions and Comparative Analysis.

    PubMed

    Peavey, Erin; Vander Wyst, Kiley B

    2017-10-01

    This article provides critical examination and comparison of the conceptual meaning and underlying assumptions of the concepts evidence-based design (EBD) and research-informed design (RID) in order to facilitate practical use and theoretical development. In recent years, EBD has experienced broad adoption, yet it has been simultaneously critiqued for rigidity and misapplication. Many practitioners are gravitating to the term RID to describe their method of integrating knowledge into the design process. However, the term RID lacks a clear definition and the blurring of terms has the potential to weaken advances made integrating research into practice. Concept analysis methods from Walker and Avant were used to define the concepts for comparison. Conceptual definitions, process descriptions, examples (i.e., model cases), and methods of evaluation are offered for EBD and RID. Although EBD and RID share similarities in meaning, the two terms are distinct. When comparing evidence based (EB) and research informed, EB is a broad base of information types (evidence) that are narrowly applied (based), while the latter references a narrow slice of information (research) that is broadly applied (informed) to create an end product of design. Much of the confusion between the use of the concepts EBD and RID arises out of differing perspectives between the way practitioners and academics understand the underlying terms. The authors hope this article serves to generate thoughtful dialogue, which is essential to the development of a discipline, and look forward to the contribution of the readership.

  10. Conceptual design study of a 1985 commercial STOL tilt rotor transport

    NASA Technical Reports Server (NTRS)

    Widdison, C. A.; Magee, J. P.; Alexander, H. R.

    1974-01-01

    Results of conceptual engineering design studies of a STOL tilt rotor commercial aircraft for the 1985 time frame are presented. The details of aircraft size, performance, flying qualities, noise, and cost are included. The savings in terms of fuel economy resulting from STOL operations compared with VTOL vehicles are determined.

  11. Gas-Grain Simulation Facility (GGSF). Volume 2: Conceptual design definition

    NASA Technical Reports Server (NTRS)

    Zamel, James M.

    1993-01-01

    This document is Volume 2 of the Final Report for the Phase A Study of the Gas-Grain Simulation Facility (GGSF), and presents the GGSF Conceptual Design. It is a follow-on to the Volume 1 Facility Definition Study, NASA report CR 177606. The development of a conceptual design for a Space Station Freedom (SSF) facility that will be used for investigating particle interactions in varying environments, including various gas mixtures, pressures, and temperatures is delineated. It's not possible to study these experiments on earth due to the long reaction times associated with this type of phenomena, hence the need for extended periods of microgravity. The particle types will vary in composition (solids and liquids), sizes (from submicrons to centimeters), and concentrations (from single particles to 10(exp 10) per cubic centimeter). The results of the experiments pursued in the GGSF will benefit a variety of scientific inquiries. These investigations span such diverse topics as the formation of planets and planetary rings, cloud and haze processes in planetary atmospheres, the composition and structure of astrophysical objects, and the viability of airborne microbes (e.g., in a manned spacecraft).

  12. Goodyear aerospace conceptual design maritime patrol airship ZP3G. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.D.

    1979-04-01

    A Conceptual design of a modern technology airship with precision hover capability for use in maritime patrol is described. The size and major characteristics are established by a series of United States Coast Guard missions set forth by the contracting agency.

  13. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portionsmore » of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This

  14. Lunar base Controlled Ecological Life Support System (LCELSS): Preliminary conceptual design study

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.

    1991-01-01

    The objective of this study was to develop a conceptual design for a self-sufficient LCELSS. The mission need is for a CELSS with a capacity to supply the life support needs for a nominal crew of 30, and a capability for accommodating a range of crew sizes from 4 to 100 people. The work performed in this study was nominally divided into two parts. In the first part, relevant literature was assembled and reviewed. This review identified LCELSS performance requirements and the constraints and advantages confronting the design. It also collected information on the environment of the lunar surface and identified candidate technologies for the life support subsystems and the systems with which the LCELSS interfaced. Information on the operation and performance of these technologies was collected, along with concepts of how they might be incorporated into the LCELSS conceptual design. The data collected on these technologies was stored for incorporation into the study database. Also during part one, the study database structure was formulated and implemented, and an overall systems engineering methodology was developed for carrying out the study.

  15. Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 1

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Clark, R. D.; Alexander, H. R.

    1974-01-01

    Results of conceptual design studies of commercial rotary wing transport aircraft for the 1985 time period are presented. Two aircraft configurations, a tandem helicopter and a tilt rotor, were designed for a 200 nautical mile short haul mission with an upper limit of 100 passengers. In addition to the baseline aircraft two further designs of each configuration are included to assess the impact of external noise design criteria on the aircraft size, weight, and cost.

  16. A Conceptual Design Model for CBT Development: A NATO Case Study

    ERIC Educational Resources Information Center

    Kok, Ayse

    2014-01-01

    CBT (computer-based training) can benefit from the modern multimedia tools combined with network capabilities to overcame traditional education. The objective of this paper is focused on CBT development to improve strategic decision-making with regard to air command and control system for NATO staff in virtual environment. A conceptual design for…

  17. 20% Research & Design Science Project

    NASA Astrophysics Data System (ADS)

    Spear, Beth A.

    2015-04-01

    A project allowing employees to use 15 % of their time on independent projects was established at 3M in the 1950's. The result of this project included products like post it notes and masking tape. Google allows its employees to use 20% of their time on independently pursued projects. The company values creativity and innovation. Employees are allowed to explore projects of interest to them one day out of the week, 20 % of their work week. Products like AdSense, Gmail, Google Transit, Google News, and Google Talk are the result of this 20 % program. My school is implementing the Next Generation Science Standards (NGSS) as part of our regularly scheduled curriculum review. These new standards focus on the process of learning by doing and designing. The NGSS are very hands on and active. The new standards emphasize learning how to define, understand and solve problems in science and technology. In today's society everyone needs to be familiar with science and technology. This project allows students to develop and practice skills to help them be more comfortable and confident with science and technology while exploring something of interest to them. This project includes three major parts: research, design, and presentation. Students will spend approximately 2-4 weeks defining a project proposal and educating themselves by researching a science and technology topic that is of interest to them. In the next phase, 2-4 weeks, students design a product or plan to collect data for something related to their topic. The time spent on research and design will be dependant on the topic students select. Projects should be ambitious enough to encompass about six weeks. Lastly a presentation or demonstration incorporating the research and design of the project is created, peer reviewed and presented to the class. There are some problems anticipated or already experienced with this project. It is difficult for all students to choose a unique topic when you have large class sizes

  18. Optimal observation network design for conceptual model discrimination and uncertainty reduction

    NASA Astrophysics Data System (ADS)

    Pham, Hai V.; Tsai, Frank T.-C.

    2016-02-01

    This study expands the Box-Hill discrimination function to design an optimal observation network to discriminate conceptual models and, in turn, identify a most favored model. The Box-Hill discrimination function measures the expected decrease in Shannon entropy (for model identification) before and after the optimal design for one additional observation. This study modifies the discrimination function to account for multiple future observations that are assumed spatiotemporally independent and Gaussian-distributed. Bayesian model averaging (BMA) is used to incorporate existing observation data and quantify future observation uncertainty arising from conceptual and parametric uncertainties in the discrimination function. In addition, the BMA method is adopted to predict future observation data in a statistical sense. The design goal is to find optimal locations and least data via maximizing the Box-Hill discrimination function value subject to a posterior model probability threshold. The optimal observation network design is illustrated using a groundwater study in Baton Rouge, Louisiana, to collect additional groundwater heads from USGS wells. The sources of uncertainty creating multiple groundwater models are geological architecture, boundary condition, and fault permeability architecture. Impacts of considering homoscedastic and heteroscedastic future observation data and the sources of uncertainties on potential observation areas are analyzed. Results show that heteroscedasticity should be considered in the design procedure to account for various sources of future observation uncertainty. After the optimal design is obtained and the corresponding data are collected for model updating, total variances of head predictions can be significantly reduced by identifying a model with a superior posterior model probability.

  19. A User-Centered Framework for Deriving A Conceptual Design From User Experiences: Leveraging Personas and Patterns to Create Usable Designs

    NASA Astrophysics Data System (ADS)

    Javahery, Homa; Deichman, Alexander; Seffah, Ahmed; Taleb, Mohamed

    Patterns are a design tool to capture best practices, tackling problems that occur in different contexts. A user interface (UI) design pattern spans several levels of design abstraction ranging from high-level navigation to low-level idioms detailing a screen layout. One challenge is to combine a set of patterns to create a conceptual design that reflects user experiences. In this chapter, we detail a user-centered design (UCD) framework that exploits the novel idea of using personas and patterns together. Personas are used initially to collect and model user experiences. UI patterns are selected based on personas pecifications; these patterns are then used as building blocks for constructing conceptual designs. Through the use of a case study, we illustrate how personas and patterns can act as complementary techniques in narrowing the gap between two major steps in UCD: capturing users and their experiences, and building an early design based on that information. As a result of lessons learned from the study and by refining our framework, we define a more systematic process called UX-P (User Experiences to Pattern), with a supporting tool. The process introduces intermediate analytical steps and supports designers in creating usable designs.

  20. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  1. Conceptual Design of a Supersonic Business Jet Propulsion System

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2002-01-01

    NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent

  2. Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Valana L.

    1996-01-01

    This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.

  3. Nuclear Cryogenic Propulsion Stage Conceptual Design and Mission Analysis

    NASA Technical Reports Server (NTRS)

    Kos, Larry D.; Russell, Tiffany E.

    2014-01-01

    The Nuclear Cryogenic Propulsion Stage (NCPS) is an in-space transportation vehicle, comprised of three main elements, designed to support a long-stay human Mars mission architecture beginning in 2035. The stage conceptual design and the mission analysis discussed here support the current nuclear thermal propulsion going on within partnership activity of NASA and the Department of Energy (DOE). The transportation system consists of three elements: 1) the Core Stage, 2) the In-line Tank, and 3) the Drop Tank. The driving mission case is the piloted flight to Mars in 2037 and will be the main point design shown and discussed. The corresponding Space Launch System (SLS) launch vehicle (LV) is also presented due to it being a very critical aspect of the NCPS Human Mars Mission architecture due to the strong relationship between LV lift capability and LV volume capacity.

  4. Conceptual design of closed Brayton cycle for coal-fired power generation

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The objectives to be realized in developing a closed cycle gas turbine are (1) to exploit high temperature gas turbine technology while maintaining a working fluid which is free from combustion gas contamination, (2) to achieve compact turbo-equipment designs through pressurization of the working fluid, and (3) to obtain relatively simple cycle configurations. The technical/economic performance of a specific closed cycle gas turbine system was evaluated through the development of a conceptual plant and system design. This energy conversion system is designed for electric utility service and to utilize coal directly in an environmentally acceptable manner.

  5. A Conceptual Design for a Reliable Optical Bus (ROBUS)

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.; Malekpour, Mahyar; Torres, Wilfredo

    2002-01-01

    The Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) is a new family of fault-tolerant architectures under development at NASA Langley Research Center (LaRC). The SPIDER is a general-purpose computational platform suitable for use in ultra-reliable embedded control applications. The design scales from a small configuration supporting a single aircraft function to a large distributed configuration capable of supporting several functions simultaneously. SPIDER consists of a collection of simplex processing elements communicating via a Reliable Optical Bus (ROBUS). The ROBUS is an ultra-reliable, time-division multiple access broadcast bus with strictly enforced write access (no babbling idiots) providing basic fault-tolerant services using formally verified fault-tolerance protocols including Interactive Consistency (Byzantine Agreement), Internal Clock Synchronization, and Distributed Diagnosis. The conceptual design of the ROBUS is presented in this paper including requirements, topology, protocols, and the block-level design. Verification activities, including the use of formal methods, are also discussed.

  6. Conceptual Design of a Vertical Takeoff and Landing Unmanned Aerial Vehicle with 24-HR Endurance

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.

    2010-01-01

    This paper describes a conceptual design study for a vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV) that is able to carry a 25-lb science payload for 24 hr and is able to land and take off at elevations as high as 15,000 ft without human intervention. In addition to the science payload, this vehicle must be able to carry a satellite communication system, and the vehicle must be able to be transported in a standard full-size pickup truck and assembled by only two operators. This project started with a brainstorming phase to devise possible vehicle configurations that might satisfy the requirements. A down select was performed to select a near-term solution and two advanced vehicle concepts that are better suited to the intent of the mission. Sensitivity analyses were also performed on the requirements and the technology levels to obtain a better understanding of the design space. This study found that within the study assumptions the mission is feasible; the selected concepts are recommended for further development.

  7. New approaches to optimization in aerospace conceptual design

    NASA Technical Reports Server (NTRS)

    Gage, Peter J.

    1995-01-01

    Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks.

  8. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  9. A Capability to Generate Physics-based Mass Estimating Relationships for Conceptual Space Vehicle Design

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Marcus, Leland

    2002-01-01

    This paper is written in support of the on-going research into conceptual space vehicle design conducted at the Space Systems Design Laboratory (SSDL) at the Georgia Institute of Technology. Research at the SSDL follows a sequence of a number of the traditional aerospace disciplines. The sequence of disciplines and interrelationship among them is shown in the Design Structure Matrix (DSM). The discipline of Weights and Sizing occupies a central location in the design of a new space vehicle. Weights and Sizing interact, either in a feed forward or feed back manner, with every other discipline in the DSM. Because of this principle location, accuracy in Weights and Sizing is integral to producing an accurate model of a space vehicle concept. Instead of using conceptual level techniques, a simplified Finite Element Analysis (FEA) technique is described as applied to the problem of the Liquid Oxygen (LOX) tank bending loads applied to the forward Liquid Hydrogen (LH2) tank of the Georgia Tech Air Breathing Launch Vehicle (ABLV).

  10. 18 CFR 157.37 - Project design.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Project design. 157.37... Seasons for Alaska Natural Gas Transportation Projects § 157.37 Project design. In reviewing any application for an Alaska natural gas pipeline project, the Commission will consider the extent to which a...

  11. 18 CFR 157.37 - Project design.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Project design. 157.37... Seasons for Alaska Natural Gas Transportation Projects § 157.37 Project design. In reviewing any application for an Alaska natural gas pipeline project, the Commission will consider the extent to which a...

  12. The Atomic Intrinsic Integration Approach: A Structured Methodology for the Design of Games for the Conceptual Understanding of Physics

    ERIC Educational Resources Information Center

    Echeverria, Alejandro; Barrios, Enrique; Nussbaum, Miguel; Amestica, Matias; Leclerc, Sandra

    2012-01-01

    Computer simulations combined with games have been successfully used to teach conceptual physics. However, there is no clear methodology for guiding the design of these types of games. To remedy this, we propose a structured methodology for the design of conceptual physics games that explicitly integrates the principles of the intrinsic…

  13. Software design studies emphasizing Project LOGOS

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of a research project on the development of computer software are presented. Research funds of $200,000 were expended over a three year period for software design and projects in connection with Project LOGOS (computer-aided design and certification of computing systems). Abstracts of theses prepared during the project are provided.

  14. Equivalent plate modeling for conceptual design of aircraft wing structures

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1995-01-01

    This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.

  15. Fluidized-bed copper oxide process. Phase IV. Conceptual design and economic evaluation, Volume I. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-11-30

    Universal Oil Products, Inc. (UOP) of Des Plaines, Illinois has contracted A.E. Roberts & Associates, Inc. (AERA) of Atlanta, Georgia to prepare a sensitivity analysis for the development of the Fluidized-bed Copper Oxide (FBCO) process. As proposed by AERA in September 1991, development of the FBCO process design for a 500 mega-watt (MW) unit was divided into three tasks: (1) Establishment of a Conceptual Design, (2) Conceptual Design, (3) Cost Analysis Task 1 determined the basis for a conceptual design for the 500 megawatt (MW) FBCO process. It was completed by AERA in September of 1992, and a report wasmore » submitted at that time {open_quotes}Establishment of the Design Basis for Application to a 500 MW Coal-fired Facility.{close_quotes} Task 2 gathered all pertinent data available to date and reviewed its applicability to the 500 MW FBCO process. Work on this task was carried out on a joint basis by the AERA team members: Roberts & Schaefers worked on the dense phase transport aspect of the design; Cornell and Carnegie Mellon Universities worked on the design kinetics and modeling; and AERA contributed commercial power and combustion experience. Task 3 provides budgetary cost estimates for the FBCO process and competing alternative technologies for sulfur dioxide and nitrogen oxide removal.« less

  16. Case-Based Capture and Reuse of Aerospace Design Rationale

    NASA Technical Reports Server (NTRS)

    Leake, David B.

    2001-01-01

    The goal of this project was to apply artificial intelligence techniques to facilitate capture and reuse of aerospace design rationale. The project combined case-based reasoning (CBR) and concept maps (CMaps) to develop methods for capturing, organizing, and interactively accessing records of experiences encapsulating the methods and rationale underlying expert aerospace design, in order to bring the captured knowledge to bear to support future reasoning. The project's results contribute both principles and methods for effective design-aiding systems that aid capture and access of useful design knowledge. The project has been guided by the tenets that design-aiding systems must: (1) Leverage a designer's knowledge, rather than attempting to replace it; (2) Be able to reflect different designers' differing conceptualizations of the design task, and to clarify those conceptualizations to others; (3) Include capabilities to capture information both by interactive knowledge modeling and during normal use; and (4) Integrate into normal designer tasks as naturally and unobtrusive as possible.

  17. Space Engineering Projects in Design Methodology

    NASA Technical Reports Server (NTRS)

    Crawford, R.; Wood, K.; Nichols, S.; Hearn, C.; Corrier, S.; DeKunder, G.; George, S.; Hysinger, C.; Johnson, C.; Kubasta, K.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design courses of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, focusing on the first-semester design methodology course. The philosophical basis and pedagogical structure of this course is summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper includes a summary of the projects completed during the 1992-93 Academic Year in the methodology course, and concludes with an example of two projects completed by student design teams.

  18. Implementation of MCA Method for Identification of Factors for Conceptual Cost Estimation of Residential Buildings

    NASA Astrophysics Data System (ADS)

    Juszczyk, Michał; Leśniak, Agnieszka; Zima, Krzysztof

    2013-06-01

    Conceptual cost estimation is important for construction projects. Either underestimation or overestimation of building raising cost may lead to failure of a project. In the paper authors present application of a multicriteria comparative analysis (MCA) in order to select factors influencing residential building raising cost. The aim of the analysis is to indicate key factors useful in conceptual cost estimation in the early design stage. Key factors are being investigated on basis of the elementary information about the function, form and structure of the building, and primary assumptions of technological and organizational solutions applied in construction process. The mentioned factors are considered as variables of the model which aim is to make possible conceptual cost estimation fast and with satisfying accuracy. The whole analysis included three steps: preliminary research, choice of a set of potential variables and reduction of this set to select the final set of variables. Multicriteria comparative analysis is applied in problem solution. Performed analysis allowed to select group of factors, defined well enough at the conceptual stage of the design process, to be used as a describing variables of the model.

  19. Launch Vehicle Design Process Characterization Enables Design/Project Tool

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.; Robinson, Nancy (Technical Monitor)

    2001-01-01

    The objectives of the project described in this viewgraph presentation included the following: (1) Provide an overview characterization of the launch vehicle design process; and (2) Delineate design/project tool to identify, document, and track pertinent data.

  20. Managing a big ground-based astronomy project: the Thirty Meter Telescope (TMT) project

    NASA Astrophysics Data System (ADS)

    Sanders, Gary H.

    2008-07-01

    TMT is a big science project and its scale is greater than previous ground-based optical/infrared telescope projects. This paper will describe the ideal "linear" project and how the TMT project departs from that ideal. The paper will describe the needed adaptations to successfully manage real world complexities. The progression from science requirements to a reference design, the development of a product-oriented Work Breakdown Structure (WBS) and an organization that parallels the WBS, the implementation of system engineering, requirements definition and the progression through Conceptual Design to Preliminary Design will be summarized. The development of a detailed cost estimate structured by the WBS, and the methodology of risk analysis to estimate contingency fund requirements will be summarized. Designing the project schedule defines the construction plan and, together with the cost model, provides the basis for executing the project guided by an earned value performance measurement system.

  1. Lunar in-core thermionic nuclear reactor power system conceptual design

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Schmitz, Paul C.; Gallup, Donald R.

    1991-01-01

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Exploration Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  2. Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

    2011-09-20

    A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers andmore » towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.« less

  3. Project #8, Task 5 - Traveler Information Services (TIS), TIS Conceptual Design

    DOT National Transportation Integrated Search

    1995-09-15

    THE L-95 CORRIDOR COALITION'S TRAVELER INFORMATION SERVICES (TIS) PROJECT IS INTENDED TO IMPLEMENT AN ADVANCED TRAVELER INFORMATION SYSTEM TAILORED TO THE UNIQUE NEEDS OF THE NORTHEAST CORRIDOR. THE SYSTEM WILL ACQUIRE AND DISSEMINATE INFORMATION ON ...

  4. Conceptual design of a two-stage-to-orbit vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A conceptual design study of a two-stage-to-orbit vehicle is presented. Three configurations were initially investigated with one configuration selected for further development. The major objective was to place a 20,000-lb payload into a low Earth orbit using a two-stage vehicle. The first stage used air-breathing engines and employed a horizontal takeoff, while the second stage used rocket engines to achieve a 250-n.m. orbit. A two-stage-to-orbit vehicle seems a viable option for the next-generation space shuttle.

  5. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-04-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of municipal solid waste (MSW) feed material was procured. During this quarter (first quarter of 2001), shredding of the feed material was completedmore » and final feed conditioning was completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. Pilot facility modifications continued to improve facility operations and performance during the first quarter of 2001. Samples of the co-fire fuel material were sent to the co-fire facility for evaluation. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system is being developed.« less

  6. Conceptual design of thermal energy storage systems for near term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.; Hausz, W.; Anand, R.; Lamarche, N.; Oplinger, J.; Katzer, M.

    1979-01-01

    Potential concepts for near term electric utility applications were identified. The most promising ones for conceptual design were evaluated for their economic feasibility and cost benefits. The screening process resulted in selecting two coal-fired and two nuclear plants for detailed conceptual design. The coal plants utilized peaking turbines and the nuclear plants varied the feedwater extraction to change power output. It was shown that the performance and costs of even the best of these systems could not compete in near term utility applications with cycling coal plants and typical gas turbines available for peaking power. Lower electricity costs, greater flexibility of operation, and other benefits can be provided by cycling coal plants for greater than 1500 hours of peaking or by gas turbines for less than 1500 hours if oil is available and its cost does not increase significantly.

  7. The Effects of Classic and Web-Designed Conceptual Change Texts on the Subject of Water Chemistry

    ERIC Educational Resources Information Center

    Tas, Erol; Gülen, Salih; Öner, Zeynep; Özyürek, Cengiz

    2015-01-01

    The purpose of this study is to research the effects of traditional and web-assisted conceptual change texts for the subject of water chemistry on the success, conceptual errors and permanent learning of students. A total of 37 8th graders in a secondary school of Samsun participated in this study which had a random experimental design with…

  8. Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu; Campbell, Richard L.

    2014-01-01

    The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.

  9. Conceptual design of a V/STOL lift fan commercial short haul transport

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conceptual designs of V/STOL lift-fan commercial short-haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. Engine concepts studied included both integral remote fans. The scope of the study included definition of the hover control concept for each propulsion system, aircraft design, aircraft mass properties, cruise performance noise, and ride qualities evaluation. Economic evaluation was also studied on a basis of direct operating cost and route structure.

  10. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  11. Concurrent engineering design and management knowledge capture

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The topics are presented in viewgraph form and include the following: real-time management, personnel management, project management, conceptual design and decision making; the SITRF design problem; and the electronic-design notebook.

  12. Inspired by design and driven by innovation. A conceptual model for radical design driven as a sustainable business model for Malaysian furniture design

    NASA Astrophysics Data System (ADS)

    Yusof, Wan Zaiyana Mohd; Fadzline Muhamad Tamyez, Puteri

    2018-04-01

    The definition of innovation does not help the entrepreneurs, business person or innovator to truly grasp what it means to innovate, hence we hear that government has spend millions of ringgit on “innovation” by doing R & D. However, the result has no avail in terms of commercial value. Innovation can be defined as the exploitation of commercialization of an idea or invention to create economic or social value. Most Entrepreneurs and business managers, regard innovation as creating economic value, while forgetting that innovation also create value for society or the environment. The ultimate goal as Entrepreneur, inventor or researcher is to exploit innovation to create value. As changes happen in society and economy, organizations and enterprises have to keep up and this requires innovation. This conceptual paper is to study the radical design driven innovation in the Malaysian furniture industry as a business model which the overall aim of the study is to examine the radical design driven innovation in Malaysia and how it compares with findings from Western studies. This paper will familiarize readers with the innovation and describe the radical design driven perspective that is adopted in its conceptual framework and design process.

  13. 23 CFR 710.313 - Design-build projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Design-build projects. 710.313 Section 710.313 Highways... REAL ESTATE Project Development § 710.313 Design-build projects. (a) In the case of a design-build...-way acquisition and clearance services may be incorporated into the design-build contract if allowed...

  14. 23 CFR 710.313 - Design-build projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Design-build projects. 710.313 Section 710.313 Highways... REAL ESTATE Project Development § 710.313 Design-build projects. (a) In the case of a design-build...-way acquisition and clearance services may be incorporated into the design-build contract if allowed...

  15. 23 CFR 710.313 - Design-build projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Design-build projects. 710.313 Section 710.313 Highways... REAL ESTATE Project Development § 710.313 Design-build projects. (a) In the case of a design-build...-way acquisition and clearance services may be incorporated into the design-build contract if allowed...

  16. Food web conceptual model

    USGS Publications Warehouse

    Hartman, Rosemary; Brown, Larry R.; Hobbs, Jim

    2017-01-01

    This chapter describes a general model of food webs within tidal wetlands and represents how physical features of the wetland affect the structure and function of the food web. This conceptual model focuses on how the food web provides support for (or may reduce support for) threatened fish species. This model is part of a suite of conceptual models designed to guide monitoring of restoration sites throughout the San Francisco Estuary (SFE), but particularly within the Sacramento-San Joaquin Delta (Delta) and Suisun Marsh. The conceptual models have been developed based on the Delta Regional Ecosystem Restoration Implementation Plan (DRERIP) models, and are designed to aid in the identification and evaluation of monitoring metrics for tidal wetland restoration projects. Many tidal restoration sites in the Delta are being constructed to comply with environmental regulatory requirements associated with the operation of the Central Valley Project and State Water Project. These include the Biological Opinions for Delta Smelt (Hypomesus transpacificus) and salmonids (U.S. Fish and Wildlife Service 2008; National Marine Fisheries Service 2009), and the Incidental Take Permit for Longfin Smelt (Spirinchus thaleichthyes) (California Department of Fish and Wildlife 2009). These regulatory requirements are based on the hypothesis that the decline of listed fish species is due in part to a decline in productivity of the food web (phytoplankton and zooplankton in particular) or alterations in the food web such that production is consumed by other species in the Estuary (Sommer et al. 2007; Baxter et al. 2010; Brown et al. 2016a). Intertidal wetlands and shallow subtidal habitat can be highly productive, so restoring areas of tidal wetlands may result in a net increase in productivity that will provide food web support for these fish species. However, other factors such as invasive bivalves that reduce phytoplankton and zooplankton biomass and invasive predatory fishes that may

  17. Theo Jansen Project in Engineering Design Course and a Design Example

    ERIC Educational Resources Information Center

    Liu, Yucheng; Artigue, Aaron; Sommers, Jeremy; Chambers, Terence

    2011-01-01

    Objectives of a project-oriented mechanical engineering course, Engineering Design, were achieved through a design project, where students designed, built and demonstrated an extreme version of a basic Theo Jansen device. Through this project, junior students in the University of Louisiana fully developed the capability of applying mathematic and…

  18. A conceptual framework for the domain of evidence-based design.

    PubMed

    Ulrich, Roger S; Berry, Leonard L; Quan, Xiaobo; Parish, Janet Turner

    2010-01-01

    The physical facilities in which healthcare services are performed play an important role in the healing process. Evidence-based design in healthcare is a developing field of study that holds great promise for benefiting key stakeholders: patients, families, physicians, and nurses, as well as other healthcare staff and organizations. In this paper, the authors present and discuss a conceptual framework intended to capture the current domain of evidence-based design in healthcare. In this framework, the built environment is represented by nine design variable categories: audio environment, visual environment, safety enhancement, wayfinding system, sustainability, patient room, family support spaces, staff support spaces, and physician support spaces. Furthermore, a series of matrices is presented that indicates knowledge gaps concerning the relationship between specific healthcare facility design variable categories and participant and organizational outcomes. From this analysis, the authors identify fertile research opportunities from the perspectives of key stakeholders.

  19. Bridging Scientific Reasoning and Conceptual Change through Adaptive Web-Based Learning

    ERIC Educational Resources Information Center

    She, Hsiao-Ching; Liao, Ya-Wen

    2010-01-01

    This study reports an adaptive digital learning project, Scientific Concept Construction and Reconstruction (SCCR), and examines its effects on 108 8th grade students' scientific reasoning and conceptual change through mixed methods. A one-group pre-, post-, and retention quasi-experimental design was used in the study. All students received tests…

  20. Conceptual design and analysis of a dynamic scale model of the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Davis, D. A.; Gronet, M. J.; Tan, M. K.; Thorne, J.

    1994-01-01

    This report documents the conceptual design study performed to evaluate design options for a subscale dynamic test model which could be used to investigate the expected on-orbit structural dynamic characteristics of the Space Station Freedom early build configurations. The baseline option was a 'near-replica' model of the SSF SC-7 pre-integrated truss configuration. The approach used to develop conceptual design options involved three sets of studies: evaluation of the full-scale design and analysis databases, conducting scale factor trade studies, and performing design sensitivity studies. The scale factor trade study was conducted to develop a fundamental understanding of the key scaling parameters that drive design, performance and cost of a SSF dynamic scale model. Four scale model options were estimated: 1/4, 1/5, 1/7, and 1/10 scale. Prototype hardware was fabricated to assess producibility issues. Based on the results of the study, a 1/4-scale size is recommended based on the increased model fidelity associated with a larger scale factor. A design sensitivity study was performed to identify critical hardware component properties that drive dynamic performance. A total of 118 component properties were identified which require high-fidelity replication. Lower fidelity dynamic similarity scaling can be used for non-critical components.

  1. Conceptual design of a hybrid parallel mechanism for mask exchanging of TMT

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Zhou, Hongfei; Li, Kexuan; Zhou, Zengxiang; Zhai, Chao

    2015-10-01

    Mask exchange system is an important part of the Multi-Object Broadband Imaging Echellette (MOBIE) on the Thirty Meter Telescope (TMT). To solve the problem of stiffness changing with the gravity vector of the mask exchange system in the MOBIE, the hybrid parallel mechanism design method was introduced into the whole research. By using the characteristics of high stiffness and precision of parallel structure, combined with large moving range of serial structure, a conceptual design of a hybrid parallel mask exchange system based on 3-RPS parallel mechanism was presented. According to the position requirements of the MOBIE, the SolidWorks structure model of the hybrid parallel mask exchange robot was established and the appropriate installation position without interfering with the related components and light path in the MOBIE of TMT was analyzed. Simulation results in SolidWorks suggested that 3-RPS parallel platform had good stiffness property in different gravity vector directions. Furthermore, through the research of the mechanism theory, the inverse kinematics solution of the 3-RPS parallel platform was calculated and the mathematical relationship between the attitude angle of moving platform and the angle of ball-hinges on the moving platform was established, in order to analyze the attitude adjustment ability of the hybrid parallel mask exchange robot. The proposed conceptual design has some guiding significance for the design of mask exchange system of the MOBIE on TMT.

  2. Conceptual design of an ascent-phase interceptor missile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salguero, D E

    1994-11-01

    A conceptual design for an air-launched interceptor missile to defend against theater ballistic missiles is presented. The missile is designed to intercept the target while ascending, during Or just after the boost phase, before it reaches exo-atmospheric flight. The interceptor consists of a two-stage booster and a shrouded kinetic-kill vehicle. This report concentrates on the booster design required to achieve reasonable standoff ranges. The kinetic-kill vehicle and shroud (the payload) is assumed to weigh 80 lb{sub m} (36 kg) and assumed to contain guidance computers for both the kill vehicle and the booster. The interceptor missile is about 6 mmore » long, .48 m in diameter and weighs about 900 kg. Allowing 25 sec for target detection, trajectory estimation, and interceptor launch, it can intercept 90 sec after target launch from a 220 km stand-off range at an altitude of 60 km. Trade-off studies show that the interceptor performance is most sensitive to the stage mass fractions (with the first-stage mass fraction the most important), the first-stage burn time and the payload weight.« less

  3. Engineering design activities and conceptual change in middle school science

    NASA Astrophysics Data System (ADS)

    Schnittka, Christine G.

    The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative groups. One eighth-grade physical science teacher and her students participated in a unit on heat transfer and thermal energy. One class served as the control while two others received variations of an engineering design treatment. Data were gathered from teacher and student entrance and exit interviews, audio recordings of student dialog during group work, video recordings and observations of all classes, pre- and posttests on science content and engineering attitudes, and artifacts and all assignments completed by students. Qualitative and quantitative data were collected concurrently, but analysis took place in two phases. Qualitative data were analyzed in an ongoing manner so that the researcher could explore emerging theories and trends as the study progressed. These results were compared to and combined with the results of the quantitative data analysis. Analysis of the data was carried out in the interpretive framework of analytic induction. Findings indicated that students overwhelmingly possessed alternative conceptions about heat transfer, thermal energy, and engineering prior to the interventions. While all three classes made statistically significant gains in their knowledge about heat and energy, students in the engineering design class with the targeted demonstrations made the most significant gains over the other two other classes. Engineering attitudes changed significantly in the two classes that received the engineering design intervention. Implications from this study can inform teachers' use of engineering design activities in science classrooms. These implications are: (1) Alternative conceptions will

  4. A knowledge-based design framework for airplane conceptual and preliminary design

    NASA Astrophysics Data System (ADS)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  5. Conceptual design of a Mars transportation system

    NASA Astrophysics Data System (ADS)

    1992-08-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  6. Conceptual design of a Mars transportation system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  7. Collaborative Learning in Technological Project Design

    ERIC Educational Resources Information Center

    Hong, Jon-Chao; Yu, Kuang-Chao; Chen, Mei-Yung

    2011-01-01

    The POWERTECH contest in Taiwan was established in an attempt to promote inventiveness and technology to elementary school pupils. The POWERTECH contest is designed as a collaborative learning system for project design. Project design is comprised of technical processes, which include the construction of an artifact and improvement of its…

  8. Conceptual design study of 1985 commercial tilt rotor transports. Volume 3: STOL design summary

    NASA Technical Reports Server (NTRS)

    Sambell, K. W.

    1976-01-01

    A conceptual design study is presented of 1,985 commercial tilt rotor STOL transports for a NASA 200 n. mi. (370 km) STOL Mission. A 100-passenger STOL Variant (Bell D313) of the Phase I VTOL Tilt Rotor Aircraft is defined. Aircraft characteristics are given; with the aircraft redesigned to meet 2,000-foot (610 m) field criteria, with emphasis on low fuel consumption and low direct operating cost. The 100-passenger STOL Tilt Rotor Aircraft was analyzed for performance, weights, economics, handling qualities, noise footprint and aeroelastic stability.

  9. Transportation node space station conceptual design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A number of recent studies have addressed the problem of a transportation node space station. How things would change or what addition facilities would be needed to support a major lunar or Mars initiative is a much often asked question. The support of a lunar base, requiring stacks on the order of 200 metric tons each to land 25 m tons on the lunar surface with reusable vehicles is addressed. The problem of maintaining and reusing large single stage Orbit Transfer Vehicles (OTVs) and single stage lander/launchers in space are examined. The required people and equipment needed, to maintain these vehicles are only vaguely known at present. The people and equipment needed depend on how well the OTV and lander/launcher can be designed for easy reuse. Since the OTV and lander/launcher are only conceptually defined at present, the real maintenance and refurbishment requirements are unobtainable. An estimate of what is needed, based on previous studies and obvious requirements was therefore made. An attempt was made to err on the conservative side.

  10. V/STOL tilt-rotor study, task 1. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A conceptual design study was conducted to define a representative military and/or commercial tilt-propeller aircraft for short takeoff and landing operation. The level of structural technology selected for the operational aircraft was based on aluminum, steel, titanium, and adhesive bonded structures. The data describe the following: (1) aircraft weight, (2) performance and stability, (3) aerodynamic noise, (4) dynamic characteristics, (5) maintainability and reliability, and (6) operating economics.

  11. Conceptual engineering design studies of 1985-era commercial VTOL and STOL transports that utilize rotors

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Clark, R. D.; Widdison, C. A.

    1975-01-01

    Conceptual design studies are summarized of tandem-rotor helicopter and tilt-rotor aircraft for a short haul transport mission in the 1985 time frame. Vertical takeoff designs of both configurations are discussed, and the impact of external noise criteria on the vehicle designs, performance, and costs are shown. A STOL design for the tilt-rotor configuration is reported, and the effect of removing the vertical takeoff design constraints on the design parameters, fuel economy, and operating cost is discussed.

  12. Geographers in the Post-Industrial Age: A Conceptual Curriculum Model for Geography.

    ERIC Educational Resources Information Center

    Verduin-Muller, Henriette

    The document describes a conceptual curriculum model for designing original geographical curriculum materials. The model emanated from a series of research projects at the Geographical Institute's Department of Geography for Education at the Rijksuniversiteit of Utrecht, the Netherlands. The objective of the research was to gain insight into the…

  13. Wide area detection system: Conceptual design study. [using television and microelectronic technology

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Carl, C.; Goss, W.; Hansen, G. R.; Olsasky, M. J.; Johnston, A. R.

    1978-01-01

    An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis.

  14. [Design of a conceptual model on the transference of public health research results in Honduras].

    PubMed

    Macías-Chapula, César A

    2012-01-01

    To design a conceptual model on the transference of public health research results at the local, context level. Using systems thinking concepts, a soft systems approach (SSM) was used to analyse and solve what was perceived as a problem situation related to the transference of research results within Honduras public health system. A bibliometric analysis was also conducted to enrich the problem situation. Six root definitions were defined and modeled as relevant to the expressed problem situation. This led to the development of the conceptual model. The model obtained identified four levels of resolution as derived from the human activities involved in the transference of research results: 1) those of the researchers; 2) the information/documentation professionals; 3) health staff; and 4) the population/society. These actors/ clients and their activities were essential to the functioning of the model since they represent what the model is and does. SSM helped to design the conceptual model. The bibliometric analysis was relevant to construct the rich image of the problem situation.

  15. ART/Ada design project, phase 1: Project plan

    NASA Technical Reports Server (NTRS)

    Allen, Bradley P.

    1988-01-01

    The plan and schedule for Phase 1 of the Ada based ESBT Design Research Project is described. The main platform for the project is a DEC Ada compiler on VAX mini-computers and VAXstations running the Virtual Memory System (VMS) operating system. The Ada effort and lines of code are given in tabular form. A chart is given of the entire project life cycle.

  16. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-01-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter. Initial pilot facility shakedown was completed during the fourth quarter. During pilot plant shakedown operations, several production batch test runs were performed. These pilot tests were coupled with laboratory testing to confirm pilot results. In initial batches of operations, cellulose to glucose conversionsmore » of 62.5% and 64.8% were observed in laboratory hydrolysis. As part of this testing, lignin dewatering was tested using laboratory and vendor-supplied filtration equipment. Dewatering tests reported moisture contents in the lignin of between 50% and 60%. Dewatering parameters and options will continue to be investigated during lignin production. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. Shredding of the feed material was completed and final drying of the feed is expected to be completed by late January. Once feed drying is completed, pilot facility production will begin to produce lignin for co-fire testing. Facility modifications are expected to continue to improve facility operations and performance during the first quarter of 2001. The TVA-Colbert facility continues to make progress in evaluating the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed

  17. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-10-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed tomore » produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio-based fuels is scheduled to begin in October of 2001. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam.« less

  18. The design of two sonic boom wind tunnel models from conceptual aircraft which cruise at Mach numbers of 2.0 and 3.0

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Needleman, Kathy E.

    1990-01-01

    A method for designing wind tunnel models of conceptual, low-boom, supersonic cruise aircraft is presented. Also included is a review of the procedures used to design the conceptual low-boom aircraft. In the discussion, problems unique to, and encountered during, the design of both the conceptual aircraft and the wind tunnel models are outlined. The sensitivity of low-boom characteristics in the aircraft design to control the volume and lift equivalent area distributions was emphasized. Solutions to these problems are reported; especially the two which led to the design of the wind tunnel model support stings.

  19. Design methodology and projects for space engineering

    NASA Technical Reports Server (NTRS)

    Nichols, S.; Kleespies, H.; Wood, K.; Crawford, R.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design course of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, consisting of a design methodology course and a capstone design course. The philosophical basis of this sequence is briefly summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper concludes with a description of the projects completed during the 1991-92 academic year and the ongoing projects for the Fall 1992 semester.

  20. 23 CFR 710.313 - Design-build projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Design-build projects. 710.313 Section 710.313 Highways... REAL ESTATE Project Development § 710.313 Design-build projects. (a) In the case of a design-build..., the STD shall ensure that right-of-way is available prior to the start of physical construction on...

  1. 23 CFR 710.313 - Design-build projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Design-build projects. 710.313 Section 710.313 Highways... REAL ESTATE Project Development § 710.313 Design-build projects. (a) In the case of a design-build..., the STD shall ensure that right-of-way is available prior to the start of physical construction on...

  2. A Conceptual Design For A Spaceborne 3D Imaging Lidar

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2002-01-01

    First generation spaceborne altimetric approaches are not well-suited to generating the few meter level horizontal resolution and decimeter accuracy vertical (range) resolution on the global scale desired by many in the Earth and planetary science communities. The present paper discusses the major technological impediments to achieving few meter transverse resolutions globally using conventional approaches and offers a feasible conceptual design which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction.

  3. Conceptual design of the SMART dosimeter

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Vogel, Sam; Frank, Rebecca; Stoddard, Graham; Vera, Alonzo; Alexander, David; Christian, James

    2017-08-01

    Active dosimeters for astronauts and space weather monitors are critical tools for mitigating radiation induced health issues or system failure on capital equipment. Commercial spaceflight, deep space flight, and satellites require smarter, smaller, and lower power dosimeters. There are a number of instruments with flight heritage, yet as identified in NASA's roadmaps, these technologies do not lend themselves to a viable solution for active dosimetry for an astronaut, particularly for deep space missions. For future missions, nano- and micro-satellites will require compact instruments that will accurately assess the radiation hazard without consuming major resources on the spacecraft. RMD has developed the methods for growing an advanced scintillation material called phenylcarbazole, which provides pulse shape discrimination between protons and electrons. When used in combination with an anti-coincidence detector system, an assessment of the dose from charged ions and neutral particles can be determined. This is valuable as damage on a system (such as silicon or tissue) is dependent on the particle species. Using this crystal with readout electronics developed in partnership with COSMIAC at the University of New Mexico, the design of the Small Mixed field Autonomous Radiation Tracker (SMART) Dosimeter consists of a low-power analog to digital conversion scheme with low-power digital signal processing algorithms, which are to be implemented within a compact system on a chip, such as the Xilinx Zynq series. A review of the conceptual design is presented.

  4. Conceptual design and development of GEM based detecting system for tomographic tungsten focused transport monitoring

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Kolasiński, P.; Mazon, D.; Malard, P.

    2015-10-01

    Implementing tungsten as a plasma facing material in ITER and future fusion reactors will require effective monitoring of not just its level in the plasma but also its distribution. That can be successfully achieved using detectors based on Gas Electron Multiplier (GEM) technology. This work presents the conceptual design of the detecting unit for poloidal tomography to be tested at the WEST project tokamak. The current stage of the development is discussed covering aspects which include detector's spatial dimensions, gas mixtures, window materials and arrangements inside and outside the tokamak ports, details of detector's structure itself and details of the detecting module electronics. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing the creation of sustainable nuclear fusion reactors a step closer. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  5. A conceptual design of an unmanned test vehicle using an airbreathing propulsion system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    According to Aviation Week and Space Technology (Nov. 16, 1992), without a redefined approach to the problem of achieving single stage-to-orbit flight, the X-30 program is virtually assured of cancellation. One of the significant design goals of the X-30 program is to achieve single stage to low-earth orbit using airbreathing propulsion systems. In an attempt to avoid cancellation, the NASP Program has decided to design a test vehicle to achieve these goals. This report recommends a conceptual design of an unmanned test vehicle using an airbreathing propulsion system.

  6. Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab

    NASA Technical Reports Server (NTRS)

    North, B. F.; Hill, M. E.

    1980-01-01

    Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.

  7. Project WILD K-12 Curriculum and Activity Guide

    ERIC Educational Resources Information Center

    Council for Environmental Education, 2011

    2011-01-01

    The "Project WILD K-12 Curriculum and Activity Guide" focuses on wildlife and habitat. It is organized in topic units and is based on the Project WILD conceptual framework. Because these activities are designed for integration into existing courses of study, instructors may use one or many Project WILD activities or the entire set of activities…

  8. Systematic design for trait introgression projects.

    PubMed

    Cameron, John N; Han, Ye; Wang, Lizhi; Beavis, William D

    2017-10-01

    Using an Operations Research approach, we demonstrate design of optimal trait introgression projects with respect to competing objectives. We demonstrate an innovative approach for designing Trait Introgression (TI) projects based on optimization principles from Operations Research. If the designs of TI projects are based on clear and measurable objectives, they can be translated into mathematical models with decision variables and constraints that can be translated into Pareto optimality plots associated with any arbitrary selection strategy. The Pareto plots can be used to make rational decisions concerning the trade-offs between maximizing the probability of success while minimizing costs and time. The systematic rigor associated with a cost, time and probability of success (CTP) framework is well suited to designing TI projects that require dynamic decision making. The CTP framework also revealed that previously identified 'best' strategies can be improved to be at least twice as effective without increasing time or expenses.

  9. Conceptual design study of a V/STOL lift fan commercial short haul transport

    NASA Technical Reports Server (NTRS)

    Knight, R. G.; Powell, W. V., Jr.; Prizlow, J. A.

    1973-01-01

    Conceptual designs of V/STOL lift fan commercial short haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. The engine concepts included both integral and remote fans. The scope of the study included definition of the hover control concept for each propulsion system, aircraft design, mass properties, cruise performance, noise and ride qualities evaluation. Economic evaluation was also studied on the basis of direct-operating costs and route structure.

  10. Conceptual Design Report Cask Loadout Sys and Cask Drop Redesign for the Immersion Pail Support Structure and Operator Interface Platform at 105 K West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LANGEVIN, A.S.

    1999-07-12

    This conceptual design report documents the redesign of the IPSS and the OIP in the 105 KW Basin south loadout pit due to a postulated cask drop accident, as part of Project A.5/A.6, Canister Transfer Facility Modifications. Project A.5/A.6 involves facility modifications needed to transfer fuel from the basin into the cask-MCO. The function of the IPSS is to suspend, guide, and position the immersion pail. The immersion pail protects the cask-MCO from contamination by basin water and acts as a lifting device for the cask-MCO. The OIP provides operator access to the south loadout pit. Previous analyses studied themore » effects of a cask-MCO drop on the south loadout pit concrete structure and on the IPSS. The most recent analysis considered the resulting loads at the pit slab/wall joint (Kanjilal, 1999). This area had not been modeled previously, and the analysis results indicate that the demand capacity exceeds the allowable at the slab/wall joint. The energy induced on the south loadout pit must be limited such that the safety class function of the basin is maintained. The solution presented in this CDR redesigns the IPSS and the OIP to include impact-absorbing features that will reduce the induced energy. The impact absorbing features of the new design include: Impact-absorbing material at the IPSS base and at the upper portion of the IPSS legs. A sleeve which provides a hydraulic means of absorbing energy. Designing the OIP to act as an impact absorber. The existing IPSS structure in 105 KW will be removed. This conceptual design considers only loads resulting from drops directly over the IPSS and south loadout pit area. Drops in other areas of the basin are not considered, and will be covered as part of a future revision to this CDR.« less

  11. Project WILD Aquatic K-12 Curriculum and Activity Guide

    ERIC Educational Resources Information Center

    Council for Environmental Education, 2011

    2011-01-01

    The "Project WILD Aquatic K-12 Curriculum and Activity Guide" emphasizes aquatic wildlife and aquatic ecosystems. It is organized in topic units and is based on the Project WILD conceptual framework. Because these activities are designed for integration into existing courses of study, instructors may use one or many Project WILD Aquatic activities…

  12. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 4: Conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. In the first step of this task, a methodology was developed to ensure that all relevant design dimensions were addressed, and that all feasible designs could be considered. The development effort yielded the following method for generating and comparing designs in task 4: (1) Extract SCS system requirements (functions) from the system specification; (2) Develop design evaluation criteria; (3) Identify system architectural dimensions relevant to SCS system designs; (4) Develop conceptual designs based on the system requirements and architectural dimensions identified in step 1 and step 3 above; (5) Evaluate the designs with respect to the design evaluation criteria developed in step 2 above. The results of the method detailed in the above 5 steps are discussed. The results of the task 4 work provide the set of designs which two or three candidate designs are to be selected by MSFC as input to task 5-refine SCS conceptual designs. The designs selected for refinement will be developed to a lower level of detail, and further analyses will be done to begin to determine the size and speed of the components required to implement these designs.

  13. Preliminary design review report - sludge offload system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwethy, L.M. Westinghouse Hanford

    1996-06-05

    This report documents the conceptual design review of the sludge offload system for the Spent Nuclear Fuel Project. The design description, drawings, available analysis, and safety analysis were reviewed by a peer group. The design review comments and resolutions are documented.

  14. Designing for Mild Cognitive Impairment (MCI): A Design Anthropological Perspective.

    PubMed

    Collier, Guy; Kayes, Nicola; Reay, Stephen; Bill, Amanda

    2017-01-01

    This paper will present a design anthropological perspective on an ongoing project called 'Living Well with Mild Cognitive Impairment (MCI)'. The project explores how people with MCI (and their families) manage and respond to changes in their memory and thinking. One of the primary aims of this project is to design an online resource that will support people to 'Live Well' within the context of possible cognitive decline. The resource was originally proposed to function as a kind of online community, where users could both share and learn about home-grown strategies for managing the cognitive changes associated with MCI in everyday life. Much of this project has been guided by the methodological approach of design anthropology, which encourages project researchers and stakeholders to critically examine underlying assumptions and conceptual frameworks, which in this case revolve around the disputed MCI category. In this paper we will provide some background to the Living Well project before highlighting a number of key insights attained from design anthropology.

  15. The 1994 NASA/USRA/ADP Design Projects

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas; Richardson, Joseph; Tryon, Robert

    1994-01-01

    The NASA/USRA/ADP Design Projects from Vanderbilt University, Department of Mechanical Engineering (1994) are enclosed in this final report. Design projects include: (1) Protein Crystal Growth, both facilities and methodology; (2) ACES Deployable Space Boom; (3) Hybrid Launch System designs for both manned and unmanned systems; (4) LH2 Fuel Tank design (SSTO); (5) SSTO design; and (6) Pressure Tank Feed System design.

  16. Conceptual design for a Mercury relativity satellite

    NASA Technical Reports Server (NTRS)

    Bender, P. L.; Ashby, N.; Wahr, J. M.; Vincent, M. A.

    1989-01-01

    It was shown earlier that 1 x 10 to the -14th Doppler data and 3 cm accuracy range measurements to a small Mercury Relativity Satellite in a polar orbit with four-hour period can give high-accuracy tests of gravitational theory. A particular conceptual design has been developed for such a satellite, which would take less than 10 percent of the approach mass for a possible future Mercury Orbiter Mission. The spacecraft is similar to the Pioneer Venus Orbiter, but scaled down by about a factor four in linear dimensions. A despun antenna 30 cm in diameter is used for tracking. The transmitted power is roughly 0.2 watts at K-band and 0.5 watts at X-band. The orbit parameters for individual eight-hour arcs and the gravity field of Mercury through degree and order 10 are determined mainly from the Doppler data. A 50 MHz K-band sidetone system provides the basic ranging accuracy. The spacecraft mass is 50 kg or less.

  17. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  18. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  19. Was it designed to do that? Children's focus on intended function in their conceptualization of artifacts.

    PubMed

    Asher, Yvonne M; Kemler Nelson, Deborah G

    2008-01-01

    Do young children who seek the conceptual kind of an artifact weigh the plausibility that a current function constitutes the function intended by the object designer? Three- and four-year-olds were encouraged to question adults about novel artifacts. After inquiring about what an object was, some children were shown a function that plausibly accounted for the structural features of the object; others were shown a possible, but implausible function. Children given implausible functions were less satisfied with these responses than those given plausible functions, as shown by their more persistent attempts to ask follow-up questions about function. Accordingly, preschoolers appear to take into account matters of intentional design when assigning artifacts to conceptual kinds.

  20. High Energy Astronomy Observatory, Mission C, Phase A. Volume 2: Preliminary analyses and conceptual design

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis and conceptual design of a baseline mission and spacecraft are presented. Aspects of the HEAO-C discussed include: baseline experiments with X-ray observations of space, analysis of mission requirements, observatory design, structural analysis, thermal control, attitude sensing and control system, communication and data handling, and space shuttle launch and retrieval of HEAO-C.

  1. Conceptual design of an Orbital Debris Defense System

    NASA Technical Reports Server (NTRS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-01-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  2. ART/Ada design project, phase 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An Ada-Based Expert System Building Tool Design Research Project was conducted. The goal was to investigate various issues in the context of the design of an Ada-based expert system building tool. An attempt was made to achieve a comprehensive understanding of the potential for embedding expert systems in Ada systems for eventual application in future projects. The current status of the project is described by introducing an operational prototype, ART/Ada. How the project was conducted is explained. The performance of the prototype is analyzed and compared with other related works. Future research directions are suggested.

  3. Conceptual design of a fleet of autonomous regolith throwing devices for radiation shielding of lunar habitats

    NASA Technical Reports Server (NTRS)

    Armstrong, Karem; Mcadams, Daniel A.; Norrell, Jeffery L.

    1992-01-01

    The National Aeronautics and Space Administration (NASA) in conjunction with Universities Space Research Association (USRA) has requested that the feasibility of a fleet of regolith tossing devices designed to cover a lunar habitat for radiation protection be demonstrated. The regolith, or lunar soil, protects the lunar habitat and its inhabitants from radiation. Ideally, the device will operate autonomously in the lunar environment. To prove the feasibility of throwing regolith on the Moon, throwing solutions were compared to traditional, Earth-based methods for moving soil. Various throwing configurations were investigated. A linear throwing motion combined with a spring and motor energizing system proved a superior solution. Three different overall configurations for the lunar device are presented. A single configuration is chosen and critical parameters such as operating procedure, system volume, mass, and power are developed. The report is divided into seven main sections. First, the Introduction section gives background information, defines the project requirements and the design criteria, and presents the methodology used for the completion of this design. Next, the Preliminary Analysis section presents background information on characteristics of lunar habitats and the lunar environment. Then, the Alternate Designs section presents alternate solutions to each of the critical functions of the device. Fourth, a detailed analysis of throwing the regolith is done to demonstrate its feasibility. Then, the three overall design configurations are presented. Next, a configuration is selected and the conceptual design is expanded to include system performance characteristics, size, and mass. Finally, the Conclusions and Recommendations for Future Work section evaluates the design, outlines the next step to be taken in the design process, and suggests possible goals for future design work.

  4. Conceptual design study of an improved gas turbine powertrain

    NASA Technical Reports Server (NTRS)

    Chapman, W. I.

    1980-01-01

    The conceptual design for an improved gas turbine (IGT) powertrain and vehicle was investigated. Cycle parameters, rotor systems, and component technology were reviewed and a dual rotor gas turbine concept was selected and optimized for best vehicle fuel economy. The engine had a two stage centrifugal compressor with a design pressure ratio of 5.28, two axial turbine stages with advanced high temperature alloy integral wheels, variable power turbine nozzle for turbine temperature and output torque control, catalytic combustor, and annular ceramic recuperator. The engine was rated at 54.81 kW, using water injection on hot days to maintain vehicle acceleration. The estimated vehicle fuel economy was 11.9 km/l in the combined driving cycle, 43 percent over the 1976 compact automobile. The estimated IGT production vehicle selling price was 10 percent over the comparable piston engine vehicle, but the improved fuel economy and reduced maintenance and repair resulted in a 9 percent reduction in life cycle cost.

  5. Conceptual design study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Warren, J. R.

    1986-01-01

    An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  6. The effect of conceptual metaphors through guided inquiry on student's conceptual change

    NASA Astrophysics Data System (ADS)

    Menia, Meli; Mudzakir, Ahmad; Rochintaniawati, Diana

    2017-05-01

    The purpose of this study was to identify student's conceptual change of global warming after integrated science learning based guided inquiry through conceptual metaphors. This study used a quasi-experimental with a nonequivalent control group design. The subject was students of two classes of one of MTsN Salido. Data was collected using conceptual change test (pretest and posttest), observation sheet to observe the learning processes, questionnaire sheet to identify students responses, and interview to identifyteacher'srespons of science learning with conceptual metaphors. The results showed that science learning based guided inquiry with conceptual metaphors is better than science learning without conceptual metaphors. The average of posttest experimental class was 79,40 and control class was 66,09. The student's conceptual change for two classes changed significantly byusing mann whitney U testwith P= 0,003(P less than sig. value, P< 0,05). This means that there was differenceson student's conceptual changebeetwen integrated science learning based guided inquiry with conceptual metaphors class and integrated science learning without conceptual metaphors class. The study also showed that teachers and studentsgive positive responsesto implementation of integrated science learning based guided inquiry with conceptual metaphors.

  7. High School Intervention for Influenza Biology and Epidemics/Pandemics: Impact on Conceptual Understanding among Adolescents

    PubMed Central

    Hasni, Abdelkrim

    2009-01-01

    Understanding real-life issues such as influenza epidemiology may be of particular interest to the development of scientific knowledge and initiation of conceptual changes about viruses and their life cycles for high school students. The goal of this research project was to foster the development of adolescents' conceptual understanding of viruses and influenza biology. Thus, the project included two components: 1) pre- and posttests to determine students' conceptions about influenza biology, epidemics/pandemics, and vaccination; and 2) design an intervention that supports conceptual change to promote improvements in influenza knowledge based on these primary conceptions. Thirty-five female students from a high school biology class participated in a series of instructional activities and pre- and posttest assessments. Results from the pretest indicated that high school students exhibit a limited understanding of concepts related to viruses. Six weeks after an intervention that promoted active learning, results from a posttest showed that conceptions about influenza are more accurately related to the provided scientific knowledge. Although adolescents have nonscientific models to explain influenza biology, we showed that a carefully designed intervention can affect students' knowledge as well as influence the implementation of health education programs in secondary schools. PMID:19255137

  8. Space Station Furnace Facility. Volume 1: Requirements definition and conceptual design study, executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Study was awarded on June 2, 1989, to Teledyne Brown Engineering (TBE) to define an advanced facility for materials research in the microgravity environment of Space Station Freedom (SSF). The SSFF will be designed for research in the solidification of metals and alloys, the crystal growth of electronic and electro-optical materials, and research in glasses and ceramics. The SSFF is one of the first 'facility' class payloads planned by the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications of NASA Headquarters. This facility is planned for early deployment during man-tended operations of the SSF with continuing operations through the Permanently Manned Configuration (PMC). The SSFF will be built around a general 'Core' facility which provides common support functions not provided by SSF, common subsystems which are best centralized, and common subsystems which are best distributed with each experiment module. The intent of the facility approach is to reduce the overall cost associated with implementing and operating a variety of experiments. This is achieved by reducing the launch mass and simplifying the hardware development and qualification processes associated with each experiment. The Core will remain on orbit and will require only periodic maintenance and upgrading while new Furnace Modules, samples, and consumables are developed, qualified, and transported to the SSF. The SSFF Study was divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. The definition phase 1 is addressed. Phase 1 was divided into two parts. In the first part, the basic part of the effort, covered the preliminary definition and assessment of requirements; conceptual design of the SSFF; fabrication of mockups; and the preparation for and support of the Conceptual Design Review (CoDR). The second part, the option part, covered requirements update and

  9. From IDSA: Preschool Toy Design Project as a Transition to More Complex Design Projects

    ERIC Educational Resources Information Center

    Reeder, Kevin

    2005-01-01

    Sophomore year is an intense introduction into the theories and skills germane to the profession of Industrial Design. Design projects will address one to three design elements at a time to promote understanding and manipulation of concepts, such as: (a) theories of two and three dimensional form development are practiced and presented; (b)…

  10. 24 CFR 941.402 - Project design and construction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Project design and construction... URBAN DEVELOPMENT PUBLIC HOUSING DEVELOPMENT Project Development § 941.402 Project design and.... A PHA may certify that its proposed design and construction plans for the development are in...

  11. Conceptual design study of 1985 commercial VTOL transports that utilize rotors

    NASA Technical Reports Server (NTRS)

    Kefford, N. F. K.; Munch, C. L.

    1975-01-01

    Conceptual design studies of pure and compound helicopter commercial short-haul transport aircraft for initial fabrication in 1980 were performed to determine their technical and economic feasibility. One-hundred-passenger configurations were optimized for minimum direct operating cost consistent with producibility and marketability, with emphasis on proper account of mass properties, performance and handling qualities adequacy, and suppression of internal and external noise. The effect of external noise constraints was assessed, in terms of gross weight and direct operating cost, for each aircraft.

  12. Two conceptual designs of helical fusion reactor FFHR-d1A based on ITER technologies and challenging ideas

    NASA Astrophysics Data System (ADS)

    Sagara, A.; Miyazawa, J.; Tamura, H.; Tanaka, T.; Goto, T.; Yanagi, N.; Sakamoto, R.; Masuzaki, S.; Ohtani, H.; The FFHR Design Group

    2017-08-01

    The Fusion Engineering Research Project (FERP) at the National Institute for Fusion Science (NIFS) is conducting conceptual design activities for the LHD-type helical fusion reactor FFHR-d1A. This paper newly defines two design options, ‘basic’ and ‘challenging.’ Conservative technologies, including those that will be demonstrated in ITER, are chosen in the basic option in which two helical coils are made of continuously wound cable-in-conduit superconductors of Nb3Sn strands, the divertor is composed of water-cooled tungsten monoblocks, and the blanket is composed of water-cooled ceramic breeders. In contrast, new ideas that would possibly be beneficial for making the reactor design more attractive are boldly included in the challenging option in which the helical coils are wound by connecting high-temperature REBCO superconductors using mechanical joints, the divertor is composed of a shower of molten tin jets, and the blanket is composed of molten salt FLiNaBe including Ti powers to increase hydrogen solubility. The main targets of the challenging option are early construction and easy maintenance of a large and three-dimensionally complicated helical structure, high thermal efficiency, and, in particular, realistic feasibility of the helical reactor.

  13. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  14. Conceptual design of a 500 watt solar AMTEC space power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.; Harty, R.B.

    1995-12-31

    Numerous design studies have been completed on Radioisotope powered Alkali Metal Thermal to Electric Converter (RAMTEC) power systems demonstrating their substantial increase in performance. Prior to recent advances in AMTEC technology and Thermal Energy Storage (TES), coupling AMTEC converters with a solar concentrator did not increase the performance of solar powered space power systems. This paper describes a conceptual design of an innovative, low cost, reliable, low mass, long life 500 watt Solar AMTEC (SAMTEC) power system, and the predicted system performance. The concept uses innovative, high voltage AMTEC cells, each containing 7 to 9 small electrolyte tubes, integrated withmore » an individual TES unit. These multi-tube AMTEC cells are identical to the AMTEC cells designed for radioisotope powered systems. The TES used in this conceptual design is the LiF-22%CaF{sub 2} unit currently being developed at NASA Lewis Research Center (LeRC) for the Solar Dynamic Ground Test Demonstration (SDGTD) Program. The system was designed to provide 500 watts of electrical power at 28 volts to a payload in Low Earth Orbit (LEO, 800 km, 28.5{degree} inclination) for a minimum lifetime of 5 years. The SAMTEC power system is predicted to have a specific power k of 5.3 to 8.9 W(e)/kg (including the concentrator, receiver, AMTEC cells, gimbals and drives, structure, power processing and control, and a 30% mass contingency) at the 500 watt power level, and 12 to 17 W(e)/kg at the 5,000 watt power level. The SAMTEC system, including all of the components listed above, is anticipated to cost $1,000/W(e) once development is complete and production begins. The SAMTEC system provides 92% of its Beginning of Life (BOL) power after a 5 year period in LEO, and SAMTEC systems should provide 10 to 15 years of life in LEO. Current AMTEC cells have demonstrated 18% efficiency in the laboratory and have been heated radiatively, with propane flames and electrical resistance heaters.« less

  15. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  16. Enhanced capabilities and modified users manual for axial-flow compressor conceptual design code CSPAN

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Lavelle, Thomas M.

    1995-01-01

    Modifications made to the axial-flow compressor conceptual design code CSPAN are documented in this report. Endwall blockage and stall margin predictions were added. The loss-coefficient model was upgraded. Default correlations for rotor and stator solidity and aspect-ratio inputs and for stator-exit tangential velocity inputs were included in the code along with defaults for aerodynamic design limits. A complete description of input and output along with sample cases are included.

  17. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds

    NASA Astrophysics Data System (ADS)

    Czupalla, M.; Horneck, G.; Blome, H. J.

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.

  18. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  19. An Engineering Design STEM Project: T-Shirt Launcher

    ERIC Educational Resources Information Center

    Fantz, Todd D.; Grant, Melva R.

    2013-01-01

    The article offers information on making technology education students interested in science and mathematics through the use of a T-shirt launcher design project. This project was designed for junior and senior level high school students who have completed or are currently taking physics and precalculus. The project involves designing an…

  20. Use of constrained optimization in the conceptual design of a medium-range subsonic transport

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1980-01-01

    Constrained parameter optimization was used to perform the optimal conceptual design of a medium range transport configuration. The impact of choosing a given performance index was studied, and the required income for a 15 percent return on investment was proposed as a figure of merit. A number of design constants and constraint functions were systematically varied to document the sensitivities of the optimal design to a variety of economic and technological assumptions. A comparison was made for each of the parameter variations between the baseline configuration and the optimally redesigned configuration.

  1. Integration of Off-Track Sonic Boom Analysis in Conceptual Design of Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2011-01-01

    A highly desired capability for the conceptual design of aircraft is the ability to rapidly and accurately evaluate new concepts to avoid adverse trade decisions that may hinder the development process in the later stages of design. Evaluating the robustness of new low-boom concepts is important for the conceptual design of supersonic aircraft. Here, robustness means that the aircraft configuration has a low-boom ground signature at both under- and off-track locations. An integrated process for off-track boom analysis is developed to facilitate the design of robust low-boom supersonic aircraft. The integrated off-track analysis can also be used to study the sonic boom impact and to plan future flight trajectories where flight conditions and ground elevation might have a significant effect on ground signatures. The key enabler for off-track sonic boom analysis is accurate computational fluid dynamics (CFD) solutions for off-body pressure distributions. To ensure the numerical accuracy of the off-body pressure distributions, a mesh study is performed with Cart3D to determine the mesh requirements for off- body CFD analysis and comparisons are made between the Cart3D and USM3D results. The variations in ground signatures that result from changes in the initial location of the near-field waveform are also examined. Finally, a complete under- and off-track sonic boom analysis is presented for two distinct supersonic concepts to demonstrate the capability of the integrated analysis process.

  2. MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design

    NASA Technical Reports Server (NTRS)

    Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.

    1988-01-01

    The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community.

  3. Ares Project Overview - Quality in Design

    NASA Technical Reports Server (NTRS)

    Cianciola, Chris; Crane, Kenneth

    2008-01-01

    This presentation introduces the audience to the overall goals of the Ares Project, which include providing human access to low-Earth orbit, the Moon, and beyond. The presentation also provides an overview of with the vehicles that will execute those goals and progress made on the vehicles to date. The briefing will provide an introduction to Lean, Six Sigma, and Kaizen practices Ares will use to improve the overall effectiveness and quality of its efforts. Finally, the briefing includes a summary of Safety and Mission Assurance practices being implemented within[Ares to ensure safety and quality early in the design process. Integrating Safety and Mission Assurance in Design: This presentation describes how the Ares Projects are learning from the successes and failures of previous launch systems in order to maximize safety and reliability while maintaining fiscal responsibility. The Ares Projects are integrating Safer T and Mission Assurance into design activities and embracing independent assessments by Quality experts in thorough reviews of designs and processes. Incorporating Lean thinking into the design process, Ares is also streamlining existing processes and future manufacturing flows which will yield savings during production. Understanding the value of early involvement of Quality experts, the Ares Projects are leading launch vehicle development into the 21st century.

  4. Lunar base and Mars base design projects

    NASA Technical Reports Server (NTRS)

    Amos, J.; Campbell, J.; Hudson, C.; Kenny, E.; Markward, D.; Pham, C.; Wolf, C.

    1989-01-01

    The space design classes at the University of Texas at Austin undertook seven projects in support of the NASA/USRA advanced space design program during the 1988-89 year. A total of 51 students, including 5 graduate students, participated in the design efforts. Four projects were done within the Aerospace Engineering (ASE) design program and three within the Mechanical Engineering (ME) program. Both lunar base and Mars base design efforts were studied, and the specific projects were as follows: Lunar Crew Emergency Rescue Vehicle (ASE); Mars Logistics Lander Convertible to a Rocket Hopper (ME); A Robotically Constructed Production and Supply Base on Phobos (ASE); A Mars/Phobos Transportation System (ASE); Manned Base Design and Related Construction Issues for Mars/Phobos Mission (ME); and Health Care Needs for a Lunar Colony and Design of Permanent Medical Facility (ME).

  5. Conceptual design of the beam source for the DEMO Neutral Beam Injectors

    NASA Astrophysics Data System (ADS)

    Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.

    2016-12-01

    DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.

  6. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    NASA Technical Reports Server (NTRS)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  7. SP-100 power system conceptual design for lunar base applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Bloomfield, Harvey S.; Hainley, Donald C.

    1989-01-01

    A conceptual design is presented for a nuclear power system utilizing an SP-100 reactor and multiple Stirling cycle engines for operation on the lunar surface. Based on the results of this study, it was concluded that this power plant could be a viable option for an evolutionary lunar base. The design concept consists of a 2500 kWt (kilowatt thermal) SP-100 reactor coupled to eight free-piston Stirling engines. Two of the engines are held in reserve to provide conversion system redundancy. The remaining engines operate at 91.7 percent of their rated capacity of 150 kWe. The design power level for this system is 825 kWe. Each engine has a pumped heat-rejection loop connected to a heat pipe radiator. Power system performance, sizing, layout configurations, shielding options, and transmission line characteristics are described. System components and integration options are compared for safety, high performance, low mass, and ease of assembly. The power plant was integrated with a proposed human lunar base concept to ensure mission compatibility. This study should be considered a preliminary investigation; further studies are planned to investigate the effect of different technologies on this baseline design.

  8. Conceptual design and analysis of a large antenna utilizing electrostatic membrane management

    NASA Technical Reports Server (NTRS)

    Brooks, A. L.; Coyner, J. V.; Gardner, W. J.; Mihora, D. J.

    1982-01-01

    Conceptual designs and associated technologies for deployment 100 m class radiometer antennas were developed. An electrostatically suspended and controlled membrane mirror and the supporting structure are discussed. The integrated spacecraft including STS cargo bay stowage and development were analyzed. An antenna performance evaluation was performed as a measure of the quality of the membrane/spacecraft when used as a radiometer in the 1 GHz to 5 GHz region. Several related LSS structural dynamic models differing by their stiffness property (and therefore, lowest modal frequencies) are reported. Control system whose complexity varies inversely with increasing modal frequency regimes are also reported. Interactive computer-aided-design software is discussed.

  9. Conceptual design and structural analysis for an 8.4-m telescope

    NASA Astrophysics Data System (ADS)

    Mendoza, Manuel; Farah, Alejandro; Ruiz Schneider, Elfego

    2004-09-01

    This paper describes the conceptual design of the optics support structures of a telescope with a primary mirror of 8.4 m, the same size as a Large Binocular Telescope (LBT) primary mirror. The design goal is to achieve a structure for supporting the primary and secondary mirrors and keeping them joined as rigid as possible. With this purpose an optimization with several models was done. This iterative design process includes: specifications development, concepts generation and evaluation. Process included Finite Element Analysis (FEA) as well as other analytical calculations. Quality Function Deployment (QFD) matrix was used to obtain telescope tube and spider specifications. Eight spiders and eleven tubes geometric concepts were proposed. They were compared in decision matrixes using performance indicators and parameters. Tubes and spiders went under an iterative optimization process. The best tubes and spiders concepts were assembled together. All assemblies were compared and ranked according to their performance.

  10. A conceptual design study of point focusing thin-film solar concentrators

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Candidates for reflector panel design concepts, including materials and configurations, were identified. The large list of candidates was screened and reduced to the five most promising ones. Cost and technical factors were used in making the final choices for the panel conceptual design, which was a stiffened steel skin substrate with a bonded, acrylic overcoated, aluminized polyester film reflective surface. Computer simulations were run for the concentrator optics using the selected panel design, and experimentally determined specularity and reflectivity values. Intercept factor curves and energy to the aperture curves were produced. These curves indicate that surface errors of 2 mrad (milliradians) or less would be required to capture the desired energy for a Brayton cycle 816 C case. Two test panels were fabricated to demonstrate manufacturability and optically tested for surface error. Surface errors in the range of 1.75 mrad and 2.2 mrad were measured.

  11. Prevention through Design Adoption Readiness Model (PtD ARM): An integrated conceptual model.

    PubMed

    Weidman, Justin; Dickerson, Deborah E; Koebel, Charles T

    2015-01-01

    Prevention through Design (PtD), eliminating hazards at the design-stage of tools and systems, is the optimal method of mitigating occupational health and safety risks. A recent National Institute of Safety and Health initiative has established a goal to increase adoption of PtD innovation in industry. The construction industry has traditionally lagged behind other sectors in the adoption of innovation, in general; and of safety and health prevention innovation, in particular. Therefore, as a first step toward improving adoption trends in this sector, a conceptual model was developed to describe the parameters and causal relationships that influence and predict construction stakeholder "adoption readiness" for PtD technology innovation. This model was built upon three well-established theoretical frameworks: the Health Belief Model, the Diffusion of Innovation Model, and the Technology Acceptance Model. Earp and Ennett's model development methodology was employed to build a depiction of the key constructs and directionality and magnitude of relationships among them. Key constructs were identified from the literature associated with the three theoretical frameworks, with special emphasis given to studies related to construction or OHS technology adoption. A conceptual model is presented. Recommendations for future research are described and include confirmatory structural equation modeling of model parameters and relationships, additional descriptive investigation of barriers to adoption in some trade sectors, and design and evaluation of an intervention strategy.

  12. Conceptual Design Model of Instructional Interfaces: Courseware for Inclusive Education System (IID4C) Distance Learning

    ERIC Educational Resources Information Center

    Tosho, Abdulrauf; Mutalib, Ariffin Abdul; Abdul-Salam, Sobihatun Nur

    2016-01-01

    This paper describes an ongoing study related to a conceptual design model, which is specific to instructional interface design to enhance courseware usage. It was found that most of the existing courseware applications focus on the needs of certain target with most of the courseware offer too little to inclusive learners. In addition, the use of…

  13. Conceptual Design Study of Nb(3)Sn Low-beta Quadrupoles for 2nd Generation LHC IRs

    NASA Astrophysics Data System (ADS)

    Zlobin, A. V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bauer, P.

    2002-10-01

    Conceptual designs of 90-mm aperture high gradient quadrupoles based on the Nb3Sn superconductor, are being developed at Fermilab for possible 2nd generation IRs with the similar optics as in the current low-beta insertions. Magnet designs and results of magnetic, mechanical, thermal and quench protection analysis for these magnets are presented and discussed.

  14. A probabilistic methodology for radar cross section prediction in conceptual aircraft design

    NASA Astrophysics Data System (ADS)

    Hines, Nathan Robert

    System effectiveness has increasingly become the prime metric for the evaluation of military aircraft. As such, it is the decision maker's/designer's goal to maximize system effectiveness. Industry and government research documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness and reduce the cost of attrition. Today's operating environments demand low observable aircraft which are able to reliably take out valuable, time critical targets. Thus it is desirable to be able to design vehicles that are balanced for increased effectiveness. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section, a measure of radar signature, and must be considered from the very beginning of the design process. Radar cross section estimation should be incorporated into conceptual design to develop more capable systems. This research strives to meet these needs by developing a conceptual design tool that predicts radar cross section for parametric geometries. This tool predicts the absolute radar cross section of the vehicle as well as the impact of geometry changes, allowing for the simultaneous tradeoff of the aerodynamic, performance, and cost characteristics of the vehicle with the radar cross section. Furthermore, this tool can be linked to a campaign theater analysis code to demonstrate the changes in system and system of system effectiveness due to changes in aircraft geometry. A general methodology was developed and implemented and sample computer codes applied to prototype the proposed process. Studies utilizing this radar cross section tool were subsequently performed to demonstrate the capabilities of this method and show the impact that various inputs have on the outputs of these models. The F/A-18 aircraft configuration was chosen as a case study vehicle to perform a design space exercise and to investigate the relative impact of

  15. Investigation into the impact of agility on conceptual fighter design

    NASA Technical Reports Server (NTRS)

    Engelbeck, R. M.

    1995-01-01

    The Agility Design Study was performed by the Boeing Defense and Space Group for the NASA Langley Research Center. The objective of the study was to assess the impact of agility requirements on new fighter configurations. Global trade issues investigated were the level of agility, the mission role of the aircraft (air-to-ground, multi-role, or air-to-air), and whether the customer is Air force, Navy, or joint service. Mission profiles and design objectives were supplied by NASA. An extensive technology assessment was conducted to establish the available technologies to industry for the aircraft. Conceptual level methodology is presented to assess the five NASA-supplied agility metrics. Twelve configurations were developed to address the global trade issues. Three-view drawings, inboard profiles, and performance estimates were made and are included in the report. A critical assessment and lessons learned from the study are also presented.

  16. A 200-kW wind turbine generator conceptual design study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A conceptual design study was conducted to define a 200 kW wind turbine power system configuration for remote applications. The goal was to attain an energy cost of 1 to 2 cents per kilowatt-hour at a 14-mph site (mean average wind velocity at an altitude of 30 ft.) The costs of the Clayton, New Mexico, Mod-OA (200-kW) were used to identify the components, subsystems, and other factors that were high in cost and thus candidates for cost reduction. Efforts devoted to developing component and subsystem concepts and ideas resulted in a machine concept that is considerably simpler, lighter in weight, and lower in cost than the present Mod-OA wind turbines. In this report are described the various innovations that contributed to the lower cost and lighter weight design as well as the method used to calculate the cost of energy.

  17. Lunar lander conceptual design: Lunar base systems study task 2.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This study is a first look at the problem of building a lunar lander to support a small lunar surface base. One lander, which can land 25 metric tons, one way, or take a 6 metric ton crew capsule up and down is desired. A series of trade studies are used to narrow the choices and provide some general guidelines. Given a rough baseline, the systems are then reviewed. A conceptual design is then produced. The process was only carried through one iteration. Many more iterations are needed. Assumptions and groundrules are considered.

  18. Conceptual design of a cryogen-free μMRI device

    NASA Astrophysics Data System (ADS)

    Authelet, G.; Poirier-Quinot, M.; Ginefri, J.-C.; Bonelli, A.; Baudouy, B.

    2017-12-01

    To perform Micro Magnetic Resonance Imaging (mMRI) analysis on small regions such as skins, articulations or small animals, the required spatial resolution implies to dramatically improve the sensitivity of the detection. One way to go is to use small radio-frequency superconducting coil that allow, among others, increasing significantly the signal-to-noise ratio. The RF probe, constituted of an optimized YBaCuO film coil cooled below nitrogen temperature, must be located no further than few millimeters from the biological region to be imaged in a clinical MRI magnet. To fulfill the medical environment and constraints, a cryogen-free cooling scheme has been developed to maintain the superconducting coil at the working temperature. The cryogenic design is based on a pulse tube cryocooler and solid thermal links inserted in a non-magnetic cryostat to avoid creating any electromagnetic perturbations to the MRI magnet and the measurements. We report here the conceptual design of the cryogenic system with the required thermal performances, the corresponding layout and architecture of the system as well as the main technical challenges met for the construction.

  19. Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, L.; Thomas, H. D.; Wilson-Hodge, C. A.; Baysinger, M.; Maples, C. D.; Fabisinski, L.L.; Hornsby, L.; Thompson, K. S.; Miernik, J. H.

    2011-01-01

    The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle.

  20. Improving Conceptual Design for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1998-01-01

    This report summarizes activities performed during the second year of a three year cooperative agreement between NASA - Langley Research Center and Georgia Tech. Year 1 of the project resulted in the creation of a new Cost and Business Assessment Model (CABAM) for estimating the economic performance of advanced reusable launch vehicles including non-recurring costs, recurring costs, and revenue. The current year (second year) activities were focused on the evaluation of automated, collaborative design frameworks (computation architectures or computational frameworks) for automating the design process in advanced space vehicle design. Consistent with NASA's new thrust area in developing and understanding Intelligent Synthesis Environments (ISE), the goals of this year's research efforts were to develop and apply computer integration techniques and near-term computational frameworks for conducting advanced space vehicle design. NASA - Langley (VAB) has taken a lead role in developing a web-based computing architectures within which the designer can interact with disciplinary analysis tools through a flexible web interface. The advantages of this approach are, 1) flexible access to the designer interface through a simple web browser (e.g. Netscape Navigator), 2) ability to include existing 'legacy' codes, and 3) ability to include distributed analysis tools running on remote computers. To date, VAB's internal emphasis has been on developing this test system for the planetary entry mission under the joint Integrated Design System (IDS) program with NASA - Ames and JPL. Georgia Tech's complementary goals this year were to: 1) Examine an alternate 'custom' computational architecture for the three-discipline IDS planetary entry problem to assess the advantages and disadvantages relative to the web-based approach.and 2) Develop and examine a web-based interface and framework for a typical launch vehicle design problem.

  1. Architects and Design-Phase Cost Estimates: Design Professionals Should Reconsider the Value of Third-Party Estimates

    ERIC Educational Resources Information Center

    Coakley, John

    2010-01-01

    Professional cost estimators are widely used by architects during the design phases of a project to provide preliminary cost estimates. These estimates may begin at the conceptual design phase and are prepared at regular intervals through the construction document phase. Estimating professionals are frequently tasked with "selling" the importance…

  2. Design challenges and coordination issues in hotel projects

    NASA Astrophysics Data System (ADS)

    Saunders, Melvin L., IV; Marsh, David

    2002-11-01

    The design of a Five Star hotel facility encompasses a myriad of design dilemmas. On the same note, the design of a One Star or Two Star hotel has many dilemmas of its own. The ability of an acoustical consultant, as an integral part of the design team, to recognize the differences between these types of projects can be the difference between a successful hotel project and miserable failure. Different quality hotels require different levels of design criteria. Proper coordination and timing between trades and installations, such as loudspeakers, ceiling coffers, chandeliers, sprinkler heads, and ductwork, is also very important for the success of the overall project. This paper will discuss techniques and methods to produce successful hotel projects, as well as various noise sources throughout these spaces. It will also highlight a number of tips learned through many hotel design experiences.

  3. A Conceptual Framework for Educational Design at Modular Level to Promote Transfer of Learning

    ERIC Educational Resources Information Center

    Botma, Yvonne; Van Rensburg, G. H.; Coetzee, I. M.; Heyns, T.

    2015-01-01

    Students bridge the theory-practice gap when they apply in practice what they have learned in class. A conceptual framework was developed that can serve as foundation to design for learning transfer at modular level. The framework is based on an adopted and adapted systemic model of transfer of learning, existing learning theories, constructive…

  4. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds.

    PubMed

    Czupalla, M; Horneck, G; Blome, H J

    2005-01-01

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Conceptual design of a noncontacting power transfer device for the ASPS Vernier system

    NASA Technical Reports Server (NTRS)

    Kroeger, J.; Drilling, J.; Gunderman, T.

    1984-01-01

    The conceptual of electrical power transfer across a magnetically controlled gap as discussed for several years. The design represents the culmination of the first serious attempt to design a very low force, noncontracting power transfer mechanism. The electromagnetic device advanced herein is an ironless, translatable secondary transformer in which one of the two coils is fixed to the entire magnetic core. The second coil is free to move within the core over the full range of motions required. The specific application considered for this design was the Vernier subsystem of the Annular Suspension and Pointing System (ASPS). The development of and rationale for the electromagnetics design is presented. Similar documentation is provided for the Electronics Design. The Appendices detail the results of small scale model tests, disturbance force calculations, the baseline transformer fabrication drawings, the AVS Converter Parts List, and model schematic diagrams.

  6. Vehicle Sketch Pad: a Parametric Geometry Modeler for Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2010-01-01

    The conceptual aircraft designer is faced with a dilemma, how to strike the best balance between productivity and fidelity? Historically, handbook methods have required only the coarsest of geometric parameterizations in order to perform analysis. Increasingly, there has been a drive to upgrade analysis methods, but these require considerably more precise and detailed geometry. Attempts have been made to use computer-aided design packages to fill this void, but their cost and steep learning curve have made them unwieldy at best. Vehicle Sketch Pad (VSP) has been developed over several years to better fill this void. While no substitute for the full feature set of computer-aided design packages, VSP allows even novices to quickly become proficient in defining three-dimensional, watertight aircraft geometries that are adequate for producing multi-disciplinary meta-models for higher order analysis methods, wind tunnel and display models, as well as a starting point for animation models. This paper will give an overview of the development and future course of VSP.

  7. Project-Based Learning and Design-Focused Projects to Motivate Secondary Mathematics Students

    ERIC Educational Resources Information Center

    Remijan, Kelly W.

    2017-01-01

    This article illustrates how mathematics teachers can develop design-focused projects, related to project-based learning, to motivate secondary mathematics students. With first-hand experience as a secondary mathematics teacher, I provide a series of steps related to the engineering design process, which are helpful to teachers in developing…

  8. Conceptual Design of a Hypervelocity Asteroid Intercept Vehicle (HAIV) Flight Validation Mission

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    In this paper we present a detailed overview of the MDL study results and subsequent advances in the design of GNC algorithms for accurate terminal guidance during hypervelocity NEO intercept. The MDL study produced a conceptual con guration of the two-body HAIV and its subsystems; a mission scenario and trajectory design for a notional flight validation mission to a selected candidate target NEO; GNC results regarding the ability of the HAIV to reliably intercept small (50 m) NEOs at hypervelocity (typically greater than 10 km/s); candidate launch vehicle selection; a notional operations concept and cost estimate for the flight validation mission; and a list of topics to address during the remainder of our NIAC Phase II study.

  9. Conceptual design of the ITER fast-ion loss detector.

    PubMed

    Garcia-Munoz, M; Kocan, M; Ayllon-Guerola, J; Bertalot, L; Bonnet, Y; Casal, N; Galdon, J; Garcia Lopez, J; Giacomin, T; Gonzalez-Martin, J; Gunn, J P; Jimenez-Ramos, M C; Kiptily, V; Pinches, S D; Rodriguez-Ramos, M; Reichle, R; Rivero-Rodriguez, J F; Sanchis-Sanchez, L; Snicker, A; Vayakis, G; Veshchev, E; Vorpahl, Ch; Walsh, M; Walton, R

    2016-11-01

    A conceptual design of a reciprocating fast-ion loss detector for ITER has been developed and is presented here. Fast-ion orbit simulations in a 3D magnetic equilibrium and up-to-date first wall have been carried out to revise the measurement requirements for the lost alpha monitor in ITER. In agreement with recent observations, the simulations presented here suggest that a pitch-angle resolution of ∼5° might be necessary to identify the loss mechanisms. Synthetic measurements including realistic lost alpha-particle as well as neutron and gamma fluxes predict scintillator signal-to-noise levels measurable with standard light acquisition systems with the detector aperture at ∼11 cm outside of the diagnostic first wall. At measurement position, heat load on detector head is comparable to that in present devices.

  10. Conceptual designs for in situ analysis of Mars soil

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Zent, A. P.; Hartman, H.

    1991-01-01

    A goal of this research is to develop conceptual designs for instrumentation to perform in situ measurements of the Martian soil in order to determine the existence and nature of any reactive chemicals. Our approach involves assessment and critical review of the Viking biology results which indicated the presence of a soil oxidant, an investigation of the possible application of standard soil science techniques to the analysis of Martian soil, and a preliminary consideration of non-standard methods that may be necessary for use in the highly oxidizing Martian soil. Based on our preliminary analysis, we have developed strawman concepts for standard soil analysis on Mars, including pH, suitable for use on a Mars rover mission. In addition, we have devised a method for the determination of the possible strong oxidants on Mars.

  11. Medical education research for radiologists: a road map for developing a project.

    PubMed

    Gaetke-Udager, Kara; Yablon, Corrie M

    2015-04-01

    Medical education research is challenging to do well, but researchers can develop a robust project with knowledge of basic principles. Thoughtful creation of a study question, development of a conceptual framework, and attention to study design are crucial to developing a successful project. A thorough understanding of research methods and elements of survey design is necessary. Projects that result in changes to behavior, clinical practice, and patient outcomes have the most potential for success.

  12. Conceptual Design of Simulation Models in an Early Development Phase of Lunar Spacecraft Simulator Using SMP2 Standard

    NASA Astrophysics Data System (ADS)

    Lee, Hoon Hee; Koo, Cheol Hea; Moon, Sung Tae; Han, Sang Hyuck; Ju, Gwang Hyeok

    2013-08-01

    The conceptual study for Korean lunar orbiter/lander prototype has been performed in Korea Aerospace Research Institute (KARI). Across diverse space programs around European countries, a variety of simulation application has been developed using SMP2 (Simulation Modelling Platform) standard related to portability and reuse of simulation models by various model users. KARI has not only first-hand experience of a development of SMP compatible simulation environment but also an ongoing study to apply the SMP2 development process of simulation model to a simulator development project for lunar missions. KARI has tried to extend the coverage of the development domain based on SMP2 standard across the whole simulation model life-cycle from software design to its validation through a lunar exploration project. Figure. 1 shows a snapshot from a visualization tool for the simulation of lunar lander motion. In reality, a demonstrator prototype on the right-hand side of image was made and tested in 2012. In an early phase of simulator development prior to a kick-off start in the near future, targeted hardware to be modelled has been investigated and indentified at the end of 2012. The architectural breakdown of the lunar simulator at system level was performed and the architecture with a hierarchical tree of models from the system to parts at lower level has been established. Finally, SMP Documents such as Catalogue, Assembly, Schedule and so on were converted using a XML(eXtensible Mark-up Language) converter. To obtain benefits of the suggested approaches and design mechanisms in SMP2 standard as far as possible, the object-oriented and component-based design concepts were strictly chosen throughout a whole model development process.

  13. A Conceptual Design for a Small Deployer Satellite

    NASA Astrophysics Data System (ADS)

    Zumbo, S.

    2002-01-01

    In the last few years, the space scientific and industrial communities have demonstrated a renewed interest for small missions based on new categories of space platforms: micro &nano satellites. The cost reduction w.r.t. larger satellite missions, the shorter time from concept to launch, the risk distribution and the possibility to use this kind of bus both for stand-alone projects and as complementary to larger programs, are key factors that make this new kind of technology suitable for a wide range of space related activities. In particular it is now possible to conceive new mission philosophy implying the realisation of micro satellite constellations, with S/C flying in close formation to form a network of distributed sensors either for near-real time telecommunication or Earth remote sensing and disaster monitoring systems or physics and astronomical researches for Earth-Sun dynamics and high energy radiation studies. At the same time micro satellite are becoming important test- beds for new technologies that will eventually be used on larger missions, with relevant spin-offs potentialities towards other industrial fields. The foreseen social and economical direct benefits, the reduced mission costs and the possibility even for a small skilled team to manage all the project, represent very attractive arguments for universities and research institutes to invest funds and human resources to get first order technical and theoretical skills in the field of micro satellite design, with important influences on the training programs of motivated students that are directly involved in all the project's phases. In consideration of these space market important new trends and of the academic benefits that could be guaranteed by undertaking a micro satellite mission project, basing on its long space activities heritage, University of Rome "La Sapienza" - Aerospace and Astronautics Department, with the support of the Italian Space Agency, Alenia Spazio and of important

  14. Conceptual design and analysis of orbital cryogenic liquid storage and supply systems

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Cunnington, G. R.; Johns, W. A.

    1981-01-01

    A wide variety of orbital cryogenic liquid storage and supply systems are defined in NASA and DOD long-range plans. These systems include small cooling applications, large chemical and electrical orbit transfer vehicles and supply tankers. All have the common requirements of low-g fluid management to accomplish gas-free liquid expulsion and efficient thermal control to manage heat leak and tank pressure. A preliminary design study was performed to evaluate tanks ranging from 0.6 to 37.4 cu m (22 to 1320 cu ft). Liquids of interest were hydrogen, oxygen, methane, argon and helium. Conceptual designs were generated for each tank system and fluid dynamic, thermal and structural analyses were performed for Shuttle compatible operations. Design trades considered the paradox of conservative support structure and minimum thermal input. Orbital performance and weight data were developed, and a technology evaluation was completed.

  15. Doing the Project and Learning the Content: Designing Project-Based Science Curricula for Meaningful Understanding

    ERIC Educational Resources Information Center

    Kanter, David E.

    2010-01-01

    Project-based science curricula can improve students' usable or meaningful understanding of the science content underlying a project. However, such curricula designed around "performances" wherein students design or make something do not always do this. We researched ways to design performance project-based science curricula (pPBSc) to better…

  16. Conceptual design for the space station Freedom modular combustion facility

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A definition study and conceptual design for a combustion science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module is being performed. This modular, user-friendly facility, called the Modular Combustion Facility, will be available for use by industry, academic, and government research communities in the mid-1990's. The Facility will support research experiments dealing with the study of combustion and its byproducts. Because of the lack of gravity-induced convection, research into the mechanisms of combustion in the absence of gravity will help to provide a better understanding of the fundamentals of the combustion process. The background, current status, and future activities of the effort are covered.

  17. CONCEPTUAL DESIGN STUDY OF A MOBILE GAMMA IRRADIATOR FOR FRUIT PRODUCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-05-31

    Engineering Drawings report available as CAPE-944. A conceptual design study was made of a mobile irradiator for radiopasteurization of strawberries, grapes, peaches, tomatoes, and lemons. Minimum radiation dose specification for the fruit ranged from 100,000 to 200,000 rads with maximum to minimum dose ratio in the range of 1.5 to 3. Minimum allowable production rates were in the range of 500 to 1000 lb of fruit/hr. The irradiator was required to be mobile, preferably on one truck capable of being put in operation one day after arrival at the site. Preliminary studies compared five types of irradiators, consisting of amore » single source slab, two package pass design; a double slab, single pass design; a single slab, four pass design; a line source rotary design; and a movable source, movable package design. It was concluded that a Co/sup 60/ irradiator can be built to meet the general requirements for radiopasteurization of fruit. The irradiator can be made mobile and can be mounted on a single trailer. The combined weight of the mobile unit would be 70 to 85 tons depending on the type of irradiator. This unit would require a special license from the State Highway Department. (C.H.)« less

  18. Designing Effective Projects: Decision Options for Maximizing Learning and Project Success

    ERIC Educational Resources Information Center

    Volkema, Roger J.

    2010-01-01

    In recent years, more and more business schools have introduced team-based projects into their curricula as a means of addressing corporate, small business, and community-service issues while teaching students a variety of project management skills (technical and sociocultural). In designing a project-oriented course, an instructor has a number of…

  19. A Strategic Approach to Curriculum Design for Information Literacy in Teacher Education--Implementing an Information Literacy Conceptual Framework

    ERIC Educational Resources Information Center

    Klebansky, Anna; Fraser, Sharon P.

    2013-01-01

    This paper details a conceptual framework that situates curriculum design for information literacy and lifelong learning, through a cohesive developmental information literacy based model for learning, at the core of teacher education courses at UTAS. The implementation of the framework facilitates curriculum design that systematically,…

  20. Systems engineering aspects of a preliminary conceptual design of the space station environmental control and life support system

    NASA Technical Reports Server (NTRS)

    Lin, C. H.; Meyer, M. S.

    1983-01-01

    The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.

  1. Optical engineering capstone design projects with industry sponsors

    NASA Astrophysics Data System (ADS)

    Bunch, Robert M.; Leisher, Paul O.; Granieri, Sergio C.

    2014-09-01

    Capstone senior design is the culmination of a student's undergraduate engineering education that prepares them for engineering practice. In fact, any engineering degree program that pursues accreditation by the Engineering Accreditation Commission of ABET must contain "a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints." At Rose-Hulman, we offer an interdisciplinary Optical Engineering / Engineering Physics senior design curriculum that meets this requirement. Part of this curriculum is a two-course sequence where students work in teams on a design project leading to a functional prototype. The students begin work on their capstone project during the first week of their senior year. The courses are deliverable-driven and the students are held accountable for regular technical progress through weekly updates with their faculty advisor and mid-term design reviews. We have found that client-sponsored projects offer students an enriched engineering design experience as it ensures consideration of constraints and standards requirements similar to those that they will encounter as working engineers. Further, client-sponsored projects provide teams with an opportunity for regular customer interactions which help shape the product design. The process that we follow in both soliciting and helping to scope appropriate industry-related design projects will be described. In addition, an outline of the capstone course structure as well as methods used to hold teams accountable for technical milestones will be discussed. Illustrative examples of past projects will be provided.

  2. Conceptual design of an orbital debris collector

    NASA Technical Reports Server (NTRS)

    Odonoghue, Peter (Editor); Brenton, Brian; Chambers, Ernest; Schwind, Thomas; Swanhart, Christopher; Williams, Thomas

    1991-01-01

    The current Lower Earth Orbit (LEO) environment has become overly crowded with space debris. An evaluation of types of debris is presented in order to determine which debris poses the greatest threat to operation in space, and would therefore provide a feasible target for removal. A target meeting these functional requirements was found in the Cosmos C-1B Rocket Body. These launchers are spent space transporters which constitute a very grave risk of collision and fragmentation in LEO. The motion and physical characteristics of these rocket bodies have determined the most feasible method of removal. The proposed Orbital Debris Collector (ODC) device is designed to attach to the Orbital Maneuvering Vehicle (OMV), which provides all propulsion, tracking, and power systems. The OMV/ODC combination, the Rocket Body Retrieval Vehicle (RBRV), will match orbits with the rocket body, use a spin table to match the rotational motion of the debris, capture it, despin it, and remove it from orbit by allowing it to fall into the Earth's atmosphere. A disposal analysis is presented to show how the debris will be deorbited into the Earth's atmosphere. The conceptual means of operation of a sample mission is described.

  3. A Knowledge-Based and Model-Driven Requirements Engineering Approach to Conceptual Satellite Design

    NASA Astrophysics Data System (ADS)

    Dos Santos, Walter A.; Leonor, Bruno B. F.; Stephany, Stephan

    Satellite systems are becoming even more complex, making technical issues a significant cost driver. The increasing complexity of these systems makes requirements engineering activities both more important and difficult. Additionally, today's competitive pressures and other market forces drive manufacturing companies to improve the efficiency with which they design and manufacture space products and systems. This imposes a heavy burden on systems-of-systems engineering skills and particularly on requirements engineering which is an important phase in a system's life cycle. When this is poorly performed, various problems may occur, such as failures, cost overruns and delays. One solution is to underpin the preliminary conceptual satellite design with computer-based information reuse and integration to deal with the interdisciplinary nature of this problem domain. This can be attained by taking a model-driven engineering approach (MDE), in which models are the main artifacts during system development. MDE is an emergent approach that tries to address system complexity by the intense use of models. This work outlines the use of SysML (Systems Modeling Language) and a novel knowledge-based software tool, named SatBudgets, to deal with these and other challenges confronted during the conceptual phase of a university satellite system, called ITASAT, currently being developed by INPE and some Brazilian universities.

  4. Design in Context: A Conceptual Framework for the Study of Computer Software in Higher Education.

    ERIC Educational Resources Information Center

    Kozma, Robert B.; Bangert-Drowns, Robert L.

    The conceptual groundwork needed to examine the impact of technology, primarily microcomputers, on student learning is presented. Medium, method, and context are tied with a science of design. In section I, research on technology in higher education is reviewed, medium and method are defined, and interaction with context is discussed. Taxonomies…

  5. Inclusion by Design: Engineering Inclusive Practices in Secondary Schools

    ERIC Educational Resources Information Center

    Dukes, Charles; Lamar-Dukes, Pamela

    2009-01-01

    In order to help teachers understand the importance of intentional design for inclusive education, this article describes the design process an engineer might use when designing a new project. If teachers learn to think like engineers, it is possible for them to design inclusive education. This conceptual design can then be combined with…

  6. Kuhn and conceptual change: on the analogy between conceptual changes in science and children

    NASA Astrophysics Data System (ADS)

    Greiffenhagen, Christian; Sherman, Wendy

    2008-01-01

    This article argues that the analogy between conceptual changes in the history of science and conceptual changes in the development of young children is problematic. We show that the notions of ‘conceptual change’ in Kuhn and Piaget’s projects, the two thinkers whose work is most commonly drawn upon to support this analogy, are not compatible in the sense usually claimed. We contend that Kuhn’s work pertains not so much to the psychology of individual scientists, but to the way philosophers and historians should describe developments in communities of scientists. Furthermore, we argue that the analogy is based on a misunderstanding of the nature of science and the relation between science and common sense. The distinctiveness of the two notions of conceptual change has implications for science education research, since it raises serious questions about the relevance of Kuhn’s remarks for the study of pedagogical issues.

  7. Mechanical Engineering Senior Design Project Final Presentations | College

    Science.gov Websites

    Mechanical Engineering Senior Design Project Final Presentations December 7, 2015 Mechanical Engineering On Wednesday, Dec. 9th, the mechanical engineering senior design project final presentations will be made in and Steven Keller Objective: Design a temperature controlled unit that would cool and maintain a

  8. Design of a projection display screen with vanishing color shift for rear-projection HDTV

    NASA Astrophysics Data System (ADS)

    Liu, Xiu; Zhu, Jin-lin

    1996-09-01

    Using bi-convex cylinder lens with matrix structure, the transmissive projection display screen with high contrast and wider viewing angle has been widely used in large rear projection TV and video projectors, it obtained a inhere color shift and puzzled the designer of display screen for RGB projection tube in-line adjustment. Based on the method of light beam racing, the general software of designing projection display screen has been developed and the computer model of vanishing color shift for rear projection HDTV has bee completed. This paper discussed the practical designing method to vanish the defect of color shift and mentioned the relations between the primary optical parameters of display screen and relative geometry sizes of lens' surface. The distributions of optical gain to viewing angle and the influences on engineering design are briefly analyzed.

  9. Update on HCDstruct - A Tool for Hybrid Wing Body Conceptual Design and Structural Optimization

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2015-01-01

    HCDstruct is a Matlab® based software tool to rapidly build a finite element model for structural optimization of hybrid wing body (HWB) aircraft at the conceptual design level. The tool uses outputs from a Flight Optimization System (FLOPS) performance analysis together with a conceptual outer mold line of the vehicle, e.g. created by Vehicle Sketch Pad (VSP), to generate a set of MSC Nastran® bulk data files. These files can readily be used to perform a structural optimization and weight estimation using Nastran’s® Solution 200 multidisciplinary optimization solver. Initially developed at NASA Langley Research Center to perform increased fidelity conceptual level HWB centerbody structural analyses, HCDstruct has grown into a complete HWB structural sizing and weight estimation tool, including a fully flexible aeroelastic loads analysis. Recent upgrades to the tool include the expansion to a full wing tip-to-wing tip model for asymmetric analyses like engine out conditions and dynamic overswings, as well as a fully actuated trailing edge, featuring up to 15 independently actuated control surfaces and twin tails. Several example applications of the HCDstruct tool are presented.

  10. [How does collective violence shape the health status of its victims? Conceptual model and design of the ISAVIC study].

    PubMed

    Larizgoitia, Itziar; Izarzugaza, Isabel; Markez, Iñaki; Fernández, Itziar; Iraurgi, Ioseba; Larizgoitia, Arantza; Ballesteros, Javier; Fernández-Liria, Alberto; Moreno, Florentino; Retolaza, Ander; Páez, Darío; Martín-Beristaín, Carlos; Alonso, Jordi

    2011-01-01

    Epidemiologic research on collective violence (violence exerted by and within groups in pursuit of political, social or economic goals) is very scarce despite its growing recognition as a major public health issue. This paper describes the conceptual model and design of one of the first research studies conducted in Spain aiming to assess the impact of collective violence in the health status of its victims (study known as ISAVIC, based on its Spanish title Impacto en la SAlud de la VIolencia Colectiva). Starting with a comprehensive but non-systematic review of the literature, the authors describe the sequelae likely produced by collective violence and propose a conceptual model to explain the nature of the relationships between collective violence and health status. The conceptual model informed the ISAVIC study design and its measurement instruments. The possible sequelae of collective violence, in the physical, emotional and social dimensions of health, are described. Also, the review distinguishes the likely impact in primary and secondary victims, as well as the interplay with the social environment. The mixed methodological design of the ISAVIC study supports the coherence of the conceptual model described. The ISAVIC study suggests that collective violence may affect the main dimensions of the health status of its victims, in intimate relation to the societal factors where it operates. It is necessary to validate these results with new studies. Copyright © 2010 SESPAS. Published by Elsevier Espana. All rights reserved.

  11. An investigation of constraint-based component-modeling for knowledge representation in computer-aided conceptual design

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1990-01-01

    Originally, computer programs for engineering design focused on detailed geometric design. Later, computer programs for algorithmically performing the preliminary design of specific well-defined classes of objects became commonplace. However, due to the need for extreme flexibility, it appears unlikely that conventional programming techniques will prove fruitful in developing computer aids for engineering conceptual design. The use of symbolic processing techniques, such as object-oriented programming and constraint propagation, facilitate such flexibility. Object-oriented programming allows programs to be organized around the objects and behavior to be simulated, rather than around fixed sequences of function- and subroutine-calls. Constraint propagation allows declarative statements to be understood as designating multi-directional mathematical relationships among all the variables of an equation, rather than as unidirectional assignments to the variable on the left-hand side of the equation, as in conventional computer programs. The research has concentrated on applying these two techniques to the development of a general-purpose computer aid for engineering conceptual design. Object-oriented programming techniques are utilized to implement a user-extensible database of design components. The mathematical relationships which model both geometry and physics of these components are managed via constraint propagation. In addition, to this component-based hierarchy, special-purpose data structures are provided for describing component interactions and supporting state-dependent parameters. In order to investigate the utility of this approach, a number of sample design problems from the field of aerospace engineering were implemented using the prototype design tool, Rubber Airplane. The additional level of organizational structure obtained by representing design knowledge in terms of components is observed to provide greater convenience to the program user, and to

  12. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results, attachment 2. Phase A: Conceptual design and programmatics

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.

  13. Trench fast reactor design using the microcomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohach, A.F.; Sankoorikal, J.T.; Schmidt, R.R.

    1987-01-01

    This project is a study of alternative liquid-metal-cooled fast power reactor system concepts. Specifically, an unconventional primary system is being conceptually designed and evaluated. The project design is based primarily on microcomputer analysis through the use of computational modules. The reactor system concept is a long, narrow pool with a long, narrow reactor called a trench-type pool reactor in it. The reactor consists of five core-blanket modules in a line. Specific power is to be modest, permitting long fuel residence time. Two fuel cycles are currently being considered. The reactor design philosophy is that of the inherently safe concept. Thismore » requires transient analysis dependent on reactivity coefficients: prompt fuel, including Doppler and expansion, fuel expansion, sodium temperature and void, and core expansion. Conceptual reactor design is done on a microcomputer. A part of the trench reactor project is to develop a microcomputer-based system that can be used by the user for scoping studies and design. Current development includes the neutronics and fuel management aspects of the design. Thermal-hydraulic analysis and economics are currently being incorporated into the microcomputer system. The system is menu-driven including preparation of program input data and of output data for displays in graphics form.« less

  14. Conceptual design of the ITER fast-ion loss detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Munoz, M., E-mail: mgm@us.es; Ayllon-Guerola, J.; Galdon, J.

    2016-11-15

    A conceptual design of a reciprocating fast-ion loss detector for ITER has been developed and is presented here. Fast-ion orbit simulations in a 3D magnetic equilibrium and up-to-date first wall have been carried out to revise the measurement requirements for the lost alpha monitor in ITER. In agreement with recent observations, the simulations presented here suggest that a pitch-angle resolution of ∼5° might be necessary to identify the loss mechanisms. Synthetic measurements including realistic lost alpha-particle as well as neutron and gamma fluxes predict scintillator signal-to-noise levels measurable with standard light acquisition systems with the detector aperture at ∼11 cmmore » outside of the diagnostic first wall. At measurement position, heat load on detector head is comparable to that in present devices.« less

  15. Conceptual design of the Space Station combustion module

    NASA Technical Reports Server (NTRS)

    Morilak, Daniel P.; Rohn, Dennis W.; Rhatigan, Jennifer L.

    1994-01-01

    The purpose of this paper is to describe the conceptual design of the Combustion Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and through the use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. The SS FCF is scheduled to become operational on-orbit in 1999. The Combustion Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 1999. The objectives of this paper are to describe the history of the Combustion Module concept, the types of combustion science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.

  16. Conceptual Design of the Space Station Fluids Module

    NASA Technical Reports Server (NTRS)

    Rohn, Dennis W.; Morilak, Daniel P.; Rhatigan, Jennifer L.; Peterson, Todd T.

    1994-01-01

    The purpose of this paper is to describe the conceptual design of the Fluids Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. Portions of the SS FCF are scheduled to become operational on-orbit in 1999. The Fluids Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 2001. The objectives of this paper are to describe the history of the Fluids Module concept, the types of fluids science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.

  17. Various advanced design projects promoting engineering education

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  18. Project Design Concept for Monitoring and Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCGREW, D.L.

    2000-10-02

    This Project Design Concept represents operational requirements established for use in design the tank farm Monitoring and Control System. These upgrades are included within the scope of Project W-314, Tank Farm Restoration and Safe Operations.

  19. Knowledge Wisdom and Networks: A Project Management Centre of Excellence Example

    ERIC Educational Resources Information Center

    Walker, Derek H. T.; Christenson, Dale

    2005-01-01

    Purpose: This conceptual paper aims to explain how "project management centres of excellence (CoEs)", a particular class of knowledge network, can be viewed as providing great potential for assisting project management (PM) teams to make wise decisions. Design/methodology/approach: The paper presents a range of knowledge network types and…

  20. Category's analysis and operational project capacity method of transformation in design

    NASA Astrophysics Data System (ADS)

    Obednina, S. V.; Bystrova, T. Y.

    2015-10-01

    The method of transformation is attracting widespread interest in fields such contemporary design. However, in theory of design little attention has been paid to a categorical status of the term "transformation". This paper presents the conceptual analysis of transformation based on the theory of form employed in the influential essays by Aristotle and Thomas Aquinas. In the present work the transformation as a method of shaping design has been explored as well as potential application of this term in design has been demonstrated.

  1. Tailoring Systems Engineering Processes in a Conceptual Design Environment: A Case Study at NASA Marshall Spaceflight Center's ACO

    NASA Technical Reports Server (NTRS)

    Mulqueen, John; Maples, C. Dauphne; Fabisinski, Leo, III

    2012-01-01

    This paper provides an overview of Systems Engineering as it is applied in a conceptual design space systems department at the National Aeronautics and Space Administration (NASA) Marshall Spaceflight Center (MSFC) Advanced Concepts Office (ACO). Engineering work performed in the NASA MFSC's ACO is targeted toward the Exploratory Research and Concepts Development life cycle stages, as defined in the International Council on Systems Engineering (INCOSE) System Engineering Handbook. This paper addresses three ACO Systems Engineering tools that correspond to three INCOSE Technical Processes: Stakeholder Requirements Definition, Requirements Analysis, and Integration, as well as one Project Process Risk Management. These processes are used to facilitate, streamline, and manage systems engineering processes tailored for the earliest two life cycle stages, which is the environment in which ACO engineers work. The role of systems engineers and systems engineering as performed in ACO is explored in this paper. The need for tailoring Systems Engineering processes, tools, and products in the ever-changing engineering services ACO provides to its customers is addressed.

  2. A conceptual framework for the design of environmental post-market monitoring of genetically modified plants.

    PubMed

    Sanvido, Olivier; Widmer, Franco; Winzeler, Michael; Bigler, Franz

    2005-01-01

    Genetically modified plants (GMPs) may soon be cultivated commercially in several member countries of the European Union (EU). According to EU Directive 2001/18/EC, post-market monitoring (PMM) for commercial GMP cultivation must be implemented, in order to detect and prevent adverse effects on human health and the environment. However, no general PMM strategies for GMP cultivation have been established so far. We present a conceptual framework for the design of environmental PMM for GMP cultivation based on current EU legislation and common risk analysis procedures. We have established a comprehensive structure of the GMP approval process, consisting of pre-market risk assessment (PMRA) as well as PMM. Both programs can be distinguished conceptually due to principles inherent to risk analysis procedures. The design of PMM programs should take into account the knowledge gained during approval for commercialization of a specific GMP and the decisions made in the environmental risk assessments (ERAs). PMM is composed of case-specific monitoring (CSM) and general surveillance. CSM focuses on anticipated effects of a specific GMP. Selection of case-specific indicators for detection of ecological exposure and effects, as well as definition of effect sizes, are important for CSM. General surveillance is designed to detect unanticipated effects on general safeguard subjects, such as natural resources, which must not be adversely affected by human activities like GMP cultivation. We have identified clear conceptual differences between CSM and general surveillance, and propose to adopt separate frameworks when developing either of the two programs. Common to both programs is the need to put a value on possible ecological effects of GMP cultivation. The structure of PMM presented here will be of assistance to industry, researchers, and regulators, when assessing GMPs during commercialization.

  3. Spacecraft design project: High latitude communications satellite

    NASA Technical Reports Server (NTRS)

    Josefson, Carl; Myers, Jack; Cloutier, Mike; Paluszek, Steve; Michael, Gerry; Hunter, Dan; Sakoda, Dan; Walters, Wes; Johnson, Dennis; Bauer, Terry

    1989-01-01

    The spacecraft design project was part of AE-4871, Advanced Spacecraft Design. The project was intended to provide experience in the design of all major components of a satellite. Each member of the class was given primary responsibility for a subsystem or design support function. Support was requested from the Naval Research Laboratory to augment the Naval Postgraduate School faculty. Analysis and design of each subsystem was done to the extent possible within the constraints of an eleven week quarter and the design facilities (hardware and software) available. The project team chose to evaluate the design of a high latitude communications satellite as representative of the design issues and tradeoffs necessary for a wide range of satellites. The High-Latitude Communications Satellite (HILACS) will provide a continuous UHF communications link between stations located north of the region covered by geosynchronous communications satellites, i.e., the area above approximately 60 N latitude. HILACS will also provide a communications link to stations below 60 N via a relay Net Control Station (NCS), which is located with access to both the HILACS and geosynchronous communications satellites. The communications payload will operate only for that portion of the orbit necessary to provide specified coverage.

  4. Conceptual design of fast-ignition laser fusion reactor FALCON-D

    NASA Astrophysics Data System (ADS)

    Goto, T.; Someya, Y.; Ogawa, Y.; Hiwatari, R.; Asaoka, Y.; Okano, K.; Sunahara, A.; Johzaki, T.

    2009-07-01

    A new conceptual design of the laser fusion power plant FALCON-D (Fast-ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast-ignition method can achieve sufficient fusion gain for a commercial operation (~100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5-6 m radius). 1D/2D simulations by hydrodynamic codes showed a possibility of achieving sufficient gain with a laser energy of 400 kJ, i.e. a 40 MJ target yield. The design feasibility of the compact dry wall chamber and the solid breeder blanket system was shown through thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. Moderate electric output (~400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall reactor concept not only reduces several difficulties associated with a liquid wall system but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance period. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R&D issues required for this design are also discussed.

  5. The Development of a Technical Conceptual Structure for the Concepts Possessed by Selected Quality Control Specialists. Report of a Research Project.

    ERIC Educational Resources Information Center

    Nee, John G.

    This project had as its specific objective the development and field testing of a procedure for identifying the structure of technical concepts possessed by a group of selected quality control specialists. The associative theory of verbal behavior served as the rationale by which conceptual structures depicted by graphical maps of technical…

  6. Designing and Implementing a Unique Website Design Project in an Undergraduate Course

    ERIC Educational Resources Information Center

    Kontos, George

    2016-01-01

    The following paper describes a distinctive collaborative service-learning project done in an undergraduate class on web design. In this project, students in a web design class contacted local community non-profit organizations to create websites (collections of web pages) to benefit these organizations. The two phases of creating a website,…

  7. The pre-conceptual design of the nuclear island of ASTRID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez, M.; Menou, S.; Uzu, B.

    The CEA is involved in a substantial effort on the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) pre-conceptual design in cooperation with EDF, as experienced Sodium-cooled Fast Reactor (SFR) operator, AREVA, as experienced SFR Nuclear Island engineering company and components designer, ALSTOM POWER as energy conversion system designer and COMEX NUCLEAIRE as mechanical systems designer. The CEA is looking for other partnerships, in France and abroad. The ASTRID preliminary design is based on a sodium-cooled pool reactor of 1500 MWth generating about 600 MWe, which is required to guarantee the representativeness of the reactor core and the main componentsmore » with regard to future commercial reactors. ASTRID lifetime target is 60 years. Two Energy Conversion Systems are studied in parallel until the end of 2012: Rankine steam cycle or Brayton gas based energy conversion cycle. ASTRID design is guided by the following major objectives: improved safety, simplification of structures, improved In Service Inspection and Repair (ISIR), improved manufacturing conditions for cost reduction and increased quality, reduction of risks related to sodium fires and water/sodium reaction, and improved robustness against external hazards. The core is supported by a diagrid, which lay on a strong back to transfer the weight to the main vessel. AREVA is involved in a substantial effort in order to improve the core support structure in particular regarding the ISIR and the connection to primary pump. In the preliminary design, the primary system is formed by the main vessel and the upper closure comprising the reactor roof, two rotating plugs - used for fuel handling - and the components plugs located in the roof penetrations. The Above Core Structure deflects the sodium flow in the hot pool and provides support to core instrumentation and guidance of the control rod drive mechanisms. The number of the major components in the main vessel, primary pumps

  8. Binding the Electronic Book: Design Features for Bibliophiles

    ERIC Educational Resources Information Center

    Ruecker, Stan; Uszkalo, Kirsten C.

    2007-01-01

    This paper proposes a design for the electronic book based on discussions with frequent book readers. We adopted a conceptual framework for this project consisting of a spectrum of possible designs, with the conventional bound book at one difference pole, and the laptop computer at the other; the design activity then consisted of appropriately…

  9. Integrating O/S models during conceptual design, part 1

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1994-01-01

    The University of Dayton is pleased to submit this report to the National Aeronautics and Space Administration (NASA), Langley Research Center, which integrates a set of models for determining operational capabilities and support requirements during the conceptual design of proposed space systems. This research provides for the integration of the reliability and maintainability (R&M) model, both new and existing simulation models, and existing operations and support (O&S) costing equations in arriving at a complete analysis methodology. Details concerning the R&M model and the O&S costing model may be found in previous reports accomplished under this grant (NASA Research Grant NAG1-1327). In the process of developing this comprehensive analysis approach, significant enhancements were made to the R&M model, updates to the O&S costing model were accomplished, and a new simulation model developed. This is the 1st part of a 3 part technical report.

  10. Conceptual design study: Cold water pipe systems for self-mounted OTEC powerplants

    NASA Astrophysics Data System (ADS)

    1981-02-01

    The conceptual design and installation aspects of cold water pipes (CWP) systems for shelf mounted OTEC power plants in Puerto Rico and Hawaii are considered. The CWP systems using Fiberglass Reinforced Plastic (FRP) and steel were designed; the FRP, can be controlled by varying the core thickness; and steel is used as a structural material in offshore applications. A marine railway approach was chosen for installation of the CWP. Two methods for pulling the track for the railway down the pipe fairway to its final location are presented. The track is permanently fastened to the sloping seabed with piles installed by a remotely controlled cart that rides on the track itself. Both the marine railway and the shelf mounted platform that houses the OTEC power plant require an anodic or equivalent corrosion protection system.

  11. Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant

    NASA Astrophysics Data System (ADS)

    Palermo, I.; Veredas, G.; Gómez-Ros, J. M.; Sanz, J.; Ibarra, A.

    2016-01-01

    Neutronic analyses or, more widely, nuclear analyses have been performed for the development of a dual-coolant He/LiPb (DCLL) conceptual design reactor. A detailed three-dimensional (3D) model has been examined and optimized. The design is based on the plasma parameters and functional materials of the power plant conceptual studies (PPCS) model C. The initial radial-build for the detailed model has been determined according to the dimensions established in a previous work on an equivalent simplified homogenized reactor model. For optimization purposes, the initial specifications established over the simplified model have been refined on the detailed 3D design, modifying material and dimension of breeding blanket, shield and vacuum vessel in order to fulfil the priority requirements of a fusion reactor in terms of the fundamental neutronic responses. Tritium breeding ratio, energy multiplication factor, radiation limits in the TF coils, helium production and displacements per atom (dpa) have been calculated in order to demonstrate the functionality and viability of the reactor design in guaranteeing tritium self-sufficiency, power efficiency, plasma confinement, and re-weldability and structural integrity of the components. The paper describes the neutronic design improvements of the DCLL reactor, obtaining results for both DEMO and power plant operational scenarios.

  12. Intertwining Lexical and Conceptual Learning Trajectories--A Design Research Study on Dual Macro-Scaffolding towards Percentages

    ERIC Educational Resources Information Center

    Pöhler, Birte; Prediger, Susanne

    2015-01-01

    Monolingual or multilingual students with low academic language proficiency need to acquire conceptual understanding for percentages and the language to communicate about them. The design research study explores how these two learning goals can be fostered by a macro-scaffolding approach for seventh grade students. The dual hypothetical learning…

  13. Conceptual Design of a Nano-Networking Device

    PubMed Central

    Canovas-Carrasco, Sebastian; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan

    2016-01-01

    Nanotechnology is an emerging scientific area whose advances, among many others, have a positive direct impact on the miniaturization of electronics. This unique technology enables the possibility to design and build electronic components as well as complete devices (called nanomachines or nanodevices) at the nano scale. A nanodevice is expected to be an essential element able to operate in a nanonetwork, where a huge number of them would coordinate to acquire data, process the information gathered, and wirelessly transmit those data to end-points providing innovative services in many key scenarios, such as the human body or the environment. This paper is aimed at studying the feasibility of this type of device by carefully examining their main component parts, namely the nanoprocessor, nanomemory, nanoantenna, and nanogenerator. To this end, a thorough state-of-the-art review is conveyed to discuss, substantiate, and select the most suitable current technology (commercial or pre-commercial) for each component. Then, we further contribute by developing a complete conceptual nanodevice layout taking into consideration its ultra-small size (similar to a blood cell) and its very restricted capabilities (e.g., processing, memory storage, telecommunication, and energy management). The required resources as well as the power consumption are realistically estimated. PMID:27973430

  14. Conceptual Design of a Nano-Networking Device.

    PubMed

    Canovas-Carrasco, Sebastian; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan

    2016-12-11

    Nanotechnology is an emerging scientific area whose advances, among many others, have a positive direct impact on the miniaturization of electronics. This unique technology enables the possibility to design and build electronic components as well as complete devices (called nanomachines or nanodevices) at the nano scale. A nanodevice is expected to be an essential element able to operate in a nanonetwork, where a huge number of them would coordinate to acquire data, process the information gathered, and wirelessly transmit those data to end-points providing innovative services in many key scenarios, such as the human body or the environment. This paper is aimed at studying the feasibility of this type of device by carefully examining their main component parts, namely the nanoprocessor, nanomemory, nanoantenna, and nanogenerator. To this end, a thorough state-of-the-art review is conveyed to discuss, substantiate, and select the most suitable current technology (commercial or pre-commercial) for each component. Then, we further contribute by developing a complete conceptual nanodevice layout taking into consideration its ultra-small size (similar to a blood cell) and its very restricted capabilities (e.g., processing, memory storage, telecommunication, and energy management). The required resources as well as the power consumption are realistically estimated.

  15. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  16. Improvements in Thermal Protection Sizing Capabilities for TCAT: Conceptual Design for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Izon, Stephen James

    2002-01-01

    The Thermal Calculation Analysis Tool (TCAT), originally developed for the Space Systems Design Lab at the Georgia Institute of Technology, is a conceptual design tool capable of integrating aeroheating analysis into conceptual reusable launch vehicle design. It provides Thermal Protection System (TPS) unit thicknesses and acreage percentages based on the geometry of the vehicle and a reference trajectory to be used in calculation of the total cost and weight of the vehicle design. TCAT has proven to be reasonably accurate at calculating the TPS unit weights for in-flight trajectories; however, it does not have the capability of sizing TPS materials above cryogenic fuel tanks for ground hold operations. During ground hold operations, the vehicle is held for a brief period (generally about two hours) during which heat transfer from the TPS materials to the cryogenic fuel occurs. If too much heat is extracted from the TPS material, the surface temperature may fall below the freezing point of water, thereby freezing any condensation that may be present at the surface of the TPS. Condensation or ice on the surface of the vehicle is potentially hazardous to the mission and can also damage the TPS. It is questionable whether or not the TPS thicknesses provided by the aeroheating analysis would be sufficiently thick to insulate the surface of the TPS from the heat transfer to the fuel. Therefore, a design tool has been developed that is capable of sizing TPS materials at these cryogenic fuel tank locations to augment TCAT's TPS sizing capabilities.

  17. V/STOL tilt rotor aircraft study. Volume 1: Conceptual design of useful military and/or commercial aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The conceptual designs of four useful tilt-rotor aircraft for the 1975 to 1980 time period are presented. Parametric studies leading to design point selection are described, and the characteristics and capabilities of each configuration are presented. An assessment is made of current technology status, and additional tilt-rotor research programs are recommended to minimize the time, cost, and risk of development of these vehicles.

  18. Concurrent Design used in the Design of Space Instruments

    NASA Technical Reports Server (NTRS)

    Oxnevad, Knut I.

    1998-01-01

    At the Project Design Center at the Jet Propulsion Laboratory, a concurrent design environment is under development for supporting development and analyses of space instruments in the early, conceptual design phases. This environment is being utilized by a Team I, a multidisciplinary group of experts. Team I is providing study and proposal support. To provide the required support, the Team I concurrent design environment features effectively interconnected high-end optics, CAD, and thermal design and analysis tools. Innovative approaches for linking tools, and for transferring files between applications have been implemented. These approaches together with effective sharing of geometry between the optics, CAD, and thermal tools are already showing significant timesavings.

  19. Iowa satellite project ISAT-1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Satellite systems to date have been mainly scientific in nature. Only a few systems have been of direct use to the public such as for telephone or television transmission. Space enterprises have remained a mystery to the general public and beyond the reach of the small business community. The result is a less than supportive public when it comes to space activities. The purpose of the ISAT-1 program is to develop a small and relatively inexpensive satellite that will serve the State of Iowa, primarily for educational purposes. It will provide products, services, and activities that will be educational, practical, and useful for a large number for people. The emphasis is on public awareness, 'space literacy', and routine practical applications rather than high technology. The initial conceptual design phase was complete when the current team took over the project. Some areas of the conceptual design were taken a little farther, but for the most part this team started at the detailed design stage.

  20. Low Level Waste Conceptual Design Adaption to Poor Geological Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, J.; Drimmer, D.; Giovannini, A.

    2002-02-26

    Since the early eighties, several studies have been carried out in Belgium with respect to a repository for the final disposal of low-level radioactive waste (LLW). In 1998, the Belgian Government decided to restrict future investigations to the four existing nuclear sites in Belgium or sites that might show interest. So far, only two existing nuclear sites have been thoroughly investigated from a geological and hydrogeological point of view. These sites are located in the North-East (Mol-Dessel) and in the mid part (Fleurus-Farciennes) of the country. Both sites have the disadvantage of presenting poor geological and hydrogeological conditions, which aremore » rather unfavorable to accommodate a surface disposal facility for LLW. The underground of the Mol-Dessel site consists of neogene sand layers of about 180 m thick which cover a 100 meters thick clay layer. These neogene sands contain, at 20 m depth, a thin clayey layer. The groundwater level is quite close to the surface (0-2m) and finally, the topography is almost totally flat. The upper layer of the Fleurus-Farciennes site consists of 10 m silt with poor geomechanical characteristics, overlying sands (only a few meters thick) and Westphalian shales between 15 and 20 m depth. The Westphalian shales are tectonized and strongly weathered. In the past, coal seams were mined out. This activity induced locally important surface subsidence. For both nuclear sites that were investigated, a conceptual design was made that could allow any unfavorable geological or hydrogeological conditions of the site to be overcome. In Fleurus-Farciennes, for instance, the proposed conceptual design of the repository is quite original. It is composed of a shallow, buried concrete cylinder, surrounded by an accessible concrete ring, which allows permanent inspection and control during the whole lifetime of the repository. Stability and drainage systems should be independent of potential differential settlements an d subsidences

  1. Oak Ridge Spallation Neutron Source (ORSNS) target station design integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamy, T.; Booth, R.; Cleaves, J.

    1996-06-01

    The conceptual design for a 1- to 3-MW short pulse spallation source with a liquid mercury target has been started recently. The design tools and methods being developed to define requirements, integrate the work, and provide early cost guidance will be presented with a summary of the current target station design status. The initial design point was selected with performance and cost estimate projections by a systems code. This code was developed recently using cost estimates from the Brookhaven Pulsed Spallation Neutron Source study and experience from the Advanced Neutron Source Project`s conceptual design. It will be updated and improvedmore » as the design develops. Performance was characterized by a simplified figure of merit based on a ratio of neutron production to costs. A work breakdown structure was developed, with simplified systems diagrams used to define interfaces and system responsibilities. A risk assessment method was used to identify potential problems, to identify required research and development (R&D), and to aid contingency development. Preliminary 3-D models of the target station are being used to develop remote maintenance concepts and to estimate costs.« less

  2. A conceptual design study for a two-dimensional, electronically scanned thinned array radiometer

    NASA Technical Reports Server (NTRS)

    Mutton, Philip; Chromik, Christopher C.; Dixon, Iain; Statham, Richard B.; Stillwagen, Frederic H.; Vontheumer, Alfred E.; Sasamoto, Washito A.; Garn, Paul A.; Cosgrove, Patrick A.; Ganoe, George G.

    1993-01-01

    A conceptual design for the Two-Dimensional, Electronically Steered Thinned Array Radiometer (ESTAR) is described. This instrument is a synthetic aperture microwave radiometer that operates in the L-band frequency range for the measurement of soil moisture and ocean salinity. Two auxiliary instruments, an 8-12 micron, scanning infrared radiometer and a 0.4-1.0 micron, charge coupled device (CCD) video camera, are included to provided data for sea surface temperature measurements and spatial registration of targets respectively. The science requirements were defined by Goddard Space Flight Center. Instrument and the spacecraft configurations are described for missions using the Pegasus and Taurus launch vehicles. The analyses and design trades described include: estimations of size, mass and power, instrument viewing coverage, mechanical design trades, structural and thermal analyses, data and communications performance assessments, and cost estimation.

  3. Project Management in Instructional Design: ADDIE Is Not Enough

    ERIC Educational Resources Information Center

    Van Rooij, Shahron Williams

    2010-01-01

    In the digital age, instructional designers must possess both a sound instructional design knowledge base and solid project management skills that will enable them to complete courseware projects on time, on budget and in conformance with client expectations. Project management skills include the ability to apply repeatable processes, along with…

  4. IPMC-driven thrust generation: a new conceptual design (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Olsen, Zakai; Kim, Kwang Jin

    2017-04-01

    Ionic Polymer-Metal Composites (IPMC) are highly functional actuators that find many uses in the field of soft robotics due to their low actuation voltage and ability to operate in aquatic environments. The actuation of an IPMC relies on the swelling of the negatively charged side when a potential is applied, due to the free-moving cations and water molecules migrating to that half. While this bending type actuation can be utilized to perform many tasks, it is ill suited for the primary propulsion mechanism in certain soft robotic applications. Here, a new conceptual design is presented which utilizes the bending of IPMC materials to achieve complex actuation motion in an attempt to generate a non-zero net thrust for propulsion of soft robots. The design capitalizes on advances in the manufacturing processes of electroactive polymer materials, which now allow for more complex shapes and thus new and unique modes of actuation. By utilizing the consistent bending deformation of IPMC actuators, in conjunction with carefully considered geometry, an IPMC driven body may serve as a primary mode of propulsion through a positive net thrust generation. This work consists of the initial feasibility study, concept testing, and optimization for such an actuator through computer modeling and simulation. COMSOL will be used for the finite element analysis to design the most efficient and optimized design for a positive net thrust generation. Such an IPMC design may find a great deal of applications, and the potential of future integration into other soft robotic systems is considered.

  5. Integrating principles and multidisciplinary projects in design education

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1992-01-01

    The critical need to improve engineering design education in the U.S. is presented and a number of actions to achieve that end are discussed. The importance of teaching undergraduates the latest methods and principles through the means of team design in multidisciplinary projects leading to a testable product is emphasized. Desirable training for design instructors is described and techniques for selecting and managing projects that teach effectively are discussed.

  6. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  7. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA's current Fundamental Aeronautics research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today's aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA's aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  8. Conceptual Design of Fertilizer Applicator for Oil Palm on Terrace Cultivation

    NASA Astrophysics Data System (ADS)

    Hermawan, W.

    2018-05-01

    The mechanical application of fertilizer for oil palm planted on terraces is still constrained by the narrow path which is difficult to pass by a power spreader. The objective of this research was to develop a conceptual design of fertilizer applicator for oil palm planted on terraces. The design requirements were developed based on a) terrace and track conditions, b) fertilizers and fertilization conditions, c) available prime movers, and d) user needs. Five design concepts were obtained: 1) an applicator with left and right arms to distribute the fertilizer, 2) an all-terrain vehicle equipped with a manually operated fertilizer injector, 3) an applicator equipped with a hole digger, 4) an applicator equipped with a shovel, and 5) an applicator equipped with a rotary tiller. The concepts were evaluated and compared with the current power spreader. The evaluation results showed that the applicator equipped with a rotary tiller had the most advantages on the expected criteria. The final design concept uses a 110 cm wide mini crawler tractor as the prime mover and is equipped with a hopper and a spinner disk for metering and conveying the fertilizer, and a 20 cm wide rotary tiller in the front of the machine.

  9. Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA report no. 6

    NASA Astrophysics Data System (ADS)

    Engen, I. A.

    1981-11-01

    This feasibility study and preliminary conceptual design effect assesses the conversion of a high school and gym, and a middle school building to geothermal space heating is assessed. A preliminary cost benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 1500F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system compatible components are used for the building modifications. Asbestos cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates.

  10. Conceptual Thermal Treatment Technologies Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suer, A.

    1996-02-28

    This report presents a conceptual Thermal Treatment Technologies Feasibility Study (FS) for the Savannah River Site (SRS) focusing exclusively on thermal treatment technologies for contaminated soil, sediment, or sludge remediation projects.

  11. Project HealthDesign: enhancing action through information.

    PubMed

    Brennan, Patricia Flatley; Casper, Gail; Downs, Stephen; Aulahk, Veenu

    2009-01-01

    Project HealthDesign is a country-wide initiative in the United States designed to stimulate innovation in personal health records (PHRs). Nine grantee teams engaged in an 18-month long design and prototyping process. Two teams addressed the needs of children and adolescents; three created novel approaches to help adults prevent or manage metabolic syndrome; three groups employed interface innovations to assist patients with chronic care management and one team devised a novel calendaring system to assist patients undergoing complex medical/surgical treatments to integrate care processes into their daily lives. These projects not only included development and testing of novel personal health records applications, but also served as the starting point to specify and implement a common technical core platform. The project advanced PHR development in two key ways: intensive user-centered design and a development architecture that separates applications of PHRs from the infrastructure that supports them. The initiative also allowed systematic investigation of significant ethical, legal and social issues, including how privacy considerations are changed when information technology innovations are used in the home and the rebalancing of the authority structure of health care decision making when patient-centered approaches guide the design of PHRs.

  12. A Symbiosis between Instructional Systems Design and Project Management

    ERIC Educational Resources Information Center

    Pan, Cheng-Chang

    2012-01-01

    This study is intended to explore a complementary relationship between instructional systems design (ISD) and project management in an attempt to build a plausible case for integrating project management as a distinct course in the core of the graduate instructional systems design programs. It is argued that ISD and project management should form…

  13. Conceptual framework of the Controlling Asthma in American Cities Project.

    PubMed

    Herman, Elizabeth Jane

    2011-02-01

    The Controlling Asthma in American Cities Project (CAACP) was designed to improve the control of asthma in inner-city populations of children with a disparate burden of symptoms and adverse outcomes. As with many chronic diseases, asthma is the manifestation of multiple biologic, environmental, and social determinants. In addition to appropriate medical management, individuals with asthma must have logistical, financial, and cultural access to environments that allow avoidance of asthma triggers and encourage good asthma management practices. In recognition of this complexity, the CAACP required the seven project sites to coordinate and synchronize multiple interventions (education, healthcare access, medical management, trigger reduction) at multiple levels (individual, home, school, community, and policy) through the collaboration of relevant groups, institutions, and individuals. This paper describes the "program theory" of the CAACP project-the assumptions about how the project worked, how the components were linked, and what outcomes were anticipated. It relates the subsequent papers in the supplement to the program theory and describes how the papers can inform and guide other community-based interventions, and advance the translation of scientific knowledge to effective interventions in communities of need.

  14. Conceptual design of Dipole Research Experiment (DREX)

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  15. Constructions for Children: Projects in Design Technology.

    ERIC Educational Resources Information Center

    Eichelberger, Barbara; Larson, Connie

    This book helps children develop the capability and confidence to design, construct, and evaluate working models. Projects in this book are suitable for students in grades K-4, but may be adapted for older students. Step-by-step explanations for each project are meant as guidelines and completion of the project is not limited to a single correct…

  16. Status of ITER Cryodistribution and Cryoline project

    NASA Astrophysics Data System (ADS)

    Sarkar, B.; Vaghela, H.; Shah, N.; Bhattacharya, R.; Choukekar, K.; Patel, P.; Kapoor, H.; Srinivasa, M.; Chang, H. S.; Badgujar, S.; Monneret, E.

    2017-02-01

    The system of ITER Cryodistribution (CD) and Cryolines (CLs) is an integral interface between the Cryoplant systems and the superconducting (SC) magnets as well as Cryopumps (CPs). The project has progressed from the conceptual stage to the industrial stage. The subsystems are at various stages of design as defined by the project, namely, preliminary design, final design and formal reviews. Significant progresses have been made in the prototypes studies and design validations, such as the CL and cold circulators. While one of the prototype CL is already tested, the other one is in manufacturing phase. Performance test of two cold circulators have been completed. Design requirements are unique due the complexity arising from load specifications, layout constraints, regulatory compliance, operating conditions as well as several hundred interfaces. The present status of the project in terms of technical achievements, implications of the changes and the technical management as well as the risk assessment and its mitigation including path forward towards realization is described.

  17. Hypersonic airbreathing vehicle conceptual design (focus on aero-space plane)

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Martin, John G.

    1989-01-01

    The airbreathing single stage to orbit (SSTO) vehicle design environment is variable-rich, intricately networked and sensitivity intensive. As such, it represents a tremondous technology challenge. Creating a viable design will require sophisticated configuration/synthesis and the synergistic integration of advanced technologies across the discipline spectrum. In design exercises, reductions in the fuel weight-fraction requirements projected for an orbital vehicle concept can result from improvements in aerodynamics/controls, propulsion efficiencies and trajectory optimization; also, gains in the fuel weight-fraction achievable for such a concept can result from improvements in structural design, heat management techniques, and material properties. As these technology advances take place, closure on a viable vehicle design will be realizable.

  18. The Northeast Ghana Savannah Project--A Case Study in Project Design.

    ERIC Educational Resources Information Center

    Matlock, W. Gerald; Johnson, Jack D.

    This report examines a project design for land degradation problems in the northern and upper regions of Ghana. The project was jointly sponsored by the Ghana Council for Scientific and Industrial Research and the Agency for International Development. The council is responsible for coordinating the activities of 10 independent research institutes.…

  19. THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-07-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysismore » production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been

  20. 40 CFR 35.2036 - Design/build project grants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Design/build project grants. 35.2036 Section 35.2036 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2036 Design/build project grants. (a) Terms and conditions. The...

  1. Summary of 1989 - 1990 aeronautics design projects

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Four design projects were completed at Auburn University this year under the sponsorship of the NASA/Universities Space Research Association Advanced Design Program. The topics discussed are the design of a high speed civil transport; the design of a 79 passenger, high efficiency, commercial transport; the design of a low cost short takeof vertical landing export fighter; and the design of an ozone monitoring vehicle.

  2. Was It Designed to Do That? Children's Focus on Intended Function in Their Conceptualization of Artifacts

    ERIC Educational Resources Information Center

    Asher, Yvonne M.; Kemler Nelson, Deborah G.

    2008-01-01

    Do young children who seek the conceptual kind of an artifact weigh the plausibility that a current function constitutes the function intended by the object designer? Three- and four-year-olds were encouraged to question adults about novel artifacts. After inquiring about what an object was, some children were shown a function that plausibly…

  3. Conceptual Design and Analysis of Cold Mass Support of the CS3U Feeder for the ITER

    NASA Astrophysics Data System (ADS)

    Zhu, Yinfeng; Song, Yuntao; Zhang, Yuanbin; Wang, Zhongwei

    2013-06-01

    In the International Thermonuclear Experimental Reactor (ITER) project, the feeders are one of the most important and critical systems. To convey the power supply and the coolant for the central solenoid (CS) magnet, 6 sets of CS feeders are employed, which consist mainly of an in-cryostat feeder (ICF), a cryostat feed-through (CFT), an S-bend box (SBB), and a coil terminal box (CTB). To compensate the displacements of the internal components of the CS feeders during operation, sliding cold mass supports consisting of a sled plate, a cylindrical support, a thermal shield, and an external ring are developed. To check the strength of the developed cold mass supports of the CS3U feeder, electromagnetic analysis of the two superconducting busbars is performed by using the CATIA V5 and ANSYS codes based on parametric technology. Furthermore, the thermal-structural coupling analysis is performed based on the obtained results, except for the stress concentration, and the max. stress intensity is lower than the allowable stress of the selected material. It is found that the conceptual design of the cold mass support can satisfy the required functions under the worst case of normal working conditions. All these performed activities will provide a firm technical basis for the engineering design and development of cold mass supports.

  4. IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft

    NASA Technical Reports Server (NTRS)

    Ferebee, M. J., Jr.

    1984-01-01

    During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.

  5. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 1: Executive summary. Phase A: Conceptual design and programmatics

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The study was conducted in 3 parts over a 3 year period. The study schedule and the documentation associated with each study part is given. This document summarized selected study results from the conceptual design and programmatics segment of the effort. The objectives were: (1) to update requirements and tradeoffs and develop a detailed design and mission requirements document; (2) to develop conceptual designs and mission descriptions; and (3) to develop programmatic, i.e., work breakdown structure and work breakdown structure dictionary, estimated cost, and implementing plans and schedules.

  6. ART/Ada design project, phase 1. Task 1 report: Overall design

    NASA Technical Reports Server (NTRS)

    Allen, Bradley P.

    1988-01-01

    The design methodology for the ART/Ada project is introduced, and the selected design for ART/Ada is described in detail. The following topics are included: object-oriented design, reusable software, documentation techniques, impact of Ada, design approach, and differences between ART-IM 1.5 and ART/Ada 1.0 prototype. Also, Ada generator and ART/Ada runtime systems are discussed.

  7. Overview of Conceptual Design of Early VentureStar(TM) Configurations

    NASA Technical Reports Server (NTRS)

    Lockwood, M. K.

    2000-01-01

    One of NASA's goals is to enable commercial access to space at a cost of $1000/lb (an order of magnitude less than today's cost) by approximately 2010. Based on results from the 1994 Congressionally mandated, NASA led, Access-to-Space Study, an all rocket-powered single-stage-to-orbit reusable launch vehicle was, selected as the best option for meeting the goal. To address the technology development issues and the follow-on development of an operational vehicle, NASA initiated the X-33 program. The focus of this paper is on the contributions made by the NASA Langley Research Center (LaRC), from 1997-1998, to the conceptual design of the Lockheed Martin Skunk Work's (LMSW) operational reusable single-stage-to-orbit VentureStar(sup TM) vehicle. The LaRC effort has been in direct support of LMSW and NASA Marshall Space Flight Center (MSFC). The primary objectives have been to reduce vehicle dry weight and improve flyability of the VentureStar(sup TM) concepts. This paper will briefly describe the analysis methods used and will present several of the concepts analyzed and design trades completed.

  8. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  9. Conceptual Commitments of AGI Systems: Editorial, Commentaries, and Response

    NASA Astrophysics Data System (ADS)

    2013-06-01

    Editorial: Conceptual Commitments of AGI Systems Haris Dindo / James Marshall / Giovanni Pezzulo 23 General Problems of Unified Theories of Cognition, and Another Conceptual Commitment of LIDA Benjamin Angerer / Stefan Schneider 26 LIDA, Committed to Consciousness Antonio Chella 28 The Radical Interactionism Conceptual Commitment Olivier L. Georgeon / David W. Aha 31 Commitments of the Soar Cognitive Architecture John E. Laird 36 Conceptual Commitments of AGI Projects Pei Wang 39 Will (dis)Embodied LIDA Agents be Socially Interactive? Travis J. Wiltshire / Emilio J. C. Lobato / Florian G. Jentsch / Stephen M. Fiore 42 Author's Response to Commentaries Steve Strain / Stan Franklin 48

  10. Student design projects in applied acoustics.

    PubMed

    Bös, Joachim; Moritz, Karsten; Skowronek, Adam; Thyes, Christian; Tschesche, Johannes; Hanselka, Holger

    2012-03-01

    This paper describes a series of student projects which are intended to complement theoretical education in acoustics and engineering noise control with practical experience. The projects are also intended to enhance the students' ability to work in a team, to manage a project, and to present their results. The projects are carried out in close cooperation with industrial partners so that the students can get a taste of the professional life of noise control engineers. The organization of such a project, its execution, and some of the results from the most recent student project are presented as a demonstrative example. This latest project involved the creation of noise maps of a production hall, the acoustic analysis of a packaging machine, and the acoustic analysis of a spiral vibratory conveyor. Upon completion of the analysis, students then designed, applied, and verified some simple preliminary noise reduction measures to demonstrate the potential of these techniques. © 2012 Acoustical Society of America

  11. Rethinking the architectural design concept in the digital culture (in architecture's practice perspective)

    NASA Astrophysics Data System (ADS)

    Prawata, Albertus Galih

    2017-11-01

    The architectural design stages in architectural practices or in architectural design studio consist of many aspects. One of them is during the early phases of the design process, where the architects or designers try to interpret the project brief into the design concept. This paper is a report of the procedure of digital tools in the early design process in an architectural practice in Jakarta. It targets principally the use of BIM and digital modeling to generate information and transform them into conceptual forms, which is not very common in Indonesian architectural practices. Traditionally, the project brief is transformed into conceptual forms by using sketches, drawings, and physical model. The new method using digital tools shows that it is possible to do the same thing during the initial stage of the design process to create early architectural design forms. Architect's traditional tools and methods begin to be replaced effectively by digital tools, which would drive bigger opportunities for innovation.

  12. Conceptual design of the 6 MW Mod-5A wind turbine generator

    NASA Technical Reports Server (NTRS)

    Barton, R. S.; Lucas, W. C.

    1982-01-01

    The General Electric Company, Advanced Energy Programs Department, is designing under DOE/NASA sponsorship the MOD-5A wind turbine system which must generate electricity for 3.75 cent/KWH (1980) or less. During the Conceptual Design Phase, completed in March, 1981, the MOD-5A WTG system size and features were established as a result of tradeoff and optimization studies driven by minimizing the system cost of energy (COE). This led to a 400' rotor diameter size. The MOD-5A system which resulted is defined in this paper along with the operational and environmental factors that drive various portions of the design. Development of weight and cost estimating relationships (WCER's) and their use in optimizing the MOD-5A are discussed. The results of major tradeoff studies are also presented. Subsystem COE contributions for the 100th unit are shown along with the method of computation. Detailed descriptions of the major subsystems are given, in order that the results of the various trade and optimization studies can be more readily visualized.

  13. Conceptual design of free-piston Stirling conversion system for solar power units

    NASA Astrophysics Data System (ADS)

    Loktionov, Iu. V.

    A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.

  14. Evaluation in Cross-Cultural Contexts: Proposing a Framework for International Education and Training Project Evaluations.

    ERIC Educational Resources Information Center

    bin Yahya, Ismail; And Others

    This paper focuses on the need for increased sensitivity and responsiveness in international education and training project evaluations, particularly those in Third World countries. A conceptual-theoretical framework for designing and developing models appropriate for evaluating education and training projects in non-Western cultures is presented.…

  15. An experimental 20/30 GHz communications satellite conceptual design employing multiple-beam paraboloid reflector antennas

    NASA Technical Reports Server (NTRS)

    Goldman, A. M., Jr.

    1980-01-01

    An experimental 20/30 GHz communications satellite conceptual design is described which employs multiple-beam paraboloid reflector antennas coupled to a TDMA transponder. It is shown that the satellite employs solid state GaAs FET power amplifiers and low noise amplifiers while signal processing and switching takes place on-board the spacecraft. The proposed areas to be served by this satellite would be the continental U.S. plus Alaska, Hawaii, Puerto Rico, and the Virgin Islands, as well as southern Canada and Mexico City. Finally, attention is given to the earth stations which are designed to be low cost.

  16. Spacecraft Conceptual Design for Returning Entire Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Oleson, Steve

    2012-01-01

    In situ resource utilization (ISRU) in general, and asteroid mining in particular are ideas that have been around for a long time, and for good reason. It is clear that ultimately human exploration beyond low-Earth orbit will have to utilize the material resources available in space. Historically, the lack of sufficiently capable in-space transportation has been one of the key impediments to the harvesting of near-Earth asteroid resources. With the advent of high-power (or order 40 kW) solar electric propulsion systems, that impediment is being removed. High-power solar electric propulsion (SEP) would be enabling for the exploitation of asteroid resources. The design of a 40-kW end-of-life SEP system is presented that could rendezvous with, capture, and subsequently transport a 1,000-metric-ton near-Earth asteroid back to cislunar space. The conceptual spacecraft design was developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at the Glenn Research Center in collaboration with the Keck Institute for Space Studies (KISS) team assembled to investigate the feasibility of an asteroid retrieval mission. Returning such an object to cislunar space would enable astronaut crews to inspect, sample, dissect, and ultimately determine how to extract the desired materials from the asteroid. This process could jump-start the entire ISRU industry.

  17. Task 6 -- Advanced turbine systems program conceptual design and product development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-10

    The Allison Engine Company has completed the Task 6 Conceptual Design and Analysis of Phase 2 of the Advanced Turbine System (ATS) contract. At the heart of Allison`s system is an advanced simple cycle gas turbine engine. This engine will incorporate components that ensure the program goals are met. Allison plans to commercialize the ATS demonstrator and market a family of engines incorporating this technology. This family of engines, ranging from 4.9 MW to 12 MW, will be suitable for use in all industrial engine applications, including electric power generation, mechanical drive, and marine propulsion. In the field of electricmore » power generation, the engines will be used for base load, standby, cogeneration, and distributed generation applications.« less

  18. Hot rocket plume experiment - Survey and conceptual design. [of rhenium-iridium bipropellants

    NASA Technical Reports Server (NTRS)

    Millard, Jerry M.; Luan, Taylor W.; Dowdy, Mack W.

    1992-01-01

    Attention is given to a space-borne engine plume experiment study to fly an experiment which will both verify and quantify the reduced contamination from advanced rhenium-iridium earth-storable bipropellant rockets (hot rockets) and provide a correlation between high-fidelity, in-space measurements and theoretical plume and surface contamination models. The experiment conceptual design is based on survey results from plume and contamination technologists throughout the U.S. With respect to shuttle use, cursory investigations validate Hitchhiker availability and adaptability, adequate remote manipulator system (RMS) articulation and dynamic capability, acceptable RMS attachment capability, adequate power and telemetry capability, and adequate flight altitude and attitude/orbital capability.

  19. A flexible computer aid for conceptual design based on constraint propagation and component-modeling. [of aircraft in three dimensions

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1988-01-01

    The Rubber Airplane program, which combines two symbolic processing techniques with a component-based database of design knowledge, is proposed as a computer aid for conceptual design. Using object-oriented programming, programs are organized around the objects and behavior to be simulated, and using constraint propagation, declarative statements designate mathematical relationships among all the equation variables. It is found that the additional level of organizational structure resulting from the arrangement of the design information in terms of design components provides greater flexibility and convenience.

  20. Conceptual design of a 1-MW CW X-band transmitter for planetary radar

    NASA Technical Reports Server (NTRS)

    Bhanji, A. M.; Hoppe, D. J.; Conroy, B. L.; Freiley, A. J.

    1988-01-01

    A proposed conceptual design to increase the output power of an existing X-band radar transmitter used for planetary radar exploration from 365 kW to 1 MW CW is presented. The basic transmitter system requirements as dictated by the specifications for the radar are covered. The characteristics and expected performance of the high-power klystrons are considered, and the transmitter power amplifier system is described. Also included is the design of all of the associated high-power microwave components, the feed system, and the phase-stable exciter. The expected performance of the beam supply, heat exchanger, and monitor and control devices is also presented. Finally, an assessment of the state-of-the-art technology needed to meet system requirements is given and possible areas of difficulty are summarized.

  1. Conceptual design of a 1-MW CW X-band transmitter for planetary radar

    NASA Technical Reports Server (NTRS)

    Bhanji, A. M.; Hoppe, D. J.; Conroy, B. L.; Freiley, A. J.

    1990-01-01

    A proposed conceptual design to increase the output power of an existing X-band planetary radar transmitter used for planetary radar exploration from 365 kW to 1 MW CW is presented. The basic transmitter system requirements as dictated by the specifications for the radar are covered. The characteristics and expected performance of the high-power klystrons are considered, and the transmitter power amplifier system is discussed. Also included is the design of all of the associated high-power microwave components, the feed system, and the phase-stable exciter. The expected performance of the beam supply, heat exchanger, and monitor and control devices is also presented. Finally, an assessment of the state-of-the-art technology needed to meet system requirements is given and possible areas of difficulty are summarized.

  2. Conceptual Design Standards for eXternal Visibility System (XVS) Sensor and Display Resolution

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Wilz, Susan J.; Arthur, Jarvis J, III

    2012-01-01

    NASA is investigating eXternal Visibility Systems (XVS) concepts which are a combination of sensor and display technologies designed to achieve an equivalent level of safety and performance to that provided by forward-facing windows in today s subsonic aircraft. This report provides the background for conceptual XVS design standards for display and sensor resolution. XVS resolution requirements were derived from the basis of equivalent performance. Three measures were investigated: a) human vision performance; b) see-and-avoid performance and safety; and c) see-to-follow performance. From these three factors, a minimum but perhaps not sufficient resolution requirement of 60 pixels per degree was shown for human vision equivalence. However, see-and-avoid and see-to-follow performance requirements are nearly double. This report also reviewed historical XVS testing.

  3. Authentic Oral Language Production and Interaction in CALL: An Evolving Conceptual Framework for the Use of Learning Analytics within the SpeakApps Project

    ERIC Educational Resources Information Center

    Nic Giolla Mhichíl, Mairéad; van Engen, Jeroen; Ó Ciardúbháin, Colm; Ó Cléircín, Gearóid; Appel, Christine

    2014-01-01

    This paper sets out to construct and present the evolving conceptual framework of the SpeakApps projects to consider the application of learning analytics to facilitate synchronous and asynchronous oral language skills within this CALL context. Drawing from both the CALL and wider theoretical and empirical literature of learner analytics, the…

  4. Self-unloading, unmanned, reusable lunar lander project

    NASA Technical Reports Server (NTRS)

    Cowan, Kevin; Lewis, Ron; Mislinski, Philip; Rivers, Donna; Smith, Solar; Vasicek, Clifford; Verona, Matt

    1991-01-01

    A payload delivery system will be required to support the buildup and operation of a manned lunar base. In response, a self-unloading, unmanned, reusable lunar lander was conceptually designed. The lander will deliver a 7000 kg payload, with the same dimensions as a space station logistics module, from low lunar orbit to any location on the surface of the moon. The technical aspects of the design is introduced as well as the management structure and project cost.

  5. The magnet designation process: a qualitative approach using Donabedian's conceptual framework.

    PubMed

    Upenieks, Valda V; Abelew, Sheryl

    2006-01-01

    Twelve nurse leaders and 12 registered nurses from 2 hospitals were interviewed to gain an understanding on the process for preparing for magnet designation. These leaders and nurses provided insight into whether a cultural shift within the organization was occurring while striving for magnet designation and the level of staff nurses' engagement during the process. Donabedian's framework provided the conceptual context for this study. According to Donabedian, stable organizational structures will influence professional nursing processes and result in better outcomes as measured by magnet status. The authors discuss how a magnet culture is achieved when structural factors such as adequate staffing and pay are present before building the processes, as well as the ways certain ingredients such as professional governance councils need to be primed to achieve the desired magnet outcome. However, transforming the culture into a "valued-practice" magnet organization entails a paradigm shift marked by the willingness to share information and the depth and breadth of commitment toward staff engagement in fulfilling the mission of a culture that truly values nursing expertise.

  6. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    USGS Publications Warehouse

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  7. The Pan American Health Organization and international health: a history of training, conceptualization, and collective development.

    PubMed

    Auer, Annella; Guerrero Espinel, Juan Eduardo

    2011-08-01

    A constantly changing and increasingly complex global environment requires leaders with special competencies to respond effectively to this scenario. Within this context, the Pan American Health Organization (PAHO) goes beyond traditional leadership training models both in terms of its design as well as its conceptual approach to international health. As an intergovernmental, centenary organization in health, PAHO allows participants a unique vantage point from which to conceptualize, share experiences and develop projects relevant to international health. Derived from over two decades of experience (1985-2006) training professionals through its predessor Training Program in International Health, the Leaders in International Health Program "Edmundo Granda Ugalde" (LIHP) utilizes an innovative design, virtual and practical learning activities, and a problem-based approach to analyze the main concepts, theories, actors, forces, and processes relevant to international health. In collaboration with PAHO/WHO Representative Offices and national institutions, participants develop country projects based on priority health issues, many of which are integrated into the Organization's technical cooperation and/or implemented by relevant ministries and other entities in their respective countries/subregions. A total of 185 participants representing 31 countries have participated in the LIHP since its inception in 2008, building upon the 187 trained through its predecessor. These initiatives have contributed to the development of health professionals in the Region of the Americas devoted to international health, as well as provided important input towards a conceptual understanding of international health by fostering debate on this issue.

  8. Conceptual design of a Moving Belt Radiator (MBR) shuttle-attached experiment

    NASA Technical Reports Server (NTRS)

    Aguilar, Jerry L.

    1990-01-01

    The conceptual design of a shuttle-attached Moving Belt Radiator (MBR) experiment is presented. The MBR is an advanced radiator concept in which a rotating belt is used to radiate thermal energy to space. The experiment is developed with the primary focus being the verification of the dynamic characteristics of a rotating belt with a secondary objective of proving the thermal and sealing aspects in a reduced gravity, vacuum environment. The mechanical design, selection of the belt material and working fluid, a preliminary test plan, and program plan are presented. The strategy used for selecting the basic sizes and materials of the components are discussed. Shuttle and crew member requirements are presented with some options for increasing or decreasing the demands on the STS. An STS carrier and the criteria used in the selection process are presented. The proposed carrier for the Moving Belt Radiator experiment is the Hitchhiker-M. Safety issues are also listed with possible results. This experiment is designed so that a belt can be deployed, run at steady state conditions, run with dynamic perturbations imposed, verify the operation of the interface heat exchanger and seals, and finally be retracted into a stowed position for transport back to earth.

  9. The Camp Hill Project: Objectives and Design

    ERIC Educational Resources Information Center

    Mattingly, John B.

    1976-01-01

    Available from: EC 090 474. Outlined are the problems and objectives of Pennsylvania's Camp Hill Project--a program designed to complete psychological needs assessments for juveniles incarcerated at Camp Hill, to develop project policies and guidelines in preparation for meeting with juvenile court judges, and to hire staff. (SBH)

  10. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  11. Conceptual Design of a Tiltrotor Transport Flight Deck

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Dugan, Daniel C.; Simmons, Rickey C.; Tucker, George E.; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    A tiltrotor transport has considerable potential as a regional transport, increasing the air transportation system capacity by off-loading conventional runways. Such an aircraft will have a flight deck suited to its air transportation task and adapted to unique urban vertiport operating requirements. Such operations are likely to involve steep, slow instrument approaches for vertical and extremely short rolling take-offs and landings. While much of a tiltrotor transport's operations will be in common with commercial fixed-wing operations, terminal area operations will impose alternative flight deck design solutions. Control systems, displays and guidance, and control inceptors must be tailored to both routine and emergency vertical flight operations. This paper will survey recent experience with flight deck design elements suitable to a tiltrotor transport and will propose a conceptual cockpit design for such an aircraft. A series of piloted simulations using the NASA Ames Vertical Motion Simulator have investigated cockpit design elements and operating requirements for tiltrotor transports operating into urban vertiports. These experiments have identified the need for a flight director or equivalent display guidance for steep final approaches. A flight path vector display format has proven successful for guiding tiltrotor transport terminal area operations. Experience with a Head-Up Display points to the need for a bottom-mounted display device to maximize its utility on steep final approach paths. Configuration control (flap setting and nacelle angle) requires appropriate augmentation and tailoring for civil transport operations, flown to an airline transport pilot instrument flight rules (ATP-IFR) standard. The simulation experiments also identified one thrust control lever geometry as inappropriate to the task and found at least acceptable results with the vertical thrust control lever of the XV-15. In addition to the thrust controller, the attitude control of

  12. Conceptual Design of a Space-Based Multimegawatt MHD Power System, Task 1 Topical Report; Volume 1: Technical Discussion

    DTIC Science & Technology

    1988-01-01

    system requirements, design guidelines, and interface requirements has been prepared and included as Volume II of this Task 1 topical report. The Volume ...WAESD-TR-88-0002 Conceptual Design Of A Space-Based Multimegawatt MHD Power System ffA«kjjjjjTfc Task 1 Topical Report Volume I: Technical...Space-Based Multimegawatt MHD Power System: Task 1 Topical Report, Volume I: Technical Discussion Personal Author: Dana, RA. Corporate Author Or

  13. Lean, premixed, prevaporized fuel combustor conceptual design study

    NASA Technical Reports Server (NTRS)

    Fiorentino, A. J.; Greene, W.; Kim, J.

    1979-01-01

    Four combustor concepts, designed for the energy efficient engine, utilize variable geometry or other flow modulation techniques to control the equivalence ratio of the initial burning zone. Lean conditions are maintained at high power to control oxides of nitrogen while near stoichometric conditions are maintained at low power for low CO and THC emissions. Each concept was analyzed and ranked for its potential in meeting the goals of the program. Although the primary goal of the program is a low level of nitric oxide emissions at stratospheric cruise conditions, both the ground level EPA emission standards and combustor performance and operational requirements typical of advanced subsonic aircraft engines are retained as goals as well. Based on the analytical projections made, two of the concepts offer the potential of achieving the emission goals; however, the projected operational characteristics and reliability of any concept to perform satisfactorily over an entire aircraft flight envelope would require extensive experimental substantiation before engine adaptation can be considered.

  14. Optimizing conceptual aircraft designs for minimum life cycle cost

    NASA Technical Reports Server (NTRS)

    Johnson, Vicki S.

    1989-01-01

    A life cycle cost (LCC) module has been added to the FLight Optimization System (FLOPS), allowing the additional optimization variables of life cycle cost, direct operating cost, and acquisition cost. Extensive use of the methodology on short-, medium-, and medium-to-long range aircraft has demonstrated that the system works well. Results from the study show that optimization parameter has a definite effect on the aircraft, and that optimizing an aircraft for minimum LCC results in a different airplane than when optimizing for minimum take-off gross weight (TOGW), fuel burned, direct operation cost (DOC), or acquisition cost. Additionally, the economic assumptions can have a strong impact on the configurations optimized for minimum LCC or DOC. Also, results show that advanced technology can be worthwhile, even if it results in higher manufacturing and operating costs. Examining the number of engines a configuration should have demonstrated a real payoff of including life cycle cost in the conceptual design process: the minimum TOGW of fuel aircraft did not always have the lowest life cycle cost when considering the number of engines.

  15. The engineering design of the Tokamak Physics Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, J.A.

    A mission and supporting physics objectives have been developed, which establishes an important role for the Tokamak Physics Experiment (TPX) in developing the physic basis for a future fusion reactor. The design of TPX include advanced physics features, such as shaping and profile control, along with the capability of operating for very long pulses. The development of the superconducting magnets, actively cooled internal hardware, and remote maintenance will be an important technology contribution to future fusion projects, such as ITER. The Conceptual Design and Management Systems for TPX have been developed and reviewed, and the project is beginning Preliminary Design.more » If adequately funded the construction project should be completed in the year 2000.« less

  16. Conceptual design study of a visual system for a rotorcraft simulator and some advances in platform motion utilization

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.

    1980-01-01

    A conceptual design of a visual system for a rotorcraft flight simulator is presented. Also, drive logic elements for a coupled motion base for such a simulator are given. The design is the result of an assessment of many potential arrangements of electro-optical elements and is a concept considered feasible for the application. The motion drive elements represent an example logic for a coupled motion base and is essentially an appeal to the designers of such logic to combine their washout and braking functions.

  17. A Conceptual Framework for Interdisciplinary Curriculum Design: A Case Study in Neuroscience

    PubMed Central

    Modo, Michel; Kinchin, Ian

    2011-01-01

    Teaching of interdisciplinary fields of study poses a challenge to course organizers. Often interdisciplinary courses are taught by different departments, and hence, at best provide a multidisciplinary overview. Scientific progress in neuroscience, for instance, is thought to depend heavily on interdisciplinary investigations. If students are only taught to think in particular disciplines without integrating these into a coherent framework to study the nervous system, it is unlikely that they will truly develop interdisciplinary thinking. Yet, it is this interdisciplinary thinking that is at the heart of a holistic understanding of the brain. It is, therefore, important to develop a conceptual framework in which students can be taught interdisciplinary, rather than multidisciplinary, thinking. It is also important to recognize that not all teaching needs to be interdisciplinary, but that the type of curriculum design is dependent on the aims of the course, as well as on the background of the students. A rational curriculum design that aligns learning and teaching objectives is, therefore, advocated. PMID:23626496

  18. Second-generation mobile satellite system. A conceptual design and trade-off study

    NASA Technical Reports Server (NTRS)

    Sue, M. K.; Park, Y. H.

    1985-01-01

    In recent years, interest has grown in the mobile satellite (MSAT) system, a satellite-based communications system capable of providing integrated voice and data services to a large number of users. To explore the potential of a commercial mobile satellite system (MSS) beyond the horizon of the first generation, using technologies of the 1990's and to assist MSAT-X in directing its efforts, a conceptual design has been performed for a second-generation system to be launched around the mid-1990's. The design goal is to maximize the number of satellite channels and/or minimize the overall life-cycle cost, subject to the constraint of utilizing a commercial satellite bus with minimum modifications. To provide an optimal design, a series of trade-offs are performed, including antenna sizing, feed configurations, and interference analysis. Interference is a serious problem for MSAT and often an overlapping feed design is required to reduce interbeam interference. The trade-off studies will show that a simple non-overlapping feed is sufficient for the second-generation system, thus avoiding the need for the complicated beam-forming network that is associated with the overlapping feed designs. In addition, a system that operates at L-band, an alternative frequency band that is being considered by some for possible MSAT applications, is also presented.

  19. Communication by Design: A Collaborative Project for Student Choreographers and Costume Designers

    ERIC Educational Resources Information Center

    McLaine, Gretchen; McCabe, Janine

    2013-01-01

    This article describes Communication by Design, a year-long project developed to foster an important dialogue between emerging student costume designers and student choreographers. Two university professors, one teaching costume design and one teaching dance, collaborated to help their students gain an understanding of how these two disciplines…

  20. Enhanced analysis and users manual for radial-inflow turbine conceptual design code RTD

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1995-01-01

    Modeling enhancements made to a radial-inflow turbine conceptual design code are documented in this report. A stator-endwall clearance-flow model was added for use with pivoting vanes. The rotor calculations were modified to account for swept blades and splitter blades. Stator and rotor trailing-edge losses and a vaneless-space loss were added to the loss model. Changes were made to the disk-friction and rotor-clearance loss calculations. The loss model was then calibrated based on experimental turbine performance. A complete description of code input and output along with sample cases are included in the report.