Science.gov

Sample records for project cpp-603a basin

  1. Idaho Cleanup Project CPP-603A basin deactivation waste management 2007

    SciTech Connect

    Croson, D.V.; Davis, R.H.; Cooper, W.B.

    2007-07-01

    The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM

  2. The Removal Action Work Plan for CPP-603A Basin Facility

    SciTech Connect

    B. T. Richards

    2006-06-05

    This revised Removal Action Work Plan describes the actions to be taken under the non-time-critical removal action recommended in the Action Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center, as evaluated in the Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center. The regulatory framework outlined in this Removal Action Work Plan has been modified from the description provided in the Engineering Evaluation/Cost Analysis (DOE/NE-ID-11140, Rev. 1, August 2004). The modification affects regulation of sludge removal, treatment, and disposal, but the end state and technical approaches have not changed. Revision of this document had been delayed until the basin sludge was successfully managed. This revision (Rev. 1) has been prepared to provide information that was not previously identified in Rev. 0 to describe the removal, treatment, and disposal of the basin water at the Idaho National Laboratory (INL) CERCLA Disposal Facility evaporation ponds and fill the basins with grout/controlled low strength material (CLSM) was developed. The Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center - conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act - evaluated risks associated with deactivation of the basins and alternatives for addressing those risks. The decision to remove and dispose of the basin water debris not containing uranium grouted in place after the sludge has been removed and managed under the Hazardous Waste Management Act/Resource Conservation and Recovery Act has been documented in the Act Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center.

  3. Final Removal Action Report of the CPP-603A Basin Facility

    SciTech Connect

    D. V. Croson

    2007-01-04

    This Final Removal Action Report describes the actions that were taken under the non-time-critical removal action recommended in the Action Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center, as evaluated in the Engineering Evaluation/Cost Analysis for the CPP-603A Bason Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center. The Removal Action implemented consolidation and recording the location of debris objects containing radioactive cobalt (cobalt-60), removal and management of a small high-activity debris object (SHADO 1), the removal, treatment, and disposal of the basin water at the Idaho CERCLA Disposal Facility (ICDF) evaporation ponds, and filling the basins with grout/controlled low strength material.

  4. CLEAR LAKE BASIN 2000 PROJECT

    SciTech Connect

    LAKE COUNTY SANITATION DISTRICT

    2003-03-31

    The following is a final report for the Clear Lake Basin 2000 project. All of the major project construction work was complete and this phase generally included final details and testing. Most of the work was electrical. Erosion control activities were underway to prepare for the rainy season. System testing including pump stations, electrical and computer control systems was conducted. Most of the project focus from November onward was completing punch list items.

  5. THE ADVANCED CHEMISTRY BASINS PROJECT

    SciTech Connect

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  6. Umatilla Basin Habitat Improvement Project.

    SciTech Connect

    Bailey, Timothy D.

    1990-01-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife's Umatilla Basin Habitat Improvement Project. The major activities undertaken during this report period were: procurement of 17 cooperative lease agreements with private landowners, design and layout of 8.6 miles of riparian exclosure fence and 3.0 miles of instream structures, development of five fencing contracts and six instream work contracts. Results include implementation of 10 miles of fencing and 3 miles of instream work. Other activities undertaken during this report period are: data collection from 90 habitat monitoring transects, collection and summarization of temperature data, photopoint establishment, coordination with numerous agencies and tribes and education of all age groups on habitat improvement and protection. 4 refs., 4 figs., 6 tabs.

  7. Mississippi Basin Carbon Project science plan

    USGS Publications Warehouse

    Sundquist, E.T.; Stallard, R.F.; Bliss, N.B.; Markewich, H.W.; Harden, J.W.; Pavich, M.J.; Dean, M.D.

    1998-01-01

    Understanding the carbon cycle is one of the most difficult challenges facing scientists who study the global environment. Lack of understanding of global carbon cycling is perhaps best illustrated by our inability to balance the present-day global CO2 budget. The amount of CO2 produced by burning fossil fuels and by deforestation appears to exceed the amount accumulating in the atmosphere and oceans. The carbon needed to balance the CO2 budget (the so-called "missing" carbon) is probably absorbed by land plants and ultimately deposited in soils and sediments. Increasing evidence points toward the importance of these terrestrial processes in northern temperate latitudes. Thus, efforts to balance the global CO2 budget focus particular attention on terrestrial carbon uptake in our own North American "backyard."The USGS Mississippi Basin Carbon Project conducts research on the carbon budget in soils and sediments of the Mississippi River basin. The project focuses on the effects of land-use change on carbon storage and transport, nutrient cycles, and erosion and sedimentation throughout the Mississippi River Basin. Particular emphasis is placed on understanding the interactions among changes in erosion, sedimentation, and soil dynamics. The project includes spatial analysis of a wide variety of geographic data sets, estimation of whole-basin and sub-basin carbon and sediment budgets, development and implementation of terrestrial carbon-cycle models, and site-specific field studies of relevant processes. The USGS views this project as a "flagship" effort to demonstrate its capabilities to address the importance of the land surface to biogeochemical problems such as the global carbon budget.

  8. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Conservation Advisory Group; Yakima River Basin Water Enhancement Project, Yakima, WA AGENCY: Bureau of... Committee Act, the Yakima River Basin Conservation Advisory Group, Yakima River Basin Water Enhancement... River Basin Water Conservation Program. DATES: The meeting will be held on Tuesday, August 21,...

  9. Grande Ronde Basin Fish Habitat Enhancement Project : 1998 Annual Report.

    SciTech Connect

    McGowan, Vance R.; Powell, Russ M.

    1999-05-01

    The primary goal of ''The Grande Ronde Basin Fish Habitat Improvement Project'' is to access, create, improve, protect, and restore reparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin.

  10. Hazard categorization of 105-KE basin debris removal project

    SciTech Connect

    Meichle, R.H.

    1996-01-25

    This supporting document provides the hazard categorization for 105-KE Basin Debris Removal Project activities planned in the K east Basin. All activities are categorized as less than Hazard Category 3.

  11. Yakima Basin Fish Passage Project, Phase 2

    SciTech Connect

    Not Available

    1991-08-01

    Implementation of the Yakima Basin Fish Passage Project -- Phase 2 would significantly improve the production of anadromous fish in the Yakima River system. The project would provide offsite mitigation and help to compensate for lower Columbia River hydroelectric fishery losses. The Phase 2 screens would allow greater numbers of juvenile anadromous fish to survive. As a consequence, there would be higher returns of adult salmon and steelhead to the Yakima River. The proposed action would play an integral part in the overall Yakima River anadromous fish enhancement program (fish passage improvement, habitat enhancement, hatchery production increases, and harvest management). These would be environmental benefits associated with implementation of the Fish Passage and Protective Facilities Phase 2 Project. Based on the evaluation presented in this assessment, there would be no significant adverse environmental impacts if the proposed action was carried forward. No significant adverse environmental effects have been identified from construction and operation of the Yakima Phase 2 fish passage project. Proper design and implementation of the project will ensure no adverse effects will occur. Based on the information in this environmental analysis, BPA's and Reclamation's proposal to construct these facilities does not constitute a major Federal action that could significantly affect the quality of the human environment. 8 refs., 4 figs., 6 tabs.

  12. The Interior Columbia Basin Ecosystem Management Project: scientific assessment.

    Treesearch

    1999-01-01

    This CD-ROM contains digital versions (PDF) of the major scientific documents prepared for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). "A Framework for Ecosystem Management in the Interior Columbia Basin and Portions of the Klamath and Great Basins" describes a general planning model for ecosystem management. The "Highlighted...

  13. Greater Green River Basin Production Improvement Project

    SciTech Connect

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  14. Project Management Plan 105-KE Basin sludge retrieval and packaging

    SciTech Connect

    McWethy, L.M.

    1994-11-07

    The KE Basin contains over 1,100 metric tons of spent nuclear fuel (SNF). The bulk of this inventory consists of over 50,000 zircaloy clad, uranium metal N-Reactor fuel element assemblies, along with less than half a metric ton of single-pass reactor fuel elements, stored in over 3,600 open top canister assemblies. In addition, sludge containing fissile and fission product material from damaged/degraded fuel has accumulated in the basin. The sludge, particularly the fines, impacts basin operations by clouding the water and making activities requiring a clear view impossible to complete until after sludge settles. Packaging would get the sludge out of the operator`s way and allow it to be moved within the basin in a more manageable state. The primary project objective is to develop, procure, and quality the equipment needed to remove all sludge from the KE Basin with minimal dose commitment, minimal cost, and on schedule. The project will provide: (1) the development, testing, and installation of equipment for sludge retrieval and packaging; (2) understanding of and experience with actual sludge through near-term sludge packaging feature tests in the KE Basin; (3) sludge removal and handling equipment required to support debris removal, fuel handling, and other activities involving sludge within the KE Basin; and (4) enlist industry expertise in all phases of the project. This Project Management Plant establishes the organizational responsibilities, control systems, and procedures for the execution of project activities for KE Basin sludge retrieval packaging, to meet programmatic requirements within authorized funding and approved schedules.

  15. Great Basin Native Plant Project: 2013 Progress Report

    Treesearch

    Francis Kilkenny; Nancy Shaw; Corey Gucker

    2014-01-01

    The Interagency Native Plant Materials Development Program outlined in the 2002 United States Department of Agriculture (USDA) and United States Department of Interior (USDI) Report to Congress encouraged use of native plant materials for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Project is a cooperative project lead by the...

  16. Great Basin Native Plant Project: 2014 Progress Report

    Treesearch

    Francis Kilkenny; Anne Halford; Alexis Malcomb

    2015-01-01

    The Interagency Native Plant Materials Development Program outlined in the 2002 United States Department of Agriculture (USDA) and United States Department of Interior (USDI) Report to Congress encouraged use of native plant materials for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Project is a cooperative project lead by the...

  17. Great Basin Native Plant Project: 2015 Progress Report

    Treesearch

    Francis Kilkenny; Fred Edwards; Alexis Malcomb

    2016-01-01

    The Interagency Native Plant Materials Development Program outlined in the 2002 United States Department of Agriculture (USDA) and United States Department of Interior (USDI) Report to Congress encouraged use of native plant materials for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Project is a cooperative project lead...

  18. Western Gas Sands Project: stratigrapy of the Piceance Basin

    SciTech Connect

    Anderson, S.

    1980-08-01

    The Western Gas Sands Project Core Program was initiated by US DOE to investigate various low permeability, gas bearing sandstones. Research to gain a better geological understanding of these sandstones and improve evaluation and stimulation techniques is being conducted. Tight gas sands are located in several mid-continent and western basins. This report deals with the Piceance Basin in northwestern Colorado. This discussion is an attempt to provide a general overview of the Piceance Basin stratigraphy and to be a useful reference of stratigraphic units and accompanying descriptions.

  19. Hazard categorization of K Basin water filtration upgrade project

    SciTech Connect

    Conn, K.R.

    1995-10-19

    This supporting document provides the hazards categorization for the K Basin Water Filtration Upgrade Project at K East. All activities associated with the project are less than Hazard Category 3, except for the handling of the ECO-ROK liners containing spent filter cartridges. All activities involving the handling of liners, containing spent cartridges, by monorail, forklift or mobile crane are classified as Hazard Category 3.

  20. 75 FR 8395 - Bunker Hill Groundwater Basin, Riverside-Corona Feeder Project, San Bernardino and Riverside...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Bureau of Reclamation Bunker Hill Groundwater Basin, Riverside-Corona Feeder Project, San Bernardino and... recovery project. The project will install new groundwater wells at the Bunker Hill Groundwater Basin in... flows in the Bunker Hill Groundwater Basin during wet years for delivery to communities in western...

  1. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    SciTech Connect

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old project that will protect

  2. Fifteenmile Basin Habitat Enhancement Project, 1986-1988 Progress Report.

    SciTech Connect

    Cain, Thomas C.; Hutchinson, Corey Sue; MacDonald, Ken

    1989-01-01

    The Fifteenmile Basin Habitat Improvement Project is an ongoing multi-agency effort to improve habitat in the Fifteenmile drainage and increase production of the depressed wild, winter steelhead run. Cooperating agencies include the Oregon Department of Fish and Wildlife, USDA Forest Service. USDA Soil Conservation Service and Bonneville Power Administration. in consultation with the Confederated Tribes of Warm Springs. The Oregon Department of Fish and Wildlife is administering project work on state and private lands and the U.S.D.A. Forest Service is administering project work on National Forest land. Project work on the Forest has been sub-divided into four components; (1) Ramsey Creek, (2) Eightmile Creek, (3) Fifteenmile Creek, and (4) Fivemile Creek. Forest Service activities in the Fifteenmile basin during 1988 involved habitat improvement work on Ramsey Creek, continuation of physical and biological monitoring, collection of spawning survey information, and macroinvertebrate sampling. The primary project objective on Ramsey Creek was to increase juvenile rearing habitat for 1+ steelhead. A total of 48 log structures including sills, diggers, wings and diagonal series were constructed in two project areas.

  3. 76 FR 3655 - Bunker Hill Groundwater Basin, Riverside-Corona Feeder Project, San Bernardino and Riverside...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Bureau of Reclamation Bunker Hill Groundwater Basin, Riverside-Corona Feeder Project, San Bernardino and... project, including new groundwater wells and a 28- mile water pipeline with pump stations and a reservoir... Bunker Hill Groundwater Basin and the Chino Basin. DATES: Submit written comments on the SDEIR/DEIS by...

  4. Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.

    SciTech Connect

    McGowan, Vance R.; Morton, Winston H.

    2009-07-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fish production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state

  5. Fifteenmile Basin Habitat Improvement Project: 1990 Annual Report.

    SciTech Connect

    Asbridge, Gary M.

    1993-12-01

    U.S.D.A. Forest Service activities in the Fifteenmile basin during 1990 involved the placement of 84 log structures in a two mile reach of Fifteenmile Creek (RM 45.4-47.4) by a combination of falling trees into the channel, bucking in blowdown trees spanning the creek, and winching in existing blowdown and log segments from newly fallen trees. The primary project objective on Fifteenmile Creek was to increase physical habitat diversity and rearing habitat for age l+ winter steelhead trout. USFS personnel also conducted spring spawning surveys in sections of Ramsey and Eightmile Creeks, physical habitat pre-project monitoring in the above project reach, water temperature monitoring, and macroinvertebrate sampling.

  6. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    SciTech Connect

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by

  7. Fifteenmile Basin Habitat Enhancement Project: Annual Report FY 1988.

    SciTech Connect

    Smith, Roger C.; Marx, Steven D.

    1989-04-01

    The goal of the Fifteenmile Creek Habitat Enhancement Project is to improve wild winter steelhead in the Fifteenmile Creek Basin under the Columbia River Basin Fish and Wildlife Program. The project is funded by through the Bonneville Power Administration. Cooperators in the habitat enhancement project include the USDA Forest Service, Wasco County Soil and Water Conservation District and the Confederated Tribes of the Warms Springs. Installation of instream fish habitat structures was completed on four miles of Ramsey Creek and on one mile of Fifteenmile Creek. One hundred thirty-five structures were installed in treatment areas. Construction materials included logs and rock. Riparian protection fencing was completed on Dry Creek and Ramsey Creek worksites. Five and one-half miles of new fence was added to existing fence on Ramsey Creek to afford riparian protection to four miles of stream. Six miles of stream on Dry Creek will be afforded riparian protection by constructing 4.5 miles of fence to complement existing fence. 2 refs., 5 figs.

  8. Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity

    Treesearch

    Jeanne C. Chambers

    2000-01-01

    The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Station’s Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...

  9. The Australian central Eromanga Basin project: An introduction

    NASA Astrophysics Data System (ADS)

    Moss, F. J.; Wake-Dyster, K. D.

    1983-12-01

    The Australian Bureau of Mineral Resources is carrying out a major multidisciplinary program of geological and geophysical studies in southwestern Queensland in cooperation with the Geological Survey of Queensland. The project is aimed at providing information on the regional structure and depositional history of the central Eromanga Basin and the underlying Adavale, Cooper and Galilee basins. The information being obtained is particularly relevant to a better understanding of the petroleum prospectivity of the area. The program includes geophysical surveys involving 1400 km of new six-fold CDP seismic reflection coverage on regional traverses up to 400 km long crossing the main structural elements of the area; gravity measurements along all new seismic reflection traverses; refraction surveys along two major east-west and north-south traverses and magnetotelluric soundings along the same major east-west traverse. LANDSAT imagery studies are providing new perspective on many regional structures when used in conjunction with seismic and gravity information. Wireline logs and synthetic seismograms are being used with the new seismic data to re-examine stratigraphic correlations. Palynologic and lithologic studies are underway to assist in determining depositional environments. Source rock, maturation, hydrological and geochemical studies are providing information on the generation and migration of hydrocarbons. A significant feature of the program is the extension of the recording time of all new reflection data to 20 s to obtain good quality deep crustal reflection information comparable to that obtained on COCORP programs in the United States. The reflection data is being interpreted with the refraction, gravity and magnetotelluric data to investigate the relationship of deep crustal and upper mantle features to the sedimentary basins in the central Eromanga Basin area.

  10. Hanford K Basins spent nuclear fuels project update

    SciTech Connect

    Hudson, F.G.

    1997-10-17

    Twenty one hundred metric tons of spent nuclear fuel are stored in two concrete pools on the Hanford Site, known as the K Basins, near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current wet pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in the K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported into the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building (CSB) in the 200 Area for staging prior to hot conditioning. The conditioning step to remove chemically bound water is performed by holding the MCO at 300 C under vacuum. This step is necessary to prevent excessive pressure buildup during interim storage that could be caused by corrosion. After conditioning, MCOs will remain in the CSB for interim storage until a national repository is completed.

  11. Umatilla Basin Habitat Improvement Project; 1990 Annual Report.

    SciTech Connect

    Bailey, Timothy D.; Rimbach, Gregory P.

    1991-03-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the Funding source For the Oregon Department of Fish and Wildlife's Umatilla Basin Habitat Improvement Project. The major activities undertaken during this report period were: procurement of 6 cooperative lease agreements and one lease addendum with private landowners, design and layout of 4.4 miles of riparian exclosure fence and 1.75 miles of instream structures, development of three fencing contracts and three instream work contracts. Results include implementation OF 3 miles of fencing and 3.7 miles of instream work. Other activities undertaken during this report period are: weekly inspection and maintenance of fencing projects, collection and summarization of temperature data, photopoint establishment, coordination with numerous agencies and tribes and education of high school students on habitat improvement and preservation.

  12. Submittal for 2003 Project of the Year K Basins Fuel Transfer System Project

    SciTech Connect

    GERBER, M.S.

    2003-01-29

    Fluor Hanford, Inc. is pleased to submit the K Basins Fuel Transfer System (FTS) for consideration by the Project Management Institute as Project of the Year for 2003. The FTS involved installing a unique, unproven system in an inhospitable and deteriorating radiological and hazardous environment, under very stringent requirements and within an extremely condensed schedule, just 19 months, from authorization to full operations. The FTS, therefore, is an excellent example of effective project management, and the dynamic involvement of an integrated team representing a broad spectrum of personnel, disciplines, and services. The FTS is an integral and critical part of a larger project at Hanford -the Spent Nuclear Fuel Project (SNF). The mission of the SNF Project is to relocate used, or spent, nuclear fuel to safe interim storage, permanently dispose of radioactive debris in the K-Basins, and deactivate all related facilities and prepare them for demolition. Today, the FTS is being used to remove highly radioactive nuclear fuel from an aging, and potentially unstable storage in underground pools of water--the K-Basins--and safely transport it to a processing area to be cleaned, dried and sent to safe storage. The role the FTS plays in successfully completing the mission of the SNF Project is concrete evidence of the intrinsic value of project management and a testimonial to the innovation, ingenuity, and teamwork of many--from workers to management and subcontractors, and regulators to stakeholders. It's a true success story and one that will have a happy ending, safely eliminating the risk of potentially contaminating one of Washington state's most valuable natural resources, the Columbia River. This nomination is dedicated to that Project Team.

  13. Lessons from Environmental Education: Developing Strategies for Public Consultation with the Georgia Basin Futures Project.

    ERIC Educational Resources Information Center

    Moore, Janet

    2002-01-01

    Describes an interdisciplinary project involving university researchers, community groups, and industry partners in a collaborative dialogue about sustainability. Focuses on the Georgia Basin Futures Project. (Contains 20 references.) (DDR)

  14. Umatilla Basin Habitat Improvement Project; 1989 Annual Report.

    SciTech Connect

    Bailey, Timothy D.

    1990-01-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the Funding source for the Oregon Department of Fish and Wildlife's Umatilla Basin Habitat Improvement Project. The major activities undertaken during this report period were: procurement of 17 cooperative lease agreements with private landowners, design and layout of 8.6 miles of Riparian exclosure fence and 3.0 miles of instream structures, development of five fencing contracts and six instream work contracts. Results include implementation of 10 miles of fencing and 3 miles of instream work. Other activities undertaken during this report period are: data collection from 90 habitat monitoring transects, collection and summarization of temperature data, photopoint establishment, coordination with numerous agencies and tribes and education of all age groups on habitat improvement and protection.

  15. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for July, August, and September 2006

    SciTech Connect

    Peterson, Robert E.

    2006-12-08

    This report provides information on groundwater monitoring at the K Basins during July, August, and September 2006. Conditions remain very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming quarters as a consequence of remedial action at KE Basin, i.e., removal of sludge and basin demolition.

  16. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  17. Great Basin paleoenvironmental studies project; Technical progress report: First quarter (January--August 1993)

    SciTech Connect

    1993-12-31

    Project goals, project tasks, progress on tasks, and problems encountered are described and discussed for each of the studies that make up the Great Basin Paleoenvironmental Studies Project for Yucca Mountain. These studies are: Paleobotany, Paleofauna, Geomorphology, and Transportation. Budget summaries are also given for each of the studies and for the overall project.

  18. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    SciTech Connect

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  19. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.

    SciTech Connect

    Howerton, Jack

    1984-11-01

    This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

  20. Great Basin Native Plant Selection and Increase Project: 2012 progress report

    Treesearch

    Nancy Shaw; Mike Pellant

    2013-01-01

    The Interagency Native Plant Materials Development Program outlined in the 2002 USDA and USDI Report to Congress, USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Selection and Increase Project was...

  1. OVERVIEW OF THE MARK TWAIN LAKE/SALT RIVER BASIN CONSERVATION EFFECTS ASSESSMENT PROJECT

    USDA-ARS?s Scientific Manuscript database

    The Mark Twain Lake/Salt River Basin was selected as one of 12 USDA-Agricultural Research Service benchmark watersheds for the Conservation Effects Assessment Project (CEAP) because of documented soil and water quality problems and broad stakeholder interest. The basin is located in northeastern Mis...

  2. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  3. Preliminary design review report for K Basin Dose Reduction Project

    SciTech Connect

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose, originating from radionuclides absorbed in the K East Basin concrete, is to raise the pool water level to provide additional shielding. This report documents a preliminary design review conducted to ensure that design approaches for cleaning/coating basin walls and modifying other basin components were appropriate. The conclusion of this review was that design documents presently conclusion of this review was that design documents presently completed or in process of modification are and acceptable basis for proceeding to complete the design.

  4. Status of groundwater quality in the Coastal Los Angeles Basin, 2006-California GAMA Priority Basin Project

    USGS Publications Warehouse

    Goldrath, Dara; Fram, Miranda S.; Land, Michael; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the approximately 860-square-mile (2,227-square-kilometer) Coastal Los Angeles Basin study unit (CLAB) was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is located in southern California in Los Angeles and Orange Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA CLAB study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2006 by the USGS from 69 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth interval of the wells listed in the CDPH database for the CLAB study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the CLAB study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or non-regulatory benchmarks for drinking-water quality. A relative

  5. 75 FR 61414 - Basin Electric Power Cooperative: South Dakota PrairieWinds Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Rural Utilities Service Basin Electric Power Cooperative: South Dakota PrairieWinds Project AGENCY...) for the Environmental Impact Statement (EIS) for the proposed South Dakota PrairieWind Project... NEPA implementing regulations (7 CFR Part 1794), and the Western Area Power Administration's...

  6. Highlighted scientific findings of the Interior Columbia Basin Ecosystem Management Project.

    Treesearch

    Thomas M. Quigley; Heidi. Bigler Cole

    1997-01-01

    Decisions regarding 72 million acres of Forest Service- and Bureau of Land Management- administered lands will be based on scientific findings brought forth in the Interior Columbia Basin Ecosystem Management Project. Some highlights of the scientific findings are presented here. Project scientists drew three general conclusions: (1) Conditions and trends differ widely...

  7. Effect of glacier ablation on the Snettisham Hydroelectric Project, Long Lake and Crater Lake Basins, Alaska

    USGS Publications Warehouse

    Sloan, C.E.; Emery, P.A.; Fair, Diana

    1986-01-01

    Long Lake Basin in the Snettisham Project Area southeast of Juneau, Alaska, yields water used for the production of hydroelectric power. Development of adjacent Crater Lake is planned to increase the Project 's generating capacity. Estimates of the hydroelectric potential of the lakes are based on streamflow records which are influenced by glaciers that cover 25% of the combined basins. Analysis of streamflow records shows that the quality and extent of records in the area are sufficient to predict flow from the Crater Creek basin with a fairly high degree of confidence. Comparison of aerial photographs indicates that glacier ablation and recession have been continuous since at least 1929. Estimates of ice-volume change from photogrammetric measurements indicate that less than 2.5% of the average runoff from the basins of Long and Crater Lakes has been from reduction in glacier-ice storage. (Author 's abstract)

  8. Projecting the Demand for Ohio River Basin Waterway Traffic Using Correlation and Regression.

    DTIC Science & Technology

    1979-01-01

    the basin. Each report contains information on past and present waterborne commerce in the basin and projections by commodity group and origin...tools and system information , will be used to evaluate specific waterway improvements to meet short and long-term navigation needs. The output from...these studies will serve as input to Corps’ Inland Navigation Simulation Models to help analyze the performance and opportunities for improvement of the

  9. Uinta Basin Pneumatic Controller Research Project: Industry meeting slides

    EPA Science Inventory

    Upstream oil and natural gas (ONG) production has increased significantly within Utah’s Uinta & Ouray (U&O) Basin and across the United States over the last decade. ONG extraction and production activities can co-emit volatile organic compounds (VOCs), a subset of which consists...

  10. Uinta Basin Pneumatic Controller Research Project: Industry meeting slides

    EPA Science Inventory

    Upstream oil and natural gas (ONG) production has increased significantly within Utah’s Uinta & Ouray (U&O) Basin and across the United States over the last decade. ONG extraction and production activities can co-emit volatile organic compounds (VOCs), a subset of which consists...

  11. Design criteria document, Fire Protection Task, K Basin Essential Systems Recovery, Project W-405

    SciTech Connect

    Johnson, B.H.

    1994-12-14

    The K Basin were constructed in the early 1950`s with a 20 year design life. The K Basins are currently in their third design life and are serving as a near term storage facility for irradiated N Reactor fuel until an interim fuel storage solution can be implemented. In April 1994, Project W-405, K Basin Essential Systems Recovery, was established to address (among other things) the immediate fire protection needs of the 100K Area. A Fire Barrier Evaluation was performed for the wall between the active and inactive areas of the 105KE and 105KW buildings. This evaluation concludes that the wall is capable of being upgraded to provide an equivalent level of fire resistance as a qualified barrier having a fire resistance rating of 2 hours. The Fire Protection Task is one of four separate Tasks included within the scope of Project W405, K Basin Essential systems Recovery. The other three Tasks are the Water Distribution System Task, the Electrical System Task, and the Maintenance Shop/Support Facility Task. The purpose of Project W-405`s Fire Protection Task is to correct Life Safety Code (NFPA 101) non-compliances and to provide fire protection features in Buildings 105KE, 105KW and 190KE that are essential for assuring the safe operation and storage of spent nuclear fuel at the 100K Area Facilities` Irradiated Fuel Storage Basins (K Basins).

  12. Great basin paleoenvironmental studies project; Technical progress report first quarter (year 2), June--August 1994

    SciTech Connect

    1994-10-01

    The paleobiotic and geomorphic records are being examined for the local and regional impact of past climates to assess Yucca Mountain`s suitability as a high-level nuclear waste repository. The project includes botanical, faunal, and geomorphic components that will be integrated to accomplish this goal Progress reports are presented for: Paleobotenical studies in the Great Basin; Paleofaunas studies in the Great Basin; Geomorphology studies in the Great Basin; and Transportation. The goal of the transportation project is to compare the results from three models (FESWMS-2DH, DAMBRK, and FLO-2D) that have been suggested as appropriate for evaluating flood flows on alluvial fans with the results obtained from the traditional one-dimensional, stochastic model used in previous research performed by DRI for the Yucca Mountain Project.

  13. Implications of the Projected Future Climate on Water Resources in the Indian Sub-continent Basins

    NASA Astrophysics Data System (ADS)

    Shah, H. L.; Mishra, V.

    2014-12-01

    Sustainability of water resources is vital for agricultural and socio-economic development in India. In the recent few decades, India has been witnessing erratic nature of the Indian summer monsoon, which accounts for about 80% of the total annual rainfall. While there is a large uncertainty in the precipitation projections during the summer monsoon from the regional and global climate models, we need to understand sensitivity of water resources in the Indian sub-continental river basins under the projected future climate. This is particularly important as the Indian sub-continent is one of the most populated regions of the world. We evaluated changes in water budget in the 18 Indian sub-continental basins under the projected future climate using the Variable Infiltration Capacity (VIC) model. The VIC model was calibrated and evaluated using the observed streamflow as well as satellite derived evapotranspiration and soil moisture. After the successful calibration and evaluation, we performed a sensitivity analysis for the water balance variables. Finally, we used downscaled and bias corrected climate forcings to develop scenarios of changes in water balance under the future climate. Despite the intermodal variation, Indian basins are projected to experience wetter and warmer climate in future. Results indicate positive changes in evapotranspiration and runoff under the projected future climate; however, increases in total runoff are projected to be significant in most of the basins in the sub-continent.

  14. Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin.

    PubMed

    Tillman, Fred D; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-02-16

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.

  15. Changes in projected spatial and seasonal groundwater recharge in the upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-01-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.

  16. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    USGS Publications Warehouse

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  17. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    NASA Astrophysics Data System (ADS)

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-07-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950-2015) through future (2016-2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  18. Columbia Basin Fish and Wildlife Authority Project Abstracts; May 25-27, Portland, Oregon, 1997 Annual Review.

    SciTech Connect

    Allee, Brian J.

    1997-06-26

    Abstracts are presented from the 1997 Columbia Basin Fish and Wildlife Program Review of Projects. The purpose was to provide information and education on the approximate 127 million dollars in Northwest electric ratepayer fish and wildlife mitigation projects funded annually.

  19. Projecting population change in the interior Columbia River Basin.

    Treesearch

    Stephen F. McCool; Richard W. Haynes

    1996-01-01

    Management of ecosystems requires projecting the human population for a biologically significant timeframe, because the impacts of potential alternative ecosystem management strategies will differ depending on the size, location, and expectations of the human population. Increases since 1990 in the net migration rates are changing the expectations for projections of...

  20. 75 FR 22423 - Pick-Sloan Missouri Basin Program, Eastern and Western Division Proposed Project Use Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... Bureau of Reclamation Pick-Sloan Missouri Basin Program, Eastern and Western Division Proposed Project... of the Pick-Sloan Missouri Basin Program, Eastern and Western Divisions, Proposed Project Use Power Rate Adjustment. ] SUMMARY: The Bureau of Reclamation is reopening the comment period for the Pick...

  1. The Umatilla Basin Natural Production Monitoring and Evaluation Project, 2008 Annual Progress Report.

    SciTech Connect

    Contor, Craig R.; Harris, Robin; King, Marty

    2009-06-10

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L.96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). The UBNPMEP is coordinated with two Oregon Department of Fish and Wildlife (ODFW) research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. This project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 1990-005-00, Umatilla Hatchery M & E) and smolt outmigration (project No. 1989-024-01, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan, the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (CTUIR and ODFW 2006). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPCC 2004). The Umatilla Basin M&E plan developed along with efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha), coho

  2. Great Basin Native Plant Selection and Increase Project FY08 Progress Report

    Treesearch

    Nancy Shaw; Mike Pellant

    2009-01-01

    The Interagency Native Plant Materials Development Program (USDI and USDA 2002), USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. This project was initiated to foster the development of native plant materials for use in the...

  3. Great Basin Native Plant Selection and Increase Project: FY2010 Progress Report

    Treesearch

    Nancy Shaw; Mike Pellant

    2011-01-01

    The Interagency Native Plant Materials Development Program outlined in the 2002 Report to Congress (USDI and USDA 2002), USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. This project was initiated to foster the development of...

  4. Great Basin Native Plant Selection and Increase Project: 2011 Progress Report

    Treesearch

    Nancy Shaw; Mike Pellant

    2012-01-01

    The Interagency native Plant Materials Development Program outlined in the 2002 Report to Congress (USDI and USDA 2002), USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. This project was initiated to foster the development of...

  5. Las Vegas Basin Seismic Response Project: Preliminary Results From Seismic Refraction Experiments, Las Vegas, NV.

    NASA Astrophysics Data System (ADS)

    Zaragoza, S. A.; Snelson, C. M.; Harder, S. H.; Kaip, G.; Luke, B.; Buck, B. J.; Hanson, A. D.

    2002-12-01

    In May and September 2002, seismic refraction data were acquired in the Las Vegas basin. Located in the southern Basin and Range province, the cities of Las Vegas, North Las Vegas, and Henderson sit atop a fault-bounded basin with a depth of up to 5 km and basin dimensions of roughly 60 km wide (east-west) by 50 km in length (north-south). Previous isostatic gravity, seismic reflection, and aeromagnetic studies indicate that a series of sub-basins exist beneath the unconsolidated basin fill, with the deepest sub-basin occurring 5 km west of the fault block bounding the eastern edge of the basin (Frenchman Mountain). The basin is significantly deeper along its northern extremity, following the path of the fault block bounding the northern edge of the basin (Las Vegas Valley Shear Zone), and along the western edge of Frenchman Mountain. Recent, paleoseismic studies have indicated that faults in the Las Vegas region have the potential for an earthquake of M6.5 to 7.0. It is estimated that a M6.9 earthquake in the basin could produce about 11 billion dollars in damage and a significant number of deaths and/or injuries. In addition, an equivalent or larger event in the Death Valley fault zone, 150 km distance, would also be devastating to the metropolitan area of approximately 1.5 million residents. Therefore, it is essential to understand the seismic hazard posed to the Las Vegas region. This project is part of a larger collaborative effort to characterize the basin and its response to ground shaking. The University of Nevada, Las Vegas with assistance from the University of Texas at El Paso, students from UNLV and UTEP, volunteers from the community and several students from Centennial High school deployed 432 portable seismic recorders ("Texans") throughout the valley. Shot point locations were located at three quarries in the valley, one to the north, one to the east and one to the southwest. The profiles cross the Las Vegas Valley Shear zone as well as a prominent

  6. Umatilla River Basin Anadromous Fsh Habitat Enhancement Project : 2000 Annual Report.

    SciTech Connect

    Shaw, R. Todd

    2001-12-31

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2000 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla River Basin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Habitat enhancement projects continued to be maintained on 44 private properties, four riparian easements and one in-stream enhancement agreement were secured, two new projects implemented and two existing projects improved to enhance anadromous fish habitat and natural fisheries production capabilities in the Umatilla River Basin. New project locations included sites on the mid Umatilla River and Buckaroo Creek. Improvements were implemented at existing project sites on the upper Umatilla River and Wildhorse Creek. A stream bank stabilization project was implemented at approximately River Mile 37.4 Umatilla River to stabilize 760 feet of eroding stream bank and improve in-stream habitat diversity. Habitat enhancements at this site included construction of six rock barbs with one large conifer root wad incorporated into each barb, stinging approximately 10,000 native willow cuttings, planting 195 tubling willows and 1,800 basin wildrye grass plugs, and seeding 40 pounds of native grass seed. Staff time to assist in development of a subcontract and fence materials were provided to establish eight spring sites for off-stream watering and to protect wetlands within the Buckaroo Creek Watershed. A gravel bar was moved and incorporated into an adjacent point bar to reduce stream energy and stream channel confinement within the existing project area at River Mile 85 Umatilla River. Approximately 10,000 native willow cuttings were stung and trenched into the stream channel margins and stream banks, and 360

  7. Projected hydrologic changes in monsoon-dominated Himalaya Mountain basins with changing climate and deforestation

    NASA Astrophysics Data System (ADS)

    Neupane, Ram P.; White, Joseph D.; Alexander, Sara E.

    2015-06-01

    In mountain headwaters, climate and land use changes affect short and long term site water budgets with resultant impacts on landslide risk, hydropower generation, and sustainable agriculture. To project hydrologic change associated with climate and land use changes in the Himalaya Mountains, we used the Soil and Water Assessment Tool (SWAT) calibrated for the Tamor and Seti River basins located at eastern and western margins of Nepal. Future climate change was modeled using averaged temperature and precipitation for 2080 derived from Special Report on Emission Scenarios (SRES) (B1, A1B and A2) of 16 global circulation models (GCMs). Land use change was modeled spatially and included expansion of (1) agricultural land, (2) grassland, and (3) human settlement area that were produced by considering existing land use with projected changes associated with viability of elevation and slope characteristics of the basins capable of supporting different land use type. From these simulations, higher annual stream discharge was found for all GCM-derived scenarios compared to a baseline simulation with maximum increases of 13 and 8% in SRES-A2 and SRES-A1B for the Tamor and Seti basins, respectively. On seasonal basis, we assessed higher precipitation during monsoon season in all scenarios that corresponded with higher stream discharge of 72 and 68% for Tamor and Seti basins, respectively. This effect appears to be geographically important with higher influence in the eastern Tamor basin potentially due to longer and stronger monsoonal period of that region. However, we projected minimal changes in stream discharge for the land use scenarios potentially due to higher water transmission to groundwater reservoirs associated with fractures of the Himalaya Mountains rather than changes in surface runoff. However, when combined the effects of climate and land use changes, discharge was moderately increased indicating counteracting mechanisms of hydrologic yield in these mountains

  8. Western Gas Sands Project: production histories of the Piceance and Uinta basins of Colorado and Utah

    SciTech Connect

    Anderson, S.; Kohout, J.

    1980-11-20

    Current United States geological tight sand designations in the Piceance and Uinta Basins' Western Gas Sands Project include the Mesaverde Group, Fort Union and Wasatch Formations. Others, such as the Dakota, Cedar Mountain, Morrison and Mancos may eventually be included. Future production from these formations will probably be closely associated with existing trends. Cumulative gas production through December 1979, of the Mesaverde Group, Fort Union and Wasatch Formations in the Piceance and Uinta Basins is less than 275 billion cubic feet. This contrasts dramatically with potential gas in place estimates of 360 trillion cubic feet. If the geology can be fully understood and engineering problems surmounted, significant potential reserves can be exploited.

  9. Precipitation variability and future projections for water resources management in Tunisia Northern Coastal basins

    NASA Astrophysics Data System (ADS)

    Bargaoui, Z.; Tramblay, Y.; Lawin, E.; Servat, E.

    2012-04-01

    Northern Tunisia is the rainiest part of the country. This is the reason why the surface water resources management scheme of Tunisia is principally focused on that area. The strategic situation of the study area, with respect to surface water resources, encourages the investigation of the climate change impacts as projected by climate models. The goal of this study is first to compare the observed precipitation with climate model outputs, and then to evaluate the future changes projected by the models. The study area is subdivided into three regions: the transboundary Medjerda basin, the northern coastal basins (Zouara, Sidi El Barrack, Lake Ichkeul basins) and the eastern coastal basins (Cap-Bon region and wadi Meliane basins). Rainfall data are collected in this area since the late 19th century. A data base provided by the Tunisian hydrological service (DGRE) is including 388 stations with monthly precipitation data over the period 1961-2000. Recent advances in downscaling have provided regional climate model (RCM) simulations at a coarser resolution than Global climate models (GCM). However there is a need to validate RCM outputs with respect to observed precipitation data before using them to make future projections. For that purpose, an ensemble of RCM simulations provided by the European Union-funded project ENSEMBLES (www. ensembles-eu.org) are used. Six RCM models runs (CNR_ARPEGE, DMI_ARPEGE, DMI_BCM, ICT_ECHAM, SMH_BCM, SMH_ECHAM) are tested for a control period (1961-2000) and two projection periods (2011-2050 and 2051-2090).The models efficiency in reproducing seasonal precipitation amounts and variability over the study domain is evaluated. A 1-km monthly precipitation grid is first obtained through the interpolation of rainfall observations during the period 1961-2000 with kriging techniques. Monthly precipitation series averaged over the three great regions are built for comparison for the control period. The RCM outputs are evaluated with respect

  10. BASINS

    EPA Pesticide Factsheets

    Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) is a multipurpose environmental analysis system designed to help regional, state, and local agencies perform watershed- and water quality-based studies.

  11. Digital-model study of ground-water hydrology, Columbia Basin Irrigation Project Area, Washington

    USGS Publications Warehouse

    Tanaka, H.H.; Hansen, A.J.; Skrivan, J.A.

    1974-01-01

    Since 1952 water diverted from the Columbia River at Grand Coulee Dam has been used to irrigate parts of the Columbia Basin Irrigation Project area in eastern Washington, and as a result ground-water levels generally have risen in the area. The rapid increases in ground-water inflow, outflow, and storage from irrigation have created a need for a better understanding of the ground-water system before and after the start of irrigation to establish guidelines necessary for management of the area's ground-water resource. Data and information from previous geologic and hydrologic studies were used as a basis for quantitative analyses of ground-water inflow and outflow by means of digital computer models representing three major areas--Quincy Basin, Pasco Basin, and Royal Slope.

  12. The Palouse Basin Participatory Model Pilot Project: A Participatory Approach to Bi-state Groundwater Management

    NASA Astrophysics Data System (ADS)

    Beall, A.; Fiedler, F.; Boll, J.; Cosens, B.; Harris, C.

    2008-12-01

    In March 2008, The University of Idaho Waters of the West, the Palouse Basin Aquifer Committee and its Citizen Advisory Group undertook a pilot project to explore the use of participatory modeling to assist with water resource management decisions. The Palouse basin supplies Moscow, Idaho, Pullman, Washington, and surrounding communities with high quality groundwater. However, water levels in the major aquifer systems have been declining since records have been kept. Solutions are complicated by jurisdictional considerations and limited alternatives for supply. We hope that by using a participatory approach major conflicts will be avoided. Group system dynamics modeling has been used for various environmental concerns such as air quality, biological management, water quality and quantity. These models create a nexus of science, policy, and economic and social concerns, which enhances discussion of issues surrounding the use of natural resources. Models may be developed into educational and or decision support tools which can be used to assist with planning processes. The long-term goal of the Palouse basin project is to develop such a model. The pilot project participants include hydrologists, facility operators, policy makers and local citizens. The model they have developed integrates issues such as scientific uncertainty, groundwater volumes, and potential conservation measures and costs. Preliminary results indicate that participants are satisfied with the approach and are looking to use the model for education and to help direct potential research. We will present the results of the pilot project, including the developed model and insights from the process.

  13. Las Vegas Basin Seismic Response Project: Measured Shallow Soil Velocities

    NASA Astrophysics Data System (ADS)

    Luke, B. A.; Louie, J.; Beeston, H. E.; Skidmore, V.; Concha, A.

    2002-12-01

    The Las Vegas valley in Nevada is a deep (up to 5 km) alluvial basin filled with interlayered gravels, sands, and clays. The climate is arid. The water table ranges from a few meters to many tens of meters deep. Laterally extensive thin carbonate-cemented lenses are commonly found across parts of the valley. Lenses range beyond 2 m in thickness, and occur at depths exceeding 200 m. Shallow seismic datasets have been collected at approximately ten sites around the Las Vegas valley, to characterize shear and compression wave velocities in the near surface. Purposes for the surveys include modeling of ground response to dynamic loads, both natural and manmade, quantification of soil stiffness to aid structural foundation design, and non-intrusive materials identification. Borehole-based measurement techniques used include downhole and crosshole, to depths exceeding 100 m. Surface-based techniques used include refraction and three different methods involving inversion of surface-wave dispersion datasets. This latter group includes two active-source techniques, the Spectral Analysis of Surface Waves (SASW) method and the Multi-Channel Analysis of Surface Waves (MASW) method; and a new passive-source technique, the Refraction Mictrotremor (ReMi) method. Depths to halfspace for the active-source measurements ranged beyond 50 m. The passive-source method constrains shear wave velocities to 100 m depths. As expected, the stiff cemented layers profoundly affect local velocity gradients. Scale effects are evident in comparisons of (1) very local measurements typified by borehole methods, to (2) the broader coverage of the SASW and MASW measurements, to (3) the still broader and deeper resolution made possible by the ReMi measurements. The cemented layers appear as sharp spikes in the downhole datasets and are problematic in crosshole measurements due to refraction. The refraction method is useful only to locate the depth to the uppermost cemented layer. The surface

  14. Collaboration in River Basin Management: The Great Rivers Project

    NASA Astrophysics Data System (ADS)

    Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

    2008-12-01

    The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or

  15. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    SciTech Connect

    McGowan, Vance

    2003-08-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22.9 acres

  16. Evaluation of water quality projects in the Lake Tahoe basin.

    PubMed

    Schuster, S; Grismer, M E

    2004-01-01

    Lake Tahoe is a large sub alpine lake located in the Sierra Nevada Range in the states of California and Nevada. The Lake Tahoe watershed is relatively small (800 km(20) and is made up of soils with a very low nutrient content and when combined with the Lake's enormous volume (156 km(3)) produces water of unparalleled clarity. However, urbanization around the Lake during the past 50 yr has greatly increased nutrient flux into the Lake resulting in increased algae production and rapidly declining water clarity. Lake transition from nitrogen limiting to phosphorous limiting during the last 30 yr suggests the onset of cultural eutrophication of Lake Tahoe. Protecting Lake Tahoe's water quality has become a major public concern and much time, effort, and money has been, and will be, spent on this undertaking. The effectiveness of remedial actions is the subject of some debate. Local regulatory agencies have mandated implementation of best management practices (BMPs) to mitigate the effects of development, sometimes at great additional expense for developers and homeowners who question their effectiveness. Conclusive studies on the BMP effectiveness are also expensive and can be difficult to accomplish such that very few such studies have been completed. However, several project evaluations have been completed and more are underway. Such study usually demonstrates support of the project's effectiveness in decreasing nutrient flux to Lake Tahoe. Here, we review the existing state of knowledge of nutrient loading to the Lake and to highlight the need for further evaluative investigations of BMPs in order to improve their performance in present and future regulatory actions.

  17. The Alzette Experimental River Basin: Contribution of The Irma-sponge Project Frhymap

    NASA Astrophysics Data System (ADS)

    Iffly, J. F.; Pfister, L.; El Idrissi, A.; Hoffmann, L.

    One of the main objectives of the FRHYMAP project being the developpment and the testing of hydrological and hydraulic model robustness and transposability, differ- ent models were developped by the partners of the project in their own experimental basins and then transposed to a common experimental research basin: the transbound- ary Alzette river basin (France, Luxembourg and Belgium) for testing. The Alzette river basin, located in western Europe, is extending over 1176 km2. The Alzette river originates in France, approximately 4 km south of the French-Luxembourg bor- der. Downstream of Luxembourg-city, it heads north for approximately 67.5 km. At present, the valley accomodates almost 2/3 of the population of Luxembourg, as well as an important part of the industrial infrastructure. At the beginning of the 1990s, se- vere floods have caused on several occasions important damages in the Alzette flood- plain. After those devastating floods, one of the major problems that both public au- thorities and researchers had to cope with was the lack of long and reliable hydrolog- ical time-series. Less than half a dozen of more or less continuous daily streamflow data series, starting in the 1950s and extending to the 1990s, were available for the Alzette river basin. Rainfall data series were much more abundant, with data from approximately 50 measuring stations, having started in many cases at the beginning of the 1950s. Since the middle of the 1990s, public authorities, as well as the Gabriel Lippmann-Public Research Centre (CRP-GL), have since then built-up a dense hydro- climatological observation network in the Alzette river basin. This network is meant to provide real-time information (at a 15-minutes time-step), in view of flood fore- casting, as well as to provide data of high spatio-temporal accuracy for research ac- tivities in the field of flood generating processes. The locations of the streamgauge stations were selected according to physiographic criteria

  18. Columbia basin project, Washington: Adams, Douglas, Franklin, Grant, Lincoln, and Walla Walla Counties

    SciTech Connect

    Not Available

    1993-01-01

    The Columbia Basin Project is a multipurpose development utilizing a portion of the resources of the Columbia River in the central part of the State of Washington. The key structure, Grand Coulee Dam, is on the main stem of the Columbia River about 90 miles west of Spokane, Wash. The extensive irrigation works extend southward on the Columbia Plateau 125 miles to the vicinity of Pasco, Wash., where the Snake and Columbia Rivers join.

  19. Projections of extreme weather events in the Lake Victoria basin under climate change

    NASA Astrophysics Data System (ADS)

    Mutua, F.; Koike, T.

    2013-05-01

    Extreme rainfall events have large and sometimes devastating effects on communities especially those living in developing countries. Floods, infrastructure damage, loss of lives and destruction crops are some of the adverse effects associated with extreme rainfall. There is a general consensus that changes in frequency and intensity of extreme weather and climate events will increase under climate change and have adverse effects on both humanity and nature. The Lake Victoria basin, East Africa has been identified as one of the most vulnerable regions to changes in extreme events. Using Coupled Model Inter-comparison Project Phase (CMIP3) General Circulation Model (GCM) projection data, three least biased GCMs were selected and extreme event indices for 2045-2065 studied. Under the Special Report on Emissions Scenarios (SRESA1B) scenario, the number of wet days exceeding the 90% percentile of 1981-2000 is likely to increase by 20-40% in the whole region. An increase of about 5-20% is projected to occur in the Lake Victoria basin and Congo basins with the highest changes of about more than 30% being projected for the Kenyan-Somali coast. This is also reflected in the number of wet days exceeding the 99% threshold with about 1-8% projected increase. This is accompanied by more than 100% increase on days with rainfall over 40mm/day east of Lake Victoria and central Kenya and 10% increase in the simple daily intensity index. Meteorological analysis of thirty selected events suggests abundant moisture influx into the region with Indian and Atlantic Oceans contributing the bulk in the October-December season. Anomalously strong North East monsoons and Somali jet as well as stronger pressure gradients are suggested to dominate the circulations. The walker circulation cell that develops during the main seasons in the region is projected to experience weakened surface westerlies which have been shown to be strongly correlated to precipitation anomalies in the region.

  20. Projections of extreme weather events in the Lake Victoria basin under climate change

    NASA Astrophysics Data System (ADS)

    Mutua, Felix; Mohamed, Rasmy; Koike, Toshio

    2013-04-01

    Extreme rainfall events have large and sometimes devastating effects on communities especially those living in developing countries. Floods, infrastructure damage, loss of lives and destruction crops are some of the adverse effects associated with extreme rainfall. There is a general consensus that changes in frequency and intensity of extreme weather and climate events will increase under climate change and have adverse effects on both humanity and nature. The Lake Victoria basin, East Africa has been identified as one of the most vulnerable regions to changes in extreme events. Using Coupled Model Inter-comparison Project Phase (CMIP3) General Circulation Model (GCM) projection data, three least biased GCMs were selected and extreme event indices for 2045-2065 studied. Under the Special Report on Emissions Scenarios (SRESA1B) scenario, the number of wet days exceeding the 90% percentile of 1981-2000 is likely to increase by 20-40% in the whole region. An increase of about 5-20% is projected to occur in the Lake Victoria basin and Congo basins with the highest changes of about more than 30% being projected for the Kenyan-Somali coast. This is also reflected in the number of wet days exceeding the 99% threshold with about 1-8% projected increase. This is accompanied by more than 100% increase on days with rainfall over 40mm/day east of Lake Victoria and central Kenya and 10% increase in the simple daily intensity index. Meteorological analysis of thirty selected events suggests abundant moisture influx into the region with Indian and Atlantic Oceans contributing the bulk in the October-December season. Anomalously strong North East monsoons and Somali jet as well as stronger pressure gradients are suggested to dominate the circulations. The walker circulation cell that develops during the main seasons in the region is projected to experience weakened surface westerlies which have been shown to be strongly correlated to precipitation anomalies in the region.

  1. The Convergence of Heat, Groundwater & Fracture Permeability. Innovative Play Fairway Modelling Applied to the Tularosa Basin Phase 1 Project Report

    SciTech Connect

    Bennett, Carlon R.; Nash, Gregory D.; Sorkhabi, Rasoul; Moore, Joseph; Simmons, Stuart; Brandt, Adam; Barker, Benjamin; Swanson, Brigitte

    2015-10-16

    This report summarizes the activities and key findings of the project team occurring during Phase 1 (August 2014-October 2015) of the Tularosa Basin Geothermal Play Fairway Analysis Project. The Tularosa Basin Play Fairway Analysis (PFA) project tested two distinct geothermal exploration methodologies covering the entire basin within South Central New Mexico and Far West Texas. Throughout the initial phase of the project, the underexplored basin proved to be a challenging, yet ideal test bed to evaluate effectiveness of the team’s data collection techniques as well as the effectiveness of our innovative PFA. Phase 1 of the effort employed a low-cost, pragmatic approach using two methods to identify potential geothermal plays within the study area and then compared and contrasted the results of each method to rank and evaluate potential plays. Both methods appear to be very effective and highly transferable to other areas.

  2. Probabilistic projections of regional climatic changes over the Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Wang, Xiuquan; Huang, Guohe; Baetz, Brian W.; Zhao, Shan

    2016-11-01

    As the largest surface fresh water system on earth, the Great Lakes is facing the threat of climate change. Understanding how the hydrologic cycle in the Great Lakes region would be affected by human-induced global warming is important for developing informed adaptation strategies. In this study, high-resolution regional climate ensemble simulations based upon the PRECIS modeling system are conducted to project future climatic changes over the Great Lakes Basin. The results show that the Great Lakes Basin is very likely to experience a continuous warming-up throughout the 21st century. Particularly, mean air temperatures will rise by 2.6 °C in the forthcoming decades (i.e., 2030s), 3.8 °C in the middle of the century (i.e., 2050s), and 5.6 °C to the end of the century (i.e., 2080s), respectively. The warming air temperatures are very likely to result in more precipitation over the entire basin. The annual total precipitation over the Great Lakes Basin is projected to increase by 8.9% in the 2030s and 12.2% in the 2050s, while the magnitude of precipitation increase would decline to 7.1% in the 2080s. The slow-down of the precipitation increase from the 2050s to the 2080s indicates a shift from the aggressive increase of precipitation before and in the middle of this century to the eventual decrease by the end of this century, suggesting that a nonlinear response relationship between precipitation and temperature may exist in the Great Lakes Basin and such a relationship is also likely to vary in response to global warming.

  3. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change

    NASA Astrophysics Data System (ADS)

    Wang, Le; Guo, Shenglian; Hong, Xingjun; Liu, Dedi; Xiong, Lihua

    2017-03-01

    Poyang Lake, the largest freshwater lake in China, and its surrounding sub-basins have suffered frequent floods and droughts in recent decades. To better understand and quantitatively assess hydrological impacts of climate change in the region, this study adopted the Statistical Downscaling Model (SDSM) to downscale the outputs of a Global Climate Model (GCM) under three scenarios (RCP2.6, RCP4.5 and RCP8.5) as recommended by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) during future periods (2010‒2099) in the Poyang Lake Basin. A semi-distributed two-parameter monthly water balance model was also used to simulate and predict projected changes of runoff in the Ganjiang sub-basin. Results indicate that: 1) SDSM can simulate monthly mean precipitation reasonably well, while a bias correction procedure should be applied to downscaled extreme precipitation indices (EPI) before being employed to simulate future precipitation; 2) for annual mean precipitation, a mixed pattern of positive or negative changes are detected in the entire basin, with a slightly higher or lower trend in the 2020s and 2050s, with a consistent increase in the 2080s; 3) all six EPI show a general increase under RCP4.5 and RCP8.5 scenarios, while a mixed pattern of positive and negative changes is detected for most indices under the RCP2.6 scenario; and 4) the future runoff in the Ganjiang sub-basin shows an overall decreasing trend for all periods but the 2080s under the RCP8.5 scenario when runoff is more sensitive to changes in precipitation than evaporation.

  4. The IRETHERM Project: Assessment Of The Rathlin Basin As A Possible Geothermal Aquifer

    NASA Astrophysics Data System (ADS)

    Delhaye, R. P.; Jones, A. G.; Brown, C.; Reay, D.

    2013-12-01

    IRETHERM (www.iretherm.ie) is a collaborative, SFI-funded research project to identify and evaluate sites within Ireland possessing the greatest potential for deep, low-enthalpy, geothermal energy provision. Geothermal aquifers, which might host such resources and that will be evaluated over the next three years, are found within relatively high primary and/or secondary porosity media, with viability depending largely on the permeability distribution which controls fluid flow and heat-exchange. Promising primary-porosity targets are located in the Permo-Triassic sedimentary basins of Northern Ireland and include the Triassic Sherwood Sandstone Group (measured porosities and permeabilities of 8-24% and 2-1000 mD respectively in borehole core samples). The subject of the work presented here, the Rathlin Basin in Co. Antrim, is one such basin, where measurements in two independent boreholes show geothermal gradients of between 36 and 43 °C/km to depths of 1481 m. Previously published interpretations of gravity models across the basin attribute a thickness of 2000 m to the Sherwood Sandstone Group, with a maximum depth to the Permo-Triassic basement of 4000 m. Magnetotelluric data were acquired onshore in June 2012 across a 2-D grid of 57 sites with a 2 km site spacing in June 2012, and on the nearby Rathlin Island in two profiles totalling 12 sites with an 800 m site spacing in April 2013 in order to image the thickness and continuity of the sediments in the north-eastern portion of the basin. In the modelling results presented here, the Permo-Triassic sediment fill has a well-imaged resistivity contrast to the surrounding basal Dalradian metasediments. The data have been analysed and modelled to determine a model that maps the variation in thickness of the sediment fill and the truncation of the basin sediments against the Tow Valley Fault.

  5. A Project for Developing an Original Methodology Intended for Determination of the River Basin/Sub-Basin Boundaries and Codes in Western Mediterranean Basin in Turkey with Perspective of European Union Directives

    NASA Astrophysics Data System (ADS)

    Gökgöz, Türkay; Ozulu, Murat; Erdoǧan, Mustafa; Seyrek, Kemal

    2016-04-01

    From the view of integrated river basin management, basin/sub-basin boundaries should be determined and encoded systematically with sufficient accuracy and precision. Today basin/sub-basin boundaries are mostly derived from digital elevation models (DEM) in geographic information systems (GIS). The accuracy and precision of the basin/sub-basin boundaries depend primarily on the accuracy and resolution of the DEMs. In this regard, in Turkey, a survey was made for the first time within the scope of this project to identify current situation, problems and needs in General Directorates of State Hydraulic Works, Water Management, Forestry, Meteorology, Combating Desertification and Erosion, which are the major institutions with responsibility and authority. Another factor that determines the accuracy and precision of basin/sub-basin boundaries is the flow accumulation threshold value to be determined at a certain stage according to a specific methodology in deriving the basin/sub-basin boundaries from DEM. Generally, in Turkey, either the default value given by GIS tool is used directly without any geomorphological, hydrological and cartographic bases or it is determined by trial and error. Although there is a system of catchments and rivers network at 1:250,000 scale and a proper method has already been developed on systematic coding of the basin by the General Directorate of State Hydraulic Works, it is stated that a new system of catchments, rivers network and coding at larger scale (i.e. 1:25,000) is needed. In short, the basin/sub-basin boundaries and codes are not available currently at the required accuracy and precision for the fulfilment of the obligations described in European Union (EU) Water Framework Directive (WFD). In this case, it is clear that there is not yet any methodology to obtain such products. However, a series of projects should be completed such that the basin/sub-basin boundaries and codes are the fundamental data infrastructure. This task

  6. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    SciTech Connect

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and photo

  7. The Walla Walla Basin Natural Production Monitoring and Evaluation Project : Progress Report, 1999-2002.

    SciTech Connect

    Contor, Craig R.; Sexton, Amy D.

    2003-06-02

    The Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME) was funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) under the Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME). Chapter One provides an overview of the entire report and how the objectives of each statement of work from 1999, 2000, 2001, and 2002 contract years are organized and reported. Chapter One also provides background information relevant to the aquatic resources of the Walla Walla River Basin. Objectives are outlined below for the statements of work for the 1999, 2000, 2001 and 2002 contract years. The same objectives were sometimes given different numbers in different years. Because this document is a synthesis of four years of reporting, we gave objectives letter designations and listed the objective number associated with the statement of work for each year. Some objectives were in all four work statements, while other objectives were in only one or two work statements. Each objective is discussed in a chapter. The chapter that reports activities and findings of each objective are listed with the objective below. Because data is often interrelated, aspects of some findings may be reported or discussed in more than one chapter. Specifics related to tasks, approaches, methods, results and discussion are addressed in the individual chapters.

  8. Records available to September 30, 1956, on use of water in the Delaware Basin Project area

    USGS Publications Warehouse

    Kammerer, John C.

    1957-01-01

    The purpose of this report is to summarize data on the use of water in the Delaware Basin Project area (fig. 2) and to list the principal data sources that are available in published form. The tables and bibliography will assist Geological Survey personnel assigned to the Delaware Basin Project in evaluating the scope and deficiencies of previous studies of the basin. Information is also given on the use of water by public supplies in the New York-New Jersey region comprising the New York City Metropolitan Area and in the remaining north-central and south-eastern parts of New Jersey. These regions may depend increasingly on water from the Delaware River basin for part of their public supplies. The Geological Survey has the responsibility for appraising and describing the water resources of the Nation as a guide to use, development, control, and conservation of these resources. Cooperative Federal-State water-resources investigations in the Delaware Basin States have been carried on the the Geological Survey for more than 50 years. In July 1956 the Survey began the "Delaware Basin Project," a hydrologic study of the Delaware River basin in order to: 1) Determine present status and trends in water availability, quality, and use, 2) assess and improve the adequacy of the Survey's basic water data program in the basin, 3) interpret and evaluate the water-resources data in terms of past and possible future water-use and land-use practices, and 4) disseminate promptly the results of this investigation for the benefit of all interested agencies and the general public. The Geological Survey is working closely with the U.S. Corps of Engineers and other cooperating Federal and State agencies in providing water data which will contribute to the present coordinated investigation aimed at developing a plan for long-range water development in the Delaware River basin. Estimates of quantities of water used are given for water withdrawn from streams and aquifers during calendar

  9. Status and understanding of groundwater quality in the South Coast Interior groundwater basins, 2008: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 653-square-mile (1,691-square-kilometer) South Coast Interior Basins (SCI) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The South Coast Interior Basins study unit contains eight priority groundwater basins grouped into three study areas, Livermore, Gilroy, and Cuyama, in the Southern Coast Ranges hydrogeologic province. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA South Coast Interior Basins study was designed to provide a spatially unbiased assessment of untreated (raw) groundwater quality within the primary aquifer system, as well as a statistically consistent basis for comparing water quality between basins. The assessment was based on water-quality and ancillary data collected by the USGS from 50 wells in 2008 and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH database for the SCI study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as trace elements and minor ions. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the SCI study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration

  10. Yakima River Basin Fish Passage Phase II Fish Screen Construction, Project Completion Report.

    SciTech Connect

    Hudson, R. Dennis

    2008-01-01

    On December 5, 1980, Congress passed the Pacific Northwest Electric Power Planning and Conservation Act (Public Law 96-501). The Act created the Northwest Power Planning Council (now the Northwest Power and Conservation Council). The Council was charged with the responsibility to prepare a Regional Conservation and Electric Power Plan and to develop a program to protect, mitigate, and enhance fish and wildlife including related spawning grounds and habitat on the Columbia River and its tributaries. The Council adopted its Fish and Wildlife Program on November 15, 1982. Section 800 of the Program addresses measures in the Yakima River Basin. The Yakima measures were intended to help mitigate hydroelectric impacts in the basin and provide off-site mitigation to compensate for fish losses caused by hydroelectric project development and operations throughout the Columbia River Basin. The Bonneville Power Administration (BPA) was designated as a major source of funding for such off-site mitigation measures and was requested to initiate discussions with the appropriate Federal project operators and the Council to determine the most expeditious means for funding and implementing the program. The primary measures proposed for rapid implementation in the Yakima River basin were the installation of fish passage and protective facilities. Sec. 109 of The Hoover Power Plant Act of 1984, authorized the Secretary of the Interior to design, construct, operate, and maintain fish passage facilities within the Yakima River Basin. Under Phase I of the program, improvements to existing fish passage facilities and installation of new fish ladders and fish screens at 16 of the largest existing diversion dams and canals were begun in 1984 and were completed in 1990. The Yakima Phase II fish passage program is an extension of the Phase I program. In 1988, the Yakama Nation (YN) submitted an application to amend Sections 803(b) and 1403(4.5) of the Northwest Power and Conservation Council

  11. Assessing and forecasting the impacts of global change on Mediterranean rivers. The SCARCE Consolider project on Iberian basins.

    PubMed

    Navarro-Ortega, Alícia; Acuña, Vicenç; Batalla, Ramon J; Blasco, Julián; Conde, Carlos; Elorza, Francisco J; Elosegi, Arturo; Francés, Félix; La-Roca, Francesc; Muñoz, Isabel; Petrovic, Mira; Picó, Yolanda; Sabater, Sergi; Sanchez-Vila, Xavier; Schuhmacher, Marta; Barceló, Damià

    2012-05-01

    The Consolider-Ingenio 2010 project SCARCE, with the full title "Assessing and predicting effects on water quantity and quality in Iberian Rivers caused by global change" aims to examine and predict the relevance of global change on water availability, water quality, and ecosystem services in Mediterranean river basins of the Iberian Peninsula, as well as their socio-economic impacts. Starting in December 2009, it brought together a multidisciplinary team of 11 partner Spanish institutions, as well as the active involvement of water authorities, river basin managers, and other relevant agents as stakeholders. The study areas are the Llobregat, Ebro, Jucar, and Guadalquivir river basins. These basins have been included in previous studies and projects, the majority of whom considered some of the aspects included in SCARCE but individually. Historical data will be used as a starting point of the project but also to obtain longer time series. The main added value of SCARCE project is the inclusion of scientific disciplines ranging from hydrology, geomorphology, ecology, chemistry, and ecotoxicology, to engineering, modeling, and economy, in an unprecedented effort in the Mediterranean area. The project performs data mining, field, and lab research as well as modeling and upscaling of the findings to apply them to the entire river basin. Scales ranging from the laboratory to river basins are addressed with the potential to help improve river basin management. The project emphasizes, thus, linking basic research and management practices in a single framework. In fact, one of the main objectives of SCARCE is to act as a bridge between the scientific and the management and to transform research results on management keys and tools for improving the River Basin Management Plans. Here, we outline the general structure of the project and the activities conducted within the ten Work Packages of SCARCE.

  12. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    SciTech Connect

    Childs, Allen B.

    2002-03-01

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is

  13. PMP Estimations at Sparsely Controlled Andinian Basins and Climate Change Projections

    NASA Astrophysics Data System (ADS)

    Lagos Zúñiga, M. A.; Vargas, X.

    2012-12-01

    Probable Maximum Precipitation (PMP) estimation implies an extensive review of hydrometeorological data and understandig of precipitation formation processes. There exists different methodology processes that apply for their estimations and all of them require a good spatial and temporal representation of storms. The estimation of hydrometeorological PMP on sparsely controlled basins is a difficult task, specially if the studied area has an important orographic effect due to mountains and the mixed precipitation occurrence in the most several storms time period, the main task of this study is to propose and estimate PMP in a sparsely controlled basin, affected by abrupt topography and mixed hidrology basin; also analyzing statystic uncertainties estimations and possible climate changes effects in its estimation. In this study the PMP estimation under statistical and hydrometeorological aproaches (watershed-based and traditional depth area duration analysis) was done in a semi arid zone at Puclaro dam in north Chile. Due to the lack of good spatial meteorological representation at the study zone, we propose a methodology to consider the orographic effects of Los Andes due to orographic effects patterns based in a RCM PRECIS-DGF and annual isoyetal maps. Estimations were validated with precipitation patterns for given winters, considering snow route and rainfall gauges at the preferencial wind direction, finding good results. The estimations are also compared with the highest areal storms in USA, Australia, India and China and with frequency analysis in local rain gauge stations in order to decide about the most adequate approach for the study zone. Climate change projections were evaluated with ECHAM5 GCM model, due to its good quality representation in the seasonality and the magnitude of meteorological variables. Temperature projections, for 2040-2065 period, show that there would be a rise in the catchment contributing area that would lead to an increase of the

  14. Introduction to the Special Collection of Papers on the San Luis Basin Sustainability Metrics Project: A Methodology for Evaluating Regional Sustainability

    EPA Science Inventory

    This paper introduces a collection of four articles describing the San Luis Basin Sustainability Metrics Project. The Project developed a methodology for evaluating regional sustainability. This introduction provides the necessary background information for the project, descripti...

  15. Introduction to the Special Collection of Papers on the San Luis Basin Sustainability Metrics Project: A Methodology for Evaluating Regional Sustainability

    EPA Science Inventory

    This paper introduces a collection of four articles describing the San Luis Basin Sustainability Metrics Project. The Project developed a methodology for evaluating regional sustainability. This introduction provides the necessary background information for the project, descripti...

  16. Walla Walla River Basin Fish Habitat Enhancement Project, 2000-2001 Annual Report.

    SciTech Connect

    Volkman, Jed; Sexton, Amy D.

    2001-01-01

    In 2000, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. Six projects, two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River were part of the exercise. Several thousand native plants as bare-root stock and cuttings were reintroduced to the sites and 18 acres of floodplain corridor was seeded with native grass seed. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan.

  17. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    SciTech Connect

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  18. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    SciTech Connect

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on the mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included

  19. Umatilla River Basin Anadromus Fish Habitat Enhancement Project : 1994 Annual Report.

    SciTech Connect

    Shaw, R. Todd

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, Section 7.6-7.8 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower l/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994-95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation. Four 15 year riparian easements and two right-of-way agreements were secured for enhancement of one river mile on Wildhorse Creek and l/2 river mile on Meacham Creek. Enhancements implemented between river mile (RM) 9.5 and RM 10.5 Wildhorse Creek included: (1) installation of 1.43 miles of smooth wire high tensile fence line and placement of 0.43 miles of fence posts and structures to restrict livestock from the riparian corridor, (2) construction of eighteen sediment retention structures in the stream channel to speed riparian recovery by elevating the stream grade, slowing water velocities and

  20. Pacific Basin Deaf-Blind Project. State & Multi State Projects for Children with Deaf-Blindness. Final Report, 1992-1995.

    ERIC Educational Resources Information Center

    Kelly, Dotty; Guerrero, Vincent Leon

    This final report describes activities and accomplishments of the Pacific Basin Deaf-Blind Project, a 3-year federally funded project to provide technical assistance to public and private agencies, institutions, and organizations providing early intervention, educational, transitional, vocational, early identification, and related services to…

  1. Walla Walla River Basin Fish Habitat Enhancement Project, 2001-2002 Annual Report.

    SciTech Connect

    Volkman, Jed; Sexton, Amy D.

    2003-04-01

    In 2001, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled six properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River. Since 1997, approximately 7 miles of critical salmonid habitat has been secured for restoration and protection under this project. Major accomplishments to date include the following: Secured approximately $250,000 in cost share; Secured 7 easements; Planted 30,000+ native plants; Installed 50,000+ cuttings; and Seeded 18 acres to native grass. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan. Basin-wide monitoring also included the deployment of 6 thermographs to collect summer stream temperatures.

  2. California Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project--shallow aquifer assessment

    USGS Publications Warehouse

    ,

    2013-01-01

    The California State Water Resources Control Board’s (SWRCB) GAMA Program is a comprehensive assessment of statewide groundwater quality in California. From 2004 to 2012, the GAMA Program’s Priority Basin Project focused on assessing groundwater resources used for public drinking-water supplies. More than 2,000 public-supply wells were sampled by U.S. Geological Survey (USGS) for this effort. Starting in 2012, the GAMA Priority Basin Project began an assessment of water resources in shallow aquifers in California. These shallow aquifers provide water for domestic and small community-supply wells, which are often drilled to shallower depths in the groundwater system than public-supply wells. Shallow aquifers are of interest because shallow groundwater may respond more quickly and be more susceptible to contamination from human activities at the land surface, than the deeper aquifers. The SWRCB’s GAMA Program was developed in response to the Groundwater Quality Monitoring Act of 2001 (Water Code sections 10780-10782.3): a public mandate to assess and monitor the quality of groundwater resources used for drinking-water supplies, and to increase the availability of information about groundwater quality to the public. The U.S. Geological Survey is the technical lead of the Priority Basin Project. Stewardship of California’s groundwater resources is a responsibility shared between well owners, communities, and the State. Participants and collaborators in the GAMA Program include Regional Water Quality Control Boards, Department of Water Resources, Department of Public Health, local and regional groundwater management entities, county and local water agencies, community groups, and private citizens. Well-owner participation in the GAMA Program is entirely voluntary.

  3. Interim Response Action Basin F Liquid Incineration Project Final Draft Human Health Risk Assessment. Volume 1.

    DTIC Science & Technology

    1991-07-01

    91222R02 2ND COPY Interim Response Action Basin F Liquid Incineration Project FINAL DRAFT HUMAN HEALTH RISK ASSESSMENT V olumne I Preplaced Remedial...The Use of OELs and NAAQSs for Calculating Inhalation RfJ)s 9-13 9.4.2.2 Adjustments to Inhalation RfDs 9-14 793C/FM V 7/22/91 TABLE OF CONTENTS...HENDERSON RTHOL THOL HAZELTIN A I LE-- f V , Rocky Mountain WELB DA Arsenal A"ADA AA -AIL- VIM IT RUM Doi T p- 0 Denver kl& MOR SHER DAN r go, "- V

  4. Acceptance test procedure for K basins dose reduction project clean and coat equipment

    SciTech Connect

    Creed, R.F.

    1996-03-11

    This document is the Acceptance Test Procedure (ATP) for the clean and coat equipment designed by Oceaneering Hanford, Inc. under purchase order MDK-XVC-406988 for use in the 105 K East Basin. The ATP provides the guidelines and criteria to test the equipment`s ability to clean and coat the concrete perimeter, divider walls, and dummy elevator pit above the existing water level. This equipment was designed and built in support of the Spent Nuclear Fuel, Dose Reduction Project. The ATP will be performed at the 305 test facility in the 300 Area at Hanford. The test results will be documented in WHC-SD-SNF-ATR-020.

  5. Surface water-quality assessment of the Kentucky River basin, Kentucky; project description

    USGS Publications Warehouse

    White, K.D.; Smoot, J.L.; Jackson, J.K.; Choquette, Anne F.

    1987-01-01

    In April 1986, the U.S. Geological Survey began the National Water Quality Assessment Program, which at present (1987) is in a pilot phase in which assessment concepts and approaches are being tested and modified to prepare for full implementation of the program in the future. Seven pilot projects (four surface water projects and three groundwater projects) have been started. The preliminary plans for the surface water quality assessment of the Kentucky River basin pilot project are described. The Kentucky River basin drains an area of approximately 7,000 sq mi in east central Kentucky and is underlain by rocks that range in composition from limestone to sandstone and shale. Because greater than 95% of the basin population relies on surface water, surface water quality is of great concern. Land use practices that affect the surface water quality in the basin include agriculture, forestry, oil and gas production, coal mining, and urbanization. Water quality concerns resulting from the various land uses include the effects of: oil and gas field brine discharges; agricultural chemicals; sedimentation caused by coal mining; and trace element impacts from industrial and urban environments. Assessment activity is designed to occur over a 9-year period of time. During the first 3-year period of the cycle, concentrated data acquisition and interpretation will occur. For the next 6 years, sample collection will occur at a much lower level of intensity to document the occurrence of any gross changes in water quality. This 9-year cycle will then be repeated. Historical data will be evaluated to provide, to the extent possible, a description of existing and past trends in water quality conditions and to develop conceptual models that relate the observed conditions to the sources and causes, both natural and human-controlled. New data will be collected to verify the water quality conditions documented by historic data, to track long-term trends in water quality, to intensify

  6. The ensemble scenarios projecting runoff changes in large Russian river basins in the 21st century

    NASA Astrophysics Data System (ADS)

    Georgiadi, A. G.; Koronkevich, N.; Milyukova, I. P.; Barabanova, E. A.

    2014-09-01

    An approach is presented for carrying out a long-term projection of river runoff changes in large Russian river basins in the first three decades of the 21st century. These changes may be caused by climate warming and socio-economic factors. The approach utilizes a method for scenario estimation of runoff changes with a range of possible climate warming effects. This range is chosen by generalizing calculation results obtained by using an ensemble of global climate models for two contrasting scenarios (A2 and B1) of globally-averaged air temperature rises. The approach also utilizes a method for alternative scenario estimation for water consumption as related to socio-economic changes. The estimates show that the expected runoff changes in the first third of this century due to climate warming scenarios can compensate the runoff decrease caused by the realization of some of the scenarios for socio-economic changes in the Volga River basin. The same compensation does not occur in the Don River basin, where negative effects are expected for the regional ecology.

  7. The IRETHERM project: Magnetotelluric assessment of the Rathlin Basin as a possible geothermal aquifer

    NASA Astrophysics Data System (ADS)

    Delhaye, Robert; Jones, Alan; Reay, Derek

    2014-05-01

    IRETHERM (www.iretherm.ie) is a collaborative, SFI-funded research project to identify and evaluate sites within Ireland possessing the greatest potential for deep, low-enthalpy, geothermal energy provision. Possible areas for geothermal potential include the Permian and Triassic sedimentary basins in Northern Ireland, which contain groups with relatively high primary porosity, with viability depending largely on the permeability distribution, which controls fluid flow and heat-exchange. The most promising of these is the Triassic Sherwood Sandstone Group, which has measured porosities and permeabilities of 8-24% and 2-1000 mD respectively from borehole core samples. The subject of the work presented here, the Rathlin Basin in County Antrim, is one of three onshore basins in Northern Ireland, where measurements in two independent boreholes show geothermal gradients of between 36 and 43 °C/km to depths of 1481 m. Previously published interpretations of gravity models across the basin attribute a thickness of 2000 m to the Sherwood Sandstone Group, with a maximum depth to the Permo-Triassic basement of 4000 m. Magnetotelluric data were acquired onshore in June 2012 across a 2-D grid of 57 sites with a 2 km site spacing, and on the nearby Rathlin Island on two profiles totalling 12 sites with an 800 m site spacing in April 2013 in order to image the thickness and continuity of the sediments in the north-eastern portion of the basin. In the modelling results presented here, the Permo-Triassic sediment fill has a well-imaged resistivity contrast to the surrounding basal Dalradian metasediments. The data have been analysed and modelled to determine a resistivity model that maps the variation in thickness of the sediment fill and the truncation of the basin sediments against the Tow Valley Fault. Further synthetic testing of the model sensitivity to variation of the thickness of the Sherwood Sandstone Group within the sediment fill has also been performed, as the

  8. Public perception of an ecological rehabilitation project in inland river basins in northern China: Success or failure.

    PubMed

    Feng, Qi; Miao, Zheng; Li, Zongxing; Li, Jianguo; Si, Jianhua; S, Yonghong; Chang, Zongqiang

    2015-05-01

    The need for environmental protection challenges societies to deal with difficult problems because strategies designed by scientists to protect the environment often create negative effects on impoverished local residents. We investigated the effects of China's national and regional policies related to environmental protection and rehabilitation projects in inland river basins, by studying the effect of projects in the Heihe and Shiyang river basins, in northwest China. Interviews and surveys were conducted at 30 sites in the lower reaches of these two arid basins, an area that has experienced severe ecological degradation. The survey results show the ecological rehabilitation projects adversely affected the livelihoods of 70.35% of foresters, 64.89% of farmers and 62.24% of herders in the Minqing region in the lower Shiyang River Basin; also, the projects negatively affected 51.9% of residents in the Ejin Qi in the lower Heihe River Basin. This caused 16.33% of foresters, 39.90% of farmers and 45.32% of herders in the Minqing region to not support the project and 37.5% of residents in the Ejin Qi region said they will deforest and graze again after the project ends. The negative impacts of the policies connected to the projects cause these attitudes. The projects prohibit felling and grazing and require residents to give up groundwater mining; this results in a great amount of uncompensated economic loss to them. Extensive survey data document the concerns of local residents, concerns that are supported by the calculation of actual incomes. In addition, the surveys results show poorer interviewees believe the projects greatly affected their livelihoods. While citizens in this region support environment protection work, the poor require considerable assistance if one expects them to support this type of work. Governmental assistance can greatly improve their living conditions, and hence encourage them to participate in and support the implementation of the projects

  9. Integration of surface and groundwater resources for the development of Hamad Basin project

    NASA Astrophysics Data System (ADS)

    Rofail, Nabil; Asaad, S. I.

    1989-11-01

    Hamad Basin (166,000 km2) is an extensive basin, inhabited by 219,000 souls. It is located in the arid region within the border of four Arab States: Syria, Jordan, Iraq, and Saudi Arabia. Average annual precipitation depth is 78 mm, falling mostly during winter. Integrated studies of the natural resources, (water, soil, range, and animal) were carried out with other complementary studies to formulate a socioeconomic development plan for the promissing areas within the basin. Modern technologies were applied such as remote sensing, isotope analysis, processing, and documenting of basic hydrogeological data within the data bank system using computer facilities. Results revealed that the output of the natural dry plant production amounts to 2.0 × 106 tons. Animal wealth comprise 2 × 106 head mainly of sheep. Average annual surface runoff is 146 × 106 m3, which could be appropriately exploited in water spreading schemes to improve range. Water lost presently through evaporation from vast flat depression (Khabra) could be conserved through deepening the Khabras, and recharging shallow perched aquifer by surface runoff, which could be mined later. Results of regional geology, partial geophysical studies, and hydrogeological, hydrochemical interpretations have concuded the existance of two main aquifer systems, the first lies within the tertiary and quaternary formations, while the second extends to the mesozoic, and paleozoic. Their yield varies quantitively and qualitively, up to 100 × 106 m3 could be safely drawn annually. One compound pilot project was selected within the sector of each of the four Arab States to test the feasibility of the proposed development program for the promissing areas of the basin.

  10. Projections of 21st century climate of the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Rupp, David E.; Abatzoglou, John T.; Mote, Philip W.

    2017-09-01

    Simulations from 35 global climate models (GCMs) in the Coupled Model Intercomparison Project Phase 5 provide projections of 21st century climate in the Columbia River Basin under scenarios of anthropogenic activity given by Representative Concentration Pathways (RCP4.5 and RCP8.5). The multi-model ensemble 30-year mean annual temperature increases by 2.8 °C (5.0 °C) by late 21st century under RCP4.5 (RCP8.5) over the 1979-1990 baseline, with 18% (24%) more warming in summer. By late 21st century, annual precipitation increases by 5% (8%), with an 8% (14%) winter increase and a 4% (10%) summer decrease, but because some models project changes of opposite sign, confidence in these sign changes is lower than those for temperature. Four questions about temperature and precipitation changes were addressed: (1) How and why do climate projections vary seasonally? (2) Is interannual variability in seasonal temperature and precipitation projected to change? (3) What explains the large inter-model spread in the projections? (4) Do projected changes in climate depend on model skill? Changes in precipitation and temperature vary seasonally as a result of changes in large-scale circulation and regional surface energy budget, respectively. Interannual temperature variability decreases slightly during the cool seasons and increases in summer, while interannual precipitation variability increases in all seasons. The magnitude of regional warming is linked to models' global climate sensitivity, whereas internal variability dominates the inter-model spread of precipitation changes. Lastly, GCMs that better reproduce historical climate tend to project greater warming and larger precipitation increases, though these results depend on the evaluation method.

  11. Projections of 21st century climate of the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Rupp, David E.; Abatzoglou, John T.; Mote, Philip W.

    2016-10-01

    Simulations from 35 global climate models (GCMs) in the Coupled Model Intercomparison Project Phase 5 provide projections of 21st century climate in the Columbia River Basin under scenarios of anthropogenic activity given by Representative Concentration Pathways (RCP4.5 and RCP8.5). The multi-model ensemble 30-year mean annual temperature increases by 2.8 °C (5.0 °C) by late 21st century under RCP4.5 (RCP8.5) over the 1979-1990 baseline, with 18% (24%) more warming in summer. By late 21st century, annual precipitation increases by 5% (8%), with an 8% (14%) winter increase and a 4% (10%) summer decrease, but because some models project changes of opposite sign, confidence in these sign changes is lower than those for temperature. Four questions about temperature and precipitation changes were addressed: (1) How and why do climate projections vary seasonally? (2) Is interannual variability in seasonal temperature and precipitation projected to change? (3) What explains the large inter-model spread in the projections? (4) Do projected changes in climate depend on model skill? Changes in precipitation and temperature vary seasonally as a result of changes in large-scale circulation and regional surface energy budget, respectively. Interannual temperature variability decreases slightly during the cool seasons and increases in summer, while interannual precipitation variability increases in all seasons. The magnitude of regional warming is linked to models' global climate sensitivity, whereas internal variability dominates the inter-model spread of precipitation changes. Lastly, GCMs that better reproduce historical climate tend to project greater warming and larger precipitation increases, though these results depend on the evaluation method.

  12. Great Basin paleoenvironmental studies project; Third quarterly technical progress report, December 1993--February 1994

    SciTech Connect

    1994-04-01

    Examination of the paleolithic and geomorphic records to determine the local and regional impact of past climates will advance assessment of Yucca Mountain`s suitability as a high-level nuclear waste repository. The project includes the integration of botanical, faunal, and geomorphic components to accomplish this goal. Paleobotanical studies will reconstruct the response of vegetation to climate change at the community and the organismal levels by integrating data obtained from nearly continuous sediment records of pollen, plant macrofossils, and stable isotopes from fossil woodrat middens. The goal of the paleofaunas study is to construct a history of Great Basin vertebrates, particularly mammals, that will provide empirical evidence of past environmental and climatic conditions within the Great Basin as it is recorded by the animals. Taxonomic composition of archaeological and paleontological faunas from various areas within the Great Basin and morphological change within individual mammalian taxa at specific localities are being investigated to monitor faunal response to changing environmental conditions. The objective of the geomorphology component of the paleoenvironmental program is to document the responses of surficial processes and landforms to the climatic changes documented by studies of packrat middens, pollen, and faunal distributions. The project will focus on: (1) stratigraphic relationships between lake deposits and aeolian or fluvial sediments and landforms; (2) cut and fill sequences in floodplain and river-channel deposits; (3) identification of periods of dune mobility and stability; (4) documentation of episodes of alluvial fan and terrace development and erosion; and (5) correlation of (3) and (4) to climatically driven lake-level fluctuation as revealed by shoreline features such as strandlines and beach ridges. Accomplishments for this period are presented for these studies.

  13. Surface-water-quality assessment of the Yakima River basin, Washington; project description

    USGS Publications Warehouse

    McKenzie, S.W.; Rinella, J.F.

    1987-01-01

    In April 1986, the U.S. Geological Survey began the National Water Quality Assessment program to: (1) provide a nationally consistent description of the current status of water quality, (2) define water quality trends that have occurred over recent decades, and (3) relate past and present water quality conditions to relevant natural features, the history of land and water use, and land management and waste management practices. At present (1987), The National Water Quality Assessment program is in a pilot studies phase, in which assessment concepts and approaches are being tested and modified to prepare for possible full implementation of the program. Seven pilot projects (four surface water projects and three groundwater projects) have been started. The Yakima River basin in Washington is one of the pilot surface water project areas. The Yakima River basin drains in area of 6,155 sq mi and contains about 1,900 river mi of perennial streams. Major land use activities include growing and harvesting timber, dryland pasture grazing, intense farming and irrigated agriculture, and urbanization. Water quality issues that result from these land uses include potentially large concentrations of suspended sediment, bacteria, nutrients, pesticides, and trace elements that may affect water used for human consumption, fish propagation and passage, contact recreation, livestock watering, and irrigation. Data will be collected in a nine year cycle. The first three years of the cycle will be a period of concentrated data acquisition and interpretation. For the next six years, sample collection will be done at a much lower level of intensity to document the occurrence of any gross changes in water quality. This nine year cycle would then be repeated. Three types of sampling activities will be used for data acquisition: fixed location station sampling, synoptic sampling, and intensive reach studies. (Lantz-PTT)

  14. Fish Habitat Improvement Projects in the Fifteenmile Creek and Trout Creek Basins of Central Oregon: Field Review and Management Recommendations.

    SciTech Connect

    Kauffman, J. Boone

    1993-07-01

    A field review of stream habitat improvement project sites in the lower Deschutes River Basin was conducted by riparian ecology, fisheries, and hydrology specialists. Habitat management objectives, limiting factors, project implementation, land use history, and other factors were discussed at each site. This information, in conjunction with the reviewer`s field inspections of portions of a particular habitat project, provided the basis for this report.

  15. Western Gas Sands Project. Quarterly basin activities report, January 1-March 31, 1980

    SciTech Connect

    Not Available

    1980-01-01

    This report is a summary of drilling and testing activities in the four primary study areas of the WGSP: Greater Green River Basin, Northern Great Plains Province, Uinta Basin, and Piceance Basin. (DLC)

  16. Western gas sands project. Quarterly basin activities report, April 1-June 30, 1980

    SciTech Connect

    Not Available

    1980-01-01

    This report is a summary of drilling and testing operations in the four primary study areas of the WESP for this period. Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. (DLC)

  17. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    SciTech Connect

    PACKER, M.J.

    1999-11-04

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  18. Water-quality assessment of the Carson River ground-water basin, Nevada and California; project description

    USGS Publications Warehouse

    Welch, A.H.; Plume, R.W.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the nation 's surface water and groundwater resources. This program, called the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a wide range of water quality issues. The program is in its early stages and consists of four surface water and three groundwater pilot projects. The objectives of the Carson River basin NAWQA project are described in the context of the national program, the study area and its associated water quality issues, and a proposed study approach. The objectives of the Carson River basin NAWQA project are to: (1) investigate regional groundwater quality; (2) describe relations of groundwater quality to land use, geohydrology, and other pertinent factors; (3) provide a general description of the location, nature and possible causes of selected widespread water quality problems in the project area; and (4) develop new techniques for characterizing regional groundwater quality, especially in arid alluvial basins. There are to be three major phases of the Carson River basin project. The first will consist of compilation and analysis of existing data. The second phase will consist of a regional water quality survey that will produce a consistent set of data that can be used to: (1) define regional quality of groundwater within the Carson River basin; and (2) compare that water quality with other aquifers in the Nation. The third phase will include topical studies that will define groundwater quality in the Carson River basin with respect to certain constituents, either basin wide or within specific areas of concern. (Lantz-PTT)

  19. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    SciTech Connect

    Childs, Allen

    2002-03-01

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  20. Anisotropic structure of the Pannonian basin: Reprocessing SKS splitting data for the CBP project stations

    NASA Astrophysics Data System (ADS)

    Qorbani, Ehsan; Bokelmann, Götz; Kovács, Istvan; Falus, György

    2014-05-01

    The Carpathian-Pannonian region (CPR) is the northeastern end of the Alpine mountain belt. In the western Alps, available results of anisotropy investigations (shear wave splitting) show clear belt-parallel anisotropy (fast orientation). In the eastern Alps this pattern not only is broken but also does not follow the strike of Carpathians and Dinarides. This study is aimed at evaluating the seismic anisotropy of the upper mantle beneath the CPR concentrating on the eastward elongation of the fast anisotropic pattern of the eastern Alps. We use data recorded by the temporary stations, set up for the Carpathian Basin Project (CBP), extending from the Vienna basin through Hungary into Serbia. Initial results from the CBP project (Stuart et al., 2007; Kovács et al., 2012) presented the average fast anisotropy directions for the Carpathian-Pannonian region including a subset of permanent broadband stations in the eastern Alps. While some of the results agree with another recently published anisotropy analysis of the Eastern Alps (Bokelmann et al., 2013), some don`t. For this reason, the study at hand was primarily concerned with understanding observed differences in fast orientations and also with possible geodynamic interpretations. With this intention, we reprocess data from 45 temporary CBP stations consisting recorded waveform of teleseismic events with magnitude greater than 6.0 that have occurred in the distance range from 90° to 130° between 2005 and 2007. We utilize the minimum energy method (Silver and Chan, 1991) to measure the splitting delay time and fast axis polarization direction, and show the individual measurements of anisotropic parameters at single stations. The dominant fast polarization orientation is NW-SE for the Hungarian part of the stations as well as at the stations located in the easternmost of the Pannonian Basin. This orientation turns more into WNW-ESE at the stations situated in Austria, mostly NW of the Vienna basin. Apart from

  1. The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling

    NASA Astrophysics Data System (ADS)

    Choi, Sungchan; Götze, Hans-Jürgen; Meyer, Uwe; Desire-Group

    2010-05-01

    This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. The results of the 3D gravity modelling based the GPS analysis, magnetic field characters, seismic researches and analysis of earthquake data allow us to propose that (1) the DSB is divided into two tectonic blocks by the region between the Lisan peninsula and the southern margin of the northern DSB and (2) the tectonic system in the DSB is defined as a counter-clockwise rotating pull

  2. The MITMOTION Project - A seismic hazard overview of the Mitidja Basin (Northern Algeria)

    NASA Astrophysics Data System (ADS)

    Borges, José; Ouyed, Merzouk; Bezzeghoud, Mourad; Idres, Mouloud; Caldeira, Bento; Boughacha, Mohamed; Carvalho, João; Samai, Saddek; Fontiela, João; Aissa, Saoussen; Benfadda, Amar; Chimouni, Redouane; Yalaoui, Rafik; Dias, Rui

    2017-04-01

    The Mitidja Basin (MB) is located in northern Algeria and is filled by quaternary sediments with a length of about 100 km on the EW direction and approximately 20 km width. This basin is limited to the south by the Boumerdes - Larbaa - Blida active fault system and to the north by the Thenia - Sahel fault system. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of 4 mm/year. This basin is associated with important seismic events that affected northern Algeria since the historical period until the present. The available earthquake catalogues reported numerous destructive earthquakes that struke different regions, such as Algiers (1365, Io= X; 1716, Io = X). Recently, on May 2003 the Bourmedes earthquake (Mw = 6.9) affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The epicenter was located offshore and generated a maximum uplift of 0.8 m along the coast with a horizontal maximum slip of 0.24 m. Recent studies show that the Boumerdes earthquake overloaded the system of adjacent faults with a stress increase between 0.4 and 1.5 bar. This induced an increase of the seismic hazard potential of the region and recommends a more detailed study of this fault system. The high seismogenic potential of the fault system bordering the MB, the exposure to danger of the most densely populated region of Algiers and the amplification effect caused by the basin are the motivation for this project proposal that will focus on the evaluation of the seismic hazard of the region. The general purpose of the project is to improve the seismic hazard assessment on the MB producing realistic predictions of strong ground motion caused by moderate and large earthquakes. To achieve this objective, it is important to make an effort in 3 directions: 1) the development of a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data

  3. Status and Understanding of Groundwater Quality in the Central-Eastside San Joaquin Basin, 2006: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Landon, Matthew K.; Belitz, Kenneth; Jurgens, Bryant C.; Justin T. Kulongoski, Justin T.; Johnson, Tyler D.

    2010-01-01

    Groundwater quality in the approximately 1,695-square-mile Central Eastside San Joaquin Basin (Central Eastside) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001, and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Central Eastside study unit was designed to provide a spatially unbiased assessment of untreated-groundwater quality, as well as a statistically consistent basis for comparing water quality throughout California. During March through June 2006, samples were collected from 78 wells in Stanislaus and Merced Counties, 58 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 20 of which were sampled to evaluate changes in water chemistry along groundwater-flow paths (understanding wells). Water-quality data from the California Department of Public Health (CDPH) database also were used for the assessment. An assessment of the current status of the groundwater quality included collecting samples from wells for analysis of anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring constituents such as major ions and trace elements. The assessment of status is intended to characterize the quality of untreated-groundwater resources within the primary aquifer system, not the treated drinking water delivered to consumers by water purveyors. The primary aquifer system (hereinafter, primary aquifer) is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the Central Eastside study unit. The quality of groundwater in shallower or

  4. John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring; Fish Research Project Oregon, 1998-1999 Annual Report.

    SciTech Connect

    Jonasson, Brian C.; Albaladejo, Victor D.; Carmichael, Richard W.

    1999-12-01

    The John Day River basin supports one of the healthiest naturally-produced populations of spring chinook in the mid-Columbia River basin. The study of life history and natural escapement conducted from 1978 to 1985 (Lindsay et al. 1986) provided valuable information on production and productivity of the John Day River spring chinook. With the exception of two years since completion of the study in 1985 (1989 and 1995), spring chinook spawning surveys were conducted in index areas only and have not provided adequate information to assess age composition, progeny-to-parent production values, and estimate natural spawning escapement. The PATH project (Marmorek and Peters 1996) has identified the John Day basin spring chinook as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin. To meet the data needs as an index stock, sufficient annual estimates of spawner escapement, age composition, and smolt-to-adult survival are essential. There is need to determine the annual spawner escapement and age composition for the John Day basin spring chinook to provide us the ability to estimate progeny-to-parent production for each brood year. This need can be met by expanding the annual chinook spawning surveys, estimating the annual escapement, and determining age composition by scale pattern analyses. This project provides information as directed under two measures of the Columbia Basin Fish and Wildlife Program (NPPC 1994). Measure 4.3C specifies that the key indicator populations should be monitored to provide detailed stock status information. In addition, measure 7.1C identifies the need for collection of population status, life history, and other data on wild and naturally spawning populations. This project was developed in direct response to recommendations and needs of the PATH project, the Fish and Wildlife Program, and the Columbia Basin Fish and Wildlife Authority Multi-Year Implementation Plan.

  5. Simulated hydrologic response to projected changes in precipitation and temperature in the Congo River basin

    NASA Astrophysics Data System (ADS)

    Aloysius, Noel; Saiers, James

    2017-08-01

    Despite their global significance, the impacts of climate change on water resources and associated ecosystem services in the Congo River basin (CRB) have been understudied. Of particular need for decision makers is the availability of spatial and temporal variability of runoff projections. Here, with the aid of a spatially explicit hydrological model forced with precipitation and temperature projections from 25 global climate models (GCMs) under two greenhouse gas emission scenarios, we explore the variability in modeled runoff in the near future (2016-2035) and mid-century (2046-2065). We find that total runoff from the CRB is projected to increase by 5 % [-9 %; 20 %] (mean - min and max - across model ensembles) over the next two decades and by 7 % [-12 %; 24 %] by mid-century. Projected changes in runoff from subwatersheds distributed within the CRB vary in magnitude and sign. Over the equatorial region and in parts of northern and southwestern CRB, most models project an overall increase in precipitation and, subsequently, runoff. A simulated decrease in precipitation leads to a decline in runoff from headwater regions located in the northeastern and southeastern CRB. Climate model selection plays an important role in future projections for both magnitude and direction of change. The multimodel ensemble approach reveals that precipitation and runoff changes under business-as-usual and avoided greenhouse gas emission scenarios (RCP8.5 vs. RCP4.5) are relatively similar in the near term but deviate in the midterm, which underscores the need for rapid action on climate change adaptation. Our assessment demonstrates the need to include uncertainties in climate model and emission scenario selection during decision-making processes related to climate change mitigation and adaptation.

  6. Hazardous materials in Aquatic environments of the Mississippi River basin. Quarterly project status report, 1 January 1994--30 March 1994

    SciTech Connect

    Abdelghani, A.

    1994-06-01

    Projects associated with this grant for studying hazardous materials in aquatic environments of the Mississippi River Basin are reviewed and goals, progress and research results are discussed. New, one-year initiation projects are described briefly.

  7. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    SciTech Connect

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  8. Summary geologic report on the Missoula/Bitterroot Drilling Project, Missoula/Bitterroot Basins, Montana

    SciTech Connect

    Abramiuk, I.N.

    1980-08-01

    The objective of the drilling project was to obtain information to assess the favorability of the Tertiary sedimentary units in the Missoula and Bitterroot Valleys for uranium potential. The group of Montana Tertiary basins, including the Missoula and Bitterroot Basins, has been assigned a speculative uranium potential of 46,557 tons of U/sub 3/O/sub 8/ at $100/lb by the 1980 National Uranium Resource Evaluation report. The seven drill holes, two in the Missoula Valley and five in the Bitterroot Valley, verified observations made during surface studies and provided additional information about the subsurface that was previously unknown. No uranium was found, although of the two localities the Bitterroot Valley is the more favorable. Three stratigraphic units were tentatively identified on the basis of lithology: pre-Renova clastic units, Renova Formation equivalents, and Sixmile Creek Formation equivalents. Of the three, the Renova Formation equivalents in the Bitterroot Valley appear to be the most favorable for possible uranium occurrences and the pre-Renova clastic units the least favorable.

  9. Great Basin paleoenvironmental studies project; Technical progress report: Fourth quarter, March--May, 1994

    SciTech Connect

    1994-07-01

    Examination of the paleoenvironmental and geomorphic records to determine the local and regional impact of past climates will advance the assessment of Yucca Mountain`s suitability as a high-level nuclear waste repository. Paleobotanical studies will reconstruct the response of vegetation to climate change at the community and the organismal levels in order to identify periods of mesic climate at Yucca Mountain and the adjacent region during the last 20,000 to 50,000 years. Constructing a history of Great Basin vertebrates, particularly mammals, will provide empirical evidence of past environmental and climatic conditions within the Great Basin. The objective of the geomorphology component of the program is to document the responses of surficial processes and landforms to the climatic changes documented by studies of packrat middens, pollens, and faunal distributions. The goal of the transportation component is to compare the results from three models (FESWMS-2DH, DAMBRK, and FLO-2D) that have been suggested as appropriate for evaluating flood flows on alluvial fans with the results obtained from the traditional one-dimensional, stochastic model used in previous research for the Yucca Mountain Project. Progress on all these tasks is described.

  10. Great Basin paleoenvironmental studies project; Technical progress report, second quarter, September--November, 1993

    SciTech Connect

    1993-12-31

    Progress is described in the four tasks associated with this project. Task 1, Paleobotanical studies in the Great Basin, has as its objective the reconstruction of the response of vegetation to climate in order to identify periods of mesic climate at Yucca Mountain during the last 20,000 to 50,000 years. Past extremes in infiltration rates are expected to serve as estimates of climate that may be expected during the next 10,000 years at Yucca Mtn. Task 2, Paleofaunas, will construct a history of Great Basin vertebrates that will provide empirical evidence of past environmental and climatic conditions. The objective of Task 3, Geomorphology, is to document the responses of surficial processes and landforms to the climatic changes documented by studies of packrat middens, pollen, and faunal distributions. The goal of Task 4, Transportation, is to compare the results from three models that have been suggested as appropriate for evaluating flood flows on alluvial fans with the results obtained from the traditional one-dimensional, stochastic model used in previous research for Yucca Mountain. This research looked at three alluvial fans with rail transportation alignments crossing them.

  11. Analytical results for the 107-N and 1310-N basin sedimentdisposition sample characterization project

    SciTech Connect

    Miller, G.L.

    1997-06-02

    Turnaround time for this project was 60 days, as required in Reference 2. The analyses were to be performed using SW-846 procedures whenever possible to meet analytical requirements as a Resource Conservation Recovery Act (RCRA) protocol project. Except for the preparation and analyses of polychlorinated biphenyl hydrocarbons (PCB) and Nickel-63, which the program deleted as a required analyte for 222-S Laboratory, all preparative and analytical work was performed at the 222-S Laboratory. Quanterra Environmental Services of Earth City, Missouri, performed the PCB analyses. During work on this project, two events occurred nearly simultaneously, which negatively impacted the 60 day deliverable schedule: an analytical hold due to waste handling issues at the 222-S Laboratory, and the discovery of PCBs at concentrations of regulatory significance in the 105-N Basin samples. Due to findings of regulatory non-compliance by the Washington State, Department of Ecology, the 222-S Laboratory placed a temporary administrative hold on its analytical work until all waste handling, designation and segregation issues were resolved. During the hold of approximately three weeks, all analytical and waste.handling procedures were rewritten to comply with the legal regulations, and all staff were retrained in the designation, segregation and disposal of RCRA liquid and solid wastes.

  12. John Day River Sub-Basin Fish Habitat Enhancement Project; 2008 Annual Report

    SciTech Connect

    Powell, Russ M.; Alley, Pamela D.; Goin Jr, Lonnie

    2009-07-15

    Work undertaken in 2008 included: (1) Seven new fence projects were completed thereby protecting approximately 10.97 miles of streams with 16.34 miles of riparian fence; (2) Renewal of one expired lease was completed thereby continuing to protect 0.75 miles of stream with 1.0 mile of riparian fence. (3) Maintenance of all active project fences (106.54 miles), watergaps (78), spring developments (33) were checked and repairs performed; (3) Planted 1000 willow/red osier on Fox Creek/Henslee property; (4) Planted 2000 willows/red osier on Middle Fork John Day River/Coleman property; (5) Planted 1000 willow/red osier cuttings on Fox Creek/Johns property; (6) Since the initiation of the Fish Habitat Project in 1984 we have 126.86 miles of stream protected using 211.72 miles of fence protecting 5658 acres. The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring Chinook and summer steelhead within the sub basin through habitat protection, enhancement and fish passage improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in Northeast Oregon.

  13. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    SciTech Connect

    Volkman, Jed

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  14. Status and understanding of groundwater quality in the Monterey Bay and Salinas Valley Basins, 2005-California GAMA Priority Basin Project

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 1,000 square mile (2,590 km2) Monterey Bay and Salinas Valley Basins (MS) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in central California in Monterey, Santa Cruz, and San Luis Obispo Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA MS study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers). The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 97 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth intervals of the wells listed in the CDPH database for the MS study unit. The quality of groundwater in the primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the MS study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or

  15. Real-time monitoring of CO2 storage sites: Application to Illinois Basin-Decatur Project

    USGS Publications Warehouse

    Picard, G.; Berard, T.; Chabora, E.; Marsteller, S.; Greenberg, S.; Finley, R.J.; Rinck, U.; Greenaway, R.; Champagnon, C.; Davard, J.

    2011-01-01

    Optimization of carbon dioxide (CO2) storage operations for efficiency and safety requires use of monitoring techniques and implementation of control protocols. The monitoring techniques consist of permanent sensors and tools deployed for measurement campaigns. Large amounts of data are thus generated. These data must be managed and integrated for interpretation at different time scales. A fast interpretation loop involves combining continuous measurements from permanent sensors as they are collected to enable a rapid response to detected events; a slower loop requires combining large datasets gathered over longer operational periods from all techniques. The purpose of this paper is twofold. First, it presents an analysis of the monitoring objectives to be performed in the slow and fast interpretation loops. Second, it describes the implementation of the fast interpretation loop with a real-time monitoring system at the Illinois Basin-Decatur Project (IBDP) in Illinois, USA. ?? 2011 Published by Elsevier Ltd.

  16. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, October 1, 1993--December 31, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly project status report discusses research projects being conducted on hazardous materials in aquatic environments of the Mississippi River basin. We continued to seek improvement in our methods of communication and interactions to support the inter-disciplinary, inter-university collaborators within this program. In addition to the defined collaborative research teams, there is increasing interaction among investigators across projects. Planning for the second year of the project has included the development of our internal request for proposals, and refining the review process for selection of proposals for funding.

  17. Flood projections within the Niger River Basin under future land use and climate change.

    PubMed

    Aich, Valentin; Liersch, Stefan; Vetter, Tobias; Fournet, Samuel; Andersson, Jafet C M; Calmanti, Sandro; van Weert, Frank H A; Hattermann, Fred F; Paton, Eva N

    2016-08-15

    This study assesses future flood risk in the Niger River Basin (NRB), for the first time considering the simultaneous effects of both projected climate change and land use changes. For this purpose, an ecohydrological process-based model (SWIM) was set up and validated for past climate and land use dynamics of the entire NRB. Model runs for future flood risks were conducted with an ensemble of 18 climate models, 13 of them dynamically downscaled from the CORDEX Africa project and five statistically downscaled Earth System Models. Two climate and two land use change scenarios were used to cover a broad range of potential developments in the region. Two flood indicators (annual 90th percentile and the 20-year return flood) were used to assess the future flood risk for the Upper, Middle and Lower Niger as well as the Benue. The modeling results generally show increases of flood magnitudes when comparing a scenario period in the near future (2021-2050) with a base period (1976-2005). Land use effects are more uncertain, but trends and relative changes for the different catchments of the NRB seem robust. The dry areas of the Sahelian and Sudanian regions of the basin show a particularly high sensitivity to climatic and land use changes, with an alarming increase of flood magnitudes in parts. A scenario with continuing transformation of natural vegetation into agricultural land and urbanization intensifies the flood risk in all parts of the NRB, while a "regreening" scenario can reduce flood magnitudes to some extent. Yet, land use change effects were smaller when compared to the effects of climate change. In the face of an already existing adaptation deficit to catastrophic flooding in the region, the authors argue for a mix of adaptation and mitigation efforts in order to reduce the flood risk in the NRB. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, 1 April--30 June 1994

    SciTech Connect

    Not Available

    1994-08-01

    This report contains a cluster of twenty separate project reports concerning the fate, environmental transport, and toxicity of hazardous wastes in the Mississippi River Basin. Some of topics investigated involve: biological uptake and metabolism; heavy metal immobilization; biological indicators; toxicity; and mathematical models.

  19. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 2 Sludge

    SciTech Connect

    PEARCE, K.L.

    2000-04-05

    Volume 2 provides estimated chemical and radionuclide inventories of sludge currently stored within the Hanford Site's 105-K Basin This volume also provides estimated chemical and radionuclide inventories for the sludge streams expected to be generated during Spent Nuclear Fuel (SNF) Project activities.

  20. The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling

    NASA Astrophysics Data System (ADS)

    Choi, S.; Goetze, H.; Meyer, U.; Group, D.

    2008-12-01

    This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. Using that combined gravity dataset and DESIRE wide angle refractions seismic interpretation we modified density structures in the DSB. As results we estimated that (1) the Moho depth varies from 26 km in the Israel side to 34 km in the Jordan side. (2) The maximum thickness of the Dead Sea sediment Basin is about 15 km. (3) The salt rock with an average thickness of about 5 km is

  1. Future hydrological regimes of the upper Indus basin: results from the PAPRIKA project.

    NASA Astrophysics Data System (ADS)

    Bocchiola, Daniele; Soncini, Andrea; Confortola, Gabriele; Nana, Ester; Bianchi, Alberto; Rosso, Renzo; Diolaiuti, Guglielmina; Smiraglia, Claudio; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello; Giorgi, Filippo; Solmon, Fabien; Vuillermoz, Elisa

    2013-04-01

    The mountain regions of the Hindu Kush, Karakoram and Himalaya (HKKH) are the "third pole" of our planet, and the glaciers in this area play the role of "water towers", delivering significant amounts of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. The recent dynamics of glaciers in the Karakoram area is also called the "Karakoram anomaly", characterized by substantially unchanged ice cover during the last decade, against noticeable area loss worldwide, possibly leading to slightly decreasing stream fluxes. Yet, recent major floods occurring in Pakistan and the Karakoram area, may represent an effect of modified climate in the area, carrying heavier precipitation in the Monsoon season. Therefore, and notwithstanding the uncertainty embedded in measuring and modelling the hydrological behaviour of this area, there is a great need for assessment of future water resources and hydrological variability in this area. We present here results obtained at year two of the SHARE-Paprika project of the EvK2CNR Committee of Italy, aiming at evaluating the impact of recent and prospective climate change on the hydrology of the upper Indus river. We focus here on a particular watershed, the Shigar river close to Shigar, with an area of about 7000 km2, nested within the upper Indus basin, and fed by seasonal melt from two major glaciers (Baltoro and Biafo), at the toe of the K2 peak. We illustrate data gathered during three field campaigns during 2011-2012, aimed at investigating ice ablation dynamics, seasonal accumulation, and hydrological fluxes from the Baltoro-Biafo glaciers area and Shigar river. Based upon these data, topographic information, historical climate data and remote sensing data of ice and snow cover, we set up a semi-distributed, altitude belt based hydrological model, providing acceptable depiction of in stream flows, and snow and ice cover dynamics. We then project the future (until 2050

  2. How much water will be available in the upper Colorado River Basin under projected climatic changes?

    NASA Astrophysics Data System (ADS)

    Stewart, I. T.; Ficklin, D. L.; Maurer, E. P.

    2012-12-01

    The Colorado River and its tributaries are the principal source of water for urban and agricultural demands in the arid and semi-arid Southwestern United States. Projected climatic changes in the basin suggest some precipitation increases in the very highest regions, and no changes or declines for the middle and low elevations, while air surface temperatures are expected to increase by about 5 degC by the end of the century. We model the effects of these climatic changes on all hydrologic components (snowmelt, ET, surface runoff, subsurface runoff, groundwater, and streamflow) on the subbasin scale to project future changes in water resources using SWAT. We find that spring season flows in most subbasins are likely to decrease by 20-90%, and summer flows by 50-100%. Many subbasins will turn from semi-arid to arid conditions by the 2080's. The role of the individual hydrologic components and the impact on the availability of water resources for urban and agricultural use in the region are quantified.

  3. Inter-model variability in hydrological extremes projections for Amazonian sub-basins

    NASA Astrophysics Data System (ADS)

    Andres Rodriguez, Daniel; Garofolo, Lucas; Lázaro de Siqueira Júnior, José; Samprogna Mohor, Guilherme; Tomasella, Javier

    2014-05-01

    Irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process drive uncertainties in Climate Change projections. Such uncertainties affect the impact studies, mainly when associated to extreme events, and difficult the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. The use of different climate model's projections allows to aboard uncertainties issues allowing the use of multiple runs to explore a wide range of potential impacts and its implications for potential vulnerabilities. Statistical approaches for analyses of extreme values are usually based on stationarity assumptions. However, nonstationarity is relevant at the time scales considered for extreme value analyses and could have great implications in dynamic complex systems, mainly under climate change transformations. Because this, it is required to consider the nonstationarity in the statistical distribution parameters. We carried out a study of the dispersion in hydrological extremes projections using climate change projections from several climate models to feed the Distributed Hydrological Model of the National Institute for Spatial Research, MHD-INPE, applied in Amazonian sub-basins. This model is a large-scale hydrological model that uses a TopModel approach to solve runoff generation processes at the grid-cell scale. MHD-INPE model was calibrated for 1970-1990 using observed meteorological data and comparing observed and simulated discharges by using several performance coeficients. Hydrological Model integrations were performed for present historical time (1970-1990) and for future period (2010-2100). Because climate models simulate the variability of the climate system in statistical terms rather than reproduce the historical behavior of climate variables, the performances of the model's runs

  4. Uncertainty in flow and sediment projections due to future climate scenarios for the 3S Rivers in the Mekong Basin

    NASA Astrophysics Data System (ADS)

    Shrestha, Bikesh; Cochrane, Thomas A.; Caruso, Brian S.; Arias, Mauricio E.; Piman, Thanapon

    2016-09-01

    Reliable projections of discharge and sediment are essential for future water and sediment management plans under climate change, but these are subject to numerous uncertainties. This study assessed the uncertainty in flow and sediment projections using the Soil and Water Assessment Tool (SWAT) associated with three Global Climate Models (GCMs), three Representative Concentration Pathways (RCPs) and three model parameter (MP) sets for the 3S Rivers in the Mekong River Basin. The uncertainty was analyzed for the short term future (2021-2040 or 2030s) and long term future (2051-2070 or 2060s) time horizons. Results show that dominant sources of uncertainty in flow and sediment constituents vary spatially across the 3S basin. For peak flow, peak sediment, and wet seasonal flows projection, the greatest uncertainty sources also vary with time horizon. For 95% low flows and for seasonal and annual flow projections, GCM and MP were the major sources of uncertainty, whereas RCPs had less of an effect. The uncertainty due to RCPs is large for annual sediment load projections. While model parameterization is the major source of uncertainty in the short term (2030s), GCMs and RCPs are the major contributors to uncertainty in flow and sediment projections in the longer term (2060s). Overall, the uncertainty in sediment load projections is larger than the uncertainty in flow projections. In general, our results suggest the need to investigate the major contributing sources of uncertainty in large basins temporally and at different scales, as this can have major consequences for water and sediment management decisions. Further, since model parameterization uncertainty can play a significant role for flow and sediment projections, there is a need to incorporate hydrological model parameter uncertainty in climate change studies and efforts to reduce the parameter uncertainty as much as possible should be considered through a careful calibration and validation process.

  5. Greater Green River Basin production improvement project, Phase 1: Site characterization report

    SciTech Connect

    DeJarnett, B.B.; Krystinik, L.F.; Mead, R.H.; Poe, S.C.

    1996-05-01

    Several tight, naturally-fractured, gas-productive formations in the Greater Green River Basin (GGRB) in Wyoming have been exploited using conventional vertical well technology. Typically, hydraulic fracture treatments must be performed in completing these wells to increase gas production rates to economic levels. However, with the maturation of horizontal drilling technology hydraulic fracture treatments may not be the most effective method for improving gas production from these tight reservoirs. Two of the most prolific tight gas reservoirs in the Green River Basin, the Frontier and the Mesaverde, are candidates for the application of horizontal well completion technology. The objective of the proposed project is to apply the DOE`s technical concept to the Second Frontier Formation on the western flank of the Rock Springs Uplift. Previous industry attempts to produce in commercial quantities from the Second Frontier Formation have been hampered by lack of understanding of both the in-situ natural fracture system and lack of adequate stimulation treatments. The proposed technical approach involves drilling a vertical characterization well to the Second Frontier Formation at a depth of approximately 16,000 ft. from a site located about 18 miles northwest of Rock Springs, Wyoming. Logging, coring, and well testing information from the vertical well will be used to design a hydraulic fracturing treatment and to assess the resulting production performance. Data from the vertical drilling phase will be used to design a 2,500 to 3,000-ft lateral wellbore which will be kicked off from the vertical hole and extend into the blanket marine sandstone bench of the Second Frontier Formation. The trajectory of this wellbore will be designed to intersect the maximum number of natural fractures to maximize production rates. Production testing of the resulting completion will provide an assessment of reserve potential related to horizontal lateral completions.

  6. Simulation to Seismic Fluid Substitution Modeling at the Illinois Basin - Decatur Project

    NASA Astrophysics Data System (ADS)

    Will, R. A.

    2015-12-01

    The Illinois Basin - Decatur Project (IBDP) is one of the most advanced US Department of Energy-funded carbon dioxide (CO2) sequestration projects. The goal of injecting 1 million tonnes of CO2 over a three year period was reached in November 2014 and the project is now in the post injection site closure (PISC) phase. A number of seismic methods are being utilized in the IBDP PISC plume monitoring program. These include time lapse three-dimensional (3D) vertical seismic profile (VSP) surveys, time-lapse surface seismic surveys, and passive seismic monitoring. While each seismic monitoring method has inherent spatial resolution and imaging footprint characteristics, all fundamentally rely on variation of reservoir elastic properties in response to injection induced changes in saturation and pressure conditions. These variations in elastic properties, and the resulting time-lapse seismic response, are often subtle and non-unique with respect to saturation and pressure effects. Elastic properties of saturated porous media may be estimated using rock physics theory and fluid substitution methods; however, the complexity of typical reservoir rock and fluid systems under injection conditions, and the subtlety of the resulting changes in elastic properties, dictate the need for representative estimates of the reservoir geologic framework, reservoir rock physics, and the anticipated plume geometry. At IBDP a "simulation-to-seismic" workflow has been used to develop accurate estimates of 3D time-lapse elastic property and seismic signal responses for CO2 plumes generated using a calibrated compositional flow simulation model. The anticipated time-lapse response for the IBDP surface and VSP time-lapse surveys have been estimated using ranges of rock physics parameters derived from geophysical logs. These investigations highlight the importance of geologic controls on plume geometry in monitoring program design as well as during model-based interpretation of time

  7. Umatilla River Basin Anadromous Fish Habitat Enhancement Project: 1990 Annual Report.

    SciTech Connect

    Scheeler, Carl A.

    1991-01-01

    The Umatilla habitat improvement program is funded under the Northwest Power Planning Council`s Columbia River Basin Fish and Wildlife Program measure 704 (d) (1) 34.02, and targets the improvement of water quality and the restoration of riparian areas, spawning and rearing habitat of steelhead, spring and fall chinook and coho salmon. The Confederated Tribes of the Umatilla Indian Reservation are responsible for enhancing stream reaches within the Reservation boundaries as guided by an implementation plan developed cooperatively with the Oregon Department of Fish and Wildlife and the USDA Forest Service, Umatilla National Forest. Treatment areas included the lower 4 miles of Meacham Creek, the lower {1/4} mile of Boston Canyon Creek, and the Umatilla River between RM 78.5 and 80. The upper {1/2} of the Meacham Creek project area including Boston Canyon Creek, which were initially enhanced during 1989, were reentered for maintenance and continued enhancements. Approximately 2400 cu. yds. of boulders and 1000 cu. yds. of riprap was used in the construction of in-stream, stream bank and flood plain structures and in the anchoring of large organic debris (LOD) placements. In-stream structures were designed to increase instream cover and channel stability and develop of a defined thalweg to focus low summer flows. Flood plain structures were designed to reduce sediment inputs and facilitate deposition on flood plains. Riparian recovery was enhanced through the planting of over 1000 willow cuttings and 400 lbs. of grass seed mix and through the exclusion of livestock from the riparian corridor with 4.5 miles of high tensile smooth wire fence. Photo documentation and elevational transects were used to monitor changes in channel morphology and riparian recovery at permanent standardized points throughout the projects. Water quality (temperature and turbidity) data was collected at locations within the project area and in tributaries programmed for future enhancements.

  8. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    USGS Publications Warehouse

    Hanson, Randall T.; Lockwood, Brian; Schmid, Wolfgang

    2014-01-01

    The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and assumptions of 2009 urban water demand and land use. Water supplied directly from precipitation, and indirectly from reuse, captured local runoff, and groundwater is necessary but inadequate to satisfy agricultural demand without coastal and regional storage depletion that facilitates seawater intrusion. These facilities reduce potential seawater intrusion by about 45% with groundwater levels in the four regions served by the CDS projected to recover to levels a few feet above sea level. The projected recoveries are not high enough to prevent additional seawater intrusion during dry-year periods or in the deeper aquifers where pumpage is greater. While these facilities could reduce coastal pumpage by about 55% of the historical 2000–2009 pumpage for these regions, and some of the water is delivered in excess of demand, other coastal regions continue to create demands on coastal pumpage that will need to be replaced to reduce seawater intrusion. In addition, inland urban and agricultural demands continue to sustain water levels below sea level causing regional landward gradients that also drive seawater intrusion. Seawater intrusion is reduced by about 45% but it supplies about 55% of the recovery

  9. Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.

    SciTech Connect

    Childs, Allen B.

    2002-02-01

    This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projects (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and public

  10. Analysis of projected climate change in the Carpathian Basin region based on Holdridge life zone system

    NASA Astrophysics Data System (ADS)

    Szelepcsényi, Zoltán; Breuer, Hajnalka; Sümegi, Pál

    2014-05-01

    Nowadays more and more environmental lobbyists believe that climate change must be demonstrated in a new form. The estimated temperature increase can be realized more easily, if the emphasis is on ecological effects of the predicted temperature. For this reason a bioclimatic classification method was used to analyse the projected changes for the Carpathian Basin region. We applied the Holdridge life zone system, which is relatively simple, so our results can be used to inform the population. Holdridge developed a geometric model for climate classification which declares the relationship between classes (life zones) and climate indices (mean annual biotemperature, average total annual precipitation, potential evapotranspiration ratio). The necessary data for this study was derived from regional climate model (RCM) experiments of the ENSEMBLES project using the SRES A1B emission scenario. The temperature and precipitation data series were bias corrected for the selected RCM simulations. The target area of our investigations is the Carpathian Basin region. Life zones maps were created using the selected RCM simulations and their ensemble mean for the periods: 1961-1990 (T1), 2021-2050 (T2), 2061-2090 (T3). The spatial distribution of life zones and their temporal changes were investigated. According to our results the spatial pattern of life zones changes significantly from T1 to T3. It is possible that some types of life zones (e.g. boreal rain forest) will disappear; and some types (e.g. warm temperate thorn steppe) will appear in the target area. We determined those RCM simulations which predicted the maximum and minimum changes of the spatial pattern of life zones. Maps of T1 were compared to maps of T3 using Cohen's Kappa coefficient. Furthermore, relative extents, vertical distribution patterns and mean centres of life zones have been analysed. These parameters were defined for each decade and also for T1, T2 and T3. The temporal changes of the decadal values

  11. Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change

    NASA Astrophysics Data System (ADS)

    Wi, S.; Yang, Y. C. E.; Steinschneider, S.; Khalil, A.; Brown, C. M.

    2015-02-01

    This study tests the performance and uncertainty of calibration strategies for a spatially distributed hydrologic model in order to improve model simulation accuracy and understand prediction uncertainty at interior ungaged sites of a sparsely gaged watershed. The study is conducted using a distributed version of the HYMOD hydrologic model (HYMOD_DS) applied to the Kabul River basin. Several calibration experiments are conducted to understand the benefits and costs associated with different calibration choices, including (1) whether multisite gaged data should be used simultaneously or in a stepwise manner during model fitting, (2) the effects of increasing parameter complexity, and (3) the potential to estimate interior watershed flows using only gaged data at the basin outlet. The implications of the different calibration strategies are considered in the context of hydrologic projections under climate change. To address the research questions, high-performance computing is utilized to manage the computational burden that results from high-dimensional optimization problems. Several interesting results emerge from the study. The simultaneous use of multisite data is shown to improve the calibration over a stepwise approach, and both multisite approaches far exceed a calibration based on only the basin outlet. The basin outlet calibration can lead to projections of mid-21st century streamflow that deviate substantially from projections under multisite calibration strategies, supporting the use of caution when using distributed models in data-scarce regions for climate change impact assessments. Surprisingly, increased parameter complexity does not substantially increase the uncertainty in streamflow projections, even though parameter equifinality does emerge. The results suggest that increased (excessive) parameter complexity does not always lead to increased predictive uncertainty if structural uncertainties are present. The largest uncertainty in future streamflow

  12. BOLIVAR Project: A New Model for Grenada and Tobago Basin Evolution

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Mann, P.; Escalona, A.

    2005-12-01

    The Grenada basin, located in the SE Caribbean, is bounded to the northwest by the Aves Ridge and to the southeast by the Lesser Antilles Arc and Tobago basin. Existing tectonic models for Grenada basin evolution are based on the assumption that the Grenada basin fits into the traditional backarc model, with the Grenada basin formed by rifting of the Lesser Antilles arc away from the Aves Ridge. However our analysis of new seismic reflection and refraction data, acquired during the 2004 BOLIVAR program, suggests that the Grenada and Tobago basins were connected as a single basin during the Paleogene. Uplift of the Lesser Antilles arc and associated platform initiated during early to middle Miocene; the arc formed a barrier to sedimentation between the two basins by the late Miocene. We suggest a new tectonic model for evolution of these basins: 1) Paleogene extension of at least 70 km of the preexisting forearc of the Great Arc of the Caribbean (Aves Ridge) by the mechanisms of slab rollback and flexural subsidence. 2) Flexural and thermal subsidence ceases in the middle Eocene, producing a wide, deep-marine forearc basin encompassing the present-day Grenada and Tobago basins. 3) Oblique plate convergence between the Caribbean and South American plates causes a backthrust response in the weakened and thinned crust of the Grenada/Tobago forearc basin during the late Oligocene to middle Miocene. 4) Magmatism in the Lesser Antilles arc builds a ridge on the inverted forearc that becomes a major sediment barrier between the Grenada and Tobago basins during post-middle Miocene.

  13. K Basin Sludge Conditioning Process Testing Project Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    SciTech Connect

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1999-04-02

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process.

  14. Status and understanding of groundwater quality in the central-eastside San Joaquin Basin, 2006: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Landon, Matthew K.; Belitz, Kenneth; Jurgens, Bryant C.; Kulongoski, Justin T.; Johnson, Tyler D.

    2010-01-01

    Groundwater quality in the approximately 1,695-square-mile Central Eastside San Joaquin Basin (Central Eastside) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001, and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Central Eastside study unit was designed to provide a spatially unbiased assessment of untreated-groundwater quality, as well as a statistically consistent basis for comparing water quality throughout California. During March through June 2006, samples were collected from 78 wells in Stanislaus and Merced Counties, 58 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 20 of which were sampled to evaluate changes in water chemistry along groundwater-flow paths (understanding wells). Water-quality data from the California Department of Public Health (CDPH) database also were used for the assessment.An assessment of the current status of the groundwater quality included collecting samples from wells for analysis of anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring constituents such as major ions and trace elements. The assessment of status is intended to characterize the quality of untreated-groundwater resources within the primary aquifer system, not the treated drinking water delivered to consumers by water purveyors. The primary aquifer system (hereinafter, primary aquifer) is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the Central Eastside study unit. The quality of groundwater in shallower or

  15. Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-95, with projections to 2020

    USGS Publications Warehouse

    Kernodle, J.M.

    1998-01-01

    The ground-water-flow model of the Albuquerque Basin (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) was updated to include new information on the hydrogeologic framework (Hawley, J.W., Haase, C.S., and Lozinsky, R.P., 1995, An underground view of the Albuquerque Basin: Proceedings of the 39th Annual New Mexico Water Conference, November 3-4, 1994, p. 37-55). An additional year of ground-water-withdrawal data was appended to the simulation of the historical period and incorporated into the base for future projections to the year 2020. The revised model projects the simulated ground-water levels associated with an aerally enlarged occurrence of the relatively high hydraulic conductivity in the upper part of the Santa Fe Group east and west of the Rio Grande in the Albuquerque area and north to Bernalillo. Although the differences between the two model versions are substantial, the revised model does not contradict any previous conclusions about the effect of City of Albuquerque ground-water withdrawals on flow in the Rio Grande or the net benefits of an effort to conserve ground water. Recent revisions to the hydrogeologic model (Hawley, J.W., Haneberg, W.C., and Whitworth, P.M., in press, Hydrogeologic investigations in the Albuquerque Basin, central New Mexico, 1992-1995: Socorro, New Mexico Bureau of Mines and Mineral Resources Open- File Report 402) of the Albuquerque Basin eventually will require that this model version also be revised and updated.

  16. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. T.; Lockwood, B.; Schmid, Wolfgang

    2014-11-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori. The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations

  17. Remote-Sensing Survey of the Atchafalaya Basin Main Channel, Atchafalaya Channel Training Project, Sts. Martin and Mary Parishes, Louisiana

    DTIC Science & Technology

    1991-11-01

    cultural resources management program. The effort documented in this report was a remote sensing survey of the Atchafalaya River Channel Training, a...information presented here will serve as a contribution to the broader realm of the District’s overall management of cultural resources. This study is...1982). Other studies resulting from cultural resources management projects provide information on the history of the basin and the surrounding area

  18. Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin

    NASA Astrophysics Data System (ADS)

    Su, Buda; Huang, Jinlong; Gemmer, Marco; Jian, Dongnan; Tao, Hui; Jiang, Tong; Zhao, Chengyi

    2016-09-01

    The simulation results of CMIP5 (Coupled Model Inter-comparison Project phase 5) multi-model ensemble in the Indus River Basin (IRB) are compared with the CRU (Climatic Research Unit) and APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation) datasets. The systematic bias between simulations and observations is corrected by applying the equidistant Cumulative Distribution Functions matching method (EDCDFm) and high-resolution simulations are statistically downscaled. Then precipitation and temperature are projected for the IRB for the mid-21st century (2046-2065) and late 21st century (2081-2100). The results show that the CMIP5 ensemble captures the dominant features of annual and monthly mean temperature and precipitation in the IRB. Based on the downscaling results, it is projected that the annual mean temperature will increase over the entire basin, relative to the 1986-2005 reference period, with greatest changes in the Upper Indus Basin (UIB). Heat waves are more likely to occur. An increase in summer temperature is projected, particularly for regions of higher altitudes in the UIB. The persistent increase of summer temperature might accelerate the melting of glaciers, and has negative impact on the local freshwater availability. Projections under all RCP scenarios show an increase in monsoon precipitation, which will increase the possibility of flood disaster. A decreasing trend in winter and spring precipitation in the IRB is projected except for the RCP2.6 scenario which will cause a lower contribution of winter and spring precipitation to water resources in the mid and high altitude areas of the IRB.

  19. Surface-water-quality assessment of the upper Illinois River basin in Illinois, Indiana, and Wisconsin; project description

    USGS Publications Warehouse

    Mades, D.M.

    1987-01-01

    In 1986, the U.S. Geological Survey began a National Water-Quality Assessment program to (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation's surface- and ground-water resources; (2) define, where possible, trends in water quality; and (3) identify and describe the relations of both status and trends in water quality to natural factors and the history of land use and land- and waste-management activities. The program is presently in a pilot phase that will test and modify, as necessary, concepts and approaches in preparation for possible full implementation of the program in the future. The upper Illinois River basin is one of four basins selected to test the concepts and approaches of the surface-water-quality element of the national program. The basin drains 10,949 square miles of Illinois, Indiana, and Wisconsin. Three principal tributaries are the Kankakee and Des Plaines Rivers that join to form the Illinois River and the Fox River. Land use is predominantly agricultural; about 75 percent of the basin is cultivated primarily for production of corn and soybeans. About 13 percent of the basin is urban area, most of which is located in the Chicago metropolitan area. The population of the basin is about 7 million. About 6 million people live in the Des Plaines River basin. Many water-quality issues in the upper Illinois River basin are related to sediment, nutrients, potentially toxic inorganic and organic constituents, and to water-management practices. Occurrence of sediment and the chemical constituents in the rivers and lakes within the basin has the potential to adversely affect the water's suitability for aquatic life, recreation, or, through the consumption of fish, human health. The upper Illinois River basin project consists of five major activities. The first activity--analysis of existing information and preparation of a report that describes

  20. Evolution of Induced Microseismicity at the Illinois Basin -- Decatur Project (Invited)

    NASA Astrophysics Data System (ADS)

    Coueslan, M. L.; Smith, V.; Jaques, P.; Will, R.; Maxwell, S.; Raymer, D.; Senel, O.; Finley, R.

    2013-12-01

    The Illinois Basin -- Decatur Project (IBDP) is one of the most advanced US Department of Energy funded carbon dioxide (CO2) sequestration projects and has a goal of injecting 1 million tonnes of CO2 over a three year period. In June 2013, the project already had injected 500,000 tonnes of anthropogenic CO2 in the Mt. Simon Sandstone at a depth of approximately 7,000 ft. Microseismic monitoring is one of key components of the monitoring, verification, and accounting plan for the project. The microseismic data is recorded using geophone arrays in two separate wells. Two deep geophone levels are located in the Mt. Simon Sandstone in the Injection well (CCS1) and a 31-level 3-component cemented array is located in an adjacent Geophysical Monitoring Well. IBDP has acquired one of the most comprehensive passive seismic datasets of any carbon sequestration project. Baseline microseismic data was recorded over an 18 month pre-injection period, and a total of 7894 microseismic events were detected. 99% of these events were determined to be associated with well drilling or other well related operations. Only 8 local microseismic events were detected that appear unrelated to well activity and are believed to be representative of the background level of microseismic activity. Over 2000 events have been located since injection commenced in November 2011 with an average moment magnitude of -0.86. In many cases, the microseismic activity appears to be clustered along pre-existing planes in the lower Mt. Simon Sandstone, Pre-Mt. Simon unit, and Precambrian basement. The microseismic activity is evenly distributed through all three units. The orientation of these planes is consistent with the in-situ stress regime. While the microseismic clusters do not seem to correlate to structural features in the 3D surface seismic data, one of clusters does correlate to a feature identified using a seismic curvature attribute. First motion analysis has been completed on the various clusters

  1. Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin

    NASA Astrophysics Data System (ADS)

    Brooks, Erin S.; Dobre, Mariana; Elliot, William J.; Wu, Joan Q.; Boll, Jan

    2016-02-01

    Forest managers need methods to evaluate the impacts of management at the watershed scale. The Water Erosion Prediction Project (WEPP) has the ability to model disturbed forested hillslopes, but has difficulty addressing some of the critical processes that are important at a watershed scale, including baseflow and water yield. In order to apply WEPP to forested watersheds, we developed and assessed new approaches for simulating streamflow and sediment transport from large watersheds using WEPP. We created specific algorithms to spatially distribute soil, climate, and management input files for all the subwatersheds within the basin. The model enhancements were tested on five geologically and climatically diverse watersheds in the Lake Tahoe basin, USA. The model was run with minimal calibration to assess WEPP's ability as a physically-based model to predict streamflow and sediment delivery. The performance of the model was examined against 17 years of observed snow water equivalent depth, streamflow, and sediment load data. Only region-wide baseflow recession parameters related to the geology of the basin were calibrated with observed streamflow data. Close agreement between simulated and observed snow water equivalent, streamflow, and the distribution of fine (<20 μm) and coarse (>20 μm) sediments was achieved at each of the major watersheds located in the high-precipitation regions of the basin. Sediment load was adequately simulated in the drier watersheds; however, annual streamflow was overestimated. With the exception of the drier eastern region, the model demonstrated no loss in accuracy when applied without calibration to multiple watersheds across Lake Tahoe basin demonstrating the utility of the model as a management tool in gauged and ungauged basins.

  2. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project

  3. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    SciTech Connect

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  4. Sensitivity of the projected hydroclimatic environment of the Delaware River basin to formulation of potential evapotranspiration

    USGS Publications Warehouse

    Williamson, Tanja N.; Nystrom, Elizabeth A.; Milly, Paul C.D.

    2016-01-01

    The Delaware River Basin (DRB) encompasses approximately 0.4 % of the area of the United States (U.S.), but supplies water to 5 % of the population. We studied three forested tributaries to quantify the potential climate-driven change in hydrologic budget for two 25-year time periods centered on 2030 and 2060, focusing on sensitivity to the method of estimating potential evapotranspiration (PET) change. Hydrology was simulated using the Water Availability Tool for Environmental Resources (Williamson et al. 2015). Climate-change scenarios for four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) and two Representative Concentration Pathways (RCPs) were used to derive monthly change factors for temperature (T), precipitation (PPT), and PET according to the energy-based method of Priestley and Taylor (1972). Hydrologic simulations indicate a general increase in annual (especially winter) streamflow (Q) as early as 2030 across the DRB, with a larger increase by 2060. This increase in Q is the result of (1) higher winter PPT, which outweighs an annual actual evapotranspiration (AET) increase and (2) (for winter) a major shift away from storage of PPT as snow pack. However, when PET change is evaluated instead using the simpler T-based method of Hamon (1963), the increases in Q are small or even negative. In fact, the change of Q depends as much on PET method as on time period or RCP. This large sensitivity and associated uncertainty underscore the importance of exercising caution in the selection of a PET method for use in climate-change analyses.

  5. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, October 1, 1994--December 31, 1994

    SciTech Connect

    Not Available

    1995-02-01

    This report briefly summerizes the following projects on hazardous materials in the aquatic environments of the Mississippi River Basin: Biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and Hazardous waste in the Mississippi River Basin; The effect of depositional environment on the fate and transport of contaminants in aquatic environments;Assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as biomarkers of exposure; Hazardous wastes in aquantic environments: biological uptake and metabolism studies; bioremediation of selected contaminants in aquatic environments of the Mississippi River Basin; Development of Novel dechlorination catalysts; pore-level flow, transport, agglomeration and reaction kinetics of microorganisms; novel polymer-semiconductor composits for photocatalytic destruction of organic contaminants in aqueous environments; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; Natural and Active Chemical remediation cluster; collaborative research with the Institute of Radiological Problems (IREP) - fate and transport of radionuclides following the Chernobyl Accident; Exper geographical information systems for assessing hazardous wastes in aquatic environments; computation of Taylor Dispersion coefficient.

  6. Status of groundwater quality in the Santa Barbara Study Unit, 2011: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Davis, Tracy A.; Kulongoski, Justin T.

    2016-10-03

    Groundwater quality in the 48-square-mile Santa Barbara study unit was investigated in 2011 as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The study unit is mostly in Santa Barbara County and is in the Transverse and Selected Peninsular Ranges hydrogeologic province. The GAMA Priority Basin Project is carried out by the U.S. Geological Survey in collaboration with the California State Water Resources Control Board and Lawrence Livermore National Laboratory.The GAMA Priority Basin Project was designed to provide a statistically unbiased, spatially distributed assessment of the quality of untreated groundwater in the primary aquifer system of California. The primary aquifer system is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health database for the Santa Barbara study unit. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Santa Barbara study unit, not the treated drinking water delivered to consumers by water purveyors.The status assessment for the Santa Barbara study unit was based on water-quality and ancillary data collected in 2011 by the U.S. Geological Survey from 23 sites and on water-quality data from the California Department of Public Health database for January 24, 2008–January 23, 2011. The data used for the assessment included volatile organic compounds; pesticides; pharmaceutical compounds; two constituents of special interest, perchlorate and N-nitrosodimethylamine (NDMA); and naturally present inorganic constituents, such as major ions and trace elements. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used to evaluate groundwater quality for those constituents that have federal or California regulatory and non

  7. Final monitoring plan for the Utica aquifer-North Lake Basin restoration project at Utica, Nebraska.

    SciTech Connect

    LaFreniere, L. M.

    2005-10-05

    On March 9, 2001, representatives of the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) and Argonne National Laboratory met with representatives from a number of federal and Nebraska state agencies (the wetlands agencies; see Table 1.1) to discuss the CCC/USDA's proposed aquifer remediation and wetlands restoration project at Utica, Nebraska. As part of those discussions, Argonne outlined preliminary recommendations for a long-term monitoring program to verify and document (1) the performance of the spray irrigation treatment process for the removal of carbon tetrachloride from extracted groundwater, (2) the geochemical quality of the extracted and treated groundwater delivered to the wetlands, and (3) the hydrogeologic and inorganic geochemical impacts of the groundwater delivery. General activities recommended included the following: (1) Periodic sampling and analysis for volatile organic compounds (VOCs) in groundwater extracted at each pumping well and in water discharged from the spray irrigation treatment units. (2) Periodic sampling of groundwater from each pumping well and directly from the sprinkler discharge, for analysis for selected inorganic water quality parameters. The CCC/USDA and Argonne also requested at the March 2001 meeting that the wetlands agencies accept responsibility for developing the ecological and biological monitoring programs needed to meet environmental requirements for the wetlands restoration program. The preliminary recommendations for monitoring outlined above were generally accepted by the wetlands agencies. Since the March 2001, meeting, however, no further discussions have taken place (to Argonne's knowledge) regarding potential monitoring at this site. As the design of the Utica project has evolved, more detailed technical information has become available regarding the specific restoration activities to be performed in association with the aquifer and the wetlands basin. The scope of the aquifer

  8. Chukchi Edges Project - Geophysical constraints on the history of the Amerasia Basin

    NASA Astrophysics Data System (ADS)

    Coakley, B.; Ilhan, I.; Chukchi Edges Science Party

    2011-12-01

    The geological history of the Amerasian Basin is poorly understood, in part due to the lack of identified plate boundaries within it. These boundaries must exist to explain the basin history. Identification of these structures will make it possible to reconstruct the development of the basin, which will substantially improve our understanding of the surrounding continents. The Chukchi Borderland, a block of extended continental crust embedded in the deep central Canada Basin, figures prominently in all tectonic models proposed for the opening of the Amerasian Basin. The Chukchi cannot be simply reconstructed back to any of the nearby continental shelves. It complicates any model for the Mesozoic opening of the Amerasia Basin. According to the commonly accepted model, the Canada Basin opened like a pair of scissors. This was accomplished by a counter-clockwise rotation of the North Alaskan-Chukchi micro-plate (Arctic Alaska Plate) by 66 degrees. The micro-plate collided with the Siberian margin. Most of the existing models for the development of the Amerasian Basin accept the basic pattern of scissors-like or, classically, the "windshield wiper" opening for the basin. This theory finds some support in the identification of a possible relict mid-ocean ridge axis in the central Canada Basin. Since the continental Chukchi Borderland creates a space problem for any simple opening model, the greatest differences between models revolve around how to accommodate that block. Fundamental differences among the proposed models include the paleo-location of the Chukchi Borderland as well as whether the Borderland is a single entity or is instead comprised of small terranes which behaved as independent microplates. A consequence of these models is the prediction that the Chukchi Borderland is distinct from the Chukchi Shelf. During the Chukchi Edges cruise on board the RV Marcus G. Langseth, we collected multi-channel seismic reflection, swath bathymetry, gravity, magnetics and

  9. The Impact of Climate Projection Method on the Analysis of Climate Change in Semi-arid Basins

    NASA Astrophysics Data System (ADS)

    Halper, E.; Shamir, E.

    2016-12-01

    In small basins with arid climates, rainfall characteristics are highly variable and stream flow is tightly coupled with the nuances of rainfall events (e.g. hourly precipitation patterns Climate change assessments in these basins typically employ CMIP5 projections downscaled with Bias Corrected Statistical Downscaling and Bias Correction/Constructed Analogs (BCSD-BCCA) methods, but these products have drawbacks. Specifically, BCSD-BCCA these projections do not explicitly account for localized physical precipitation mechanisms (e.g. monsoon and snowfall) that are essential to many hydrological systems in the U. S. Southwest. An investigation of the impact of different types of precipitation projections for two kinds of hydrologic studies is being conducted under the U.S. Bureau of Reclamation's Science and Technology Grant Program. An innovative modeling framework consisting of a weather generator of likely hourly precipitation scenarios, coupled with rainfall-runoff, river routing and groundwater models, has been developed in the Nogales, Arizona area. This framework can simulate the impact of future climate on municipal water operations. This framework allows the rigorous comparison of the BCSD-BCCA methods with alternative approaches including rainfall output from dynamical downscaled Regional Climate Models (RCM), a stochastic rainfall generator forced by either Global Climate Models (GCM) or RCM, and projections using historical records conditioned on either GCM or RCM. The results will provide guide for the use of climate change projections into hydrologic studies of semi-arid areas. The project extends this comparison to analyses of flood control. Large flows on the Bill Williams River are a concern for the operation of dams along the Lower Colorado River. After adapting the weather generator for this region, we will evaluate the model performance for rainfall and stream flow, with emphasis on statistical features important to the specific needs of flood

  10. Bighorn Basin Coring Project: Palynofloral changes and taphonomy through the Paleocene-Eocene Thermal Maximum in the Bighorn Basin, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Harrington, G.; Jardine, P.

    2012-12-01

    The early Palaeogene hyperthermals provide an unprecedented opportunity to investigate the biotic responses to rapid and transient global warming events. As part of the Bighorn Basin Coring Project (BBCP), we have analyzed 182 sporomorph (pollen and spore) samples from three newly cored sites in the Bighorn Basin of Wyoming. Two sites, Basin Substation (121 samples) and Polecat Bench (41 samples), contain the Paleocene-Eocene Thermal Maximum (PETM, ETM1), and one early Eocene site, Gilmore Hill (20 samples), contains the ELMO (ETM2) event. We have focused initially on the Basin Substation section, because it is more organic rich, has demonstrated higher sporomorph recovery potential than the other two sites, and is the main focus of complementary geochemical analyses. Below 90 m core depth sporomorph concentrations are typically 1000 - 10 000 grains/gram, but between 90 and 60 m these decline to <100 grains/gram, before rising again to levels similar to those seen at the base of the core. Correlation between marker beds in the core and those at outcrop suggests that this zone of low recovery corresponds closely to the position of the PETM. Prior to this interval, the sporomorph assemblage is dominated by the gymnosperms Cupressacites hiatipites (cypress, Cupressaceae) and bisaccate pollen (Pinaceae and/or Podocarpaceae), and the angiosperm taxa Polyatriopollenites vermontensis (wingnut or wheel wingnut, Juglandaceae), Caryapollenites spp. (hickory, Juglandaceae), and Alnipollenites spp. (alder, Betulaceae). However, samples are heterogeneous in terms of the dominant taxon, with different taxa having the highest relative abundance in different samples. In the upper part of the core, the assemblage is similar to that in the lower part, but with a more consistent dominance of gymnosperm taxa, and with the addition of Eocene marker taxa Intratriporopollenites instructus (linden, Tilioideae) and Celtis spp. (hackberry, Cannabaceae). These both have their first

  11. National assessment of oil and gas project; petroleum systems and assessment of the South Florida Basin

    USGS Publications Warehouse

    Pollastro, R. M.; Schenk, C.J.

    2001-01-01

    This CD-ROM contains coverages that define and outline the geographic boundaries of petroleum systems and assessment units and text that describes the geology and reasoning to support the assessment of undiscovered oil and gas resources in the South Florida Basin for a forecast period of 30 years. This assessment was performed by using the best geological information and scientific theory available to the USGS; however, the USGS did not have access to seismic survey data for the South Florida Basin.

  12. Interim response action basin F liquid incineration project final draft human health risk assessment. Volume 1. Final draft report

    SciTech Connect

    1991-07-01

    This document is a comprehensive, multiple exposure pathway, human health risk assessment prepared for the proposed Basin F Liquid Incineration Project. The submerged quench incinerator will treat Basin F liquid and hydrazine rinse water. The objective of the risk assessment is to establish chemical emission limits which are protective of human health. Average and maximum lifetime daily intakes were calculated for adults, children, and infants in four maximum exposure scenarios under base case and sensitivity case emissions condition. It was concluded that the incineration facility poses neither carcinogenic nor noncarcinogenic risk to any sensitive population. The assessment is divided into: (1) Incineration facility description; (2) Description of surrounding area; (3) Process of pollutant identification and selection; and (4) Determination of emission rates from incineration facility.

  13. 105-K Basin material design basis feed description for spent nuclear fuel project facilities. Volume 2: Sludge

    SciTech Connect

    Pearce, K.L.

    1998-08-30

    Volume 2 provides the design feed compositions for the baseline K East and K West Basin sludge process streams expected to be generated during Spent Nuclear Fuel (SNF) Project activities. Four types of feeds are required to support evaluation of specific facility and process considerations during the development of new facilities and processes. These four design feeds provide nominal and bounding conditions for design evaluations. Volume 2 includes definition of inventories for: (1) KE and KW Basins sludge locations (pit sludges, floor sludge, canister.sludge, and wash sludge components), (2) nominal feed for each of five process feed streams, (3) shielding design feed, (4) safety/regulatory assessment feed, and (5) criticality assessment feed.

  14. Digital representation of the Washington state geologic map: a contribution to the Interior Columbia River Basin Ecosystem Management Project

    USGS Publications Warehouse

    Raines, Gary L.; Johnson, Bruce R.

    1996-01-01

    This report describes the digital representation of the Washington state geologic map (Hunting and others, 1961). This report contains an explantion of why the data were prepared, a description of the digital data, and information on obtaining the digital files. This report is one in a series of digital maps, data files, and reports generated by the U.S. Geological Survey to provide geologic process and mineral resource information to the Interior Columbia Basin Ecosystem Management Project (ICBEMP). The various digital maps and data files are being used in a geographic information system (GIS)-based ecosystem assessment including an analysis of diverse questions relating to past, present, and future conditions within the general area of the Columbia River Basin east of the Cascade Mountains.

  15. The oceanic variability of the Lofoten basin: first results from the glider activity of the ProVoLo project

    NASA Astrophysics Data System (ADS)

    Bosse, Anthony; Fer, Ilker

    2017-04-01

    Located in the northern Norwegian Sea at high latitude between 68°N and 73°N, the Lofoten basin is one of the world's most energetic areas regarding the ocean dynamics. It hosts the largest and deepest pool of warm Atlantic Waters in the Nordic Seas, thus leading to very intense air-sea energy fluxes and deep convection in winter. Understanding the physical processes involved in the water mass transformations of this very productive area is thus of crucial interest in a climate perspective, as well as for the fishery economics. The ProVoLo project aims at quantifying the energy pathways from the large-scale circulation to the (sub-)mesoscale, and eventually to the dissipation scale. To this end, the project is largely devoted to in situ observations involving R/V cruises (CTD, LADCP, microstructure), mooring lines, gliders (CTD and microstructure) and RAFOS floats. Collecting data with gliders in such a dynamical environment is a challenge. We present results from two completed Seaglider missions of 8-months duration each, started in May 2016, as well as from three ongoing missions. The observations enable the description of two key features of the Lofoten basin circulation: 1 - The Lofoten Basin eddy, which is permanent anticyclonic vortex that has been regularly detected in the center of the basin over the last decades. The vortex has very intense subsurface peak velocities exceeding 0.7 m/s and a small radius of about 15 km. The collected data also enable a description of the seasonal variability associated with the vortex, and give insight into its interaction with higher frequency flows. 2 - The frontal region situated along the Mohn ridge. The front is characterized by a narrow ( 15 km) and intense baroclinic jet separating the warm Atlantic waters from the cold waters coming from the Arctic. The observations from intensive sampling of this front, testify an important variability, at both seasonal time scale and from meso to submesoscale.

  16. USGS National and Global Oil and Gas Assessment Project-Permian Basin Province, Midland Basin, Wolfcamp Shale Assessment Units

    USGS Publications Warehouse

    Gaswirth, Stephanie

    2016-01-01

    The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is defined within the context of the higher-level Total Petroleum System. The Assessment Unit is shown herein as a geographic boundary interpreted, defined, and mapped by the geologist responsible for the province and incorporates a set of known or postulated oil and (or) gas accumulations sharing similar geologic, geographic, and temporal properties within the Total Petroleum System, such as source rock, timing, migration pathways, trapping mechanism, and hydrocarbon type. The Assessment Unit boundary is defined geologically as the limits of the geologic elements that define the Assessment Unit, such as limits of reservoir rock, geologic structures, source rock, and seal lithologies. The only exceptions to this are Assessment Units that border the Federal-State water boundary. In these cases, the Federal-State water boundary forms part of the Assessment Unit boundary.

  17. USGS National and Global Oil and Gas Assessment Project-Permian Basin Province, Val Verde Basin, Canyon Sandstones Assessment Units

    USGS Publications Warehouse

    Schenk, Christopher J.

    2016-01-01

    The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is defined within the context of the higher-level Total Petroleum System. The Assessment Unit is shown herein as a geographic boundary interpreted, defined, and mapped by the geologist responsible for the province and incorporates a set of known or postulated oil and (or) gas accumulations sharing similar geologic, geographic, and temporal properties within the Total Petroleum System, such as source rock, timing, migration pathways, trapping mechanism, and hydrocarbon type. The Assessment Unit boundary is defined geologically as the limits of the geologic elements that define the Assessment Unit, such as limits of reservoir rock, geologic structures, source rock, and seal lithologies. The only exceptions to this are Assessment Units that border the Federal-State water boundary. In these cases, the Federal-State water boundary forms part of the Assessment Unit boundary.

  18. Analysis of RCP8.5 Projections of Precipitation and Temperatures in Chilean Basins

    NASA Astrophysics Data System (ADS)

    Vargas, X.; Lagos Zuniga, M. A.; Vasquez, N. A.; Cepeda, J. A.; Bobadilla, M. P.; Uribe, F.; Silva, V.

    2015-12-01

    In order to explain the uncertainty of future water availability in Chilean basins we study time series of daily precipitation and mean daily temperature projected by global circulation models (GCMs) in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report. Representative Concentration Pathway, RCP 8.5, characterized by increasing greenhouse gas emissions over time is taken for the analysis. Data from four GCMs (MPI-ESM-LR, CSIRO-MK3.6, CMCC-CMS, BCC-CSM1.1) is used and downscaled spatial and temporally to local gages sites using standard statistical procedures. The model selection procedure was based on the preservation of the observed precipitation and temperature regimes for the base line period through the comparison of the average monthly values of the observed and spatial downscaled variables normalized respect to annual values for one of the sites. Base line data is defined for the period 1975-2005 and two future periods are studied: near future stands for 2015-2045 and far ahead future stands for 2045-2075. For the analysis we consider hydrologic year starting on April and ending on March of following year. We analyse the behaviour of daily time series of precipitation and temperature for gages located at -33.5° latitude, -70.5° longitude to -37.7° latitude, -72° longitude. Mean annual precipitation, mean annual temperature, the number of days with precipitation, the number of days with precipitation less or greater than specific values, the mean temperature during rainy days and in extreme events, for each period (base line, near and far ahead future) are determined for each site. Special attention is given to the effect of temperatures on rainy days on the elevation of 0°C isotherm on representative watersheds and to the occurrence of extreme events during the snowmelt period with high elevation of 0°C isotherm. In general, results show a spatial decay of annual precipitation from north to south from base line to future being

  19. Hydrological projections of climate change scenarios in the Lena and the Mackenzie basins: modeling and uncertainty issues

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander; Gustafsson, David; Motovilov, Yury; Arheimer, Berit; Kalugin, Andrei; Krylenko, Inna; Lavrenov, Alexander

    2016-04-01

    The ECOMAG and the HYPE regional hydrological models were setup to assess possible impacts of climate change on the hydrological regime of two pan-Arctic great drainage basins: the Lena and the Mackenzie rivers. We firstly assessed the reliability of the hydrological models to reproduce the historical streamflow series and analyse the hydrological projections from the climate change scenarios. The impacts were assessed in three 30-year periods: early- (2006-2035), mid- (2036-2065) and end-century (2070-2099) using an ensemble of five GCMs and four Representative Concentration Pathways (RCP) scenarios. Results show, particularly, that the basins react with multi-year delay to changes in the RCP2.6 mitigation (peak-and-decline) scenario, and consequently to the potential mitigation measures. Then we assessed the hydrological projections' uncertainty, which is caused by the GCM's and RCP's variabilities, and indicated that the uncertainty rises with the time horizon of the projection and, generally, the uncertainty interval is wider for Mackenzie than for Lena. We finally compare the potential future hydrological impacts predicted based on the GCM-scenario ensemble approach and the delta-change transformation method of the historical observations. We found that the latter method can produce useful information about the climate change impact in the great Arctic rivers, at least for the nearest decades.

  20. Very High Resolution Climate Change Projections for Hydrologic Impacts Assessments over the Lake Champlain Basin in Vermont

    NASA Astrophysics Data System (ADS)

    Winter, J.; Beckage, B.; Bucini, G.

    2014-12-01

    The Lake Champlain Basin is a critical socioeconomic resource for the Northeastern US and Southern Quebec. While global climate models (GCMs) provide an overview of climate change in the region, they lack the spatial resolution necessary to fully assess the effects of increasing greenhouse gas concentrations on hydrologic and ecologic processes. One approach to address this limitation is statistical downscaling, which both bias corrects and increases the spatial resolution of GCM simulations. However, even the increased spatial resolution of most statistically downscaled products (~1/8°) is not sufficient for detailed hydrologic, ecologic, and land-use modeling in the small watersheds of the Lake Champlain Basin. An ensemble of very high resolution (30") precipitation and temperature projections (1950-2099) is developed for the Lake Champlain Basin by applying an additional level of downscaling based on topography and the dense station network in Vermont and Quebec to intermediately downscaled (1/8°) data. The additional downscaling consists of two main steps. First, maximum likelihood estimation is used to derive the observed relationships between precipitation and elevation, and temperature and latitude and elevation. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM projections. The resulting very high resolution dataset is analyzed both for its ability to reproduce station observations over a historical period (1970-1999), as well as add value when compared with spatial interpolation only. The sensitivities of the projections and additional downscaling to GCM, greenhouse gas emissions scenario, interpolation method, and intermediately downscaled dataset are evaluated.

  1. Uncertainties in hydrological extremes projections and its effects on decision-making processes in an Amazonian sub-basin.

    NASA Astrophysics Data System (ADS)

    Andres Rodriguez, Daniel; Garofolo, Lucas; Lazaro Siqueira Junior, Jose

    2013-04-01

    Uncertainties in Climate Change projections are affected by irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process. Such uncertainties affect the impact studies, complicating the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. Through these kinds of analyses it is possible to identify critical issues, which must be deeper studied. For this study we used several future's projections from General Circulation Models to feed a Hydrological Model, applied to the Amazonian sub-basin of Ji-Paraná. Hydrological Model integrations are performed for present historical time (1970-1990) and for future period (2010-2100). Extreme values analyses are performed to each simulated time series and results are compared with extremes events in present time. A simple approach to identify potential vulnerabilities consists of evaluating the hydrologic system response to climate variability and extreme events observed in the past, comparing them with the conditions projected for the future. Thus it is possible to identify critical issues that need attention and more detailed studies. For the goal of this work, we used socio-economic data from Brazilian Institute of Geography and Statistics, the Operator of the National Electric System, the Brazilian National Water Agency and scientific and press published information. This information is used to characterize impacts associated to extremes hydrological events in the basin during the present historical time and to evaluate potential impacts in the future face to the different hydrological projections. Results show inter-model variability results in a broad dispersion on projected extreme's values. The impact of such dispersion is differentiated for different aspects of socio-economic and natural systems and must be carefully

  2. Application of Decadal Scale Projections Based on Large Scale Climate Indices to Decision Making in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Erkyihun, S. T.; Zagona, E. A.; Rajagopalan, B.

    2015-12-01

    Effective water resources planning and management requires skillful decisions on multi-year or decadal timeframes. In basins such as the Colorado River Basin (CRB), streamflow is not stationary but exhibits variability that reflects teleconnections with large scale climate indices such as Atlantic Multi-decadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). A recently developed stochastic streamflow simulation and projection model, the Wavelet K-Nearest Neighbor (WKNN) model, identifies and reconstructs dominant quasi-periodic signals in the AMO and PDO using wavelet analysis, simulates each using block K-Nearest Neighbor (K-NN) bootstrap, then simulates the streamflow using a K-NN bootstrap conditioned on the simulated climate forcings, and has been demonstrated to produce skillful decadal scale projections of streamflow in the CRB. The Bureau of Reclamation's 2012 Colorado River Basin Supply and Demand Study used scenarios to explore the use of options and strategies such as infrastructure development, conservation and efficiency improvements to address supply-demand imbalances. Each year in the simulated scenarios, decision criteria such as reservoir elevations and average flows over recent years were applied to determine system vulnerability and the need to implement options and strategies to mitigate future shortages. This presentation describes the addition of the WKNN generated decadal scale flow projections to the decision criteria. In addition, periods of poor predictability are identified by using a nonlinear dynamical system based approach to recover the underlying dynamics. Time varying predictability is assessed by quantifying the divergence of trajectories in the phase space with time, using Local Lyapunov Exponents (LLE). Skillful decadal scale streamflow projections within the high predictable time epochs are used to indicate future flow conditions and improve decisions. An ensemble of projections is considered to be wet or dry based

  3. Multi-Scale Simulations of Past and Future Projections of Hydrology in Lake Tahoe Basin, California-Nevada (Invited)

    NASA Astrophysics Data System (ADS)

    Niswonger, R. G.; Huntington, J. L.; Dettinger, M. D.; Rajagopal, S.; Gardner, M.; Morton, C. G.; Reeves, D. M.; Pohll, G. M.

    2013-12-01

    Water resources in the Tahoe basin are susceptible to long-term climate change and extreme events because it is a middle-altitude, snow-dominated basin that experiences large inter-annual climate variations. Lake Tahoe provides critical water supply for its basin and downstream populations, but changes in water supply are obscured by complex climatic and hydrologic gradients across the high relief, geologically complex basin. An integrated surface and groundwater model of the Lake Tahoe basin has been developed using GSFLOW to assess the effects of climate change and extreme events on surface and groundwater resources. Key hydrologic mechanisms are identified with this model that explains recent changes in water resources of the region. Critical vulnerabilities of regional water-supplies and hazards also were explored. Maintaining a balance between (a) accurate representation of spatial features (e.g., geology, streams, and topography) and hydrologic response (i.e., groundwater, stream, lake, and wetland flows and storages), and (b) computational efficiency, is a necessity for the desired model applications. Potential climatic influences on water resources are analyzed here in simulations of long-term water-availability and flood responses to selected 100-year climate-model projections. GSFLOW is also used to simulate a scenario depicting an especially extreme storm event that was constructed from a combination of two historical atmospheric-river storm events as part of the USGS MultiHazards Demonstration Project. Historical simulated groundwater levels, streamflow, wetlands, and lake levels compare well with measured values for a 30-year historical simulation period. Results are consistent for both small and large model grid cell sizes, due to the model's ability to represent water table altitude, streams, and other hydrologic features at the sub-grid scale. Simulated hydrologic responses are affected by climate change, where less groundwater resources will be

  4. Modeling sediment yield and phosphorus in the Lake Tahoe basin with the Water Erosion Prediction Project (WEPP) model

    NASA Astrophysics Data System (ADS)

    Dobre, M.; Brooks, E. S.; Srivastava, A.; Lew, R.; Elliot, W. J.

    2016-12-01

    Lake Tahoe, an alpine lake situated at the border between California and Nevada, has experienced a decrease in water quality during the last 50 years. Similar to lakes in other developed areas, this decrease in water quality is mainly associated with an increase in sediment and nutrient delivery from the surrounding tributaries. The Water Erosion Prediction Project (WEPP) model is a process-based hydrology and erosion model that can be used at both small scales (hillslopes, roads, small parcels, etc.) and large watershed scales to evaluate impacts of management practices and climate change on runoff and erosion. We developed and assessed new approaches in WEPP to simulate streamflow and sediment transport, and added a new routine to estimate phosphorus delivery from five geologically and climatically diverse watersheds in the Lake Tahoe basin. We used readily-available data to spatially distribute soil, climate, and management input files at a subwatershed level. Consistent with the current efforts in the basin to reduce phosphorus transport to the lake, our recent improvements to the model have also focused on enhancing the model with a phosphorus component that allows users to evaluate the effect of forest managements on phosphorus delivery to the lake. The model was run with minimal calibration to assess WEPP's ability as a physically-based model to predict streamflow, sediment, and phosphorus delivery. The performance of the model was examined against 25 years of observed snow water equivalent depth, streamflow, sediment, and phosphorus load data. Close agreement between simulated and observed snow water equivalent, streamflow, the distribution of fine (<20 µm) and coarse (>20 µm) sediments, and phosphorus load was achieved at each of the major watersheds located in the high-precipitation regions of the basin. Sediment load was adequately simulated in the drier watersheds; however, annual streamflow was overestimated. With the exception of the drier eastern

  5. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... Department of Ecology (Ecology) will be a joint lead agency with Reclamation in the preparation of this... uncertainties have been addressed. In 2003, Reclamation and Ecology initiated the Yakima River Basin Water... Ecology to separate from the National Environmental Policy Act (NEPA) process. In mid-2008, Ecology...

  6. Interim response action, basin F liquid incineration project. Draft final human health assessment. Volume 1

    SciTech Connect

    1993-09-02

    The multipathway human health risk assessment based on the SQ1 emission rates measured during the trial burn of basin F liquid indicates that the maximum level of human health risk associated with operation of this incinerator will not exceed the benchmark risk levels defined in the final decision document (Woodward-Clyde, 1990).

  7. 78 FR 26807 - Vista Grande Drainage Basin Improvement Project, Fort Funston, Golden Gate National Recreation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... the Vista Grande Watershed Drainage Basin and the effects of coastal erosion. The National Park... reduce future erosion. The existing force main would also be removed and replaced with a similar... renovated to protect it from erosion and extend its operating life. FOR FURTHER INFORMATION CONTACT: Steve...

  8. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  9. Tracing and age-dating injected groundwater of the west basin barrier project, Los Angeles, CA

    SciTech Connect

    Davisson, M L; Eaton, Gp; Hudson, G B; Koester, C

    1999-03-26

    This preliminary report summarizes results from isotopic data recently generated on water collected for the West Basin Municipal Water District (WBMWD). Samples comprised monitoring and production wells up to 3.5 miles form the injection barrier, in addition to barrier product and blend water.

  10. Ecological Condition of Streams in Northern Nevada EPA R-MAP Humboldt Basin Project

    EPA Science Inventory

    This report presents stream data on the Humboldt River Basin in northern Nevada using the R-EMAP Program. Water is of primary importance to both the economy and the ecology of the region. Many of the waters of Nevada have previously received relatively little attention in regar...

  11. Ecological Condition of Streams in Northern Nevada EPA R-MAP Humboldt Basin Project

    EPA Science Inventory

    This report presents stream data on the Humboldt River Basin in northern Nevada using the R-EMAP Program. Water is of primary importance to both the economy and the ecology of the region. Many of the waters of Nevada have previously received relatively little attention in regar...

  12. Assessment of the Appalachian Basin Geothermal Field: Combining Risk Factors to Inform Development of Low Temperature Projects

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C.; Camp, E. R.; Horowitz, F.; Frone, Z. S.; Jordan, T. E.; Stedinger, J. R.

    2015-12-01

    Exploration methods for deep geothermal energy projects must primarily consider whether or not a location has favorable thermal resources. Even where the thermal field is favorable, other factors may impede project development and success. A combined analysis of these factors and their uncertainty is a strategy for moving geothermal energy proposals forward from the exploration phase at the scale of a basin to the scale of a project, and further to design of geothermal systems. For a Department of Energy Geothermal Play Fairway Analysis we assessed quality metrics, which we call risk factors, in the Appalachian Basin of New York, Pennsylvania, and West Virginia. These included 1) thermal field variability, 2) productivity of natural reservoirs from which to extract heat, 3) potential for induced seismicity, and 4) presence of thermal utilization centers. The thermal field was determined using a 1D heat flow model for 13,400 bottomhole temperatures (BHT) from oil and gas wells. Steps included the development of i) a set of corrections to BHT data and ii) depth models of conductivity stratigraphy at each borehole based on generalized stratigraphy that was verified for a select set of wells. Wells are control points in a spatial statistical analysis that resulted in maps of the predicted mean thermal field properties and of the standard error of the predicted mean. Seismic risk was analyzed by comparing earthquakes and stress orientations in the basin to gravity and magnetic potential field edges at depth. Major edges in the potential fields served as interpolation boundaries for the thermal maps (Figure 1). Natural reservoirs were identified from published studies, and productivity was determined based on the expected permeability and dimensions of each reservoir. Visualizing the natural reservoirs and population centers on a map of the thermal field communicates options for viable pilot sites and project designs (Figure 1). Furthermore, combining the four risk

  13. Green River Formation Water Flood Demonstration Project, Uinta Basin, Utah. Quarterly technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Lomax, J.D.; Nielson, D.L.; Deo, M.D.

    1993-12-01

    The project is designed to increase recoverable petroleum reserves in the United States. The Green River Formation in Utah`s Uinta Basin contains abundant hydrocarbons that are not easily recovered by primary means. The successful Lomax Montument Butte Unit water flood will be evaluated under this contract, and based on this information, water floods will be initiated in nearby Travis and Boundary units. In 1987, Lomax Exploration Company started a water flood in the Monument Butte Unit of a Douglas Creek member of the Green River Formation. This was a low-enerey, geologically heterogeneous reservoir producing a waxy crude oil. Primary production yielded 5% of the OOIP. Due to the water flood project, total production will yield an estimated recovery of 20% OOIP.

  14. Hydrological changes in the Amur river basin: two approaches for assignment of climate projections into hydrological model

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander; Kalugin, Andrei; Motovilov, Yury

    2017-04-01

    A regional hydrological model was setup to assess possible impact of climate change on the hydrological regime of the Amur drainage basin (the catchment area is 1 855 000 km2). The model is based on the ECOMAG hydrological modeling platform and describes spatially distributed processes of water cycle in this great basin with account for flow regulation by the Russian and Chinese reservoirs. Earlier, the regional hydrological model was intensively evaluated against 20-year streamflow data over the whole Amur basin and, being driven by 252-station meteorological observations as input data, demonstrated good performance. In this study, we firstly assessed the reliability of the model to reproduce the historical streamflow series when Global Climate Model (GCM) simulation data are used as input into the hydrological model. Data of nine GCMs involved in CMIP5 project was utilized and we found that ensemble mean of annual flow is close to the observed flow (error is about 14%) while data of separate GCMs may result in much larger errors. Reproduction of seasonal flow for the historical period turned out weaker; first of all because of large errors in simulated seasonal precipitation, so hydrological consequences of climate change were estimated just in terms of annual flow. We analyzed the hydrological projections from the climate change scenarios. The impacts were assessed in four 20-year periods: early- (2020-2039), mid- (2040-2059) and two end-century (2060-2079; 2080-2099) periods using an ensemble of nine GCMs and four Representative Concentration Pathways (RCP) scenarios. Mean annual runoff anomalies calculated as percentages of the future runoff (simulated under 36 GCM-RCP combinations of climate scenarios) to the historical runoff (simulated under the corresponding GCM outputs for the reference 1986-2005 period) were estimated. Hydrological model gave small negative runoff anomalies for almost all GCM-RCP combinations of climate scenarios and for all 20-year

  15. Hydrological information products for the Off-Project Water Program of the Klamath Basin Restoration Agreement

    USGS Publications Warehouse

    Snyder, Daniel T.; Risley, John C.; Haynes, Jonathan V.

    2012-01-01

    The Klamath Basin Restoration Agreement (KBRA) was developed by a diverse group of stakeholders, Federal and State resource management agencies, Tribal representatives, and interest groups to provide a comprehensive solution to ecological and water-supply issues in the Klamath Basin. The Off-Project Water Program (OPWP), one component of the KBRA, has as one of its purposes to permanently provide an additional 30,000 acre-feet of water per year on an average annual basis to Upper Klamath Lake through "voluntary retirement of water rights or water uses or other means as agreed to by the Klamath Tribes, to improve fisheries habitat and also provide for stability of irrigation water deliveries." The geographic area where the water rights could be retired encompasses approximately 1,900 square miles. The OPWP area is defined as including the Sprague River drainage, the Sycan River drainage downstream of Sycan Marsh, the Wood River drainage, and the Williamson River drainage from Kirk Reef at the southern end of Klamath Marsh downstream to the confluence with the Sprague River. Extensive, broad, flat, poorly drained uplands, valleys, and wetlands characterize much of the study area. Irrigation is almost entirely used for pasture. To assist parties involved with decisionmaking and implementation of the OPWP, the U.S. Geological Survey (USGS), in cooperation with the Klamath Tribes and other stakeholders, created five hydrological information products. These products include GIS digital maps and datasets containing spatial information on evapotranspiration, subirrigation indicators, water rights, subbasin streamflow statistics, and return-flow indicators. The evapotranspiration (ET) datasets were created under contract for this study by Evapotranspiration, Plus, LLC, of Twin Falls, Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial

  16. Status of groundwater quality in the San Fernando--San Gabriel study unit, 2005--California GAMA Priority Basin Project

    USGS Publications Warehouse

    Land, Michael; Kulongoski, Justin T.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the approximately 460-square-mile San Fernando--San Gabriel (FG) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is in Los Angeles County and includes Tertiary-Quaternary sedimentary basins situated within the Transverse Ranges of southern California. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA FG study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers) throughout California. The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 35 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth interval of the wells listed in the CDPH database for the FG study unit. The quality of groundwater in primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the FG study unit, not the treated drinking water delivered to consumers by water purveyors.

  17. Analysis of Multilevel Pressure Transient Data at the Illinois Basin - Decatur Project

    NASA Astrophysics Data System (ADS)

    Strandli, Christin W.; Mehnert, Edward; Benson, Sally M.

    2014-05-01

    Based on numerical studies in TOUH2/ECO2N and analyses of multilevel (depth-discrete) pressure transient data at the Illinois Basin - Decatur Project (IBDP), this study demonstrates methods for using multilevel pressure transient data as a means to further characterize the storage formation and for monitoring carbon dioxide (CO2) and displaced brine migration. By incorporating multilevel pressure monitoring into the monitoring program, additional information is available that can be used to minimize and manage potential risk associated with CO2 and displaced brine migration to shallower depths. Previously, we used simulated pressure data from numerical studies in TOUGH2/ECO2N to identify diagnostics for reservoir structure (layering and anisotropy) and CO2 plume migration. In particular, we found that important insights can be obtained by: 1) normalizing the pressure buildups to the pressure buildup at the depth of injection, and 2) calculating vertical pressure gradients normalized to the initial hydrostatic pressure gradient. Soon after the start of injection, pressure buildups normalized to the pressure buildup at the depth of injection and vertical pressure gradients normalized to the initial hydrostatic pressure gradient are diagnostic of reservoir structure, and over time provide information on the height of the CO2 plume. In this study, the identified diagnostics are applied to the pressure transient data at the IBDP, where the Westbay* multilevel groundwater characterization and monitoring system was installed in a deep in-zone verification well (2,000 m) to measure the pressure buildup at multiple depths within the Mt. Simon storage reservoir and above the Eau Claire Formation (primary seal) during CO2 injection. Using the diagnostic tools, we are able to correctly identify the height of the CO2 plume. Specifically, the multilevel pressure transient data alone indicate that the CO2 plume remains largely confined to the 23-24 m interval into which it is

  18. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2003 Annual Report.

    SciTech Connect

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    2004-02-27

    The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional

  19. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2001.

    SciTech Connect

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    2002-12-01

    The John Day River is the nation's second longest free-flowing river in the contiguous United States, which is entirely unsupplemented for it's runs of anadromous fish. Located in eastern Oregon, the John Day Basin drains over 8,000 square miles, is Oregon's fourth largest drainage basin, and the basin incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the mainstem John Day River flows 284 miles in a northwesterly direction entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon, summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The Majority of the John Day Basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in John Day to coordinate basin restoration projects, monitoring, planning, and other watershed restoration activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in John Day, who subcontracts the majority of the construction implementation activities for these restoration projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2001, the JDBO and GSWCD continued their successful partnership

  20. Fisheries Enhancement in the Fish Creek Basin; Evaluation of In-Channel and Off-Channel Projects, 1984 Annual Report.

    SciTech Connect

    Everest, Fred H.; Sedell, James R.; Wolfe, John

    1985-07-01

    This S-year project which began in 1983 is designed to construct and evaluate habitat improvements in the Fish Creek basin by personnel of the Estacada Ranger District, Ht. Hood National Forest, and the Pacific Northwest Forest and Range Experiment Station. The work is jointly funded by BPA and USDA-Forest Service. The evaluation has focused on activities designed to improve spawning and rearing habitat for chinook and coho salmon and steelhead trout. Specific habitat improvements being evaluated include: boulder berms, an off-channel pond, a side-channel, addition of large woody debris to stream edge habitats, and hardwood plantings to improve riparian vegetation. The initial phases of habitat work have proceeded cautiously in concert with the evaluation so that knowledge gained could be immediately applied to future proposed habitat work. The evaluation has been conducted at the basin level, rather than reach or site level, and has focused intensely on identification of factors limiting production of salmonids in Fish Creek, as well as physical and biological changes resulting from habitat improvement. Identification of limiting factors has proven to be difficult and requires several years of all-season investigation. Results of this work to date indicate that spawning habitat is not limiting production of steelhead or coho in the basin. Coho habitat is presently underseeded because of inadequate escapement. Key summer habitats for coho, age 0 and age 1+ steelhead are beaver ponds, side channels, and pools, respectively. Key winter habitats appear to be groundwater-fed side channels and boulder-rubble stream margins with 30+ cm depth and low velocity water. Additional work is needed to determine whether summer habitat or winter habitat is limiting steelhead and coho production. Chinook use of the basin appears to be related to the timing of fall freshets that control migratory access into the system. Instream habitat improvements show varying degrees of promise

  1. Quaternary tectonics and basin history of Pahrump and Stewart Valleys, Nevada and California. [Yucca Mountain Project

    SciTech Connect

    Hoffard, J.L. )

    1991-05-01

    The Pahrump fault system is an active fault system located in Pahrump and Stewart Valleys, Nevada and California, in the southern part of the Basin and Range Province. This system is 50 km long by 30 km wide and is comprised of three fault zones: the right-lateral East Nopah fault zone, the right-oblique Pahrump Valley fault zone, and the normal West Spring Mountains fault zone. All three zones have geomorphic evidence for late Quaternary activity. Analysis of active fault patterns and seismic reflection lines suggests that the Pahrump basin has had a two-stage genesis, an early history associated with a period of low angle detachment faulting probably active 10-15 Ma, and a more recent history related to the present dextral shear system, probably active post-4 Ma.

  2. Final design review report for K Basin Dose Reduction Project Clean and Coat Task

    SciTech Connect

    Blackburn, L.D.

    1996-02-01

    The strategy for reducing radiation dose originating from radionuclides absorbed in the concrete is to raise the pool water level to provide additional shielding. The concrete walls need to be coated to prevent future radionuclide absorption into the walls. This report documents a final design review of equipment to clean and coat basin walls. The review concluded that the design presented was acceptable for release for fabrication.

  3. Conceptual design review report for K Basin Dose Reduction Project clean and coat task

    SciTech Connect

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose originating from radionuclides absorbed in the concrete is to raise the pool water level to provide additional shielding. The concrete walls need to be coated to prevent future radionuclide absorption into the walls. This report documents a conceptual design review of equipment to clean and coat basin walls. The review concluded that the proposed concepts were and acceptable basis for proceeding with detailed final design.

  4. Evaluation of hydrological cycle in the major European midlatitude river basins in the frame of the CORDEX project

    NASA Astrophysics Data System (ADS)

    Georgievski, Goran; Keuler, Klaus

    2013-04-01

    Water supply and its potential to increase social, economic and environmental risks are among the most critical challenges for the upcoming decades. Therefore, the assessment of the reliability of regional climate models (RCMs) to represent present-day hydrological balance of river basins is one of the most challenging tasks with high priority for climate modelling in order to estimate range of possible socio-economic impacts of the climate change. However, previous work in the frame of 4th IPCC AR and corresponding regional downscaling experiments (with focus on Europe and Danube river basin) showed that even the meteorological re-analyses provide unreliable data set for evaluations of climate model performance. Furthermore, large discrepancies among the RCMs are caused by internal model deficiencies (for example: systematic errors in dynamics, land-soil parameterizations, large-scale condensation and convection schemes), and in spite of higher resolution RCMs do not always improve much the results from GCMs, but even deteriorate it in some cases. All that has a consequence that capturing impact of climate change on hydrological cycle is not an easy task. Here we present state of the art of RCMs in the frame of the CORDEX project for Europe. First analysis shows again that even the up to date ERA-INTERIM re-analysis is not reliable for evaluation of hydrological cycle in major European midlatitude river basins (Seine, Rhine, Elbe, Oder, Vistula, Danube, Po, Rhone, Garonne and Ebro). Therefore, terrestrial water storage, a quasi observed parameter which is a combination of river discharge (from Global River Discharge Centre data set) and atmospheric moisture fluxes from ERA-INTERIM re-analysis, is used for verification. It shows qualitatively good agreement with COSMO-CLM (CCLM) regional climate simulation (abbreviated CCLM_eval) at 0.11 degrees horizontal resolution forced by ERA-INTERIM re-analysis. Furthermore, intercomparison of terrestrial water storage

  5. Trends and Projections of Climatic Extremes in the Black Volta Basin, West Africa: Towards Climate Change Adaptation.

    NASA Astrophysics Data System (ADS)

    Aziz, F.

    2015-12-01

    The water resources of the Black Volta Basin in West Africa constitute a major resource for the four countries (Burkina Faso, Ghana, Côte d'Ivoire, Mali) that share it. For Burkina Faso and Ghana, the river is the main natural resource around which the development of the diverse sectors of the two economies is built. Whereas Ghana relies heavily on the river for energy, land-locked Burkina Faso continuously develops the water for agricultural purposes. Such important role of the river makes it an element around which there are potential conflicts: either among riparian countries or within the individual countries themselves. This study documents the changes in temperature and precipitation extremes in the Black Volta Basin region for the past (1981-2010) and makes projections for the mid-late 21st century (2051-2080) under two emission scenarios; RCP 2.6 and RCP 8.5. The Expert Team on Climate Change Detection and Indices (ETCCDI) temperature- and precipitation-based indices are computed with the RClimdex software. Observed daily records and downscaled CORDEX data of precipitation and maximum and minimum temperatures are used for historical and future trend analysis respectively. In general low emission scenarios show increases in the cold extremes. The region shows a consistent pattern of trends in hot extremes for the 1990's. An increasing trend in hot extremes is expected in the future under RCP 8.5 while RCP 2.5 shows reductions in hot extremes. Regardless of the emission scenario, projections show more frequent hot nights in the 21st century. Generally, the region shows variability in trends for future extreme precipitation indices with only a few of the trends being statistically significant (5% level). Results obtained provide a basic and first step to understanding how climatic extremes have been changing in the Volta Basin region and gives an idea of what to expect in the future. Such studies will also help in making informed decisions on water management

  6. Preparation and Characterization of Uranium Oxides in Support of the K Basin Sludge Treatment Project

    SciTech Connect

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2008-07-08

    Uraninite (UO2) and metaschoepite (UO3·2H2O) are the uranium phases most frequently observed in K Basin sludge. Uraninite arises from the oxidation of uranium metal by anoxic water and metaschoepite arises from oxidation of uraninite by atmospheric or radiolytic oxygen. Studies of the oxidation of uraninite by oxygen to form metaschoepite were performed at 21°C and 50°C. A uranium oxide oxidation state characterization method based on spectrophotometry of the solution formed by dissolving aqueous slurries in phosphoric acid was developed to follow the extent of reaction. This method may be applied to determine uranium oxide oxidation state distribution in K Basin sludge. The uraninite produced by anoxic corrosion of uranium metal has exceedingly fine particle size (6 nm diameter), forms agglomerates, and has the formula UO2.004±0.007; i.e., is practically stoichiometric UO2. The metaschoepite particles are flatter and wider when prepared at 21°C than the particles prepared at 50°C. These particles are much smaller than the metaschoepite observed in prolonged exposure of actual K Basin sludge to warm moist oxidizing conditions. The uraninite produced by anoxic uranium metal corrosion and the metaschoepite produced by reaction of uraninite aqueous slurries with oxygen may be used in engineering and process development testing. A rapid alternative method to determine uranium metal concentrations in sludge also was identified.

  7. Results from the Big Spring basin water quality monitoring and demonstration projects, Iowa, USA

    USGS Publications Warehouse

    Rowden, R.D.; Liu, H.; Libra, R.D.

    2001-01-01

    Agricultural practices, hydrology, and water quality of the 267-km2 Big Spring groundwater drainage basin in Clayton County, Iowa, have been monitored since 1981. Land use is agricultural; nitrate-nitrogen (-N) and herbicides are the resulting contaminants in groundwater and surface water. Ordovician Galena Group carbonate rocks comprise the main aquifer in the basin. Recharge to this karstic aquifer is by infiltration, augmented by sinkhole-captured runoff. Groundwater is discharged at Big Spring, where quantity and quality of the discharge are monitored. Monitoring has shown a threefold increase in groundwater nitrate-N concentrations from the 1960s to the early 1980s. The nitrate-N discharged from the basin typically is equivalent to over one-third of the nitrogen fertilizer applied, with larger losses during wetter years. Atrazine is present in groundwater all year; however, contaminant concentrations in the groundwater respond directly to recharge events, and unique chemical signatures of infiltration versus runoff recharge are detectable in the discharge from Big Spring. Education and demonstration efforts have reduced nitrogen fertilizer application rates by one-third since 1981. Relating declines in nitrate and pesticide concentrations to inputs of nitrogen fertilizer and pesticides at Big Spring is problematic. Annual recharge has varied five-fold during monitoring, overshadowing any water-quality improvements resulting from incrementally decreased inputs. ?? Springer-Verlag 2001.

  8. Significance and effect of ecological rehabilitation project in inland river basins in northwest China.

    PubMed

    Wang, Yu; Feng, Qi; Chen, Lijuan; Yu, Tengfei

    2013-07-01

    The Ecological Water Transfer and Rehabilitation Project in the arid inland area of northwest China is an important measure in restoring a deteriorated ecosystem. However, the sustainability of the project is affected by many socio-economic factors. This article examines the attitudes of the local populace toward the project, its impact on the livelihood of the people, and the positive effects of water-efficient agricultural practices in Ejina County. Related data were collected through questionnaire surveys and group discussions. The results identified three critical issues that may influence the sustainability of the project in the study area. The first issue relates to the impact of the project on the livelihood of local herdsmen. The potential for the sustainability of the project is compromised because the livelihood of the herdsmen greatly depends on the compensation awarded by the project. The second issue is that the project did not raise the water resource utilization ratio, which may undermine its final purpose. Finally, the compensation provided by the project considers losses in agriculture, but neglects the externalities and public benefit of eco-water. Thus, appropriate compensation mechanisms should be established and adopted according to local economic, environmental, and social conditions. Some recommendations for improving the sustainability of the project are provided based on the results of this study.

  9. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2002 Annual Report.

    SciTech Connect

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    2003-06-30

    The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day, who contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2002, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin

  10. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1991 Annual Report.

    SciTech Connect

    Scheeler, Carl A.

    1993-01-01

    The Umatilla habitat improvement program targets the improvement of water quality and restoration of riparian areas, holding, spawning,and rearing habitats of steelhead, spring and fall Chinook and coho salmon. This report covers work accomplished by the Confederated Tribes of the Umatilla Indian Reservation from April 1991 through May 1992. This program is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (Measure 704 (d)(1) 34.02) as partial mitigation for construction of hydroelectric dams and the subsequent losses of anadromous fish throughout the Columbia River system.

  11. 3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report

    SciTech Connect

    Wagoner, J

    2009-04-24

    The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

  12. 3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report

    SciTech Connect

    Wagoner, J

    2009-02-23

    The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

  13. Confederated Tribes of the Umatilla Indian Reservation North Fork John Day River Basin Anadromous Fish Enhancement Project, Annual Report for FY 2000.

    SciTech Connect

    Macy, Tom L.; James, Gary A.

    2003-03-01

    The CTUIR North Fork John Day River Basin Anadromous Enhancement Project (NFJDAFEP) identified and prioritized stream reaches in The North Fork John day River basin for habitat improvements during the 2000 project period. Public out reach was emphasized during this first year of the project. We presented multiple funding and enhancement options to landowners. We concentrated on natural recovery methods, riparian fencing and off-stream livestock water developments. Under this BPA contract four riparian easements were signed protecting almost 5 miles of tributary streams. There are nine offstream water developments associated with these easements. Some landowners chose to participate in other programs based on Tribal outreach efforts. Two landowners chose NRCS programs for enhancement and one chose OWEB as a funding source. Two landowners implemented there own enhancement measures protecting 3 miles of stream. Cooperation between the NRCS/FSA/SWCDs and the Tribe to create joint projects and develop alternative funding scenarios for riparian enhancement was a major effort. The Tribe also worked with the North Fork John Day Watershed Council, USFS and ODFW to coordinate projects and support similar projects throughout the John Day Basin. We provided input to the John Day Summary prepared for the NWPPC by ODFW. The Tribe worked with the Umatilla National Forest on the Clear Creek Dredgetailings Rehabilitation project and coordinated regularly with USFS Fisheries, Hydrology and Range staff.

  14. Confederated Tribes of the Umatilla Indian Reservation North Fork John Day River Basin Anadromous Fish Enhancement Project, Annual Report for FY 2001.

    SciTech Connect

    Macy, Tom L.; James, Gary A.

    2003-03-01

    The CTUIR North Fork John Day River Basin Anadromous Enhancement Project (NFJDAFEP) identified and prioritized stream reaches in The North Fork John day River basin for habitat improvements during the 2000 project period. Public outreach was emphasized during this first year of the project. During the past year we concentrated on satisfying landowner needs, providing cost share alternatives, providing joint projects and starting implementation. We presented multiple funding and enhancement options to landowners. We concentrated on natural recovery methods, riparian fencing and offstream livestock water developments. Under this BPA contract four riparian easements have been signed protecting almost 5 miles of tributary streams. There are nine offstream water developments associated with these easements. Some landowners chose to participate in other programs based on Tribal outreach efforts. Some landowners chose NRCS programs for enhancement and others chose OWEB as a funding source. The exact amount of stream protection due to other funding sources probably exceeds that by BPA, however most would not have entered any program without initial Tribal outreach. Cooperation between the NRCS/FSA/SWCDs and the Tribe to create joint projects and develop alternative funding scenarios for riparian enhancement was a major effort. The Tribe also worked with the North Fork John Day Watershed Council, USFS and ODFW to coordinate projects and support similar projects throughout the John Day Basin.

  15. Water governance within Kenya's Upper Ewaso Ng'iro Basin: Assessing the performance of water projects

    NASA Astrophysics Data System (ADS)

    McCord, P. F.; Evans, T. P.; Dell'Angelo, J.; Gower, D.; McBride, L.; Caylor, K. K.

    2013-12-01

    Climate change processes are projected to change the availability and seasonality of streamflow with dramatic implications for irrigated agricultural systems. Within mountain environments, this alteration in water availability may be quite pronounced over a relatively short distance as upstream users with first access to river water directly impact the availability of water to downstream users. Livelihood systems that directly depend on river water for both domestic consumption and practices such as irrigated agriculture are particularly vulnerable. The Mount Kenya region is an exemplary case of a semi-arid upstream-downstream system in which water availability rapidly decreases and directly impacts the livelihoods of river water users existing across this steep environmental gradient. To effectively manage river water within these water-scarce environs, water projects have been established along the major rivers of the Mount Kenya region. These water projects are responsible for managing water within discrete sub-catchments of the region. While water projects develop rules that encourage the responsible use of water and maintenance of the project itself, the efficiency of water allocation to the projects' members remains unclear. This research analyzes water projects from five sub-catchments on the northwest slopes of Mount Kenya. It utilizes data from household surveys and water project management surveys as well as stream gauge data and flow measurements within individual water projects to assess the governance structure and performance of water projects. The performance of water projects is measured through a variety of household level metrics including: farm-level water flow and volume over time, mean and variability in maize yield, per capita crop productivity, household-level satisfaction with water availability, number of days where water volume was insufficient for irrigation, and quantity harvested compared with expected quantity harvested. We present

  16. Surface water-quality assessment of the lower Kansas River basin, Kansas and Nebraska; project description

    USGS Publications Warehouse

    Stamer, J.K.; Jordan, P.R.; Engberg, R.A.; Dugan, J.T.

    1987-01-01

    In 1986 the U.S. Geological Survey began a National Water-Quality Assessment Program to: (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation 's surface water resources; (2) where possible, define trends in water quality; and (3) identify and describe the relation between water quality and natural and land use factors. This report describes the pilot study of the lower Kansas River basin, which is one of four surface water pilot studies that will be used to test, and modify as necessary, assessment concepts and approaches in preparation for future full implementation of the national program. Water quality issues in the lower Kansas River basin are dominated by possible nonpoint sources of contamination from agricultural land, with issues including: (1) large sediment discharge in the streams and sediment deposition in the reservoirs caused by intensive cultivation of row crops and subsequent erosion; (2) occurrence of pesticides in streams and reservoirs that could impair the suitability of water for aquatic life and has the potential for impairing the water 's suitability for public supply; (3) bacterial contamination caused by runoff from pastureland and feedlot operations and municipal wastewater discharges; and (4) nutrient enrichment of reservoirs. Data from fixed stations will be used to determine frequency distributions of constituent concentrations and mass balances of constituents between stations. Subbasin or river reach studies will provide a better understanding of the origin, movement, and fate of potential contaminants. (Lantz-PTT)

  17. Twinning European and South Asian river basins to enhance capacity and implement adaptive integrated water resources management approaches - results from the EC-project BRAHMATWINN

    NASA Astrophysics Data System (ADS)

    Flügel, W.-A.

    2011-04-01

    The EC-project BRAHMATWINN was carrying out a harmonised integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs of the twinning Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basins (UBRB) in Europe and Southeast Asia respectively. Social and natural scientists in cooperation with water law experts and local stakeholders produced the project outcomes presented in Chapter 2 till Chapter 10 of this publication. BRAHMATWINN applied a holistic approach towards IWRM comprising climate modelling, socio-economic and governance analysis and concepts together with methods and integrated tools of applied Geoinformatics. A detailed description of the deliverables produced by the BRAHMATWINN project is published on the project homepage http://www.brahmatwinn.uni-jena.de.

  18. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2000.

    SciTech Connect

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    2001-03-01

    The John Day is the second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles--Oregon's third largest drainage basin--and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly a basin with national significance. Most all of the entire John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the Basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Using funding from the Bonneville Power Administration, Bureau of Reclamation, and others, the John Day Basin Office (JDBO) subcontracts the majority of its construction implementation activities with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/review, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2000, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and

  19. Geological and geothermal 3D modelling of the Vienna Basin, Austria - pilot area of the project TRANSENERGY

    NASA Astrophysics Data System (ADS)

    Hoyer, S.; Bottig, M.; Zekiri, F.; Fuchsluger, M.; Götzl, G.; Schubert, G.; Brüstle, A.

    2012-04-01

    In general, sedimentary basins show high potential for the use of geothermal energy. Since the Vienna Basin is a densely populated area, (approximately 1.7 million people in the city of Vienna plus surroundings) geothermal power and heat could play a significant role in the future. The Vienna basin is a relatively cold system where the 100 °C isotherm is to be found at a minimum of about 2500 meters. This fact, meaning the need of deep thus expensive wells, adding the problem of space for drillings and geothermal power plants are challenging subjects in terms of exploitation. The aim of the present work is to model the thermal regime of the Vienna basin and take a closer look on two exploitation scenarios in different hydrological systems (parts of the Bajuvaric and Juvavic nappes in the basement and the horizon of Aderklaa conglomerates in the Neogene sediments). In the first phase, a geological 3D model was created using published data (surface geology, interpreted cross sections from drilling and seismic data) as well as markers from selected wells (data derived from OMV). The geometrical model was built in GoCADTM, where in a first step surfaces were created, displaced along major faults and further exported for the following numerical simulations. In total, 14 Surfaces were created, seven Neogene layers and seven structuring the basement. The thermal modelling is realized using the finite-element software COMSOL Multiphysics© and FEFLOW. Major surfaces were imported into COMSOL as geometry objects, which is not practicable for very complex, fine structures. To represent smaller units inside the subdomains, the associated material parameters had to be imported as functions of the three space coordinates. To gain initial values for the exploitation scenario modelling a steady-state solution has to be achieved. For the lower model boundary, a Neumann boundary condition was set using a newly derived heat flow density map (project TRANSENERGY, Geological Survey

  20. Crustal structure of the southern Dead Sea basin derived from project DESIRE wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Mechie, J.; Abu-Ayyash, K.; Ben-Avraham, Z.; El-Kelani, R.; Qabbani, I.; Weber, M.

    2009-07-01

    As part of the DEad Sea Integrated REsearch project (DESIRE) a 235 km long seismic wide-angle reflection/refraction (WRR) profile was completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin (DSB). The DST with a total of about 107 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1100 km. With a sedimentary infill of about 10 km in places, the southern DSB is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one-component instruments spaced 300 m to 1.2 km apart along the whole length of the E-W trending profile. Models of the P-wave velocity structure derived from the WRR data show that the sedimentary infill associated with the formation of the southern DSB is about 8.5 km thick beneath the profile. With around an additional 2 km of older sediments, the depth to the seismic basement beneath the southern DSB is about 11 km below sea level beneath the profile. Seismic refraction data from an earlier experiment suggest that the seismic basement continues to deepen to a maximum depth of about 14 km, about 10 km south of the DESIRE profile. In contrast, the interfaces below about 20 km depth, including the top of the lower crust and the Moho, probably show less than 3 km variation in depth beneath the profile as it crosses the southern DSB. Thus the Dead Sea pull-apart basin may be essentially an upper crustal feature with upper crustal extension associated with the left-lateral motion along the DST. The boundary between the upper and lower crust at about 20 km depth might act as a decoupling zone. Below this boundary the two plates move past each other in what is essentially a shearing motion. Thermo

  1. Seismic Wide-Angle Reflection / Refraction Profiling from the DESIRE Project Reveals the Deep Structure Across the Southern Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Weber, M.; Mechie, J.; Ab-Ayyash, K.; Ben-Avraham, Z.; El-Kelani, R.; Qabbani, I.; DESIRE Group

    2007-12-01

    As part of the DESIRE project a 240 km long seismic wide-angle reflection / refraction (WRR) profile was completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin. The DST with a total of about 105 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1100 km. With a sedimentary infill of about 10 km in places, the southern Dead Sea basin is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one- component instruments spaced 300 m to 1.2 km apart along the whole length of the E-W trending profile. Models of the P-wave velocity structure derived from the WRR data show that the sedimentary infill associated with the formation of the southern Dead Sea basin is about 8.5 km thick beneath the profile. With around an additional 2 km of older sediments, the depth to the seismic basement beneath the southern Dead Sea basin is about 11 km below sea level beneath the profile. In contrast, the interfaces below about 20 km depth, including the top of the lower crust and the Moho, show less than 3 km variation in depth beneath the profile as it crosses the southern Dead Sea basin. Thus the Dead Sea pull-apart basin is essentially an upper crustal feature with N-S upper crustal extension associated with the left-lateral motion along the DST. The boundary between the upper and lower crust at about 20 km depth must act as a decoupling zone. Thermo-mechanical modelling of the Dead Sea basin supports such a scenario.

  2. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    ,

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  3. Analysis of snow-glacial historical and projected flows in Olivares river basin. Comparison between DHSVM and WEAP models.

    NASA Astrophysics Data System (ADS)

    Cepeda, Javier; Vargas, Ximena

    2017-04-01

    In the Andes Mountains, in central Chile, glaciers are a key element to both environment and economy, since they contribute highly to streamflow during the summer season. Many studies have been performed in order to understand the actual contribution of glacial-based streamflow and the expected response of glaciers to climatological alterations such as climate change. This work studies and analyses the historical and future streamflow on the Olivares river basin, located close to Chile's capital city, Santiago, under climatic change scenario RCP8.5. For this, we use two hydrological models with different topology, to have more consistency in the results, and analysing the differences because of the conceptualization of the processes and its spatial scale. DHSVM is a distributed, physically based model, while WEAP is a semi-distributed model that represents some processes conceptually and others physically based. Both models are calibrated considering streamflow and snow cover data from the period 2001-2012 at a daily scale. Additionally, comparisons between the modelled glacier area variations and LANDSAT images are performed to strengthen the calibration process. Climate change projections are obtained from five Global Circulation Models (GCM) under RCP8.5 scenario. Changes in glacier area, volume and glacial streamflow contribution to basin discharge are analysed, comparing two future time lapses, near-future period (2015-2044) and far-future (2045-2074), to a baseline period (1985-2004). The basin has an area of 543 km2, with elevations ranging from 1,528 to 6,024 m.a.s.l. and an important glacier presence. According to the National Glacier Cadastre developed by Chile Water Authority (DGA) in 2012, there are 80 uncovered glaciers within the basin, the most important being Juncal Sur, Olivares Alfa, Beta and Gamma. Glacier area represented 17% of the basin in 1985, while they made up only to 11% in 2015.The glaciers are located at altitudes ranging from 3,500 to

  4. National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota

    SciTech Connect

    Sweetzer, Richard; Leslie, Neil

    2008-02-01

    A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

  5. TESTING TREE-CLASSIFIER VARIANTS AND ALTERNATE MODELING METHODOLOGIES IN THE EAST GREAT BASIN MAPPING UNIT OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    EPA Science Inventory

    We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...

  6. TESTING TREE-CLASSIFIER VARIANTS AND ALTERNATE MODELING METHODOLOGIES IN THE EAST GREAT BASIN MAPPING UNIT OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    EPA Science Inventory

    We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...

  7. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    SciTech Connect

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  8. 105-K Basin material design basis feed description for spent nuclear fuel project facilities

    SciTech Connect

    Praga, A.N.

    1998-01-08

    Revisions 0 and 0A of this document provided estimated chemical and radionuclide inventories of spent nuclear fuel and sludge currently stored within the Hanford Site`s 105-K Basins. This Revision (Rev. 1) incorporates the following changes into Revision 0A: (1) updates the tables to reflect: improved cross section data, a decision to use accountability data as the basis for total Pu, a corrected methodology for selection of the heat generation basis fee, and a revised decay date; (2) adds section 3.3.3.1 to expand the description of the approach used to calculate the inventory values and explain why that approach yields conservative results; (3) changes the pre-irradiation braze beryllium value.

  9. Photographic technology development project: Timber typing in the Tahoe Basin using high altitude panoramic photography

    NASA Technical Reports Server (NTRS)

    Ward, J. F.

    1981-01-01

    Procedures were developed and tested for using KA-80A optical bar camera panoramic photography for timber typing forest land and classifying nonforest land. The study area was the south half of the Lake Tahoe Basin Management Unit. Final products from this study include four timber type map overlays on 1:24,000 orthophoto maps. The following conclusions can be drawn from this study: (1) established conventional timber typing procedures can be used on panoramic photography if the necessary equipment is available, (2) The classification and consistency results warrant further study in using panoramic photography for timber typing; and (3) timber type mapping can be done as fast or faster with panoramic photography than with resource photography while maintaining comparable accuracy.

  10. Projected effects of proposed chloride-control projects on shallow ground water; preliminary results for the Wichita River basin, Texas

    USGS Publications Warehouse

    Garza, Sergio

    1983-01-01

    Two-dimensional mathematical computer models were developed for aquifer simulation of: (1) Steady-state conditions in a fresh-water system and (2) transient conditions in a brine- fresh-water system where the density effects of the brine are considered. The main results 'of projecting the effects of the proposed Truscott Brine Lake on the fresh-water aquifer are: (1) Hydraulic head rises of 5 to 40 feet would be confined to areas near the proposed dam and along the lake shoreline, and (2) migration of salt water downstream from the dam generally would be limited to less than 1 mile and apparently would not reach equilibrium during the 100-year duration of the project. The modeling efforts did not include possible effects related to hydrodynamic dispersion in the brine- fresh-water system. Possible changes in the hydraulic conductivity of the aquifer, due to physical and chemical interactions in the brine and fresh-water environments, also were not considered.

  11. KE Basin monorail modification for the sludge removal and packaging project

    SciTech Connect

    Orbeta, C.B.

    1995-02-06

    The 105KE Basin currently stores over 1,100 metric tons of various N Reactor spent fuel in several canister forms, as well as several metric tons of sludge which must be removed. Modifications will consist of anchoring a permanent steel frame directly into the pit walls between existing columns and adding two travelling hoist rails, each capable of two directional motions. Each pit will have its own capability for targeting loads to any point inside the working areas of these pits. The structural frame designed for the monorail system at the Weasel and Tech-View pits was qualified as adequate for normal/operating loads, and dead plus live loads combined with seismic loads. The hoist operating live load is limited to 2,000 lb. The physical strength of the existing pit walls where the base plates are to be structurally anchored is unknown. The original structural drawings specified a minimum concrete strength of 3,000 lb/in{sup 2}. A pullout test should be performed to verify the strength of this concrete base. To reduce radiation exposure to levels as low as reasonably achievable (ALARA), installation and erection work inside the basin controlled area must be minimized; therefore, the pieces required for the modifications should be numbered in the fabrication shop, and erection should follow a procedure that corresponds to the assembly sequence indicated by the numbers. In conjunction with final erection, a mock-up activity should be conducted and base-plate locations verified to be within dimensional tolerances.

  12. Climate, Biofuels and Water: Projections and Sustainability Implications for the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Deb, D.; Tuppad, P.; Daggupati, P.; Srinivasan, R.; Varma, D.

    2014-12-01

    Impact of climate change on the water resources of the United States exposes the vulnerability of feedstock-specific mandated fuel targets to extreme weather conditions that could become more frequent and intensify in the future. Consequently, a sustainable biofuel policy should consider a) how climate change would alter both water supply and demand and, b) in turn, how related changes in water availability will impact the production of biofuel crops and c) the environmental implications of large scale biofuel productions. Since, understanding the role of biofuels in the water cycle is key to understanding many of the environmental impacts of biofuels, the focus of this study is on modeling the rarely explored interactions between land use, climate change, water resources and the environment in future biofuel production systems to explore the impacts of the US biofuel policy and climate change on water and agricultural resources. More specifically, this research will address changes in the water demand and availability, soil erosion and water quality driven by both climate change and biomass feedstock production in the Upper Mississippi River Basin. We used the SWAT (Soil and Water Assessment Tool) hydrologic model to analyze the water quantity and quality consequences of land use and land management related changes in cropping conditions (e.g. more use of marginal lands, greater residue harvest, increased yields), plus management practices due to biofuel crops to meet the RFS target on water quality and quantity. Results show that even if the Upper Mississippi River Basin is a region of low water stress, it contributes to high nutrient load in Gulf of Mexico through seasonal shifts in streamflow, changes in extreme high and low flow events, changes in loadings and transport of sediments and nutrients due to changes in precipitation patterns and intensity, changes in frequency of occurrence of floods and drought, early melting of snow and ice, increasing

  13. Projection of summer precipitation over the Yangtze-Huaihe River basin using multimodel statistical downscaling based on canonical correlation analysis

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Jiang, Zhihong; Ma, Tingting

    2016-12-01

    By using observational daily precipitation data over the Yangtze-Huaihe River basin, ERA-40 data, and the data from eight CMIP5 climate models, statistical downscaling models are constructed based on BP-CCA (combination of empirical orthogonal function and canonical correlation analysis) to project future changes of precipitation. The results show that the absolute values of domain-averaged precipitation relative errors of most models are reduced from 8%-46% to 1%-7% after statistical downscaling. The spatial correlations are all improved from less than 0.40 to more than 0.60. As a result of the statistical downscaling multimodel ensemble (SDMME), the relative error is improved from-15.8% to-1.3%, and the spatial correlation increases significantly from 0.46 to 0.88. These results demonstrate that the simulation skill of SDMME is relatively better than that of the multimodel ensemble (MME) and the downscaling of most individual models. The projections of SDMME reveal that under the RCP (Representative Concentration Pathway) 4.5 scenario, the projected domain-averaged precipitation changes for the early (2016-2035), middle (2046-2065), and late (2081-2100) 21st century are-1.8%, 6.1%, and 9.9%, respectively. For the early period, the increasing trends of precipitation in the western region are relatively weak, while the precipitation in the east shows a decreasing trend. Furthermore, the reliability of the projected changes over the area east of 115 ◦ E is higher than that in the west. The stations with significant increasing trends are primarily located over the western region in both the middle and late periods, with larger magnitude for the latter. Stations with high reliability mainly appear in the region north of 28.5 ◦ N for both periods.

  14. A generic method for projecting and valuing domestic water uses, application to the Mediterranean basin at the 2050 horizon.

    NASA Astrophysics Data System (ADS)

    Neverre, Noémie; Dumas, Patrice

    2014-05-01

    The aim is to be able to assess future domestic water demands in a region with heterogeneous levels of economic development. This work offers an original combination of a quantitative projection of demands (similar to WaterGAP methodology) and an estimation of the marginal benefit of water. This method is applicable to different levels of economic development and usable for large-scale hydroeconomic modelling. The global method consists in building demand functions taking into account the impact of both the price of water and the level of equipment, proxied by economic development, on domestic water demand. Our basis is a 3-blocks inverse demand function: the first block consists of essential water requirements for food and hygiene; the second block matches intermediate needs; and the last block corresponds to additional water consumption, such as outdoor uses, which are the least valued. The volume of the first block is fixed to match recommended basic water requirements from the literature, but we assume that the volume limits of blocks 2 and 3 depend on the level of household equipment and therefore evolve with the level of GDP per capita (structural change), with a saturation. For blocks 1 and 2 we determine the value of water from elasticity, price and quantity data from the literature, using the point-extension method. For block 3, we use a hypothetical zero-cost demand and maximal demand with actual water costs to linearly interpolate the inverse demand function. These functions are calibrated on the 24 countries part of the Mediterranean basin using data from SIMEDD, and are used for the projection and valuation of domestic water demands at the 2050 horizon. They enable to project total water demand, and also the respective shares of the different categories of demand (basic demand, intermediate demand and additional uses). These projections are performed under different combined scenarios of population, GDP and water costs.

  15. Controls of the Geomorphic Effectiveness of Passive Restoration Projects in the Interior Columbia River Basin, Oregon, USA

    NASA Astrophysics Data System (ADS)

    McDowell, P.; Mowry, A.

    2002-12-01

    Low-order montane tributaries in watersheds of the interior Columbia River Basin historically were highly productive habitat for anadromous and resident salmonids, now greatly reduced in numbers and listed under the Endangered Species Act. Historical impacts, including cattle grazing, other land use activities and direct channel modification, have resulted in loss of streamside vegetation, and channel widening and simplification. Over the past fifteen years, many stream restoration projects have been completed, using both active (instream structures) and passive (cattle grazing exclosure) approaches. The implicit goal of most projects has been to restore multiple structural and functional characteristics, with the ultimate goal of increasing salmonid populations. Very little evaluation of effectiveness of these projects has been done. Previous work has suggested several hypotheses concerning restoration effectiveness: 1) channel narrowing may be driven by increased vegetation cover in response to treatment; 2) adjustment of bed morphology may be controlled by stream power and competence, or channel constraint; 3) response to restoration may require several years. We selected eleven passive restoration sites and measured vegetation and channel morphology at adjacent paired reaches (grazing exclosure vs. grazed reach). All sites were gravel-bedded, <100 km2 drainage area, moderately to highly sinuous; all except one had channel gradients <0.0015. Exclosure age was 2 to 36 years. We used statistical analysis and data visualization to test the hypotheses discussed above. Overall, exclosure reaches were narrower, deeper and had more pool area than comparable grazed reaches. Most exclosure reaches had more sedge cover and riparian shrub cover, and less bare ground. Degree of narrowing was not strongly related vegetation cover, but young sites that did not show vegetation response also failed to show channel narrowing. Adjustment of bed morphology was limited, at

  16. Current and projected water demand and water availability estimates under climate change scenarios in the Weyib River basin in Bale mountainous area of Southeastern Ethiopia

    NASA Astrophysics Data System (ADS)

    Serur, Abdulkerim Bedewi; Sarma, Arup Kumar

    2017-07-01

    This study intended to estimate the spatial and temporal variation of current and projected water demand and water availability under climate change scenarios in Weyib River basin, Bale mountainous area of Southeastern Ethiopia. Future downscaled climate variables from three Earth System Models under the three RCP emission scenarios were inputted into ArcSWAT hydrological model to simulate different components of water resources of a basin whereas current and projected human and livestock population of the basin is considered to estimate the total annual water demand for various purposes. Results revealed that the current total annual water demand of the basin is found to be about 289 Mm3, and this has to increase by 83.47% after 15 years, 200.67% after 45 years, and 328.78% after 75 years by the 2020s, 2050s, and 2080s, respectively, from base period water demand mainly due to very rapid increasing population (40.81, 130.80, and 229.12% by the 2020s, 2050s, and 2080s, respectively) and climatic variability. The future average annual total water availability in the basin is observed to be increased by ranging from 15.04 to 21.61, 20.08 to 23.34, and 16.21 to 39.53% by the 2020s, 2050s, and 2080s time slice, respectively, from base period available water resources (2333.39 Mm3). The current water availability per capita per year of the basin is about 3112.23 m3 and tends to decline ranging from 11.78 to 17.49, 46.02 to 47.45, and 57.18 to 64.34% by the 2020s, 2050s, and 2080s, respectively, from base period per capita per year water availability. This indicated that there might be possibility to fall the basin under water stress condition in the long term.

  17. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office: Watershed Restoration Projects: Annual Report, 1998.

    SciTech Connect

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    1999-10-01

    The John Day River is the second longest free-flowing river in the contiguous US and one of the few major subbasins in the Columbia River basin containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, the fourth largest drainage area in Oregon. With its beginning in the Strawberry Mountains near the town of Prairie City, the John Day flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly one of national significance. The entire John Day basin was granted to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) initiated contracting the majority of its construction implementation actions with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of the projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 1998, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional ten (10) watershed

  18. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office: FY 1999 Watershed Restoration Projects : Annual Report 1999.

    SciTech Connect

    Robertson, Shawn W.

    2001-03-01

    The John Day River is the second longest free-flowing river in the contiguous United States and one of the few major subbasins in the Columbia River basin containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, the fourth largest drainage area in Oregon. With its beginning in the Strawberry Mountains near the town of Prairie City, the John Day flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly one of national significance. The entire John Day basin was granted to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) initiated contracting the majority of its construction implementation actions with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of the projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 1999, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional eleven (11

  19. Geometeorological data collected by the USGS Desert Winds Project at Gold Spring, Great Basin desert, northeastern Arizona, 1979-1992

    USGS Publications Warehouse

    Helm, P.J.; Breed, C.S.; Tigges, R.K.; Garcia, P.A.

    1995-01-01

    The primary purpose of the Desert Winds Project (DWP) is to obtain high-resolution meteorological data and related surface geological and vegetation data for natural (e.g., uncultivated) desert sites where wind is or has been a major erosive or depositional force. The objectives are twofold: (1) to provide the detailed field measurements needed to carry out quantitative studies of wind as an agent of surface geologic change; and (2) to establish a baseline for defining the 'normal' range of climatic conditions that can be expected to occur on a decadal time scale, in areas considered representative of the major American deserts. The Gold Spring locality was selected to represent that part of the Great Basin Desert that extends into northeastern Arizona. The long-term goal for acquiring and analyzing the Desert Winds Project data is to use them to address problems of land resource degradation by wind, whether resulting from climatic variation aridification) or human activities (desertification), or both (see techinfo.doc).

  20. Statistical downscaling and projection of future temperature and precipitation change in middle catchment of Sutlej River Basin, India

    NASA Astrophysics Data System (ADS)

    Singh, Dharmaveer; Jain, Sanjay K.; Gupta, R. D.

    2015-06-01

    Ensembles of two Global Climate Models (GCMs), CGCM3 and HadCM3, are used to project future maximum temperature ( T Max), minimum temperature ( T Min) and precipitation in a part of Sutlej River Basin, northwestern Himalayan region, India. Large scale atmospheric variables of CGCM3 and HadCM3 under different emission scenarios and the National Centre for Environmental Prediction/National Centre for Atmospheric Research reanalysis datasets are downscaled using Statistical Downscaling Model (SDSM). Variability and changes in T Max, T Min and precipitation under scenarios A1B and A2 of CGCM3 model and A2 and B2 of HadCM3 model are presented for future periods: 2020s, 2050s and 2080s. The study reveals rise in annual average T Max, T Min and precipitation under scenarios A1B and A2 for CGCM3 model as well as under A2 and B2 scenarios for HadCM3 model in 2020s, 2050s and 2080s. Increase in mean monthly T Min is also observed for all months of the year under all scenarios of both the models. This is followed by decrease in T Max during June, July August and September. However, the model projects rise in precipitation in months of July, August and September under A1B and A2 scenarios of CGCM3 model and A2 and B2 of HadCM3 model for future periods.

  1. Freshwater Availability in the Brahmaputra River Basin Under Projected Climate and Land Use Land Cover Change Scenarios

    NASA Astrophysics Data System (ADS)

    Pervez, M. S.; Henebry, G. M.

    2014-12-01

    We used the Soil and Water Assessment Tool to evaluate sensitivities and patterns in freshwater availability due to projected climate and land use changes in the Brahmaputra basin. The daily observed discharge at Bahadurabad station in Bangladesh was used to calibrate the model and analyze uncertainties with SUFI-II algorithm for 1988-1997, and to validate the model for 1998-2004. The R2, NS, and biases were, respectively, 0.85, 0.85, and -3.2% during calibration, and 0.89, 0.88, and -4.4% during validation for basinwide simulations of monthly streamflow. The sensitivities and impacts of projected climate and land use changes on basin hydrological components were simulated and analyzed relative to a baseline scenario of 1988-2004. Sensitivity analysis identified a doubling of CO2 concentration to 660 ppm caused average annual evapotranspiration (ET) to decrease by 12%, resulting in increases in water yield by 5%, streamflow by 6%, and groundwater recharge by 8%. With an increase in temperature, annual average ET was predicted to increase, while responses of water yield and streamflow varied by season. An increase in precipitation caused proportional increases in water yield, streamflow, and groundwater recharge, but led to only minor impacts on ET. Annual average water yield, soil water content, ET, streamflow, and groundwater recharge were predicted to increase with higher seasonal variability in response to climate and land use change projections for the A1B and A2 scenarios generated from downscaled CGCM3.1 and IMAGE, respectively. Water yield, soil water content, streamflow, and groundwater recharge were predicted to increase with a strong increasing trend during August to October, indicating exacerbated flood potential, while during May to July, the hydrological components-except soil water content-were predicted to decrease with a strong decreasing trend, indicating enhanced drought potential throughout the 21st century. Overall, results indicated that the

  2. Continents and Ocean Basins: Floaters and Sinkers. Crustal Evolution Education Project. Teacher's Guide [and] Student Investigation.

    ERIC Educational Resources Information Center

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  3. The Kamunts Project: A Great Basin Application of Vicos-type Research and Development Anthropology.

    ERIC Educational Resources Information Center

    Turner, Allen C.

    An attempt to apply the broad principles of Holmberg's 1958 research and development anthropology in a social and environmental context, the Kamunts Project involves a Southern Paiute community. Utilizing Holmberg's methodology of contextual mapping and strategy intervention, Southern Utah State College (SUSC) is participating as technical advisor…

  4. Lithspheric Plates and Ocean Basin Topography. Crustal Evaluation Education Project. Teacher's Guide [and] Student Investigation.

    ERIC Educational Resources Information Center

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  5. John Day River Sub-Basin Fish Habitat Enhancement Project; 1998 Annual Report.

    SciTech Connect

    Neal, Jeff A.; Jerome, James P.; Delano, Kenneth H.

    1999-02-01

    During 1998, three new projects were completed improving 1.8 miles of stream and riparian habitat. Protection for these reaches required the construction of 3.2 miles of riparian fence and 7 livestock water gaps. A previously leased property on the Mainstream was converted from apriarian pasture to a corridor fence after no significant recovery had occurred.

  6. Conservation Effects Assessment Project-Wetlands assessment in California's Central Valley and Upper Klamath River Basin

    USGS Publications Warehouse

    Duffy, Walter G.; Kahara, Sharon N.; Records, Rosemary M.

    2011-01-01

    Executive Summary-Ecosystem Services Derived from Wetlands Reserve Program Conservation Practices in California's Central Valley and Oregon's Upper Klamath River Basin. The Wetlands Reserve Program (WRP) is one of several programs implemented by the U.S. Department of Agriculture (USDA). Since the WRP's inception in 1990, it has resulted in the restoration of approximately 29,000 hectares in California's Central Valley (CCV) and roughly 12,300 hectares in Oregon's Upper Klamath River Basin (UKRB). Both the CCV and UKRB are agricultural dominated landscapes that have experienced extensive wetland losses and hydrological alteration. Restored habitats in the CCV and UKRB are thought to provide a variety of ecosystem services, but little is known about the actual benefits afforded. The U.S. Geological Survey (USGS) California Cooperative Fish and Wildlife Unit in collaboration with the USDA Natural Resources Conservation Service surveyed 70 WRP sites and 12 National Wildlife Refuge sites in the CCV, and 11 sites in the UKRB to estimate ecosystem services provided. In the CCV, sites were selected along three primary gradients; (1) restoration age, (2) management intensity, and (3) latitude (climate). Sites in the UKRB were assessed along restoration age and management intensity gradients where possible. The management intensity gradient included information about the type and frequency of conservation practices applied at each site, which was then ranked into three categories that differentiated sites primarily along a hydrological gradient. Information collected was used to estimate the following ecosystem services: Soil and vegetation nutrient content, soil loss reduction, floodwater storage as well as avian, amphibian, fish, and pollinator use and habitat availability. Prior to this study, very little was known about WRP habitat morphology in the CCV and UKRB. Therefore in this study, we described these habitats and related them to ecosystem services provided. Our

  7. Conservation Effects Assessment Project-Wetlands assessment in California's Central Valley and Upper Klamath River Basin

    USGS Publications Warehouse

    Duffy, Walter G.; Kahara, Sharon N.; Records, Rosemary M.

    2011-01-01

    Executive Summary-Ecosystem Services Derived from Wetlands Reserve Program Conservation Practices in California's Central Valley and Oregon's Upper Klamath River Basin. The Wetlands Reserve Program (WRP) is one of several programs implemented by the U.S. Department of Agriculture (USDA). Since the WRP's inception in 1990, it has resulted in the restoration of approximately 29,000 hectares in California's Central Valley (CCV) and roughly 12,300 hectares in Oregon's Upper Klamath River Basin (UKRB). Both the CCV and UKRB are agricultural dominated landscapes that have experienced extensive wetland losses and hydrological alteration. Restored habitats in the CCV and UKRB are thought to provide a variety of ecosystem services, but little is known about the actual benefits afforded. The U.S. Geological Survey (USGS) California Cooperative Fish and Wildlife Unit in collaboration with the USDA Natural Resources Conservation Service surveyed 70 WRP sites and 12 National Wildlife Refuge sites in the CCV, and 11 sites in the UKRB to estimate ecosystem services provided. In the CCV, sites were selected along three primary gradients; (1) restoration age, (2) management intensity, and (3) latitude (climate). Sites in the UKRB were assessed along restoration age and management intensity gradients where possible. The management intensity gradient included information about the type and frequency of conservation practices applied at each site, which was then ranked into three categories that differentiated sites primarily along a hydrological gradient. Information collected was used to estimate the following ecosystem services: Soil and vegetation nutrient content, soil loss reduction, floodwater storage as well as avian, amphibian, fish, and pollinator use and habitat availability. Prior to this study, very little was known about WRP habitat morphology in the CCV and UKRB. Therefore in this study, we described these habitats and related them to ecosystem services provided. Our

  8. Projected impacts of climate change on hydrology, water resource use and adaptation needs for the Chu and Talas cross-border rivers basin, Central Asia

    NASA Astrophysics Data System (ADS)

    Shamil Iliasov, Shamil; Dolgikh, Svetlana; Lipponen, Annukka; Novikov, Viktor

    2014-05-01

    The observed long-term trends, variability and projections of future climate and hydrology of the Chu and Talas transboundary rivers basin were analysed using a common approach for Kazakhstan and Kyrgyzstan parts of the basin. Historical, current and forecasted demands and main uses of water in the basin were elaborated by the joint effort of both countries. Such cooperative approach combining scientific data, water practitioners' outlook with decision making needs allowed the first time to produce a comprehensive assessment of climate change impacts on water resources in the Chu-Talas transboundary rivers basin, identify future needs and develop the initial set of adaptation measures and recommendations. This work was carried out under the project "Promoting Cooperation to Adapt to Climate Change in the Chu and Talas Transboundary Basin", supported by the United Nations Economic Commission for Europe (UNECE) and the United Nations Development Programme (UNDP). Climate change projections, including air temperatures and rainfall in the 21st century were determined with a spatial resolution 0.5 degrees based on the integration of 15 climate change model outputs (derived from IPCC's 4th Assessment Report, and partially 5th Assessment Report) combined with locally-designed hydrology and glacier models. A significant increase in surface air temperatures by 3-6°C may be expected in the basin area, especially in summer and autumn. This change is likely to be accompanied by rainfall increase during the cold season and a decrease in the warm half of the year. As a result, a deterioration of moisture conditions during the summer-autumn period is possible. Furthermore, milder winters and hotter summers can be expected. Mountains will likely receive more liquid precipitation, than snow, while the area and volume of glaciers may significantly reduce. Projected changes in climate and glaciers have implications for river hydrology and different sectors of the economy dependent

  9. Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020

    USGS Publications Warehouse

    Kernodle, J.M.; McAda, D.P.; Thorn, C.R.

    1995-01-01

    This report describes a three-dimensional finite-difference ground-water-flow model of the Santa Fe Group aquifer system in the Albuquerque Basin, which comprises the Santa Fe Group (late Oligocene to middle Pleistocene age) and overlying valley and basin-fill deposits (Pleistocene to Holocene age). The model is designed to be flexible and adaptive to new geologic and hydrologic information as it becomes available by using a geographic information system as a data-base manager to interface with the model. The aquifer system was defined and quantified in the model consistent with the current (July 1994) understanding of the structural and geohydrologic framework of the basin. Rather than putting the model through a rigorous calibration process, dis- crepancies between simulated and measured responses in hydraulic head were taken to indicate that the understanding of a local part of the aquifer system was incomplete or incorrect. The model simulates ground-water flow over an area of about 2,400 square miles to a depth of 1,730 to about 2,020 feet below the water table with 244 rows, 178 columns, and 11 layers. Of the 477,752 cells in the model, 310,376 are active. The top four model layers approximate the 80-foot thickness of alluvium in the incised and refilled valley of the Rio Grande to provide detail of the effect of ground-water withdrawals on the surface- water system. Away from the valley these four layers represent the interval within the Santa Fe Group aquifer system between the com- puted predevelopment water table and a level 80 feet below the grade of the Rio Grande. The simulations include initial condi- tions (steady-state), the 1901-1994 historical period, and four possible ground-water withdrawal scenarios from 1994 to 2020. The model indicates that for the year ending in March 1994, net surface-water loss in the basin resulting from the City of Albuquerque's ground-water withdrawal totaled about 53,000 acre- feet. The balance of the about 123

  10. Effects of the West Desert Pumping Project on Near-Surface Brine Resources in the Newfoundland Basin, Tooele and Box Elder Counties, Utah

    NASA Astrophysics Data System (ADS)

    White, W. W.; Jones, B. F.; Kohler, J. F.

    2006-12-01

    The Bureau of Land Management and U.S. Geological Survey have identified changes in Newfoundland Basin shallow-brine aquifer chemistry that resulted from pumping Great Salt Lake brine into the Newfoundland Evaporation Basin during the West Desert pumping project. The pumping project was operated by the State of Utah from April 1987, to June 1989 in an attempt to lower the historically high level of Great Salt Lake (pond elevation was 4,211.85 feet in 1986). Effects of the pumping on the Newfoundland Basin included altering the chemical character of the shallow brine aquifer by mixing two chemically different brines, and depositing a halite salt crust where none was previously reported on the lacustrine sediments of the Newfoundland Basin playa. The halite salt crust resulted from evaporation of the brine pond generated by the pumping project. Changes in the shallow-brine aquifer chemistry were determined by comparing pre-pumping brine chemistry with that of post pumping brine, and examining variation with borehole depth and location (i.e., playa periphery vs central basin topographic low) of specific analyte concentration profiles and solid-phase mineral assemblages obtained from analyses of core sample pore water and mineralogy. Brine sample analyses from 72 exploratory boreholes drilled in the Newfoundland Basin by Reynolds Metals Company during the mid 1960's provided pre-pumping brine chemistry. Post pumping chemistry was obtained from analyses of brine samples from 24 boreholes hand-augured between 1998 and 2001 in the central and peripheral portions of the Newfoundland Basin. TEQUIL, a brine equilibrium model, was used to better understand how the Great Salt Lake brines introduced into the Newfoundland Basin may have interacted with fluids contained within the Basin's shallow-brine aquifer. TEQUIL identified the sequence of mineral precipitation from evaporation of pre and post-pumping Newfoundland Basin shallow-aquifer fluids and Great Salt Lake brine. The

  11. Observation Targeting for the Tehachapi Pass and Mid-Columbia Basin: WindSENSE Phase III Project Summary Report

    SciTech Connect

    Hanley, D

    2011-10-22

    The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In Phase III of the project, the focus was on the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge wind plants. The typical hub height of a wind turbine is approximately 80-m above ground level (AGL). So it would seem that building meteorological towers in the region upwind of a wind generation facility would provide data necessary to improve the short-term forecasts for the 80-m AGL wind speed. However, this additional meteorological information typically does not significantly improve the accuracy of the 0- to 6-hour ahead wind power forecasts because processes controlling wind variability change from day-to-day and, at times, from hour-to-hour. It is also important to note that some processes causing significant changes in wind power production function principally in the vertical direction. These processes will not be detected by meteorological towers at off-site locations. For these reasons, it is quite challenging to determine the best type of sensors and deployment locations. To address the measurement deployment problem, Ensemble Sensitivity Analysis (ESA) was applied in the Phase I portion of the WindSENSE project. The ESA approach was initially designed to produce spatial fields that depict the sensitivity of a forecast metric to a set of prior state variables selected by the user. The best combination of variables and locations to improve the forecast was determined using the Multiple Observation Optimization Algorithm (MOOA) developed in Phase I. In Zack et al. (2010a), the ESA-MOOA approach was

  12. Projected run-off changes for the semi-arid South Saskatchewan River Basin, Alberta, Canada, in NARCCAP and CORDEX RCM data

    NASA Astrophysics Data System (ADS)

    St-Jacques, J. M.; Andreichuk, I.; Barrow, E.; Sauchyn, D.

    2016-12-01

    The South Saskatchewan River Basin (SSRB) of Alberta, Canada, is semi-arid and its surface water supplies are already under such severe stress that the basin has been closed to further allocation. Hence, there is great interest in what hydroclimate changes regional climate models (RCMs) project for this region. As part of the South Saskatchewan River Basin Adaptation to Climate Variability Project, we examined whether RCM projected run-off in the SSRB will change with global warming and what seasonal shifts will occur. We used simulated historical and projected 21st century run-off from the North American Regional Climate Change Assessment Program (NARCCAP), together with one available Coordinated Regional Climate Downscaling Experiment (CORDEX) run from the Canadian Centre for Climate Modelling and Analysis (CanRCM4). We examined the Red Deer, Bow, Oldman and South Saskatchewan River Basins. First, we determined how well the direct total and surface run-off (mrro and mrros), summed over individual months and the water year, simulated the observed run-off and its annual cycle over 1971-2000. We also examined whether four aridity indices, i.e., Budyko, Ol'dekop, Schreiber and Turc, can be used as estimators of simulated observed runoff as suggested by Arora. These five above methods use direct RCM data, uncalibrated with observations. For comparison, we also used a statistical downscaling method, calibrated with observed runoff, based upon the standardized precipitation evapotranspiration index (SPEI). Of all the uncalibrated methods examined, mrro best simulated observed run-off in the four basins. We then examined whether the projected bias-corrected mrro and the projected SPEI-based downscaled run-off for 2041-2070 changed relative to corresponding historical simulated data for 1971-2000. The mrro-based results suggest increasing run-off in the northern SSRB and decreased run-off in the southern SSRB over this century. Peak run-off shifts to earlier in the spring

  13. Climate change and stream temperature projections in the Columbia River Basin: biological implications of spatial variation in hydrologic drivers

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Barnhart, B. L.; Knouft, J. H.; Stewart, I. T.; Maurer, E. P.; Letsinger, S. L.; Whittaker, G. W.

    2014-06-01

    Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitat in freshwater systems is critical for predicting aquatic species responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled General Circulation Model outputs to explore the spatially and temporally varying changes in stream temperature at the subbasin and ecological province scale for the Columbia River Basin. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil flow, and groundwater, are negatively correlated to increases in stream temperature depending on the season and ecological province. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by non-migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically-explicit modeling approach to accurately characterize the habitat regulating the

  14. Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Barnhart, B. L.; Knouft, J. H.; Stewart, I. T.; Maurer, E. P.; Letsinger, S. L.; Whittaker, G. W.

    2014-12-01

    Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in air temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitats in freshwater systems is critical for predicting aquatic species' responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled general circulation model outputs to explore the spatially and temporally varying changes in stream temperature for the late 21st century at the subbasin and ecological province scale for the Columbia River basin (CRB). On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil water flow, and groundwater inflow, are negatively correlated to increases in stream temperature depending on the ecological province and season. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically explicit modeling approach to

  15. Projecting the land cover change and its environmental impacts in the Cedar River Basin in the Midwestern United States

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Sohl, Terry L.; Young, Claudia

    2013-01-01

    The physical surface of the Earth is in constant change due to climate forcing and human activities. In the Midwestern United States, urban area, farmland, and dedicated energy crop (e.g., switchgrass) cultivation are predicted to expand in the coming decades, which will lead to changes in hydrological processes. This study is designed to (1) project the land use and land cover (LULC) by mid-century using the FORecasting SCEnarios of future land-use (FORE-SCE) model under the A1B greenhouse gas emission scenario (future condition) and (2) assess its potential impacts on the water cycle and water quality against the 2001 baseline condition in the Cedar River Basin using the physically based soil and water assessment tool (SWAT). We compared the baseline LULC (National Land Cover data 2001) and 2050 projection, indicating substantial expansions of urban area and pastureland (including the cultivation of bioenergy crops) and a decrease in rangeland. We then used the above two LULC maps as the input data to drive the SWAT model, keeping other input data (e.g., climate) unchanged to isolate the LULC change impacts. The modeling results indicate that quick-response surface runoff would increase significantly (about 10.5%) due to the projected urban expansion (i.e., increase in impervious areas), and the baseflow would decrease substantially (about 7.3%) because of the reduced infiltration. Although the net effect may cause an increase in water yield, the increased variability may impede its use for public supply. Additionally, the cultivation of bioenergy crops such as switchgrass in the newly added pasture lands may further reduce the soil water content and lead to an increase in nitrogen loading (about 2.5% increase) due to intensified fertilizer application. These study results will be informative to decision makers for sustainable water resource management when facing LULC change and an increasing demand for biofuel production in this area.

  16. Occurrence, distribution, and transport of pesticides in agricultural irrigation-return flow from four drainage basins in the Columbia Basin Project, Washington, 2002-04, and comparison with historical data

    USGS Publications Warehouse

    Wagner, Richard J.; Frans, Lonna M.; Huffman, Raegan L.

    2006-01-01

    Water-quality samples were collected from sites in four irrigation return-flow drainage basins in the Columbia Basin Project from July 2002 through October 2004. Ten samples were collected throughout the irrigation season (generally April through October) and two samples were collected during the non-irrigation season. Samples were analyzed for temperature, pH, specific conductance, dissolved oxygen, major ions, trace elements, nutrients, and a suite of 107 pesticides and pesticide metabolites (pesticide transformation products) and to document the occurrence, distribution, and pesticides transport and pesticide metabolites. The four drainage basins vary in size from 19 to 710 square miles. Percentage of agricultural cropland ranges from about 35 percent in Crab Creek drainage basin to a maximum of 75 percent in Lind Coulee drainage basin. More than 95 percent of cropland in Red Rock Coulee, Crab Creek, and Sand Hollow drainage basins is irrigated, whereas only 30 percent of cropland in Lind Coulee is irrigated. Forty-two pesticides and five metabolites were detected in samples from the four irrigation return-flow drainage basins. The most compounds detected were in samples from Sand Hollow with 37, followed by Lind Coulee with 33, Red Rock Coulee with 30, and Crab Creek with 28. Herbicides were the most frequently detected pesticides, followed by insecticides, metabolites, and fungicides. Atrazine, bentazon, diuron, and 2,4-D were the most frequently detected herbicides and chlorpyrifos and azinphos-methyl were the most frequently detected insecticides. A statistical comparison of pesticide concentrations in surface-water samples collected in the mid-1990s at Crab Creek and Sand Hollow with those collected in this study showed a statistically significant increase in concentrations for diuron and a statistically significant decrease for ethoprophos and atrazine in Crab Creek. Statistically significant increases were in concentrations of bromacil, diuron, and

  17. Status and understanding of groundwater quality in the San Francisco Bay groundwater basins, 2007—California GAMA Priority Basin Project

    USGS Publications Warehouse

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the approximately 620-square-mile (1,600-square-kilometer) San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in the Southern Coast Ranges of California, in San Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA San Francisco Bay study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater within the primary aquifer system, as well as a statistically consistent basis for comparing water quality throughout the State. The assessment is based on water-quality and ancillary data collected by the USGS from 79 wells in 2007 and is supplemented with water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system is defined by the depth interval of the wells listed in the CDPH database for the San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. Water- quality data from the CDPH database also were incorporated for this assessment. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the San Francisco Bay study unit, not the treated drinking water delivered to consumers by water

  18. Callisto basin

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This picture of a multi=ring basin on Callisto was taken the morning of March 6, 1979, from a distance of about 200,000 km. The complicated circular structure seen at left center is similar to the large circular impact basins that dominate the surface of the Earth's moon and also the planet Mercury. The inner parts of these basins are generally surrounded by radially lineated ejecta and several concentric mountainous ring structures that are thought to form during the impact event. This multi-ring basin on Callisto consists of light floored central basin some 300 k m in diameter surrounded by at least eight to ten discontinuous rhythmically spaced ridges. No radially lineated ejecta can be seen. The ring structures on Moon and Mercury have been likened to ripples produced on a pond by a rock striking the water. The great number of rings observed around this basin on Callisto is consistent with its low planetary density and probable low internal strength. JPL manages and controls the Voyager project for NASA's Office of Space Science.

  19. Great Basin Paleoenvironmental Studies Project: Technical progress report, Second quarter (Year 2), September--December 1994

    SciTech Connect

    1994-12-31

    The paleobiotic and geomorphic records are being examined for the local and regional impact of past climates to assess Yucca Mountain`s suitability as a high-level nuclear waste repository. In particular these data are being used to provide estimates of the timing, duration and extremes of past periods of moister climate for use in hydrological models of local and regional recharge that are being formulated by USGS and other hydrologists for the Yucca Mountain area. The project includes botanical, faunal, and geomorphic components that will be integrated to accomplish this goal.

  20. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    SciTech Connect

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  1. Projections and downscaling of 21st century temperatures, precipitation, radiative fluxes and winds for the southwestern US, with focus on the Lake Tahoe basin

    USGS Publications Warehouse

    Dettinger, Michael D.

    2013-01-01

    Recent projections of global climate changes in response to increasing greenhouse-gas concentrations in the atmosphere include warming in the Southwestern US and, especially, in the vicinity of Lake Tahoe of from about +3°C to +6°C by end of century and changes in precipitation on the order of 5-10 % increases or (more commonly) decreases, depending on the climate model considered. Along with these basic changes, other climate variables like solar insolation, downwelling (longwave) radiant heat, and winds may change. Together these climate changes may result in changes in the hydrology of the Tahoe basin and potential changes in lake overturning and ecological regimes. Current climate projections, however, are generally spatially too coarse (with grid cells separated by 1 to 2° latitude and longitude) for direct use in assessments of the vulnerabilities of the much smaller Tahoe basin. Thus, daily temperatures, precipitation, winds, and downward radiation fluxes from selected global projections have been downscaled by a statistical method called the constructed-analogues method onto 10 to 12 km grids over the Southwest and especially over Lake Tahoe. Precipitation, solar insolation and winds over the Tahoe basin change only moderately (and with indeterminate signs) in the downscaled projections, whereas temperatures and downward longwave fluxes increase along with imposed increases in global greenhouse-gas concentrations.

  2. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  3. Changes in alluvial architecture associated with Eocene hyperthermals: Preliminary results from the Bighorn Basin Coring Project

    NASA Astrophysics Data System (ADS)

    Acks, R.; Kraus, M. J.

    2012-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was followed by two lesser hyperthermal events: ETM2 and H2 both at ~53.7 Ma. The carbon isotope excursion for ETM2 was approximately half that of the PETM and the H2 excursion even smaller, indicating lower increases in temperature than during the PETM. The paleohydrologic responses to these events are less well understood than the response to PETM warming. Although the ETM2 and H2 events are better known from marine than continental strata, both events have been identified from outcrops of the alluvial Willwood Formation from the Deer Creek and Gilmore Hill areas of the Bighorn Basin, Wyoming (Abels et al., 2012). Here, we analyze two cores drilled from stratigraphically equivalent Willwood strata from Gilmore Hill. The cores provide an opportunity to examine the impact of these events on the architecture of fluvial strata. Willwood strata are composed largely of channel sandstones, heterolithic deposits generated by channel avulsion, and paleosols that formed on overbank deposits. The paleosols provide qualitative and quantitative information on changes in soil moisture and precipitation through this interval. The cores also show a distinct change in the stacking of paleosols The core is subdivided into three parts: (1) the lowest ~third has thinner, more densely spaced paleosols, (2) the middle has thicker paleosols that are more widely spaced, and (3) the upper third has thicker and more common channel sandstones interspersed with avulsion deposits and fewer red paleosols; this corresponds to the hyperthermal interval. In particular, a ~20 m thick sandstone complex caps the section and appears to truncate part of the hyperthermal interval. Although vertical variations in alluvial architecture can reflect tectonic or climatic change, the correspondence of the sandstone-rich part of the cores with the hyperthermals suggests climate was the major control on their formation. Thick purple paleosols associated with the

  4. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2002 Annual Report.

    SciTech Connect

    Hatch, Douglas R.; Branstetter, Ryan; Blodgett, Joe

    2003-07-01

    Repeat spawning is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the natural expression of historical repeat spawning rates using fish culturing means could be a viable technique to assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and again develop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, we captured wild emigrating steelhead kelts from the Yakima River and evaluated reconditioning (short and long-term) success and diet formulations at Prosser Hatchery on the Yakima River. Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Evaluation Facility (CJEF, located at Yakima River kilometer 48) from March 12 to June 13, 2002. In total, 899 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 19.8% (899 of 4,525) of the entire 2001-2002 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. Kelts were reconditioned in circular tanks and were fed freeze-dried krill, Moore-Clark pellets, altered Moore-Clark pellets (soaked in krill extract and dyed), or a combination of the altered Moore

  5. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2001 Annual Report.

    SciTech Connect

    Hatch, Douglas R.; Anders, Paul J., Evans, Allen F.

    2002-12-01

    Repeat spawning is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead (Oncorhynchus mykiss) populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are artificially and in some cases severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the natural expression of historical repeat spawning rates using fish culturing means could be a viable technique to assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and again develop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon (Salmo salar) and sea-trout (S. trutta). The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To address recovery, we captured wild emigrating steelhead kelts from the Yakima River and tested reconditioning and the effects of several diet formulations on its success at Prosser Hatchery on the Yakama Reservation. Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Evaluation Facility (CJEF, located at Yakima River kilometer 48) from 12 March to 5 July 2001. Kelts were reconditioned in circular tanks and fed a mixed diet of starter paste, adult sized trout pellets, and freeze-dried krill. Formalin was used to control outbreaks of fungus and we tested the use of Ivermectin{trademark}to control internal parasites (e.g., Salmincola spp.). Surviving specimens were released for natural spawning in two groups on 15 November 2001 and 18 January 2002. Overall success of the reconditioning process was based on

  6. Characterizing near-surface CO2 conditions before injection - Perspectives from a CCS project in the Illinois Basin, USA

    USGS Publications Warehouse

    Locke, R.A.; Krapac, I.G.; Lewicki, J.L.; Curtis-Robinson, E.

    2011-01-01

    The Midwest Geological Sequestration Consortium is conducting a large-scale carbon capture and storage (CCS) project in Decatur, Illinois, USA to demonstrate the ability of a deep saline formation to store one million tonnes of carbon dioxide (CO2) from an ethanol facility. Beginning in early 2011, CO2 will be injected at a rate of 1,000 tonnes/day for three years into the Mount Simon Sandstone at a depth of approximately 2,100 meters. An extensive Monitoring, Verification, and Accounting (MVA) program has been undertaken for the Illinois Basin Decatur Project (IBDP) and is focused on the 0.65 km2 project site. Goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. MVA efforts are being conducted pre-, during, and post- CO2 injection. Soil and net CO2 flux monitoring has been conducted for more than one year to characterize near-surface CO2 conditions. More than 2,200 soil CO2 flux measurements have been manually collected from a network of 118 soil rings since June 2009. Three ring types have been evaluated to determine which type may be the most effective in detecting potential CO 2 leakage. Bare soil, shallow-depth rings were driven 8 cm into the ground and were prepared to minimize surface vegetation in and near the rings. Bare soil, deep-depth rings were prepared similarly, but were driven 46 cm. Natural-vegetation, shallow-depth rings were driven 8 cm and are most representative of typical vegetation conditions. Bare-soil, shallow-depth rings had the smallest observed mean flux (1.78 ??mol m-2 s-1) versus natural-vegetation, shallow-depth rings (3.38 ??mol m-2 s-1). Current data suggest bare ring types would be more sensitive to small CO2 leak signatures than natural ring types because of higher signal to noise ratios. An eddy covariance (EC) system has been in use since June

  7. Examination of elevation dependency in observed and projected temperature change in the Upper Indus Basin and Western Himalaya

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Forsythe, N. D.; Blenkinsop, S.; Archer, D.; Hardy, A.; Janes, T.; Jones, R. G.; Holderness, T.

    2013-12-01

    We present results of two distinct, complementary analyses to assess evidence of elevation dependency in temperature change in the UIB (Karakoram, Eastern Hindu Kush) and wider WH. The first analysis component examines historical remotely-sensed land surface temperature (LST) from the second and third generation of the Advanced Very High Resolution Radiometer (AVHRR/2, AVHRR/3) instrument flown on NOAA satellite platforms since the mid-1980s through present day. The high spatial resolution (<4km) from AVHRR instrument enables precise consideration of the relationship between estimated LST and surface topography. The LST data product was developed as part of initiative to produce continuous time-series for key remotely sensed spatial products (LST, snow covered area, cloud cover, NDVI) extending as far back into the historical record as feasible. Context for the AVHRR LST data product is provided by results of bias assessment and validation procedures against both available local observations, both manned and automatic weather stations. Local observations provide meaningful validation and bias assessment of the vertical gradients found in the AVHRR LST as the elevation range from the lowest manned meteorological station (at 1460m asl) to the highest automatic weather station (4733m asl) covers much of the key range yielding runoff from seasonal snowmelt. Furthermore the common available record period of these stations (1995 to 2007) enables assessment not only of the AVHRR LST but also performance comparisons with the more recent MODIS LST data product. A range of spatial aggregations (from minor tributary catchments to primary basin headwaters) is performed to assess regional homogeneity and identify potential latitudinal or longitudinal gradients in elevation dependency. The second analysis component investigates elevation dependency, including its uncertainty, in projected temperature change trajectories in the downscaling of a seventeen member Global Climate

  8. OLIVERO: the project analysing the future of olive production systems on sloping land in the Mediterranean basin.

    PubMed

    Stroosnijder, Leo; Mansinho, Maria Inês; Palese, Assunta Maria

    2008-11-01

    From 2003 to 2006, a consortium of six European partners analysed the future of olive production systems on sloping land in the Mediterranean basin. Olive production on such land dates back to pre-Roman times, but the production systems (known by the acronym SMOPS, for "Sloping and Mountainous Olive Production Systems"), are under threat. Many are unsustainable environmentally (erosion hazard), socially (exodus of young people) or economically (high labour costs). The OLIVERO research project was possible thanks to a grant of euro1.5 million from the European Union, which gives out euro2.5 billion in subsidies annually for olive production. An extended survey conducted by the project in five sites in Portugal, Spain, Italy and Greece revealed the diversity and multifunctionality of SMOPS. Four main systems were identified as important for the future: traditional, organic, semi-intensive and intensive. The conceptual framework of OLIVERO involved six phases, ranging from the initial survey up to policy recommendations. In all phases there was intensive contact with stakeholders and institutions. End-users were identified at three levels: local, intermediate and regional, and national/international. This paper presents the highlights of the physical analysis of land and water resources, crop and land management, and economics and policies. Scenario studies gave insight into the possible future: some SMOPS will be gradually abandoned or transformed into nature conservation areas, others will exploit drip irrigation and follow the intensification patterns of agriculture in the valleys, and a third group will continue to be managed more extensively, perhaps augmenting their income with other activities (possibly off-farm) or turning to organic production systems. At the five international OLIVERO meetings held from 2003 to 2006, knowledge, experience and ideas on the future of olive production systems were intensively exchanged. A network was established for ongoing and

  9. Projecting future grassland productivity to assess thesustainability of potential biofuel feedstock areas in theGreater Platte River Basin

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Phuyal, Khem P.

    2014-01-01

    This study projects future (e.g., 2050 and 2099) grassland productivities in the Greater Platte River Basin (GPRB) using ecosystem performance (EP, a surrogate for measuring ecosystem productivity) models and future climate projections. The EP models developed from a previous study were based on the satellite vegetation index, site geophysical and biophysical features, and weather and climate drivers. The future climate data used in this study were derived from the National Center for Atmospheric Research Community Climate System Model 3.0 ‘SRES A1B’ (a ‘middle’ emissions path). The main objective of this study is to assess the future sustainability of the potential biofuel feedstock areas identified in a previous study. Results show that the potential biofuel feedstock areas (the more mesic eastern part of the GPRB) will remain productive (i.e., aboveground grassland biomass productivity >2750 kg ha−1 year−1) with a slight increasing trend in the future. The spatially averaged EPs for these areas are 3519, 3432, 3557, 3605, 3752, and 3583 kg ha−1 year−1 for current site potential (2000–2008 average), 2020, 2030, 2040, 2050, and 2099, respectively. Therefore, the identified potential biofuel feedstock areas will likely continue to be sustainable for future biofuel development. On the other hand, grasslands identified as having no biofuel potential in the drier western part of the GPRB would be expected to stay unproductive in the future (spatially averaged EPs are 1822, 1691, 1896, 2306, 1994, and 2169 kg ha−1 year−1 for site potential, 2020, 2030, 2040, 2050, and 2099). These areas should continue to be unsuitable for biofuel feedstock development in the future. These future grassland productivity estimation maps can help land managers to understand and adapt to the expected changes in future EP in the GPRB and to assess the future sustainability and feasibility of potential biofuel feedstock areas.

  10. Field Review of Fish Habitat Improvement Projects in the Grande Ronde and John Day River Basins of Eastern Oregon.

    SciTech Connect

    Beschta, Robert L.; Platts, William S.; Kauffman, J. Boone

    1991-10-01

    The restoration of vegetation adapted to riparian environments and the natural succession of riparian plant communities is necessary to recreate sustainable salmonid habitat and should be the focal point for fish habitat improvement programs. In mid-August of 1991, a field review of 16 Salmon habitat improvement sites in the Grande Ronde and John Day River Basins in Eastern Oregon was undertaken. The review team visited various types of fish habitat improvements associated with a wide range of reach types, geology, channel gradients, stream sizes, and vegetation communities. Enhancement objectives, limiting factors, landuse history, and other factors were discussed at each site. This information, in conjunction with the reviewer's field inspection of portions of a particular habitat improvement project, provided the basis for the following report. This report that follows is divided into four sections: (1) Recommendations, (2) Objectives, (3) Discussion and Conclusions, and (4) Site Comments. The first section represents a synthesis of major recommendations that were developed during this review. The remaining sections provide more detailed information and comments related to specific aspects of the field review.

  11. Stress field estimation based on focal mechanisms and back projected imaging in the Eastern Llanos Basin (Colombia)

    NASA Astrophysics Data System (ADS)

    Gómez-Alba, Sebastián; Fajardo-Zarate, Carlos Eduardo; Vargas, Carlos Alberto

    2016-11-01

    At least 156 earthquakes (Mw 2.8-4.4) were detected in Puerto Gaitán, Colombia (Eastern Llanos Basin) between April 2013 and December 2014. Out of context, this figure is not surprising. However, from its inception in 1993, the Colombian National Seismological Network (CNSN) found no evidence of significant seismic events in this region. In this study, we used CNSN data to model the rupture front and orientation of the highest-energy events. For these earthquakes, we relied on a joint inversion method to estimate focal mechanisms and, in turn, determine the area's fault trends and stress tensor. While the stress tensor defines maximum stress with normal tendency, focal mechanisms generally represent normal faults with NW orientation, an orientation which lines up with the tracking rupture achieved via Back Projection Imaging for the study area. We ought to bear in mind that this anomalous earthquake activity has taken place within oil fields. In short, the present paper argues that, based on the spatiotemporal distribution of seismic events, hydrocarbon operations may induce the study area's seismicity.

  12. Study design and preliminary data analysis for a streambank fencing project in the Mill Creek Basin, Pennsylvania

    USGS Publications Warehouse

    Galeone, Daniel G.; Koerkle, Edward H.

    1996-01-01

    The Pequea Creek and Mill Creek Basins within Lancaster and Chester Counties in Pennsylvania have been identified as areas needing control of nonpoint-source (NFS) pollution to improve water quality. The two basins are a total of approximately 200 square miles and are primarily underlain by carbonate bedrock. Land use is predominantly agriculture. The most common agricultural NFS pollution-control practices implemented in the Pequea Creek and Mill Creek Basins are barnyard-runoff control and Streambank fencing. To provide land managers information on the effectiveness of Streambank fencing in controlling NFS pollution, a study is being conducted in two small paired watersheds within the Mill Creek Basin.

  13. Umatilla River Basin, Anadromous Fish Habitat Enhancement Project : Annual Report 1989.

    SciTech Connect

    Scheeler, Carl A.

    1990-03-01

    The Umatilla habitat improvement program targets the improvement of water quality and the restoration of riparian areas, spawning and rearing habitat of steelhead, spring and fall chinook and coho salmon. The channelization of Meacham Creek by the Union Pacific Railroad combined with poor riparian livestock management created extreme channel instability and bedload movement within the project area. The resulting loss of riparian vegetation caused an increase in water temperatures, evaporative losses and sediment loading from upland sites. Four leases and nine right-of-way agreements were procured for the restoration of 2 miles of stream channel on Meacham Creek and lower Boston Canyon Creek. Treatments included: sloping of gravel deposits to reduce channel braiding and develop a more stable channel configuration, placement of rock and wood structures to reduce erosion of stream banks and encourage the deposition of fines for the establishment of riparian vegetation, placement of instream boulders, weirs and large organic debris to increase holding and hiding cover and to encourage the development of a stable thalweg, and the enhancement of riparian vegetation through planting of hardwood cuttings and grass and forb seeds. Baseline data on stream flows, water temperature and suspended sediments, and channel morphology was collected.

  14. Climate Projections over Mediterranean Basin under RCP8.5 and RCP4.5 emission scenarios

    NASA Astrophysics Data System (ADS)

    Ilhan, Asli; Ünal, Yurdanur S.

    2017-04-01

    Climate Projections over Mediterranean Basin under RCP8.5 and RCP4.5 emission scenarios A. ILHAN ve Y. S. UNAL Istanbul Technical University, Department of Meteorology In the study, 50 km resolution downscaled results of two different Earth System Models (ESM) HadGEM2-ES and MPI-ESM with regional climate model of RegCM are used to estimate present and future climate conditions over Mediterranean Basin. The purpose of this study is to compare the projections of two ESMs under Representative Concentration Pathways 4.5 (RCP4.5) and 8.5 (RCP8.5) over the region of interest seasonally and annually with 50 km resolution. Temperature and precipitation parameters for reference period (1971-2000) and future (2015-2100) are analyzed. The average temperature and total precipitation distributions of each downscaled ESM simulations were compared with observation data (Climate Research Unit-CRU data) to explore the capability of each model for the representation of the current climate. According to reference period values of CRU, HadGEM2-ES and MPI-ESM, it is seen that both models are warmer and wetter than observations and have positive temperature biases only around Caspian Sea and positive precipitation biases over Eastern and Central Europe. The future projections (from 2015 to 2100) of HadGEM2-ES and MPI-ESM-MR simulations under RCP4.5 and RCP8.5 emission scenarios are compared with reference period (from 1971 to 2000) and analyzed for temperature and precipitation parameters. The downscaled HadGEM2-ES forced by RCP8.5 scenario produces higher temperatures than the MPI-ESM-MR. The reasons of this warming can be sensitivity of HadGEM2-ES to greenhouse gases and high radiative forcing (+8.5 W/m2). On the other hand, MPI-ESM produce more precipitation than HadGEM2-ES. In order to analyze regional responses of the climate model chains, five main regions are selected which are Turkey, Central Europe, Western Europe, Eastern Europe and North Africa. The average biases of the Had

  15. Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River

    NASA Astrophysics Data System (ADS)

    Wang, Yonggui; Zhang, Wanshun; Zhao, Yanxin; Peng, Hong; Shi, Yingyuan

    2016-10-01

    The effects of inter-basin water diversion projects and cascade reservoirs are typically complex and challenging, as the uncertain temporal-spatial variation of both water quality and quantity. The purpose of this paper is to propose a coupled 1D hydrodynamic model with water-quality model to analyze the effects of current and future inter-basin water diversion projects, i.e., South-to-North Water Diversion Project (SNWD) and Yangtze-Hanjiang Water Diversion Project (YHWD), and cascade reservoirs (CRS) on water quantity and quality in the middle-lower Hanjiang River. Considering water use and pollution contribution, the middle-lower Hanjaing River basin is generalized and divided into 18 land use units with tributaries, reservoirs and water exchanges. Each unit is considered with the processes of lateral inflow, point and non-point pollution loads, irrigation return flow, and stream-aquifer exchanges in the model. The long-term time series from 1956 to 1998 of water quality and quantity with four engineering scenarios is collected. The validation of results shows that the relative errors between the simulated and observed values at certain control sections are within 5% for water levels and 20% for water quality. The water level will be decreased by 0.38-0.65 m (decreasing rate 0.44-2.68%), the annual runoff will be significantly decreased over 4 billion m3 and the water quality will be changed after the SNWD. As a compensation project, the YHWD partly offsets the negative effects of the SNWD in water flow rate, but at the same time it rises the water level and reduces the flow velocity. This, together with the effect of cascade reservoirs, leads to water quality concentration increasing and deteriorating to Grade IV of the Chinese Surface Water Quality Criteria. The water resource reduction and water quality problems in the Middle-lower Hanjiang River require attention after these projects.

  16. The Light at Night Mapping Project: LAN MAP 1, the Tucson Basin

    NASA Astrophysics Data System (ADS)

    Craine, E. R.; Craine, B. L.; Craine, P. R.; Craine, E. M.

    2012-05-01

    Tucson, Arizona, once billed as the Astronomical Capital of the World, has long been home to at least ten major astronomical institutions and facilities. The region also hosts numerous productive amateur observatories and professional-amateur astronomical collaborations. In spite of the implementation of progressive night time lighting codes, the continued growth of the region has arguably deprived Tucson of its title, and threatens the future of some if not all of these facilities. It has become apparent that there are several difficulties in regulating this lighting environment. It is not easy to model the actual effects of new or changed lighting fixtures, there are compelling economic conflicts that must be considered, and adherence to various guidelines is often ignored. Perhaps the most fundamental problem is that there have historically been no comprehensive measures of either light at night or sky brightness over the extended growth areas. What measurements do exist are inhomogeneous and poorly accessible spot measurements at some observatory sites. These have little to tell us about the actual light distributions in the overall region, and rarely are informative of the specific light sources that offend the observatory sites. Tucson remains, for the time, an important astronomical resource. Because of its astronomical and lighting code circumstances, it is an interesting and valuable laboratory for studying these issues. In this paper we introduce an innovative new 5-year project to comprehensively map both sky brightness and associated artificial lighting over extended areas of development in the vicinity of important astronomical institutions. We discuss the various vectors employed in data collection; we outline the protocols used for each methodology, give examples of the data collected, and discuss data analysis and conclusions. This program has been underway since January 2012, and has already produced results of interest to professional and amateur

  17. Particulate matter and gaseous pollutants in the Mediterranean Basin: results from the MED-PARTICLES project.

    PubMed

    Karanasiou, Angeliki; Querol, Xavier; Alastuey, Andres; Perez, Noemi; Pey, Jorge; Perrino, Cinzia; Berti, Giovanna; Gandini, Martina; Poluzzi, Vanes; Ferrari, Silvia; de la Rosa, Jesus; Pascal, Mathilde; Samoli, Evangelia; Kelessis, Apostolos; Sunyer, Jordi; Alessandrini, Ester; Stafoggia, Massimo; Forastiere, Francesco

    2014-08-01

    Previous studies reported significant variability of air pollutants across Europe with the lowest concentrations generally found in Northern Europe and the highest in Southern European countries. Within the MED-PARTICLES project the spatial and temporal variations of long-term PM and gaseous pollutants data were investigated in traffic and urban background sites across Southern Europe. The highest PM levels were observed in Greece and Italy (Athens, Thessaloniki, Turin and Rome) while all traffic sites showed high NO2 levels, frequently exceeding the established limit value. High PM2.5/PM10 ratios were calculated indicating that fine particles comprise a large fraction of PM10, with the highest values found in the urban background sites. It seems that although in traffic sites the concentrations of both PM2.5 and PM10 are significantly higher than those registered in urban background sites, the coarse fraction PM2.5-10 is more important at the traffic sites. This fact is probably due to the high levels of resuspended road dust in sites highly affected by traffic, a phenomenon particularly relevant for Mediterranean countries. The long-term trends of air pollutants revealed a significant decrease of the concentration levels for PM, SO2 and CO while for NO2 no clear trend or slightly increasing trends were observed. This reduction could be attributed to the effectiveness of abatement measures and strategies and also to meteorological conditions and to the economic crisis that affected Southern Europe. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Payette River Basin Project: Improving Operational Forecasting in Complex Terrain through Chemistry

    NASA Astrophysics Data System (ADS)

    Blestrud, D.; Kunkel, M. L.; Parkinson, S.; Holbrook, V. P.; Benner, S. G.; Fisher, J.

    2015-12-01

    Idaho Power Company (IPC) is an investor owned hydroelectric based utility, serving customers throughout southern Idaho and eastern Oregon. The University of Arizona (UA) runs an operational 1.8-km resolution Weather and Research Forecast (WRF) model for IPC, which is incorporated into IPC near and real-time forecasts for hydro, solar and wind generation, load servicing and a large-scale wintertime cloud seeding operation to increase winter snowpack. Winter snowpack is critical to IPC, as hydropower provides ~50% of the company's generation needs. In efforts to improve IPC's near-term forecasts and operational guidance to its cloud seeding program, IPC is working extensively with UA and the National Center for Atmospheric Research (NCAR) to improve WRF performance in the complex terrain of central Idaho. As part of this project, NCAR has developed a WRF based cloud seeding module (WRF CS) to deliver high-resolution, tailored forecasts to provide accurate guidance for IPC's operations. Working with Boise State University (BSU), IPC is conducting a multiyear campaign to validate the WRF CS's ability to account for and disperse the cloud seeding agent (AgI) within the boundary layer. This improved understanding of how WRF handles the AgI dispersion and fate will improve the understanding and ultimately the performance of WRF to forecast other parameters. As part of this campaign, IPC has developed an extensive ground based monitoring network including a Remote Area Snow Sampling Device (RASSD) that provides spatially and temporally discrete snow samples during active cloud seeding periods. To quantify AgI dispersion in the complex terrain, BSU conducts trace element analysis using LA-ICP-MS on the RASSD sampled snow to provide measurements (at the 10-12 level) of incorporated AgI, measurements are compare directly with WRF CS's estimates of distributed AgI. Modeling and analysis results from previous year's research and plans for coming seasons will be presented.

  19. Hydrological cycle in the Danube basin in present and projected future climate conditions: a models' intercomparison perspective

    NASA Astrophysics Data System (ADS)

    Lucarini, V.

    2010-09-01

    We present an intercomparison and verification analysis of several GCMs and RCMs included in the 4th IPCC assessment report on their representation of the hydrological cycle on the Danube river basin for present and (in the case of the GCMs) projected future climate conditions. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. Large discrepancies exist among RCMs for the monthly climatology as well as for the mean and variability of the annual balances, and only few data sets are consistent with the observed discharge values of the Danube at its Delta. This occurs in spite of common nesting of the RCMs into the same run of the same AGCM, and even if the driving AGCM provides itself an excellent estimate. We find consistently that, for a given model, increases in the resolution do not alter the net water balance, while speeding up the hydrological cycle through the enhancement of both precipitation and evaporation by the same amount. We propose that the atmospheric components of RCMs still face difficulties in representing the water balance even on a relatively large scale. Moreover, since for some models the hydrological balance estimates obtained with the runoff fields do not agree with those obtained via precipitation and evaporation, some deficiencies of the land models are also apparent. In the case of the GCMs, the span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are, surprisingly, comparable to those of the RCMs. Both RCMs and GCMs greatly outperform the NCEP-NCAR and ERA-40

  20. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2003 Annual Report.

    SciTech Connect

    Hatch, Douglas R.; Branstetter, Ryan; Blodgett, Joe

    2004-03-01

    Repeat spawning is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the natural expression of historical repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, we captured wild emigrating steelhead kelts from the Yakima River and evaluated reconditioning (short and long-term) success and diet formulations at Prosser Hatchery on the Yakima River. Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 12 March to 28 May 2003. In total, 690 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 30.8% (690 of 2,235) of the entire 2002-2003 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. All steelhead kelts were reconditioned in circular tanks, fed freeze-dried krill and received hw-wiegandt multi vit dietary supplement; long-term steelhead kelts also received Moore-Clark pellets

  1. Status and understanding of groundwater quality in the Northern Coast Ranges study unit, 2009: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    Chloroform, simazine, and perchlorate were observed in the Interior Basins and Coastal Basins study areas, predominantly at shallow sites with top-of-perforation depths ≤70 feet below land surface, with modern water (post-1950s), and with oxic groundwater conditions.

  2. Web application to access U.S. Army Corps of Engineers Civil Works and Restoration Projects information for the Rio Grande Basin, southern Colorado, New Mexico, and Texas

    USGS Publications Warehouse

    Archuleta, Christy-Ann M.; Eames, Deanna R.

    2009-01-01

    The Rio Grande Civil Works and Restoration Projects Web Application, developed by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers (USACE) Albuquerque District, is designed to provide publicly available information through the Internet about civil works and restoration projects in the Rio Grande Basin. Since 1942, USACE Albuquerque District responsibilities have included building facilities for the U.S. Army and U.S. Air Force, providing flood protection, supplying water for power and public recreation, participating in fire remediation, protecting and restoring wetlands and other natural resources, and supporting other government agencies with engineering, contracting, and project management services. In the process of conducting this vast array of engineering work, the need arose for easily tracking the locations of and providing information about projects to stakeholders and the public. This fact sheet introduces a Web application developed to enable users to visualize locations and search for information about USACE (and some other Federal, State, and local) projects in the Rio Grande Basin in southern Colorado, New Mexico, and Texas.

  3. BABOC: A new project aimed at analysing geological boundary conditions for the East Antarctic Ice Sheet in the Wilkes Subglacial Basin

    NASA Astrophysics Data System (ADS)

    Armadillo, Egidio; Ferraccioli, Fausto; Balbi, Pietro; Jordan, Tom; Young, Duncan; Blankenship, Don; Bozzo, Emanuele; Siegert, Martin

    2013-04-01

    -age rifted crust and; iii) its bedrock is composed of a variety of rocks of different ages and bulk composition, including inferred Proterozoic basement, Neoproterozoic and Cambrian sediments intruded by Cambrian arc rocks, and cover rocks formed primarily by Beacon sediments intruded by Ferrar sills of Jurassic age. Within the framework of the collaborative Italian-US-UK BABOC project a new initiative has been launched to analyse and model variable geological boundary conditions in the Wilkes Basin, by analysing both new and existing geophysical data. A couple of new flights over the region were flown by the ICECAP team for BABOC during the 2010-11 field campaign from Mario Zucchelli Station. ICECAP independently acquired a suite of extensive aerogeophysical observations over three campaigns, centred in particular over the southern part of the basin, and some new profiles over the northern coastal margin of the basin. We present an initial analyses and interpretation of the potential field signatures over the different parts of the basin and assess regional geological controls on the subglacial topography of the basin.

  4. Projecting future grassland performance in the Greater Platte River Basin to assess sustainability for potential biofuel feedstock areas

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Wylie, B. K.; Phuyal, K.

    2012-12-01

    In previous studies, we used vegetation condition information from archival records of satellite data (i.e., 10-year time series of Normalized Difference Vegetation Index (NDVI) data), site geophysical and biophysical features (e.g., elevation, slope and aspect, and soils), and weather and climate drivers to build ecosystem performance (EP) models to dynamically monitor EP (DMEP) in the Greater Platte River Basin (GPRB). Ecosystem performance is a surrogate approach for measuring ecosystem productivity. We estimated ecosystem site potentials (i.e., long-term ecosystem productivities), weather-based expected EP (EEP), and rangeland conditions based on these EP models. Validation of the EP results using ground observations (e.g., percentage of bare soil, LANDFIRE maps, stocking rate, and crop yield data) demonstrated the reliability of these EP models. We used this DMEP method to identify grasslands that are potentially suitable for cellulosic biofuel feedstock (e.g., switchgrass) development in the GPRB. The objectives of this study are to (1) project the future grassland EP; (2) assess the changes and trends of the future EP; and (3) examine the future sustainability of the identified biofuel feedstock areas in the GPRB. We used the EP models and future climate projections to estimate future (e.g., 2050 and 2099) climate-based projections of grassland performance in the GPRB. The future climate data were derived from the National Center for Atmospheric Research (NCAR) Community Climate System Model 3.0 (CCSM3) "SRES A1B" (a "middle" emissions path) obtained from the "Bias Corrected and Downscaled WCRP CMIP3 Climate Projections" archive (http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections). Results show that, under climate scenario A1B, the potential biofuel feedstock areas in the more mesic Eastern part of the GPRB will remain productive in the future (the spatially averaged EPs for these areas are 3335 kg ha-1 year-1, 3355 kg ha-1 year-1, and 3341 kg ha-1 year

  5. Changes of reference evapotranspiration in the Haihe River Basin: Present observations and future projection from climatic variables through multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Xing, Wanqiu; Wang, Weiguang; Shao, Quanxi; Peng, Shizhang; Yu, Zhongbo; Yong, Bin; Taylor, John

    2014-04-01

    As the most excellent indicator for hydrological cycle and a central link to water-balance calculations, the reference evapotranspiration (ET0) is of increasing importance in assessing the potential impacts of climate change on hydrology and water resources systems since the climate change has been becoming more pronounced. In this study, we conduct an investigation on the spatial and temporal changes in ET0 of the Haihe River Basin in present and future stages. The ET0 in the past five decades (1961-2010) are calculated by the Penman-Monteith method with historical climatic variables in 40 sites while the ET0 estimation for the future period of 2011-2099 is based on the related climatic variables projected by Coupled General Circulation Model (CGCM) multimodel ensemble projections in Phase 3 of the Coupled Model Intercomparison Project (CMIP3) using the Bayesian Model Average (BMA) approach. Results can be summarized for the present and future as follows. (1) No coherent spatial patterns in ET0 changes are seen in the whole basin. Half of the stations distributed mainly in the eastern and southeastern plain regions present significant negative trends, while only 3 stations in the western mountainous and plateau basin show significant positive trends. Radiation is mainly responsible for the ET0 change in the southern and eastern basin, whereas relative humidity and wind speed are the leading factors in the eastern coastal and north parts. (2) BMA ensemble method is competent to produce lower bias in comparison with other common methods in this basin. Future spatiotemporal ET0 pattern analysis by means of the BMA method based on the ensembles of four CGCMs suggested that although the spatial patterns under three scenarios are different in the forthcoming two decades, generally increasing trends can be found in the 21st century, which is mainly attributed to the significant increasing temperature. In addition, the implication of future ET0 change in agriculture and

  6. Status and understanding of groundwater quality in the San Diego Drainages Hydrogeologic Province, 2004: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 3,900-square-mile (mi2) San Diego Drainages Hydrogeologic Province (hereinafter San Diego) study unit was investigated from May through July 2004 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southwestern California in the counties of San Diego, Riverside, and Orange. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA San Diego study was designed to provide a statistically robust assessment of untreated-groundwater quality within the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 58 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as the primary aquifers) were defined by the depth interval of the wells listed in the California Department of Public Health (CDPH) database for the San Diego study unit. The San Diego study unit consisted of four study areas: Temecula Valley (140 mi2), Warner Valley (34 mi2), Alluvial Basins (166 mi2), and Hard Rock (850 mi2). The quality of groundwater in shallow or deep water-bearing zones may differ from that in the primary aquifers. For example, shallow groundwater may be more vulnerable to surficial contamination than groundwater in deep water-bearing zones. This study had two components: the status assessment and the understanding assessment. The first component of this study-the status assessment of the current quality of the groundwater resource-was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to

  7. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2000 Annual Report.

    SciTech Connect

    Evans, Allen F.; Beaty, Roy E.; Hatch, Douglas R.

    2001-12-01

    Repeat spawning is a life history strategy that is expressed by some species from the family salmonidae. Natural rates of repeat spawning for Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. Increasing this repeat spawning rate using fish culture techniques could assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to grow and develop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for local populations. The primary purpose of this project in 2000 was to test the general feasibility of collecting, feeding, and treating steelhead kelts in a captive environment. Steelhead kelts were collected from the Yakima River at the Chandler Juvenile Evaluation Facility (Rkm 48) from 12 March to 13 June 2000. Kelts were reconditioned at adjacent Prosser Hatchery in both rectangular and circular tanks and fed a mixed diet of starter paste, adult sized trout pellets, and freeze-dried krill. Formalin was used to control outbreaks of fungus, and we tested the use of ivermectin to control internal parasites (e.g., Salmincola spp.). Some the kelts that died during the reconditioning process were analyzed via pathology and gonad histology to ascertain the possible cause of death and to describe their reproductive development at the time of death. All surviving specimens were released for natural spawning on 12 December 2000. Overall success of the reconditioning process was based on the proportion of fish that survived captivity, gained weight, and on the number of fish that successfully underwent gonadal recrudescence. Many of the reconditioned kelts were radio tagged to assess their spawning migration behavior and

  8. Introduction to the special collection of papers on the San Luis Basin Sustainability Metrics Project: a methodology for evaluating regional sustainability.

    PubMed

    Heberling, Matthew T; Hopton, Matthew E

    2012-11-30

    This paper introduces a collection of four articles describing the San Luis Basin Sustainability Metrics Project. The Project developed a methodology for evaluating regional sustainability. This introduction provides the necessary background information for the project, description of the region, overview of the methods, and summary of the results. Although there are a multitude of scientifically based sustainability metrics, many are data intensive, difficult to calculate, and fail to capture all aspects of a system. We wanted to see if we could develop an approach that decision-makers could use to understand if their system was moving toward or away from sustainability. The goal was to produce a scientifically defensible, but straightforward and inexpensive methodology to measure and monitor environmental quality within a regional system. We initiated an interdisciplinary pilot project in the San Luis Basin, south-central Colorado, to test the methodology. The objectives were: 1) determine the applicability of using existing datasets to estimate metrics of sustainability at a regional scale; 2) calculate metrics through time from 1980 to 2005; and 3) compare and contrast the results to determine if the system was moving toward or away from sustainability. The sustainability metrics, chosen to represent major components of the system, were: 1) Ecological Footprint to capture the impact and human burden on the system; 2) Green Net Regional Product to represent economic welfare; 3) Emergy to capture the quality-normalized flow of energy through the system; and 4) Fisher information to capture the overall dynamic order and to look for possible regime changes. The methodology, data, and results of each metric are presented in the remaining four papers of the special collection. Based on the results of each metric and our criteria for understanding the sustainability trends, we find that the San Luis Basin is moving away from sustainability. Although we understand

  9. Status of groundwater quality in the California Desert Region, 2006-2008: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater quality in six areas in the California Desert Region (Owens, Antelope, Mojave, Coachella, Colorado River, and Indian Wells) was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The six Desert studies were designed to provide a spatially unbiased assessment of the quality of untreated groundwater in parts of the Desert and the Basin and Range hydrogeologic provinces, as well as a statistically consistent basis for comparing groundwater quality to other areas in California and across the Nation. Samples were collected by the USGS from September 2006 through April 2008 from 253 wells in Imperial, Inyo, Kern, Los Angeles, Mono, Riverside, and San Bernardino Counties. Two-hundred wells were selected using a spatially distributed, randomized grid-based method to provide a spatially unbiased representation of the study areas (grid wells), and fifty-three wells were sampled to provide additional insight into groundwater conditions (additional wells). The status of the current quality of the groundwater resource was assessed based on data from samples analyzed for volatile organic compounds (VOCs), pesticides, and inorganic constituents such as major ions and trace elements. Water-quality data from the California Department of Public Health (CDPH) database also were incorporated in the assessment. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifer systems of the Desert Region, not the treated drinking water delivered to consumers by water purveyors. The primary aquifer systems (hereinafter, primary aquifers) in the six Desert areas are defined as that part of the aquifer corresponding to the perforation intervals of

  10. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.

    SciTech Connect

    Schwabe, Lawrence; Tiley, Mark; Perkins, Raymond R.

    2000-11-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.

  11. Application of The Rainfall-runoff Model Topkapi For The Entire Basin of The Po River As Part of The European Project Effs

    NASA Astrophysics Data System (ADS)

    Todini, E.; Bartholmes, J.

    The project EFFS (European Flood Forecasting System) aims at developing a flood forecasting system for the major river basins all over Europe. To extend the forecast- ing and thus the warning time in a significant way (up to 10 days) meteorological forecasting data from the ECMWF will be used as input to hydrological models. For this purpose it is fundamental to have a reliable rainfall-runoff model. For the river Po basin we chose the TOPKAPI model (Ciarapica, Todini 1998). TOPKAPI is a physi- cally based rainfall-runoff model that maintains its physical significance passing from hillslope to large basin scale. The aim of the distributed version is to reproduce the spatial variability and to lead to a better understanding of scaling effects on meteo- rological data used as well as of physical phenomena and parameters. By now the TOPKAPI model has been applied successfully to basins of smaller and medium size (up to 8000 km2). The present work also proves that TOPKAPI is a valuable flood forecasting tool for larger basins such as the Po river. An advantage of the TOPKAPI model is its physical basis. It doesn't need a "real" calibration in the common sense of the expression. The calibration work that has to be done is due to the unavoidable averaging and approximation in the input data representing various phenomena. This reduces the calibration work as well as the length of data required. The model was implemented on the Po river at spatial steps of 1km and time steps of 1 hour using available data during the year 1994. After the calibration phase, mesoscale forecasts (from ECMWF) as well as forecasts of LAM models (DWD,DMI) will be used as input to the Po river models and their behaviour will be studied as a function of the prediction quality and of the coarseness of the spatial discretisation.

  12. Leakage Risk Assessment of CO{sub 2} Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    SciTech Connect

    Mazzoldi, A.; Oldenburg, C. M.

    2013-12-17

    The Illinois Basin Decatur Project (IBDP) is designed to confirm the ability of the Mt. Simon Sandstone, a major regional saline-water-bearing formation in the Illinois Basin, to store 1 million tons of carbon dioxide (CO{sub 2}) injected over a period of three years. The CO{sub 2} will be provided by Archer Daniels Midland (ADM) from its Decatur, Illinois, ethanol plant. In order to transport CO{sub 2} from the capture facility to the injection well (also located within the ADM plant boundaries), a high-pressure pipeline of length 3,200 ft (975 m) has been constructed, running above the ground surface within the ADM plant footprint. We have qualitatively evaluated risks associated with possible pipeline failure scenarios that lead to discharge of CO{sub 2} within the real-world environment of the ADM plant in which there are often workers and visitors in the vicinity of the pipeline. There are several aspects of CO{sub 2} that make its transportation and potential leakage somewhat different from other substances, most notable is its non-flammability and propensity to change to solid (dry ice) upon strong decompression. In this study, we present numerical simulations using Computational Fluid Dynamics (CFD) methods of the release and dispersion of CO{sub 2} from individual hypothetical pipeline failures (i.e., leaks). Failure frequency of the various components of a pipeline transportation system over time are taken from prior work on general pipeline safety and leakage modeling and suggest a 4.65% chance of some kind of pipeline failure over the three-years of operation. Following the Precautionary Principle (see below), we accounted for full-bore leakage scenarios, where the temporal evolution of the mass release rate from the high-pressure pipeline leak locations was simulated using a state-of-the-art Pipe model which considers the thermodynamic effects of decompression in the entire pipeline. Failures have been simulated at four representative locations along

  13. The Italian Project S2 - Task 4:Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    NASA Astrophysics Data System (ADS)

    Stupazzini, M.; Smerzini, C.; Cauzzi, C.; Faccioli, E.; Galadini, F.; Gori, S.

    2009-04-01

    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems", the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies < 2Hz) and hybrid deterministic- stochastic source and propagation simulations are

  14. Assessing potential impacts of climate change on hydropower generation of three reservoirs in the Tagus River Basin under ensemble of climate projections

    NASA Astrophysics Data System (ADS)

    Lobanova, Anastasia; Koch, Hagen; Hattermann, Fred F.; Krysanova, Valentina

    2015-04-01

    The Tagus River basin is an important strategic water and energy source for Portugal and Spain. With an extensive network of 40 reservoirs with more than 15 hm3 capacity and numerous abstraction channels it is ensuring water supply for domestic and industrial usage, irrigation and hydropower production in Spain and Portugal. Growing electricity and water supply demands, over-regulation and construction of new dams, and large inter-basin water transfers aggravated by strong natural variability of climate and aridity of the catchment have already imposed significant pressures on the river. The substantial reduction of discharge, dropping during some months to zero in some parts of the catchment, is observed already now, and projected climatic change is expected to alter the water budget of the catchment further. As the water inflow is a fundamental defining factor in a reservoir operation and hydropower production, the latter are highly sensitive to shifts in water balance of the catchment, and hence to changes in climate. In this study we aim to investigate the effects of projected climate change on water inflows and hydropower generation of the three large reservoirs in the Tagus River Basin, and by that to assess their ability to cover electricity power demands and provide water supply under changed conditions, assuming present management strategies; hydropower and abstraction demands. The catchment scale, process-based eco-hydrological model SWIM was set up, calibrated and validated up to the Santarem gauge at the Tagus outlet, with the implementation of a reservoir module. The reservoir module is able to represent three reservoir operation management options, simulate water abstraction and provide rates of generated hydropower. In total, fifteen largest reservoirs in the Tagus River Basin were included in the model, calibrated and validated against observed inflow, stored water and outflow water volumes. The future climate projections were selected from the

  15. Status and understanding of groundwater quality in the Madera, Chowchilla Study Unit, 2008: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2013-01-01

    Groundwater quality in the approximately 860-square-mile Madera and Chowchilla Subbasins (Madera-Chowchilla study unit) of the San Joaquin Valley Basin was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in California's Central Valley region in parts of Madera, Merced, and Fresno Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The Project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in California. The primary aquifer system within each study unit is defined by the depth of the perforated or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Madera-Chowchilla study unit were based on water-quality and ancillary data collected by the USGS from 35 wells during April-May 2008 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of natural factors and human activities affecting groundwater quality. The primary aquifer system is represented by the grid wells, of which 90 percent (%) had depths that ranged from about 200 to 800 feet (ft) below land surface and had depths to the top of perforations that ranged from about 140 to 400 ft below land surface. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for

  16. Status and understanding of groundwater quality in the Klamath Mountains study unit, 2010: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Bennett, George Luther; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Klamath Mountains (KLAM) study unit was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in Del Norte, Humboldt, Shasta, Siskiyou, Tehama, and Trinity Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a spatially unbiased, statistically robust assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality data and explanatory factors for groundwater samples collected in 2010 by the USGS from 39 sites and on water-quality data from the California Department of Public Health (CDPH) water-quality database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH water-quality database for the KLAM study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study included two types of assessments: (1) a status assessment, which characterized the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds, pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the KLAM study unit, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations

  17. The "3-Basins" Project in Mid South America and the Geometry of the Deep Nazca Subducted Slab

    NASA Astrophysics Data System (ADS)

    Assumpcao, M.; Bianchi, M.; Rocha, M., Sr.; Azevedo, P. A. D.

    2016-12-01

    A multi-national two-year deployment of 50 stations covering SW Brazil, Eastern Bolivia, Paraguay, NE Argentina and NW Uruguay will better map the crustal and upper mantle structure in this yet unexplored part of the South American plate. We aim at studying how deep structure and mantle convection controls the evolution of three intracratonic basins: Pantanal, Chaco-Paraná, and Paraná. The Quaternary Pantanal Basin is especially interesting because of its present subsidence and possible influence from Andean flexural effects as well as from deep mantle convection associated with the Nazca slab . The Nazca slab has a flat segment, just above the 660-km discontinuity (beneath the Chaco Basin in Paraguay), and then plunges beneath the Pantanal Basin reaching about 1000 km depth in SE Brazil (Schimmel et al., 2003; Rocha et al. 2011; Simmons et al., 2012). To the north of the Pantanal Basin, the Nazca slab seems to plunge directly through the transition zone without any deep flat segment. Initial studies of receiver functions from the transition zone were made using stations of the permanent Brazilian Seismic Network: the cold Nazca slab makes the 660-km discontinuity deeper between the Peru-Brazil border and the Pantanal basin, but does not affect the discontinuity depth beneath the Paraná basin further to the east. It is expected that the newly deployed temporary stations will significantly improve the maping of the geometry of the Nazca slab within and below the upper mantle transition zone in South America. Work supported by FAPESP grant 2103/24215-6.

  18. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2004 Annual Report.

    SciTech Connect

    Hatch, Douglas R.; Branstetter, Ryan; Whiteaker, John

    2004-11-01

    Iteroparity, the ability to repeat spawn, is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the expression of historical repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations, and could help reestablish this naturally occurring life history trait. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia River Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, wild emigrating steelhead kelts were placed into one of three study groups (direct capture and transport, short-term reconditioning, or long-term reconditioning). Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 15 March to 21 June 2004. In total, 842 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 30.5% (842 of 2,755) of the entire 2003-2004 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. All steelhead kelts were reconditioned in 20-foot circular tanks, and fed freeze-dried krill initially or for the duration of the

  19. Archeological survey of the proposed Charity Lake Hydroelectric Project, upper Smith River Basin, Patrick and Franklin Counties, Virginia. Final report, September 1984-May 1986

    SciTech Connect

    Abbott, L.E.; Sanborn, E.E.; Vacca, M.N.; Crass, D.C.; Dull

    1986-04-01

    A stratified cluster-sampling design was used to evaluate the nature and extent of cultural resources in the upper Smith River Basin of southwestern Virginia, Patrick and Franklin Counties. In addition to the 306 hectares surveyed using the sampling design, another 162 hectares (the potential dam site areas for the proposed hydroelectric project) received 100% survey coverage. A total of 163 archeological sites and historic structures was recorded, including 85 historic sites (mostly liquor stills) and 78 prehistoric sites. National Register evaluation was performed for all sites and 3 sites were recommended for further work.

  20. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  1. Status of groundwater quality in the Upper Santa Ana Watershed, November 2006--March 2007--California GAMA Priority Basin Project

    USGS Publications Warehouse

    Kent, Robert; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the approximately 1,000-square-mile (2,590-square-kilometer) Upper Santa Ana Watershed (USAW) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in Riverside and San Bernardino Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA USAW study was designed to provide a spatially unbiased assessment of untreated groundwater quality within the primary aquifer systems in the study unit. The primary aquifer systems (hereinafter, primary aquifers) are defined as the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the USAW study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to surficial contamination. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey (USGS) from 90 wells during November 2006 through March 2007, and water-quality data from the CDPH database. The status of the current quality of the groundwater resource was assessed based on data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the USAW study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or

  2. Synthesis of downstream fish passage information at projects owned by the U.S. Army Corps of Engineers in the Willamette River Basin, Oregon

    USGS Publications Warehouse

    Hansen, Amy C.; Kock, Tobias J.; Hansen, Gabriel S.

    2017-08-07

    The U.S. Army Corps of Engineers (USACE) operates the Willamette Valley Project (Project) in northwestern Oregon, which includes a series of dams, reservoirs, revetments, and fish hatcheries. Project dams were constructed during the 1950s and 1960s on rivers that supported populations of spring Chinook salmon (Oncorhynchus tshawytscha), winter steelhead (O. mykiss), and other anadromous fish species in the Willamette River Basin. These dams, and the reservoirs they created, negatively affected anadromous fish populations. Efforts are currently underway to improve passage conditions within the Project and enhance populations of anadromous fish species. Research on downstream fish passage within the Project has occurred since 1960 and these efforts are documented in numerous reports and publications. These studies are important resources to managers in the Project, so the USACE requested a synthesis of existing literature that could serve as a resource for future decision-making processes. In 2016, the U.S. Geological Survey conducted an extensive literature review on downstream fish passage studies within the Project. We identified 116 documents that described studies conducted during 1960–2016. Each of these documents were obtained, reviewed, and organized by their content to describe the state-of-knowledge within four subbasins in the Project, which include the North Santiam, South Santiam, McKenzie, and Middle Fork Willamette Rivers. In this document, we summarize key findings from various studies on downstream fish passage in the Willamette Project. Readers are advised to review specific reports of interest to insure that study methods, results, and additional considerations are fully understood.

  3. Multi-Model CIMP5 projected impacts of increased greenhouse gases on the Niger basin and implications for hydropower production

    NASA Astrophysics Data System (ADS)

    Oyerinde, Ganiyu; Wisser, Dominik

    2014-05-01

    Climate change could potentially have large impacts on water availability in West Africa and the predictions are accrued with high uncertainties in this region. Countries in the Niger River basin (West Africa) plan the investment of 200 million in the installation of an additional 400MW of hydropower in the nearest future, adding to the existing 685MW. With the impacts of climate change in the basin already occurring, there is a need for comprehending the influence of future hydro-climatic changes on water resources and hydro-power generation in the basin. This study uses a hydrological model to simulate river flow under present and future conditions and evaluates the impacts of potential changes on electricity production of the largest hydroelectric dam (Kainji) in the Niger Basin. The Kainji reservoir produces 25 per cent of the current energy needs of Nigeria and was subject to large fluctuations in energy production as a result of variable inflow and operational reasons. Inflow into the reservoir was simulated using hydroclimatic data from a set of 7 regional climate models (RCM) with two emission scenarios from the CORDEX-Africa regional downscaling experiment, driven with CMIP5 data. Based on observations of inflow, water level in the reservoir, and energy production we developed a simple hydroelectricity production model to simulate future energy production for the reservoir. Results suggest increases in river flow for the majority of RCM data as a result of increases in precipitation in the headwaters of the basin around 2050 and slightly decreasing trends for low emission scenarios by the end of the century. Despite this consistent increase, shifts in timing of river flow can challenge the reliable production of energy. This analysis could help assess the planning of hydropower schemes in the basin for a sustainable production of hydroelectricity in the future.

  4. The effects of increased stream temperatures on juvenile steelhead growth in the Yakima River Basin based on projected climate change scenarios

    USGS Publications Warehouse

    Hardiman, Jill M.; Mesa, Matthew G.

    2013-01-01

    Stakeholders within the Yakima River Basin expressed concern over impacts of climate change on mid-Columbia River steelhead (Oncorhynchus mykiss), listed under the Endangered Species Act. We used a bioenergetics model to assess the impacts of changing stream temperatures—resulting from different climate change scenarios—on growth of juvenile steelhead in the Yakima River Basin. We used diet and fish size data from fieldwork in a bioenergetics model and integrated baseline and projected stream temperatures from down-scaled air temperature climate modeling into our analysis. The stream temperature models predicted that daily mean temperatures of salmonid-rearing streams in the basin could increase by 1–2°C and our bioenergetics simulations indicated that such increases could enhance the growth of steelhead in the spring, but reduce it during the summer. However, differences in growth rates of fish living under different climate change scenarios were minor, ranging from about 1–5%. Because our analysis focused mostly on the growth responses of steelhead to changes in stream temperatures, further work is needed to fully understand the potential impacts of climate change. Studies should include evaluating changing stream flows on fish activity and energy budgets, responses of aquatic insects to climate change, and integration of bioenergetics, population dynamics, and habitat responses to climate change.

  5. John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring; Fish Research Project Oregon, 2000-2001 Annual Report.

    SciTech Connect

    Carmichael, Richard W.; Claire, Glenda M.; Seals, Jason

    2002-01-01

    The four objectives of this report are: (1) Estimate annual spawner escapement and number of spring chinook salmon redds in the John Day River basin; (2) Determine sex ratio, age composition, length-at-age of spawners, and proportion of natural spawners that are hatchery origin strays; (3) Determine adequacy of historic index surveys for indexing spawner abundance and for detecting changes in spawner distribution through time; and (4) Estimate smolt-to-adult survival for spring chinook salmon emigrating from the John Day River basin.

  6. Projected Imbalances between Labor Supply and Labor Demand in the Caribbean Basin: Implications for Future Migration to the United States.

    ERIC Educational Resources Information Center

    Espenshade, Thomas J.

    This paper examines the economic push factors encouraging migration from the Caribbean Basin to the United States, as part of an assessment of the effectiveness of the Immigration Reform and Control Act of 1986. The basic assumption is that much of the migration is motivated by a desire to improve economic circumstances, and that the…

  7. Spent Nuclear Fuel project stage and store K basin SNF in canister storage building functions and requirements. Revision 1

    SciTech Connect

    Womack, J.C.

    1995-10-24

    This document establishes the functions and requirements baseline for the implementation of the Canister Storage Building Subproject. The mission allocated to the Canister Storage Building Subproject is to provide safe, environmentally sound staging and storage of K Basin SNF until a decision on the final disposition is reached and implemented

  8. Hazardous materials in aquatic environments of the Mississippi River Basin Project management. Technical quarterly progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    McLachlan, J.; Ide, C.F.; O`Connor, S.

    1996-08-01

    This quarterly report summarizes accomplishments for the Project examining hazardous materials in aquatic environments of the Mississippi River Basin. Among the many research areas summarized are the following: assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure; hazardous wastes in aquatic environment;ecological sentinels of aquatic contamination in the lower Mississippi River System; remediation of selected contaminants; rapid on-site immunassay for heavy metal contamination; molecular mechanisms of developmental toxicity induced by retinoids and retinoid-like molecules; resuseable synthetic membranes for the removal of aromatic and halogenated organic pollutants from waste water; Effects of steroid receptor activation in neurendocrine cell of the mammalian hypothalamus; modeling and assessment of environmental quality of louisiana bayous and swamps; enhancement of environmental education. The report also contains a summary of publications resulting from this project and an appendix with analytical core protocals and target compounds and metals.

  9. John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring; Fish Research Project Oregon, 1999-2000 Annual Report.

    SciTech Connect

    Ruzycki, James R.; Wilson, Wayne H.; Carmichael, Richard W.

    2002-01-01

    The John Day River basin supports one of the healthiest populations of spring chinook salmon (Oncorhynchus tshawytscha) in the entire Columbia River basin. Spring chinook salmon in this basin are therefore, used as an important index stock to measure the effects of future management actions on other salmon stocks in the Columbia basin. To meet the data requirements as an index stock, we estimated annual spawner escapement, age-structure, and smolt-to-adult survival. This information will allow us to estimate progeny-to-parent production for each brood year. To estimate smolt-to-adult survival rates, 1,852 chinook smolts were tagged with PIT tags from 3 March to 5 May, 2000. Length of captured smolts varied, ranging from 80 to 147 mm fork length (mean = 113 mm). These fish will be monitored for PIT tags as returning adults at dams and during future spawning ground surveys. During spawning ground surveys, a total of 351.3 km of stream were surveyed resulting in the observation of 478 redds. When expanded, we estimated total number of redds at 481 and total number of spawners at 1,583 fish in the John Day River basin. We estimated that 13% of the redds were in the mainstem John Day, 27% in the Middle Fork, 34% in the North Fork, and 26% were in the Granite Creek basin. Sampled carcasses had a sex ratio comprised of 53% females and 47% males with an age structure comprised of 0.5% age-2, 6.3% age-3, 88.7% age-4, and 4.5% age-5 fish. Five of the 405 carcasses examined had fin clips suggesting they were of hatchery origin. The 1999 index redd count total for the North Fork, Mainstem, and Granite Creek was lower than the 1999 average (535) but well within the range of annual redd counts during this period. The index redd count for the Middle Fork was higher than the 1990's average (92) but considerably lower than the average from 1978-1985 (401). Although quite variable over the past 40 years, the number of redds in the John Day River basin during 1999 was well within the

  10. Projection of climate change and its impact on the hydrological regimes of the Vistula and the Odra watersheds as the two major river basins in Poland.

    NASA Astrophysics Data System (ADS)

    Piniewski, Mikołaj; Mezghani, Abdelkader; Szcześniak, Mateusz; Berezowski, Tomasz; Kardel, Ignacy; Okruszko, Tomasz; Dobler, Andreas; Kundzewicz, Zbigniew

    2016-04-01

    Water resources management and associated hydrological risks require a reliable characterisation of hydrological behaviour under historical and future climate conditions. Even under the historical climate conditions, it is difficult to estimate the natural variability of hydrological regimes. We propose high-resolution simulations of natural daily streamflow for the period 1951-2013 in a dense network of river reaches of the transboundary Vistula and Odra basins occupying 313,000 km2, using SWAT model. The SWAT model is calibrated on a gridded daily (minimum and maximum) temperature and precipitation dataset (5 km resolution) developed, for this purpose, for the entire study area based on kriging technique (DOI 10.4121/uuid:e939aec0-bdd1-440f-bd1e-c49ff10d0a07). After validating the SWAT model in reproducing key observed hydrological features in a set of 80 relatively unimpaired sub-catchments, nine hydrological projections are produced where gridded meteorological variables as inputs in SWAT are replaced with meteorological variables from nine GCM-RCM runs projected to the year 2100 for RCP 4.5 provided within the EURO-CORDEX experiment. We will first present a comparison of the performance of the hydrological SWAT model driven by GCM-RCM runs for the historical period using both bias-corrected and raw GCM-RCM output variables. A particular interest will be on how well reproduced are meteorological extremes. Then, we will present the ability of the combined simulation approach to reproduce reliable change of key hydrological variables and especially extreme floods at different spatial scales of the catchments. Finally, hydrological projections under future climate conditions and their impacts on the Odra and Vistula river basins are analysed and discussed. Acknowledgements. Support of the project CHASE-PL (Climate change impact assessment for selected sectors in Poland) of the Polish-Norwegian Research Programme is gratefully acknowledged.

  11. The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system.

    PubMed

    Zeng, Qinghui; Qin, Lihuan; Li, Xuyong

    2015-12-01

    Any inter-basin water transfer project would cause complex physical, chemical, hydrological and biological changes to the receiving system. The primary channel of the middle route of the South-to-North Water Transfer Project has a total length of 1267 km. There is a significant difference between the physical, chemical and biological characteristics of the originating and receiving drinking water conservation districts. To predict the impacts of this long-distance inter-basin water transfer project on the N&P (nitrogen and phosphorus) concentrations and eutrophication risk of the receiving system, an environmental fluid dynamics code (EFDC) model was applied. The calibrated model accurately reproduced the hydrodynamic, water quality and the entire algal bloom process. Thirteen scenarios were defined to fully understand the N&P and chlorophyll a (Chl a) variation among different hydrological years, different quantity and timing of water transfer, and different inflows of N&P concentrations. The results showed the following: (a) The water transfer project would not result in a substantial difference to the trophic state of the Miyun reservoir in any of the hydrological years. (b) The area affected by the water transfer did not involve the entire reservoir. To minimize the impact of water transfer on N&P nutrients and Chl a, water should be transferred as uniform as possible with small discharge. (c) The variation in Chl a was more sensitive to an increase in P than an increase in N for the transferred water. The increased percentages of the average Chl a concentration when water was transferred in the spring, summer and autumn were 7.76%, 16.67% and 16.45%. Our findings imply that special attention should be given to prevent P increment of the transferred water from May to October to prevent algal blooms. The results provide useful information for decision makers about the quantity and timing of water transfers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-94) - Yakima Basin Side Channels Project, Browitt Property Acquisition

    SciTech Connect

    Stewart, Shannon C.

    2002-10-18

    BPA proposes to purchase approximately 42 acres of privately-owned land in the Yakima River Basin in Kittitas County, Washington as part of the Yakima River Side Channels Project. Title to the land will be transferred to the United States Government, Bonneville Power Administration for fish and wildlife habitat protection and enhancement. The goal of this project is to contribute toward the rebuilding of Yakima Basin spring chinook salmon and steelhead populations by improving survival during their first year of life. This will be accomplished by protecting and restoring off-channel rearing habitats associated with the mainstem of the Yakima River. Historically, these habitats have been severely degraded through the construction of transportation corridors, irrigation developments, and diking activities. The subject parcel is located near the Cle Elum reach of the Yakima River which contains a variety of aquatic and riparian habitats that support native fish, reptiles, and amphibians, as well as waterfowl. These lands are located in a portion of the watershed where a large percentage of the basin’s spring chinook salmon spawn. The Browitt Property contains shallow backwater channels and wetlands that are protected by a thick over-story of native trees and brush. These features are important for the development of young fish during their first year of life. The Browitt Property will be preserved in its natural condition to ensure that this critical fish-rearing habitat is maintained in the future.

  13. Modelling runoff response from Hindukush-Karakoram-Himalaya, Upper Indus Basin under prevailing and projected climate change scenarios

    NASA Astrophysics Data System (ADS)

    Hasson, Shabeh ul; Böhner, Jürgen; Lucarini, Valerio

    2015-04-01

    We, analyzing observations from high altitude automated weather stations from the Hindukush-Karakoram-Himalaya (HKH) within upper Indus basin (UIB), assess prevailing state of climatic changes over the UIB and whether such state is consistently represented by the latest generation climate model simulations. We further assess impacts of future climate change on the hydrology of the UIB, and changes in its snow and glacier melt regimes, separately. For this, a semi-distributed watershed model (UBC - University of British Columbia) has been calibrated/validated for UIB at Besham Qila (just above the Tarbela reservoir) using daily historical climate (Tmax, Tmin and Precipitation) and river flow data for the period 1995-2012. Our results show that the UIB stands out the anthropogenic climate change signal, featuring a significant cooling (warming) during the mid-to-late (early) melt season and an enhanced influence of the westerly and monsoonal precipitation regimes. We also show that such phenomena, particularly the summer cooling is largely absent from the latest generation climate model simulations, suggesting their irrelevance for at least near-future assessment of climate change impacts on the hydrology of UIB. Therefore, we construct a hypothetical but more relevant near-future climate change scenario till 2030 based on prevailing state of climate change over UIB. We additionally obtain climate change scenario as projected by five high-resolution CMIP5 climate models under an extreme representative concentration pathway RCP8.5 for the period 2085-2100, assuming that such a scenario may only be realized in the far-future, if at all. Under the hypothetical near-future scenario, our modelling results show that the glacier melt (snowmelt) contribution will decrease (increase) due to cooling (warming) in mid-to-late (early) melt season, though the overall flows will drop. Consequently, the overall hydrological regime will experience an early snow- but a delayed glacier

  14. Mantle to hydrothermal vent sites of the Southern Mariana Trough back-arc Basin: Results from the Taiga Project

    NASA Astrophysics Data System (ADS)

    Seama, N.; Okino, K.; Nogi, Y.; Sato, T.; Matsuno, T.; Yoshikawa, S.; Mochizuki, N.; Shinohara, M.

    2012-12-01

    The southern Mariana Trough back-arc basin shows an EPR type axial relief in morphology and constant low mantle Bouguer anomaly along the spreading axis (Kitada et al., 2006), suggesting abundance of magma supply, even though the full spreading rate of 40 km/Myr is categorized as slow spreading. Further, five hydrothermal vent sites exist within 5 km near the spreading axis at 13 N; two sites on the spreading axis, one site at the eastern foot of the axial high, and two sites on an off-axis knoll. We selected this area as one of three integrated target sites for the Taiga Project, and we conducted series of JAMSTEC research cruises for four different types of geophysical surveys, together with dive observation and samplings by the submersible Shinkai6500. The geophysical surveys consists of 1) a marine magnetotelluric (MT) survey of a 130 km length transect across the spreading axis using 10 ocean bottom electro-magnetometers, 2) a 15 km scale seismic reflection/refraction survey and seismicity observation using 9 ocean bottom seismometers (OBS), 3) near-bottom acoustic and magnetic mapping around all the hydrothermal sites using the AUV Urashima, and 4) a magnetometric resistivity (MMR) survey around the on-axis hydrothermal sites. Two-dimensional electrical resistivity structure of the upper mantle from the MT analysis shows highly asymmetry, which may be affected by hydration driven by water release from the subducting slab; that may result in abundant magma supply to support EPR type axial morphology. Three months OBS observation shows that the seismicity near the hydrothermal vent sites is very low, suggesting that hydrothermal activities are not related to tectonic stress. Moreover, the morphology of the mound and knoll near the three off-axis hydrothermal sites shows undeformed features without any faults, suggesting that their formation is closely related to an off-axis magma upwelling system rather than fault systems. The two on-axis hydrothermal sites

  15. Analysis and projections of climate change impacts on flood risks in the Dniester river basin based on the ENSEMBLES RCM data

    NASA Astrophysics Data System (ADS)

    Krakovska, S.; Balabukh, V.; Palamarchuk, L.; Djukel, G.; Gnatiuk, N.

    2012-04-01

    The pilot project "Reducing vulnerability to extreme floods and climate change in the Dniester river basin" started in May 2010 in the frame of the Dniester-III project which is implemented by OSCE, UNECE and UNEP in close collaboration with authorities and NGOs from Moldova and Ukraine. The project is a part of the Environment and Security initiative (ENVSEC) and aims to reduce risks from climate change - and specifically flooding - for security by improving the adaptive capacity of Ukraine and the Republic of Moldova, taking into account both current climate variability and long-term impacts of climate change on flood risks (http://www1.unece.org/ehlm/platform/display/ClimateChange/Dniester). The Dniester is a river in Eastern Europe, one of the largest rivers of the Carpathians. The Dniester flows from northwest to southeast on the territory of Ukraine, Moldova and Transdniestria. The length of the Dniester is 1352 km with basin area of 72100 km2. The river starts in the Carpathian Mountains at an altitude of 900 m above the sea level and flows into the Dniester estuary, which is connected to the Black Sea. In order to reduce impacts from extreme floods in the Dniester river basin under transient climate conditions the first task of the project was to assess the recent climate changes and particularly extreme precipitation events. For this purpose database of the specially worked out system with inputs from observational data from 1980 up to now of all stations within the Dniester basin was applied. Retrospective analysis of severe hydrometeorological events has revealed that more than 30% of precipitation at warm half of the year are heavy and very heavy rains. And input of such extreme precipitation to annual sum increased during last 30 year by about 7% per decade in the region. Possible reason for this is an intensification of convection in bottom 5km layer of the troposphere which is observed from the middle 90th of the 20th century. During this period an

  16. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-70) - Yakima Basin Side Channels Project, Scatter Creek/Plum Creek Land Acquisition Phase I

    SciTech Connect

    Stewart, Shannon C.

    2001-10-23

    Bonneville Power Administration proposes to purchase 4 privately owned parcels totaling approximately 61 acres in the Yakima River Basin in Kittitas County, Washington as part of the Yakima River Side Channels Project. BPA proposes to purchase 4 privately owned parcels totaling approximately 61 acres in the Yakima River Basin in Kittitas County, Washington as part of the Yakima River Side Channels Project. Title to the land will be transferred to the United States Government, Bonneville Power Administration for fish and wildlife habitat protection and enhancement. The goal of this project is to contribute toward the rebuilding of Yakima Basin spring chinook salmon and steelhead populations by improving survival during their first year of life. This will be accomplished by protecting and restoring off-channel rearing habitats associated with the mainstem of the Yakima River. Historically, these habitats have been severely degraded through the construction of transportation corridors, irrigation developments, and diking activities. The subject parcels are located near the Cle Elum reach of the Yakima River which contains a variety of aquatic and riparian habitats that support native fish, reptiles, and amphibians, as well as waterfowl. Conservation of these parcels will contribute to the rebuilding of steelhead and chinook salmon runs in the Yakima River system. These lands are located in a portion of the watershed where a large percentage of the basin’s spring chinook salmon spawn. Upon hatching, young salmon fry move into the shallow areas along the river margins to begin their early growth. These parcels contain numerous shallow backwater channels and wetlands that are protected by a thick over-story of native trees and brush. These features are important for the development of the young fish during their first year of life. This project proposes to preserve these 61 acres in their natural condition, which will ensure that this critical fish rearing habitat is

  17. Global and local scale flood discharge simulations in the Rhine River basin for flood risk reduction benchmarking in the Flagship Project

    NASA Astrophysics Data System (ADS)

    Gädeke, Anne; Gusyev, Maksym; Magome, Jun; Sugiura, Ai; Cullmann, Johannes; Takeuchi, Kuniyoshi

    2015-04-01

    The global flood risk assessment is prerequisite to set global measurable targets of post-Hyogo Framework for Action (HFA) that mobilize international cooperation and national coordination towards disaster risk reduction (DRR) and requires the establishment of a uniform flood risk assessment methodology on various scales. To address these issues, the International Flood Initiative (IFI) has initiated a Flagship Project, which was launched in year 2013, to support flood risk reduction benchmarking at global, national and local levels. In the Flagship Project road map, it is planned to identify the original risk (1), to identify the reduced risk (2), and to facilitate the risk reduction actions (3). In order to achieve this goal at global, regional and local scales, international research collaboration is absolutely necessary involving domestic and international institutes, academia and research networks such as UNESCO International Centres. The joint collaboration by ICHARM and BfG was the first attempt that produced the first step (1a) results on the flood discharge estimates with inundation maps under way. As a result of this collaboration, we demonstrate the outcomes of the first step of the IFI Flagship Project to identify flood hazard in the Rhine river basin on the global and local scale. In our assessment, we utilized a distributed hydrological Block-wise TOP (BTOP) model on 20-km and 0.5-km scales with local precipitation and temperature input data between 1980 and 2004. We utilized existing 20-km BTOP model, which is applied globally, and constructed the local scale 0.5-km BTOP model for the Rhine River basin. For the BTOP model results, both calibrated 20-km and 0.5-km BTOP models had similar statistical performance and represented observed flood river discharges, epecially for 1993 and 1995 floods. From 20-km and 0.5-km BTOP simulation, the flood discharges of the selected return period were estimated using flood frequency analysis and were comparable to

  18. Field screening of water, soil, bottom sediment, and biota associated with irrigation drainage in the Dolores Project and the Macos River basin, southwestern Colorado, 1994

    USGS Publications Warehouse

    Butler, D.L.; Osmundson, B.C.; Krueger, R.P.

    1997-01-01

    A reconnaissance investigation for the National Irrigation Water Quality Program in 1990 indicated elevated selenium concentrations in some water and biota samples collected in the Dolores Project in southwestern Colorado. High selenium concentrations also were indicated in bird samples collected in the Mancos Project in 1989. In 1994, field screenings were done in parts of the Dolores Project and Mancos River Basin to collect additional selenium data associated with irrigation inthose areas. Selenium is mobilized from soils in newly irrigated areas of the Dolores Project called the Dove Creek area, which includes newly (since 1987) irrigated land north of Cortez and south of Dove Creek.Selenium was detected in 18 of 20stream samples, and the maximum concentration was 12micrograms per liter. The Dove Creek area is unique compared to other study areas of the National Irrigation Water Quality Program becauseselenium concentrations probably are indicative of initial leaching conditions in a newly irrigated area.Selenium concentrations in nine shallow soil samples from the Dove Creek area ranged from 0.13 to 0.20 micrograms per gram. Selenium concentrations in bottom sediment from six ponds were less than the level of concern for fish and wildlife of 4 micrograms per gram. Many biota samples collected in the Dove Creek area had elevated selenium concentrations when compared to various guidelines and effect levels,although selenium concentrations in water, soil, and bottom sediment were relatively low. Selenium concentrations in 12 of 14 aquatic-invertebratesamples from ponds exceeded 3 micrograms per gram dry weight, a dietary guideline for protection of fish and wildlife. The mean seleniumconcentration of 10.3 micrograms per gram dry weight in aquatic bird eggs exceeded the guideline for reduced hatchability of 8 micrograms per gramdry weight. Two ponds in the Dove Creek area had a high selenium hazard rating based on a new protocol for assessing selenium hazard in

  19. Comparison of models for predicting the changes in phytoplankton community composition in the receiving water system of an inter-basin water transfer project.

    PubMed

    Zeng, Qinghui; Liu, Yi; Zhao, Hongtao; Sun, Mingdong; Li, Xuyong

    2017-04-01

    Inter-basin water transfer projects might cause complex hydro-chemical and biological variation in the receiving aquatic ecosystems. Whether machine learning models can be used to predict changes in phytoplankton community composition caused by water transfer projects have rarely been studied. In the present study, we used machine learning models to predict the total algal cell densities and changes in phytoplankton community composition in Miyun reservoir caused by the middle route of the South-to-North Water Transfer Project (SNWTP). The model performances of four machine learning models, including regression trees (RT), random forest (RF), support vector machine (SVM), and artificial neural network (ANN) were evaluated and the best model was selected for further prediction. The results showed that the predictive accuracies (Pearson's correlation coefficient) of the models were RF (0.974), ANN (0.951), SVM (0.860), and RT (0.817) in the training step and RF (0.806), ANN (0.734), SVM (0.730), and RT (0.692) in the testing step. Therefore, the RF model was the best method for estimating total algal cell densities. Furthermore, the predicted accuracies of the RF model for dominant phytoplankton phyla (Cyanophyta, Chlorophyta, and Bacillariophyta) in Miyun reservoir ranged from 0.824 to 0.869 in the testing step. The predicted proportions with water transfer of the different phytoplankton phyla ranged from -8.88% to 9.93%, and the predicted dominant phyla with water transfer in each season remained unchanged compared to the phytoplankton succession without water transfer. The results of the present study provide a useful tool for predicting the changes in phytoplankton community caused by water transfer. The method is transferrable to other locations via establishment of models with relevant data to a particular area. Our findings help better understanding the possible changes in aquatic ecosystems influenced by inter-basin water transfer.

  20. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-72) - Yakima Basin Side Channels Project, Scatter Creek/Plum Creek Land Acquisition Phase II

    SciTech Connect

    Stewart, Shannon C.

    2001-12-03

    BPA proposes to purchase 2 privately owned parcels totaling approximately 60 acres in the Yakima River Basin in Kittitas County, Washington as part of the Yakima River Side Channels Project. Title to the land will be transferred to the United States Government, Bonneville Power Administration for fish and wildlife habitat protection and enhancement. The goal of this project is to contribute toward the rebuilding of Yakima Basin spring chinook salmon and steelhead populations by improving survival during their first year of life. This will be accomplished by protecting and restoring off-channel rearing habitats associated with the mainstem of the Yakima River. Historically, these habitats have been severely degraded through the construction of transportation corridors, irrigation developments, and diking activities. The subject parcels are located near the Cle Elum reach of the Yakima River which contains a variety of aquatic and riparian habitats that support native fish, reptiles, and amphibians, as well as waterfowl. Conservation of these parcels will contribute to the rebuilding of steelhead and chinook salmon runs in the Yakima River system. These lands are located in a portion of the watershed where a large percentage of the basin’s spring chinook salmon spawn. Upon hatching, young salmon fry move into the shallow areas along the river margins to begin their early growth. These parcels contain numerous shallow backwater channels and wetlands that are protected by a thick over-story of native trees and brush. These features are important for the development of the young fish during their first year of life. This project proposes to preserve these 60 acres in their natural condition, which will ensure that this critical fish rearing habitat is maintained in the future.

  1. ADVANCED CHEMISTRY BASINS MODEL

    SciTech Connect

    William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2004-05-01

    The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

  2. Distribution and origin of authigenic smectite clays in Cape Roberts Project Core 3, Victoria Land Basin, Antarctica

    USGS Publications Warehouse

    Priestas, A.W.; Wise, S.W.

    2007-01-01

    Of some 800 m of lower Oligocene marine sediments cored continuously from the seafloor in the Victoria Land Basin of Antarctica at Cape Roberts Site CRP-3, the lower 500 m exhibit authigenic smectite clay coats on shallow-water sandstone grains. A scanning electron microscope/EDS study of 46 fracture sections confirms that the distribution of the clay coats through the unit is not uniform or evenly distributed, but rather varies with depth, original porosity, and the kinds and abundance of source materials. Our results suggest that smectite emplacement resulted from in-situ, low-temperature burial diagenesis rather than hydrothermal or fault-focused thermobaric fluids.

  3. Groundwater well inventory and assessment in the area of the proposed Normally Pressured Lance natural gas development project, Green River Basin, Wyoming, 2012

    USGS Publications Warehouse

    Sweat, Michael J.

    2013-01-01

    During May through September 2012, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, inventoried and assessed existing water wells in southwestern Wyoming for inclusion in a possible groundwater-monitor network. Records were located for 3,282 wells in the upper Green River Basin, which includes the U.S. Geological Survey study area and the proposed Normally Pressured Lance natural gas development project area. Records for 2,713 upper Green River Basin wells were determined to be unique (not duplicated) and to have a Wyoming State Engineers Office permit. Further, 376 of these wells were within the U.S. Geological Survey Normally Pressured Lance study area. Of the 376 wells in the U.S. Geological Survey Normally Pressured Lance study area, 141 well records had sufficient documentation, such as well depth, open interval, geologic log, and depth to water, to meet many, but not always all, established monitor well criteria. Efforts were made to locate each of the 141 wells and to document their current condition. Field crews were able to locate 121 of the wells, and the remaining 20 wells either were not located as described, or had been abandoned and the site reclaimed. Of the 121 wells located, 92 were found to meet established monitor well criteria. Results of the field efforts during May through September 2012, and specific physical characteristics of the 92 wells, are presented in this report.

  4. A Novel Application of Agent-based Modeling: Projecting Water Access and Availability Using a Coupled Hydrologic Agent-based Model in the Nzoia Basin, Kenya

    NASA Astrophysics Data System (ADS)

    Le, A.; Pricope, N. G.

    2015-12-01

    Projections indicate that increasing population density, food production, and urbanization in conjunction with changing climate conditions will place stress on water resource availability. As a result, a holistic understanding of current and future water resource distribution is necessary for creating strategies to identify the most sustainable means of accessing this resource. Currently, most water resource management strategies rely on the application of global climate predictions to physically based hydrologic models to understand potential changes in water availability. However, the need to focus on understanding community-level social behaviors that determine individual water usage is becoming increasingly evident, as predictions derived only from hydrologic models cannot accurately represent the coevolution of basin hydrology and human water and land usage. Models that are better equipped to represent the complexity and heterogeneity of human systems and satellite-derived products in place of or in conjunction with historic data significantly improve preexisting hydrologic model accuracy and application outcomes. We used a novel agent-based sociotechnical model that combines the Soil and Water Assessment Tool (SWAT) and Agent Analyst and applied it in the Nzoia Basin, an area in western Kenya that is becoming rapidly urbanized and industrialized. Informed by a combination of satellite-derived products and over 150 household surveys, the combined sociotechnical model provided unique insight into how populations self-organize and make decisions based on water availability. In addition, the model depicted how population organization and current management alter water availability currently and in the future.

  5. Hydrological changes in the U.S. Northeast using the Connecticut River Basin as a case study: Part 2. Projections of the future

    NASA Astrophysics Data System (ADS)

    Parr, Dana; Wang, Guiling; Ahmed, Kazi F.

    2015-10-01

    The focus of this study is on whether the recent warming-induced hydrologic changes in the U.S. Northeast will continue in the future (2046-2065) and how future changes of precipitation characteristics may influence other hydrological processes in the Connecticut River Basin (CRB). Our previous study (Parr and Wang 2014) examines the impact of climate changes during 1950-2011 on hydrological processes in the Northeast using the CRB as a case study. Our results showed a clear increase of precipitation intensity and suggested that the basin is entering a wetter regime more subject to meteorological flood conditions than to drought conditions. For this future analysis, three North American Regional Climate Change Assessment Program (NARCCAP) models are used to derive the meteorological forcing for the Variable Infiltration Capacity (VIC) hydrological model, using both present day and the future projected A1B scenario climate. Our future projections indicate wetter winters including significantly greater precipitation, runoff, and soil moisture, decreases to spring runoff, and enhanced ET for all four seasons. We also find a shift toward earlier and faster snow melting and an earlier date of peak discharge. Future precipitation extremes show a decreased amount compared to the early 21st Century, but increased when compared to our entire historic period or the late 20th Century, as well as a consistently increasing mean intensity throughout the past and future. Analyses of extreme hydrologic events reveals changing characteristics of flooding involving increasing duration but decreasing frequency of flood events as well as a reduction of drought risk.

  6. Integrated studies of the recent evolution of Deception Island in the geodynamic setting of the Bransfield Basin opening (Antarctica): GEOMAGDEC Project

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; Gil-Imaz, Andrés.; Gil-Peña, Inmaculada; Galindo-Zaldívar, Jesús; Rey, Jorge; Soto, Ruth; López-Martínez, Jerónimo; Llave, Estefanía.; Bohoyo, Fernando; Rull, Fernando; Martínez-Frías, Jesús; Galán, Luis; Casas, David; Lunar, Rosario; Ercilla, Gemma; Somoza, Luis

    2010-05-01

    Deception Island shows the most recent active volcanism, evidence of several eruptions since the late 18th century, and well-known eruptions in 1967, 1969, and 1970 at the western end of the volcanic ridge of the Bransfield Trough, between the South Shetland Islands and the Antarctic Peninsula. The recent tectonic activity of the Bransfield Trough is not well defined, and it presents a controversial origin. It is currently explained by two different models: (1) Opening of the basin may be related to passive subduction of the former Phoenix Plate and subsequent rollback of the South Shetland Trench; or (2) an oblique extension along the Antarctic Peninsula continental margin generated by the sinistral movement between the Antarctic and Scotia plates. This extension develops the Bransfield Trough and spread away the South Shetland tectonic block. The GEOMAGDEC project involves a multidisciplinary and integrated research of the Deception Island based on geophysical and geological methods. The purpose of this project, funded by the Spanish research agency, is the understanding of the main processes that govern the evolution of the Deception Island into the development of Bransfield Basin during recent times. Main aims are: (1) Study of the anisotropy of the magnetic susceptibility of volcanic deposits of emerged area of Deception Island to determine the relationship between magmatism (intrusive and extrusive) with the recent tectonic activity. This task allows the reconstruction of igneous flow directions of the different volcanic units established in the island, dikes emplacement modelling in active tectonic regime, and the integration of the results obtained in a kinematic and dynamic emplacement model of the different volcanic units of the Deception Island into recent geodynamic setting of Bransfield Basin opening. (2) Lito- and crono-stratigraphy analysis of the quaternary sedimentary units that filled Port Foster (inner bay of Deception Island) on the basis of the

  7. Enumeration of Salmonids in the Okanogan Basin Using Underwater Video, Performance Period: October 2005 (Project Inception) - 31 December 2006.

    SciTech Connect

    Johnson, Peter N.; Rayton, Michael D.; Nass, Bryan L.; Arterburn, John E.

    2007-06-01

    The Confederated Tribes of the Colville Reservation (Colville Tribes) identified the need for collecting baseline census data on the timing and abundance of adult salmonids in the Okanogan River Basin in order to determine basin and tributary-specific spawner distributions, evaluate the status and trends of natural salmonid production in the basin, document local fish populations, and augment existing fishery data. This report documents the design, installation, operation and evaluation of mainstem and tributary video systems in the Okanogan River Basin. The species-specific data collected by these fish enumeration systems are presented along with an evaluation of the operation of a facility that provides a count of fish using an automated method. Information collected by the Colville Tribes Fish & Wildlife Department, specifically the Okanogan Basin Monitoring and Evaluation Program (OBMEP), is intended to provide a relative abundance indicator for anadromous fish runs migrating past Zosel Dam and is not intended as an absolute census count. Okanogan Basin Monitoring and Evaluation Program collected fish passage data between October 2005 and December 2006. Video counting stations were deployed and data were collected at two locations in the basin: on the mainstem Okanogan River at Zosel Dam near Oroville, Washington, and on Bonaparte Creek, a tributary to the Okanogan River, in the town of Tonasket, Washington. Counts at Zosel Dam between 10 October 2005 and 28 February 2006 are considered partial, pilot year data as they were obtained from the operation of a single video array on the west bank fishway, and covered only a portion of the steelhead migration. A complete description of the apparatus and methodology can be found in 'Fish Enumeration Using Underwater Video Imagery - Operational Protocol' (Nass 2007). At Zosel Dam, totals of 57 and 481 adult Chinook salmon were observed with the video monitoring system in 2005 and 2006, respectively. Run timing for

  8. Status of groundwater quality in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Parsons, Mary C.; Hancock, Tracy Connell; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 963-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in San Bernardino, Riverside, San Diego, and Imperial Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey from 52 wells (49 grid wells and 3 understanding wells) and on water-quality data from the California Department of Public Health database. The primary aquifer system was defined by the depth intervals of the wells listed in the California Department of Public Health database for the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, not the

  9. The Reaches Project : Ecological and Geomorphic Dtudies Supporting Normative Flows in the Yakima River Basin, Washington, Final Report 2002.

    SciTech Connect

    Stanford, Jack A.; Lorang, Mark N.; Matson, Phillip L.

    2002-10-01

    The Yakima River system historically produced robust annual runs of chinook, sockeye, chum and coho salmon and steelhead. Many different stocks or life history types existed because the physiography of the basin is diverse, ranging from very dry and hot in the high desert of the lower basin to cold and wet in the Cascade Mountains of the headwaters (Snyder and Stanford 2001). Habitat diversity and life history diversity of salmonids are closely correlated in the Yakima Basin. Moreover, habitat diversity for salmonids and many other fishes maximizes in floodplain reaches of river systems (Ward and Stanford 1995, Independent Scientific Group 2000). The flood plains of Yakima River likely were extremely important for spawning and rearing of anadromous salmonids (Snyder and Stanford 2001). However, Yakima River flood plains are substantially degraded. Primary problems are: revetments that disconnect main and side channel habitats; dewatering associated with irrigation that changes base flow conditions and degrades the shallow-water food web; chemical and thermal pollution that prevents proper maturation of eggs and juveniles; and extensive gravel mining within the floodplain reaches that has severed groundwater-channel connectivity, increased thermal loading and increased opportunities for invasions of nonnative species. The Yakima River is too altered from its natural state to allow anything close to the historical abundance and diversity of anadromous fishes. Habitat loss, overharvest and dam and reservoir passage problems in the mainstem Columbia River downstream of the Yakima, coupled with ocean productivity variation, also are implicated in the loss of Yakima fisheries. Nonetheless, in an earlier analysis, Snyder and Stanford (2001) concluded that a significant amount of physical habitat remains in the five floodplain reaches of the mainstem river because habitat-structuring floods do still occur on the remaining expanses of floodplain environment. Assuming main

  10. Turn Basin Construction

    NASA Image and Video Library

    2017-06-30

    At NASA's Kennedy Space Center in Florida, cement is poured as part of a construction project to upgrade the turn basin wharf. The work includes driving multiple precast concrete piles to a depth of about 70 feet to accommodate arrival of the core stage for the agency's Space Launch System (SLS) rocket. When the stage for NASA's SLS departs the Michoud Assembly Facility in New Orleans, it will be shipped by the agency's modified barge to the Launch Complex 39 turn basin.

  11. Projected effects of proposed salinity-control projects on shallow ground water; preliminary results for the upper Brazos River basin, Texas

    USGS Publications Warehouse

    Garza, Sergio

    1982-01-01

    Two-dimensional digital-computer models were developed for aquifer simulation of steady and transient conditions in which the density effects of salt water are considered. The models were used to project the effects of the 100- year impoundment of salt water in Kiowa Peak Lake and Croton Lake on the freshwater system. Rises in aquifer head of 10 to 50 feet are projected only for areas near each dan and along each lake shoreline. The maximum migration of salt water downstream from each dam is projected to be about 1 mile. The modeling efforts in this study did not include the effects of hydrodynamic dispersion nor consideration of possible changes in the hydraulic conductivity of the aquifer due to physical and chemical interactions in the salt-water and fresh-water environments.

  12. Reserves in western basins

    SciTech Connect

    Caldwell, R.H.; Cotton, B.W.

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  13. Hydroclimatic projections for the Murray-Darling Basin based on an ensemble derived from Intergovernmental Panel on Climate Change AR4 climate models

    NASA Astrophysics Data System (ADS)

    Sun, Fubao; Roderick, Michael L.; Lim, Wee Ho; Farquhar, Graham D.

    2011-12-01

    We assess hydroclimatic projections for the Murray-Darling Basin (MDB) using an ensemble of 39 Intergovernmental Panel on Climate Change AR4 climate model runs based on the A1B emissions scenario. The raw model output for precipitation, P, was adjusted using a quantile-based bias correction approach. We found that the projected change, ΔP, between two 30 year periods (2070-2099 less 1970-1999) was little affected by bias correction. The range for ΔP among models was large (˜±150 mm yr-1) with all-model run and all-model ensemble averages (4.9 and -8.1 mm yr-1) near zero, against a background climatological P of ˜500 mm yr-1. We found that the time series of actually observed annual P over the MDB was indistinguishable from that generated by a purely random process. Importantly, nearly all the model runs showed similar behavior. We used these facts to develop a new approach to understanding variability in projections of ΔP. By plotting ΔP versus the variance of the time series, we could easily identify model runs with projections for ΔP that were beyond the bounds expected from purely random variations. For the MDB, we anticipate that a purely random process could lead to differences of ±57 mm yr-1 (95% confidence) between successive 30 year periods. This is equivalent to ±11% of the climatological P and translates into variations in runoff of around ±29%. This sets a baseline for gauging modeled and/or observed changes.

  14. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2005 Annual Report.

    SciTech Connect

    Branstetter, Ryan; Whiteaker, John; Hatch, Douglas R.

    2006-01-01

    Iteroparity, the ability to repeat spawn, is a natural life history strategy that is expressed by some species from the family Salmonidae. Estimated rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the current expression of repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations, and could help reestablish this naturally occurring life history trait. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia River Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, wild emigrating steelhead kelts were placed into one of four study groups (in river release, direct capture and transport, short-term reconditioning, or long-term reconditioning). Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 11 March to 23 June 2005. In total, 519 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 15.0% (519 of 3,451) of the entire 2004-2005 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. Steelhead kelts were reconditioned in 20-foot circular tanks, and fed freeze-dried krill initially (first 2

  15. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2005-2006 Annual Report.

    SciTech Connect

    Branstetter, Ryan; Whiteaker, John; Hatch, Douglas R.

    2006-12-01

    Iteroparity, the ability to repeat spawn, is a natural life history strategy that is expressed by some species from the family Salmonidae. Estimated rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the current expression of repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations, and could help reestablish this naturally occurring life history trait. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia River Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, wild emigrating steelhead kelts were placed into one of four study groups (in river release, direct capture and transport, short-term reconditioning, or long-term reconditioning). Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 7 March to 8 June 2006. In total, 348 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 17.0% (348 of 2,002) of the entire 2005-2006 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. Steelhead kelts were reconditioned in 20-foot circular tanks, and fed freeze-dried krill initially (first 2

  16. 77 FR 53231 - Final Environmental Impact Statement for the Odessa Subarea Special Study-Columbia Basin Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... State Department of Ecology (Ecology), the joint lead agency, is notifying the public that they have... January 31, 2011. Reclamation and Ecology have clarified the FEIS is the initial environmental analysis within a tiered process under NEPA and SEPA. Reclamation and Ecology expect that some projects or actions...

  17. 75 FR 1408 - Pick-Sloan Missouri Basin Program, Eastern and Western Division Proposed Project Use Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... Mike Ferguson, GP-2020, Power O&M Administrator, Bureau of Reclamation, P.O. Box 36900, Billings, MT... calculated as follows: P = (((BD/CROD)--1) * BE) * (10 * CR) Where: P = Penalty ($) BD = Billed Demand (kW) CROD = Contract Rate of Delivery (kW) BE = Billed Energy (kWh) CR = Current Project Use Power...

  18. Projected climate change effects on subsurface drainage and the performance of controlled drainage in the Western Lake Erie Basin

    USDA-ARS?s Scientific Manuscript database

    The US Midwest is expected to experience higher intensity rainfall events along with an increased chance of drought during the mid- and late-21st century under climate change. Development of strategies to mitigate the impact of these projected changes on agricultural production may be critical for e...

  19. Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin

    Treesearch

    Erin S. Brooks; Mariana Dobre; William J. Elliot; Joan Q. Wu; Jan Boll

    2016-01-01

    Forest managers need methods to evaluate the impacts of management at the watershed scale. The Water Erosion Prediction Project (WEPP) has the ability to model disturbed forested hillslopes, but has difficulty addressing some of the critical processes that are important at a watershed scale, including baseflow and water yield. In order to apply WEPP to...

  20. Making climate change projections relevant to water management: opportunities and challenges in the Colorado River basin (Invited)

    NASA Astrophysics Data System (ADS)

    Vano, J. A.

    2013-12-01

    By 2007, motivated by the ongoing drought and release of new climate model projections associated with the IPCC AR4 report, multiple independent studies had made estimates of future Colorado River streamflow. Each study had a unique approach, and unique estimate for the magnitude for mid-21st century streamflow change ranging from declines of only 6% to declines of as much as 45%. The differences among studies provided for interesting scientific debates, but to many practitioners this appeared to be just a tangle of conflicting predictions, leading to the question 'why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted?' In response, a group of scientists from academic and federal agencies, brought together through a NOAA cross-RISA project, set forth to identify the major sources of disparities and provide actionable science and guidance for water managers and decision makers. Through this project, four major sources of disparities among modeling studies were identified that arise from both methodological and model differences. These differences, in order of importance, are: (1) the Global Climate Models (GCMs) and emission scenarios used; (2) the ability of land surface hydrology and atmospheric models to simulate properly the high elevation runoff source areas; (3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and (4) the methods used to statistically downscale GCM scenarios. Additionally, reconstructions of pre-instrumental streamflows provided further insights about the greatest risk to Colorado River streamflow of a multi-decadal drought, like those observed in paleo reconstructions, exacerbated by a steady reduction in flows due to climate change. Within this talk I will provide an overview of these findings and insights into the opportunities and challenges encountered in the process of striving to make

  1. The shallow P-velocity structure of the southern Dead Sea basin derived from near-vertical incidence reflection seismic data in project DESIRE

    NASA Astrophysics Data System (ADS)

    Paschke, M.; Stiller, M.; Ryberg, T.; Weber, M.

    2012-02-01

    As a part of the DEad Sea Integrated REsearch (DESIRE) project a near-vertical incidence reflection (NVR) experiment with a profile length of 122 km was completed in spring 2006. The profile crossed the southern Dead Sea basin (DSB), a pull-apart basin due to the strike-slip motion along the Dead Sea Transform (DST). The DST with a total displacement of 107 km since about 18 Ma is part of a left-lateral fault system which connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a distance of about 1100 km. The seismic experiment comprises 972 source locations and 1045 receiver locations. Each source was recorded by ˜180 active receivers and a field data set with 175 000 traces was created. From this data set, 124 444 P-wave first-break traveltimes have been picked. With these traveltimes a tomographic inversion was carried out, resulting in a 2-D P-wave velocity model with a rms error of 20.9 ms. This model is dominated by a low-velocity region associated with the DSB. Within the DSB, the model shows clearly the position of the Lisan salt diapir, identified by a high-velocity zone. A further feature is an unexpected laterally low-velocity zone with P-velocities of 3 km s-1 embedded in regions with 4 km s-1 in the shallow part on the west side of the DSB. Another observation is an anticlinal structure west of the DSB interpretated to the related Syrian arc fold belt.

  2. The shallow P-velocity structure of the southern Dead Sea basin derived from near-vertical incidence reflection seismic data in project DESIRE

    NASA Astrophysics Data System (ADS)

    Ryberg, T.; Paschke, M.; Stiller, M.; Weber, M. H.; Desire Group

    2010-12-01

    As a part of the DEad Sea Integrated REsearch (DESIRE) project a seismic near-vertical incidence reflection (NVR) experiment with a profile length of 122 km was completed in spring 2006. The profile crossed the southern Dead Sea basin (DSB), a pull-apart basin due to the strike-slip motion along the Dead Sea Transform (DST). The DST is part of a multi-stage left lateral fault system which connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1,100 km. The experiment, with the main aim to explore lithologic structures in this area, was carried out in a roll-along acquisition procedure and comprises 972 source locations and 1.045 receiver locations. Each source was recorded by ~180 active receivers and a field dataset with 175,000 traces was created. From this dataset, 124,444 P-wave first-break traveltimes has been picked for this study. A tomographic inversion was carried out, resulting in a 2-D P-wave velocity model. Within the DSB, the model shows clearly the position of the Lisan salt diapir, identified by a high velocity zone. Further features are low velocity zones with P-velocities of ~3 km/s embedded in regions with ~4 km/s in the shallow part on the west side of the DSB. To verify the existence of this low velocity zone, a recovery test and also inversions with different starting models has been carried out. Correlations between the velocity model, a migrated NVR depth section and a geological model based on borehole and surface information will be presented.

  3. Spent nuclear fuel project surface area estimates for N-Reactor fuel in the K East basin

    SciTech Connect

    Cooper, T.D.

    1996-09-30

    Spent N-reactor fuel will be moved from wet to dry storage at Hanford Washington. The majority ofthis fuel exists as intact fuel assemblies, however, small amounts ofscrap will be included. Varying amounts of uranium metal are exposed in these fuel assemblies, depending upon the amount of mechanical damage sustained by the zircaloy cladding. The total exposed uranium surface area in each storage pool is estimated through the release of radioisotopes to the storage pools. The exposed uranium surface area of individual fuel assemblies in the K-East basin were estimated through the results of a camera survey. The exposed uranium surface area of scrap is estimated from the known particle side range and an estimated log normal particle size distribution. This document uses the radioisotope release calculations, the estimated scrap surface area, and the carnera survey results to estimate the ``worst case`` amount of surface area that could exist in a given ``MCO`` container containing 4 levels of fuel assemblies and one scrap basket. The total exposed uranium metal surface area for this ``worst case`` was 120,000 cm{sup 2}.

  4. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2000-2001 Annual Report.

    SciTech Connect

    Gonzales, Dan; Schwabe, Lawrence; Wenick, Jess

    2001-08-01

    The Malheur basin lies within southeastern Oregon. The Malheur River is a tributary to the Snake River, entering at about River Kilometer (RK) 595. The hydrological drainage area of the Malheur River is approximately 12,950 km{sup 2} and is roughly 306 km in length. The headwaters of the Malheur River originate in the Blue Mountains at elevations of 6,500 to 7,500 feet, and drops to an elevation of 2000 feet at the confluence with the Snake River near Ontario, Oregon. The climate of the Malheur basin is characterized by hot dry summers, occasionally exceeding 38 C and cold winters that may drop below -29 C. Average annual precipitation is 300 centimeters and ranges from 100 centimeters in the upper mountains to less than 25 centimeters in the lower reaches (Gonzalez 1999). Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2000. The Burns Paiute Tribe (BPT), United States Forest Service (USFS), and Oregon Department of Fish and Wildlife (ODFW), have been working cooperatively to achieve this common goal. Bull trout ''Salvenlinus confluentus'' have specific environmental requirements and complex life histories making them especially susceptible to human activities that alter their habitat (Howell and Buchanan 1992). Bull trout are considered to be a cold-water species and are temperature dependent. This presents a challenge for managers, biologists, and private landowners in the Malheur basin. Because of the listing of bull trout under the Endangered Species Act as threatened and the current health of the landscape, a workgroup was formed to develop project objectives related to bull trout. This report will reflect work completed during the Bonneville Power contract period starting 1 April 2000 and ending 31 March 2001. The study area will

  5. Hazardous materials in aquatic environments of the Mississippi River basin. Quarterly project status report, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1993-08-01

    During this quarter, the Review Panel made its final recommendations regarding which of the proposals should be funded. Included in this report is a brief status report of each of the research and education projects that are currently funded in this project. The Coordinated Instrumentation Facility (CIF) sponsored 3 seminars on Environmental Sample Preparation Techniques. These seminars were designed to educate the investigators on the use of microwave digestion systems for sample preparation and the use of Inductively Coupled Plasma and Atomic Absorption Specrtroscopy for analyses. During this period, Tulane and Xavier Universities have worked closely with Oak Ridge National Laboratories (ORNL) to develop a long term relationship that will encourage interaction and collaborations among the investigators at all of the institutions.

  6. Assessing different sources of uncertainty in hydrological projections of high and low flows: case study for Omerli Basin, Istanbul, Turkey.

    PubMed

    Engin, Batuhan Eren; Yücel, Ismail; Yilmaz, Aysen

    2017-07-01

    This study investigates the assessment of uncertainty contribution in projected changes of high and low flows from parameterization of a hydrological model and inputs of ensemble regional climate models (RCM). An ensemble of climate projections including 15 global circulation model (GCM)/RCM combinations and two bias corrections (change factor (CF) and bias correction in mean (BC)) was used to generate streamflow series for a reference and future period using the Hydrologiska Byråns Vattenbalansavdelning (HBV) model with the 25 best-fit parameter sets based on four objective functions. The occurrence time of high flows is also assessed through seasonality index calculation. Results indicated that the inputs of hydrological model from ensemble climate models accounts for greater contribution to the uncertainty related to projected changes in high flows comparing to the contribution from hydrological model parameterization. However, the uncertainty contribution is opposite for low flows, particularly for CF method. Both CF and BC increases the total mean variance of high and low flows. The variability in the occurrence time of high flows through RCMs is greater than the variability resulted from hydrological model parameters with and without statistical downscaling. The CF provides more accurate timing than BC and it shows the most pronounced changes in flood seasonality.

  7. Software Configuration Management Plan for the K West Basin Integrated Water Treatment System (IWTS) Project A.9

    SciTech Connect

    GREEN, J.W.

    2000-05-01

    This document provides a configuration control plan for the software associated with the operation and control of the Integrated Water Treatment System (IWTS). It establishes requirements for ensuring configuration item identification, configuration control, configuration status accounting, defect reporting and resolution of computer software. It is written to comply with HNF-SD-SNF-CM-001, Spent Nuclear Fuel Configuration Management Plan (Forehand 1998) and HNF-PRO-309 Computer Software Quality Assurance Requirements, and applicable sections of administrative procedure CM-6-037-00, SNF Project Process Automation Software and Equipment.

  8. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; James, Brenda B.; Johnson, Christopher L.

    2003-05-01

    . 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Three areas of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocial salmon monitoring (abundance). This report is organized into three chapters to represent these three areas of investigation. Data were collected during the summer and fall, 2002 in index sections of the upper Yakima Basin (Figure 1). Hatchery reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  9. Caloris Basin

    NASA Image and Video Library

    1999-12-07

    Caloris Basin on Mercury, is one of the largest basins in the solar system, its diameter exceeds 1300 kilometers and is in many ways similar to the great Imbrium basin on the Moon. This image is from NASA Mariner 10 spacecraft which launched in 1974.

  10. Evaluation of machine learning tools as a statistical downscaling tool: temperatures projections for multi-stations for Thames River Basin, Canada

    NASA Astrophysics Data System (ADS)

    Goyal, Manish Kumar; Burn, Donald H.; Ojha, C. S. P.

    2012-05-01

    Many impact studies require climate change information at a finer resolution than that provided by global climate models (GCMs). This paper investigates the performances of existing state-of-the-art rule induction and tree algorithms, namely single conjunctive rule learner, decision table, M5 model tree, and REPTree, and explores the impact of climate change on maximum and minimum temperatures (i.e., predictands) of 14 meteorological stations in the Upper Thames River Basin, Ontario, Canada. The data used for evaluation were large-scale predictor variables, extracted from National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis dataset and the simulations from third generation Canadian coupled global climate model. Data for four grid points covering the study region were used for developing the downscaling model. M5 model tree algorithm was found to yield better performance among all other learning techniques explored in the present study. Hence, this technique was applied to project predictands generated from GCM using three scenarios (A1B, A2, and B1) for the periods (2046-2065 and 2081-2100). A simple multiplicative shift was used for correcting predictand values. The potential of the downscaling models in simulating predictands was evaluated, and downscaling results reveal that the proposed downscaling model can reproduce local daily predictands from large-scale weather variables. Trend of projected maximum and minimum temperatures was studied for historical as well as downscaled values using GCM and scenario uncertainty. There is likely an increasing trend for T max and T min for A1B, A2, and B1 scenarios while decreasing trend has been observed for B1 scenarios during 2081-2100.

  11. Communication in ecosystem management: a case study of cross-disciplinary integration in the assessment phase of the interior Columbia Basin Ecosystem Management Project.

    PubMed

    Jakobsen, Christine Haugaard; McLaughlin, William J

    2004-05-01

    Effective communication is essential to the success of collaborative ecosystem management projects. In this paper, we investigated the dynamics of the Interior Columbia Basin Ecosystem Management Project's (ICBEMP) cross-disciplinary integration process in the assessment phase. Using a case study research design, we captured the rich trail of experience through conducting in-depth interviews and collecting information from internal and public documents, videos, and meetings related to the ICBEMP. Coding and analysis was facilitated by a qualitative analysis software, NVivo. Results include the range of internal perspectives on barriers and facilitators of cross-disciplinary integration in the Science Integration Team (SIT). These are arrayed in terms of discipline-based differences, organizational structures and activities, individual traits of scientists, and previous working relationships. The ICBEMP organization included a team of communication staffs (CT), and the data described the CT as a mixed group in terms of qualifications and educational backgrounds that played a major role in communication with actors external to the ICBEMP organization but a minor one in terms of internal communication. The data indicated that the CT-SIT communication was influenced by characteristics of actors and structures related to organizations and their cultures. We conclude that the ICBEMP members may not have had a sufficient level of shared understanding of central domains, such as the task at hand and ways and timing of information sharing. The paper concludes by suggesting that future ecosystem management assessment teams use qualified communications specialists to design and monitor the development of shared cognition among organization members in order to improve the effectiveness of communication and cross-disciplinary integration.

  12. Projected changes in seasonal drought and flood conditions in the Sierra Nevada and Colorado River basins (USA)

    NASA Astrophysics Data System (ADS)

    Stewart-Frey, Iris; Ficklin, Darren; Carrillo, Carlos; McIntosh, Russell

    2014-05-01

    The Sierra Nevada and Colorado River mountain ranges are the principal source of water for large urban and agricultural demands in the North American Southwest. In this region, GCM ensemble output suggests varying and modest precipitation changes, while air surface temperatures are expected to increase by several degrees by the end of the century. This study used the downscaled output of an ensemble of 16 GCMs and 2 emission scenarios to drive the SWAT watershed model, and to assess the impact of projected climatic changes on water availability and water quality through 2100. We then assess the changes in likelihood of occurrence of high (> 125%, > 150%) and low (< 75%, 150% of historic averages in high elevation regions and in main channels. The occurrence of extreme low flows are likely to significantly increase for the spring and summer seasons, with low flows of

  13. The influence of changes in lifestyle and mercury exposure in riverine populations of the Madeira River (Amazon Basin) near a hydroelectric project.

    PubMed

    Hacon, Sandra S; Dórea, José G; Fonseca, Márlon de F; Oliveira, Beatriz A; Mourão, Dennys S; Ruiz, Claudia M V; Gonçalves, Rodrigo A; Mariani, Carolina F; Bastos, Wanderley R

    2014-02-26

    In the Amazon Basin, naturally occurring methylmercury bioaccumulates in fish, which is a key source of protein consumed by riverine populations. The hydroelectric power-plant project at Santo Antônio Falls allows us to compare the Hg exposure of riverine populations sparsely distributed on both sides of the Madeira river before the area is to be flooded. From 2009 to 2011, we concluded a population survey of the area (N = 2,008; representing circa 80% of community residents) that estimated fish consumption and mercury exposure of riverine populations with different degrees of lifestyle related to fish consumption. Fish samples from the Madeira river (N = 1,615) and 110 species were analyzed for Hg. Hair-Hg was significantly lower (p < 0.001) in less isolated communities near to the capital of Porto Velho (median 2.32 ppm) than in subsistence communities in the Cuniã Lake, 180 km from Porto Velho city (median 6.3 ppm). Fish Hg concentrations ranged from 0.01 to 6.06 µg/g, depending on fish size and feeding behavior. Currently available fish in the Madeira river show a wide variability in Hg concentrations. Despite cultural similarities, riparians showed hair-Hg distribution patterns that reflect changes in fish-eating habits driven by subsistence characteristics.

  14. The Influence of Changes in Lifestyle and Mercury Exposure in Riverine Populations of the Madeira River (Amazon Basin) near a Hydroelectric Project

    PubMed Central

    Hacon, Sandra S.; Dórea, José G.; Fonseca, Márlon de F.; Oliveira, Beatriz A.; Mourão, Dennys S.; Ruiz, Claudia M. V.; Gonçalves, Rodrigo A.; Mariani, Carolina F.; Bastos, Wanderley R.

    2014-01-01

    In the Amazon Basin, naturally occurring methylmercury bioaccumulates in fish, which is a key source of protein consumed by riverine populations. The hydroelectric power-plant project at Santo Antônio Falls allows us to compare the Hg exposure of riverine populations sparsely distributed on both sides of the Madeira river before the area is to be flooded. From 2009 to 2011, we concluded a population survey of the area (N = 2,008; representing circa 80% of community residents) that estimated fish consumption and mercury exposure of riverine populations with different degrees of lifestyle related to fish consumption. Fish samples from the Madeira river (N = 1,615) and 110 species were analyzed for Hg. Hair-Hg was significantly lower (p < 0.001) in less isolated communities near to the capital of Porto Velho (median 2.32 ppm) than in subsistence communities in the Cuniã Lake, 180 km from Porto Velho city (median 6.3 ppm). Fish Hg concentrations ranged from 0.01 to 6.06 µg/g, depending on fish size and feeding behavior. Currently available fish in the Madeira river show a wide variability in Hg concentrations. Despite cultural similarities, riparians showed hair-Hg distribution patterns that reflect changes in fish-eating habits driven by subsistence characteristics. PMID:24577285

  15. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2002-2003 Annual Report.

    SciTech Connect

    Miller, Alan; Soupir, Jim; Schwabe, Lawrence

    2003-08-01

    The Malheur River is a 306-kilometer tributary to the Snake River, which drains 12,950 square kilometers. The Malheur River originates in the Blue Mountains and flows into the Snake River near Ontario, Oregon. The climate of the basin is characterized by hot dry summers, occasionally exceeding 38 C, and cold winters that may drop below -29 C. Average annual precipitation is 30 centimeters in the lower reaches. Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2002. Bull trout Salvelinus confluentus are considered to be cold water species and are temperature-dependant. Due to the interest of bull trout from various state and Federal agencies, a workgroup was formed to develop project objectives related to bull trout. Table 1 lists individuals that participated in the 2002 work group. This report will reflect work completed during the Bonneville Power Administration contract period starting April 1, 2002, and ending March 31, 2003. All tasks were conducted within this timeframe, and a more detailed timeframe may be referred to in each individual report.

  16. Potential health hazards of the water resources development: a health survey in the Phitsanulok Irrigation Project, Nan River Basin, Northern Thailand.

    PubMed

    Bunnag, T; Sornmani, S; Impand, P; Harinasuta, C

    1980-12-01

    A health survey was carried out among residents of 33 villages under the Phitsanulok Irrigation Project Area, Nan River Basin, Northern Thailand, whereby general health conditions were examined including intradermal tests for schistosomiasis japonica, stools for intestinal parasites and sera tested by circumoval precipitin test for antibodies to S. japonicum and by agglutination test for leptospiral infection. Health investigations revealed that 913 (60.9%) of 1,499 people examined had experienced gastro-intestinal disorders, 254 (17%) had poor oral hygiene and a few had mild anemia. 799 (62%) of 1,298 examined had intestinal parasites. Hookworm (45%) was most common, followed by Opisthorchis viverrini (20%), Entamoeba coli (10%), Ascaris lumbricoides (6%), intestinal flukes (2%), Enterobius vermicularis (1%) and Giardia lamblia (1%). 149 (10%) of 1,422 people gave positive skin reaction to crude S. japonicum antigen. Circumoval precipitin test was strongly positive in 7 (1.6%) persons out of 449 tested for schistosome infection and 6 (4.0%) out of 1,358 people were positive for leptospiral infection. The significant endemic diseases as potential health problems in this water resources development are discussed.

  17. Application of geochemical logging for palaeoenvironmental research in the Late Cretaceous Qingshankou Formation from the Chinese Continental Scientific Drilling Project-SK-2e, Songliao Basin, NE China

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Zou, Changchun; Pan, Li; Niu, Yixiong

    2017-08-01

    The Chinese Continental Scientific Drilling Project of the Cretaceous Songliao Basin (CCSD-SK) provides an excellent opportunity to understand the response of terrestrial environments to greenhouse climate change in the Cretaceous. We conducted a palaeoenvironmental study of the Late Cretaceous Qingshankou Formation (K2qn) based on geochemical log data from the SK-2 east borehole. According to the characteristic of Ti mainly from terrigenous minerals, the content of authigenic elements was calculated. Correlation space was proposed to study the variation of the correlation between two log curves along the depth. Palaeoenvironmental proxies were selected from log data to study the evolution of the climate and lake, productivity of the paleolake, and organic matter deposition. The results demonstrate that the productivity of the paleolake was driven by chemical weathering in K2qn, in which the first section of the Qingshankou Formation (K2qn1) has higher productivity than the second and third sections of the Qingshankou Formation (K2qn2+3). The high content of pyrite in several thin layers reveals lake water of high sulfate concentration. This may have been caused by acid rain related to large volcanic activity. In K2qn2+3, several periods of high productivity without the formation of source rocks and high organic matter content were identified. This may show that organic matter deposition was limited by low accommodation space or oxidation environment. Therefore, the preservation condition is suggested as the main controlling factor of organic matter deposition in K2qn.

  18. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1993-11-01

    This document is a brief progress report from each of the research and education projects that are currently funded through the ERWM contract. During third quarter 1993, approval was given by DOE for purchase of equipment. Equipment purchases were initiated and much of the equipment has been received and installed. The committees in charge of coordination of sampling and analyses associated with the collaborative research groups continued to meet and address these issues. Sampling has been done in the lower part of Devil`s Swamp and in the Devil`s Swamp Lake area. In addition, extensive sampling has been done in Bayou Trepagnier and in Bayou St. John. During this period, Tulane and Xavier Universities continued working closely with Oak Ridge National Laboratories (ORNL). The ORNL 1993 summer student internship program was completed. Plans were made for expanding the program to support 8 students next summer. Leonard Price, a Xavier University Chemistry professor and John Walz, a Tulane University Engineering professor each spent 5 weeks at ORNL. During this time these faculty worked with ORNL researchers exploring mutual interests and discussing possible future collaborations. In September, Drs. Carl Gehrs, Lee Shugart and Marshall Adams of ORNL, visited the Tulane and Xavier campuses. They presented two seminars and met with several of the investigators being supported by the ERWM contract. Tulane/Xavier project administrators participated in the Office of Technology Development`s ``New Technologies and Program Exhibition`` in the Rayburn House Office Building on September 23 and in the Hart Senate Office Building on September 27.

  19. Ecological evaluation of proposed dredged material from Richmond Harbor Deepening Project and the intensive study of the Turning Basin

    SciTech Connect

    Pinza, M.R.; Mayhew, H.L.; Karle, L.M.; Kohn, N.P.; White, P.J.; Word, J.Q.; Michaels, L.L.

    1995-06-01

    Richmond Harbor is on the eastern shoreline of central San Francisco Bay and its access channels and several of the shipping berths are no longer wide or deep enough to accommodate modem deeper-draft vessels. The Water Resources Development Act of 1986 (PL99-662) authorized the US Army Corps of Engineers (USACE), San Francisco District to deepen and widen the navigation channels in Richmond Harbor. Several options for disposal of the material from this dredging project are under consideration by USACE: disposal within San Francisco Bay, at open-ocean disposal sites, or at uplands disposal sites. Purpose of this study was to conduct comprehensive evaluations, including chemical, biological, and bioaccumulation testing of sediments in selected areas of Richmond Harbor. This information was required by the Environmental Protection Agency (EPA) and USACE. Battelle/Marine Sciences Laboratory collected 20 core samples, both 4-in. and 12-in., to a project depth of -40 ft mean lower low water (MLLW) (-38 ft MLLW plus 2 ft of overdepth) using a vibratory-hammer core. These 20 field samples were combined to form five test composites plus an older bay mud (OBM) composite that were analyzed for physical/chemical parameters, biological toxicity, and tissue chemistry. Solid-phase tests were conducted with the amphipod, Rhepoxynius abronius; the clam, Macoma nasuta; and the polychaete worm, Nephtys caecoides. Suspended-particulate-phase (SPP) tests were conducted with the sanddab, Citharichthys stigmaeus; the mysid, Holmesimysis costata; and the bivalve, Mytilus galloprovincialis. Bioaccumulation of contaminants was measured in tissues of Macoma nasuta and Nereis virens. Sediments from one ocean reference sediment, and two in-bay reference sediments, were tested concurrently. Results from analysis of the five test treatments were statistically compared with the reference sediment R-OS in the first five sections of this report.

  20. Spatiotemporal assessment of historical skill and projected future changes in CORDEX South Asia ensemble simulation of precipitation and temperature for the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Fowler, Hayley; Pritchard, David

    2017-04-01

    High mountain Asia (HMA), including the Hindu Kush-Karakoram, Himalayas and Tibetan Plateau, constitutes one the key "water towers of the world", giving rise to river basins whose resources support hundreds of millions of people. This area is currently experiencing substantial demographic growth and socio-economic development. This evolution will likely continue for the next few decades and compound pressure on resource managements systems from inevitable climate change. In order to develop climate services to support water resources planning and facilitate adaptive capacity building, it is essential to critically characterise the skill and biases of the evaluation (reanalysis-driven) and control (historical period) components of presently available regional climate model (RCM) experiments. For mountain regions in particular, the ability of RCMs to reasonably reproduce the influence of complex topography, through lapse rates and orographic forcing, on sub-regional climate - notably temperature and precipitation - must be assessed in detail. This is vital because the spatiotemporal distribution of precipitation and temperature in mountains determine the seasonality of streamflow from the headwater reaches and of major river basins. Once the biases of individual GCM/RCM experiments have been identified methodologies can be developed for modulating (correcting) the projected patterns of change identified by comparing simulated climate sub-regional climate under specific emissions scenarios (e.g. RCP8.5) to historical representations by the same model (time-slice approach). Such methods could for example include calculating temperature change factors as a function elevation difference from present 0°C (freezing) isotherm rather than simply using the overlying RCM grid cell if for instance the RCM showed exacerbated temperature increase at snow line (i.e. albedo feedback in elevation dependent warming) but also showed a pronounced bias in the historical (vertical

  1. 75 FR 33238 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY... Basin Electric Power Cooperative's (Basin Electric) application for a RUS loan and a Western... Office, 314 6th Avenue, Brookings, SD. SUPPLEMENTARY INFORMATION: Basin Electric's proposed Project is to...

  2. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY: Rural Utilities... environmental impacts of and alternatives to Basin Electric Power Cooperative's (Basin Electric) application for...://www.usda.gov/rus/water/ees/eis.htm . SUPPLEMENTARY INFORMATION: Basin Electric's proposed Project is...

  3. Status of groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units, 2005-08: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic

  4. Seasonal cycle of precipitation over major river basins in South and Southeast Asia: A review of the CMIP5 climate models data for present climate and future climate projections

    NASA Astrophysics Data System (ADS)

    Hasson, Shabeh ul; Pascale, Salvatore; Lucarini, Valerio; Böhner, Jürgen

    2016-11-01

    We review the skill of thirty coupled climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in terms of reproducing properties of the seasonal cycle of precipitation over the major river basins of South and Southeast Asia (Indus, Ganges, Brahmaputra and Mekong) for the historical period (1961-2000). We also present how these models represent the impact of climate change by the end of century (2061-2100) under the extreme scenario RCP8.5. First, we assess the models' ability to reproduce the observed timings of the monsoon onset and the rate of rapid fractional accumulation (RFA) slope - a measure of seasonality within the active monsoon period. Secondly, we apply a threshold-independent seasonality index (SI) - a multiplicative measure of precipitation (P) and extent of its concentration relative to uniform distribution (relative entropy - RE). We apply SI distinctly over the monsoonal precipitation regime (MPR), westerly precipitation regime (WPR) and annual precipitation. For the present climate, neither any single model nor the multi-model mean performs best in all chosen metrics. Models show overall a modest skill in suggesting right timings of the monsoon onset while the RFA slope is generally underestimated. One third of the models fail to capture the monsoon signal over the Indus basin. Mostly, the estimates for SI during WPR are higher than observed for all basins. When looking at MPR, the models typically simulate an SI higher (lower) than observed for the Ganges and Brahmaputra (Indus and Mekong) basins, following the pattern of overestimation (underestimation) of precipitation. Most of the models are biased negative (positive) for RE estimates over the Brahmaputra and Mekong (Indus and Ganges) basins, implying the extent of precipitation concentration for MPR and number of dry days within WPR lower (higher) than observed for these basins. Such skill of the CMIP5 models in representing the present-day monsoonal

  5. Turn Basin Construction

    NASA Image and Video Library

    2017-06-30

    Across from the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, cement is poured as part of a construction project to upgrade the turn basin wharf. The work includes driving multiple precast concrete piles to a depth of about 70 feet to accommodate arrival of the core stage for the agency's Space Launch System (SLS) rocket. When the stage for NASA's SLS departs the Michoud Assembly Facility in New Orleans, it will be shipped by the agency's modified barge to the Launch Complex 39 turn basin.

  6. Turn Basin Construction

    NASA Image and Video Library

    2017-06-30

    Across from the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, cement trucks stand by to support a construction project to upgrade the turn basin wharf. The work includes driving multiple precast concrete piles to a depth of about 70 feet to accommodate arrival of the core stage for the agency's Space Launch System (SLS) rocket. When the stage for NASA's SLS departs the Michoud Assembly Facility in New Orleans, it will be shipped by the agency's modified barge to the Launch Complex 39 turn basin.

  7. Shahejie-Shahejie/Guantao/Wumishan and Carboniferous/Permian Coal-Paleozoic Total Petroleum Systems in the Bohaiwan Basin, China (based on geologic studies for the 2000 World Energy Assessment Project of the U.S. Geological Survey)

    USGS Publications Warehouse

    Ryder, Robert T.; Qiang, Jin; McCabe, Peter J.; Nuccio, Vito F.; Persits, Felix

    2012-01-01

    This report discusses the geologic framework and petroleum geology used to assess undiscovered petroleum resources in the Bohaiwan basin province for the 2000 World Energy Assessment Project of the U.S. Geological Survey. The Bohaiwan basin in northeastern China is the largest petroleum-producing region in China. Two total petroleum systems have been identified in the basin. The first, the Shahejie&ndashShahejie/Guantao/Wumishan Total Petroleum System, involves oil and gas generated from mature pods of lacustrine source rock that are associated with six major rift-controlled subbasins. Two assessment units are defined in this total petroleum system: (1) a Tertiary lacustrine assessment unit consisting of sandstone reservoirs interbedded with lacustrine shale source rocks, and (2) a pre-Tertiary buried hills assessment unit consisting of carbonate reservoirs that are overlain unconformably by Tertiary lacustrine shale source rocks. The second total petroleum system identified in the Bohaiwan basin is the Carboniferous/Permian Coal–Paleozoic Total Petroleum System, a hypothetical total petroleum system involving natural gas generated from multiple pods of thermally mature coal beds. Low-permeability Permian sandstones and possibly Carboniferous coal beds are the reservoir rocks. Most of the natural gas is inferred to be trapped in continuous accumulations near the center of the subbasins. This total petroleum system is largely unexplored and has good potential for undiscovered gas accumulations. One assessment unit, coal-sourced gas, is defined in this total petroleum system.

  8. Status and understanding of groundwater quality in the North San Francisco Bay Shallow Aquifer study unit, 2012; California GAMA Priority Basin Project

    USGS Publications Warehouse

    Bennett, George L.

    2017-07-20

    Groundwater quality in the North San Francisco Bay Shallow Aquifer study unit (NSF-SA) was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in Marin, Mendocino, Napa, Solano, and Sonoma Counties and included two physiographic study areas: the Valleys and Plains area and the surrounding Highlands area. The NSF-SA focused on groundwater resources used for domestic drinking water supply, which generally correspond to shallower parts of aquifer systems than that of groundwater resources used for public drinking water supply in the same area. The assessments characterized the quality of untreated groundwater, not the quality of drinking water.This study included three components: (1) a status assessment, which characterized the status of the quality of the groundwater resources used for domestic supply for 2012; (2) an understanding assessment, which evaluated the natural and human factors potentially affecting water quality in those resources; and (3) a comparison between the groundwater resources used for domestic supply and those used for public supply.The status assessment was based on data collected from 71 sites sampled by the U.S. Geological Survey for the GAMA Priority Basin Project in 2012. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and California State Water Resources Control Board Division of Drinking Water regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a grid-based method to estimate the proportion of the groundwater resources that has concentrations of water-quality constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale and permits comparisons to other GAMA Priority Basin Project study areas.In the NSF-SA study unit as a whole, inorganic

  9. K-Basins design guidelines

    SciTech Connect

    Roe, N.R.; Mills, W.C.

    1995-06-01

    The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines.

  10. Possible continuous-type (unconventional) gas accumulation in the Lower Silurian "Clinton" sands, Medina Group and Tuscarora Sandstone in the Appalachian Basin; a progress report of the 1995 project activities

    USGS Publications Warehouse

    Ryder, Robert T.; Aggen, Kerry L.; Hettinger, Robert D.; Law, Ben E.; Miller, John J.; Nuccio, Vito F.; Perry, William J.; Prensky, Stephen E.; Filipo, John J.; Wandrey, Craig J.

    1996-01-01

    INTRODUCTION: In the U.S. Geological Survey's (USGS) 1995 National Assessment of United States oil and gas resources (Gautier and others, 1995), the Appalachian basin was estimated to have, at a mean value, about 61 trillion cubic feet (TCF) of recoverable gas in sandstone and shale reservoirs of Paleozoic age. Approximately one-half of this gas resource is estimated to reside in a regionally extensive, continuous-type gas accumulation whose reservoirs consist of low-permeability sandstone of the Lower Silurian 'Clinton' sands and Medina Group (Gautier and others, 1995; Ryder, 1995). Recognizing the importance of this large regional gas accumulation for future energy considerations, the USGS initiated in January 1995 a multi-year study to evaluate the nature, distribution, and origin of natural gas in the 'Clinton' sands, Medina Group sandstones, and equivalent Tuscarora Sandstone. The project is part of a larger natural gas project, Continuous Gas Accumulations in Sandstones and Carbonates, coordinated in FY1995 by Ben E. Law and Jennie L. Ridgley, USGS, Denver. Approximately 2.6 man years were devoted to the Clinton/Medina project in FY1995. A continuous-type gas accumulation, referred to in the project, is a new term introduced by Schmoker (1995a) to identify those natural gas accumulations whose reservoirs are charged throughout with gas over a large area and whose entrapment does not involve a downdip gas-water contact. Gas in these accumulations is located downdip of the water column and, thus, is the reverse of conventional-type hydrocarbon accumulations. Commonly used industry terms that are more or less synonymous with continuous-type gas accumulations include basin- centered gas accumulation (Rose and others, 1984; Law and Spencer, 1993), tight (low-permeability) gas reservoir (Spencer, 1989; Law and others, 1989; Perry, 1994), and deep basin gas (Masters, 1979, 1984). The realization that undiscovered gas in Lower Silurian sandstone reservoirs of the

  11. 17. VIEW OF SETTLING BASIN, SHOWING FLUME TRACK SPUR CROSSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF SETTLING BASIN, SHOWING FLUME TRACK SPUR CROSSING OVER SETTLING BASIN, SPARE BENT MATERIAL IN RIGHT-HAND FOREGROUND, BYPASS FLUME, AND SHACK #6 IN BACKGROUND, LOOKING NORTHWEST - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  12. 14. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM TOWARD SETTLING BASIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM TOWARD SETTLING BASIN, SHOWING RIGHT FORK TO BYPASS, LEFT FORK TO BASIN - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  13. Status and understanding of groundwater quality in the two southern San Joaquin Valley study units, 2005-2006 - California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen A.; Shelton, Jennifer L.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the southern San Joaquin Valley was investigated from October 2005 through March 2006 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. There are two study units located in the southern San Joaquin Valley: the Southeast San Joaquin Valley (SESJ) study unit and the Kern County Subbasin (KERN) study unit. The GAMA Priority Basin Project in the SESJ and KERN study units was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifers. The status assessment is based on water-quality and ancillary data collected in 2005 and 2006 by the USGS from 130 wells on a spatially distributed grid, and water-quality data from the California Department of Public Health (CDPH) database. Data was collected from an additional 19 wells for the understanding assessment. The aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the SESJ and KERN study units. The status assessment of groundwater quality used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifers in the SESJ and KERN study units, not the quality of drinking water delivered to consumers. Although the status assessment applies to untreated groundwater, Federal and California regulatory and non-regulatory water-quality benchmarks that apply to drinking water are used

  14. Status and understanding of groundwater quality in the South Coast Range-Coastal study unit, 2008: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen A.; Land, Michael; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the South Coast Range–Coastal (SCRC) study unit was investigated from May through November 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in the Southern Coast Range hydrologic province and includes parts of Santa Barbara and San Luis Obispo Counties. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifer system. The primary aquifer system is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The assessments for the SCRC study unit were based on water-quality and ancillary data collected in 2008 by the USGS from 55 wells on a spatially distributed grid, and water-quality data from the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. Water-quality and ancillary data were collected from an additional 15 wells for the understanding assessment. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. The first component of this study, the status assessment of groundwater quality, used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. Although the status assessment applies to untreated

  15. Seasonal cycle of precipitation over major river basins in South and Southeast Asia: A review of the CMIP5 climate models data for present climate and future climate projections

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio

    2017-04-01

    We review the skill of thirty coupled climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in terms of reproducing properties of the seasonal cycle of precipitation over the major river basins of South and Southeast Asia (Indus, Ganges, Brahmaputra and Mekong) for the historical period (1961-2000). We also present how these models represent the impact of climate change by the end of century (2061-2100) under the extreme scenario RCP8.5. First, we assess the models' ability to reproduce the observed timings of the monsoon onset and the rate of rapid fractional accumulation (RFA) slope — a measure of seasonality within the active monsoon period. Secondly, we apply a threshold-independent seasonality index (SI) — a multiplicative measure of precipitation (P) and extent of its concentration relative to uniform distribution (relative entropy — RE). We apply SI distinctly over the monsoonal precipitation regime (MPR), westerly precipitation regime (WPR) and annual precipitation. For the present climate, neither any single model nor the multi-model mean performs best in all chosen metrics. Models show overall a modest skill in suggesting right timings of the monsoon onset while the RFA slope is generally underestimated. One third of the models fail to capture the monsoon signal over the Indus basin. Mostly, the estimates for SI during WPR are higher than observed for all basins. When looking at MPR, the models typically simulate an SI higher (lower) than observed for the Ganges and Brahmaputra (Indus and Mekong) basins, following the pattern of overestimation (underestimation) of precipitation. Most of the models are biased negative (positive) for RE estimates over the Brahmaputra and Mekong (Indus and Ganges) basins, implying the extent of precipitation concentration for MPR and number of dry days within WPR lower (higher) than observed for these basins. Such skill of the CMIP5 models in representing the present-day monsoonal

  16. New results on ground deformation in the Upper Silesian Coal Basin (southern Poland) obtained during the DORIS Project (EU-FP 7)

    NASA Astrophysics Data System (ADS)

    Graniczny, Marek; Colombo, Davide; Kowalski, Zbigniew; Przyłucka, Maria; Zdanowski, Albin

    2015-11-01

    This paper presents application of satellite interferometric methods (persistent scatterer interferometric synthetic aperture radar (PSInSAR™) and differential interferometric synthetic aperture radar (DInSAR)) for observation of ground deformation in the Upper Silesian Coal Basin (USCB) in Southern Poland. The presented results were obtained during the DORIS project (EC FP 7, Grant Agreement n. 242212, www.doris-project.eu). Several InSAR datasets for this area were analysed. Most of them were processed by Tele-Rilevamento Europa - T.R.E. s.r.l. Italy. Datasets came from different SAR satellites (ERS 1 and 2, Envisat, ALOS- PALSAR and TerraSAR-X) and cover three different SAR bands (L, C and X). They were processed using both InSAR techniques: DInSAR, where deformations are presented as interferometric fringes on the raster image, and PSInSAR, where motion is indentified on irregular set of persistent scatterer (PS) points. Archival data from the C-band European Space Agency satellites ERS and ENVISAT provided information about ground movement since 1992 until 2010 in two separate datasets (1992-2000 and 2003-2010). Two coal mines were selected as examples of ground motion within inactive mining areas: Sosnowiec and Saturn, where mining ceased in 1995 and 1997, respectively. Despite well pumping after closure of the mines, groundwater rose several dozen meters, returning to its natural horizon. Small surface uplift clearly indicated on satellite interferometric data is related to high permeability of the hydrogeological subregion and insufficient water withdrawal from abandoned mines. The older 1992-2000 PSInSAR dataset indicates values of ground motion ranging from -40.0 to 0.0 mm. The newer 2003-2010 dataset shows values ranging from -2.0 to +7.0 mm. This means that during this period of time subsidence was less and uplift greater in comparison to the older dataset. This is even more evident in the time series of randomly selected PS points from both coal

  17. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini; Donald A. Goddard

    2005-08-01

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

  18. Project plan-Surficial geologic mapping and hydrogeologic framework studies in the Greater Platte River Basins (Central Great Plains) in support of ecosystem and climate change research

    USGS Publications Warehouse

    Berry, Margaret E.; Lundstrom, Scott C.; Slate, Janet L.; Muhs, Daniel R.; Sawyer, David A.; VanSistine, D. Paco

    2011-01-01

    The Greater Platte River Basin area spans a central part of the Midcontinent and Great Plains from the Rocky Mountains on the west to the Missouri River on the east, and is defined to include drainage areas of the Platte, Niobrara, and Republican Rivers, the Rainwater Basin, and other adjoining areas overlying the northern High Plains aquifer. The Greater Platte River Basin contains abundant surficial deposits that were sensitive to, or are reflective of, the climate under which they formed: deposits from multiple glaciations in the mountain headwaters of the North and South Platte Rivers and from continental ice sheets in eastern Nebraska; fluvial terraces (ranging from Tertiary to Holocene in age) along the rivers and streams; vast areas of eolian sand in the Nebraska Sand Hills and other dune fields (recording multiple episodes of dune activity); thick sequences of windblown silt (loess); and sediment deposited in numerous lakes and wetlands. In addition, the Greater Platte River Basin overlies and contributes surface water to the High Plains aquifer, a nationally important groundwater system that underlies parts of eight states and sustains one of the major agricultural areas of the United States. The area also provides critical nesting habitat for birds such as plovers and terns, and roosting habitat for cranes and other migratory birds that travel through the Central Flyway of North America. This broad area, containing fragile ecosystems that could be further threatened by changes in climate and land use, has been identified by the USGS and the University of Nebraska-Lincoln as a region where intensive collaborative research could lead to a better understanding of climate change and what might be done to adapt to or mitigate its adverse effects to ecosystems and to humans. The need for robust data on the geologic framework of ecosystems in the Greater Platte River Basin has been acknowledged in proceedings from the 2008 Climate Change Workshop and in draft

  19. BASINS Publications

    EPA Pesticide Factsheets

    Although BASINS has been in use for the past 10 years, there has been limited modeling guidance on its applications for complex environmental problems, such as modeling impacts of hydro modification on water quantity and quality.

  20. Basin analysis

    SciTech Connect

    Lerche, I. )

    1989-01-01

    The exploration for oil is a high-risk game. Worldwide drilling success is around 5-10%, the average cost of drilling is around $1000 a foot, and the average well is now around 15,000 feet deep. Over the years, two fundamental avenues of attack have been developed: methods designed to locate oil in situ from direct measurement ahead of the drill and methods focusing on the dynamic evolution of a sedimentary basin in relation to the timing of hydrocarbon generation, migration, and accumulation to provide an assessment of which areas in a basin might be the most prospective for oil accumulations today. This volume addresses the problem of quantitative basin analysis in relation to oil accumulations. Emphasis is placed on the uncertainties and resolution limits of basin analysis given constraints derived from surface and downhole data and the sensitivity to model input parameters and assumptions.

  1. Climatic impacts of the Middle Route of the South-to-North Water Transfer Project over the Haihe River basin in North China simulated by a regional climate model

    NASA Astrophysics Data System (ADS)

    Zou, Jing; Zhan, Chesheng; Xie, Zhenghui; Qin, Peihua; Jiang, Shanshan

    2016-08-01

    The Middle Route of the South-to-North Water Transfer Project (MSWTP) was constructed to ease the water crisis over the North China Plain. In this study, we incorporated a water transfer scheme into the regional climate model RegCM4 and investigated the climatic impacts of the MSWTP over the Haihe River Basin in North China. Four 10 year simulation tests were conducted from 2001 to 2010 where different volumes of water were transferred. The results demonstrated that before the MSWTP was conducted the original groundwater exploitation and consumption over the Haihe River Basin led to wetting and cooling at the land surface with rapidly falling groundwater depth. The extra water input from the MSWTP slightly enhanced the wetting and cooling effects over the basin, as well as reduced the falling rate in the groundwater depth along the conveyance line. However, the weak climatic effects of the MSWTP were limited at a local scale and had no obvious interannual trends, because the transfer volume of the MSWTP was far lower than the total demand which has been conventionally satisfied through local water exploitation. In terms of seasonal variations, the greatest changes due to the MSWTP occurred in the summer for precipitation and soil moisture and in the spring for energy-related variables (heat fluxes and 2 m air temperature).

  2. Yakima/Klickitat Fisheries Project: Short Project Overview of Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2004-2005 Annual Report.

    SciTech Connect

    Fast, David E.; Bosch, William J.

    2005-09-01

    The Yakima/Klickitat Fisheries Project (YKFP) is on schedule to ascertain whether new artificial production techniques can be used to increase harvest and natural production of spring Chinook salmon while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits. The Cle Elum Supplementation and Research Facility (CESRF) collected its first spring chinook brood stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. In these initial years of CESRF operation, recruitment of hatchery origin fish has exceeded that of fish spawning in the natural environment, but early indications are that hatchery origin fish are not as successful at spawning in the natural environment as natural origin fish when competition is relatively high. When competition is reduced, hatchery fish produced similar numbers of progeny as their wild counterparts. Most demographic variables are similar between natural and hatchery origin fish, however hatchery origin fish were smaller-at-age than natural origin fish. Long-term fitness of the target population is being evaluated by a large-scale test of domestication. Slight changes in predation vulnerability and competitive dominance, caused by domestication, were documented. Distribution of spawners has increased as a result of acclimation site location and salmon homing fidelity. Semi-natural rearing and predator avoidance training have not resulted in significant increases in survival of hatchery fish. However, growth manipulations in the hatchery appear to be reducing the number of precocious males produced by the YKFP and consequently increasing the number of migrants. Genetic impacts to non-target populations appear to be low because of the low stray rates of YKFP fish. Ecological impacts to valued non-target taxa were within containment objectives or impacts that

  3. Status and understanding of groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units, 2006-2007--California GAMA Priority Basin Project

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The three study units are located in the Sierra Nevada region of California in parts of Nevada, Placer, El Dorado, Madera, Tulare, and Kern Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board, in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems used for drinking water. The primary aquifer systems (hereinafter, primary aquifers) for each study unit are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Tahoe-Martis, Central Sierra, and Southern Sierra study units were based on water-quality and ancillary data collected by the USGS from 132 wells in the three study units during 2006 and 2007 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those

  4. Research, monitoring and evaluation of fish and wildlife restoration projects in the Columbia River Basin: Lessons learned and suggestions for large-scale monitoring programs.

    Treesearch

    Lyman L. McDonald; Robert Bilby; Peter A. Bisson; Charles C. Coutant; John M. Epifanio; Daniel Goodman; Susan Hanna; Nancy Huntly; Erik Merrill; Brian Riddell; William Liss; Eric J. Loudenslager; David P. Philipp; William Smoker; Richard R. Whitney; Richard N. Williams

    2007-01-01

    The year 2006 marked two milestones in the Columbia River Basin and the Pacific Northwest region's efforts to rebuild its once great salmon and steelhead runs: the 25th anniversary of the creation of the Northwest Power and Conservation Council and the 10th anniversary of an amendment to the Northwest Power Act that formalized scientific peer review of the council...

  5. The Federal Cylinder Project: A Guide to Field Cylinder Collections in Federal Agencies. Volume 3, Great Basin/Plateau Indian Catalog, Northwest Coast/Arctic Indian Catalog.

    ERIC Educational Resources Information Center

    Gray, Judith A., Ed.

    Two catalogs inventory wax cylinder collections, field recorded among Native American groups, 1890-1942. The catalog for Great Basin and Plateau Indian tribes contains entries for 174 cylinders in 7 collections from the Flathead, Nez Perce, Thompson/Okanagon, Northern Ute, and Yakima tribes. The catalog for Northwest Coast and Arctic Indian tribes…

  6. Projections of Demand for Waterborne Transportation, Ohio River Basin, 1980, 1990, 2000, 2020, 2040. Volume 10. Group VIII. Iron Ore, Steel and Iron.

    DTIC Science & Technology

    1980-12-01

    Economists Ohio River Basin 1301 Pennsylvania Ave ., N.W. Navigation Studies Washinqton. DC 20004 Ii. CONTROLLING OFFICE NAME AND ADDRESS I. REPORT DATE...discussed in the text. Raw steel produccion ;y furnace type was then estimated by RRNA, based on knowledge of specific plants and trends in

  7. Parana basin

    SciTech Connect

    Zalan, P.V.; Wolff, S.; Conceicao, J.C.J.; Vieira, I.S.; Astolfi, M.A.; Appi, V.T.; Zanotto, O.; Neto, E.V.S.; Cerqueira, J.R.

    1987-05-01

    The Parana basin is a large intracratonic basin in South America, developed entirely on continental crust and filled with sedimentary and volcanic rocks ranging in age from Silurian to Cretaceous. It occupies the southern portion of Brazil (1,100,000 km/sup 2/ or 425,000 mi/sup 2/) and the eastern half of Paraguay (100,000 km/sup 2/ or 39,000 mi/sup 2/); its extension into Argentina and Uruguay is known as the Chaco-Parana basin. Five major depositional sequences (Silurian, Devonian, Permo-Carboniferous, Triassic, Juro-Cretaceous) constitute the stratigraphic framework of the basin. The first four are predominantly siliciclastic in nature, and the fifth contains the most voluminous basaltic lava flows of the planet. Maximum thicknesses are in the order of 6000 m (19,646 ft). The sequences are separated by basin wide unconformities related in the Paleozoic to Andean orogenic events and in the Mesozoic to the continental breakup and sea floor spreading between South America and Africa. The structural framework of the Parana basin consists of a remarkable pattern of criss-crossing linear features (faults, fault zones, arches) clustered into three major groups (N45/sup 0/-65/sup 0/W, N50/sup 0/-70/sup 0/E, E-W). The northwest- and northeast-trending faults are long-lived tectonic elements inherited from the Precambrian basement whose recurrent activity throughout the Phanerozoic strongly influenced sedimentation, facies distribution, and development of structures in the basin. Thermomechanical analyses indicate three main phases of subsidence (Silurian-Devonian, late Carboniferous-Permian, Late Jurassic-Early Cretaceous) and low geothermal gradients until the beginning of the Late Jurassic Permian oil-prone source rocks attained maturation due to extra heat originated from Juro-Cretaceous igneous intrusions. The third phase of subsidence also coincided with strong tectonic reactivation and creation of a third structural trend (east-west).

  8. An end-users oriented methodology for enhancing the integration of knowledge on soil-water-sediment systems in River Basin Management: an illustration from the AquaTerra project.

    PubMed

    Merly, Corinne; Chapman, Antony; Mouvet, Christophe

    2012-01-01

    Research results in environmental and socio-economic sciences are often under-used by stakeholders involved in the management of natural resources. To minimise this gap, the FP6 EU interdisciplinary project AquaTerra (AT) developed an end-users' integration methodology in order to ensure that the data, knowledge and tools related to the soil-water-sediment system that were generated by the project were delivered in a meaningful way for end-users, thus improving their uptake. The methodology and examples of its application are presented in this paper. From the 408 project deliverables, 96 key findings were identified, 53 related to data and knowledge, and 43 describing advanced tools. River Basin Management (RBM) stakeholders workshops identified 8 main RBM issues and 25 specific stakeholders' questions related to RBM which were classified into seven groups of cross-cutting issues, namely scale, climate change, non-climatic change, the need for systemic approaches, communication and participation, international and inter-basin coordination and collaboration, and the implementation of the Water Framework Directive. The integration methodology enabled an assessment of how AT key findings meet stakeholders' demands, and for each main RBM issue and for each specific question, described the added-value of the AT project in terms of knowledge and tools generated, key parameters to consider, and recommendations that can be made to stakeholders and the wider scientific community. Added value and limitations of the integration methodology and its outcomes are discussed and recommendations are provided to further improve integration methodology and bridge the gaps between scientific research data and their potential uptake by end-users.

  9. Chapter 7. The GIS project for the geologic assessment of undiscovered oil and gas in the Cotton Valley group and Travis Peak and Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces.

    USGS Publications Warehouse

    Biewick, Laura

    2006-01-01

    A geographic information system (GIS) focusing on the Upper Jurassic-Lower Cretaceous Cotton Valley Group and the Lower Cretaceous Travis Peak and Hosston Formations in the northern Gulf Coast region was developed as a visual-analysis tool for the U.S. Geological Survey's 2002 assessment of undiscovered, technically recoverable oil and natural gas resources in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces. The Central Energy Resources Team of the U.S. Geological Survey has also developed an Internet Map Service to deliver the GIS data to the public. This mapping tool utilizes information from a database about the oil and natural gas endowment of the United States-including physical locations of geologic and geographic data-and converts the data into visual layers. Portrayal and analysis of geologic features on an interactive map provide an excellent tool for understanding domestic oil and gas resources for strategic planning, formulating economic and energy policies, evaluating lands under the purview of the Federal Government, and developing sound environmental policies. Assessment results can be viewed and analyzed or downloaded from the internet web site, http://energy.cr.usgs.gov/oilgas/noga/ .

  10. Investigations into the [Early] Life History of Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project, Oregon : Annual Report 1994 : Project Period 1 June 1993 to 31 May 1994.

    SciTech Connect

    Keefe, MaryLouise

    1996-04-01

    This study was designed to describe aspects of the life history strategies of spring chinook salmon in the Grande Ronde basin. During the past year we focused on rearing and migration patterns of juveniles and surveys of spawning adults. The specific objectives for the early life history portion of the study were: Objective 1, document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River, including the abundance of migrants, migration timing and duration; Objective 2, estimate and compare smolt survival indices to mainstem Columbia and Snake River dams for fall and spring migrating spring chinook salmon; Objective 3 initiate study of the winter habitat utilized by spring chinook salmon in the Grande Ronde River basin. The specific objectives for the spawning ground surveys were: Objective 4, conduct extensive and supplemental spring chinook salmon spawning ground surveys in spawning streams in the Grande Ronde and Imnaha basin, Objective 5; determine how adequately historic index area surveys index spawner abundance by comparing index counts to extensive and supplemental redd counts; Objective 6, determine what changes in index areas and timing of index surveys would improve the accuracy of index surveys; Objective 7, determine the relationship between number of redds observed and fish escapement for the Grande Ronde and Imnaha river basins.

  11. Estancia Basin dynamic water budget.

    SciTech Connect

    Thomas, Richard P.

    2004-09-01

    The Estancia Basin lies about 30 miles to the east of Albuquerque, NM. It is a closed basin in terms of surface water and is somewhat isolated in terms of groundwater. Historically, the primary natural outlet for both surface water and groundwater has been evaporation from the salt lakes in the southeastern portion of the basin. There are no significant watercourses that flow into this basin and groundwater recharge is minimal. During the 20th Century, agriculture grew to become the major user of groundwater in the basin. Significant declines in groundwater levels have accompanied this agricultural use. Domestic and municipal use of the basin groundwater is increasing as Albuquerque population continues to spill eastward into the basin, but this use is projected to be less than 1% of agricultural use well into the 21st Century. This Water Budget model keeps track of the water balance within the basin. The model considers the amount of water entering the basin and leaving the basin. Since there is no significant surface water component within this basin, the balance of water in the groundwater aquifer constitutes the primary component of this balance. Inflow is based on assumptions for recharge made by earlier researchers. Outflow from the basin is the summation of the depletion from all basin water uses. The model user can control future water use within the basin via slider bars that set values for population growth, water system per-capita use, agricultural acreage, and the types of agricultural diversion. The user can also adjust recharge and natural discharge within the limits of uncertainty for those parameters. The model runs for 100 years beginning in 1940 and ending in 2040. During the first 55 years model results can be compared to historical data and estimates of groundwater use. The last 45 years are predictive. The model was calibrated to match to New Mexico Office of State Engineer (NMOSE) estimates of aquifer storage during the historical period by

  12. Gila River Basin Native Fishes Conservation Program

    Treesearch

    Doug Duncan; Robert W. Clarkson

    2013-01-01

    The Gila River Basin Native Fishes Conservation Program was established to conserve native fishes and manage against nonnative fishes in response to several Endangered Species Act biological opinions between the Bureau of Reclamation and the U.S. Fish and Wildlife Service on Central Arizona Project (CAP) water transfers to the Gila River basin. Populations of some Gila...

  13. Advanced Chemistry Basins Model

    SciTech Connect

    William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2002-11-10

    The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

  14. The Streambank Erosion Control Evaluation and Demonstration Act of 1974, Section 32, Public Law 93-251. Appendix F. Yazoo River Basin Demonstration Projects.

    DTIC Science & Technology

    1981-12-01

    working upstream. This problem is compounded since the energy of the flow is concentrated at the overfall . As thesehead cuts move upstream, the...unconsolidated sand. The erosive energy of the flow is concentrated at the overfall . Headcuts are prevalent throughout the Yazoo Basin, and several...involved in simulating such conditions in process- based models. Failure occurs in reaches of 0 excessive energy expenditure typically associated with

  15. National Dam Safety Program. Patterson, Brixius, Grey Creek Watershed Project, Site 1 (Inventory Number NY698), Susquehanna River Basin, Broome County, New York. Phase I Inspection Report

    DTIC Science & Technology

    1980-08-01

    Repair the concrete surfaces of the impact basin and the left animal guard. 4. Remove the vegetation along the left slope of the auviliary spillway and on...and:; the left animal guard. 4. Remove the vegetation along the left slope of the auKiliary spillway and on the banks of the downstream channel...on the upstream s pe, were incorporated into the design. ,The auxiliary spillway is a vegetated earth channel, with a bottom width of 340 feet and

  16. Hanford Spent Nuclear Fuel Project evaluation of multi-canister overpack venting and monitoring options during staging of K basins fuel

    SciTech Connect

    Wiborg, J.C.

    1995-12-01

    This engineering study recommends whether multi-canister overpacks containing spent nuclear fuel from the Hanford K Basins should be staged in vented or a sealed, but ventable, condition during staging at the Canister Storage Building prior to hot vacuum conditioning and interim storage. The integrally related issues of MCO monitoring, end point criteria, and assessing the practicality of avoiding venting and Hot Vacuum Conditioning for a portion of the spent fuel are also considered.

  17. Contribution of seismic processing to put up the scaffolding for the 3-dimensional study of deep sedimentary basins: the fundaments of trans-national 3D modelling in the project GeoMol

    NASA Astrophysics Data System (ADS)

    Capar, Laure

    2013-04-01

    Within the framework of the transnational project GeoMol geophysical and geological information on the entire Molasse Basin and on the Po Basin are gathered to build consistent cross-border 3D geological models based on borehole evidence and seismic data. Benefiting from important progress in seismic processing, these new models will provide some answers to various questions regarding the usage of subsurface resources, as there are geothermal energy, CO2 and gas storage, oil and gas production, and support decisions-making to national and local administrations as well as to industries. More than 28 000 km of 2D seismic lines are compiled reprocessed and harmonized. This work faces various problems like the vertical drop of more than 700 meters between West and East of the Molasse Basin and to al lesser extent in the Po Plain, the heterogeneities of the substratum, the large disparities between the period and parameters of seismic acquisition, and depending of their availability, the use of two types of seismic data, raw and processed seismic data. The main challenge is to harmonize all lines at the same reference level, amplitude and step of signal processing from France to Austria, spanning more than 1000 km, to avoid misfits at crossing points between seismic lines and artifacts at the country borders, facilitating the interpretation of the various geological layers in the Molasse Basin and Po Basin. A generalized stratigraphic column for the two basins is set up, representing all geological layers relevant to subsurface usage. This stratigraphy constitutes the harmonized framework for seismic reprocessing. In general, processed seismic data is available on paper at stack stage and the mandatory information to take these seismic lines to the final stage of processing, the migration step, are datum plane and replacement velocity. However several datum planes and replacement velocities were used during previous processing projects. Our processing sequence is to

  18. Groundwater-quality data in the Tulare Shallow Aquifer Study Unit, 2014-2015: Results from the California GAMA Priority Basin Project

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Johnson, Tyler

    2017-01-01

    The U.S. Geological Survey collected groundwater samples from 95 domestic wells in Tulare and Kings Counties, California in 2014-2015. The wells were sampled for the Tulare Shallow Aquifer Study Unit of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project’s assessment of the quality of groundwater resources used for domestic drinking water supply. Domestic wells commonly are screened at shallower depths than are public-supply wells. The Tulare Shallow Aquifer Study Unit includes the Kaweah, Tule, and Tulare Lake subbasins of the San Joaquin Valley groundwater basin and adjacent areas of the Sierra Nevada. The study unit was divided into equal area grid cells and one domestic well was sampled in each cell. Groundwater samples were analyzed for field water-quality parameters, volatile organic compounds, pesticides and pesticide degradates, nutrients, major ions and trace elements, gross alpha and gross beta particle activities, noble gases, tritium, carbon-14 in dissolved inorganic carbon, stable isotopic ratios of water and dissolved nitrate, and microbial indicators.These data support the following publication:Fram, M.S., 2017, Groundwater Quality in the Shallow Aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and Adjacent Highlands areas, Southern San Joaquin Valley, California: U.S. Geological Survey Fact Sheet 2017–3001, 4 p., http://dx.doi.org/10.3133/fs20173001.

  19. Influences of historical and projected changes in climate and land management practices on nutrient fluxes in the Mississippi River Basin, 1948-2100

    NASA Astrophysics Data System (ADS)

    Spak, S.; Ward, A. S.; Li, Y.; Dalrymple, K. E.

    2016-12-01

    Nitrogen fertilization is central to contemporary row crop production in the U.S., but resultant nitrate transport leads to eutrophication, hypoxia, and algal blooms throughout the Mississippi River Basin and in coastal waters of the Gulf of Mexico. Effective basin-scale nutrient management requires a comprehensive understanding of the dynamics of nitrate transport in this large river catchment and the roles of individual management practices, that must then be operationalized to optimize management for both local geophysical and agricultural conditions and in response to decadal and inter-annual variations in local and regional climate. Here, we apply ensemble simulations with Agro-IBIS and THMB using spatially and temporally specific land cover, soil, agricultural, topographic, and climate data to simulate the individual and combined effects of land management and climate on historical (1948-2007) nitrate concentrations and transport in the Mississippi River Basin. We further identify sensitivities of in-stream nitrate dynamics to local and regional applications of Best Management Practices. The ensemble resolves the effects of techniques recommended in the Iowa Nutrient Reduction Strategy, including crop rotations, fertilizer management, tillage and residue management, and cover crops. Analysis of the nitrate transport response surfaces identifies non-linear effects of combined nutrient management tactics, and quantifies the stationarity of the relative and absolute influences of land management and climate during the 60-year study period.

  20. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    SciTech Connect

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to

  1. Program Updates - San Antonio River Basin

    EPA Pesticide Factsheets

    This page will house updates for this urban waters partnership location. As projects progress, status updates can be posted here to reflect the ongoing work by partners in San Antonio working on the San Antonio River Basin.

  2. Climate change and the Great Basin

    Treesearch

    Jeanne C. Chambers

    2008-01-01

    Climate change is expected to have significant impacts on the Great Basin by the mid-21st century. The following provides an overview of past and projected climate change for the globe and for the region.

  3. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-78) - Yakima Basin Side Channels Project, Scatter Creek/Plum Creek Land Acquisition Phase II (modification to DOE/EIS-0265/SA-72)

    SciTech Connect

    Stewart, Shannon C.

    2002-05-09

    BPA proposes to purchase approximately 310 acres of privately-owned land in the Yakima River Basin in Kittitas County, Washington as part of the Yakima River Side Channels Project. Title to the land will be transferred to the United States Government, Bonneville Power Administration for fish and wildlife habitat protection and enhancement. The goal of this project is to contribute toward the rebuilding of Yakima Basin spring chinook salmon and steelhead populations by improving survival during their first year of life. This will be accomplished by protecting and restoring off-channel rearing habitats associated with the mainstem of the Yakima River. Historically, these habitats have been severely degraded through the construction of transportation corridors, irrigation developments, and diking activities. The subject parcels are located near the Cle Elum reach of the Yakima River which contains a variety of aquatic and riparian habitats that support native fish, reptiles, and amphibians, as well as waterfowl. Conservation of these lands will contribute to the rebuilding of steelhead and chinook salmon runs in the Yakima River system. These lands are located in a portion of the watershed where a large percentage of the basin’s spring chinook salmon spawn. Upon hatching, young salmon fry move into the shallow areas along the river margins to begin their early growth. These parcels contain numerous shallow backwater channels and wetlands that are protected by a thick over-story of native trees and brush. These features are important for the development of the young fish during their first year of life. This project proposes to preserve these 310 acres in their natural condition, which will ensure that this critical fish rearing habitat is maintained in the future.

  4. Status of the interior Columbia Basin: summary of scientific findings.

    Treesearch

    Forest Service. U.S. Department of Agriculture

    1996-01-01

    The Status of the Interior Columbia Basin is a summary of the scientific findings from the Interior Columbia Basin Ecosystem Management Project. The Interior Columbia Basin includes some 145 million acres within the northwestern United Stales. Over 75 million acres of this area are managed by the USDA Forest Service or the USDI Bureau of Land Management. A framework...

  5. Updated study reporting levels (SRLs) for trace-element data collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project, October 2009-March 2013

    USGS Publications Warehouse

    Davis, Tracy A.; Olsen, Lisa D.; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater samples have been collected in California as part of statewide investigations of groundwater quality conducted by the U.S. Geological Survey for the Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). The GAMA-PBP is being conducted in cooperation with the California State Water Resources Control Board to assess and monitor the quality of groundwater resources used for drinking-water supply and to improve public knowledge of groundwater quality in California. Quality-control samples (source-solution blanks, equipment blanks, and field blanks) were collected in order to ensure the quality of the groundwater sample results. Olsen and others (2010) previously determined study reporting levels (SRLs) for trace-element results based primarily on field blanks collected in California from May 2004 through January 2008. SRLs are raised reporting levels used to reduce the likelihood of reporting false detections attributable to contamination bias. The purpose of this report is to identify any changes in the frequency and concentrations of detections in field blanks since the last evaluation and update the SRLs for more recent data accordingly. Constituents analyzed were aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), vanadium (V), and zinc (Zn). Data from 179 field blanks and equipment blanks collected from March 2006 through March 2013 by the GAMA-PBP indicated that for trace elements that had a change in detection frequency and concentration since the previous review, the shift occurred near October 2009, in conjunction with a change in the capsule filters used by the study. Results for 89 field blanks and equipment blanks collected from October 2009 through March 2013 were

  6. Understanding CO2 Plume Behavior and Basin-Scale Pressure Changes during Sequestration Projects through the use of Reservoir Fluid Modeling

    USGS Publications Warehouse

    Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.

    2009-01-01

    Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and

  7. 18 CFR 801.4 - Project review.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Section 801.4 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL... resources of the basin shall be undertaken by any person, governmental authority, or other entity prior to... project review authority regarding proposed projects in the basin coming under the review of the...

  8. Fish Research Project Oregon; Aspects of Life History and Production of Juvenile Oncorhynchus Mykiss in the Grande Ronde River Basin, Northeast Oregon, 1995-1999 Summary Report.

    SciTech Connect

    Van Dyke, Erick S.; Jonnasson, Brian C.; Carmichael, Richard W.

    2001-07-01

    Rotary screw traps, located at four sites in the Grande Ronde River basin, were used to characterize aspects of early life history exhibited by juvenile Onchorhychus mykiss during migration years 1995-99. The Lostine, Catherine Creek and upper Grande Ronde traps captured fish as they migrated out of spawning areas into valley rearing habitats. The Grande Ronde Valley trap captured fish as they left valley habitats downstream of Catherine Creek and upper Grande Ronde River rearing habitats. Dispersal downstream of spawning areas was most evident in fall and spring, but movement occurred during all seasons that the traps were fished. Seaward migration occurred primarily in spring when O. mykiss smolts left overwintering area located in both spawning area and valley habitats. Migration patterns exhibited by O. mykiss suggest that Grande Ronde Valley habitats are used for overwintering and should be considered critical rearing habitat. We were unable to positively differentiate anadromous and resident forms of O. mykiss in the Grande Ronde River basin because both forms occur in our study area. The Grande Ronde Valley trap provided the best information on steelhead production in the basin because it fished below valley habitats where O. mykiss overwinter. Length frequency histograms of O. mykiss captured below upper spawning and rearing habitats showed a bimodal distribution regardless of the season of capture. Scale analyses suggested that each mode represents a different brood year. Length frequency histograms of O. mykiss captured in the Grande Ronde Valley trap were not bimodal, and primarily represented a size range consistent with other researchers' accounts of anadromous smolts.

  9. Biological science in the Great Basin

    USGS Publications Warehouse

    ,

    2005-01-01

    The Great Basin is an expanse of desert and high moun-tains situated between the Rocky Mountains and the Sierra Nevada of the western United States. The most explicit description of the Great Basin is that area in the West where surface waters drain inland. In other words, the Great Basin is comprised of many separate drainage areas - each with no outlet. What at first glance may appear as only a barren landscape, the Great Basin upon closer inspection reveals island mountains, sagebrush seas, and intermittent aquatic habitats, all teeming with an incredible number and variety of plants and animals. Biologists at the USGS are studying many different species and ecosystems in the Great Basin in order to provide information about this landscape for policy and land-management decision-making. The following stories represent a few of the many projects the USGS is conducting in the Great Basin.

  10. Computer input and output files associated with ground-water-flow simulations of the Albuquerque Basin, central New Mexico, 1901-95, with projections to 2020; (supplement three to U.S. Geological Survey Water-resources investigations report 94-4251)

    USGS Publications Warehouse

    Kernodle, J.M.

    1996-01-01

    This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) and revised by Kernodle (Kernodle, J.M., 1998, Simulation of ground-water flow in the Albuquerque Basin, 1901-95, with projections to 2020 (supplement two to U.S. Geological Survey Water-Resources Investigations Report 94-4251): U.S. Geological Survey Open-File Report 96-209, 54 p.). Output files resulting from the computer simulations are included for reference.

  11. Trend analysis of selected water-quality data associated with salinity-control projects in the Grand Valley, in the lower Gunnison River basin, and at Meeker Dome, western Colorado

    USGS Publications Warehouse

    Butler, D.L.

    1996-01-01

    To decrease salt loading to the Colorado River from irrigated agriculture, salinity-control projects have been under construction since 1979 by the Bureau of Reclamation and the U.S. Department of Agriculture in the Grand Valley and since 1988 in the lower Gunnison River Basin of western Colorado. In 1980, a salinity-control project was initiated at Meeker Dome, which involved plugging three abandoned oil wells that were discharging saline water to the White River. Trend analysis was used to determine if the salinity-control projects had affected salinity in the Colorado and White Rivers. The mean annual dissolved-solids load in the Colorado River near the Colorado-Utah State line for water years 1970-93 was about 3.32 million tons. About 46 percent of that load was from the Colorado River upstream from the Grand Valley and about 38 percent was from the Gunnison River. About 16 percent of the dissolved-solids load in the Colorado River near the State line was discharged from the Grand Valley, and most of the Grand Valley dissolved-solids load was from irrigation-induced sources. Monotonic trend analysis of dissolved-solids and major-ion data for the Colorado and Gunnison Rivers was used for determining if salinity-control projects had affected salinity (dissolved solids) in the Colorado River. Data collected in water years 1970-93 at gaging stations on the Colorado River-one near Cameo and the other near the Colorado-Utah State line, and at the station on the Gunnison River near Grand Junction-were analyzed for trends. A computerized procedure developed by the U.S. Geological Survey that uses the nonparametric seasonal Kendall test with adjustment for streamflow was used for trend analysis of periodic and monthly data, and linear regression was used for trend analysis of annual data. Three time periods were tested, including periods that were concurrent with work on salinity-control projects. Many of the trends in unadjusted concentration and load data were not

  12. Great Basin Paleontological Bibliography

    USGS Publications Warehouse

    Blodgett, Robert B.; Zhang, Ning; Hofstra, Albert H.; Morrow, Jared R.

    2007-01-01

    Introduction This work was conceived as a derivative product for 'The Metallogeny of the Great Basin' project of the Mineral Resources Program of the U.S. Geological Survey. In the course of preparing a fossil database for the Great Basin that could be accessed from the Internet, it was determined that a comprehensive paleontological bibliography must first be compiled, something that had not previously been done. This bibliography includes published papers and abstracts as well as unpublished theses and dissertations on fossils and stratigraphy in Nevada and adjoining portions of California and Utah. This bibliography is broken into first-order headings by geologic age, secondary headings by taxonomic group, followed by ancillary topics of interest to both paleontologists and stratigraphers; paleoecology, stratigraphy, sedimentary petrology, paleogeography, tectonics, and petroleum potential. References were derived from usage of Georef, consultation with numerous paleontologists and geologists working in the Great Basin, and literature currently on hand with the authors. As this is a Web-accessible bibliography, we hope to periodically update it with new citations or older references that we have missed during this compilation. Hence, the authors would be grateful to receive notice of any new or old papers that the readers think should be added. As a final note, we gratefully acknowledge the helpful reviews provided by A. Elizabeth J. Crafford (Anchorage, Alaska) and William R. Page (USGS, Denver, Colorado).

  13. Status and understanding of groundwater quality in the Bear Valley and Lake Arrowhead Watershed Study Unit, 2010: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Mathany, Timothy; Burton, Carmen

    2017-06-20

    Groundwater quality in the 112-square-mile Bear Valley and Lake Arrowhead Watershed (BEAR) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit comprises two study areas (Bear Valley and Lake Arrowhead Watershed) in southern California in San Bernardino County. The GAMA-PBP is conducted by the California State Water Resources Control Board (SWRCB) in cooperation with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory.The GAMA BEAR study was designed to provide a spatially balanced, robust assessment of the quality of untreated (raw) groundwater from the primary aquifer systems in the two study areas of the BEAR study unit. The assessment is based on water-quality collected by the USGS from 38 sites (27 grid and 11 understanding) during 2010 and on water-quality data from the SWRCB-Division of Drinking Water (DDW) database. The primary aquifer system is defined by springs and the perforation intervals of wells listed in the SWRCB-DDW water-quality database for the BEAR study unit.This study included two types of assessments: (1) a status assessment, which characterized the status of the quality of the groundwater resource as of 2010 by using data from samples analyzed for volatile organic compounds, pesticides, and naturally present inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the BEAR study unit, not the treated drinking water delivered to consumers. Bear Valley study area and the Lake Arrowhead Watershed study area were also compared statistically on the basis of water-quality results and factors potentially affecting the groundwater quality.Relative concentrations (RCs

  14. Preliminary catalog of the sedimentary basins of the United States

    USGS Publications Warehouse

    Coleman, James L.; Cahan, Steven M.

    2012-01-01

    One hundred forty-four sedimentary basins (or groups of basins) in the United States (both onshore and offshore) are identified, located, and briefly described as part of a Geographic Information System (GIS) data base in support of the Geologic Carbon Dioxide Sequestration National Assessment Project (Brennan and others, 2010). This catalog of basins is designed to provide a check list and basic geologic framework for compiling more detailed geologic and reservoir engineering data for this project and other future investigations.

  15. How well do land surface models reproduce the water and energy cycles in the West African monsoon system ? Evaluation over the Upper Ouémé basin, Benin (ALMIP2 project)

    NASA Astrophysics Data System (ADS)

    Peugeot, C.; Boone, A. A.; Demarty, J.; manuela, G.; Laurent, K.; Cappelaere, B.; Awessou, B.; Cohard, J.; Galle, S.; Gascon, T.; Getirana, A.; Hector, B.; Mamadou, O.; Richard, A.; Seghieri, J.; Séguis, L.

    2013-12-01

    Land surface models (LSMs) are widely used in environmental and climate sciences to simulate matter (water, carbon) and energy exchanges between the continental surface and the atmosphere. They are also increasingly used in a wide range of applications such as impact studies on land use management or climate change. The AMMA project and the associated observation campaigns provided unique data-sets to drive land surface models and to evaluate their results over the West African region, where such high added-value information has been lacking. In the framework of the ALMIP2 project (AMMA Land surface Model Inter-comparison Project - phase 2), simulations from about 20 LSMs were done on three contrasted meso-scale domains in Mali, Niger and Benin, over the period 2005-2008 using the same forcing data sets at 0.05 degree and 30 minutes space-time resolution. This talk analyses the simulated water and energy budget components on the sub-humid upper Ouémé basin (10,000 km2, Benin site), where the high-quality rainfall and runoff datasets allow a detailed and original hydrological evaluation of these meso-scale simulations. As expected, the model inter-comparison shows large differences in the water and energy partitioning, either at the annual (see figure) or intra-seasonal time scale. Most of them do not reproduce the observed runoff, with annual biases ranging from -100% to 200 %. The multi-model mean Evapotranspiration (ET) correctly matches the observations, specially in the rainy season, with contrasted simulations of evaporation vs. transpiration from one model to the other. The identification of the more realistic water and energy partitioning is a key issue addressed by the ALMIP2 project. Previous studies performed in the AMMA framework on the Oueme basin highlighted the key role of below-ground water dynamics in the hydrological cycle (lateral transfer to rivers, groundwater seasonal recharge-discharge, ...). Moreover, field evidences suggested that

  16. Projections of Demand for Waterborne Transportation, Ohio River Basin, 1980, 1990, 2000, 2020, 2040. Volume 16. Group XIV. Manufactured Products, Nec.

    DTIC Science & Technology

    1980-12-01

    ship- ments moved by parcel post and products moved by own power or towed. The production estimates, therefore, underestimate the production of ships...and boats, most of which are moved by their own power or towed. This, however, presented no difficulty in terms of shipment projections. The waterborne...River Systen : Growth Pates of Manufactured Products, Nec., Waterborne Commerce, BEA to BEA, Projected 1976-2040, Selected Years BEAa Gru r Yearp Pair

  17. Approximation of continuity of lenticular Mesaverde sandstone lenses, utilizing close-well correlations, Piceance Basin, northwest, Colorado. Western Gas Sands Project

    SciTech Connect

    Not Available

    1982-11-01

    Mesaverde Group sandstone units in 13 closely-spaced wells in the central and southern Piceance Basin of Colorado were correlated utilizing wireline log response quantitatively and qualitatively. Based on these correlations, the environmental subdivisions of the Mesaverde Group were characterized as follows. Paralic (upper mixed-marine) zone, occurring in the uppermost Mesaverde, includes thick sandstone units which are interpreted to be regionally continuous. Fluvial zone, containing point-bars 20 to 30+ ft thick, is interpreted to be correlatable to a maximum of 6800 ft. Paludal zone, which has insufficient data to adequately characterize the sand units. However, 63 percent of the units are correlatable across at least 139 ft. An approximation of the dimensional characteristics of Mesaverde sandstone units has potential applications in designing hydraulic fracturing treatments and estimating gas reserves more accurately. 16 figures, 2 tables

  18. National Assessment of Oil and Gas Project: Petroleum Systems and Geologic Assessment of Undiscovered Oil and Gas, Hanna, Laramie, and Shirley Basins Province, Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey Hanna, Laramie

    2007-01-01

    INTRODUCTION The purpose of the U.S. Geological Survey?s (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Hanna, Laramie, and Shirley Basins Province in Wyoming and northeastern Colorado. The assessment is based on the geologic elements of each total petroleum system (TPS) defined in the province, including hydrocarbon source rocks (source-rock maturation, hydrocarbon generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined three TPSs and seven assessment units (AUs) within them; undiscovered resources for three of the seven AUs were quantitatively assessed.

  19. National Assessment of Oil and Gas Project: Geologic Assessment of Undiscovered Oil and Gas Resources of the Eastern Great Basin Province, Nevada, Utah, Idaho, and Arizona

    USGS Publications Warehouse

    ,

    2007-01-01

    Introduction The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Eastern Great Basin Province of eastern Nevada, western Utah, southeastern Idaho, and northwestern Arizona. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and three assessment units. All three assessment units were quantitatively assessed for undiscovered oil and gas resources.

  20. Development of a Network-Based Information Infrastructure for Fisheries and Hydropower Information in the Columbia River Basin : Final Project Report.

    SciTech Connect

    Scheibe, Timothy D.; Johnson, Gary E.; Perkins, Bill

    1997-05-01

    The goal of this project was to help develop technology and a unified structure to access and disseminate information related to the Bonneville Power Administration's fish and wildlife responsibility in the Pacific Northwest. BPA desires to increase access to, and exchange of, information produced by the Environment Fish, and Wildlife Group in concert with regional partners. Historically, data and information have been managed through numerous centralized, controlled information systems. Fisheries information has been fragmented and not widely exchanged. Where exchange has occurred, it often is not timely enough to allow resource managers to effectively use the information to guide planning and decision making. This project (and related projects) have successfully developed and piloted a network-based infrastructure that will serve as a vehicle to transparently connect existing information systems in a manner that makes information exchange efficient and inexpensive. This project was designed to provide a mechanism to help BPA address measures in the Northwest Power Planning Council's (NPPC) Fish and Wildlife program: 3.2H Disseminate Research and Monitoring Information and 5.1A.5 manage water supplies in accordance with the Annual Implementation Work Plan. This project also provided resources that can be used to assist monitoring and evaluation of the Program.

  1. San Mateo Creek Basin

    EPA Pesticide Factsheets

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  2. Summary of Research through Phase II/Year 2 of Initially Approved 3 Phase/3 Year Project - Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    SciTech Connect

    G. Grammer

    2007-09-30

    This final scientific/technical report covers the first 2 years (Phases I and II of an originally planned 3 Year/3 Phase program). The project was focused on evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin. The characterization of select dolomite reservoirs was the major focus of our efforts in Phases I and II of the project. Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault-related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in these 2 studied intervals (based upon fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. In the Niagaran (Silurian), there is a general trend of increasing dolomitization shelfward, with limestone predominant in more basinward positions. A major finding is that facies types, when analyzed at a detailed level, are directly related to reservoir porosity and permeability in these dolomites which increases the predictability of reservoir quality in these units. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at this point that the results should be exportable throughout the basin. Much of the data synthesis and modeling for the project was scheduled to be part of Year 3/Phase III, but the discontinuation of funding after Year 2 precluded those efforts

  3. Computer input and output files associated with ground-water-flow simulations of the Albuquerque Basin, central New Mexico, 1901-94, with projections to 2020; (supplement one to U.S. Geological Survey Water-resources investigations report 94-4251)

    USGS Publications Warehouse

    Kernodle, J.M.

    1996-01-01

    This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.). Output files resulting from the computer simulations are included for reference.

  4. Tri-State Synfuels Project Commercial Scale Coal Test: Volume 3A. Gasification test at Sasolburg, overview. [Proposed Henderson, Kentucky coal to gasoline plant; Sasolburg test of Illinois Basin coals in Lurgi Mark IV

    SciTech Connect

    Not Available

    1982-06-01

    The SASOL test was conducted in order to confirm the operability of the Lurgi process with Western Kentucky coal and determine the preliminary design basis for the Tri-State Synfuels Project. The test plan was structured to optimize design parameters of both the gasification and associated plants and their component units by: demonstrating the need for additional gasifiers over the 36 estimated in the feasibility study; determining the steam requirement, which was about 6% higher than for the feasibility study; confirming the oxygen requirement estimated for the feasibility study; confirming design and performance of the distributor/stirrer to be satisfactory for Illinois Basin type coal; confirming that moderately swelling and strongly caking Illinois Basin coals can be gasified in a Mark IV gasifier fitted with a distributor/stirrer when using a non-caking coal for start-up; determining coal handling and preparation should provide a proper size and minimize fines generation and reject rock material to provide a constant specific gravity coal to gasifier. Confirming that dusty tar injection is feasible up to certain limits and that all the tar injected is gasified; determining that no oil is produced directly from the gasifier; determining that no shift unit is required to adjust the hydrogen-to-carbon monoxide ratio to that required for the input to the Fischer-Tropsch Synthol Units; determining a required increase in frequency of monitoring and quality control measures; and determining that direct use of stripped gas liquor for plant cooling purposes is not practical nor economical due to the excessively high chloride levels.

  5. Structural control and 3D modelling of a wrench rift basin: the Upper Rhine Graben of NW Europe as a case study - Contribution of the EU GeORG project.

    NASA Astrophysics Data System (ADS)

    Beccaletto, Laurent; Nitsch, Edgar; Anders, Birte; Dressmann, Horst; Rupf, Isabel; Tesch, Jörg; Zumsprekel, Heiko; Cruz-Mermy, Davy; Capar, Laure; GeORG Team

    2013-04-01

    The Upper Rhine Graben (URG) of NW Europe is a Cenozoic wrench rift basin about 300 km long and 30 to 40 km wide, with syn- to post-rift Eocene to Quaternary sedimentary fill up to 4 km thick. The EU transnational GeORG project aims to give a detailed knowledge of its deep geological structure, in order to assist the safe and successful use of its great geological potential (e.g. geothermal energy, CO2 sequestration...). Products are based on a Gocad 3D geological model of the URG (from the Variscan basement to the surface), mostly based on the interpretation of about 5400 km of reprocessed seismic lines (3900 km in Germany and 1500 km in France), and a database of about 2150 wells, from oil, mining and thermal water exploration. It's the first time that such an amount of subsurface data is gathered, studied and modelled in the URG. We put the emphasis on the inventory of the various observed structural features (e.g., normal and strike-slip faults, salt domes), and their implication regarding the structural evolution the URG. We demonstrate the predominant role of the Miocene-to-present NNE-SSW strike-slip regime of the URG, which is characterized by the development of transtensional faults and flower structures, local transpression and inversion of older normal fault planes. A remarkable feature is also the offset of reactivated Paleozoic basement faults, known outside the basin. Thus, the Neogene strike-slip deformation tends to obliterate the initial rift structure as well as its basement structural heritage, giving a distorted view of pre-Miocene structural styles. We finally present a new tectonic map of the subsurface of the URG, which unravels the imbricated structural pattern of the graben, and highlights the newly defined tectonic blocks, faults and fault zones.

  6. Surface-water-quality assessment of the lower Kansas River basin, Kansas and Nebraska; project data November 1986 through April 1990

    USGS Publications Warehouse

    Fallon, J.D.; McChesney, J.A.

    1993-01-01

    Surface-water-quality data were collected from the lower Kansas River Basin in Kansas and Nebraska. The data are presented in 17 tables consisting of physical properties, concentrations of dissolved solids and major ions, dissolved and total nutrients, dissolved and total major metals and trace elements, radioactivity, organic carbon, pesticides and other synthetic-organic compounds, bacteria and chlorophyll-a, in water; particle-size distributions and concentrations of major metals and trace elements in suspended and streambed sediment; and concentrations of synthetic-organic compounds in streambed sediment. The data are grouped within each table by sampling sites, arranged in downstream order. Ninety-one sites were sampled in the study area. These sampling sites are classified in three, non-exclusive categories (fixed, synoptic, and miscellaneous sites) on the basis of sampling frequency and location. Sampling sites are presented on a plate and in 3 tables, cross-referenced by downstream order, alphabetical order, U.S. Geological Survey identification number, sampling-site classification category, and types of analyses performed at each site. The methods used to collect, analyze, and verify the accuracy of the data also are presented. (USGS)

  7. 40. View west of Wickersham Basin in vicinity of McHugh ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. View west of Wickersham Basin in vicinity of McHugh Basin, looking west. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  8. 41. West end of McHugh Basin, looking west toward Dingle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. West end of McHugh Basin, looking west toward Dingle Basin. Photo by Brian C. Morris, PUget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  9. Hydrological research basins and the environment

    NASA Astrophysics Data System (ADS)

    Alley, V. M.; Warmerdam, P. M. M.

    The role and relative importance of experimental and representative basins in pre-dieting anthropogenic effects on water resources and the environment was the goal of the International Conference on Hydrological Research Basins and the Environment, held in Wageningen, the Netherlands, September 24-28, 1990. About 70 persons, almost exclusively from Europe, attended the meeting, which was organized by the Committee of the European Network of Experimental and Representative Basins and the National Committee of the Netherlands for the International Hydrological Program of Unesco.During the conference, the 3rd General Meeting of the European Network of Experimental and Representative Basins was held. This network of basins, covering nine countries in Europe, organizes periodic meetings and tries to enhance the compatibility of observations and methods of analysis, and to implement research projects of common interest.

  10. Projections of Demand for Waterborne Transportation, Ohio River Basin, 1980, 1990, 2000, 2020, 2040. Volume 12. Group X. Wood and Paper Products.

    DTIC Science & Technology

    1980-12-01

    78-C-0136 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Robert R. Nathan Associates, Inc. AREA WORK UNIT NUMBERS...Report) Approved for Public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Rport ...The work included investigation and analyses of the production, transportation and demand characteristics of each of the major com- modities

  11. Identifying Seismic Risk in the Appalachian Basin Geothermal Play Fairway Analysis Project Using Potential Fields, Seismicity, and the World Stress Map

    NASA Astrophysics Data System (ADS)

    Horowitz, F. G.

    2015-12-01

    A collaborative effort between Cornell University, Southern Methodist University, and West Virginia University has been sponsored by the US Department Of Energy to perform a Geothermal Play Fairway Analysis of the low temperature direct use potential for portions of the Appalachian sedimentary basin in New York, Pennsylvania and West Virginia - abbreviated here as GPFA-AB. One risk factor - of several being analyzed for the GPFA-AB - is whether a candidate location is near an active fault, and thereby potentially susceptible to induced seismicity from geothermal operations. Existing fault maps do not share the GPFA-AB boundaries or scale. Hence, their use leads to problems of uneven coverage, varying interpretation of faults vs. lineaments, and different mapping scales. For more uniformity across the GPFA-AB region, we use an analysis of gravity and magnetic fields. Multiscale edge Poisson wavelet analyses of potential fields ("worms") have a physical interpretation as the locations of lateral boundaries in a source distribution that exactly generates the observed field. Not all worms are faults, and of faults, only a subset might be active. Also, worms are only sensitive to steeply dipping structures. To identify some active structures, we plot worms and intra-plate earthquakes from the ISC, NEIC, and EarthScope TA catalogs. Worms within a small distance of epicenters are tracked spatially. To within errors in location, this is a sufficient condition to identify structures that might be active faults - which we categorize with higher risk than other structures. Plotting worms within World Stress Map σ1 directions yields an alternative approach to identifying activatable structures. Here, we use worms to identify structures with strikes favorably oriented for failure by Byerlee's law. While this is a necessary criterion for fault activation it is not a sufficient one - because we lack detailed information about stress magnitudes throughout the GPFA-AB region

  12. Mapping Land Cover and Land Use Changes in the Congo Basin Forests with Optical Satellite Remote Sensing: a Pilot Project Exploring Methodologies that Improve Spatial Resolution and Map Accuracy

    NASA Astrophysics Data System (ADS)

    Molinario, G.; Baraldi, A.; Altstatt, A. L.; Nackoney, J.

    2011-12-01

    The University of Maryland has been a USAID Central Africa Rregional Program for the Environment (CARPE) cross-cutting partner for many years, providing remote sensing derived information on forest cover and forest cover changes in support of CARPE's objectives of diminishing forest degradation, loss and biodiversity loss as a result of poor or inexistent land use planning strategies. Together with South Dakota State University, Congo Basin-wide maps have been provided that map forest cover loss at a maximum of 60m resolution, using Landsat imagery and higher resolution imagery for algorithm training and validation. However, to better meet the needs within the CARPE Landscapes, which call for higher resolution, more accurate land cover change maps, UMD has been exploring the use of the SIAM automatic spectral -rule classifier together with pan-sharpened Landsat data (15m resolution) and Very High Resolution imagery from various sources. The pilot project is being developed in collaboration with the African Wildlife Foundation in the Maringa Lopori Wamba CARPE Landscape. If successful in the future this methodology will make the creation of high resolution change maps faster and easier, making it accessible to other entities in the Congo Basin that need accurate land cover and land use change maps in order, for example, to create sustainable land use plans, conserve biodiversity and resources and prepare Reducing Emissions from forest Degradation and Deforestation (REDD) Measurement, Reporting and Verification (MRV) projects. The paper describes the need for higher resolution land cover change maps that focus on forest change dynamics such as the cycling between primary forests, secondary forest, agriculture and other expanding and intensifying land uses in the Maringa Lopori Wamba CARPE Landscape in the Equateur Province of the Democratic Republic of Congo. The Methodology uses the SIAM remote sensing imagery automatic spectral rule classifier, together with pan

  13. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins

    NASA Astrophysics Data System (ADS)

    Marengo, Jose A.; Chou, Sin Chan; Kay, Gillian; Alves, Lincoln M.; Pesquero, José F.; Soares, Wagner R.; Santos, Daniel C.; Lyra, André A.; Sueiro, Gustavo; Betts, Richard; Chagas, Diego J.; Gomes, Jorge L.; Bustamante, Josiane F.; Tavares, Priscila

    2012-05-01

    The objective of this study is to assess the climate projections over South America using the Eta-CPTEC regional model driven by four members of an ensemble of the Met Office Hadley Centre Global Coupled climate model HadCM3. The global model ensemble was run over the twenty-first century according to the SRES A1B emissions scenario, but with each member having a different climate sensitivity. The four members selected to drive the Eta-CPTEC model span the sensitivity range in the global model ensemble. The Eta-CPTEC model nested in these lateral boundary conditions was configured with a 40-km grid size and was run over 1961-1990 to represent baseline climate, and 2011-2100 to simulate possible future changes. Results presented here focus on austral summer and winter climate of 2011-2040, 2041-2070 and 2071-2100 periods, for South America and for three major river basins in Brazil. Projections of changes in upper and low-level circulation and the mean sea level pressure (SLP) fields simulate a pattern of weakening of the tropical circulation and strengthening of the subtropical circulation, marked by intensification at the surface of the Chaco Low and the subtropical highs. Strong warming (4-6°C) of continental South America increases the temperature gradient between continental South America and the South Atlantic. This leads to stronger SLP gradients between continent and oceans, and to changes in moisture transport and rainfall. Large rainfall reductions are simulated in Amazonia and Northeast Brazil (reaching up to 40%), and rainfall increases around the northern coast of Peru and Ecuador and in southeastern South America, reaching up to 30% in northern Argentina. All changes are more intense after 2040. The Precipitation-Evaporation (P-E) difference in the A1B downscaled scenario suggest water deficits and river runoff reductions in the eastern Amazon and São Francisco Basin, making these regions susceptible to drier conditions and droughts in the future.

  14. Bedrock geology and chemistry of rivers basins

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, B.; Miller, M. W.

    2003-04-01

    The lack of modern quantitative estimates of the Earth’s surface geology, one of the key parameters influencing river and ocean chemistry, is striking. While some attempts have been made to quantify the lithologic composition of bedrock in individual river basins (e.g., Reeder et al., 1972; Amiotte-Suchet et al., 2002), the geologic age distribution of bedrock in river basins has not been investigated. We have therefore initiated a project aimed at generating a worldwide dataset on the bedrock lithology and age distribution of river basins, using the latest digital geologic maps and modern geographic information system technology. To date we have completed analysis of the digital geologic maps North America. These data have been used in conjunction with digital river basin polygons (Revenga et al., 1998, World Resources Institute) to compute the lithologic composition and geologic age structure of major river basins in North America. The lithologic composition of 14 large river basins range from predominantly igneous rocks dominated (Frazer, Columbia), to those dominated by sedimentary rocks (Brazos, Susquehanna, Mississippi), to basins with an equal mix of igneous, metamorphic and sedimentary bedrock (Thelon). Subdividing sedimentary rocks into marine and continental rocks reveals that continental sediments account for no more than 25% of sedimentary rocks in these river basins (e.g., Nelson, Colorado, Mississippi). A further subdivision of igneous rocks into intrusive and volcanic rocks reveals the entire range of igneous composition, from basins dominated by intrusive rocks (Hudson, Mackenzie, Nelson) to those dominated by volcanic rocks (Susquehanna, Colorado, Frazer, Columbia). We are currently analyzing the age distribution of major lithologic units in each river basin. In cases where detailed hydrochemical data is available for major tributaries we will expand the analysis to sub-basins (e.g., Frazer, Mississippi). Basins smaller than about 40,000 km^2

  15. Influence of geology on the design and maintenance of steam-assisted thermal EOR projects in the southern San Joaquin Basin, California, USA

    SciTech Connect

    Countryman, R.L. )

    1993-02-01

    California, the fourth largest oil producing state and the largest steam assisted thermal EOR (SAT EOR) producing region in the United States, produced 350.7 MMBO in 1990. SAT EOR accounted for 180.8 MMBO (52%) of which 163.9 MMBO (91%) came from fields in the southern San Joaquin Valley. SAT EOR production began in California in 1960 and, over the past 30 years, geologic studies have proved crucial in all successful projects. Most project failures, either economic or technical, can be traced to a lack of adequate geologic input during either the initial design/implementation or subsequent reservoir management stages. Reservoirs range from structurally and/or stratigraphically simple to highly complex. Detailed geologic study is essential to define the external shape of a target reservoir for subsequent engineering design. Further study of internal details of the reservoir can anticipate potential clay or sanding problems, identify possible internal fluid barriers, and catalog other reservoir inhomogeneities. After initial project implementation, a second geologic review is recommended to incorporate new well data and modify the original interpretation. Once on-line, continuous monitoring of the target reservoir for temperature variation and fluid movements is essential to maintain peak efficiencies, time adjustments to steam injection rates, and fine-tune reservoir performance. Although such reservoir management is primarily an engineering function, geologic input is critical to understanding internal reservoir inhomogeneities and barriers affecting fluid and heat movement. Case studies from Kern River, Midway-Sunset, and Cymric fields provide examples of how proper geologic studies can reduce capital investment, increase recovery efficiency, and maximize profitability.

  16. Venezuela Basin crustal structure

    NASA Astrophysics Data System (ADS)

    Diebold, J. B.; Stoffa, P. L.; Buhl, P.; Truchan, M.

    1981-09-01

    Velocity-depth profiles derived from six two-ship expanding spread experiments, in combination with other geophysical data, define the characteristics of two distinct types of Venezuela Basin crust and the boundary between them. Each two-ship common midpoint reflection/refraction profile is automatically transformed into the τ-p plane, `picked' and interpreted to provide V(Z) functions with appropriate confidence bounds. The results, together with gravity, magnetic, and near-vertical incidence reflection data, reveal a 50,000 km2 triangle of Venezuela Basin crust which resembles normal oceanic crust in a magnetic quiet zone. North and west of this triangle lies the previously defined, thick `Caribbean' crust, having two distinct layers above the M discontinuity. Acoustic basement there appears unusually smooth due to extensive basaltic sills and flows which were cored at Deep Sea Drilling Project sites 146/149(sills), and 150 (flows); also, depths to mantle are greater than normal. Interpretations of near-vertical and wide-angle reflection data show that the extra crustal thickness is due not only to the emplacement of the flows but also to the crust below being somewhat thicker than normal. The boundary between the two crustal areas has a NE-SW trend which parallels the dominant structural and magnetic lineations.This boundary coincides in position, though not in trend, with the previously defined `central Venezuela Basin fault zone'. Further study is required to determine whether this boundary is of tectonic origin or if it represents a change in style of crustal production.

  17. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; Johnson, Christopher L.; James, Brenda B.

    2004-05-01

    is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Three areas of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocial salmon monitoring (abundance). This report is organized into three chapters to represent these three areas of investigation. Data were collected during the summer and fall, 2003 in index sections of the upper Yakima Basin (Figure 1). Previous results on the topics in this report were reported in James et al. (1999), and Pearsons et al. (2003). Hatchery-reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  18. Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; Johnson, Christopher L.; James, Brenda B.

    2005-05-01

    interpret why supplementation is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Topics of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocious male salmon monitoring (abundance); (4) performance of growth modulation in reducing precocious males during spawning; (5) incidence of predation by residualized chinook salmon; and (6) benefits of salmon carcasses to juvenile salmonids. This report is organized into six chapters to represent these topics of investigation. Data were collected during the summer and fall, 2004 in index sections of the upper Yakima Basin (Figure 1). Previous results on the topics in this report were reported in James et al. (1999), and Pearsons et al. (2003; 2004). Hatchery-reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  19. Project: "Project!"

    ERIC Educational Resources Information Center

    Grayson, Katherine

    2007-01-01

    In November 2006, the editors of "Campus Technology" launched their first-ever High-Resolution Projection Study, to find out if the latest in projector technology could really make a significant difference in teaching, learning, and educational innovation on US campuses. The author and her colleagues asked campus educators,…

  20. Project: "Project!"

    ERIC Educational Resources Information Center

    Grayson, Katherine

    2007-01-01

    In November 2006, the editors of "Campus Technology" launched their first-ever High-Resolution Projection Study, to find out if the latest in projector technology could really make a significant difference in teaching, learning, and educational innovation on US campuses. The author and her colleagues asked campus educators,…

  1. Advanced Chemistry Basins Model

    SciTech Connect

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  2. Upper Illinois River basin

    USGS Publications Warehouse

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  3. Osage River Basin, Osage River, Missouri, Harry S. Trumman Dam & Reservoir. Multiple-Purpose Project. Operation and Maintenance Manual. Appendix 7, Volume 2. Construction Foundation Report.

    DTIC Science & Technology

    1984-01-01

    1 800 r ’ r % ’ ’ J •o ് 545 §0 400 0400 .00 o00 300+ OULEST WORKS SECTION AT STA 52 +80.37 44146, ik 03~~h. 3.0 -0...I 1 ’ - ’ -#" 20" .C - 2"’ 800 " " *0 -,20,• K •- 8 V 740 64 DC -4 1 - D Sooo 5.0I DRAWINGS IN THIS FOLIO HAVE BEEN REDUCED TO ONE HALF THE...Billy J. Cheatham - if of BF3815134500000 9.fFORMING ORGANIZAT’ION NAME ) CDI . 1 0. PROGRAM ELEMENT. PROJECT. TASK Geology Section (MRDED-FG) AREA

  4. Isidis Basin Ejecta

    NASA Image and Video Library

    2017-03-02

    This scene is a jumbled mess. There are blocks and smears of many different rocks types that appear to have been dumped into a pile. That's probably about what happened, as ejecta from the Isidis impact basin to the east. This pile of old rocks is an island surrounded by younger lava flows from Syrtis Major. The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 27.4 centimeters (10.8 inches) per pixel (with 1 x 1 binning); objects on the order of 82 centimeters (32.2 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21553

  5. Utilizing geochemical, hydrologic, and boron isotopic data to assess the success of a salinity and selenium remediation project, Upper Colorado River Basin, Utah

    USGS Publications Warehouse

    Naftz, D.L.; Bullen, T.D.; Stolp, B.J.; Wilkowske, C.D.

    2008-01-01

    Stream discharge and geochemical data were collected at two sites along lower Ashley Creek, Utah, from 1999 to 2003, to assess the success of a site specific salinity and Se remediation project. The remediation project involved the replacement of a leaking sewage lagoon system that was interacting with Mancos Shale and increasing the dissolved salinity and Se load in Ashley Creek. Regression modeling successfully simulated the mean daily dissolved salinity and Se loads (R2 values ranging from 0.82 to 0.97) at both the upstream (AC1) and downstream (AC2/AC2A) sites during the study period. Prior to lagoon closure, net gain in dissolved-salinity load exceeded 2177??metric tons/month and decreased after remediation to less than 590??metric tons/month. The net gain in dissolved Se load during the same pre-closure period exceeded 120??kg/month and decreased to less than 18??kg/month. Sen's slope estimator verified the statistical significance of the modeled reduction in monthly salinity and Se loads. Measured gain in dissolved constituent loads during seepage tests conducted during September and November 2003 ranged from 0.334 to 0.362??kg/day for dissolved Se and 16.9 to 26.1??metric tons/day for dissolved salinity. Stream discharge and changes in the isotopic values of delta boron-11 (??11B) were used in a mixing model to differentiate between constituent loadings contributed by residual sewage effluent and naturally occurring ground-water seepage entering Ashley Creek. The majority of the modeled ??11B values of ground-water seepage were positive, indicative of minimal seepage contributions from sewage effluent. The stream reach between sites S3 and AC2A contained a modeled ground-water seepage ??11B value of - 2.4???, indicative of ground-water seepage composed of remnant water still draining from the abandoned sewage lagoons.

  6. Utilizing geochemical, hydrologic, and boron isotopic data to assess the success of a salinity and selenium remediation project, Upper Colorado River Basin, Utah.

    PubMed

    Naftz, David L; Bullen, Thomas D; Stolp, Bert J; Wilkowske, Christopher D

    2008-03-15

    Stream discharge and geochemical data were collected at two sites along lower Ashley Creek, Utah, from 1999 to 2003, to assess the success of a site specific salinity and Se remediation project. The remediation project involved the replacement of a leaking sewage lagoon system that was interacting with Mancos Shale and increasing the dissolved salinity and Se load in Ashley Creek. Regression modeling successfully simulated the mean daily dissolved salinity and Se loads (R(2) values ranging from 0.82 to 0.97) at both the upstream (AC1) and downstream (AC2/AC2A) sites during the study period. Prior to lagoon closure, net gain in dissolved-salinity load exceeded 2177 metric tons/month and decreased after remediation to less than 590 metric tons/month. The net gain in dissolved Se load during the same pre-closure period exceeded 120 kg/month and decreased to less than 18 kg/month. Sen's slope estimator verified the statistical significance of the modeled reduction in monthly salinity and Se loads. Measured gain in dissolved constituent loads during seepage tests conducted during September and November 2003 ranged from 0.334 to 0.362 kg/day for dissolved Se and 16.9 to 26.1 metric tons/day for dissolved salinity. Stream discharge and changes in the isotopic values of delta boron-11 (delta(11)B) were used in a mixing model to differentiate between constituent loadings contributed by residual sewage effluent and naturally occurring ground-water seepage entering Ashley Creek. The majority of the modeled delta(11)B values of ground-water seepage were positive, indicative of minimal seepage contributions from sewage effluent. The stream reach between sites S3 and AC2A contained a modeled ground-water seepage delta(11)B value of -2.4 per thousand, indicative of ground-water seepage composed of remnant water still draining from the abandoned sewage lagoons.

  7. Summary of first-year operations and performance of the Utica Aquifer and North Lake Basin Wetlands Restoration Project in October 2004-November 2005.

    SciTech Connect

    LaFreniere, L. M.; Sedivy, R. A.

    2006-01-27

    This document summarizes the performance of the groundwater restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Utica, Nebraska, during the initial period of system operation, from October 29, 2004, until November 31, 2005. In the project at Utica, the CCC/USDA is cooperating with multiple state and federal agencies to remove carbon tetrachloride contamination from a shallow aquifer underlying the town and to provide supplemental treated groundwater for use in the restoration of a nearby wetlands area. Argonne National Laboratory has assisted the CCC/USDA by providing technical oversight for the aquifer restoration effort and facilities during this review period. This document presents overviews of the aquifer restoration facilities (Section 2) and system operations (Section 3), then describes groundwater production results (Section 4), groundwater treatment results (Section 5), and modifications and costs during the review period (Section 6). Section 7 summarizes the first year of operation.

  8. Summary of operations and performance of the Utica aquifer and North Lake Basin wetlands restoration project in December 2005-November 2006.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2006-12-21

    This document summarizes the performance of the groundwater restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Utica, Nebraska, during the second year of system operation, from December 1, 2005, until November 31, 2006. In the project at Utica, the CCC/USDA is cooperating with multiple state and federal agencies to remove carbon tetrachloride contamination from a shallow aquifer underlying the town and to provide supplemental treated groundwater for use in the restoration of a nearby wetlands area. Argonne National Laboratory has assisted the CCC/USDA by providing technical oversight for the aquifer restoration effort and facilities during this review period. This document presents overviews of the aquifer restoration facilities (Section 2) and system operations (Section 3), then describes groundwater production results (Section 4), groundwater treatment results (Section 5), and associated groundwater monitoring, system modifications, and costs during the review period (Section 6). Section 7 summarizes the present year of operation.

  9. Summary of operations and performance of the Utica aquifer and North Lake Basin Wetlands restoration project in December 2009-November 2010.

    SciTech Connect

    LaFreniere, L. M.

    2011-03-11

    This document summarizes the performance of the groundwater restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Utica, Nebraska, during the sixth year of system operation, from December 1, 2009, until November 30, 2010. In the project at Utica, the CCC/USDA is cooperating with multiple state and federal agencies to remove carbon tetrachloride contamination from a shallow aquifer underlying the town and to provide supplemental treated groundwater for use in the restoration of a nearby wetlands area. Argonne National Laboratory has assisted the CCC/USDA by providing technical oversight for the aquifer restoration effort and facilities during this review period. This document presents overviews of the aquifer restoration facilities (Section 2) and system operations (Section 3), then describes groundwater production results (Section 4), groundwater treatment results (Section 5), and associated groundwater monitoring, system modifications, and costs during the review period (Section 6). Section 7 summarizes the present year of operation. Performance prior to December 1, 2009, has been reviewed previously (Argonne 2005, 2006, 2008, 2009a, 2010).

  10. Summary of operations and performance of the Utica aquifer and North Lake Basin Wetlands restoration project in December 2007-November 2008.

    SciTech Connect

    LaFreniere, L. M.; Sedivy, R. A.; Environmental Science Division

    2009-01-23

    This document summarizes the performance of the groundwater restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Utica, Nebraska, during the fourth year of system operation, from December 1, 2007, until November 30, 2008. Performance in earlier years was reported previously (Argonne 2005, 2006, 2008). In the project at Utica, the CCC/USDA is cooperating with multiple state and federal agencies to remove carbon tetrachloride contamination from a shallow aquifer underlying the town and to provide supplemental treated groundwater for use in the restoration of a nearby wetlands area. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the aquifer restoration effort and facilities during this review period. This document presents overviews of the aquifer restoration facilities (Section 2) and system operations (Section 3). The report then describes groundwater production results (Section 4); groundwater treatment results (Section 5); and associated maintenance, system modifications, and costs during the review period (Section 6). Section 7 summarizes the present year of operation.

  11. Summary of operations and performance of the Utica aquifer and North Lake Basin wetlands restoration project in December 2008-November 2009.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2010-05-25

    This document summarizes the performance of the groundwater restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Utica, Nebraska, during the fifth year of system operation, from December 1, 2008, until November 30, 2009. Performance in earlier years was reported previously (Argonne 2005, 2006, 2008, 2009a). In the project at Utica, the CCC/USDA is cooperating with multiple state and federal agencies to remove carbon tetrachloride contamination from a shallow aquifer underlying the town and to provide supplemental treated groundwater for use in the restoration of a nearby wetlands area. Argonne National Laboratory has assisted the CCC/USDA by providing technical oversight for the aquifer restoration effort and facilities during this review period. This document presents overviews of the aquifer restoration facilities (Section 2) and system operations (Section 3), then describes groundwater production results (Section 4), groundwater treatment results (Section 5), and associated groundwater monitoring, system modifications, and costs during the review period (Section 6). Section 7 summarizes the present year of operation.

  12. Summary of operations and performance of the Utica aquifer and North Lake Basin Wetlands restoration project in December 2006-November 2007.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2008-04-02

    This document summarizes the performance of the groundwater restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Utica, Nebraska, during the third year of system operation, from December 1, 2006, until November 30, 2007. In the project at Utica, the CCC/USDA is cooperating with multiple state and federal agencies to remove carbon tetrachloride contamination from a shallow aquifer underlying the town and to provide supplemental treated groundwater for use in the restoration of a nearby wetlands area. Argonne National Laboratory has assisted the CCC/USDA by providing technical oversight for the aquifer restoration effort and facilities during this review period. This document presents overviews of the aquifer restoration facilities (Section 2) and system operations (Section 3), then describes groundwater production results (Section 4); groundwater treatment results (Section 5); and associated groundwater monitoring, system modifications, and costs during the review period (Section 6). Section 7 summarizes the present year of operation and provides some comparisons with system performance in previous years. The performance of the groundwater restoration systems at Utica in earlier years was summarized in greater detail previously (Argonne 2005, 2006).

  13. 75 FR 36301 - Review and Approval of Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION 18 CFR Parts 806 and 808 Review and Approval of Projects AGENCY: Susquehanna River Basin... proposed rules that would amend the project review regulations of the Susquehanna River Basin Commission...

  14. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect

    Mancini, Ernest A.

    2003-02-06

    The project objectives are improving access to information for the Mississippi Interior Salt Basin by inventorying data files and records of the major information repositories in the region, making these inventories easily accessible in electronic format, increasing the amount of information available on domestic sedimentary basins through a comprehensive analysis of the Mississippi Interior Salt Basin, and enhancing the understanding of the petroleum systems operating in the Mississippi Interior Salt Basin.

  15. Investigations into the Early History of Naturally Produced Spring Chinook Salmon in the Grand Ronde Basin : Fish Research Project Oregon : Annual Progress Report Project Period September 1, 1996 to August 31, 1997.

    SciTech Connect

    Johasson, Brian C.; Tranquilli, J. Vincent; Keefe, MaryLouise

    1998-10-28

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving upper rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in pool

  16. 64. View from northwest corner of Printz Basin, showing dike ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landsc