Science.gov

Sample records for project pluto ground

  1. Project Cerberus: Flyby Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Sivier, K.; Koepke, A.; Humphrey, Theodore W.; Elbel, Jeffrey P.; Hackett, Bruce E.; Kennedy, Ralph G.; Leo, Donald J.; Zimmerman, Shery A.

    1990-01-01

    The goal of the Cerberus Project was to design a feasible and cost-effective unmanned flyby mission to Pluto. The requirements in the request for proposal for an unmanned probe to Pluto are presented and were met. The design stresses proven technology that will avoid show stoppers which could halt mission progress. Cerberus also utilizes the latest advances in the spacecraft industry to meet the stringent demands of the mission. The topics covered include: (1) mission management, planning, and costing; (2) structures; (3) power and propulsion; (4) attitude, articulation, and control; (5) command, control, and communication; and (6) scientific instrumentation.

  2. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  3. Pluto.

    ERIC Educational Resources Information Center

    Binzel, Richard P.

    1990-01-01

    Discussed are details of what is known about the composition, physical characteristics, and formation of the planet Pluto and its satellite, Charon. Alignments of these bodies and details of their rotations and revolutions are described. (CW)

  4. Pluto.

    ERIC Educational Resources Information Center

    Binzel, Richard P.

    1990-01-01

    Discussed are details of what is known about the composition, physical characteristics, and formation of the planet Pluto and its satellite, Charon. Alignments of these bodies and details of their rotations and revolutions are described. (CW)

  5. Pluto

    SciTech Connect

    Binzel, R.P. )

    1990-06-01

    A new picture of Pluto has begun to emerge during the past decade. Dedicated observational efforts using a variety of modern instruments, aided by some fortuitous celestial alignments, have produced a number of surprises. Pluto has a satellite, Charon, so large that the two objects can virtually be considered a double planet. The planet has bright polar caps and a darker, mottled equatorial region. A layer of methane ice covers most of its surface. Pluto even possesses a thin atmosphere; when the planet is farthest from the sun, all or part of the atmosphere may freeze and fall to the surface as snow. Charon's surface, which appears to be quite different from Pluto's, may be a great expanse of water ice. Pluto's size and density are much like those of Triton, the large satellite of Neptune that was recently visited by the Voyager 2 probe. These and other similarities suggest that both bodies may be leftover planetesimals, relics from the early days of the solar system that managed not to be swept up by the giant outer planets. In this scenario, Triton was captured by Neptune, whereas Pluto was able to survive as a bona fide planet in an independent orbit about the sun.

  6. Haze in Pluto's atmosphere: Results from SOFIA and ground-based observations of the 2015 June 29 Pluto occultation

    NASA Astrophysics Data System (ADS)

    Bosh, A. S.; Person, M. J.; Zuluaga, C. A.; Sickafoose, A. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Becklin, E.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S. E.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Nelson, P.; Ngan, H.; Pfüller, E.; Natusch, T.; Röser, H.-P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristram, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-11-01

    We observed the 29 June 2015 occultation by Pluto from SOFIA and several ground-based sites in New Zealand. Pre-event astrometry (described in Zuluaga et al., this conference) allowed us to navigate SOFIA into Pluto's central flash (Person et al., this conference). Fortuitously, the central flash also fell over the Mt. John University Observatory (Pasachoff et al., this conference). We combine all of our airborne and ground-based data to produce a geometric solution for the occultation and to investigate the state of Pluto's atmosphere just two weeks before the New Horizons spacecraft's close encounter with Pluto. We find that the atmosphere parameters at half-light are unchanged from our observations in 2011 (Person et al. 2013) and 2013 (Bosh et al. 2015). By combining our light-curve inversion with recent radius measurements from New Horizons, we find strong evidence for an extended haze layer in Pluto's atmosphere. See also Sickafoose et al. (this conference) for an evaluation of the particle sizes and properties.SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was provided by NASA SSO grants NNX15AJ82G (Lowell Observatory), NNX10AB27G (MIT), and NNX12AJ29G (Williams College), and by the National Research Foundation of South Africa.

  7. Exploration of Pluto

    NASA Astrophysics Data System (ADS)

    Staehle, Robert L.; Abraham, Douglas S.; Carraway, John B.; Esposito, Paul J.; Salvo, Christopher G.; Terrile, Richard J.; Wallace, Richard A.; Weinstein, Stacy S.; Hansen, Elaine

    Pluto is the last known planet in our Solar System awaiting spacecraft reconnaissance. In its eccentric orbit taking it 50 AU from the Sun, Pluto presently has a thin atmosphere containing methane, which is projected to "collapse" back to the icy planet's surface in about three decades, following Pluto's 1989 perihelion pass at 30 AU. Based on ground and Earth-orbit-based observing capabilities limited by Pluto's small size and extreme distance, present top-priority scientific questions for the first mission concern Pluto and Charon's surface geology, morphology and composition, and Pluto's neutral atmosphere composition. Budgetary realities preclude a large, many-instrument flyby spacecraft, while distance and launch energy requirements preclude any but the smallest orbiter using presently available launch vehicles and propulsion techniques. A NASA-sponsored Pluto Mission Development activity began this year. Two alternative cost-constrained mission implementations are described, based on which a primary implementation will be chosen. The Pluto Fast Flyby (PFF) mission utilizes an 83 kg (dry) spacecraft launched in 1998 aboard a Titan IV(SRMU)/Centaur for an ˜7 year direct trajectory to Pluto. Instruments described are an integrated CCD-imaging/ultraviolet spectrometer, with a possible integrated infrared spectrometer. The larger Pluto-350 spacecraft, ˜316 kg, carries a broader instrument set, greater redundancy, and requires > 11 year flight time launching in 2001 aboard a Delta or Atlas, toward Earth and Jupiter swingbys to provide the energy to reach Pluto. Launch by Proton is under consideration. Both mission implementations store data during the brief encounter, to be played back over several months. Cost is the primary design driver of both alternatives, with major tradeoffs between spacecraft development, launch services, radioisotope thermoelectric generator procurement and launch approval, and mission operations. Significant benefits are apparent from

  8. Ground-based Light Curves Two Pluto Days Before the New Horizons Passage

    NASA Astrophysics Data System (ADS)

    Bosh, A. S.; Pasachoff, J. M.; Babcock, B. A.; Durst, R. F.; Seeger, C. H.; Levine, S. E.; Abe, F.; Suzuki, D.; Nagakane, M.; Sickafoose, A. A.; Person, M. J.; Zuluaga, C.; Kosiarek, M. R.

    2015-12-01

    We observed the occultation of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 29 June 2015 UTC. At Canterbury University's Mt. John University Observatory on the south island of New Zealand, in clear sky, we used our POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. The light curves show a central flash, indicating that we were close to the center of the occultation path, and allowing us to explore Pluto's atmosphere lower than usual. The light curves show that Pluto's atmosphere remained robust. Observations from 0.5- and 0.4-m telescopes at the Auckland Observatory gave the first half of the occultation before clouds came in. We coordinated our observations with aircraft observations with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) and its High Speed Imaging Photometer for Occultations (HIPO). Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days (based on Pluto's rotational period) before the flyby of NASA's New Horizons spacecraft, meaning that the mission's exquisite snapshot of Pluto's atmosphere can be placed in the context of our series of ground-based occultation observations carried out on a regular basis since 2002 following a first Pluto occultation observed in 1988 from aloft. Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We thank Alan Gilmore, Pam Kilmartin, Robert Lucas, Paul Tristam, and Carolle Varughese for assistance at Mt. John.

  9. Coordinated Ground-Based Observations and the New Horizons Fly-by of Pluto

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Young, Leslie; Parker, Joel; Binzel, Richard

    2015-04-01

    The New Horizons (NH) spacecraft is scheduled to make its closest approach to Pluto on July 14, 2015. NH carries seven scientific instruments, including separate UV and Visible-IR spectrographs, a long-focal-length imager, two plasma-sensing instruments and a dust counter. There are three arenas in particular in which ground-based observations should augment the NH instrument suite in synergistic ways: IR spectra at wavelengths longer than 2.5 µm (i.e., longer than the NH Ralph spectrograph), stellar occultation observations near the time of the fly-by, and thermal surface maps and atmospheric CO abundances based on ALMA observations - we discuss the first two of these. IR spectra in the 3 - 5 µm range cover the CH4 absorption band near 3.3 µm. This band can be an important constraint on the state and areal extent of nitrogen frost on Pluto's surface. If this band depth is close to zero (as was observed by Olkin et al. 2007), it limits the area of nitrogen frost, which is bright at that wavelength. Combined with the NH observations of nitrogen frost at 2.15 µm, the ground-based spectra will determine how much nitrogen frost is diluted with methane, which is a basic constraint on the seasonal cycle of sublimation and condensation that takes place on Pluto (and similar objects like Triton and Eris). There is a fortuitous stellar occultation by Pluto on 29-JUN-2015, only two weeks before the NH closest approach. The occulted star will be the brightest ever observed in a Pluto event, about 2 magnitudes brighter than Pluto itself. The track of the event is predicted to cover parts of Australia and New Zealand. Thanks to HST and ground based campaigns to find a TNO target reachable by NH, the position of the shadow path will be known at the +/-100 km level, allowing SOFIA and mobile ground-based observers to reliably cover the central flash region. Ground-based & SOFIA observations in visible and IR wavelengths will characterize the haze opacity and vertical

  10. Structure and evolution of Pluto's Atmosphere from ground-based stellar occultations between 2002 and 2015

    NASA Astrophysics Data System (ADS)

    Meza, Erick; Sicardy, Bruno; Rio de Janeiro occultation Team, Granada occultation Team, International Occultation and Timing Association

    2016-10-01

    Ground-Based stellar occultations probe Pluto's atmosphere from about 3 km altitude (~ 10 μbar pressure level) up to 260 km altitude (~0.1 μbar). Our main goal is to derive Pluto's atmosphere evolution using thirteen ground-based occultations observed between 2002 and 2015 (plus 2016, if available). We consistently analyze the light curves using the Dias et al. (ApJ 811, 53, 2015) model, and confirm the general pressure increase by a factor of about 1.5 between 2002 and 2015 and a factor of almost three between 1988 and 2015. Implications for Pluto's seasonal evolution will be briefly discussed in the context of the New Horizons (NH) findings.Ground-based-derived temperature profiles will be compared with NH's results, where we use new temperature boundary conditions in our inversion procedures, as given by NH near 260 km altitude. Although the profiles reasonably agree, significant discrepancies are observed both in the deeper stratospheric zone (altitude < 30 km), and the mesospheric zone (altitudes between 30 and 260 km). Possible biases will be discussed.Additionally, we use a central flash event observed in New Zealand on June 29, 2015 (close to the NH flyby) to provide an upper limit of Pluto's atmospheric oblateness near 4 km altitude. We will also explore the possibility that small deviations in the observed flash (compared to the model) are caused by the local topographic features revealed by NH.Finally, possible correlations between spike activity in the occultation light-curves and local underlying presence of free nitrogen ice terrains will be investigated.Part of the research leading to these results has received funding from the European Research Council under the European Community's H2020 (2014-2020/ ERC Grant Agreement n 669416 "LUCKY STAR").

  11. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    SciTech Connect

    Person, M. J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Sallum, S.; Dunham, E. W.; Collins, P.; Bida, T.; Bright, L.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Tholen, D. J.; Taylor, B.; Wolf, J.; Pfueller, E.; Meyer, A.; and others

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should

  12. The 2011 June 23 Stellar Occultation by Pluto: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, M. J.; Dunham, E. W.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Bright, L.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedemann, M.; Roeser, H.-P.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. J.; Micheli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J. P.; Tilleman, T.; Harris, H.; Sheppard, S.; Rapoport, S.; Ritchie, I.; Pearson, M.; Mattingly, A.; Brimacombe, J.; Gault, D.; Jones, R.; Nolthenius, R.; Broughton, J.; Barry, T.

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 ± 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist

  13. An analysis of AMTEC, multi-cell ground-demo for the Pluto/Express mission

    SciTech Connect

    Tournier, J.M.; El-Genk, M.S.

    1998-07-01

    Results of recent tests of an 8-cell, AMTEC ground-demo are analyzed and the performance of individual cells compared. The ground-demo produced a peak electric power of 27 W{sub e} at an output voltage of 16 V, when tested at hot and cold side temperatures of 1123 K and 553 K. The electric power output and terminal voltage of the individual cells, however, differed by as much as 25%, from 2.94 to 3.76 W{sub e}, and 1.73 to 2.21 V, respectively. These variations were attributed to differences in: (a) contact resistance between electrode / BASE / current collector; (b) current (or electrons) leakage between anode and cathode electrodes through the metal-ceramic braze joint between BASE tubes and support plate; and (c) the charge-exchange polarization losses. Model's predictions compared very well with measured voltage and electric power output of individual cells and of the ground-demo. At the operating conditions for the Pluto/Express spacecraft (T{sub hot} {approximately} 1200 K, T{sub cd} {approximately} 573 K), the best performing ground-demo cell would have delivered 5 W{sub e} at an output voltage of 3 V. These values, however, are still significantly lower than those needed to meet the Pluto/Express mission power requirements (8.2 W{sub e} at 3.5 V, per cell).

  14. Korea's School Grounds Projects

    ERIC Educational Resources Information Center

    Park, Joohun

    2003-01-01

    This article describes two projects which Korea has undertaken to improve its school grounds: (1) the Green School Project; and (2) the School Forest Pilot Project. The Korean Ministry of Education and Human Resources Development (MOE&HRI) recently launched the Green School Project centred on existing urban schools with poor outdoor…

  15. Korea's School Grounds Projects

    ERIC Educational Resources Information Center

    Park, Joohun

    2003-01-01

    This article describes two projects which Korea has undertaken to improve its school grounds: (1) the Green School Project; and (2) the School Forest Pilot Project. The Korean Ministry of Education and Human Resources Development (MOE&HRI) recently launched the Green School Project centred on existing urban schools with poor outdoor…

  16. Ground and space-based separate PSF photometry of Pluto and Charon from New Horizons and Magellan

    NASA Astrophysics Data System (ADS)

    Zangari, Amanda M.; Stern, S. A.; Young, L. A.; Weaver, H. A.; Olkin, C.; Buratti, B. J.; Spencer, J.; Ennico, K.

    2013-10-01

    While Pluto and Charon are easily resolvable in some space-based telescopes, ground-based imaging of Pluto and Charon can yield separate PSF photometry in excellent seeing. We present B and Sloan g', r', i', and z' separate photometry of Pluto and Charon taken at the Magellan Clay telescope using LDSS-3. In 2011, observations were made on 7, 8, 9, 19, and 20 March, at 9:00 UT, covering sub-Earth longitudes 130°, 74°, 17°, 175° and 118°. The solar phase angle ranged from 1.66-1.68° to 1.76-1.77°. In 2012, observations were made on February 28, 29 and March 1 at 9:00 UT covering longitudes 342°, 110° and 53° and on May 30 and 31 at 9:30 UT and 7:00 UT, covering longitudes 358° and 272°. Solar phase angles were 1.53-1.56° and 0.89°-0.90° degrees. All longitudes use the convention of zero at the sub-Charon longitude and decrease in time. Seeing ranged from 0.46 to 1.26 arcsecond. We find that the mean rotationally-averaged Charon-to-Pluto light ratio is 0.142±0.003 for Sloan r',i' and z'. Charon is brighter in B and g', with a light ratio of 0.182±0.003 and 0.178±0.002 respectively. Additionally, we present separate PSF photometry of Pluto and Charon from New Horizons images taken by the LORRI instrument on 1 and 3 July 2013 at 17:00 UT and 23:00 UT, sub-Earth longitude 251° and 125°. We find that the rotation-dependent variations in the light ratio are consistent with earlier estimates such as those from Buie et al. 2010, AJ 139, 1117-1127. However, at a solar phase angle of 10.9°, Charon appears 0.25 magnitudes fainter relative to Pluto at the same rotational phase than measurements from the ground with the largest possible solar phase angle. Thus we provide the first estimate of a Pluto phase curve beyond 2°. These results represent some of the first Pluto science from New Horizons. This work has been funded in part by NASA Planetary Astronomy Grant NNX10AB27G and NSF Award 0707609 to MIT and by NASA's New Horizons mission to Pluto.

  17. Pluto's Atmosphere from the 2015 June 29 Ground-based Stellar Occultation at the Time of the New Horizons Flyby

    NASA Astrophysics Data System (ADS)

    Sicardy, B.; Talbot, J.; Meza, E.; Camargo, J. I. B.; Desmars, J.; Gault, D.; Herald, D.; Kerr, S.; Pavlov, H.; Braga-Ribas, F.; Assafin, M.; Benedetti-Rossi, G.; Dias-Oliveira, A.; Gomes-Júnior, A. R.; Vieira-Martins, R.; Bérard, D.; Kervella, P.; Lecacheux, J.; Lellouch, E.; Beisker, W.; Dunham, D.; Jelínek, M.; Duffard, R.; Ortiz, J. L.; Castro-Tirado, A. J.; Cunniffe, R.; Querel, R.; Yock, P. C.; Cole, A. A.; Giles, A. B.; Hill, K. M.; Beaulieu, J. P.; Harnisch, M.; Jansen, R.; Pennell, A.; Todd, S.; Allen, W. H.; Graham, P. B.; Loader, B.; McKay, G.; Milner, J.; Parker, S.; Barry, M. A.; Bradshaw, J.; Broughton, J.; Davis, L.; Devillepoix, H.; Drummond, J.; Field, L.; Forbes, M.; Giles, D.; Glassey, R.; Groom, R.; Hooper, D.; Horvat, R.; Hudson, G.; Idaczyk, R.; Jenke, D.; Lade, B.; Newman, J.; Nosworthy, P.; Purcell, P.; Skilton, P. F.; Streamer, M.; Unwin, M.; Watanabe, H.; White, G. L.; Watson, D.

    2016-03-01

    We present results from a multi-chord Pluto stellar occultation observed on 2015 June 29 from New Zealand and Australia. This occurred only two weeks before the NASA New Horizons flyby of the Pluto system and serves as a useful comparison between ground-based and space results. We find that Pluto's atmosphere is still expanding, with a significant pressure increase of 5 ± 2% since 2013 and a factor of almost three since 1988. This trend rules out, as of today, an atmospheric collapse associated with Pluto's recession from the Sun. A central flash, a rare occurrence, was observed from several sites in New Zealand. The flash shape and amplitude are compatible with a spherical and transparent atmospheric layer of roughly 3 km in thickness whose base lies at about 4 km above Pluto's surface, and where an average thermal gradient of about 5 K km-1 prevails. We discuss the possibility that small departures between the observed and modeled flash are caused by local topographic features (mountains) along Pluto's limb that block the stellar light. Finally, using two possible temperature profiles, and extrapolating our pressure profile from our deepest accessible level down to the surface, we obtain a possible range of 11.9-13.7 μbar for the surface pressure. Partly based on observations made with the ESO WFI camera at the 2.2 m Telescope (La Silla), under program ID 079.A-9202(A) within the agreement between the ON/MCTI and the Max Planck Society, with the ESO camera NACO at the Very Large Telescope (Paranal), under program ID 089.C-0314(C), and at the Pico dos Dias Observatory/LNA, Brazil.

  18. New Horizons at Pluto: Asking the right questions

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Stern, S. Alan; Olkin, Catherine B.; Spencer, John R.; Cheng, Andrew F.; Weaver, Harold A.; Ennico, Kimberly; Moore, Jeffrey M.; Grundy, William M.; Bagenal, Fran; Gladstone, Randy; Lunine, Jonathan I.; New Horizons Science Team

    2016-10-01

    In the 1980's and 1990's, breakthroughs about Pluto and the outer solar system laid the groundwork for the Outer Planets Science Working Group (1992), the Pluto Kuiper Express mission Science Definition Team (1996), and the Announcement of Opportunity for the Pluto Kuiper-Belt mission in 2001. These included specific science goals that molded the mission design, instrument selection, and observing sequence. These goals held up amazingly well over the decades. This historical review of New Horizons will explain how ground-based and theoretical work prepared us for a successful investigation of Pluto, and speculate on some of the new questions raised by the New Horizons flyby of the Pluto system.This work was supported by NASA's New Horizons project.

  19. Pluto: Dwarf planet 134340

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2016-01-01

    In recent decades, investigations of Pluto with up-to-date astronomical instruments yielded results that have been generally confirmed by the New Horizons mission. In 2006, in Prague, the General Assembly of the International Astronomical Union (IAU) reclassified Pluto as a member of the dwarf planet category according to the criteria defined by the IAU for the term "planet". At the same time, interest in studies of Pluto was increasing, while the space investigations of Pluto were delayed. In 2006, the New Horizons Pluto spacecraft started its journey to Pluto. On July 14, 2015, the spacecraft, being in fly-by mode, made its closest approach to Pluto. The heterogeneities and properties of the surface and rarified atmosphere were investigated thoroughly. Due to the extreme remoteness of the spacecraft and the energy limitations, it will take 18 months to transmit the whole data volume. Along with the preliminary results of the New Horizons Pluto mission, this paper reviews the basics on Pluto and its moons acquired from the ground-based observations and with the Hubble Space Telescope (HST). There are only a few meteorite craters on the surfaces of Pluto and Charon, which distinctly marks them apart from such satellites of the giant planets as Ganymede and Callisto. The explanation is that the surface of Pluto is young: its age is estimated at less than 100 Myr. Ice glaciers of apparently a nitrogen nature were found. Nitrogen is also the main component of the atmosphere of Pluto. The planet demonstrates the signs of strong geologic activity, though the energy sources of these processes are unknown.

  20. Pluto Time

    NASA Image and Video Library

    If you stood on Pluto at noon and looked around, the landscape would be illuminated about as brightly as on Earth soon after sunset. The team for NASA's New Horizons mission dubbed this "Pluto Time...

  1. Pluto's Nonvolatile Chemical Compounds

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Binzel, Richard; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa M.; Ennico, Kimberly; Jennings, Donald; Howett, Carly; Kaiser, Ralf-Ingo; Linscott, Ivan; Lunsford, A. W.; Olkin, Catherine B.; Parker, Alex Harrison; Parker, Joel Wm.; Philippe, Sylvain; Protopapa, Silvia; Quirico, Eric; Reuter, D. C.; Schmitt, Bernard; Singer, Kelsi N.; Spencer, John R.; Stansberry, John A.; Stern, S. Alan; Tsang, Constantine; Verbiscer, Anne J.; Weaver, Harold A.; Weigle, G. E.; Young, Leslie

    2016-10-01

    Despite the migration of Pluto's volatile ices (N2, CO, and CH4) around the surface on seasonal timescales, the planet's non-volatile materials are not completely hidden from view. They occur in a variety of provinces formed over a wide range of timescales, including rugged mountains and chasms, the floors of mid-latitude craters, and an equatorial belt of especially dark and reddish material typified by the informally named Cthulhu Regio. NASA's New Horizons probe observed several of these regions at spatial resolutions as fine as 3 km/pixel with its LEISA imaging spectrometer, covering wavelengths from 1.25 to 2.5 microns. Various compounds that are much lighter than the tholin-like macromolecules responsible for the reddish coloration, but that are not volatile at Pluto surface temperatures such as methanol (CH3OH) and ethane (C2H6) have characteristic absorption bands within LEISA's wavelength range. This presentation will describe their geographic distributions and attempt to constrain their origins. Possibilities include an inheritance from Pluto's primordial composition (the likely source of H2O ice seen on Pluto's surface) or ongoing production from volatile precursors through photochemistry in Pluto's atmosphere or through radiolysis on Pluto's surface. New laboratory data inform the analysis.This work was supported by NASA's New Horizons project.

  2. Pluto Express: Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Giuliano, J. A.

    1996-01-01

    Pluto is the smallest, outermost and last-discovered planet in the Solar System and the only one that has never been visited by a spacecraft from Earth. Pluto and its relatively large satellite Charon are the destinations of a proposed spacecraft mission for the next decade, being developed for NASA by scientists and engineers at NASA's Jet Propulsion Laboratory.

  3. Pluto Express: Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Giuliano, J. A.

    1996-01-01

    Pluto is the smallest, outermost and last-discovered planet in the Solar System and the only one that has never been visited by a spacecraft from Earth. Pluto and its relatively large satellite Charon are the destinations of a proposed spacecraft mission for the next decade, being developed for NASA by scientists and engineers at NASA's Jet Propulsion Laboratory.

  4. Pluto Haze

    NASA Image and Video Library

    2015-09-10

    Two different versions of an image of Pluto's haze layers, taken by New Horizons as it looked back at Pluto's dark side nearly 16 hours after close approach, from a distance of 480,000 miles (770,000 kilometers), at a phase angle of 166 degrees. Pluto's north is at the top, and the sun illuminates Pluto from the upper right. These images are much higher quality than the digitally compressed images of Pluto's haze downlinked and released shortly after the July 14 encounter, and allow many new details to be seen. The left version has had only minor processing, while the right version has been specially processed to reveal a large number of discrete haze layers in the atmosphere. In the left version, faint surface details on the narrow sunlit crescent are seen through the haze in the upper right of Pluto's disk, and subtle parallel streaks in the haze may be crepuscular rays- shadows cast on the haze by topography such as mountain ranges on Pluto, similar to the rays sometimes seen in the sky after the sun sets behind mountains on Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19880

  5. Pluto in Extended Color

    NASA Image and Video Library

    2015-09-24

    This cylindrical projection map of Pluto, in enhanced, extended color, is the most detailed color map of Pluto ever made by NASA New Horizons. It uses recently returned color imagery from the New Horizons Ralph camera, which is draped onto a base map of images from the NASA's spacecraft's Long Range Reconnaissance Imager (LORRI). The map can be zoomed in to reveal exquisite detail with high scientific value. Color variations have been enhanced to bring out subtle differences. Colors used in this map are the blue, red, and near-infrared filter channels of the Ralph instrument. http://photojournal.jpl.nasa.gov/catalog/PIA19956

  6. Seasonal Nitrogen Cycles on Pluto

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Paige, David A.

    1996-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model was used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters. Volatile transport was confirmed to have a significant effect on Pluto's climate as nitrogen moved around on a seasonal time scale between hemispheres, and sublimed into and condensed out of the atmosphere. Pluto's high obliquity was found to have a significant effect on the distribution of frost on its surface. Conditions that would lead to permanent polar caps on Triton were found to lead to permanent zonal frost bands on Pluto. In some instances, frost sublimed from the middle of a seasonal cap outward, resulting in a "polar bald spot". Frost which was darker than the substrate did not satisfy observables on Pluto, in contrast to our findings for Triton. Bright frost (brighter than the substrate) came closer to matching observables. Atmospheric pressure varied seasonally. The amplitudes, and to a lesser extent the phase, of the variation depended significantly on frost and substrate properties. Atmospheric pressure was found to be determined both by Pluto's distance from the sun and by the subsolar latitude. In most cases two peaks in atmospheric pressure were observed annually: a greater one associated with the sublimation of the north polar cap just as Pluto receded from perihelion, and a lesser one associated with the sublimation of the south polar cap as Pluto approached perihelion. Our model predicted frost-free dark substrate surface temperatures in the 50 to 60 K range, while frost temperatures typically ranged between 30 to 40 K. Temporal changes in frost coverage illustrated by our results, and changes in the viewing geometry of Pluto from the Earth, may be important for interpretation of ground-based measurements of Pluto's thermal emission.

  7. Seasonal Nitrogen Cycles on Pluto

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Paige, David A.

    1996-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model was used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters. Volatile transport was confirmed to have a significant effect on Pluto's climate as nitrogen moved around on a seasonal time scale between hemispheres, and sublimed into and condensed out of the atmosphere. Pluto's high obliquity was found to have a significant effect on the distribution of frost on its surface. Conditions that would lead to permanent polar caps on Triton were found to lead to permanent zonal frost bands on Pluto. In some instances, frost sublimed from the middle of a seasonal cap outward, resulting in a "polar bald spot". Frost which was darker than the substrate did not satisfy observables on Pluto, in contrast to our findings for Triton. Bright frost (brighter than the substrate) came closer to matching observables. Atmospheric pressure varied seasonally. The amplitudes, and to a lesser extent the phase, of the variation depended significantly on frost and substrate properties. Atmospheric pressure was found to be determined both by Pluto's distance from the sun and by the subsolar latitude. In most cases two peaks in atmospheric pressure were observed annually: a greater one associated with the sublimation of the north polar cap just as Pluto receded from perihelion, and a lesser one associated with the sublimation of the south polar cap as Pluto approached perihelion. Our model predicted frost-free dark substrate surface temperatures in the 50 to 60 K range, while frost temperatures typically ranged between 30 to 40 K. Temporal changes in frost coverage illustrated by our results, and changes in the viewing geometry of Pluto from the Earth, may be important for interpretation of ground-based measurements of Pluto's thermal emission.

  8. Pluto Badlands

    NASA Image and Video Library

    2015-12-05

    This highest-resolution image from NASA's New Horizons spacecraft shows how erosion and faulting has sculpted this portion of Pluto's icy crust into rugged badlands. The prominent 1.2-mile-high cliff at the top, running from left to upper right, is part of a great canyon system that stretches for hundreds of miles across Pluto's northern hemisphere. New Horizons team members think that the mountains in the middle are made of water ice, but have been modified by the movement of nitrogen or other exotic ice glaciers over long periods of time, resulting in a muted landscape of rounded peaks and intervening sets of short ridges. At the bottom of this 50-mile-wide image, the terrain transforms dramatically into a fractured and finely broken up floor at the northwest margin of the giant ice plain informally called Sputnik Planum. The top of the image is to Pluto's northwest. These images were made with the telescopic Long Range Reconnaissance Imager (LORRI) aboard New Horizons, in a timespan of about a minute centered on 11:36 UT on July 14 -- just about 15 minutes before New Horizons' closest approach to Pluto -- from a range of just 10,000 miles (17,000 kilometers). They were obtained with an unusual observing mode; instead of working in the usual "point and shoot," LORRI snapped pictures every three seconds while the Ralph/Multispectral Visual Imaging Camera (MVIC) aboard New Horizons was scanning the surface. This mode requires unusually short exposures to avoid blurring the images. http://photojournal.jpl.nasa.gov/catalog/PIA20199

  9. The Moons of Uranus, Neptune and Pluto.

    ERIC Educational Resources Information Center

    Brown, Robert Hamilton; Cruikshank, Dale P.

    1985-01-01

    In preparation for the Voyager flybys in 1989, the pace of ground-based investigations of the moons of Uranus, Neptune, and Pluto has quickened considerably. Information derived from these investigations is presented. (JN)

  10. The Moons of Uranus, Neptune and Pluto.

    ERIC Educational Resources Information Center

    Brown, Robert Hamilton; Cruikshank, Dale P.

    1985-01-01

    In preparation for the Voyager flybys in 1989, the pace of ground-based investigations of the moons of Uranus, Neptune, and Pluto has quickened considerably. Information derived from these investigations is presented. (JN)

  11. New Horizons LORRI Pluto Haze Spatial Analysis

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.; Cheng, A. F.; Summers, M. E.; Gladstone, R.; Parker, A. H.; Strobel, D. F.; Young, L. A.; Binzel, R. P.; Runyon, K. D.; Weaver, H. A., Jr.; Stern, A.

    2015-12-01

    We present analysis results from the New Horizons (NH) Pluto atmosphere haze measurements. Observations were taken by the LORRI clear filter narrow angle camera [1] during the NH Pluto close flyby on 14 July 2014. Both high phase angle (forward scattering) look back and low phase angle (back scattering) sunlit hemisphere observations were obtained. The haze is clearly detected in the forward scattered images, but systematics due to scattered light contributions from Pluto's surface must be accounted for in order to accurately determine any azimuthal or latitudinal dependence. The haze extends at least 150 km above the surface of Pluto, and could contain layer structures as well. In the backscattered images, the haze is dominated by backscattered light from Pluto's surface in the lossy images currently on the ground. In this paper we report on the latest LORRI haze spatial distribution analysis results and their implications. 1Cheng, A.F. et al. 2008, Space Science Reviews, Volume 140, Issue 1-4, pp. 189-215 Figure 1: LORRI lookback image of Pluto taken on 16 Jul 2015 03:40 UT. This moderate resolution (9.8 km/pix) image is lossless and shows the full extent of Pluto's disk. The haze can clearly be seen extending more than 10% of a Pluto radii above the solid surface of the planet. Potential structures in the haze seen in this image will be discussed.

  12. New Horizons: Gas and Plasma in the Pluto System

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Gladstone, Randy; Summers, Michael; Bagenal, Fran; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine B.; Ennico, Kimberly; Moore, Jeffrey M.; Grundy, William M.; New Horizons Atmospheres Science Theme Team, New Horizons Particles and Plasma Science Theme Team

    2016-10-01

    NASA's New Horizons mission gave us information about gas and plasma in the Pluto system from Pluto's surface up to a distance of ~200,000 km beyond Pluto. This review will give an overview of our current theories and observations of the near-surface atmospheric structure; the properties, production and settling of Pluto's ubiquitous haze; the minor atmospheric species and atmospheric chemistry; the energetics and high-altitude thermal structure; the escape rate and the pickup of methane ions; the effect of methane impacting Charon; and Pluto's heavy-ion tail. Details are given in other presentations at this conference.This work was supported by NASA's New Horizons project.

  13. Global Mosaics of Pluto and Charon

    NASA Image and Video Library

    2017-07-14

    Global mosaics of Pluto and Charon projected at 300 meters (985 feet) per pixel that have been assembled from most of the highest resolution images obtained by the Long-Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) onboard New Horizons. Transparent, colorized stereo topography data generated for the encounter hemispheres of Pluto and Charon have been overlain on the mosaics. Terrain south of about 30°S on Pluto and Charon was in darkness leading up to and during the flyby, so is shown in black. "S" and "T" respectively indicate Sputnik Planitia and Tartarus Dorsa on Pluto, and "C" indicates Caleuche Chasma on Charon. All feature names on Pluto and Charon are informal. https://photojournal.jpl.nasa.gov/catalog/PIA21862

  14. Map of Pluto Surface

    NASA Image and Video Library

    1998-03-28

    This image-based surface map of Pluto was assembled by computer image processing software from four separate images of Pluto disk taken with the European Space Agency Faint Object Camera aboard NASA Hubble Space Telescope.

  15. Pluto flight considered

    NASA Astrophysics Data System (ADS)

    1995-05-01

    The U.S. and the Russian Federation are considering launching joint missions to Pluto and to the Sun. This article outlines the tradeoffs to be resolved concerning costs, launch vehicle, mission senarios, and instrument packages for the Pluto mission.

  16. Pluto: A Global Perspective

    NASA Image and Video Library

    2016-05-02

    NASA New Horizons mission science team has produced this updated panchromatic black-and-white global map of Pluto. The map includes all resolved images of Pluto surface acquired between July 7-14, 2015.

  17. Kuiper Belt Objects Along the Pluto Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1999-01-01

    The objective of this proposal was to mount a ground-based search for Kuiper Belt objects near the trajectory of the NASA Pluto Express spacecraft. The high density of Kuiper Belt objects established from work on Mauna Kea makes it probable that one or more bodies can be visited by Pluto Express after its encounter with Pluto. The work was funded during its first year through NASA HQ. The second year was funded through Goddard. The third year was never funded.

  18. Kuiper Belt Objects Along the Pluto Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1999-01-01

    The objective of this proposal was to mount a ground-based search for Kuiper Belt objects near the trajectory of the NASA Pluto Express spacecraft. The high density of Kuiper Belt objects established from work on Mauna Kea makes it probable that one or more bodies can be visited by Pluto Express after its encounter with Pluto. The work was funded during its first year through NASA HQ. The second year was funded through Goddard. The third year was never funded.

  19. Configuration of Pluto's Volatile Ices

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Jennings, D. E.; Howett, C. J. A.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm; Protopapa, S.; Reuter, D. C.; Singer, K. N.; Spencer, J. R.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.; Berry, K.; Buie, M. W.; Stansberry, J. A.

    2015-11-01

    We report on near-infrared remote sensing by New Horizons' Ralph instrument (Reuter et al. 2008, Space Sci. Rev. 140, 129-154) of Pluto's N2, CO, and CH4 ices. These especially volatile ices are mobile even at Pluto's cryogenic surface temperatures. Sunlight reflected from these ices becomes imprinted with their characteristic spectral absorption bands. The detailed appearance of these absorption features depends on many aspects of local composition, thermodynamic state, and texture. Multiple-scattering radiative transfer models are used to retrieve quantitative information about these properties and to map how they vary across Pluto's surface. Using parameter maps derived from New Horizons observations, we investigate the striking regional differences in the abundances and scattering properties of Pluto's volatile ices. Comparing these spatial patterns with the underlying geology provides valuable constraints on processes actively modifying the planet's surface, over a variety of spatial scales ranging from global latitudinal patterns to more regional and local processes within and around the feature informally known as Sputnik Planum. This work was supported by the NASA New Horizons Project.

  20. Advanced Ground Systems Maintenance Prognostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project implements prognostics capabilities to predict when a component system or subsystem will no longer meet desired functional or performance criteria, called the end of life. The capability also provides an assessment of the remaining useful life of a hardware component. The project enables the delivery of system health advisories to ground system operators. This project will use modeling techniques and algorithms to assess components' health andpredict remaining life for such components. The prognostics capability being developed will beused:during the design phase and during pre/post operations to conduct planning and analysis ofsystem design, maintenance & logistics plans, and system/mission operations plansduring real-time operations to monitor changes to components' health and assess their impacton operations.This capability will be interfaced to Ground Operations' command and control system as a part ofthe AGSM project to help assure system availability and mission success. The initial modelingeffort for this capability will be developed for Liquid Oxygen ground loading applications.

  1. Possible occultation by Pluto from US East Coast

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-06-01

    We have been asked to help disseminate the news of a possible occultation by Pluto visible to observers on the US East coast. Although the AAVSO does not ordinarily issue announcements of upcoming occultations, in this case the object is Pluto and the NASA New Horizons mission (http://www.nasa.gov/mission_pages/newhorizons/main/index.html) will be visiting Pluto in 2015. The information below has been supplied by Dr. Leslie Young (Southwest Research Institute), who is coordinating this observing campaign on Pluto. Dr. Young is also Deputy Project Scientist for the New Horizons mission. ALERT: Possible Pluto occultation Wednesday night (2012/06/14 03:28 UT) from US East coast. CONTACT: Leslie Young (layoung@boulder.swri.edu; work: 303-546-6057; skype: drpluto). Also see our planning pages in progress at http://wiki.boulder.swri.edu/mediawiki/index.php/2012-06-14_Pluto_occultation. Pluto's thin, nitrogen atmosphere is in vapor-pressure equilibrium with the surface ice, and changes seasonally. We've seen it double since 1988, and now we measure its pressure once or twice a year. The technique we use is stellar occultation, when a star passes behind Pluto's atmosphere. The atmosphere defocuses the starlight. By the timing of the fading of the star, we measure the pressure and temperature in Pluto's atmosphere at ~10 km resolution. MORE INFORMATION: See http://wiki.boulder.swri.edu/mediawiki/index.php/2012-06-14_Pluto_occultation.

  2. Faces of Pluto

    NASA Image and Video Library

    2015-06-11

    These images, taken by NASA's New Horizons' Long Range Reconnaissance Imager (LORRI), show four different "faces" of Pluto as it rotates about its axis with a period of 6.4 days. All the images have been rotated to align Pluto's rotational axis with the vertical direction (up-down) on the figure, as depicted schematically in the upper left. From left to right, the images were taken when Pluto's central longitude was 17, 63, 130, and 243 degrees, respectively. The date of each image, the distance of the New Horizons spacecraft from Pluto, and the number of days until Pluto closest approach are all indicated in the figure.These images show dramatic variations in Pluto's surface features as it rotates. When a very large, dark region near Pluto's equator appears near the limb, it gives Pluto a distinctly, but false, non-spherical appearance. Pluto is known to be almost perfectly spherical from previous data. These images are displayed at four times the native LORRI image size, and have been processed using a method called deconvolution, which sharpens the original images to enhance features on Pluto. Deconvolution can occasionally introduce "false" details, so the finest details in these pictures will need to be confirmed by images taken from closer range in the next few weeks. All of the images are displayed using the same brightness scale. http://photojournal.jpl.nasa.gov/catalog/PIA19686

  3. Pluto system for digitized images of photoplates

    NASA Astrophysics Data System (ADS)

    Shatohina, S.; Kazantzeva, L.; Andruk, V.; Protziuk, Ju.

    2016-06-01

    Pluto's planetary system, because of its remoteness, the recent discovery of components and lack of observational data remains understudied. Modern approach to re-processing early observations of Pluto with new technologies and measurements can be an effective treatment for building models of planetary systems and the theory of motion. As a result of combining the efforts of three Ukrainian observatories – the project participants UkrVO - collected, digitized and processed observations of Pluto during 1961–1990 included in the Joint Digital Archive of UkrVO. Using common techniques astronomy negative digitization and further processing for observations obtained 5 telescopes catalogue positions and magnitudes of Pluto. An analysis of the (O-C) in the position and magnitude relative to the current standard ephemeris motion of the planet and comparison with the results of other authors treatments.

  4. Global Map of Pluto Moon Charon

    NASA Image and Video Library

    2015-07-30

    The science team of NASA's New Horizons mission has produced this global map of Pluto's largest moon, Charon. The map includes all available resolved images of the surface acquired between July 7-14, 2015, at pixel resolutions ranging from 40 kilometers (24 miles) on the anti-Pluto facing hemisphere (left and right sides of the map), to 400 meters (1,250 feet) per pixel on portions of the Pluto-facing hemisphere -- the side facing the New Horizons spacecraft when it flew past the dwarf planet -- at map center. Many additional images now stored on the spacecraft's digital data recorders are expected to be transmitted "home" in fall 2015 and these will be used to complete the global map. The map is in simple cylindrical projection, with zero longitude (the Pluto-facing direction) in the center. http://photojournal.jpl.nasa.gov/catalog/PIA19866

  5. Automated Ground Umbilical Systems (AGUS) Project

    NASA Technical Reports Server (NTRS)

    Gosselin, Armand M.

    2007-01-01

    All space vehicles require ground umbilical systems for servicing. Servicing requirements can include, but are not limited to, electrical power and control, propellant loading and venting, pneumatic system supply, hazard gas detection and purging as well as systems checkout capabilities. Of the various types of umbilicals, all require several common subsystems. These typically include an alignment system, mating and locking system, fluid connectors, electrical connectors and control !checkout systems. These systems have been designed to various levels of detail based on the needs for manual and/or automation requirements. The Automated Ground Umbilical Systems (AGUS) project is a multi-phase initiative to develop design performance requirements and concepts for launch system umbilicals. The automation aspect minimizes operational time and labor in ground umbilical processing while maintaining reliability. This current phase of the project reviews the design, development, testing and operations of ground umbilicals built for the Saturn, Shuttle, X-33 and Atlas V programs. Based on the design and operations lessons learned from these systems, umbilicals can be optimized for specific applications. The product of this study is a document containing details of existing systems and requirements for future automated umbilical systems with emphasis on design-for-operations (DFO).

  6. The Search for Pluto Water

    NASA Astrophysics Data System (ADS)

    Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Ennico, Kimberly; Grundy, William M.; Olkin, Cathy B.; Protopapa, Silvia; Stern, S. Alan; Weaver, Harold A.; Young, Leslie A.

    2015-11-01

    On July 14, 2015, the New Horizons spacecraft made its closest approach to Pluto at about ~12,000 km from Pluto's surface. The LEISA (Linear Etalon Imaging Spectral Array) component of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Sci. Rev. 140, 129) obtained spatially resolved near infrared spectra at scales as small as 3 km/pix. LEISA covers the wavelength range 1.25 to 2.5 μm at a spectral resolution (λ/Δλ) of 240, and the 2.1 to 2.25 μm range at a resolution of 560. The observations from this instrument are being used to map the distribution of Pluto's known ices such as N2, CH4, CO and C2H6 as well as search for H2O-ice. To date, H2O-ice has evaded detection from Earth bound observatories. Observations based on LORRI, the LOng Range Reconnaissance Imager, suggest H2O-ice is a major component of several mountain ranges around the western perimeter of the landmass informally named Tombaugh Regio. If true, H2O-ice may be found in small isolated regions around Pluto. We will present our analysis of all LESIA data of Pluto in hand to search for and understand the distribution of H2O-ice. If found, we will also discuss limits on crystalline vs. amorphous H2O-ice and temperature measurements based on the 1.65 µm crystalline H2O-ice feature. This work was supported by NASA's New Horizons project.

  7. Pluto Color Map

    NASA Image and Video Library

    2017-01-20

    This new, detailed global mosaic color map of Pluto is based on a series of three color filter images obtained by the Ralph/Multispectral Visual Imaging Camera aboard New Horizons during the NASA spacecraft's close flyby of Pluto in July 2015. The mosaic shows how Pluto's large-scale color patterns extend beyond the hemisphere facing New Horizons at closest approach- which were imaged at the highest resolution. North is up; Pluto's equator roughly bisects the band of dark red terrains running across the lower third of the map. Pluto's giant, informally named Sputnik Planitia glacier - the left half of Pluto's signature "heart" feature -- is at the center of this map. http://photojournal.jpl.nasa.gov/catalog/PIA11707

  8. Flying Past Pluto Animation

    NASA Image and Video Library

    2015-08-28

    This dramatic view of the Pluto system is as NASA's New Horizons spacecraft saw it in July 2015. The animation, made with real images taken by New Horizons, begins with Pluto flying in for its close-up on July 14; we then pass behind Pluto and see the atmosphere glow in sunlight before the sun passes behind Pluto's largest moon, Charon. The movie ends with New Horizons' departure, looking back on each body as thin crescents. http://photojournal.jpl.nasa.gov/catalog/PIA19873

  9. Pluto Seen from Saturn

    NASA Image and Video Library

    2015-07-16

    As one NASA spacecraft sailed past the distant ice world of Pluto, collecting never-before-seen vistas and invaluable science data, another spacecraft turned its gaze in that direction from its outpost at Saturn. NASA's Cassini spacecraft took a momentary break from its duties to capture this far-off portrait around the time of the New Horizons encounter with Pluto. The image was taken within a few minutes of New Horizons' closest approach to Pluto. After New Horizons, Cassini was the closest spacecraft to Pluto at the time of the flyby. Pluto is the bright dot closest to the center of the field of stars seen in this view. A labeled version of the image, indicating Pluto's position, is also presented here. The four stars identified in the labeled view have visual magnitudes between about 11 and 12. The entire Pluto system -- the dwarf planet and all of its moons -- is below the resolution of this image, thus the small bright specks near the main dot representing Pluto are likely noise (possibly due to what astronomers call the point-spread function). Charon and the other moons would not be resolved at this scale. The image was obtained using the Cassini spacecraft narrow-angle camera on July 14, 2015 at a distance of about 2.4 billion miles (3.9 billion kilometers) from Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA19641

  10. A Keck Search for Faint Satellites of Pluto in Support of New Horizons

    NASA Astrophysics Data System (ADS)

    Merline, William J.; Weaver, H. A.; Tamblyn, P. M.; Neyman, C.; Stern, S. A.; Carry, B.; Spencer, J. R.; Conrad, A. R.; Showalter, M. A.; Olkin, C. B.; Steffl, A. J.; Sheppard, S. S.; Buie, M. W.; Enke, B. L.

    2012-10-01

    We report on our efforts to search for faint satellites of Pluto using Keck 2 adaptive optics (AO). Last year, using HST, Showalter et al. 2011 (IAUC 9221) discovered a new, faint satellite ("P4") around Pluto, demonstrating that Pluto is even richer with orbiting material than was thought previously. That discovery led to speculations that these small satellites could be a source of debris (from random impacts) that could pose a hazard to the New Horizons (NH) spacecraft during its 2015 Pluto flyby. The ejecta would form a cloud around Pluto. The NH project began an aggressive program of HST- and ground-based studies to identify additional as-yet-unseen satellites or debris rings in the system. Only several days into their campaign, a 5th satellite "P5" was discovered with HST (Showalter et al. 2012, IAUC 9253). The output of these studies will be used to plan a contingency ("safe-haven") trajectory through the system. The Keck observations support and complement the new HST observations. Real objects in the HST images may be hidden by bad pixels or diffraction spikes, and Keck may have advantages in some regions of parameter space, such as interior to Charon. r Observing in a near-IR band, the Keck imaging provides additional constraints on the objects, but this makes the observations particularly challenging because of the sky brightness. We have made an effort to optimize the Keck AO observations. Near-IR imaging requires tradeoffs between sky brightness and post-correction Strehl. Expectations and our early results favor H-band in typical conditions. Contrary to prior experience with V 14 targets, we find Laser-Guide-Star AO correction to be far more effective than using Pluto as the wavefront source (NGS). We have achieved imaging that could detect satellites smaller than Nix at good S/N, even in a relatively short (15 min) span.

  11. The Size of Pluto

    NASA Astrophysics Data System (ADS)

    Tholen, David J.

    2014-11-01

    The presence of a thin atmosphere around Pluto prevents the stellar occultation method from probing all the way down to the surface of Pluto. As such, the most accurate method for measuring the size of Pluto is fitting the mutual event photometry from 1985 to 1990. Previous fits solved for not only the size of Pluto, but also the size and orbit of Charon. Since that era, the size and orbit of Charon have been determined independently and more accurately via other means. Stellar occultation measurements have established the diameter of Charon as 1212 km, while the orbit of Charon has been determined via direct images obtained with the Hubble Space Telescope over a period of two decades. By imposing the known values for the size and orbit of Charon on the fits to the mutual event photometry, a new size for Pluto can be derived with considerably fewer free parameters. To perform this fit, the extensive set of mutual event photometry acquired at Mauna Kea Observatory was utilized. A fit to all the data yields a diameter for Pluto of 2317 km. To avoid the question of limb darkening on Pluto and the effect of albedo variation over the surface of Pluto, even fewer free parameters can be solved for by restricting attention to just the superior mutual events, during which Charon was behind Pluto. In this case the diameter of Pluto increases to 2379 km. Work is currently being done to determine how weighting of the data affects the result. The true value will become known in a few months when New Horizons flies past Pluto. These fits also show that there is still room for improvement in the orbit of Charon.

  12. The obliquity of Pluto

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, A. R.; Harris, A. W.

    1983-01-01

    Pluto's obliquity (the angle between its spin axis and orbit normal) varies between 102 and 126 deg over a period of about 3 million years. These oscillations are nearly sinusoidal and quite stable, leading to only modest changes in the insolation regime. Thus, Pluto's rotation has been slightly retrograde ever since its current orbit and rotation rate were established.

  13. Pushing back the frontier - A mission to the Pluto-Charon system

    SciTech Connect

    Farquhar, R.; Stern, S.A. Colorado Univ., Boulder )

    1990-08-01

    A flyby mission to Pluto is proposed. The size, orbit, atmosphere, and surface of Pluto, and the Pluto-Charon system are described. The benefits of a planetary flyby compared to ground observations are discussed in terms of imaging capabilities. Planned payloads include a plasma science package, a UV spectrometer, and a thermal mapper. The advantages of a dual launch to Mars and the need for a Jupiter-Pluto transfer are considered. A diagram of a spacecraft for a flyby study of Pluto is provided.

  14. Pushing back the frontier - A mission to the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert; Stern, S. Alan

    1990-01-01

    A flyby mission to Pluto is proposed. The size, orbit, atmosphere, and surface of Pluto, and the Pluto-Charon system are described. The benefits of a planetary flyby compared to ground observations are discussed in terms of imaging capabilities. Planned payloads include a plasma science package, a UV spectrometer, and a thermal mapper. The advantages of a dual launch to Mars and the need for a Jupiter-Pluto transfer are considered. A diagram of a spacecraft for a flyby study of Pluto is provided.

  15. Pluto's atmosphere near perihelion

    SciTech Connect

    Trafton, L.M. )

    1989-11-01

    A recent stellar occultation has confirmed predictions that Pluto has an atmosphere which is sufficiently thick to uniformly envelope the planet and to extend far above the surface. Pluto's atmosphere consists of methane and perhaps other volatile gases at temperatures below their freezing points; it should regulate the surface temperature of its volatile ices to a globally uniform value. As Pluto approaches and passes through perihelion, a seasonal maximum in the atmospheric bulk and a corresponding minimum in the exposed volatile ice abundance is expected to occur. The lag in maximum atmospheric bulk relative to perihelion will be diagnostic of the surface thermal properties. An estimate of Pluto's atmospheric bulk may result if a global darkening (resulting from the disappearance of the seasonally deposited frosts) occurs before the time of maximum atmospheric bulk. The ice deposited shortly after perihelion may be diagnostic of the composition of Pluto's volatile reservoir.

  16. Dynamics of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, Anthony R.

    1989-01-01

    The dynamics of the Pluto-Charon system are reviewed from a historical perspective. Although Pluto's orbit crosses Neptune's, an intricate system of nested resonances keeps these planets apart. Pluto's orbit is apparently chaotic as well. Pluto always keeps the same face turned toward Charon, and vice versa. Tides also damp Charon's orbital eccentricity and inclination. Precession of Pluto's orbital plane causes Pluto's obliquity to vary periodically from formally prograde to retrograde. Pluto is probably an original member of the Solar system, but not an escaped satellite of Neptune.

  17. Clues From Pluto's Ions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Nearly a year ago, in July 2015, the New Horizons spacecraft passed by the Pluto system. The wealth of data amassed from that flyby is still being analyzed including data from the Solar Wind Around Pluto (SWAP) instrument. Recent examination of this data has revealedinteresting new information about Plutos atmosphere and how the solar wind interacts with it.A Heavy Ion TailThe solar wind is a constant stream of charged particles released by the Sun at speeds of around 400 km/s (thats 1 million mph!). This wind travels out to the far reaches of the solar system, interacting with the bodies it encounters along the way.By modeling the SWAP detections, the authors determine the directions of the IMF that could produce the heavy ions detected. Red pixels represent IMF directions permitted. No possible IMF could reproduce the detections if the ions are nitrogen (bottom panels), and only retrograde IMF directions can produce the detections if the ions are methane. [Adapted from Zirnstein et al. 2016]New Horizons data has revealed that Plutos atmosphere leaks neutral nitrogen, methane, and carbon monoxide molecules that sometimes escape its weak gravitational pull. These molecules become ionized and are subsequently picked up by the passing solar wind, forming a tail of heavy ions behind Pluto. The details of the geometry and composition of this tail, however, had not yet been determined.Escaping MethaneIn a recent study led by Eric Zirnstein (Southwest Research Institute), the latest analysis of data from the SWAP instrument on board New Horizons is reported. The team used SWAPs ion detections from just after New Horizons closest approach to Pluto to better understand how the heavy ions around Pluto behave, and how the solar wind interacts with Plutos atmosphere.In the process of analyzing the SWAP data, Zirnstein and collaborators first establish what the majority of the heavy ions picked up by the solar wind are. Models of the SWAP detections indicate they are unlikely

  18. The Orbits and Masses of Pluto's Satellites

    NASA Astrophysics Data System (ADS)

    Brozovic, Marina; Jacobson, R. A.

    2013-05-01

    Abstract (2,250 Maximum Characters): We report on the numerically integrated orbital fits of Pluto's satellites, Charon, Nix, Hydra, and S/2011 (134340) 1, to an extensive set of astrometric, mutual event, and stellar occultation observations over the time interval April 1965 to July 2011. The observations of Charon relative to Pluto have been corrected for the Pluto center-of-figure center-of-light (COF) offset due to the Pluto albedo variations. The most recently discovered satellite S/2012 (134340) 1 is fit with a precessing ellipse because its observation set is insufficient to constrain a numerically integrated orbit. The Pluto system mass is well determined with the current data. However, the Charon’s mass still carries a considerable amount of the uncertainty due to the fact that the primary source of information for the Charon mass is a small quantity of absolute position measurements that are sensitive to the independent motions of Pluto and Charon about the system barycenter. We used bounded-least squares algorithm to try to constrain the masses of Nix, Hydra, and S/2011 (134340) 1, but the current dataset appears to be too sparse for mass determination. The long-term dynamical interaction among the satellites does yield a weak determination of Hydra's mass. We investigated the effect of more astrometry of S/2012 (134340) 1 on the mass determination of the other satellites and found no improvement with the additional data. We have delivered ephemerides based on our integrated orbits to the New Horizons project along with their expected uncertainties at the time of the spacecraft encounter with the Pluto system. Acknowledgments: The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  19. New Horizons at Pluto

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Artist's concept of the New Horizons spacecraft as it approaches Pluto and its largest moon, Charon, in July 2015. The craft's miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space plasma experiments will characterize the global geology and geomorphology of Pluto and Charon, map their surface compositions and temperatures, and examine Pluto's atmosphere in detail. The spacecraft's most prominent design feature is a nearly 7-foot (2.1-meter) dish antenna, through which it will communicate with Earth from as far as 4.7 billion miles (7.5 billion kilometers) away.

  20. Ice Volcanoes on Pluto?

    NASA Image and Video Library

    2015-11-10

    NASA New Horizons scientists believe that the informally named feature Wright Mons, located south of Sputnik Planum on Pluto, and another, Piccard Mons, could have been formed by the cryovolcanic eruption of ices from beneath Pluto surface. Sputnik Planum on Pluto, is an unusual feature that's about 100 miles (160 kilometers) wide and 13,000 feet (4 kilometers) high. It displays a summit depression (visible in the center of the image) that's approximately 35 miles (56 kilometers) across, with a distinctive hummocky texture on its sides. The rim of the summit depression also shows concentric fracturing. http://photojournal.jpl.nasa.gov/catalog/PIA20155

  1. New Horizons at Pluto

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Artist's concept of the New Horizons spacecraft as it approaches Pluto and its largest moon, Charon, in July 2015. The craft's miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space plasma experiments will characterize the global geology and geomorphology of Pluto and Charon, map their surface compositions and temperatures, and examine Pluto's atmosphere in detail. The spacecraft's most prominent design feature is a nearly 7-foot (2.1-meter) dish antenna, through which it will communicate with Earth from as far as 4.7 billion miles (7.5 billion kilometers) away.

  2. Pluto's Putative Cryovolcanic Constructs

    NASA Astrophysics Data System (ADS)

    Singer, K. N.; White, O. L.; Schenk, P. M.; Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Howard, A. D.; Stern, A. S.; Cook, J. C.; Grundy, W. M.; Cruikshank, D. P.; Beyer, R. A.; Umurhan, O.; Howett, C. J. A.; Parker, A. H.; Protopapa, S.; Lauer, T. R.; Weaver, H. A.; Young, L. A.; Olkin, C. B.; Ennico, K.

    2016-06-01

    New Horizons imaged two large mounds with deep central depressions on Pluto. Both features appear constructional, and have relatively young surfaces. This mapping is part of effort to characterize and assess the age and origin of the mounds.

  3. Heat from Pluto

    NASA Astrophysics Data System (ADS)

    Jewitt, D. C.

    1994-01-01

    Submillimeter photometry from the James Clerk Maxwell Telescope on Mauna Kea is used to study thermal emission from Pluto. The brightness temperatures at 800 and 1300 microns are TB = 42 +/- 5 K and TB = 35 +/- 9 K, respectively, essentially confirming a prior measurement of TB = 39 +/- 3 K at 1200 microns by Altenhoff et al. (1988). These are substantially smaller than brightness temperatures obtained previously at 60 and 100 microns (Aumann & Walker, (1987); Sykes et al., (1987)), showing that the surface of Pluto is nonisothermal, nongrey, or both. The data are incompatible with nitrogen-covered, isothermal T about 35 K Pluto models (Owen et al., (1993)). We suggest that the surface may be divided into cold regions coated by nitrogen ice plus warmer regions devoid of nitrogen, and we tentatively identify the latter with optically dark patches on Pluto's surface.

  4. Blades Across Pluto

    NASA Image and Video Library

    2016-03-31

    The red outline in this global view of Pluto from NASA New Horizons marks the large area of mysterious, bladed terrain extending from the eastern section of the large feature informally named Tombaugh Regio.

  5. Pluto in Twilight

    NASA Image and Video Library

    2015-09-10

    This image of Pluto from NASA's New Horizons spacecraft, processed in two different ways, shows how Pluto's bright, high-altitude atmospheric haze produces a twilight that softly illuminates the surface before sunrise and after sunset, allowing the sensitive cameras on New Horizons to see details in nighttime regions that would otherwise be invisible. The right-hand version of the image has been greatly brightened to bring out faint details of rugged haze-lit topography beyond Pluto's terminator, which is the line separating day and night. The image was taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA19931

  6. Pluto Fretted Terrain

    NASA Image and Video Library

    2016-05-20

    NASA New Horizons scientists have spotted an expanse of terrain they describe as fretted bright plains divided into polygon-shaped blocks by a network of dark, connected valleys in Pluto informally named Venera Terra region.

  7. New Horizons at Pluto

    NASA Astrophysics Data System (ADS)

    Schenk, Paul; Nimmo, Francis

    2016-06-01

    The New Horizons mission has revealed Pluto and its moon Charon to be geologically active worlds. The familiar, yet exotic, landforms suggest that geologic processes operate similarly across the Solar System, even in its cold outer reaches.

  8. Pluto's Spinning Moons

    NASA Image and Video Library

    Most inner moons in the solar system keep one face pointed toward their central planet; this animation shows that certainly isn’t the case with the small moons of Pluto, which behave like spinning ...

  9. Mountains on Pluto

    NASA Image and Video Library

    This movie zooms into the base of the heart-shaped feature on Pluto to highlight a new image captured by NASA's New Horizons. The new image, seen in black and white against a previously released co...

  10. The lower atmosphere of Pluto revealed

    NASA Astrophysics Data System (ADS)

    2009-03-01

    Using ESO's Very Large Telescope, astronomers have gained valuable new insights about the atmosphere of the dwarf planet Pluto. The scientists found unexpectedly large amounts of methane in the atmosphere, and also discovered that the atmosphere is hotter than the surface by about 40 degrees, although it still only reaches a frigid minus 180 degrees Celsius. These properties of Pluto's atmosphere may be due to the presence of pure methane patches or of a methane-rich layer covering the dwarf planet's surface. ESO PR Photo 08a/09 Pluto (Artist's Impression) "With lots of methane in the atmosphere, it becomes clear why Pluto's atmosphere is so warm," says Emmanuel Lellouch, lead author of the paper reporting the results. Pluto, which is about a fifth the size of Earth, is composed primarily of rock and ice. As it is about 40 times further from the Sun than the Earth on average, it is a very cold world with a surface temperature of about minus 220 degrees Celsius! It has been known since the 1980s that Pluto also has a tenuous atmosphere [1], which consists of a thin envelope of mostly nitrogen, with traces of methane and probably carbon monoxide. As Pluto moves away from the Sun, during its 248 year-long orbit, its atmosphere gradually freezes and falls to the ground. In periods when it is closer to the Sun -- as it is now -- the temperature of Pluto's solid surface increases, causing the ice to sublimate into gas. Until recently, only the upper parts of the atmosphere of Pluto could be studied. By observing stellar occultations (ESO 21/02), a phenomenon that occurs when a Solar System body blocks the light from a background star, astronomers were able to demonstrate that Pluto's upper atmosphere was some 50 degrees warmer than the surface, or minus 170 degrees Celsius. These observations couldn't shed any light on the atmospheric temperature and pressure near Pluto's surface. But unique, new observations made with the CRyogenic InfraRed Echelle Spectrograph (CRIRES

  11. Photometry of Pluto during the 1982 opposition

    NASA Astrophysics Data System (ADS)

    Binzel, R. P.; Mulholland, J. D.

    1983-02-01

    Observations of Pluto's brightness were obtained by two-channel photometry on 18 nights during the 1982 opposition, using the 2.1-m and 91-cm reflectors at Mt. Locke. The resulting light curve suggests that the 'secular' decrease in intrinsic brightness is flattening, qualitatively consistent with a latitude dependence of the surface albedo distribution. Speculations are projected for the long-term behavior of the apparent light curve. Understanding of the current rotational brightness variation is important to the maximum utilization of photometric observations obtained during the imminent series of mutual eclipses between Pluto and its satellite.

  12. Hemispherical Pluto and Charon Color Composition From New Horizons

    NASA Technical Reports Server (NTRS)

    Ennico, K.; Parker, A.; Howett, C. A. J.; Olkin, C. B.; Spencer, J. R.; Grundy, W. M.; Reuter, D. E.; Cruikshank, D. P.; Binzel, R. P.; Buie, M. W.; hide

    2016-01-01

    New Horizons flew by Pluto and its moons on July 14, 2015 [1]. In the days prior to the closest approach (C/A), panchromatic and color observations of Pluto and Charon were made covering a fully complete range of longitudes. Although only a fraction of this "late-approach" data series has been transmitted to the ground, the results indicate Pluto's latitudinal coloring trends seen on the encounter hemisphere continues on the far side. Charon's red pole is visible from a multitude of longitudes and its colors are uniform with longitude at lower latitudes.

  13. Discovering Pluto's atmosphere

    SciTech Connect

    Beatty, J.K.; Killian, A.

    1988-12-01

    Observations of the occultation of an obscure 12th-magnitude star in eastern Virgo by Pluto on June 9, 1988 are discussed. The occultation was observed by astronomers aboard NASA's Kuiper Airborne Observatory flying over the Pacific. The prediction of the occultation and the results of the observations are examined. The study demonstrated that Pluto has a thin atmosphere and that its diameter is about two-thirds that of the moon.

  14. Improved ephemerides of Pluto

    NASA Technical Reports Server (NTRS)

    Standish, E. M.

    1994-01-01

    The history of the Pluto ephemerides created at the Jet Propulsion Laboratory is given. The uncertainties of present and possible future ephemerides are illustrated, and it is shown how rapidly the error grows for any present-day ephemeris of Pluto which is extrapolated into the future--tens of thousands of kilometers after only a decade. Continuing the observations into the future not only will reduce the extrapolation time but will provide a substantial improvement to the ephemeris itself.

  15. Improved ephemerides of Pluto

    NASA Technical Reports Server (NTRS)

    Standish, E. M.

    1994-01-01

    The history of the Pluto ephemerides created at the Jet Propulsion Laboratory is given. The uncertainties of present and possible future ephemerides are illustrated, and it is shown how rapidly the error grows for any present-day ephemeris of Pluto which is extrapolated into the future--tens of thousands of kilometers after only a decade. Continuing the observations into the future not only will reduce the extrapolation time but will provide a substantial improvement to the ephemeris itself.

  16. Pluto in 3-D

    NASA Image and Video Library

    2015-10-23

    Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032

  17. Ly α @Pluto

    NASA Astrophysics Data System (ADS)

    Randall Gladstone, G.; Pryor, Wayne R.; Alan Stern, S.

    2015-01-01

    The Alice instrument on New Horizons will perform several observations of Pluto's far-ultraviolet (FUV) airglow emissions during its July 2015 flyby. While Pluto's atmosphere is dominated by N2, simulations suggest that the brightest airglow signal at Pluto will actually be due to Lyman alpha (Ly α) emissions of atomic hydrogen. This is because H atoms, produced at lower altitudes due to the photolysis of CH4 and other hydrocarbons, rise up above the homopause to become an important constituent of the atmosphere at high altitudes, and are able to scatter the very bright Ly α lines from the Sun and the interplanetary medium (IPM). The IPM Ly α signal at Earth is very much less than direct solar Ly α , but IPM Ly α falls off much more slowly than r-2 , so that at Pluto's distance from the Sun the two sources are of comparable strength. Detailed simulations of its Ly α emissions indicate that Pluto will appear dark against the IPM background, but that enough contrast exists for the useful extraction of H densities from the Alice observations. As viewed on approach (or from the inner solar system), the Ly α brightness of the disk of Pluto is expected to be ∼30 R, against an IPM background of ∼90 R.

  18. Craters of the Pluto-Charon system

    NASA Astrophysics Data System (ADS)

    Robbins, Stuart J.; Singer, Kelsi N.; Bray, Veronica J.; Schenk, Paul; Lauer, Tod R.; Weaver, Harold A.; Runyon, Kirby; McKinnon, William B.; Beyer, Ross A.; Porter, Simon; White, Oliver L.; Hofgartner, Jason D.; Zangari, Amanda M.; Moore, Jeffrey M.; Young, Leslie A.; Spencer, John R.; Binzel, Richard P.; Buie, Marc W.; Buratti, Bonnie J.; Cheng, Andrew F.; Grundy, William M.; Linscott, Ivan R.; Reitsema, Harold J.; Reuter, Dennis C.; Showalter, Mark R.; Tyler, G. Len; Olkin, Catherine B.; Ennico, Kimberly S.; Stern, S. Alan; New Horizons Lorri, Mvic Instrument Teams

    2017-05-01

    NASA's New Horizons flyby mission of the Pluto-Charon binary system and its four moons provided humanity with its first spacecraft-based look at a large Kuiper Belt Object beyond Triton. Excluding this system, multiple Kuiper Belt Objects (KBOs) have been observed for only 20 years from Earth, and the KBO size distribution is unconstrained except among the largest objects. Because small KBOs will remain beyond the capabilities of ground-based observatories for the foreseeable future, one of the best ways to constrain the small KBO population is to examine the craters they have made on the Pluto-Charon system. The first step to understanding the crater population is to map it. In this work, we describe the steps undertaken to produce a robust crater database of impact features on Pluto, Charon, and their two largest moons, Nix and Hydra. These include an examination of different types of images and image processing, and we present an analysis of variability among the crater mapping team, where crater diameters were found to average ± 10% uncertainty across all sizes measured (∼0.5-300 km). We also present a few basic analyses of the crater databases, finding that Pluto's craters' differential size-frequency distribution across the encounter hemisphere has a power-law slope of approximately -3.1 ± 0.1 over diameters D ≈ 15-200 km, and Charon's has a slope of -3.0 ± 0.2 over diameters D ≈ 10-120 km; it is significantly shallower on both bodies at smaller diameters. We also better quantify evidence of resurfacing evidenced by Pluto's craters in contrast with Charon's. With this work, we are also releasing our database of potential and probable impact craters: 5287 on Pluto, 2287 on Charon, 35 on Nix, and 6 on Hydra.

  19. Craters of the Pluto-Charon System

    NASA Technical Reports Server (NTRS)

    Robbins, Stuart J.; Singer, Kelsi N.; Bray, Veronica J.; Schenk, Paul; Lauer, Todd R.; Weaver, Harold A.; Runyon, Kirby; Mckinnon, William B.; Beyer, Ross A.; Porter, Simon; hide

    2016-01-01

    NASA's New Horizons flyby mission of the Pluto-Charon binary system and its four moons provided humanity with its first spacecraft-based look at a large Kuiper Belt Object beyond Triton. Excluding this system, multiple Kuiper Belt Objects (KBOs) have been observed for only 20 years from Earth, and the KBO size distribution is unconstrained except among the largest objects. Because small KBOs will remain beyond the capabilities of ground-based observatories for the foreseeable future, one of the best ways to constrain the small KBO population is to examine the craters they have made on the Pluto-Charon system. The first step to understanding the crater population is to map it. In this work, we describe the steps undertaken to produce a robust crater database of impact features on Pluto, Charon, and their two largest moons, Nix and Hydra. These include an examination of different types of images and image processing, and we present an analysis of variability among the crater mapping team, where crater diameters were found to average +/-10% uncertainty across all sizes measured (approx.0.5-300 km). We also present a few basic analyses of the crater databases, finding that Pluto's craters' differential size-frequency distribution across the encounter hemisphere has a power-law slope of approximately -3.1 +/- 0.1 over diameters D approx. = 15-200 km, and Charon's has a slope of -3.0 +/- 0.2 over diameters D approx. = 10-120 km; it is significantly shallower on both bodies at smaller diameters. We also better quantify evidence of resurfacing evidenced by Pluto's craters in contrast with Charon's. With this work, we are also releasing our database of potential and probable impact craters: 5287 on Pluto, 2287 on Charon, 35 on Nix, and 6 on Hydra.

  20. Two Faces of Pluto

    NASA Image and Video Library

    2015-07-01

    This pair of approximately true color images of Pluto and its big moon Charon, taken by NASA's New Horizons spacecraft, highlight the dramatically different appearance of different sides of the dwarf planet, and reveal never-before-seen details on Pluto's varied surface. The views were made by combining high-resolution black-and-white images from the Long Range Reconnaissance Imager (LORRI) with color information from the lower-resolution color camera that is part of the Ralph instrument. The left-hand image shows the side of Pluto that always faces away from Charon -- this is the side that will be seen at highest resolution by New Horizons when it makes its close approach to Pluto on July 14th. This hemisphere is dominated by a very dark region that extends along the equator and is redder than its surroundings, alongside a strikingly bright, paler-colored region which straddles the equator on the right-hand side of the disk. The opposite hemisphere, the side that faces Charon, is seen in the right-hand image. The most dramatic feature on this side of Pluto is a row of dark dots arranged along the equator. The origin of all these features is still mysterious, but may be revealed in the much more detailed images that will be obtained as the spacecraft continues its approach to Pluto. In both images, Charon shows a darker and grayer color than Pluto, and a conspicuous dark polar region. The left-hand image was obtained at 5:37 UT on June 25th 2015, at a distance from Pluto of 22.9 million kilometers (14.3 million miles) and has a central longitude of 152 degrees. The right-hand image was obtained at 23:15 UT on June 27th 2015, at a distance from Pluto of 19.7 million kilometers (12.2 million miles) with a central longitude of 358 degrees. Insets show the orientation of Pluto in each image -- the solid lines mark the equator and the prime meridian, which is defined to be the longitude that always faces Charon. The smallest visible features are about 200 km (120 miles

  1. Pluto in Hi-Def

    NASA Image and Video Library

    2008-01-24

    This image demonstrates the first detection of Pluto using the high-resolution mode on the NASA New Horizons Long-Range Reconnaissance Imager. The mode provides a clear separation between Pluto and numerous nearby background stars.

  2. Pluto Big Heart in Color

    NASA Image and Video Library

    2015-07-14

    Pluto nearly fills the frame in this image from NASA New Horizons spacecraft, taken on July 13, 2015. This is the last and most detailed image sent to Earth before the spacecraft closest approach to Pluto on July 14.

  3. Dynamics of Pluto and Charon

    SciTech Connect

    Dobrovolskis, A.R. )

    1989-11-01

    The dynamics of the Pluto-Charon system are reviewed from a historical perspective. Although Pluto's orbit crosses Neptune's, an intricate system of nested resonances keeps these planets apart. Pluto's orbit is apparently chaotic as well. Pluto always keeps the same face turned toward Charon, and vice versa. Tides also damp Charon's orbital eccentricity and inclination. Precession of Pluto's orbital plane causes Pluto's obliquity to vary periodically from formally prograde to retrograde. Pluto is probably an original member of the Solar system, but not an escape satellite of Neptune. The Voyager II encounter with Neptune, the final Pluto-Charon mutual events, and the next generation of telescopes are bound to reveal some surprises.

  4. The Development of Project Orion Ground Safety Requirements

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul; Condzella, Bill; Williams, Jeff

    2011-01-01

    In spite of a very compressed schedule, Project Orion's AFT safety team was able to pull together a comprehensive set of ground safety requirements using existing requirements and subject matter experts. These requirements will serve as the basis for the design of GSE and ground operations. Using the above lessons as a roadmap, new Projects can produce the same results. A rigorous set of ground safety requirements is required to assure ground support equipment (GSE) and associated flight hardware ground operations are conducted safety

  5. Pluto's Extended Atmosphere: New Horizons Alice Lyman-α Imaging

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Gladstone, G. Randall; Stern, S. Alan; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly A.; Olkin, Cathy B.; Cheng, Andy F.; Greathouse, Thomas K.; Hinson, David P.; Kammer, Joshua A.; Linscott, Ivan R.; Parker, Alex H.; Parker, Joel Wm.; Pryor, Wayne R.; Schindhelm, Eric; Singer, Kelsi N.; Steffl, Andrew J.; Strobel, Darrell F.; Summers, Michael E.; Tsang, Constantine C. C.; Tyler, G. Len; Versteeg, Maarten H.; Woods, William W.; Cunningham, Nathaniel J.; Curdt, Werner

    2015-11-01

    Pluto's upper atmosphere is expected to extend several planetary radii, proportionally more so than for any planet in our solar system. Atomic hydrogen is readily produced at lower altitudes due to photolysis of methane and transported upward to become an important constituent. The Interplanetary Medium (IPM) provides a natural light source with which to study Pluto's atomic hydrogen atmosphere. While direct solar Lyman-α emissions dominate the signal at 121.6 nm at classical solar system distances, the contribution of diffuse illumination by IPM Lyman-α sky-glow is roughly on par at Pluto (Gladstone et al., Icarus, 2015). Hydrogen atoms in Pluto's upper atmosphere scatter these bright Lyα emission lines, and detailed simulations of the radiative transfer for these photons indicate that Pluto would appear dark against the IPM Lyα background. The Pluto-Alice UV imaging spectrograph on New Horizons conducted several observations of Pluto during the encounter to search for airglow emissions, characterize its UV reflectance spectra, and to measure the radial distribution of IPM Lyα near the disk. Our early results suggest that these model predictions for the darkening of IPM Lyα with decreasing altitude being measureable by Pluto-Alice were correct. We'll report our progress toward extracting H and CH4 density profiles in Pluto's upper atmosphere through comparisons of these data with detailed radiative transfer modeling. These New Horizons findings will have important implications for determining the extent of Pluto's atmosphere and related constraints to high-altitude vertical temperature structure and atmospheric escape.This work was supported by NASA's New Horizons project.

  6. Libration of Pluto-Neptune.

    PubMed

    Cohen, C J; Hubbard, E C

    1964-09-18

    Numerical integration of the orbits of the five outer planets over 120,000 years reveals that the distance between Pluto and Neptune at the closest approaches oscillates within a narrow range. The distance is never much less than the aphelion distance of Pluto from the orbit of Neptune. The near commensurability in the periods of Pluto and Neptune and the eccentricity of Pluto's orbit are responsible for the libratory motion.

  7. Changes on Pluto's Surface Revealed with Long Timebase Photometry

    NASA Astrophysics Data System (ADS)

    George, Erin; Buie, M.

    2013-10-01

    We are continuing to monitor the long-term photometric behavior of Pluto in order to constrain volatile surface migration. As Pluto passes near the center of the galaxy, the fields are too crowded for normal aperture photometric techniques. We approached this problem with a combination of point-spread function (PSF) photometry and optimal image subtraction (OIS). Our data are from the 0.8-m robotic telescope at Lowell Observatory, the 1-m robotic telescope at New Mexico State Observatory, and the Faulkes 2-m robotic telescope at Siding Spring, part of Las Cumbres Observatory. Our latest results add photometric data up through 2012 to the data collected since discovery. Our new reduction scheme consists of background catalogs, image subtraction using deep templates, and Pluto photometry extraction. We also use the known photometric properties of Charon determined with HST to remove Charon's contribution from old and new data and compare these results with the HST data where Pluto is measured by itself. Data since 2002 show marked departures from the behavior prior to that time. These results provide clear evidence for time evolution of Pluto's surface albedo. We will present these results along with implications for present-day processes that are altering the surface of Pluto. This work also provides crucial insight into the effort required to provide ground-based support observations for the upcoming New Horizons flyby of Pluto in 2015. Support for this work was provided by NASA Planetary Astronomy Program, grant number NNX09AB43G.

  8. Nordic Seas Precipitation Ground Validation Project

    NASA Astrophysics Data System (ADS)

    Klepp, Christian; Bumke, Karl; Bakan, Stephan; Andersson, Axel

    2010-05-01

    A thorough knowledge of global ocean precipitation is an indispensable prerequisite for the understanding of the water cycle in the global climate system. However, reliable detection of precipitation over the global oceans, especially of solid precipitation, remains a challenging task. This is true for both, passive microwave remote sensing and reanalysis based model estimates. The satellite based HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) climatology contains fields of precipitation, evaporation and the resulting freshwater flux along with 12 additional atmospheric parameters over the global ice-free ocean between 1987 and 2005. Except for the NOAA Pathfinder SST, all basic state variables are calculated from SSM/I passive microwave radiometer measurements. HOAPS contains three main data subsets that originate from one common pixel-level data source. Gridded 0.5 degree monthly, pentad and twice daily data products are freely available from www.hoaps.org. The optical disdrometer ODM 470 is a ground validation instrument capable of measuring rain and snowfall on ships even under high wind speeds. It was used for the first time over the Nordic Seas during the LOFZY 2005 campaign. A dichotomous verification for these snowfall events resulted in a perfect score between the disdrometer, a precipitation detector and a shipboard observer's log. The disdrometer data is further point-to-area collocated against precipitation from three satellite derived climatologies, HOAPS-3, the Global Precipitation Climatology Project (GPCP) one degree daily (1DD) data set, and the Goddard Profiling algorithm, version 2004 (GPROF 2004). Only the HOAPS precipitation turns out to be overall consistent with the disdrometer data resulting in an accuracy of 0.96. The collocated data comprises light precipitation events below 1 mm/h. Therefore two LOFZY case studies with high precipitation rates are presented that still indicate plausible results. Overall, this

  9. Pluto: The Farthest Planet (Usually).

    ERIC Educational Resources Information Center

    Universe in the Classroom, 1988

    1988-01-01

    Provides background information about the planet Pluto. Includes the history of Pluto and discusses some of the common misconceptions about the planets. Addresses some of the recent discoveries about Pluto and contains a resource list of books, articles, and a videotape. (TW)

  10. Pluto: The Farthest Planet (Usually).

    ERIC Educational Resources Information Center

    Universe in the Classroom, 1988

    1988-01-01

    Provides background information about the planet Pluto. Includes the history of Pluto and discusses some of the common misconceptions about the planets. Addresses some of the recent discoveries about Pluto and contains a resource list of books, articles, and a videotape. (TW)

  11. New Horizons Event: The First Mission to the Pluto System

    NASA Image and Video Library

    2014-08-25

    Dr. Ed Stone, Voyager project scientist, speaks on a panel at the "New Horizons: The First Mission to the Pluto System and the Kuiper Belt" Event at NASA Headquarters in Washington, DC Monday, August 25, 2014. Scientists discussed how the first images of Pluto and its moons would be captured by the New Horizons spacecraft during a five month long reconnaissance flyby study starting in the summer of 2015. New Horizons launched on January 19, 2006 and is scheduled to make its closest approach to Pluto on July 14, 2015. Photo Credit: (NASA/Aubrey Gemignani)

  12. Soaring over Pluto

    NASA Image and Video Library

    2017-07-14

    In July 2015, NASA's New Horizons spacecraft sent home the first close-up pictures of Pluto and its moons. Using actual New Horizons data and digital elevation models of Pluto and its largest moon, Charon, mission scientists created flyover movies that offer spectacular new perspectives of the many unusual features that were discovered and which have reshaped our views of the Pluto system -- from a vantage point even closer than a ride on New Horizons itself. The dramatic Pluto flyover begins over the highlands to the southwest of the great expanse of nitrogen ice plain informally named Sputnik Planitia. (Note that all feature names in the Pluto system are informal.) The viewer first passes over the western margin of Sputnik, where it borders the dark, cratered terrain of Cthulhu Macula, with the blocky mountain ranges located within the planitia seen on the right. The tour moves north past the rugged and fractured highlands of Voyager Terra and then turns southward over Pioneer Terra, which exhibits deep and wide pits, before concluding over the bladed terrain of Tartarus Dorsa in the far east of the encounter hemisphere. The topographic relief is exaggerated by a factor of 2 to 3 in these movies to emphasize topography; the surface colors have also been enhanced to bring out detail. Digital mapping and rendering were performed by Paul Schenk and John Blackwell of the Lunar and Planetary Institute in Houston. A video can be viewed at https://photojournal.jpl.nasa.gov/catalog/PIA21863

  13. New Details on Pluto

    NASA Image and Video Library

    2015-07-10

    This image of Pluto was taken by New Horizons' Long Range Reconnaissance Imager (LORRI) at 4:18 UT on July 9, 2015, from a range of 3.9 million miles (6.3 million kilometers). It reveals new details on the surface of Pluto, including complex patterns in the transition between the very dark equatorial band (nicknamed "the whale"), which occupies the lower part of the image, and the brighter northern terrain. The bright arc at the bottom of the disk shows that there is more bright terrain beyond the southern margin of the "whale." The side of Pluto that will be studied in great detail during the close encounter on July 14 is now rotating off the visible disk on the right hand side, and will not be seen again until shortly before closest approach. Three consecutive images were combined and sharpened, using a process called deconvolution, to create this view. Deconvolution enhances real detail but can also generate spurious features, including the bright edge seen on the upper and left margins of the disk (though the bright margin on the bottom of the disk is real). The wireframe globe shows the orientation of Pluto in the image: thicker lines indicate the equator and the prime meridian (the direction facing Charon). Central longitude on Pluto is 86°. http://photojournal.jpl.nasa.gov/catalog/PIA19705

  14. Three Views of Pluto

    NASA Image and Video Library

    2015-07-06

    New Horizons' Long Range Reconnaissance Imager (LORRI) obtained these three images of Pluto between July 1-3 ,2015, as the spacecraft closed in on its July 14 encounter with the dwarf planet and its moons. The left image shows, on the right side of the disk, a large bright area on the hemisphere opposite Charon; this is the side of Pluto that will be seen in close-up by New Horizons on July 14. The three images together show the full extent of a continuous swath of dark terrain that wraps around Pluto's equatorial region between longitudes 40° and 160°. The western end of the swath, west of longitude 40°, breaks up into a series of striking dark regularly-spaced spots on the anti-Charon hemisphere (right image) that were first noted in New Horizons images taken on Pluto's previous rotation. Intriguing details are beginning to emerge in the bright material north of the dark region, in particular a series of bright and dark patches that are conspicuous just below the center of the disk in the right-hand image. In all three black-and-white views, the apparent jagged bottom edge of Pluto is the result of image processing. http://photojournal.jpl.nasa.gov/catalog/PIA19698

  15. Mapping Pluto Broken Heart

    NASA Image and Video Library

    2015-10-29

    In addition to transmitting new high-resolution images and other data on the familiar close-approach hemispheres of Pluto and Charon, NASA's New Horizons spacecraft is also returning images -- such as this one -- to improve maps of other regions. This image was taken by the New Horizons Long Range Reconnaissance Imager (LORRI) on the morning of July 13, 2015, from a range of 1.03 million miles (1.7 million kilometers) and has a resolution of 5.1 miles (8.3 kilometers) per pixel. It provides fascinating new details to help the science team map the informally named Krun Macula (the prominent dark spot at the bottom of the image) and the complex terrain east and northeast of Pluto's "heart" (Tombaugh Regio). Pluto's north pole is on the planet's disk at the 12 o'clock position of this image. http://photojournal.jpl.nasa.gov/catalog/PIA20037

  16. Looking over Pluto

    NASA Image and Video Library

    2015-09-10

    This synthetic perspective view of Pluto, based on the latest high-resolution images to be downlinked from NASA's New Horizons spacecraft, shows what you would see if you were approximately 1,100 miles (1,800 kilometers) above Pluto's equatorial area, looking northeast over the dark, cratered, informally named Cthulhu Regio toward the bright, smooth, expanse of icy plains informally called Sputnik Planum. The entire expanse of terrain seen in this image is 1,100 miles (1,800 kilometers) across. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA19937

  17. IRAS Serendipitous Survey Observations of Pluto and Charon.

    PubMed

    Sykes, M V; Cutri, R M; Lebofsky, L A; Binzel, R P

    1987-09-11

    On 16 August 1983 the Infrared Astronomical Satellite made two separate pointed observations of Pluto and its moon Charon. Because of the small angular displacement of the system between the times of measurement, the Pluto-Charon system was identified as a source in the Serendipitous Survey (SSC 14029+0518). Detections were made at 60 and 100 micrometers with color-corrected flux densities of 581 +/- 58 and 721 +/- 123 millijanskys, respectively. Pluto is best described as having a dark equatorial band, and brighter polar caps of methane ice extending to +/-45 degrees latitude, at most. An upper limit of approximately 9 meter-amagats is placed on the column abundance of a methane atmosphere on Pluto, which is comparable to recent upper limits based on independent ground-based spectroscopy.

  18. The atmosphere of Pluto as observed by New Horizons.

    PubMed

    Gladstone, G Randall; Stern, S Alan; Ennico, Kimberly; Olkin, Catherine B; Weaver, Harold A; Young, Leslie A; Summers, Michael E; Strobel, Darrell F; Hinson, David P; Kammer, Joshua A; Parker, Alex H; Steffl, Andrew J; Linscott, Ivan R; Parker, Joel Wm; Cheng, Andrew F; Slater, David C; Versteeg, Maarten H; Greathouse, Thomas K; Retherford, Kurt D; Throop, Henry; Cunningham, Nathaniel J; Woods, William W; Singer, Kelsi N; Tsang, Constantine C C; Schindhelm, Eric; Lisse, Carey M; Wong, Michael L; Yung, Yuk L; Zhu, Xun; Curdt, Werner; Lavvas, Panayotis; Young, Eliot F; Tyler, G Leonard

    2016-03-18

    Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state--over seasonal or geologic time scales. Copyright © 2016, American Association for the Advancement of Science.

  19. The atmosphere of Pluto as observed by New Horizons

    NASA Astrophysics Data System (ADS)

    Gladstone, G. Randall; Stern, S. Alan; Ennico, Kimberly; Olkin, Catherine B.; Weaver, Harold A.; Young, Leslie A.; Summers, Michael E.; Strobel, Darrell F.; Hinson, David P.; Kammer, Joshua A.; Parker, Alex H.; Steffl, Andrew J.; Linscott, Ivan R.; Parker, Joel Wm.; Cheng, Andrew F.; Slater, David C.; Versteeg, Maarten H.; Greathouse, Thomas K.; Retherford, Kurt D.; Throop, Henry; Cunningham, Nathaniel J.; Woods, William W.; Singer, Kelsi N.; Tsang, Constantine C. C.; Schindhelm, Eric; Lisse, Carey M.; Wong, Michael L.; Yung, Yuk L.; Zhu, Xun; Curdt, Werner; Lavvas, Panayotis; Young, Eliot F.; Tyler, G. Leonard; Bagenal, F.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Ore, C. M. Dalle; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Elliott, H. A.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hill, M. E.; Holdridge, M. E.; Horanyi, M.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kang, H. K.; Kaufmann, D. E.; Kollmann, P.; Krimigis, S. M.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; McComas, D. J.; McNutt, R. L.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Pelletier, F.; Peterson, J.; Pinkine, N.; Piquette, M.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Ryschkewitsch, M. G.; Schenk, P.; Sepan, B.; Showalter, M. R.; Soluri, M.; Stanbridge, D.; Stryk, T.; Szalay, J. R.; Tapley, M.; Taylor, A.; Taylor, H.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weidner, S.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Zangari, A. M.; Zirnstein, E.

    2016-03-01

    Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state - over seasonal or geologic time scales.

  20. IRAS serendipitous survey observations of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Cutri, Roc M.; Lebofsky, Larry A.; Binzel, Richard P.

    1987-01-01

    On Aug. 16, 1983, the Infrared Astronomical Satellite made two separate pointed observations of Pluto and its moon Charon. Because of the small angular displacement of the system between the times of measurement, the Pluto-Charon system was identified as a source in the Serendipitous Survey (SSC 14029+0518). Detections were made at 60 and 100 micrometers with color-corrected flux densities of 581 + or - 58 and 721 + or - 123 millijanskys, respectively. Pluto is best described as having a dark equatorial band, and brighter polar caps of methane ice extending to + or - 45 deg latitude, at most. An upper limit of approximately 9 meter-amagats is placed on the column abundance of a methane atmosphere on Pluto, which is comparable to recent upper limits based on independent ground-based spectroscopy.

  1. Color Image of Pluto

    NASA Image and Video Library

    2015-12-31

    Pluto nearly fills the frame in this image from the Long Range Reconnaissance Imager (LORRI) aboard New Horizons, taken on July 13, 2015, when the spacecraft was 476,000 miles (768,000 kilometers) from the surface. This is the last and most detailed image sent to Earth before the spacecraft's closest approach to Pluto on July 14. The color image has been combined with lower-resolution color information from the Ralph instrument that was acquired earlier on July 13. http://photojournal.jpl.nasa.gov/catalog/PIA20291

  2. Partly Cloudy on Pluto?

    NASA Image and Video Library

    2016-10-18

    Pluto's present, hazy atmosphere is almost entirely free of clouds, though scientists from NASA's New Horizons mission have identified some cloud candidates after examining images taken by the New Horizons Long Range Reconnaissance Imager and Multispectral Visible Imaging Camera, during the spacecraft's July 2015 flight through the Pluto system. All are low-lying, isolated small features -- no broad cloud decks or fields -- and while none of the features can be confirmed with stereo imaging, scientists say they are suggestive of possible, rare condensation clouds. http://photojournal.jpl.nasa.gov/catalog/PIA21127

  3. Pluto in True Color

    NASA Image and Video Library

    2015-07-25

    Four images from NASA's New Horizons' Long Range Reconnaissance Imager (LORRI) were combined with color data from the Ralph instrument to create this global view of Pluto. (The lower right edge of Pluto in this view currently lacks high-resolution color coverage.) The images, taken when the spacecraft was 280,000 miles (450,000 kilometers) away, show features as small as 1.4 miles (2.2 kilometers), twice the resolution of the single-image view taken on July 13. http://photojournal.jpl.nasa.gov/catalog/PIA19857

  4. Nonisothermal Pluto atmosphere models

    SciTech Connect

    Hubbard, W.B.; Yelle, R.V.; Lunine, J.I. )

    1990-03-01

    The present thermal profile calculation for a Pluto atmosphere model characterized by a high number fraction of CH4 molecules encompasses atmospheric heating by solar UV flux absorption and conductive transport cooling to the surface of Pluto. The stellar occultation curve predicted for an atmosphere of several-microbar surface pressures (which entail the existence of a substantial temperature gradient close to the surface) agrees with observations and implies that the normal and tangential optical depth of the atmosphere is almost negligible. The minimum period for atmospheric methane depletion is calculated to be 30 years. 29 refs.

  5. Barchan dunes on Pluto?

    NASA Astrophysics Data System (ADS)

    Parteli, Eric J. R.; Pöschel, Thorsten

    2017-06-01

    We show that the orientation and morphology of bedforms occurring on top of Pluto's smooth ice coats are consistent with an aeolian origin under conditions of unidirectional flow. From scaling relations for dune size as a function of attributes of atmosphere and sediments, we find that the average diameter of the granular particles constituting such bedforms — assuming an aeolian origin — lies within the range 600 μm< d < 750 μm. Our findings show that, owing to the effect of hysteresis in the minimal threshold wind velocity for saltation, dune migration on Pluto can occur under wind speeds that are common to Earth and Mars.

  6. Mapping Pluto Methane Ice

    NASA Image and Video Library

    2015-09-24

    The Ralph/LEISA infrared spectrometer on NASA's New Horizons spacecraft mapped compositions across Pluto's surface as it flew past the planet on July 14, 2015. On the left, a map of methane ice abundance shows striking regional differences, with stronger methane absorption indicated by the brighter purple colors, and lower abundances shown in black. Data have only been received so far for the left half of Pluto's disk. At right, the methane map is merged with higher-resolution images from the spacecraft's Long Range Reconnaissance Imager (LORRI). http://photojournal.jpl.nasa.gov/catalog/PIA19953

  7. Visual and infrared studies of asteroids and the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    The strategy of the project was to: (1) analyze light curves of Pluto-Charon mutual eclipse event light curves to derive models of the Pluto-Charon system; (2) use these results in planning and reducing HST observations tentatively scheduled to be obtained in Aug. 1991 to determine Pluto-Charon mass ratio; and (3) obtain visual and IR photometry of selected asteroids to help determine their albedos, sizes, shapes, pole orientations, taxonomic classes, and phase functions.

  8. Advanced Ground Systems Maintenance Intelligent Devices/Smart Sensors Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2015-01-01

    This project provides development and qualification of Smart Sensors capable of self-diagnosis and assessment of their capability/readiness to support operations. These sensors will provide pressure and temperature measurements for use in ground systems.

  9. The Phoenix Pluto Probe

    NASA Technical Reports Server (NTRS)

    Gunning, George R.; Spapperi, Jeff; Wilkinson, Jeffrey P.; Eldred, Jim; Labij, Dennis; Strinni, Meredith

    1990-01-01

    A design proposal for an unmanned probe to Pluto is presented. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.

  10. Faces of Pluto Animation

    NASA Image and Video Library

    2015-06-11

    This frame from a movie, composed of images taken by NASA New Horizons, shows Pluto as it rotates about its axis. The images were taken May 28-June 3, 2015, from distances ranging from approximately 56 million kilometers to 48.5 million kilometers.

  11. Pluto or Bust!

    ERIC Educational Resources Information Center

    Fisher, Diane

    2005-01-01

    This article begins with a discussion of the development of the solar system. It also focuses on the fact that in January 2006, NASA plans to launch the New Horizons spacecraft to Pluto-Charon and on to one or more of the icy Kuiper Belt Objects. Sections of the article include: (1) Investigating the Aftermath; (2) Designing a Mission to…

  12. Pluto's Intriguing Moons

    NASA Image and Video Library

    We talk a lot about Charon, Pluto's largest moon that's about half the size of its host planet. But what about Pluto’s other moons? They're strange, to say the least. Pluto’s four smaller moons —...

  13. Pluto or Bust!

    ERIC Educational Resources Information Center

    Fisher, Diane

    2005-01-01

    This article begins with a discussion of the development of the solar system. It also focuses on the fact that in January 2006, NASA plans to launch the New Horizons spacecraft to Pluto-Charon and on to one or more of the icy Kuiper Belt Objects. Sections of the article include: (1) Investigating the Aftermath; (2) Designing a Mission to…

  14. Pluto's Surface in Detail

    NASA Image and Video Library

    2017-07-14

    On July 14, 2015, NASA's New Horizons spacecraft made its historic flight through the Pluto system. This detailed, high-quality global mosaic of Pluto was assembled from nearly all of the highest-resolution images obtained by the Long-Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. The mosaic is the most detailed and comprehensive global view yet of Pluto's surface using New Horizons data. It includes topography data of the hemisphere visible to New Horizons during the spacecraft's closest approach. The topography is derived from digital stereo-image mapping tools that measure the parallax -- or the difference in the apparent relative positions -- of features on the surface obtained at different viewing angles during the encounter. Scientists use these parallax displacements of high and low terrain to estimate landform heights. The global mosaic has been overlain with transparent, colorized topography data wherever on the surface stereo data is available. Terrain south of about 30°S was in darkness leading up to and during the flyby, so is shown in black. Examples of large-scale topographic features on Pluto include the vast expanse of very flat, low-elevation nitrogen ice plains of Sputnik Planitia ("P") -- note that all feature names in the Pluto system are informal -- and, on the eastern edge of the encounter hemisphere, the aligned, high-elevation ridges of Tartarus Dorsa ("T") that host the enigmatic bladed terrain, mountains, possible cryovolcanos, canyons, craters and more. https://photojournal.jpl.nasa.gov/catalog/PIA21861

  15. Photochemistry of Pluto's Atmosphere

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, Vladimir A.

    1999-01-01

    This work include studies of two problems: (1) Modeling thermal balance, structure. and escape processes in Pluto's upper atmosphere. This study has been completed in full. A new method, of analytic solution for the equation of hydrodynamic flow from in atmosphere been developed. It was found that the ultraviolet absorption by methane which was previously ignored is even more important in Pluto's thermal balance than the extreme ultraviolet absorption by nitrogen. Two basic models of the lower atmosphere have been suggested, with a tropopause and a planetary surface at the bottom of the stellar occultation lightcurve, respectively, Vertical profiles, of temperature, density, gas velocity, and the CH4 mixing ratio have been calculated for these two models at low, mean, and high solar activity (six models). We prove that Pluto' " s atmosphere is restricted to 3060-4500 km, which makes possible a close flyby of future spacecraft. Implication for Pluto's evolution have also been discussed. and (2) Modeling of Pluto's photochemistry. Based on the results of (1), we have made some changes in the basic continuity equation and in the boundary conditions which reflect a unique can of hydrodynamic escape and therefore have not been used in modeling of other planetary atmospheres. We model photochemistry of 44 neutral and 23 ion species. This work required solution of a set of 67 second-order nonlinear ordinary differential equations. Two models have been developed. Each model consists of the vertical profiles for 67 species, their escape and precipitation rates. These models predict the chemical structure and basic chemical processes in the current atmosphere and possible implication of these processes for evolution. This study has also been completed in full.

  16. Correlating Pluto's Albedo Distribution to Long Term Insolation Patterns

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.; Stern, S. Alan; Young, Leslie A.; Buratti, Bonnie J.; Ennico, Kimberly; Grundy, Will M.; Olkin, Catherine B.; Spencer, John R.; Weaver, Hal A.

    2015-11-01

    NASA's New Horizons' reconnaissance of the Pluto system has revealed striking albedo contrasts from polar to equatorial latitudes on Pluto, as well as sharp boundaries for longitudinal variations. These contrasts suggest Pluto undergoes dynamic evolution that drives the redistribution of volatiles. Using the New Horizons results as a template, in this talk we will explore the volatile migration process driven seasonally on Pluto considering multiple timescales. These timescales include the current orbit (248 years) as well as the timescales for obliquity precession (amplitude of 23 degrees over 3 Myrs) and regression of the orbital longitude of perihelion (3.7 Myrs). We will build upon the long-term insolation history model described by Earle and Binzel (2015, Icarus 250, 405-412) with the goal of identifying the most critical timescales that drive the features observed in Pluto’s current post-perihelion epoch. This work was supported by the NASA New Horizons Project.

  17. Advanced Ground Systems Maintenance Enterprise Architecture Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2015-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. The delivered capabilities include anomaly detection, fault isolation, prognostics and physics based diagnostics.

  18. Advanced Ground Systems Maintenance Enterprise Architecture Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. Capabilities include anomaly detection, fault isolation, prognostics and physics-based diagnostics.

  19. Radio Occultation Measurements of Pluto's Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Linscott, I.; Tyler, G. L.; Bird, M. K.; Paetzold, M.; Strobel, D. F.; Summers, M. E.; Woods, W. W.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Young, L. A.; Ennico Smith, K.; Gladstone, R.; Greathouse, T.; Kammer, J.; Parker, A. H.; Parker, J. W.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A.; Tsang, C.; Versteeg, M.

    2015-12-01

    The reconnaissance of the Pluto System by New Horizons included radio occultations at both Pluto and Charon. This talk will present the latest results from the Pluto occultation. The REX instrument onboard New Horizons received and recorded uplink signals from two 70-m antennas and two 34-m antennas of the NASA Deep Space Network - each transmitting 20 kW at 4.2-cm wavelength - during a diametric occultation by Pluto. At the time this was written only a short segment of data at occultation entry (193°E, 17°S) was available for analysis. The REX measurements extend unequivocally to the surface, providing the first direct measure of the surface pressure and the temperature structure in Pluto's lower atmosphere. Preliminary analysis yields a surface pressure of about 10 microbars, smaller than expected. Data from occultation exit (16°E, 15°N) are scheduled to arrive on the ground in late August 2015. Those observations will yield an improved estimate of the surface pressure, a second temperature profile, and a measure of the diameter of Pluto with a precision of a few hundred meters.

  20. Examining Pluto's atmosphere with SOFIA through stellar occultations

    NASA Astrophysics Data System (ADS)

    Person, Michael

    2012-10-01

    We propose to use SOFIA with HIPO, FLITECAM (subject to availability), and the FDC to observe two pairs of Pluto stellar occultations (four total), attempting in each case to observe from the center of Pluto's shadow path. Only an airborne platform such as SOFIA can allow us to directly place the telescope in the shadow paths of these brief events while mitigating the possibility of missing time-sensitive observations due to unfortunate weather systems. Occultation predictions will be updated throughout the period preceding the observations with the goal of achieving sufficient prediction accuracy at the event time to place SOFIA directly in the path of Pluto's central flash. Successful central flash observations will give us unprecedented information regarding Pluto's lower atmospheric structure and global sphericity. The combination of HIPO, FLITECAM, and the FDC will allow us to make simultaneous visible and IR measurements of the occultation light curves in several wavelengths, which are needed to differentiate between two currently competing explanations for the deficiency in the observed light refracted from Pluto's lower atmosphere (strong thermal gradients versus variable particulate extinction). Finally, we propose for two pairs of events in order to investigate the temporal variability of Pluto's atmosphere on several timescales to measure its ongoing evolution due to Pluto's rotation, changing seasonal obliquity (and resulting ice migration), and recession from the sun. These SOFIA observations will all be combined with our ground-based observing program to provide calibrating geometric information to the SOFIA occultation chords, allowing us to precisely pinpoint the actual passage of SOFIA through the occultation shadow path. Given the upcoming New Horizons encounter with the Pluto system in 2015, now is a critical time to provide context and supporting atmospheric information to this NASA mission.

  1. Advanced Ground Systems Maintenance Physics Models for Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.

  2. Advanced Ground Systems Maintenance Prognostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project implements prognostics capabilities to predict when a component, system or subsystem will no longer meet desired functional or performance criteria, called the "end of life." The capability also provides an assessment of the "remaining useful life" of a hardware component.

  3. Imagine a Landing on Pluto

    NASA Image and Video Library

    2016-07-14

    Imagine a future spacecraft following New Horizons' trailblazing path to Pluto, but instead of flying past its target -- as New Horizons needed to do to explore Pluto and the Kuiper Belt beyond -- the next visitor touches down near the tall mountains on the frozen icy, plains of Pluto's heart. A video produced by New Horizons scientists that offers that very perspective. Made from more than 100 New Horizons images taken over six weeks of approach and close flyby, the video offers a trip in to Pluto -- starting with a distant spacecraft's-eye view of Pluto and its largest moon, Charon, to an eventual ride in for a "landing" on the shoreline of Pluto's informally named Sputnik Planum. The video shows what it would be like to ride aboard an approaching spacecraft and see Pluto grow from a "dot" to become a world, and then to swoop down over Pluto's spectacular terrains. New Horizons scientists had to interpolate some of the frames in the movie based on what they know Pluto looks like to make it as smooth and seamless as possible. After a 9.5-year voyage covering more than three billion miles, New Horizons flew through the Pluto system on July 14, 2015, coming within 7,800 miles (12,500 kilometers) of Pluto itself. Carrying powerful telescopic cameras that could spot features smaller than a football field, New Horizons has sent back hundreds of images of Pluto and its moons that show how dynamic and fascinating their surfaces are - and what great targets they'd make for follow-up mission one day. http://photojournal.jpl.nasa.gov/catalog/PIA20742

  4. Visible-band (390-940nm) monitoring of the Pluto absorption spectrum during the New Horizons encounter

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Marchant, Jonathan M.

    2015-11-01

    Whilst Earth-based observations obviously cannot compete with New Horizons’ on-board instrumentation in most regards, the New Horizons data set is essentially a snapshot of Pluto in July 2015. The New Horizons project team therefore coordinated a broad international observing campaign to provide temporal context and to take advantage of the once-in-a-lifetime opportunity to directly link our Earth-based view of Pluto with “ground truth” provided by in situ measurements. This both adds value to existing archival data sets and forms the basis of long term, monitoring as we watch Pluto recede from the Sun over the coming years. We present visible-band (390-940nm) monitoring of the Pluto absorption spectrum over the period July - October 2015 from the Liverpool Telescope (LT). In particular we wished to understand the well-known 6-day fluctuation in the methane ice absorption spectrum which is observable from Earth in relation to the never-before-available high resolution maps of the Pluto surface. The LT is a fully robotic 2.0m optical telescope that automatically and dynamically schedules observations across 30+ observing programmes with a broad instrument suite. It is ideal for both reactive response to dynamic events (such as the fly-by) and long term, stable monitoring with timing constraints individually optimised to the science requirements of each programme. For example past studies of the observed CH4 absorption variability have yielded ambiguity of whether they were caused by real physical changes or geometric observation constraints, in large part because of the uneven time sampling imposed by traditional telescope scheduling.

  5. Zigzagging Across Pluto

    NASA Image and Video Library

    2015-12-16

    This high-resolution swat of Pluto sweeps over the cratered plains at the west of the New Horizons' encounter hemisphere and across numerous prominent faults, skimming the eastern margin of the dark, forbidding region informally known as Cthulhu Regio, and finally passing over the mysterious, possibly cryovolcanic edifice Wright Mons, before reaching the terminator or day-night line. Among the many notable details shown are the overlapping and infilling relationships between units of the relatively smooth, bright volatile ices from Sputnik Planum (at the edge of the mosaic) and the dark edge or "shore" of Cthulhu. The pictures in this mosaic were taken by the Long Range Reconnaissance Imager (LORRI) in "ride-along" mode with the LEISA spectrometer, which accounts for the 'zigzag' or step pattern. Taken shortly before New Horizons' July 14 closest approach to Pluto, details as small as 500 yards (500 meters) can be seen. http://photojournal.jpl.nasa.gov/catalog/PIA20286

  6. A Pluto Color Combo

    NASA Image and Video Library

    2015-07-06

    This color version of NASA's New Horizons Long Range Reconnaissance Imager (LORRI) picture of Pluto taken July 3, 2015, was created by adding color data from the Ralph instrument gathered earlier in the mission. The LORRI image was taken from a range of 7.8 million miles (12.5 million km), with a central longitude of 19°. http://photojournal.jpl.nasa.gov/catalog/PIA19699

  7. Haze in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Summers, M. E.; Gladstone, G. R.; Strobel, D. F.; Young, L. A.; Lavvas, P.; Kammer, J. A.; Lisse, C. M.; Parker, A. H.; Young, E. F.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.

    2017-07-01

    Haze in Pluto's atmosphere was detected in images by both the Long Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. LORRI observed haze up to altitudes of at least 200 km above Pluto's surface at solar phase angles from ∼20° to ∼169°. The haze is structured with about ∼20 layers, and the extinction due to haze is greater in the northern hemisphere than at equatorial or southern latitudes. However, more haze layers are discerned at equatorial latitudes. A search for temporal variations found no evidence for motions of haze layers (temporal changes in layer altitudes) on time scales of 2 to 5 hours, but did find evidence of changes in haze scale height above 100 km altitude. An ultraviolet extinction attributable to the atmospheric haze was also detected by the ALICE ultraviolet spectrograph on New Horizons. The haze particles are strongly forward-scattering in the visible, and a microphysical model of haze is presented which reproduces the visible phase function just above the surface with 0.5 μm spherical particles, but also invokes fractal aggregate particles to fit the visible phase function at 45 km altitude and account for UV extinction. A model of haze layer generation by orographic excitation of gravity waves is presented. This model accounts for the observed layer thickness and distribution with altitude. Haze particles settle out of the atmosphere and onto Pluto's surface, at a rate sufficient to alter surface optical properties on seasonal time scales. Pluto's regional scale albedo contrasts may be preserved in the face of the haze deposition by atmospheric collapse.

  8. A Heart on Pluto

    NASA Image and Video Library

    2015-07-08

    In the early morning hours of July 8, 2015, mission scientists received this new view of Pluto -- the most detailed yet returned by the Long Range Reconnaissance Imager (LORRI) aboard New Horizons. The image was taken on July 7, when the NASA spacecraft was just under 5 million miles (8 million kilometers) from Pluto, and is the first to be received since the July 4 anomaly that sent the spacecraft into safe mode. This view is centered roughly on the area that will be seen close-up during New Horizons' July 14 closest approach. This side of Pluto is dominated by three broad regions of varying brightness. Most prominent are an elongated dark feature at the equator, informally known as "the whale," and a large heart-shaped bright area measuring some 1,200 miles (2,000 kilometers) across on the right. Above those features is a polar region that is intermediate in brightness. http://photojournal.jpl.nasa.gov/catalog/PIA19702

  9. Dark and Bright Terrains of Pluto

    NASA Image and Video Library

    2015-07-10

    These circular maps shows the distribution of Pluto's dark and bright terrains as revealed by NASA's New Horizons mission prior to July 4, 2015. Each map is an azimuthal equidistant projection centered on the north pole, with latitude and longitude indicated. Both a gray-scale and color version are shown. The gray-scale version is based on 7 days of panchromatic imaging from the Long Range Reconnaissance Imager (LORRI), whereas the color version uses the gray-scale base and incorporates lower-resolution color information from the Multi-spectral Visible Imaging Camera (MVIC), part of the Ralph instrument. The color version is also shown in a simple cylindrical projection in PIA19700. In these maps, the polar bright terrain is surrounded by a somewhat darker polar fringe, one whose latitudinal position varies strongly with longitude. Especially striking are the much darker regions along the equator. A broad dark swath ("the whale") stretches along the equator from approximately 20 to 160 degrees of longitude. Several dark patches appear in a regular sequence centered near 345 degrees of longitude. A spectacular bright region occupies Pluto's mid-latitudes near 180 degrees of longitude, and stretches southward over the equator. New Horizons' closest approach to Pluto will occur near this longitude, which will permit high-resolution visible imaging and compositional mapping of these various regions. http://photojournal.jpl.nasa.gov/catalog/PIA19706

  10. The GROUnd-based Secondary Eclipse project - GROUSE

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst; de Kok, Remco; Nefs, Bas; Brogi, Matteo; Snellen, Ignas

    2011-11-01

    Secondary eclipse observations of exoplanets at near-infrared wavelengths are important to constrain the energy budgets of hot-Jupiters, since they probe the radiation from the planet's atmosphere at the peak of the spectral energy distribution. Since this wavelength range is accesible from the ground, we have started the GROUnd-based Secondary Eclipse (GROUSE) project. As part of the GROUSE project, we target a sample of hot-Jupiters at near-infrared and optical wavelengths. Planets include TrES-3b, HAT-P-1, WASP-18b and WASP-33b.

  11. Astrometrical observations of Pluto-Charon system with the automated telescopes of Pulkovo observatory

    NASA Astrophysics Data System (ADS)

    Slesarenko, V. Yu.; Bashakova, E. A.; Devyatkin, A. V.

    2016-03-01

    The space probe "New Horizons" was launched on 19th of January 2006 in order to study Pluto and its moons. Spacecraft performed close fly-by to Pluto on 14th of July 2015 and obtained the most detailed images of Pluto and its moon until this moment. At the same time, observation obtained by the ground-based telescopes may also be helpful for the research of such distant system. Thereby, the Laboratory of observational astrometry of Pulkovo Observatory of RAS made a decision to reprocess observations obtained during last decade. More than 350 positional observations of Pluto-Charon system were carried out with the mirror astrograph ZA-320M at Pulkovo and Maksutov telescope MTM-500M near Kislovodsk. These observations were processed by means of software system APEX-II developed in Pulkovo observatory and numerical simulations were performed to calculate the differences between positions of photocenter and barycenter of Pluto-Charon system.

  12. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  13. What Eating at Pluto?

    NASA Image and Video Library

    2016-03-10

    Scientists on NASA's New Horizons mission have discovered what looks like a giant bite-mark on the planet's surface. In this image, north is up. The southern portion of the left inset above shows the cratered plateau uplands informally named Vega Terra (note that all feature names are informal). This terrain is separated from the young, nearly uncratered, mottled plains of Piri Planitia in the center of the image by a generally north-facing jagged scarp called Piri Rupes. The scarp breaks up into isolated mesas in several places. Cutting diagonally across Piri Planitia is the long extensional fault of Inanna Fossa, which stretches eastward 370 miles (600 kilometers) from here to the western edge of the great nitrogen ice plains of Sputnik Planum. Compositional data from the New Horizons spacecraft's Ralph/Linear Etalon Imaging Spectral Array (LEISA) instrument, shown in the right inset, indicate that the plateau uplands south of Piri Rupes are rich in methane ice (shown in false color as purple). Scientists speculate that sublimation of methane may be causing the plateau material to erode along the face of the scarp cliffs, causing them to retreat south and leave the plains of Piri Planitia in their wake. Compositional data also show that the surface of Piri Planitia is more enriched in water ice (shown in false color as blue) than the plateau uplands, which may indicate that Piri Planitia's surface is made of water ice bedrock, on top of which the layer of retreating methane ice had been sitting. Because the surface of Pluto is so cold, the water ice behaves like rock and is immobile. The light/dark mottled pattern of Piri Planitia in the left inset is reflected in the composition map, with the lighter areas corresponding to areas richer in methane – these may be remnants of methane that have not yet sublimated away entirely. The inset at left shows about 650 feet (200 meters) per pixel; the image measures approximately 280 miles (450 kilometers) long by

  14. Global Map of Pluto

    NASA Image and Video Library

    2015-07-27

    The science team of NASA's New Horizons mission has produced an updated global map of the dwarf planet Pluto. The map includes all resolved images of the surface acquired between July 7-14, 2015, at pixel resolutions ranging from 40 kilometers (24 miles) on the Charon-facing hemisphere (left and right sides of the map) to 400 meters (1,250 feet) on the anti-Charon facing hemisphere (map center). Many additional images are expected in fall of 2015 and these will be used to complete the global map. http://photojournal.jpl.nasa.gov/catalog/PIA19858

  15. Pluto's moons named

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-07-01

    In the end, it did not matter that the name Vulcan came in first place by a landslide in a nonbinding public vote to suggest names for the fourth and fifth known moons of Pluto. Despite the independent vote conducted by the SETI Institute in Mountain View, Calif., on behalf of the team that discovered the moons, the International Astronomical Union (IAU) did not select the name for a Plutonian moon. The decision came much to the dismay of actor William Shatner (who played Captain Kirk in Star Trek). Shatner had pushed for the name Vulcan to honor the home planet of Star Trek character Dr. Spock.

  16. Valley Glaciers on Pluto

    NASA Image and Video Library

    2015-09-17

    Ice (probably frozen nitrogen) that appears to have accumulated on the uplands on the right side of this 390-mile (630-kilometer) wide image is draining from Pluto's mountains onto the informally named Sputnik Planum through the 2- to 5-mile (3- to 8- kilometer) wide valleys. The flow front of the ice moving into Sputnik Planum is outlined by the blue arrows. The origin of the ridges and pits on the right side of the image remains uncertain. http://photojournal.jpl.nasa.gov/catalog/PIA19944

  17. Exploration at the Edge of the Solar System: The Pluto-Kuiper Express Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Terrile, R. J.

    1999-09-01

    The Pluto-Kuiper Express mission is one component of the Outer Planets/Solar Probe Project which is part of the exploration strategy laid out in the Solar System Exploration Roadmap. The first three missions of this project are the Europa Orbiter, Pluto-Kuiper Express and the Solar Probe. All require challenging new technologies and the ability to operate in deep space and at Jupiter. Use of common management and design approaches, avionics, and mission software is planned to reduce the costs of the three missions. The Pluto-Kuiper Express mission is planned to launch in 2004 and is designed to provide the first reconnaissance of the Solar System's most distant planet, Pluto, and it, moon Charon. A gravity assist from Jupiter will allow an 8-year flight time to Pluto and the possibility of encountering one or more Edgeworth-Kuiper Belt objects after the Pluto encounter. The primary science objectives for the mission include characterizing the global geology and geomorphology of Pluto and Charon, mapping their surface composition and characterizing Pluto's neutral atmosphere and its escape rate. This mission is currently soliciting scientific investigations through a NASA Announcement of Opportunity.

  18. A Colorful Landing on Pluto

    NASA Image and Video Library

    2017-01-21

    What would it be like to actually land on Pluto? This image is one of more than 100 images taken by NASA's New Horizons spacecraft over six weeks of approach and close flyby in the summer of 2015. A video offers a trip down onto the surface of Pluto -- starting with a distant view of Pluto and its largest moon, Charon -- and leading up to an eventual ride in for a "landing" on the shoreline of Pluto's informally named Sputnik Planitia. After a 9.5-year voyage covering more than three billion miles, New Horizons flew through the Pluto system on July 14, 2015, coming within 7,800 miles (12,500 kilometers) of Pluto. Carrying powerful telescopic cameras that could spot features smaller than a football field, New Horizons sent back hundreds of images of Pluto and its moons that show how dynamic and fascinating their surfaces are. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA11709

  19. PLUTO first report.

    PubMed

    Otte, Jean-Bernard; Meyers, Rebecka

    2010-11-01

    The PLUTO is a registry developed by an international collaboration of the Liver Tumors Strategy Group (SIOPEL) of the SIOP. Although the number of patients collected in PLUTO to date is too small to add any analytic power to the existing literature, this new registry has great promise. It has been created to clarify issues regarding the role of liver transplantation in the treatment of children with unresectable liver tumors. By reviewing the results to date, we hope we can motivate more centers to participate, enroll patients, complete data entry, and boost the potential impact of the collaborative effort. To achieve this goal, a large number of patients are needed, which requires an intensified international collaboration. Pediatric oncologists, pediatric surgical oncologists, and pediatric liver transplant surgeons are all encouraged to participate and contribute. This is a preliminary glimpse of what we hope to be a series of interim reports over the next decade from the steering committee to help guide therapy in this very challenging group of children. © 2010 John Wiley & Sons A/S.

  20. Water Ice on Pluto

    NASA Image and Video Library

    2015-10-16

    The Ralph instrument on NASA's New Horizons spacecraft detected water ice on Pluto's surface, picking up on the ice's near-infrared spectral characteristics. (See featured image from Oct. 8, 2015.) The middle panel shows a region west of Pluto's "heart" feature -- which the mission team calls Tombaugh Regio -- about 280 miles (450 kilometers) across. It combines visible imagery from Ralph's Multispectral Visible Imaging Camera (MVIC) with infrared spectroscopy from the Linear Etalon Imaging Spectral Array (LEISA). Areas with the strongest water ice spectral signature are highlighted in blue. Major outcrops of water ice occur in regions informally called Viking Terra, along Virgil Fossa west of Elliot crater, and in Baré Montes. Numerous smaller outcrops are associated with impact craters and valleys between mountains. In the lower left panel, LEISA spectra are shown for two regions indicated by cyan and magenta boxes. The white curve is a water ice model spectrum, showing similar features to the cyan spectrum. The magenta spectrum is dominated by methane ice absorptions. The lower right panel shows an MVIC enhanced color view of the region in the white box, with MVIC's blue, red and near-infrared filters displayed in blue, green and red channels, respectively. The regions showing the strongest water ice signature are associated with terrains that are actually a lighter shade of red. http://photojournal.jpl.nasa.gov/catalog/PIA20030

  1. North Village Ground Source Heat Pump Demonstration Project

    SciTech Connect

    Redderson, Jeff

    2015-08-03

    This project demonstrated the feasibility of converting from a traditional direct exchange system to a ground source heat pump system on a large scale, multiple building apartment complex on a university campus. A total of ten apartment buildings were converted using vertical well fields and a ground source loop that connected the 24 apartments in each building into a common system. The system has yielded significant operational savings in both energy and maintenance and transformed the living environments of these residential buildings for our students.

  2. Pluto and Charon in Color: Pluto-Centric View Animation

    NASA Image and Video Library

    2015-06-11

    The first color movies from NASA's New Horizons mission show Pluto and its largest moon, Charon, and the complex orbital dance of the two bodies, known as a double planet. A near-true color movie were assembled from images made in three colors -- blue, red and near-infrared -- by the Multispectral Visible Imaging Camera on the instrument known as Ralph. The images were taken on nine different occasions from May 29-June 3, 2015. The movie is "Pluto-centric," meaning that Charon is shown as it moves in relation to Pluto, which is digitally centered in the movie. (The North Pole of Pluto is at the top.) Pluto makes one turn around its axis every 6 days, 9 hours and 17.6 minutes-the same amount of time that Charon rotates in its orbit. Looking closely at the images in this movie, one can detect a regular shift in Pluto's brightness-due to the brighter and darker terrains on its differing faces. http://photojournal.jpl.nasa.gov/catalog/PIA19689

  3. ISTAR: Project Status and Ground Test Engine Design

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene

    2003-01-01

    Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.

  4. First Results on Pluto's Energetic Particle Environment from the PEPSSI Instrument

    NASA Astrophysics Data System (ADS)

    Kollmann, Peter; Hill, M. E.; McNutt, R.; Smith, H. T.; Vandegriff, J.; Kusterer, M.; Brown, L.; Haggerty, D. K.; Lisse, C. M.; Elliott, H. A.; Strobel, D.; Bagenal, F.; Sidrow, E.; McComas, D. J.; Horanyi, M.; Zirnstein, E.; Krimigis, S. M.; Ennico, K.; Young, L. A.; Weaver, H. A.; Olkin, C. B.; Stern, S. A.

    2015-11-01

    The New Horizons spacecraft flew by Pluto in July 2015 and passed through the wakes of Pluto and its largest moon Charon. Pluto interacts with the solar wind via the magnetic fields created by currents in its ionosphere and the pick-up of charge-exchange ions escaping from its atmosphere. The PEPSSI instrument (Pluto Energetic Particle Spectrometer Science Investigation) passed through this interaction region. Closest approach distance to Pluto was 11 Pluto radii, inside the orbit of Charon. PEPSSI measures intensities of keV to MeV ions and can distinguish ions in the solar wind from ions originating from Pluto. Pluto’s energetic particle environment clearly stands out compared to the surrounding solar wind at these heliospheric distances. Electrons in the same energy range as the ions do not show a distinct signature throughout the flyby. There is no indication in the particle observations for an intrinsic magnetic field of Pluto. We will present an analysis of the data that is downlinked throughout August and set them into context with measurements taken by PEPSSI in Jupiter’s magnetotail in 2007. This work was supported by NASA's New Horizons project.

  5. Heterogeneous and Evolving Distributions of Pluto's Volatile Surface Ices

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Olkin, C. B.; Young, L. A.; Buie, M. W.; Young, E. F.

    2013-10-01

    We report observations of Pluto's 0.8 to 2.4 µm reflectance spectrum with IRTF/SpeX on 70 nights over the 13 years from 2001 to 2013. The spectra show numerous vibrational absorption features of simple molecules CH4, CO, and N2 condensed as ices on Pluto's surface. These absorptions are modulated by the planet's 6.39 day rotation period, enabling us to constrain the longitudinal distributions of the three ices. Absorptions of CO and N2 are concentrated on Pluto's anti-Charon hemisphere, unlike absorptions of less volatile CH4 ice that are offset by roughly 90° from the longitude of maximum CO and N2 absorption. In addition to the diurnal/longitudinal variations, the spectra show longer term trends. On decadal timescales, Pluto's stronger CH4 absorption bands have deepened, while the amplitude of their diurnal variation has diminished, consistent with additional CH4 absorption by high northern latitude regions rotating into view as the sub-Earth latitude moves north (as defined by the system's angular momentum vector). Unlike the CH4 absorptions, Pluto's CO and N2 absorptions are declining over time, suggesting more equatorial or southerly distributions of those species. The authors gratefully thank the staff of IRTF for their tremendous assistance over the dozen+ years of this project. The work was funded in part by NSF grants AST-0407214 and AST-0085614 and NASA grants NAG5-4210 and NAG5-12516.

  6. Intrepid: A Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Behling, Michael; Buchman, Donald; Marcus, Andres; Procopis, Stephanie; Wassgren, Carl; Ziemer, Sarah

    1990-01-01

    A proposal for an exploratory spacecraft mission to Pluto/Charon system was written in response to the request for proposal for an unmannned probe to pluto (RFP). The design requirements of the RFP are presented and under the guidance of these requirements, the spacecraft Intrepid was designed. The RPF requirement that was of primary importance is the minimization of cost. Also, the reduction of flight time was of extreme importance because the atmosphere of Pluto is expected to collapse close to the Year 2020. If intrepid should arrive after the collapse, the mission would be a failure; for Pluto would be only a solid rock of ice. The topics presented include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion subsystem; (4) structural subsystem; (5) command, control, and communications; and (6) attitude and articulation control.

  7. Pluto's atmospheric bulk near perihelion

    NASA Technical Reports Server (NTRS)

    Trafton, L.

    1981-01-01

    The detection of CH4 frost on Pluto's surface implies a significant atmosphere for Pluto. Although Pluto's mass is small, about 7% of Triton's mass, the rapid escape ('blowoff') of gaseous CH4 can be prevented by the presence of a heavy gas mixed with the CH4. The resulting slow escape ('Jeans escape') of CH4 can be accommodated by sublimation of the surface CH4 frost so that an atmosphere exists in the steady state. A heavier gas must exist, otherwise the CH4 frost would have sublimated away long ago because of solar heat and rapid blowoff of gaseous CH4. Pluto is currently near perihelion where the CH4 component of the atmosphere may be 500 times denser than at apehelion. Significant seasonal changes in the atmospheric bulk are therefore possible.

  8. The orbit of Pluto's satellite

    NASA Technical Reports Server (NTRS)

    Tholen, D. J.

    1985-01-01

    Nineteen speckle interferometric observations of the Pluto system have been used to improve the determination of the orbital elements for Pluto's satellite. Calibration uncertainties appear to be the dominant source of error, but the observation of a partial occultation of the satellite by Pluto has been used to constrain the orbit solution. The orbital period is found to be in excellent agreement with the rotational period of the planet, reinforcing the belief that the system is completely tidally evolved. The orbital radius and period imply a total mass for the system of 6.8 + or - 0.5 x 10 to the -9th solar masses. Density constraints place an upper limit of 3615 + or - 90 km on the diameter of Pluto, while observations of the first mutual events establish a crude lower limit of about 2800 km.

  9. Planetary science: Pluto's polygons explained

    NASA Astrophysics Data System (ADS)

    Dombard, Andrew J.; O'Hara, Sean

    2016-06-01

    The Sputnik Planum basin of Pluto contains a sheet of nitrogen ice, the surface of which is divided into irregular polygons tens of kilometres across. Two studies reveal that vigorous convection causes these polygons. See Letters p.79 & 82

  10. Simulating Space Weather at Pluto

    NASA Image and Video Library

    This video shows a simulation of the space environment all the way out to Pluto in the months surrounding New Horizons’ July 2015 flyby. At the time, scientists at NASA’s Goddard Space Flight Cente...

  11. X-Rays from Pluto

    NASA Image and Video Library

    2016-09-14

    The first detection of Pluto in X-rays has been made using NASA's Chandra X-ray Observatory in conjunction with observations from NASA's New Horizons spacecraft. As New Horizons approached Pluto in late 2014 and then flew by the planet during the summer of 2015, Chandra obtained data during four separate observations. During each observation, Chandra detected low-energy X-rays from the small planet. The main panel in this graphic is an optical image taken from New Horizons on its approach to Pluto, while the inset shows an image of Pluto in X-rays from Chandra. There is a significant difference in scale between the optical and X-ray images. New Horizons made a close flyby of Pluto but Chandra is located near the Earth, so the level of detail visible in the two images is very different. The Chandra image is 180,000 miles across at the distance of Pluto, but the planet is only 1,500 miles across. Pluto is detected in the X-ray image as a point source, showing the sharpest level of detail available for Chandra or any other X-ray observatory. This means that details over scales that are smaller than the X-ray source cannot be seen here. Detecting X-rays from Pluto is a somewhat surprising result given that Pluto - a cold, rocky world without a magnetic field - has no natural mechanism for emitting X-rays. However, scientists knew from previous observations of comets that the interaction between the gases surrounding such planetary bodies and the solar wind - the constant streams of charged particles from the sun that speed throughout the solar system -- can create X-rays. The researchers were particularly interested in learning more about the interaction between the gases in Pluto's atmosphere and the solar wind. The New Horizon spacecraft carries an instrument designed to measure that activity up-close -- Solar Wind Around Pluto (SWAP) -- and scientists examined that data and proposed that Pluto contains a very mild, close-in bowshock, where the solar wind first

  12. Pluto is the new Mars!

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Mckinnon, William B.; Spencer, John R.; Howard, Alan D.; Grundy, William M.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly; Olkin, Cathy

    2016-01-01

    Data from NASA's New Horizons encounter with Pluto in July 2015 revealed an astoundingly complex world. The surface seen on the encounter hemisphere ranged in age from ancient to recent. A vast craterless plain of slowly convecting solid nitrogen resides in a deep primordial impact basin, reminiscent of young enigmatic deposits in Mars' Hellas basin. Like Mars, regions of Pluto are dominated by valleys, though the Pluto valleys are thought to be carved by nitrogen glaciers. Pluto has fretted terrain and halo craters. Pluto is cut by tectonics of several different ages. Like Mars, vast tracts on Pluto are mantled by dust and volatiles. Just as on Mars, Pluto has landscapes that systematically vary with latitude due to past and present seasonal (and mega-seasonal) effects on two major volatiles. On Mars, those volatiles are H2O and CO2; on Pluto they are CH4 and N2. Like Mars, some landscapes on Pluto defy easy explanation. In the Plutonian arctic there is a region of large (approx. 40 km across) deep (approx. 3-4 km) pits that probably could not be formed by sublimation, or any other single process, alone. Equally bizarre is the Bladed terrain, which is composed of fields of often roughly aligned blade-like ridges covering the flanks and crests of broad regional swells. Topping the unexpected are two large mounds approximately150 km across, approx. 5-6 km high, with great central depressions at their summits. The central depressions are almost as deep as the mounds are tall. These mounds have many of the characteristics of volcanic mountains seen on Mars and elsewhere in the inner solar system. Hypotheses for the formation of these Plutonian mounds so far all have challenges, principally revolving around the need for H2O ice to support their relief and the difficulty imagining mechanisms that would mobilize H2O. From the perspective of one year after the encounter, our appreciation of the extent of Pluto's diversity and complexity is quite reminiscent of the

  13. UMTRA Ground Water Project management action process document

    SciTech Connect

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  14. Shapes and Poles of the Small Satellites of Pluto

    NASA Astrophysics Data System (ADS)

    Porter, Simon B.; Showalter, Mark R.; Spencer, John R.; Weaver, H. A.; Binzel, Richard P.; Hamilton, Douglas P.; Stern, S. A.; Olkin, Catherine B.; Young, Leslie A.; Ennico, Kimberly

    2015-11-01

    Pluto-Charon is a binary dwarf planet surrounded by four much smaller satellites: Styx, Nix, Kerberos, and Hydra (in order of increasing distance from the barycenter). These satellites were discovered with the Hubble Space Telescope, which also showed that their orbits are nearly circular around the system barycenter and coplanar to the central binary. NASA's New Horizons spacecraft flew through the Pluto system on July 14, 2015, and obtained the first resolved images of all four small satellites. We will present initial models for the shapes and densities of the small satellites determined from both those resolved images and earlier unresolved images, as well as measurements of the rotational poles of small satellites at the time of the Pluto encounter. This work was supported by the NASA New Horizons Project.

  15. Global distribution of Pluto's atmosphere

    SciTech Connect

    Trafton, L.; Stern, S.A.

    1983-04-15

    Pluto's volatile atmosphere currently extends essentially uniformly around the globe and has nearly uniform thickness, discounting topographic elevation differences and tidal effects. Although in equilibrium with the surface ice, the atmosphere does not noticeably freeze out on the night side, during eclipses of the Sun by Charon, or at the poles during Pluto's present season near perihelion. The bulk thermal tide is negligible. The rotational and tidal deformations of the atmosphere affect the atmospheric thickness of 0.6--2% for a pure CH/sub 4/ atmosphere, depending on the unknown mass of Charon, and up to 15% for an atmosphere with high mean molecular weight. An important consequence of the global uniformity of Pluto's atmosphere and the observed CH/sub 4/ column abundance of 27 +- 7 m--Am is that Pluto's surface is close to 58 K over the entire globe. This compares with the value approx.43 K expected on the basis of insolation and blackbody radiation. We suggest that the explanation for Pluto's elevated surface temperature is the low thermal emissivity of solid CH/sub 4/, expected on the basis of the absence of a rotational spectrum in the gas. Solid CH/sub 4/, which covers an appreciable portion of Pluto's surface, can absorb sunlight in the visible and near-infrared bands but lacks opacity at thermal wavelengths to radiate the absorbed energy efficiently.

  16. Pluto Blue Sky

    NASA Image and Video Library

    2015-10-08

    Pluto's haze layer shows its blue color in this picture taken by the New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC). The high-altitude haze is thought to be similar in nature to that seen at Saturn's moon Titan. The source of both hazes likely involves sunlight-initiated chemical reactions of nitrogen and methane, leading to relatively small, soot-like particles (called tholins) that grow as they settle toward the surface. This image was generated by software that combines information from blue, red and near-infrared images to replicate the color a human eye would perceive as closely as possible. http://photojournal.jpl.nasa.gov/catalog/PIA19964

  17. Pluto Bladed Terrain in 3-D

    NASA Image and Video Library

    2016-03-31

    One of the strangest landforms spotted by NASA New Horizons spacecraft when it flew past Pluto last July was the bladed terrain just east of Tombaugh Regio, the informal name given to Pluto large heart-shaped surface feature.

  18. Escape of Pluto's Atmosphere: In Situ Measurements from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument on New Horizons and Remote Observations from the Chandra X-ray observatory

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph L.; Hill, Matthew E.; Lisse, Carey M.; Kollmann, Peter; Bagenal, Fran; Krimigis, Stamatios M.; McComas, David J.; Elliott, Heather A.; Wolk, Scott J.; Strobel, Darrell F.; Zhu, Xun; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico, K.; Olkin, C. B.

    2015-11-01

    The escape rate of Pluto's atmosphere is of significant scientific interest. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) is a compact, energy by time-of-flight (TOF) instrument developed to help address this science goal. Pluto is known to have an atmosphere, and pre-encounter models have postulated a majority N2 composition with free escape of up to ~1028 molecules/sec. The expected major ionization product near Pluto is singly ionized N2 molecules with pickup energies sufficient to be measured with PEPSSI. In the process of measuring the local energetic particle environment, such measurements can also provide constraints on the local density of Pluto's extended atmosphere, which, along with plasma measurements from the Solar Wind Around Pluto (SWAP) instrument, also on New Horizons, could allow the inference of the strengh and extent of mass-loading of the solar wind due to Pluto's atmosphere. Pluto's neutral atmosphere also provides a source population for charge exchange of highly ionized, minor ions in the solar wind, such as O, C, and N. This process allows these ions to capture one electron and be left in an excited state. That state, in turn decays with the emission of a low-energy (100 eV to 1 keV) X-ray. Observations of such solar wind charge exchange (SWCX) X-rays have been made in the past of the Earth's geocorona and Mars's extended atmosphere. The award of almost 40 hours of Director's Discretionary Time (DDT) for observing Pluto with the Chandra X-ray observatory near the period of closest approach of New Horizons to Pluto potentially enabled a remote determination of Pluto's global outgassing rate using the local solar wind flux as measured by the SWAP instrument. Preliminary anaysis of data returned from these observations reveal a definite interaction of Pluto with the solar wind, but at a lower strength than had been predicted. This work was supported by NASA's New Horizons project.

  19. The Icy Mountains of Pluto

    NASA Image and Video Library

    2015-07-15

    New close-up images of a region near Pluto's equator reveal a giant surprise: a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. The mountains likely formed no more than 100 million years ago -- mere youngsters relative to the 4.56-billion-year age of the solar system -- and may still be in the process of building. That suggests the close-up region, which covers less than one percent of Pluto's surface, may still be geologically active today. The youthful age estimate is based on the lack of craters in this scene. Like the rest of Pluto, this region would presumably have been pummeled by space debris for billions of years and would have once been heavily cratered -- unless recent activity had given the region a facelift, erasing those pockmarks. Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape. The mountains are probably composed of Pluto's water-ice "bedrock." Although methane and nitrogen ice covers much of the surface of Pluto, these materials are not strong enough to build the mountains. Instead, a stiffer material, most likely water-ice, created the peaks. The close-up image was taken about 1.5 hours before New Horizons closest approach to Pluto, when the craft was 47,800 miles (770,000 kilometers) from the surface of the planet. The image easily resolves structures smaller than a mile across. http://photojournal.jpl.nasa.gov/catalog/PIA19710

  20. The visible spectrum of Pluto: secular and longitudinal variation

    NASA Astrophysics Data System (ADS)

    Lorenzi, Vania; Pinilla-Alonso, Noemí; Emery, Joshua P.; Licandro, Javier; Cruikshank, Dale P.; Grundy, Will; Binzel, Richard P.

    2015-11-01

    Continuous near-infrared spectroscopic observations during the last 30 years enabled the characterization of the Pluto's surface and the study of its variability. Nevertheless, only few data are available in the visible range, where the nature of the complex-organics can be studied.For this reason, we started an observational campaign to obtain the Pluto's relative reflectance in the visible range, with the aim of characterizing the different components of its surface, and providing ground based observations in support of the New Horizons mission. We observed Pluto on six nights in 2014, with the imager/spectrograph ACAM@WHT (La Palma, Spain). We obtained six spectra in the 0.40 - 0.93 µm range, that covered a whole Pluto's rotational period (6.4 days).To study longitudinal variations, we computed for all the spectra the spectral slope, and the position and the depth of the methane ice absorption bands. Also, to search for secular or seasonal variations we compared our data with previously published results.All the spectra present a red slope, indicating the presence of complex organics on Pluto's surface, and show the methane ice absorption bands between 0.73 and 0.90 μm. We also report the detection of the CH4 absorption band at 0.62 μm, already detected in the spectra of Makemake and Eris. The measurement of the band depth at 0.62 μm in the new spectra of Pluto, and in the spectra of Makemake and Eris, permits us to estimate the Lambert coefficient, not measured yet at this wavelength, at a temperature of 30 K and 40 K.We find that all the CH4 bands present a blue shift. This shift is minimum at the Charon-facing hemisphere, where the CH4 is also more abundant, indicating a higher degree of saturation of CH4 in the CH4:N2 dilution at this hemisphere.Comparing with data in the literature, we found that the longitudinal and secular variations of the parameters measured in our spectra are in accordance with previous results and with the distribution of the dark

  1. Spectroscopic constraints on Pluto's coupled surface and atmosphere: context for the New Horizons encounter

    NASA Astrophysics Data System (ADS)

    Young, Eliot F.

    2017-01-01

    Pluto's bright surface is a direct result of the transport of volatiles on seasonal timescales. Over the course of a Pluto year (248 years), nitrogen, CO and methane frosts migrate over different parts of Pluto's surface. Pluto's atmosphere is predominantly N2 gas, supported by the vapor pressure of nitrogen frost -- the most volatile of Pluto's surface constituents. New Horizons obtained spectral image cubes of Pluto's surface in the 2 - 2.5 µm range, where N2, CO, CH4 and other frosts have diagnostic features. Some of the surprising results from New Horizons were the inhomogeneity of N2 frost distribution (why is there "Tombaugh Regio," a concentration of bright N2 frost?) and CH4 frost features on certain topographic locations. Given that the vapor pressure of N2 frost is about five orders of magnitude higher than that of CH4 at a given temperature, one might expect Pluto's seasonal warming and cooling cycles to act as a massive distillery and separate N2 and CH4 frosts. Ground-based spectroscopy from Keck using NIRSPEC extends our spectroscopy of Pluto to the 2.8 - 3.5 µm range, beyond New Horizon's limit. We see that the 3.3 µm band of methane frost is nearly zero, ruling out any N2 frost on Pluto that does not have CH4 frost mixed in. Furthermore, the edge of the 3.3 µm feature is diagnostic of pure CH4 ice vs. CH4 that is mixed in an N2 matrix. The mixed state of N2 and CH4 ices, a surprise given their drastically different vapor pressures, has changed the paradigm of how Pluto's surface frosts and atmosphere are coupled. In particular, Keck spectra help us extend the snapshot of the New Horizons flyby to models of volatile transport that span an entire Pluto orbit. Certain scenarios are prohibited, such as the case where Pluto's atmosphere freezes out during aphelion. Some of the lessons learned for Pluto's seasonal atmospheric behavior can be applied to other frost-covered TNOs in highly eccentric orbits, like Eris or Makemake.

  2. High Resolution HST Images of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    1994-05-01

    planet Pluto and its moon, Charon, as revealed by the Hubble Space Telescope (HST). The image was taken by the European Space Agency's Faint Object Camera on February 21, 1994, when the planet was 4,400 million kilometres from the Earth; or nearly 30 times the separation between the Earth and the Sun. The HST corrected optics show the two objects as clearly separate and sharp disks. This now allows astronomers to measure directly (to within about 1 percent) Pluto's diameter of 2320 kilometres and Charon's diameter of 1270 kilometres. The HST observations show that Charon is bluer than Pluto. This means that the worlds have different surface composition and structure. A bright highlight on Pluto indicates that it may have a smoothly reflecting surface layer. A detailed analysis of the HST image also suggests that there is a bright area parallel to the equator of Pluto. However, subsequent observations are needed to confirm is this feature is real. Though Pluto was discovered in 1930, Charon was not detected until 1978. This is because this moon is so close to Pluto that the two world's are typically blurred together when viewed through ground-based telescopes. The new HST image was taken when Charon was near its maximum elongation from Pluto (0.9 arcseconds). The two worlds are 19,640 kilometres apart. This photo accompanies ESO PR 09/94. It is available from ESO as ESO PR Photo 09/94-1 and from the Space Telescope Science Institute (Baltimore, USA) as STSci-PR94-17. Reproductions should be credited to NASA, ESA and ESO. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  3. Volatile Transport on Pluto: First Results from the 2013 Observing Season

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Dalba, P. A.; Hicks, M.; Chu, D.; O'Neill, A.; Chesley, J. P.

    2013-12-01

    With the New Horizons spacecraft due to encounter Pluto in slightly less than two years, close scrutiny of this dwarf ice planet has begun in earnest. Ground-based observations are especially critical for context and for a larger temporal excursion. Seasonal transport of volatiles should occur on Pluto, and this transport should be detectable through changes in its rotational light curve, once all variations due to viewing geometry have been modeled. Giving the steady increase observed in Pluto's atmospheric pressure over the past two decades, associated sublimation of frost from the surface has likely occurred, as predicted by volatile transport models. Rotational light curves of Pluto through time have been created for static frost models based on images from the Hubble Space Telescope. These models, which account for changes in viewing geometry, have been compared with observed light curves obtained between 1950 and 2013. No evidence for transport was evident prior to 2000. Observations from 2002 (Buie et al., 2010, Astron. J. 139, 1128) and 2007-2008 (Hicks et al. 2008, B.A.A.S. 40, 460) suggest changes in the frost pattern on Pluto's surface. New observations of Pluto's light curve from the 2013 season from Table Mountain Observatory show no evidence for the large transport of volatiles on Pluto's surface. Our data are the first measurement of a large opposition surge on Pluto similar to that seen on other icy bodies. Both Buie et al. (2010) and our observations from the 2012-2013 seasons show that Pluto is becoming more red in color. This observation makes sense if nitrogen is being removed from the surface to uncover a red, photolyzed substrate of methane. Funded by NASA.

  4. U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan

    SciTech Connect

    Not Available

    1994-09-01

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

  5. Detection of Atmospheric CO on Pluto with ALMA

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark; Lellouch, Emmanuel; Butler, Bryan; Moullet, Arielle; Moreno, Raphael; Bockelée-Morvan, Dominique; Biver, Nicolas; Fouchet, Thierry; Lis, Darek; Stern, Alan; Young, Leslie; Young, Eliot; Weaver, Hal; Boissier, Jeremie; Stansberry, John

    2015-11-01

    We observed Pluto and Charon using the Atacama Large Millimeter/submillimeter Array (ALMA) interferometer in Northern Chile on June 12.2 and June 13.15, 2015, just one month prior to the New Horizons flyby of the system. The configuration of ALMA at the time provided ~0.3" resolution, allowing separation of emission from Pluto and Charon. This project targeted multiple science goals, including a search for HCN in Pluto's atmosphere [1] and high precision measurements of the individual brightness temperatures of Pluto and Charon [2], also presented at this meeting. Here we report the high SNR detection of carbon monoxide in the atmosphere of Pluto. The CO(3-2) rotational line, at 345.796 GHz (867 μm), was observed with 117 kHz spectral resolution for 45 min (on-source) on each date, providing ~3.5mJy/channel RMS. CO emission was clearly detected on both days, with a contrast of ~65 mJy above the Pluto continuum, and ~1.8 MHz FWHM linewidth, with the combined integrated line SNR >50. The presence of CO in Pluto's atmosphere is expected due to it's presence as ice on the surface in vapor pressure equilibrium with the atmosphere (e.g. [3],[4]), and it was previously detected at modest SNR in the near-IR using the VLT [5]. A preliminary assessment based upon the CO line wings shows the fractional abundance of CO is 500-750 ppm, consistent with that found in [5]. Further, the shape of the line core emission (assuming a constant CO mixing ratio), suggests that the atmospheric temperature rises quickly from the surface to ~100-110 K in the altitude range 20-70 km but decreases above that, falling to about 70 K by 200 km altitude. A detailed line inversion analysis will be performed and results presented.[1] Lellouch et al, this meeting. [2] Butler et al., this meeting. [3] Owen et al (1993), Science, 261, pp. 745-748. [4] Spencer et al (1993), In Pluto and Charon, pp. 435-473. Univ. of Arizona Press, Tucson. [5] Lellouch et al (2011), A&A, 530, L4.

  6. Bantam System Technology Project Ground System Requirements Document

    NASA Technical Reports Server (NTRS)

    Moon, J. M.; Beveridge, J. R.

    1997-01-01

    The Low Cost Booster Project (LCBP), also known as Bantam, is an element of the Advanced Space Transportation Program focused on Low Cost Booster Technologies. During FY 99 flight demonstrations are planned to demonstrate the feasibility of producing a booster capable of inserting a 150 kg payload into low earth orbit. The ground support system is an element of the full launch system. The ground support system provides for integration of the payload with the launch vehicle, preparation of the vehicle for launch (including maintenance, integration and test of the vehicle flight software), monitor and control of the launch sequence, range safety during launch, and collection of telemetry during the flight up to payload release. The ground support system is intended to make the maximum possible use of Government Off-the-Shelf (GOTS) or Commercial Off-the-Shelf (COTS) hardware and software to obtain the best value in terms of development operations support and ultimate life cycle cost for the launch system.

  7. Family Portrait of Pluto Moons

    NASA Image and Video Library

    2015-10-23

    This composite image shows a sliver of Pluto large moon, Charon, and all four of Pluto small moons, as resolved by the Long Range Reconnaissance Imager (LORRI) on the New Horizons spacecraft. All the moons are displayed with a common intensity stretch and spatial scale (see scale bar). Charon is by far the largest of Pluto's moons, with a diameter of 751 miles (1,212 kilometers). Nix and Hydra have comparable sizes, approximately 25 miles (40 kilometers) across in their longest dimension above. Kerberos and Styx are much smaller and have comparable sizes, roughly 6-7 miles (10-12 kilometers) across in their longest dimension. All four small moons have highly elongated shapes, a characteristic thought to be typical of small bodies in the Kuiper Belt. http://photojournal.jpl.nasa.gov/catalog/PIA20033

  8. Managing a big ground-based astronomy project: the Thirty Meter Telescope (TMT) project

    NASA Astrophysics Data System (ADS)

    Sanders, Gary H.

    2008-07-01

    TMT is a big science project and its scale is greater than previous ground-based optical/infrared telescope projects. This paper will describe the ideal "linear" project and how the TMT project departs from that ideal. The paper will describe the needed adaptations to successfully manage real world complexities. The progression from science requirements to a reference design, the development of a product-oriented Work Breakdown Structure (WBS) and an organization that parallels the WBS, the implementation of system engineering, requirements definition and the progression through Conceptual Design to Preliminary Design will be summarized. The development of a detailed cost estimate structured by the WBS, and the methodology of risk analysis to estimate contingency fund requirements will be summarized. Designing the project schedule defines the construction plan and, together with the cost model, provides the basis for executing the project guided by an earned value performance measurement system.

  9. Project management for complex ground-based instruments: MEGARA plan

    NASA Astrophysics Data System (ADS)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  10. Pluto and it's moon Charon Shine in False Color

    NASA Image and Video Library

    2017-09-28

    EDT and received on the ground on at 12:25 pm. Charon is Just as Colorful The surface of Charon is viewed using the same exaggerated color. The red on the dark northern polar cap of Charon is attributed to hydrocarbon and other molecules, a class of chemical compounds called tholins. The mottled colors at lower latitudes point to the diversity of terrains on Charon. This image was obtained using three of the color filters of the Ralph instrument on July 13 at 3:38 am EDT and received on the ground on at 12:25 pm. “We make these color images to highlight the variety of surface environments present in the Pluto system,” said Dennis Reuter, co-investigator with the New Horizons Composition Team. “They show us in an intuitive way that there is much still to learn from the data coming down.” Due to the three-billion-mile distance to Pluto, data takes 4 ½ hours to come to Earth, even at the speed of light. It will take 16 months for all of New Horizons’ science data to be received, and the treasure trove from this mission will be studied for decades to come. Image Caption: Pluto and Charon in False Color Show Compositional Diversity This July 13, 2015, image of Pluto and Charon is presented in false colors to make differences in surface material and features easy to see. It was obtained by the Ralph instrument on NASA's New Horizons spacecraft, using three filters to obtain color information, which is exaggerated in the image. These are not the actual colors of Pluto and Charon, and the apparent distance between the two bodies has been reduced for this side-by-side view. The image reveals that the bright heart-shaped region of Pluto includes areas that differ in color characteristics. The western lobe, shaped like an ice-cream cone, appears peach color in this image. A mottled area on the right (east) appears bluish. Even within Pluto's northern polar cap, in the upper part of the image, various shades of yellow-orange indicate subtle compositional differences

  11. Photometry of Pluto-Charon mutual events and Hirayama family asteroids

    NASA Technical Reports Server (NTRS)

    Binzel, Richard P.

    1991-01-01

    During 1985 to 1990, nature provided earth bound astronomers with a once-per-century opportunity to observe occultation and transit phenomena between Pluto and its satellite, Charon. Ground based observations of these events are now being used to derive physical parameters for the Pluto-Charon system to a precision that is unlikely to be improved upon until in situ spacecraft observations are obtained. This program supports analysis of photometry observations from McDonald Observatory, a critical location in the International Pluto Campaign network. Knowledge of the diameters, masses, densities, and compositions derived from these observations will augment the understanding of Pluto's origin and its context within the problem of solar system formation.

  12. Pluto Moon Nix, Half Illuminated

    NASA Image and Video Library

    2015-12-18

    This recently received panchromatic image of Pluto's small satellite Nix taken by the Multispectral Visible Imaging Camera (MVIC) aboard New Horizons is one of the best images of Pluto's third-largest moon generated by the NASA mission. Taken on July 14, 2015, at a range of about 14,000 miles (23,000 kilometers) from Nix, the illuminated surface is about 12 miles (19 kilometers) by 29 miles (47 kilometers). The unique perspective of this image provides new details about Nix's geologic history and impact record. http://photojournal.jpl.nasa.gov/catalog/PIA20287

  13. Processes Modifying Cratered Terrains on Pluto

    NASA Technical Reports Server (NTRS)

    Moore, J. M.

    2015-01-01

    The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as approximately 100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto's existence. The deciphering of this record will be discussed. This work was supported by NASA's New Horizons project.

  14. Geology of Pluto and Charon Overview

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey Morgan

    2015-01-01

    Pluto's surface was found to be remarkably diverse in terms of its range of landforms, terrain ages, and inferred geological processes. There is a latitudinal zonation of albedo. The conspicuous bright albedo heart-shaped feature informally named Tombaugh Regio is comprised of several terrain types. Most striking is Texas-sized Sputnik Planum, which is apparently level, has no observable craters, and is divided by polygons and ovoids bounded by shallow troughs. Small smooth hills are seen in some of the polygon-bounding troughs. These hills could either be extruded or exposed by erosion. Sputnik Planum polygon/ovoid formation hypotheses range from convection to contraction, but convection is currently favored. There is evidence of flow of plains material around obstacles. Mountains, especially those seen south of Sputnik Planum, exhibit too much relief to be made of CH4, CO, or N2, and thus are probably composed of H2O-ice basement material. The north contact of Sputnik Planum abuts a scarp, above which is heavily modified cratered terrain. Pluto's large moon Charon is generally heavily to moderately cratered. There is a mysterious structure in the arctic. Charon's surface is crossed by an extensive system of rift faults and graben. Some regions are smoother and less cratered, reminiscent of lunar maria. On such a plain are large isolated block mountains surrounded by moats. At this conference we will present highlights of the latest observations and analysis. This work was supported by NASA's New Horizons project

  15. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  16. Volatile Transport Implications from the New Horizons Flyby of Pluto

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Grundy, William M.; Binzel, RIchard P.; Earle, Alissa M.; Linscott, Ivan R.; Hinson, David P.; Zangari, Amanda M.; McKinnon, William B.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine B.; Ennico, Kimberly; Gladstone, G. Randall; Summers, Michael E.; Moore, Jeffrey M.; Spencer, John R.

    2015-11-01

    The New Horizons flyby of Pluto has revealed a striking range of terrains, from the very bright region informally named Sputnik Planum, to very dark regions such as the informally named Cthulhu Regio. Such a variety was beyond the scope of recent models of Pluto's seasonal volatile cycle (Young 2013, ApJL 766, L22; Hansen, Paige and Young 2015, Icarus 246, 183), which assumed globally uniform substrate albedos. The "Exchange with Pressure Plateau (EPP)" class of models in Young (2013) and the favored runs from Hansen et al (2015) had long periods of exchange of volatiles between northern and southern hemispheres. In these models, the equators were largely devoid of volatiles; even though the equatorial latitudes received less insolation than the poles over a Pluto year, they were never the coldest place on the icy world. New models that include a variety of substrate albedos can investigate questions such as whether Sputnik Planum has an albedo that is high enough to act as a local cold trap for much of Pluto's year. We will present the implications of this and other assumption-busting revelations from the New Horizons flyby. This work was supported by NASA’s New Horizons project.

  17. Methods & Strategies: Poor, Poor Pluto

    ERIC Educational Resources Information Center

    Graham, Lori; West, Courtney; Jones, Lindsay

    2013-01-01

    Just as students never stop learning, neither do librarians and teachers. Learning is a process that is facilitated by interest and applicability. Therefore, it is imperative to develop instructional activities that students deem important and relevant. "Why is Pluto no longer a planet?" is a question whose answer many people, young and…

  18. A Close Look At Pluto

    NASA Image and Video Library

    2017-09-28

    Pluto has long been a mystery, a dot at our solar system’s margins. The best images, even with NASA’s Hubble Space Telescope, were fuzzy and pixelated. In July 2015, NASA’s New Horizons spacecraft flew past Pluto and captured the sharpest views of the dwarf planet to date. One of the most striking areas, informally named "Sputnik Planum," is a sweeping, frozen plain the size of Texas and ringed by mountains of ice. Its smooth deposits are unmarred by impact craters, a stark contrast to the rest of Pluto’s battered surface. As a result, scientists believe the region formed recently, within the last few hundred million years. This contradicts past depictions of Pluto as an unchanging world. By analyzing images taken during the flyby, scientists hope to unravel more of the dwarf planet’s history. Watch the video for an up-close look at Pluto. Credit: NASA's Goddard Space Flight Center Video courtesy of NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/S. Robbins

  19. Revisiting the 1988 Pluto Occultation

    NASA Astrophysics Data System (ADS)

    Bosh, Amanda S.; Dunham, Edward W.; Young, Leslie A.; Slivan, Steve; Barba née Cordella, Linda L.; Millis, Robert L.; Wasserman, Lawrence H.; Nye, Ralph

    2015-11-01

    In 1988, Pluto's atmosphere was surmised to exist because of the surface ices that had been detected through spectroscopy, but it had not yet been directly detected in a definitive manner. The key to making such a detection was the stellar occultation method, used so successfully for the discovery of the Uranian rings in 1977 (Elliot et al. 1989; Millis et al. 1993) and before that for studies of the atmospheres of other planets.On 9 June 1988, Pluto occulted a star, with its shadow falling over the South Pacific Ocean region. One team of observers recorded this event from the Kuiper Airborne Observatory, while other teams captured the event from various locations in Australia and New Zealand. Preceding this event, extensive astrometric observations of Pluto and the star were collected in order to refine the prediction.We will recount the investigations that led up to this important Pluto occultation, discuss the unexpected atmospheric results, and compare the 1988 event to the recent 2015 event whose shadow followed a similar track through New Zealand and Australia.

  20. New Horizons Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Delgado, Luis G.

    2011-01-01

    This slide presentation reviews the trajectory that will take the New Horizons Mission to Pluto. Included are photographs of the spacecraft, the launch vehicle, the assembled vehicle as it is being moved to the launch pad and the launch. Also shown are diagrams of the assembled parts with identifying part names.

  1. Portrait of Pluto and Charon

    NASA Image and Video Library

    2015-07-17

    These two images of Pluto and Charon were collected separately by NASA New Horizons during approach on July 13 and July 14, 2015. The relative reflectivity, size, separation, and orientations, and colors are approximated in this composite image, and they are shown in approximate true color. http://photojournal.jpl.nasa.gov/catalog/PIA19717

  2. Seasonal Nitrogen Cycles on Pluto

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    1994-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model is used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters.

  3. Planetary science: Pluto's telltale heart

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.

    2016-12-01

    Studies of a large frost-filled basin on Pluto show that this feature altered the dwarf planet's spin axis, driving tectonic activity on its surface, and hint at the presence of a subsurface ocean. See Letters p.86, p.90, p.94 & p.97

  4. Seasonal Nitrogen Cycles on Pluto

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    1994-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model is used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters.

  5. Methods & Strategies: Poor, Poor Pluto

    ERIC Educational Resources Information Center

    Graham, Lori; West, Courtney; Jones, Lindsay

    2013-01-01

    Just as students never stop learning, neither do librarians and teachers. Learning is a process that is facilitated by interest and applicability. Therefore, it is imperative to develop instructional activities that students deem important and relevant. "Why is Pluto no longer a planet?" is a question whose answer many people, young and…

  6. Longitudinal and temporal variability of Pluto

    NASA Astrophysics Data System (ADS)

    Protopapa, S.; Boehnhardt, H.; Barrera, L.; Grundy, W. M.; Cruikshank, D. P.; Sunshine, J. M.; Feaga, L. M.; A'Hearn, M. F.

    2011-10-01

    In particular, we present low dispersion L band spectroscopy together with high dispersion spectroscopy in H and K bands of Pluto acquired with the NACO instrument at the ESO VLT on 27 June 2008. The nature and properties of the compounds present on the surface of Pluto are investigated by applying a Hapke radiative transfer model to the measured spectra. The 2008 observations are compared with 2005 measurements obtained with the same instrument and spectroscopic mode, covering similar sub-earth longitudes. A systematic study of Pluto's surface composition is presented in order to characterize the spatial and temporal distribution of Pluto's surface ices. The spectra of Pluto obtained at different sub-earth longitudes do not show any significant difference in the wavelength range between 2.9 and 3.7μm. No changes in the ratio between pure and diluted methane ice are observed from 2005 to 2008, indicating that Pluto's resurfacing process has slowed down or stopped.

  7. Charon and Pluto: Strikingly Different Worlds

    NASA Image and Video Library

    2015-10-01

    A composite of enhanced color images of Pluto (lower right) and Charon (upper left), taken by NASA's New Horizons spacecraft as it passed through the Pluto system on July 14, 2015. This image highlights the striking differences between Pluto and Charon. The color and brightness of both Pluto and Charon have been processed identically to allow direct comparison of their surface properties, and to highlight the similarity between Charon's polar red terrain and Pluto's equatorial red terrain. Pluto and Charon are shown with approximately correct relative sizes, but their true separation is not to scale. The image combines blue, red and infrared images taken by the spacecraft's Ralph/Multispectral Visual Imaging Camera (MVIC). http://photojournal.jpl.nasa.gov/catalog/PIA19966

  8. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Astrophysics Data System (ADS)

    Chander, G.; Jain, P.

    2014-12-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, and coasts environments, which supports the nation's economy and protects lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems on behalf of NOAA. The JPSS satellites are planned to fly in afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system is a NOAA system developed and deployed by JPSS Ground Project to support Calibration and Validation (Cal/Val), Algorithm Integration, Investigation, and Tuning, and Data Quality Monitoring. It is a mature, deployed system that supports SNPP mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is a robust, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards. "[Pending NASA Goddard Applied Engineering & Technology Directorate (AETD) Approval]"

  9. A Full View of Pluto Stunning Crescent

    NASA Image and Video Library

    2015-10-29

    In September, NASA's New Horizons team released a stunning but incomplete image of Pluto's crescent. Thanks to new processing work by the science team, New Horizons is releasing the entire, breathtaking image of Pluto. This image was made just 15 minutes after New Horizons' closest approach to Pluto on July 14, 2015, as the spacecraft looked back at Pluto toward the sun. The wide-angle perspective of this view shows the deep haze layers of Pluto's atmosphere extending all the way around Pluto, revealing the silhouetted profiles of rugged plateaus on the night (left) side. The shadow of Pluto cast on its atmospheric hazes can also be seen at the uppermost part of the disk. On the sunlit side of Pluto (right), the smooth expanse of the informally named icy plain Sputnik Planum is flanked to the west (above, in this orientation) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. Below (east) of Sputnik, rougher terrain is cut by apparent glaciers. The backlighting highlights more than a dozen high-altitude layers of haze in Pluto's tenuous atmosphere. The horizontal streaks in the sky beyond Pluto are stars, smeared out by the motion of the camera as it tracked Pluto. The image was taken with New Horizons' Multi-spectral Visible Imaging Camera (MVIC) from a distance of 11,000 miles (18,000 kilometers) to Pluto. The resolution is 700 meters (0.4 miles).

  10. Studies of Triton and the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    1991-01-01

    The project is designed to take advantage of the six-year-long series of mutual occultation and eclipse events involving Pluto and its satellite Charon during one of its rare edge-on orbital alignments. High-precision, high-time-resolution photometry of these events can be utilized to extract several important physical parameters. An important derived parameter is the mean density of the system, which constrains the bulk composition of two bodies.

  11. Map of the Pluto System - Children's Edition

    NASA Astrophysics Data System (ADS)

    Hargitai, H. I.

    2016-12-01

    Cartography is a powerful tool in the scientific visualization and communication of spatial data. Cartographic visualization for children requires special methods. Although almost all known solid surface bodies in the Solar System have been mapped in detail during the last more than 5 decades, books and publications that target children, tweens and teens never include any of the cartographic results of these missions. We have developed a series of large size planetary maps with the collaboration of planetary scientists, cartographers and graphic artists. The maps are based on photomosaics and DTMs that were redrawn as artwork. This process necessarily involved generalization, interpretation and transformation into the visual language that can be understood by children. In the first project we selected six planetary bodies (Venus, the Moon, Mars, Io, Europa and Titan) and invited six illustrators of childrens'books. Although the overall structure of the maps look similar, the visual approach was significantly different. An important addition was that the maps contained a narrative: different characters - astronauts or "alien-like lifeforms" - interacted with the surface. The map contents were translated into 11 languages and published online at https://childrensmaps.wordpress.com.We report here on the new map of the series. Following the New Horizons' Pluto flyby we have started working on a map that, unlike the others, depicts a planetary system, not only one body. Since only one hemisphere was imaged in high resolution, this map is showing the encounter hemispheres of Pluto and Charon. Projected high resolution image mosaics with informal nomenclature were provided by the New Horizons Team. The graphic artist is Adrienn Gyöngyösi. Our future plan is to produce a book format Children's Atlas of Solar System bodies that makes planetary cartographic and astrogeologic results more accessible for children, and the next generation of planetary scientists among them.

  12. Pluto: Planet or "Dwarf Planet"?

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  13. The satellite of Pluto. III

    NASA Astrophysics Data System (ADS)

    Harrington, R. S.; Christy, J. W.

    1981-03-01

    Speckle observations of the satellite of Pluto are used to determine the orbital radius and mass of the Pluto-satellite system. Resolved images of the planet and its satellite were obtained by the speckle interferometer on the 3.6-m Mauna Kea reflector. From position angles obtained from elongated images taken over the last 15 years, two speckle measures and the separation obtained with the USNO electrographic cameras, a circular satellite orbit with a radius of 19,700 + or - 300 km is obtained, with a period of 6.3871 + or - 0.0002 days, inclination of 94 + or - 3 deg, node on the equator of 221 + or - 3 deg and true anomaly on January 31, 1982 of 75 + or - 8 deg. Results lead to an inverse mass of the system of 1.34 + or - 0.07 x 10 to the 8th.

  14. Mapping the stability region of the 3:2 Neptune-Pluto resonance

    NASA Technical Reports Server (NTRS)

    Levison, H. F.; Stern, S. A.

    1993-01-01

    Pluto and Charon are most likely the remnants of a large number of objects that existed in the Uranus-Neptune region at early epochs of the solar system. Numerical integrations have shown that, in general, such objects were ejected from the planetary region on timescales of approximately 10(exp 7) years after Neptune and Uranus reached their current masses. It is thought that the Pluto-Charon system survived to current times without being dynamically removed in this way because it is trapped in a set of secular and mean motion resonances with Neptune. The best-known Pluto-Neptune orbit coupling is the 3:2 mean motion resonance discovered almost 30 years ago by C. Cohen and E. Hubbard. These workers showed that the resonance angle, delta is equivalent to 3(lambda(sub P)) - 2(lambda(sub N)) - omega-bar(sub P) where omega-bar(sub P) is the longitude of perihelion of the Pluto-Charon system, and lambda(sub N) and lambda(sub P) are the mean longitude of Neptune and Pluto-Charon respectively, librates about 180 deg with an amplitude, A(sub delta), of 76 deg. A numerical simulation project to map out the stability region of the 3:2 resonance is reported. The results of these simulations are important to understanding whether Pluto's long-term heliocentric stability requires only the 3:2 resonance, or whether it instead requires one or more of the other Pluto-Neptune resonances. Our study also has another important application. By investigating stability timescales as a function of orbital elements, we gain insight into the fraction of orbital phase space which the stable 3:2 resonance occupies. This fraction is directly related to the probability that the Pluto-Charon system (and possibly other small bodies) could have been captured into this resonance.

  15. Pluto-charon mutual events

    SciTech Connect

    Binzel, R.P. )

    1989-11-01

    Since 1985, planetary astronomers have been working to take advantage of a once-per-century apparent alignment between Pluto and its satellite, Charon, which has allowed mutual occultation and transit events to be observed. There events, which will cease in 1990, have permitted the first precise determinations of their individual radii, densities, and surface compositions. In addition, information on their surface albedo distributions can be obtained.

  16. Pluto: The Ice Plot Thickens

    NASA Image and Video Library

    2015-07-15

    The latest spectra from New Horizons Ralph instrument reveal an abundance of methane ice, but with striking differences from place to place across the frozen surface of Pluto. In the north polar cap, methane ice is diluted in a thick, transparent slab of nitrogen ice resulting in strong absorption of infrared light. In one of the visually dark equatorial patches, the methane ice has shallower infrared absorptions indicative of a very different texture. An Earthly example of different textures of a frozen substance: a fluffy bank of clean snow is bright white, but compacted polar ice looks blue. New Horizons' surface composition team has begun the intricate process of analyzing Ralph data to determine the detailed compositions of the distinct regions on Pluto. This is the first detailed image of Pluto from the Linear Etalon Imaging Spectral Array, part of the Ralph instrument on New Horizons. The observations were made at three wavelengths of infrared light, which are invisible to the human eye. In this picture, blue corresponds to light of wavelengths 1.62 to 1.70 micrometers, a channel covering a medium-strong absorption band of methane ice, green (1.97 to 2.05 micrometers) represents a channel where methane ice does not absorb light, and red (2.30 to 2.33 micrometers) is a channel where the light is very heavily absorbed by methane ice. The two areas outlined on Pluto show where Ralph observations obtained the spectral traces at the right. Note that the methane absorptions (notable dips) in the spectrum from the northern region are much deeper than the dips in the spectrum from the dark patch. The Ralph data were obtained by New Horizons on July 12, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19712

  17. Dust Ablation in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Poppe, A. R.; Sternovsky, Z.

    2015-12-01

    Based on measurements by in situ dust detectors onboard the Pioneer and New Horizon spacecraft the total production rate of dust particles born in the Kuiper belt can be estimated to be on the order of 5 x 10 ^3 kg/s in the approximate size range of 1 - 10 micron. These particles slowly migrate inward due to Poynting - Robertson drag and their spatial distribution is shaped by mean motion resonances with the gas giant planets in the outer solar system. The expected mass influx into Pluto's atmosphere is on the order of 50 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that, if the particles are rich in volatiles, they can fully sublimate due to drag heating and deposit their mass in a narrow layer. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles, as well as on our newly developed models of Pluto's atmosphere that can be learned by matching the altitude where haze layers could be formed.

  18. Space Network Ground Segment Sustainment (SGSS) Project: Developing a COTS-Intensive Ground System

    NASA Technical Reports Server (NTRS)

    Saylor, Richard; Esker, Linda; Herman, Frank; Jacobsohn, Jeremy; Saylor, Rick; Hoffman, Constance

    2013-01-01

    Purpose of the Space Network Ground Segment Sustainment (SGSS) is to implement a new modern ground segment that will enable the NASA Space Network (SN) to deliver high quality services to the SN community for the future The key SGSS Goals: (1) Re-engineer the SN ground segment (2) Enable cost efficiencies in the operability and maintainability of the broader SN.

  19. Radio Occultation Measurements of Pluto's Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, David P.; Linscott, Ivan; Young, Leslie; Stern, S. Alan; Bird, Mike; Ennico, Kimberly; Gladstone, Randy; Olkin, Catherine B.; Pätzold, Martin; Strobel, Darrell F.; Summers, Michael; Tyler, G. Leonard; Weaver, Harold A.; Woods, Will; New Horizons Science Team

    2016-10-01

    The reconnaissance of the Pluto System by New Horizons in July 2015 included a radio occultation at Pluto. The observation was performed with signals transmitted simultaneously by four antennas of the NASA Deep Space Network, two at the Goldstone complex in California and two at the Canberra complex in Australia. Each antenna radiated 20 kW without modulation at a wavelength of 4.17 cm. New Horizons received the four signals with its 2.1-m high-gain antenna, where the signals were split into pairs and processed independently by two identical REX radio science instruments. Each REX relied on a different ultra-stable oscillator as its frequency reference. The signals were digitized and filtered, and the data samples were stored on the spacecraft for later transmission to Earth. Six months elapsed before all data had arrived on the ground, and the results reported here are the first to utilize the complete set of observations. Pluto's tenuous atmosphere is a significant challenge for radio occultation sounding, which led us to develop a specialized method of analysis. We began by calibrating each signal to remove effects not associated with Pluto's atmosphere, including the diffraction pattern from Pluto's surface. We reduced the noise and increased our sensitivity to the atmosphere by averaging the results from the four signals, while using other combinations of the signals to characterize the noise. We then retrieved profiles of number density, pressure, and temperature from the averaged phase profiles at both occultation entry and exit. Finally, we used a combination of analytical methods and Monte Carlo simulations to determine the accuracy of the measurements. The REX profiles provide the first direct measure of the surface pressure and temperature structure in Pluto's lower atmosphere. There are significant differences between the structure at entry (193.5°E, 17.0°S, sunset) and exit (15.7°E, 15.1°N, sunrise), which arise from spatial variations in surface

  20. Pluto's atmosphere from stellar occultations in 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Dias-Oliveira, Alex; Sicardy, Bruno; Lellouch, Emmanuel; Vieira-Martins, Roberto; Assafin, Marcelo; Ignácio Bueno Camargo, Júlio; Braga-Ribas, Felipe; Gomes-Júnior, Altair; Bendetti-Rossi, Gustavo; Colas, François; Decock, Alice; Doressoundiram, Alain; Dumas, Christophe; Emílio, Marcelo; Fabrega Polleri, Joaquin; Gil-Hutton, Ricardo; Gillon, Michael; Girard, Julien; Hau, George; Ivanov, Valentin; Jehin, Emmanuel; Lecacheux, Jean; Leiva, Rodrigo; Lopez-Sisterna, Cecília; Mancini, Luigi; Manfroid, Jean; Maury, Alain; Meza, Erick; Morales, Nicolas; Nagy, Leslie; Opitom, Cyrielle; Ortiz, José Luiz; Pollock, Joe; Roques, Françoise; Snodgrass, Colin; François Soulier, Jean; Thirouin, Audrey; Vanzi, Leonardo; Widemann, Thomas; Reichart, Daniel; LaCluyze, Aaron; Haislip, Joshua B.; Ivarsen, Kevin; Dominik, Martin; Jørgensen, Uffe; Skottfelt, Jesper

    2015-11-01

    We present results from two Pluto stellar occultations observed on 18 July 2012 and 04 May 2013, and monitored respectively from five and six sites in South America. Both campaigns involved large telescopes (including the 8.2-m VLT at ESO/Paranal). The high SNR ratios and multi-chord coverage provide amoung the best Pluto atmospheric profiles ever obtained from the ground.We show that a spherically symmetric, clear (no-haze) and pure N2 atmosphere with a unique temperature profile satisfactorily fits the twelve lightcurves provided by the two events. We find, however, a small but significant increase of pressure of 6% (6-sigma level) between the two dates, with values of 2.16 ± 0.2 and 2.30 ± 0.01 μbar at the reference radius 1275 km, respectively.We provide atmospheric constrains between 1190 km and 1450 km from Pluto's center, and we determine the temperature profile with accuracy of a few km in vertical scale. Our model shows a stratosphere with strong positive gradient between 1190 km (at 36 K, 11 μbar) and r =1215 km (6.0 μbar), where a temperature maximum of 110 K is reached. Above it is a mesosphere with negative thermal gradient of -0.2 K/km up to 1,390 km (0.25 μbar), at which point, the mesosphere connects itself to a more isothermal upper branch at 81 K. This profile provides (assuming no troposphere) a Pluto surface radius of 1190 ± 5 km, consistent with preliminary values obtained by New Horizons. Currently measured CO abundances are too low to explain the negative mesospheric thermal gradient. We explore the possibility of an HCN (recently detected by ALMA) cooling. This model, however, requires largely supersaturated HCN. Zonal winds and vertical compositional variations of the atmosphere are also unable to explain the observed mesospheric trend.These events are the last useful ground-based occultations recorded before the 29 June 2015 occultation observed from Australia and New Zealand, and before the NASA's New Horizons flyby of July 2015

  1. Advanced Ground Systems Maintenance Functional Fault Models For Fault Isolation Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2014-01-01

    This project implements functional fault models (FFM) to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.

  2. The puzzling detection of x-rays from Pluto by Chandra

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.; McNutt, R. L.; Wolk, S. J.; Bagenal, F.; Stern, S. A.; Gladstone, G. R.; Cravens, T. E.; Hill, M. E.; Kollmann, P.; Weaver, H. A.; Strobel, D. F.; Elliott, H. A.; McComas, D. J.; Binzel, R. P.; Snios, B. T.; Bhardwaj, A.; Chutjian, A.; Young, L. A.; Olkin, C. B.; Ennico, K. A.

    2017-05-01

    from hydrogenic and heliogenic SW carbon, nitrogen, and oxygen (CNO) ions can produce the energy signature seen, and the 6 × 1025 neutral gas escape rate from Pluto deduced from New Horizons' data (Gladstone et al. 2016) can support the ∼3.0 +3.0/-1.5 × 1024 X-ray photons/s emission rate required by our observations. Using the solar wind proton density and speed measured by the Solar Wind Around Pluto (SWAP) instrument in the vicinity of Pluto at the time of the photon emissions, we find a factor of 40 +40/-20 lower SW minor ions flowing planarly into an 11 × 11 pixel2, 90% flux box centered on Pluto than are needed to support the observed emission rate. Hence, the SW must be somehow significantly focused and enhanced within 60,000 km (projected) of Pluto for this mechanism to work.

  3. An Overview of the JPSS Ground Project Algorithm Integration Process

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.; Williams, R.; Dorman, T. J.; Williamson, R. C.; Shaw, F. J.; Thomas, W. M.; Hung, L.; Griffin, A.; Meade, P.; Steadley, R. S.; Cember, R. P.

    2015-12-01

    The smooth transition, implementation and operationalization of scientific software's from the National Oceanic and Atmospheric Administration (NOAA) development teams to the Join Polar Satellite System (JPSS) Ground Segment requires a variety of experiences and expertise. This task has been accomplished by a dedicated group of scientist and engineers working in close collaboration with the NOAA Satellite and Information Services (NESDIS) Center for Satellite Applications and Research (STAR) science teams for the JPSS/Suomi-NPOES Preparatory Project (S-NPP) Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) instruments. The presentation purpose is to describe the JPSS project process for algorithm implementation from the very early delivering stages by the science teams to the full operationalization into the Interface Processing Segment (IDPS), the processing system that provides Environmental Data Records (EDR's) to NOAA. Special focus is given to the NASA Data Products Engineering and Services (DPES) Algorithm Integration Team (AIT) functional and regression test activities. In the functional testing phase, the AIT uses one or a few specific chunks of data (granules) selected by the NOAA STAR Calibration and Validation (cal/val) Teams to demonstrate that a small change in the code performs properly and does not disrupt the rest of the algorithm chain. In the regression testing phase, the modified code is placed into to the Government Resources for Algorithm Verification, Integration, Test and Evaluation (GRAVITE) Algorithm Development Area (ADA), a simulated and smaller version of the operational IDPS. Baseline files are swapped out, not edited and the whole code package runs in one full orbit of Science Data Records (SDR's) using Calibration Look Up Tables (Cal LUT's) for the time of the orbit. The purpose of the regression test is to

  4. ScienceCast 26: Visit to Pluto

    NASA Image and Video Library

    2011-09-02

    Pluto is a world of mystery waiting to be visited for the 1st time. NASA's New Horizons probe is racing across the solar system for a close encounter that could alter what researchers "know" about Pluto and other small worlds.

  5. Hybrid Simulations of Pluto's Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Feyerabend, M.; Simon, S.; Motschmann, U.; Liuzzo, L.

    2016-12-01

    We study the interaction between Pluto and the solar wind at the time of the New Horizons (NH) flyby by applying a hybrid (kinetic ions, fluid electrons) simulation model. The use of a hybrid model is necessary since the gyroradii of the involved ion species are more than an order of magnitude larger than the obstacle to the solar wind and thus, Pluto's interaction region displays considerable asymmetries. We investigate the three-dimensional structure and extension of the various plasma signatures seen along the NH trajectory. Especially, we will constrain possible asymmetries in the shape of Pluto's bow shock, plasma tail and Plutopause (i.e., the boundary between the solar wind and the population of plutogenic ions) which may arise from the large ion gyroradii. Starting from the upstream solar wind parameters measured by NH, we investigate the dependency of these plasma signatures on the density of Pluto's ionosphere and on the solar wind ram pressure. We also include Pluto's largest moon Charon into the simulation model and study the simultaneous interaction between both bodies and the solar wind. Data from NH suggest that Charon mainly acts as a plasma absorber without an appreciable atmosphere. For various relative positions of Pluto and Charon, we investigate the deformation of Charon's wake when exposed to the inhomogeneous plasma flow in the Pluto interaction region, as well as a possible feedback of Charon on the structure of Pluto's induced magnetosphere.

  6. Pluto at High Noon Artist Concept

    NASA Image and Video Library

    2015-06-08

    Just how dim is the sunlight on Pluto, some three billion miles away? This artist concept of the frosty surface of Pluto with Charon and our sun as backdrops illustrates that while sunlight is much weaker than it is here on Earth, it isnt as dark as you might expect. http://photojournal.jpl.nasa.gov/catalog/PIA19682

  7. Secrets Revealed from Pluto Twilight Zone

    NASA Image and Video Library

    2016-06-02

    NASA's New Horizons spacecraft took this stunning image of Pluto only a few minutes after closest approach on July 14, 2015. The image was obtained at a high phase angle -- that is, with the sun on the other side of Pluto, as viewed by New Horizons. Seen here, sunlight filters through and illuminates Pluto's complex atmospheric haze layers. The southern portions of the nitrogen ice plains informally named Sputnik Planum, as well as mountains of the informally named Norgay Montes, can also be seen across Pluto's crescent at the top of the image. Looking back at Pluto with images like this gives New Horizons scientists information about Pluto's hazes and surface properties that they can't get from images taken on approach. The image was obtained by New Horizons' Ralph/Multispectral Visual Imaging Camera (MVIC) approximately 13,400 miles (21,550 kilometers) from Pluto, about 19 minutes after New Horizons' closest approach. The image has a resolution of 1,400 feet (430 meters) per pixel. Pluto's diameter is 1,475 miles (2,374 kilometers). The inset at top right in the annotated version shows a detail of Pluto's crescent, including an intriguing bright wisp (near the center) measuring tens of miles across that may be a discreet, low-lying cloud in Pluto's atmosphere; if so, it would be the only one yet identified in New Horizons imagery. This cloud -- if that's what it is -- is visible for the same reason the haze layers are so bright: illumination from the sunlight grazing Pluto's surface at a low angle. Atmospheric models suggest that methane clouds can occasionally form in Pluto's atmosphere. The scene in this inset is 140 miles (230 kilometers) across. The inset at bottom right shows more detail on the night side of Pluto. This terrain can be seen because it is illuminated from behind by hazes that silhouette the of the annotated version limb. The topography here appears quite rugged, and broad valleys and sharp peaks with relief totaling 3 miles (5 kilometers) are

  8. Photometry of Pluto 2008–2014: Evidence of Ongoing Seasonal Volatile Transport and Activity

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Hicks, M. D.; Dalba, P. A.; Chu, Devin; O’Neill, Ariel; Hillier, J. K.; Masiero, J.; Banholzer, Sophianna; Rhoades, H.

    2015-05-01

    The New Horizons spacecraft will encounter Pluto in 2015 July. As this fast flyby will yield a picture of Pluto frozen in time, ground-based observations are key to understanding this dwarf ice planet, especially with regard to the seasonal transport of surface volatiles. This paper reports on changes in Pluto's rotational light curve as evidence for this transport. Historical observations are consistent with a stable frost pattern, but since 2002, changes began to appear in both light curves and Hubble Space Telescope maps. Our BVR observations at Table Mountain Observatory from 2008 to 2014 show evidence for sustained and continued albedo and color changes on Pluto. The B and V albedos are stable, but Pluto is becoming redder in color, particularly on its low-albedo side. This view is consistent with the transport of a bright volatile (nitrogen) with the uncovering of a substrate of red material such as photolyzed methane. As Buie et al. reported a B – V of 0.96 in 2002–2003, and our B – V was higher in 2008–2012, Pluto may have experienced a transient reddening in the 1999–2012 period. We also discovered an opposition supersurge in all three colors at very small solar phase angles (∼0.°10). Explosive geysers have been observed on Triton and Mars, the two other celestial bodies with receding polar caps. Because the physical conditions existing on Pluto are similar to those on Triton, we predict that plume deposits and possibly active plumes will be found on its surface.

  9. Geophysical survey of 105-DR Pluto Crib, 116-DR-4, 100-D Area

    SciTech Connect

    Bergstrom, K.A.

    1993-10-01

    The objective of this Geophysical Survey was to verify the location of the 105-DR Pluto Crib, 116-DR-4. A surface monument currently marks its location. The crib is 10 feet by 10 feet and 15 feet deep. Ground-Penetrating Radar was the geophysical method selected to conduct the investigation.

  10. First Official Pluto Feature Names

    NASA Image and Video Library

    2017-09-06

    The International Astronomical Union (IAU), the internationally recognized authority for naming celestial bodies and their surface features, approved names of 14 surface features on Pluto in August 2017. The names were proposed by NASA's New Horizons team following the first reconnaissance of Pluto and its moons by the New Horizons spacecraft in 2015. The names, listed below, pay homage to the underworld mythology, pioneering space missions, historic pioneers who crossed new horizons in exploration, and scientists and engineers associated with Pluto and the Kuiper Belt. Tombaugh Regio honors Clyde Tombaugh (1906-1997), the U.S. astronomer who discovered Pluto in 1930 from Lowell Observatory in Arizona. Burney crater honors Venetia Burney (1918-2009), who as an 11-year-old schoolgirl suggested the name "Pluto" for Clyde Tombaugh's newly discovered planet. Later in life she taught mathematics and economics. Sputnik Planitia is a large plain named for Sputnik 1, the first space satellite, launched by the Soviet Union in 1957. Tenzing Montes and Hillary Montes are mountain ranges honoring Tenzing Norgay (1914-1986) and Sir Edmund Hillary (1919-2008), the Indian/Nepali Sherpa and New Zealand mountaineer were the first to reach the summit of Mount Everest and return safely. Al-Idrisi Montes honors Ash-Sharif al-Idrisi (1100-1165/66), a noted Arab mapmaker and geographer whose landmark work of medieval geography is sometimes translated as "The Pleasure of Him Who Longs to Cross the Horizons.” Djanggawul Fossae defines a network of long, narrow depressions named for the Djanggawuls, three ancestral beings in indigenous Australian mythology who traveled between the island of the dead and Australia, creating the landscape and filling it with vegetation. Sleipnir Fossa is named for the powerful, eight-legged horse of Norse mythology that carried the god Odin into the underworld. Virgil Fossae honors Virgil, one of the greatest Roman poets and Dante's fictional guide

  11. Update on Pluto's Tiniest Moons

    NASA Astrophysics Data System (ADS)

    Showalter, Mark; Weaver, Harold; Buie, Marc; Merline, Douglas; Mutchler, Max; Soummer, Remi; Steffl, Andrew; Stern, S. Alan; Throop, Henry; Young, Leslie

    2013-04-01

    We report on the discovery and subsequent analysis of "P5", Pluto¹s fifth known moon (officially designated S/2012 (134340) 1), and also provide an update on the latest results for "P4" (S/2012 (134340) 1). P5 was discovered in Hubble Space Telescope (HST) images from June and July 2012, and has since been recovered in HST images from 2011. P4, discovered in 2011, was imaged extensively by HST in 2012, and has also been recovered from archival images as far back as 2005. Preliminary orbital elements for P5 are: semimajor axis a = 42579 km; mean motion n = 17.8560 degrees/day; eccentricity e = 0.0048; inclination i = 0.88 degrees. For P4, these values are : a = 57711 km; n = 11.1910 degrees/day; e = 0.0029; i = 0.34 degrees. These values place the moons near, but not in, the 1:3 and 1:5 mean motion resonances with Charon, just as Nix and Hydra fall near the 1:4 and 1:6 resonances. While these associations are too close to have arisen by chance, the role of the near-resonances in the orbital history of the Pluto system is unknown. Photometry indicates that P5 is half as bright as P4 and ~ 5% is bright as Nix. This implies a diameter ~ 10 km if P5's albedo is 0.35, comparable to that of Charon. Searches for additional moons have been negative so far, suggesting that Pluto has no additional moons more than half as bright as P5 orbiting exterior to Charon. However, scattered light in the HST images prevents us from setting such a strict upper limit for any unseen moons interior to Charon's orbit.

  12. Pluto Express power system architecture

    SciTech Connect

    Carr, G.A.

    1996-12-31

    The Pluto Express power system must answer the challenge of the next generation spacecraft by reducing its power, mass and volume envelopes. Technology developed by the New Millennium Program will enable the power system to meet the stringent requirements for the Pluto Express mission without exceeding the spacecraft mass and volume budgets. Traditionally, there has been an increasing trend of the percentage of mass of the power system electronics with respect to the total spacecraft mass. With all of the previous technology focus on high density digital packaging, the power system electronics have not been keeping pace forcing the spacecraft to absorb a relative increase in the power system mass. The increasing trend can be reversed by using mixed signal ASICs and high density multi-chip-module (MCM) packaging techniques validated by the New Millennium Program. As the size of the spacecraft shrinks, the power system electronics must become tightly integrated with the spacecraft loads. The power system architecture needs the flexibility to accommodate the specific load requirements without sacrificing the capability for growth or reduction as the spacecraft requirements change throughout the development. Modularity is a key requirement that will reduce the overall power system cost. Although the focus has been on shrinking the power system volume and mass, the efficiency and functionality cannot be ignored. Increased efficiency and functionality will only enhance the power systems capability to reduce spacecraft power requirements. The combination of the New Millennium packaging technologies with the Pluto Express power system architecture will produce a product with the capability to meet a wide range of mission profiles while reducing system development costs.

  13. Spectroscopy of Pluto's Small Satellites

    NASA Astrophysics Data System (ADS)

    Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Ennico, Kimberly; Grundy, William M.; Olkin, Catherine B.; Philippe, Sylvain; Protopapa, Silvia; Schmitt, Bernard; Stern, S. Alan; Weaver, Harold A.; Young, Leslie; New Horizons Surface Composition Theme Team

    2016-10-01

    On July 14, 2015, New Horizons made its closest approach to the Pluto system. Among its many tasks were spectroscopic observations of Nix, Hydra and Kerberos using LEISA (Linear Etalon Imaging Spectral Array), the near infrared imaging spectrograph, and component of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Sci. Rev. 140, 129). Shapes and composition inferred from images were discussed in Weaver et al. (2016, Science, 351). Styx was not observed with LEISA because it was too distant and faint.Observations of Nix were made at 60,000 and 162,000 km from New Horizons. At best, Nix filled ˜130 LEISA pixels. At the continuum level, the disk integrated spectrum has an I/F˜0.4 and a blue slope. Evident in the spectrum are deep bands at 1.5, 1.65 and 2.0 μm, indicating crystalline H2O-ice. At band minimum, the I/F˜0.1 and 0.05 for the 1.5 and 2.0 μm bands, respectively. These nearly saturated bands suggest that H2O-ice is either large grained or very pure. We also see an absorption band at 2.21 μm that well matches NH3-hydrate.Observations of Hydra were made at 240,000 and 370,000 km from New Horizons. Hydra was barely resolved and covered ˜3-5 LEISA pixels. Hydra's spectrum has a continuum I/F˜0.35, a blue slope weaker than Nix's, crystalline H2O-ice and the 1.5 and 2.0 μm bands have minimum I/F˜0.12 and 0.07, respectively. Since the bands on Hydra are slightly weaker, the H2O-ice grains are either smaller or contaminated by a greater fraction of dark material. Hydra's spectrum also shows the NH3-hydrate absorption at 2.21 μm, but like the H2O-ice bands, it too appears weaker on Hydra than Nix.Finally, New Horizons made a LEISA observation of Kerberos at 394,000 km distance. At a scale of 24 km/pix, Kerberos fills ˜40% of a LEISA pixel. The signal-to-noise of the data is low. Nonetheless, we attempt to extract the spectrum.At DPS, we will present spectra of all three objects, examine the disk resolved spectra of Nix

  14. Orbital and Rotational Dynamics of Pluto's Small Moons

    NASA Astrophysics Data System (ADS)

    Showalter, Mark R.; Spencer, John R.; Porter, Simon B.; Hamilton, Douglas P.; Binzel, Richard P.; Stern, S. Alan; Weaver, Harold A.; Olkin, Cathy B.; Young, Leslie A.; Ennico, Kimberly

    2015-11-01

    Four small moons, Styx, Nix, Kerberos and Hydra, orbit the central binary planet comprising Pluto and Charon. Showalter and Hamilton (Nature 522, 45-49, 2015) analyzed Hubble Space Telescope (HST) data from 2010-2012 to explore some of the dynamical consequences of orbiting a binary planet. They noted evidence for a chaotic rotation of Nix and Hydra, and identified a possible three-body resonance between Styx, Nix and Hydra. We revisit the dynamics of the outer moons based on the latest data from the New Horizons flyby. As the spacecraft approached Pluto, the LORRI camera regularly imaged the moons over a period of ~100 days. This data set will make it possible to derive light curves and rotation rates unambiguously, something that has not been possible from the sparsely sampled HST data. It also extends the time baseline of the orbit determinations by several years, providing a more precise test of the proposed orbital resonances. We will discuss the latest measurements and their dynamical implications for the evolution of the Pluto system. This work was supported by NASA's New Horizons project.

  15. Pluto Topography and Composition Map

    NASA Image and Video Library

    2017-09-28

    These maps are from New Horizons' data on the topography (top) and composition (bottom) of Pluto's surface. In the high-resolution topographical map, the highlighted red region is high in elevation. The map below, showing the composition, indicates the same section also contains methane, color-coded in orange. One can see the orange features spread into the fuzzier, lower-resolution data that covers the rest of the globe, meaning those areas, too, are high in methane, and therefore likely to be high in elevation. https://photojournal.jpl.nasa.gov/catalog/PIA22036

  16. US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan

    SciTech Connect

    Not Available

    1993-12-21

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

  17. Resolved photometry and a solar phase curve for Pluto and Charon from New Horizons LORRI.

    NASA Astrophysics Data System (ADS)

    Zangari, Amanda M.; Stern, S. A.; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly; Olkin, Catherine B.; Moore, Jeffrey M.; Binzel, Richard P.; Buie, Marc W.; Buratti, Bonnie J.; Cheng, Andrew F.; Linscott, Ivan R.; McKinnon, William B.; Reitsema, Harold J.; Schenk, Paul; Showalter, Mark R.; Spencer, John R.; Tyler, G. L.; Bray, Veronica J.; Momary, Thomas W.; Nimmo, Francis; Singer, Kelsi N.

    2014-11-01

    During its eighth annual checkout, the New Horizons spacecraft's LOng Range Reconnaissance Imager (LORRI, Cheng, A. F. et al. (2008) Space Sci Rev, 140, 189-215, DOI: 10.1007/s11214-007-9271-6) snapped 15 series of five optical navigation images of Pluto and Charon. These images, taken over the course of a single 6.38-day revolution/rotation of the system between 2014-07-19 and 2014-07-26 represent a continuation and expansion of last year's campaign to provide the first Pluto and Charon solar phase curves beyond the ground-based limit of 2 degrees (Zangari et al 2013, DPS 45, # 303.08). Since July 2013, Pluto and Charon have become brighter and more-clearly separated as the Pluto-spacecraft distance has halved from 5.9 AU to 2.8 AU, and the solar phase angle has increased from 10.9 to 13.0 degrees. We will present individual light curves and solar phase curves as well as comparisons to previous measurements. Follow-up observations will be continued in January 2015.This work has been funded by NASA's New Horizons mission to Pluto.

  18. Seasonal Volatile Transport on Pluto: New Results from the 2013 Observing Season and Preparation for the New Horizons Encounter

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie; Dalba, Paul; Hicks, Michael; Chu, Devin; O'Neill, Ariel

    2014-05-01

    The New Horizons spacecraft will encounter Pluto in July 2015 for a fast flyby and close investigation of the dwarf planet and its five known moons. With a time-constrained mission it is essential to acquire ground-based observations for context and for a longer temporal excursion. An observing program at JPL's Table Mountain Observatory (TMO) has been in operation during the past decade and a half, with a goal of seeking temporal changes on Pluto's surface. This program, which has been largely implemented by undergraduate students, seeks changes in the color and albedo of Pluto. Seasonal transport of volatiles is predicted to occur on Pluto, and this transport should be detectable through changes in its rotational light curve as well as in color and albedo, once all variations due to viewing geometry have been accounted for. Occultation studies have shown that there has been a steady increase in Pluto's atmospheric pressure over the past two decades, so concomitant sublimation and recondensation of frost has likely occurred, as predicted by volatile transport models. Rotational light curves of Pluto through time have been created for static frost models based on images from the Hubble Space Telescope. These models, which account for changes in viewing geometry, have been compared with observed light curves obtained between 1950 and 2013. No evidence for transport was evident prior to 2000. However, starting in the early part of the millennium, evidence from new observations by HST (Buie et al., 2010, Astron. J. 139, 1128) and rotational light curves obtained in 2007-2008 (Hicks et al. 2008, B.A.A.S. 40, 460) suggest changes in the frost pattern on Pluto's surface. An extensive and dedicated observing program at TMO was conducted over a period of five months in 2013 during Pluto's opposition. New observations of Pluto's light curve from the 2013 show continued volatile transport, but the most striking change is in Pluto's color. As the New Horizons encounter

  19. Pluto and Charon - The dance goes on

    NASA Astrophysics Data System (ADS)

    Beatty, J. K.

    1987-09-01

    Various methods for estimating the diameters of Pluto and Charon are discussed. The application of speckle interferometry, the timing of occultations, and the monitoring of Charon and Pluto rotations to calculate the diameter of the planet and its satellite are described. Walker (1980) estimated Charon's diameter as greater than 1200 km using the occultated star method; the speckle interferometry estimates of Baier and Weigelt (1983) are between 2710-3460 km for Pluto and between 1050-1520 km for Charon; and using the mutual events method Dunbar and Tedesco (1986) estimated the diameter of Pluto as 2300 + or - 100 km and of Charon as 1500 + or - 100 km. The use of IRAS data combined with visual brightness to estimate planet and satellite diameters is examined; Tedesco et al. (1987) estimated Pluto's diameter as 2200 + or - 150 km and Charon's as 1300 + or - 150 km, and Aumann and Walker (1987) obtained estimates of 2360 km for Pluto and 1534 km for Charon. The compositions of Pluto's and Charon's atmospheres are analyzed.

  20. Pluto and Charon - the dance goes on

    SciTech Connect

    Beatty, J.K.

    1987-09-01

    Various methods for estimating the diameters of Pluto and Charon are discussed. The application of speckle interferometry, the timing of occultations, and the monitoring of Charon and Pluto rotations to calculate the diameter of the planet and its satellite are described. Walker (1980) estimated Charon's diameter as greater than 1200 km using the occultated star method; the speckle interferometry estimates of Baier and Weigelt (1983) are between 2710-3460 km for Pluto and between 1050-1520 km for Charon; and using the mutual events method Dunbar and Tedesco (1986) estimated the diameter of Pluto as 2300 + or - 100 km and of Charon as 1500 + or - 100 km. The use of IRAS data combined with visual brightness to estimate planet and satellite diameters is examined; Tedesco et al. (1987) estimated Pluto's diameter as 2200 + or - 150 km and Charon's as 1300 + or - 150 km, and Aumann and Walker (1987) obtained estimates of 2360 km for Pluto and 1534 km for Charon. The compositions of Pluto's and Charon's atmospheres are analyzed.

  1. Volatile Transport in Pluto's Super Seasons

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard; Young, Leslie; Stern, S. Alan; Olkin, Catherine B.; Ennico, Kimberly; Moore, Jeffrey M.; Weaver, Harold A.; NASA New Horizons Composition Team, The NASA New Horizons GGI Team

    2016-10-01

    The data returned from NASA's New Horizons' reconnaissance of the Pluto system shows striking albedo variations from polar to equatorial latitudes as well as sharp boundaries for longitudinal variations. Pluto has a high obliquity (currently around 119 degrees) which varies by more than 23 degrees (between roughly 103 and 127 degrees) over a period of less than 3 million years. These obliquity properties, combined with Pluto's orbital regression in longitude of perihelion (360 degrees over 3.7 million years), create epochs of "Super Seasons" on Pluto. A "Super Season" occurs, for example, when Pluto happens to be pole-on towards the Sun at the same time as perihelion. In such a case, one pole experiences a short, intense summer (relative to its long-term average) followed by a longer than average period of winter darkness. By complement, the other pole experiences a much longer, but less intense summer and short winter season. We explore the relationship between albedo variations and volatile transport for the current epoch as well as historical epochs during which Pluto experienced these "Super Seasons". Our investigation suggests Pluto's orbit creates the potential for runaway albedo variations, particularly in the equatorial region, which would create and support stark longitudinal contrasts like the ones we see between the informally named Tombaugh and Cthulhu Regios.This work was supported by the NASA New Horizons mission.

  2. High Resolution Mapping of Pluto's Albedo Distribution

    NASA Astrophysics Data System (ADS)

    Stern, S.

    1994-01-01

    This proposal requests time to map Pluto's albedo distribution, using the highest possible resolution of the CYCLE 4 HST. Maps will be made in several key UV and visible bandpasses. Our scientific objectives are to (a) study the distribution of light and dark areas, (b) make the first disk-resolved estimates of Pluto's limb darkening, and (c) compositional discriminate pure from contaminated frost regions. These objectives have not been previously achievable, but are essential to understanding the surface morphology, volatile transport, and the root cause of Pluto's secular lightcurve variations. It may also be possible to detect evidence of the reported limb haze layer(s) in Pluto's atmosphere. These maps will also provide the first direct check on Pluto maps made through indirect techniques. Owing to Pluto's elliptic orbit, we expect the distribution of albedo to change (on a years-to-decade timescale) as Pluto draws away from perihelion and volatile transport proceeds. The proposed observations will document the albedo state at three rotational epochs near the time of perihelion. These maps will be obtained in two colors, by the FOC. No other astronomical instrument has sufficient resolution to accomplish these important scientific objectives.

  3. Pluto-Charon solar wind interaction dynamics

    NASA Astrophysics Data System (ADS)

    Hale, J. P. M.; Paty, C. S.

    2017-05-01

    This work studies Charon's effects on the Pluto-solar wind interaction using a multifluid MHD model which simulates the interactions of Pluto and Charon with the solar wind as well as with each other. Specifically, it investigates the ionospheric dynamics of a two body system in which either one or both bodies possess an ionosphere. Configurations in which Charon is directly upstream and directly downstream of Pluto are considered. Depending on ionospheric and solar wind conditions, Charon could periodically pass into the solar wind flow upstream of Pluto. The results of this study demonstrate that in these circumstances Charon modifies the upstream flow, both in the case in which Charon possesses an ionosphere, and in the case in which Charon is without an ionosphere. This modification amounts to a change in the gross structure of the interaction region when Charon possesses an ionosphere but is more localized when Charon lacks an ionosphere. Furthermore, evidence is shown that supports Charon acting to partially shield Pluto from the solar wind when it is upstream of Pluto, resulting in a decrease in ionospheric loss by Pluto.

  4. Masses and densities of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1993-01-01

    We have analyzed HST Wide Field Camera CCD images of Pluto, Charon, and a background star to observe Pluto's barycentric motion and to determine the individual masses and bulk densities of Pluto and Charon. The most fundamental new result was an accurate solution for a previously undetermined parameter, the Charon/Pluto mass ratio q; the new solution is q = 0.0837 +/- 0.0147. Significant accuracy improvements by almost a factor of two were obtained for Charon's orbital semimajor axis, a = 19,405 +/- 86 km and the Pluto system mass of 1.401 +/- 0.019 x 10 exp 8 inverse solar masses. The Pluto and Charon masses were (13.10 +/- 0.24) x 10 exp 24 g and (1.10 +/- 0.18) x 10 exp 24 g, respectively. Computed densities depend strongly on the assumed radius values. The density of Pluto is 2.13 +/- 0.04 g/cu cm and that of Charon is 1.30 +/- 0.23 g/cu cm.

  5. Mirages and the nature of Pluto's atmosphere

    NASA Technical Reports Server (NTRS)

    Stansberry, J. A.; Lunine, J. I.; Hubbard, W. B.; Yelle, R. V.; Hunten, D. M.

    1994-01-01

    We present model occultation lightcurves demonstrating that a strong thermal inversion layer at the base of Pluto's stratosphere can reproduce the minimum flux measured by the Kuiper Airborne Observatory (KAO) during the 1988 occultation of a star by Pluto. The inversion layer also forms the occultation equivalent of a mirage at a radius of 1198 km, which is capable of hiding tropospheres of significant depth. Pluto's surface lies below 1198 km, its radius depending on the depth of the troposphere. We begin by computing plausible temperature structures for Pluto's lower atmosphere, constrained by a calculation of the temperature of the atmosphere near the surface. We then trace rays from the occulted star through the model atmosphere, computing the resultant bending of the ray. Model light curves are obtained by summing the contribution of individual rays within the shadow of Pluto on Earth. We find that we can reproduce the KAO lightcurve using model atmospheres with a temperature inversion and no haze. We have explored models with tropospheres as deep as 40 km (implying a Pluto radius of 1158 km) that reproduce the suite of occultation data. Deeper tropospheres can be fitted to the data, but the mutual event radius of 1150 km probably provides a lower bound. If Pluto has a shallow or nonexistent troposphere, its density is consistent with formation in the solar nebula with modest water loss due to impact ejection. If the troposhere is relatively deep, implying a smaller radius and larger density, significant amounts of water loss are required.

  6. Mirages and the nature of Pluto's atmosphere

    NASA Technical Reports Server (NTRS)

    Stansberry, J. A.; Lunine, J. I.; Hubbard, W. B.; Yelle, R. V.; Hunten, D. M.

    1994-01-01

    We present model occultation lightcurves demonstrating that a strong thermal inversion layer at the base of Pluto's stratosphere can reproduce the minimum flux measured by the Kuiper Airborne Observatory (KAO) during the 1988 occultation of a star by Pluto. The inversion layer also forms the occultation equivalent of a mirage at a radius of 1198 km, which is capable of hiding tropospheres of significant depth. Pluto's surface lies below 1198 km, its radius depending on the depth of the troposphere. We begin by computing plausible temperature structures for Pluto's lower atmosphere, constrained by a calculation of the temperature of the atmosphere near the surface. We then trace rays from the occulted star through the model atmosphere, computing the resultant bending of the ray. Model light curves are obtained by summing the contribution of individual rays within the shadow of Pluto on Earth. We find that we can reproduce the KAO lightcurve using model atmospheres with a temperature inversion and no haze. We have explored models with tropospheres as deep as 40 km (implying a Pluto radius of 1158 km) that reproduce the suite of occultation data. Deeper tropospheres can be fitted to the data, but the mutual event radius of 1150 km probably provides a lower bound. If Pluto has a shallow or nonexistent troposphere, its density is consistent with formation in the solar nebula with modest water loss due to impact ejection. If the troposhere is relatively deep, implying a smaller radius and larger density, significant amounts of water loss are required.

  7. Masses and densities of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1993-01-01

    We have analyzed HST Wide Field Camera CCD images of Pluto, Charon, and a background star to observe Pluto's barycentric motion and to determine the individual masses and bulk densities of Pluto and Charon. The most fundamental new result was an accurate solution for a previously undetermined parameter, the Charon/Pluto mass ratio q; the new solution is q = 0.0837 +/- 0.0147. Significant accuracy improvements by almost a factor of two were obtained for Charon's orbital semimajor axis, a = 19,405 +/- 86 km and the Pluto system mass of 1.401 +/- 0.019 x 10 exp 8 inverse solar masses. The Pluto and Charon masses were (13.10 +/- 0.24) x 10 exp 24 g and (1.10 +/- 0.18) x 10 exp 24 g, respectively. Computed densities depend strongly on the assumed radius values. The density of Pluto is 2.13 +/- 0.04 g/cu cm and that of Charon is 1.30 +/- 0.23 g/cu cm.

  8. Masses and densities of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Null, G. W.; Owen, W. M.; Synnott, S. P.

    1993-06-01

    We have analyzed HST Wide Field Camera CCD images of Pluto, Charon, and a background star to observe Pluto's barycentric motion and to determine the individual masses and bulk densities of Pluto and Charon. The most fundamental new result was an accurate solution for a previously undetermined parameter, the Charon/Pluto mass ratio q; the new solution is q = 0.0837 +/- 0.0147. Significant accuracy improvements by almost a factor of two were obtained for Charon's orbital semimajor axis, a = 19,405 +/- 86 km and the Pluto system mass of 1.401 +/- 0.019 x 10 exp 8 inverse solar masses. The Pluto and Charon masses were (13.10 +/- 0.24) x 10 exp 24 g and (1.10 +/- 0.18) x 10 exp 24 g, respectively. Computed densities depend strongly on the assumed radius values. The density of Pluto is 2.13 +/- 0.04 g/cu cm and that of Charon is 1.30 +/- 0.23 g/cu cm.

  9. Hubble Finds Two Chaotically Tumbling Pluto Moons

    NASA Image and Video Library

    2017-09-28

    This computer animation illustrates how Pluto's moon Nix changes its spin unpredictably as it orbits the "double planet" Pluto-Charon. The view is from the surface of Pluto as the moon circles the Pluto-Charon system. This is a time-lapse view of the moon, compressing four years of motion into two minutes, with one complete orbit of Pluto-Charon every two seconds. (The apparent star movement rate is greatly slowed down for illustration purposes.) The animation is based on dynamical models of spinning bodies in complex gravitational fields — like the field produced by Pluto and Charon's motion about each other. Astronomers used this simulation to try to understand the unpredictable changes in reflected light from Nix as it orbits Pluto-Charon. They also found that Pluto's moon Hydra also undergoes chaotic spin. The football shape of both moons contributes to their wild motion. The consequences are that if you lived on either moon, you could not predict the time or direction the sun would rise the next morning. (The moon is too small for Hubble to resolve surface features, and so the surface textures used here are purely for illustration purposes.) Credit: NASA, ESA, M. Showalter (SETI Institute), and G. Bacon (STScI) Read more: www.nasa.gov/press-release/nasa-s-hubble-finds-pluto-s-mo... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. The Icy Cold Heart of Pluto

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.

    2015-11-01

    The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy; familiar examples include the polar caps of Earth and Mars. For planets tilted by more than 45 degrees, however, the poles actually receive more energy than some other latitudes. Pluto, with its current obliquity of 119 degrees, has minima in its average annual insolation at +/- 27 degrees latitude, with ~1.5% more energy flux going to the equator and ~15% more to the poles. Remarkably, the fraction of annual solar energy incident on different latitudes depends only on the obliquity of the planet and not on any of its orbital parameters.Over millions of years, Pluto's obliquity varies sinusoidally from 102-126 degrees, significantly affecting the latitudinal profile of solar energy deposition. Roughly 1Myr ago, the poles received 15% more energy that today while the equator received 13% less. The energy flux to latitudes between 25-35 degrees is far more stable, remaining low over the presumably billions of years since Pluto acquired its current spin properties. Like the poles at Earth, these mid latitudes on Pluto should be favored for the long-term deposition of volatile ices. This is, indeed, the location of the bright icy heart of Pluto, Sputnik Planum.Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal infrared radiation is easily absorbed by icy deposits on Pluto, slowing deposition and facilitating sublimation of volatiles. We argue that the slight but persistent preference for ices to form and survive in the anti-Charon Pluto's heart.

  11. Tracking Seasonal Volatile Transport on Triton and Pluto through the Decades

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Hicks, M. D.; Bauer, J. M.; Hillier, J.; Banholzer, S.

    2012-12-01

    Because of their substantial obliquity, Pluto and the moons of the outer planets should exhibit seasonal volatile transport on their surfaces. The transport of nitrogen and other gasses can be detected by measuring changes in atmospheric pressure with stellar occultations, by monitoring the rotational light curve, or by direct imaging with the Hubble Space Telescope (HST) or adaptive optics. Pluto and Triton have tenuous atmospheres, and the transport of volatiles is associated with both the sublimation of gasses into these atmospheres, and with the changing patterns of frost at the polar caps and elsewhere. The rotational light curve can serve as an approximate description of the distribution of volatiles on a planetary surface, and for Pluto and Triton it can be easily measured with a moderately-sized telescope. Changes in the amplitude or shape of the light curve could indicate volatile transport on these bodies, after all the effects of viewing geometry have been taken into account. Light curves of these two bodies in the absence of any volatile transport can be derived from Voyager images (Triton) or HST images (Pluto) which have been projected to the correct viewing geometry for each epoch. During the past two decades we have been gathering light curves for Triton and Pluto with the 24-inch telescope at Table Mountain Observatory. We have augmented our data with historical measurements that stretch back for several more decades, to cover a substantial fraction of one Plutonian or Neptunian year. The light curve of Triton shows definite intrinsic changes that have been confirmed by HST images (J. Bauer et al., Ap. J. Lett. 723, 2010), while Pluto shows evidence for changes that have also been seen in HST data (M. Buie et al., Astron. J. 139, 2010) Voyager images of Triton show what appears to be a sublimating southern polar cap. In July 2015 the New Horizon Spacecraft will encounter the dwarf planet Pluto to reveal its surface for the first time. Funded by

  12. Migration of Frosts from High-Albedo Regions of Pluto: what New Horizons Reveals

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.; Stern, S. A.; Weaver, Hal A.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly; Binzel, Richard P.; Zangari, Amanda; Earle, Alissa M.

    2015-11-01

    With its high eccentricity and obliquity, Pluto should exhibit seasonal volatile transport on its surface. Several lines of evidence support this transport: doubling of Pluto’s atmospheric pressure over the past two decades (Young et al., 2013, Ap. J. 766, L22; Olkin et al., 2015, Icarus 246, 230); changes in its historical rotational light curve, once all variations due to viewing geometry have been modelled (Buratti et al., 2015; Ap. J. 804, L6); and changes in HST albedo maps (Buie et al., 2010, Astron. J. 139, 1128). New Horizons LORRI images reveal that the region of greatest albedo change is not the polar cap(s) of Pluto, but the feature informally named Tombaugh Regio (TR). This feature has a normal reflectance as high as ~0.8 in some places, and it is superposed on older, lower-albedo pre-existing terrain with an albedo of only ~0.10. This contrast is larger than any other body in the Solar System, except for Iapetus. This albedo dichotomy leads to a complicated system of cold-trapping and thermal segregation, beyond the simple picture of seasonal volatile transport. Whatever the origin of TR, it initially acted as a cold trap, as the temperature differential between the high and low albedo regions could be enormous, possibly approaching 20K, based on their albedo differences and assuming their normalized phase curves are similar. This latter assumption will be refined as the full New Horizons data set is returned.Over six decades of ground-based photometry suggest that TR has been decreasing in albedo over the last 25 years. Possible causes include changing insolation angles, or sublimation from the edges where the high-albedo material impinges on a much warmer substrate.Funding by the NASA New Horizons Project acknowledged.

  13. Does Pluto have a substantial atmosphere

    SciTech Connect

    Trafton, L.

    1980-01-01

    The presence of CH4 ice on Pluto implies that Pluto may have a substantial atmosphere consisting of heavy gases. Without such an atmosphere, sublimation of the CH4 ice would be so rapid on a cosmogonic time scale that either such an atmosphere would soon develop through the exposure of gases trapped in the CH4 ice or else the surface CH4 ice would soon be all sublimated away as other, more stable, ices became exposed. If such stable ices were present from the beginning, the existence of CH4 frosts would also imply that Pluto's present atmosphere contains a remnant of its primordial atmosphere.

  14. Pluto's Far Ultraviolet Spectrum and Airglow Emissions

    NASA Astrophysics Data System (ADS)

    Steffl, A.; Schindhelm, E.; Kammer, J.; Gladstone, R.; Greathouse, T. K.; Parker, J. W.; Strobel, D. F.; Summers, M. E.; Versteeg, M. H.; Ennico Smith, K.; Hinson, D. P.; Linscott, I.; Olkin, C.; Parker, A. H.; Retherford, K. D.; Singer, K. N.; Tsang, C.; Tyler, G. L.; Weaver, H. A., Jr.; Woods, W. W.; Young, L. A.; Stern, A.

    2015-12-01

    The Alice far ultraviolet spectrograph on the New Horizons spacecraft is the second in a family of six instruments in flight on, or under development for, NASA and ESA missions. Here, we present initial results from the Alice observations of Pluto during the historic flyby. Pluto's far ultraviolet spectrum is dominated by sunlight reflected from the surface with absorption by atmospehric constituents. We tentatively identify C2H2 and C2H4 in Pluto's atmosphere. We also present evidence for weak airglow emissions.

  15. Dust ablation in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  16. Effects of present and projected ground-water withdrawals on the Twin Cities aquifer system, Minnesota

    USGS Publications Warehouse

    Schoenberg, Michael

    1990-01-01

    Projected changes in population and industrial development suggest that future ground-water withdrawals may increase from those for the 1970's. Steady-state model results indicate that the potentiometric surface of the Mount Simon-Hinckley aquifer would be lowered as much as 400 feet if pumpage from that aquifer were increased by 125 percent above 1980 ground-water withdrawal rates of about 200 million gallons per day. The potentiometric surface of the Prairie du Chien-Jordan aquifer also would be lowered as much as 400 feet if pumpage from that aquifer were increased by 200 percent above 1980 ground-water withdrawals of 160 million gallons per day. Given the projected distribution of future ground-water development, and the limitations inherent in simulating ground-water flow, the model results indicate that an approximate limit of ground-water availability in the Twin Cities Metropolitan Area, Minnesota, is from about 500 to 800 million gallons per day.

  17. Pluto, Near and Far: PEPSSI Measurements of Energetic Particles During the New Horizons Flyby and Investigating a Pluto Torus of Circumsolar Neutral Gas

    NASA Astrophysics Data System (ADS)

    Hill, Matthew Eric; Kollmann, Peter; McNutt, Ralph L.; Smith, H. Todd; Bagenal, Fran; Brown, Lawrence E.; Elliott, Heather A.; Haggerty, Dennis K.; Horanyi, Mihaly; Krimigis, Stamatios M.; Kusterer, Martha; Lisse, Carey M.; McComas, David J.; Piquette, Marcus; Strobel, Darrell; Szalay, Jamey; Vandegriff, Jon; Zirnstein, Eric; Ennico, Kimberly; Olkin, Cathy B.; Weaver, Harold A.; Young, Leslie A.; Stern, S. A.

    2015-11-01

    The energetic particle environment at Pluto has been unknown, and little modeled, until this year’s historic encounter by the New Horizon (NH) spacecraft on 14 July 2015. The first energetic particle observations, made with the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument, were downlinked in August 2015. There are variations in the intensities of suprathermal (~3-30 keV/nucleon) ions that are associated with a combination of the position of the spacecraft relative to Pluto, the look direction of PEPSSI, and (potentially) temporal evolution in the system. We present the results of the near encounter with Pluto, to as close as ~11.6 Rp (1 Rp = 1187 km), which, early analysis shows, include large intensity variations associated with Pluto. We also present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto’s orbit, and place observational constraints on it based primarily on comparison of NH measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, could result from neutral N2 escaping from Pluto’s exosphere. Unlike other more massive planets, gaseous neutrals escape Pluto readily via Jeans escape (i.e., owing to the high thermal speed relative to the escape velocity). These neutrals are not directly observable by NH but, once ionized to N2+ or N+ via photolysis or charge exchange, are picked up by the solar wind, ultimately reaching ~50 keV or more, making these pickup ions detectable by PEPSSI. This work was supported by NASA's New Horizons project.

  18. Impact Craters on Pluto and Charon Indicate a Deficit of Small Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Singer, Kelsi N.; McKinnon, William B.; Greenstreet, Sarah; Gladman, Brett; Parker, Alex Harrison; Robbins, Stuart J.; Schenk, Paul M.; Stern, S. Alan; Bray, Veronica; Spencer, John R.; Weaver, Harold A.; Beyer, Ross A.; Young, Leslie; Moore, Jeffrey M.; Olkin, Catherine B.; Ennico, Kimberly; Binzel, Richard; Grundy, William M.; New Horizons Geology Geophysics and Imaging Science Theme Team, The New Horizons MVIC and LORRI Teams

    2016-10-01

    The impact craters observed during the New Horizons flyby of the Pluto system currently provide the most extensive empirical constraints on the size-frequency distribution of smaller impactors in the Kuiper belt. These craters also help us understand the surface ages and geologic evolution of the Pluto system bodies. Pluto's terrains display a diversity of crater retention ages and terrain types, indicating ongoing geologic activity and a variety of resurfacing styles including both exogenic and endogenic processes. Charon's informally named Vulcan Planum did experience early resurfacing, but crater densities suggest this is also a relatively ancient surface. We will present and compare the craters mapped across all of the relevant New Horizons LOng Range Reconnaissance Imager (LORRI) and Multispectral Visible Imaging Camera (MVIC) datasets of Pluto and Charon. We observe a paucity of small craters on all terrains (there is a break to a shallower slope for craters below 10 km in diameter), despite adequate resolution to observe them. This lack of small craters cannot be explained by geological resurfacing alone. In particular, the main area of Charon's Vulcan Planum displays no obviously embayed or breached crater rims, and may be the best representation of a production population since the emplacement of the plain. The craters on Pluto and Charon are more consistent with Kuiper belt and solar system evolution models producing fewer small objects.This work was supported by NASA's New Horizons project.

  19. Pluto: Distribution of ices and coloring agents from New Horizons LEISA observations

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Grundy, William M.; Stern, S. Alan; Olkin, Catherine B.; Cook, Jason C.; Dalle Ore, Cristina M.; Binzel, Richard P.; Earle, Alissa M.; Ennico, Kimberly; Jennings, Donald E.; Howett, Carly J. A.; Linscott, Ivan R.; Lunsford, Allen W.; Parker, Alex H.; Parker, Joel W.; Protopapa, Silvia; Reuter, Dennis C.; Singer, Kelsi N.; Spencer, John R.; Tsang, Constantine C. C.; Verbiscer, Anne J.; Weaver, Harold A.; Young, Leslie A.

    2015-11-01

    Pluto was observed at high spatial resolution (maximum ~3 km/px) by the New Horizons LEISA imaging spectrometer. LEISA is a component of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Sci. Rev. 140, 129) and affords a spectral resolving power of 240 in the wavelength range 1.25-2.5 µm, and 560 in the range 2.1-2.25 µm. Spatially resolved spectra with LEISA are used to map the distributions of the known ices on Pluto (N2, CH4, CO) and to search for other surface components. The spatial distribution of volatile ices is compared with the distribution of the coloring agent(s) on Pluto's surface. The correlation of ice abundance and the degree of color (ranging from yellow to orange to dark red) is consistent with the presence of tholins, which are refractory organic solids of complex structure and high molecular weight, with colors consistent with those observed on Pluto. Tholins are readily synthesized in the laboratory by energetic processing of mixtures of the ices (N2, CH4, CO) known on Pluto's surface. We present results returned from the spacecraft to date obtained from the analysis of the high spatial resolution dataset obtained near the time of closest approach to the planet. Supported by NASA’s New Horizons project.

  20. A Colorful ‘Landing’ on Pluto

    NASA Image and Video Library

    What would it be like to actually land on Pluto? This movie was made from more than 100 images taken by NASA’s New Horizons spacecraft over six weeks of approach and close flyby in the summer of 20...

  1. The Frozen Canyons of Pluto North Pole

    NASA Image and Video Library

    2016-02-27

    This ethereal scene captured by NASA New Horizons spacecraft tells yet another story of Pluto diversity of geological and compositional features-this time in an enhanced color image of the north polar area.

  2. Two Faces of Pluto July 1

    NASA Image and Video Library

    2015-12-31

    Pluto shows two remarkably different sides in these color images of the planet and its largest moon, Charon, taken by NASA New Horizons on June 25 and June 27, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA20292

  3. Surface compositions across Pluto and Charon.

    PubMed

    Grundy, W M; Binzel, R P; Buratti, B J; Cook, J C; Cruikshank, D P; Dalle Ore, C M; Earle, A M; Ennico, K; Howett, C J A; Lunsford, A W; Olkin, C B; Parker, A H; Philippe, S; Protopapa, S; Quirico, E; Reuter, D C; Schmitt, B; Singer, K N; Verbiscer, A J; Beyer, R A; Buie, M W; Cheng, A F; Jennings, D E; Linscott, I R; Parker, J Wm; Schenk, P M; Spencer, J R; Stansberry, J A; Stern, S A; Throop, H B; Tsang, C C C; Weaver, H A; Weigle, G E; Young, L A

    2016-03-18

    The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto's surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto's water ice "bedrock" was also mapped, with isolated outcrops occurring in a variety of settings. Pluto's surface exhibits complex regional color diversity associated with its distinct provinces. Charon's color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon's near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta. Copyright © 2016, American Association for the Advancement of Science.

  4. New Horizons: Imagining a Landing on Pluto

    NASA Image and Video Library

    Imagine a future spacecraft following New Horizons’ trailblazing path to Pluto, but instead of flying past its target, the next visitor touches down in the midst of tall mountains on the icy plains...

  5. Prior Clues of Internal Activity on Pluto

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    New Horizons scientists Kelsi Singer and Alan Stern predicted that Pluto may have subsurface activity, in this study published even before New Horizon's recent observations of Pluto's strangely uncratered surface areas. Where Does the Nitrogen Come From? Pluto's surface and atmosphere contain a significant amount of nitrogen, but the gas leaks out of Pluto's atmosphere at an tremendous rate -- estimated at about 1.5 × 1012-13 grams per year (roughly 200-2000 tons/hr!). But if the nitrogen has been escaping at this rate since the solar system was formed, the entire atmospheric reservoir of would have been lost long before now. So what is resupplying Pluto's nitrogen? Singer and Stern explore several possible sources: Delivery by comet impact: The authors calculate that over the 4-billion-year span since Pluto's formation, it has been impacted by a total of 600 million comets of varying sizes, all likely containing nitrogen. But their estimates show that the amount of nitrogen this would supply falls several orders of magnitude shy of explaining the escape rate. Excavation by cratering: Could comet impacts simply expose nitrogen buried in reservoirs just beneath Pluto's surface? That method, too, falls short of resupplying atmospheric nitrogen escape by at least an order of magnitude, even using the most generous estimates. Internal activity: Unless the believed atmospheric loss rate of Pluto is overestimated, the authors conclude that Pluto must experience some sort of internal activity such as cryovolcanism that brings nitrogen from below its surface up and into the atmosphere. The Study in Context of Current Events. Singer and Stern wrote and submitted this paper before the New Horizons spacecraft's recent flyby of Pluto. Data from this mission has recently provided surprise after surprise -- from images of smooth, crater-free regions on Pluto's surface to evidence of sheets of carbon monoxide, methane, and nitrogen ices flowing like glaciers. These clues support

  6. Informal Names for Features on Pluto

    NASA Image and Video Library

    2015-07-29

    This image contains the initial, informal names being used by NASA's New Horizons team for the features and regions on the surface of Pluto. Names were selected based on the input the team received from the Our Pluto naming campaign. Names have not yet been approved by the International Astronomical Union (IAU). For more information on the maps and feature naming, visit http://www.ourpluto.org/maps. http://photojournal.jpl.nasa.gov/catalog/PIA19863

  7. The Cold and Icy Heart of Pluto

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2015-12-01

    The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy. Thus we have the familiar polar caps of Earth and Mars, but cold equatorial regions for planets with obliquities between 54 and 126 degrees. Furthermore, for tilts between 45-66 degrees and 114-135 degrees the minimum incident energy occurs neither at the pole nor the equator. We find that the annual average insolation is always symmetric about Pluto's equator and is fully independent of the relative locations of the planet's pericenter and equinoxes. Remarkably, this symmetry holds for arbitrary orbital eccentricities and obliquities, and so we provide a short proof in the margin of this abstract. The current obliquity of Pluto is 119 degrees, giving it minima in average annual insolation at +/- 27 degrees latitude, with ~1.5% more flux to the equator and ~15% more to the poles. But the obliquity of Pluto also varies sinusoidally from 102-126 degrees and so, over the past million years, Pluto's annual equatorial and polar fluxes have changed by +15% and -13%, respectively. Interestingly, the energy flux received by latitudes between 25-35 degrees remains nearly constant over the presumably billions of years since Pluto acquired its current orbit and spin properties. Thus these latitudes are continuously cold and should be favored for the long-term deposition of volatile ices; the bright heart of Pluto, Sputnik Planum, extends not coincidentally across these latitudes. Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal IR is delivered very efficiently to icy deposits. Over billions of years, ices have preferentially formed and survived in the anti-Charon hemisphere.

  8. Pluto Express - Out of the Darkness

    NASA Technical Reports Server (NTRS)

    Herman, M.

    1995-01-01

    Pluto, discovered in 1930, is the largest of a class of primordial bodies at the edge of our solar system that have comet-like properties and remain relatively unmodified by warming from the sun. It is the only planet in the solar system not explored via robotic spacecraft. This lecture discusses the status of the Pluto Express preproject (science objectives, etc.), and its telecommunication subsystem.

  9. (abstract) Student Involvement in the Pluto Mission

    NASA Technical Reports Server (NTRS)

    Weinstein, Stacy

    1994-01-01

    The Pluto Fast Flyby mission development baseline consists of 2 identical spacecraft (120 - 165 kg) to be launched to Pluto/ Charon in the late 1990s. These spacecraft are intended to fly by Pluto and Charon in order to perform various remote-sensing scientific investigations and have a mission development cost less than $400M (FY92$) through launch plus 30 days. The Pluto team is committed to involving students in all areas of mission development and operations. In November 1992, the Pluto team sent a request for information to industry and universities looking for ways to lower the mass and cost of the mission. A number of universities responded with creative and promising technological developments. In addition to contracts with industry and other federal labs, contracts were signed with schools which allowed students to apply their research, enabling the Pluto team to use valuable resources on a variety of advanced technology endeavors. Perhaps the most exciting aspect of these investigations was that the deliverables that the students produced were not just final reports, but actual prototype hardware complete with write-ups on lessons learned in machining, programming, and design. Another exciting development was a prototype adapter competition in which 7 universities competed to design, build, and test their idea of a lightweight spacecraft-propulsion stack adapter. Georgia Tech won with an innovative dodecahedron composite lattice cone. Other students from other universities were involved as well. All in all, over 40 students from 20 different colleges made significant contributions to the Pluto Fast Flyby mission development through their efforts. This paper will give an overview of Pluto student involvement, the technologies which they examined, and useful results for the mission.

  10. (abstract) Student Involvement in the Pluto Mission

    NASA Technical Reports Server (NTRS)

    Weinstein, Stacy

    1994-01-01

    The Pluto Fast Flyby mission development baseline consists of 2 identical spacecraft (120 - 165 kg) to be launched to Pluto/ Charon in the late 1990s. These spacecraft are intended to fly by Pluto and Charon in order to perform various remote-sensing scientific investigations and have a mission development cost less than $400M (FY92$) through launch plus 30 days. The Pluto team is committed to involving students in all areas of mission development and operations. In November 1992, the Pluto team sent a request for information to industry and universities looking for ways to lower the mass and cost of the mission. A number of universities responded with creative and promising technological developments. In addition to contracts with industry and other federal labs, contracts were signed with schools which allowed students to apply their research, enabling the Pluto team to use valuable resources on a variety of advanced technology endeavors. Perhaps the most exciting aspect of these investigations was that the deliverables that the students produced were not just final reports, but actual prototype hardware complete with write-ups on lessons learned in machining, programming, and design. Another exciting development was a prototype adapter competition in which 7 universities competed to design, build, and test their idea of a lightweight spacecraft-propulsion stack adapter. Georgia Tech won with an innovative dodecahedron composite lattice cone. Other students from other universities were involved as well. All in all, over 40 students from 20 different colleges made significant contributions to the Pluto Fast Flyby mission development through their efforts. This paper will give an overview of Pluto student involvement, the technologies which they examined, and useful results for the mission.

  11. Pluto Express - Out of the Darkness

    NASA Technical Reports Server (NTRS)

    Herman, M.

    1995-01-01

    Pluto, discovered in 1930, is the largest of a class of primordial bodies at the edge of our solar system that have comet-like properties and remain relatively unmodified by warming from the sun. It is the only planet in the solar system not explored via robotic spacecraft. This lecture discusses the status of the Pluto Express preproject (science objectives, etc.), and its telecommunication subsystem.

  12. Craters on Pluto and Charon: Characteristics and Impactor Population

    NASA Astrophysics Data System (ADS)

    Singer, Kelsi N.; Schenk, Paul M.; Robbins, Stuart J.; Bray, Veronica J.; McKinnon, William B.; Moore, Jeffrey M.; Spencer, John R.; Stern, S. A.; Grundy, W. M.; Howett, Carly J. A.; Dalle Ore, Cristina M.; Beyer, Ross; Parker, Alex H.; Porter, Simon B.; Zangari, Amanda M.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly

    2015-11-01

    Although both Pluto and Charon have a surprising number of young-looking surfaces, there are still plenty of craters for impact-phenomenon enthusiasts. We will present size, morphology, ejecta, and albedo pattern statistics, in addition to correlations with color/composition where possible. We use images and topography from the Long Range Reconnaissance Imager (LORRI; Cheng et al., 2008, SSR 140, 189-215) and data from the Ralph (Reuter et al., 2008, SSR 140, 129-154) color/composition instruments.Impactor sizes will be estimated from relevant scaling laws for cold water ice (see details in Singer and Stern, 2015, ApJL 808, L50). For Pluto, an image strip at 125 m px-1 includes some cratered terrains, and much of the encounter hemisphere (the anti-Charon hemisphere) will be covered at ~400 m px-1. The ~smallest craters observable at these pixel scales (using a 5 pixel limit) would be ~0.63 km, and ~2 km in diameter, respectively, with impactor diameters estimated at ~50 m, and ~200 m. However, it is likely that degradation processes may obscure small craters, thus this lower observation limit will depend on terrain type. Additionally, lighting and observation geometries vary across the disk, which may make crater detection difficult in some areas. All of the illuminated portions of Pluto (during its 6.4 day rotation period) were imaged at ~20 km px-1 or better during the encounter. The highest resolution images of Pluto (at ~80 m px-1) occur in a narrow strip and are not scheduled for downlink before the DPS.The highest resolution Charon coverage (a strip at ~160 m px-1), a broader swath at 400 m px-1, and the entire encounter hemisphere (the sub-Pluto hemisphere) at ~890 m px-1 may yield craters as small as 0.8, 2, and 4.5 km in diameter, respectively. The inferred impactor sizes for these craters would be ~50 m, 160 m, and 440 m.Although the dataset is limited, we will discuss what constraints can be put on the impactor population. This work was supported by the

  13. New Chinese satellite-ground EQ monitoring project

    NASA Astrophysics Data System (ADS)

    Shen, X.; Zhang, X.; Hong, S.; Chen, L.; Jing, F.; Liu, J.; Huang, J.; Working TeamEarthquake-related Satellite Missions, CEA

    2011-12-01

    Review of the cases study and physical modeling, we have acquired some interesting phenomena in ionosphere related with earthquakes by using data from ground-based GPS, Ionosounding and onboard DEMETER and NOAA satellite. The primary results show that local TEC and foF2 changing obviously before large earthquakes together with in-situ parameters disturbance such as electro-magnetic wave, plasma content and temperature and so on. And it shows that observation from space maybe very beneficial to short-temporary-term monitoring and early warning. Being the first space-based platform of China Earthquake Monitoring System both from Space and Ground, China Seismo-Electromagnetic Satellite is under developing and is planed to be launched in 2014 together with the Seismo-Ionospheric Ground-based-monitoring Network operation. The first seismo-electromagnetic satellite is defined as an experiment satellite with promising applications. Its major scientific objectives are to provide seismo-eletromagnetic information for studying earthquake mechanism and short-impending prediction of large earthquakes, and to share the data with earthquake sciences and space sciences. And the main physical parameters to be detected include electromagnetic field and electromagnetic wave, density, temperature, and profiles of ionospheric plasma, high energy particle disturbance, etc. Following the 1st satellite, another 2 satellites are due to launch in 2017. And being the tryout and parallel program of CSES, Ground-based Seismo-Ionospheric Precursor Trial Network is put in practice, which including Ionosounding and GNSS reversion system since 2008. So far, 20 ionosounding stations and 260 GPS station are under operation, and additional 50 ionosounding stations are planed to be built in the following 5 years. Furthermore,a virtual earthquake-related satellite system composed of EM,infrared, D-InSAR, and hyperspectral remote sensing will be developed to meet the requirement for earthquake

  14. The subsurface of Pluto from submillimetre observations

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.; Whitelaw, A. C. M.; Bendo, G. J.

    2015-04-01

    Surface areas on Pluto change in brightness and colour, at optical to infrared wavelengths, over time-scales as short as years. The subsurface contains a reservoir of frozen volatiles, but little is known about it because Pluto is out of reach for cm-radar. Here we present a 0.85 mm wavelength light curve of the Pluto system, from archival data taken in 1997 August with the SCUBA (Submillimetre Common-User Bolometer Array) camera on the James Clerk Maxwell Telescope (JCMT). This wavelength probes for the first time to just below the skin depth of thermal changes over Pluto's day. The light curve differs significantly from counterparts in the mid- to far-infrared, in a longitude range that is optically dark on Pluto's surface. An estimate from Herschel of the 0.5 mm flux in 2012 is comparable to the mean 0.45 mm flux from SCUBA in 1997, suggesting that layers centimetres below the surface have not undergone any gross temperature change. The longitudes that are relatively submillimetre-faint could have a different emissivity, perhaps with a subsurface layer richer in nitrogen or methane ices than at the surface. The Radio Science Experiment (REX) instrument on New Horizons may be able to constrain physical properties deeper down, as it looks back on Pluto's nightside after the 2015 July flyby.

  15. Discovery of two new satellites of Pluto.

    PubMed

    Weaver, H A; Stern, S A; Mutchler, M J; Steffl, A J; Buie, M W; Merline, W J; Spencer, J R; Young, E F; Young, L A

    2006-02-23

    Pluto's first known satellite, Charon, was discovered in 1978. It has a diameter (approximately 1,200 km) about half that of Pluto, which makes it larger, relative to its primary, than any other moon in the Solar System. Previous searches for other satellites around Pluto have been unsuccessful, but they were not sensitive to objects less, similar150 km in diameter and there are no fundamental reasons why Pluto should not have more satellites. Here we report the discovery of two additional moons around Pluto, provisionally designated S/2005 P 1 (hereafter P1) and S/2005 P 2 (hereafter P2), which makes Pluto the first Kuiper belt object known to have multiple satellites. These new satellites are much smaller than Charon, with estimates of P1's diameter ranging from 60 km to 165 km, depending on the surface reflectivity; P2 is about 20 per cent smaller than P1. Although definitive orbits cannot be derived, both new satellites appear to be moving in circular orbits in the same orbital plane as Charon, with orbital periods of approximately 38 days (P1) and approximately 25 days (P2).

  16. Pluto Close-up, Now in Color

    NASA Image and Video Library

    2015-12-10

    This enhanced color mosaic combines some of the sharpest views of Pluto that NASA's New Horizons spacecraft obtained during its July 14 flyby. The pictures are part of a sequence taken near New Horizons' closest approach to Pluto, with resolutions of about 250-280 feet (77-85 meters) per pixel -- revealing features smaller than half a city block on Pluto's surface. Lower resolution color data (at about 2,066 feet, or 630 meters, per pixel) were added to create this new image. The images form a strip 50 miles (80 kilometers) wide, trending (top to bottom) from the edge of "badlands" northwest of the informally named Sputnik Planum, across the al-Idrisi mountains, onto the shoreline of Pluto's "heart" feature, and just into its icy plains. They combine pictures from the telescopic Long Range Reconnaissance Imager (LORRI) taken approximately 15 minutes before New Horizons' closest approach to Pluto, with -- from a range of only 10,000 miles (17,000 kilometers) -- with color data (in near-infrared, red and blue) gathered by the Ralph/Multispectral Visible Imaging Camera (MVIC) 25 minutes before the LORRI pictures. The wide variety of cratered, mountainous and glacial terrains seen here gives scientists and the public alike a breathtaking, super-high-resolution color window into Pluto's geology. e border between the relatively smooth Sputnik Planum ice sheet and the pitted area, with a series of hills forming slightly inside this unusual "shoreline." http://photojournal.jpl.nasa.gov/catalog/PIA20213

  17. Operation JANGLE. Project 1(9)a. Ground Acceleration, Ground and Air Pressures for Underground Test

    DTIC Science & Technology

    1952-04-01

    Salmon 0, April .1952 -0o So 0 * per telecon w/Betty Fox ( DNA Tech Libr, Chief), the classified references contained herein may remain. 6-Z I- 7...73 693 Earth Pr.essure . 77 6.4 Damage Criteria - Surface Stracture .... 78 6.5 D-miage Criteria - Underground Targets ... 8...ground pressures, and air pressures produced by a buried shallow) nuclear explosive. AU2 of these physical quantities are functions of at least two

  18. 2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 3; Fabrication and Test Report

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis

    1997-01-01

    The Solar Dynamic Ground Test Demonstration (SDGTD) project has successfully designed and fabricated a complete solar-powered closed Brayton electrical power generation system and tested it in a relevant thermal vacuum facility at NASA Lewis Research Center (LeRC). In addition to completing technical objectives, the project was completed 3-l/2 months early, and under budget.

  19. Supplementing forest ecosystem health projects on the ground

    Treesearch

    Cathy Barbouletos; Lynette Z. Morelan

    1995-01-01

    Understanding the functions and processes of ecosystems is critical before implementing forest ecosystem health projects on the landscape. Silvicultural treatments such as thinning, prescribed fire, and reforestation can simulate disturbance regimes and landscape patterns that have regulated forest ecosystems for centuries. As land managers we need to understand these...

  20. Highly integrated Pluto payload system (HIPPS): a sciencecraft instrument for the Pluto mission

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan; Slater, David C.; Gibson, William; Reitsema, Harold J.; Delamere, W. Alan; Jennings, Donald E.; Reuter, D. C.; Clarke, John T.; Porco, Carolyn C.; Shoemaker, Eugene M.; Spencer, John R.

    1995-09-01

    We describe the design concept for the highly integrated Pluto payload system (HIPPS): a highly integrated, low-cost, light-weight, low-power instrument payload designed to fly aboard the proposed NASA Pluto flyby spacecraft destined for the Pluto/Charon system. The HIPPS payload is designed to accomplish all of the Pluto flyby prime (IA) science objectives, except radio science, set forth by NASA's Outer Planets Science Working Group (OPSWG) and the Pluto Express Science Definition Team (SDT). HIPPS contains a complement of three instrument components within one common infrastructure; these are: (1) a visible/near UV CCD imaging camera; (2) an infrared spectrograph; and (3) an ultraviolet spectrograph. A detailed description of each instrument is presented along with how they will meet the IA science requirements.

  1. Pluto's light curve in 1933 1934

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.; Buie, Marc W.; Smith, Luke Timothy

    2008-10-01

    The Pluto-Charon system has complex photometric variations on all time scales; due to rotational modulations of dark markings across the surface, the changing orientation of the system as viewed from Earth, occultations and eclipses between Pluto and Charon, as well as the sublimation and condensation of frosts on the surface. The earliest useable light curve for Pluto is from 1953 to 1955 when Pluto was 35 AU from the Sun. Earlier data on Pluto has the potential to reveal properties of the surface at a greater heliocentric distance with nearly identical illumination and viewing geometry. We are reporting on a new accurate photographic light curve of Pluto for 1933-1934 when the heliocentric distance was 40 AU. We used 43 B-band and V-band images of Pluto on 32 plates taken on 15 nights from 19 March 1933 to 10 March 1934. Most of these plates were taken with the Mount Wilson 60″ and 100″ telescopes, but 7 of the plates (now at the Harvard College Observatory) were taken with the 12″ and 16″ Metcalf doublets at Oak Ridge. The plates were measured with an iris diaphragm photometer, which has an average one-sigma photometric error on these plates of 0.08 mag as measured by the repeatability of constant comparison stars. The modern B and V magnitudes for the comparison stars were measured with the Lowell Observatory Hall 1.1-m telescope. The magnitudes in the plate's photographic system were converted to the Johnson B- and V-system after correction with color terms, even though they are small in size. We find that the average B-band mean opposition magnitude of Pluto in 1933-1934 was 15.73±0.01, and we see a roughly sinusoidal modulation on the rotational period (6.38 days) with a peak-to-peak amplitude of 0.11±0.03 mag. With this, we show that Pluto darkened by 5% from 1933-1934 to 1953-1955. This darkening from 1933-1934 to 1953-1955 cannot be due to changing viewing geometry (as both epochs had identical sub-Earth latitudes), so our observations must

  2. The Pluto System As Seen By New Horizons Spacecraft

    NASA Image and Video Library

    The Pluto system as NASA’s New Horizons spacecraft saw it in July 2015. This animation, made with real images taken by New Horizons, begins with Pluto flying in for its close-up on July 14; we then...

  3. How is Pluto Classified as a Rocky World?

    NASA Image and Video Library

    When it comes to Pluto, classification is tricky, but it’s unquestioningly a rocky body. This is Pluto in a Minute. The bodies in our solar system fall more or less into set categories like gas g...

  4. Geology Before Pluto: Pre-Encounter Considerations

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  5. Geology Before Pluto: Pre-encounter Considerations

    NASA Astrophysics Data System (ADS)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  6. Implications of the Detection of X-rays From Pluto by Chandra for Its Solar Wind - Neutral Atmosphere Interaction

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.

    2016-12-01

    factor of 40 +40/-20 lower SW minor ions flowing planarly into an 11 x 11 pixel2, 90% flux box centered on Pluto than are needed to support the observed emission rate. The SW must be significantly focused and enhanced within 60,000 km (projected) of Pluto for this mechanism to work, e.g. in a "tail" region downstream of Pluto from the Sun (Bagenal et al. 2016, McComas et al. 2016).

  7. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    SciTech Connect

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs.

  8. Cratering rate on Pluto produced by the inner trans-Neptunian population

    NASA Astrophysics Data System (ADS)

    Calandra, M. F.; Gil-Hutton, R.

    2017-05-01

    Aims: The aim of this work is to obtain the cratering rate on Pluto and to estimate the size distribution of the population in the inner trans-Neptunian region. Methods: We find the intrinsic collisional probability and the mean collision velocity for the interaction between Pluto and the projectile population crossing its orbit, using the L7 Synthetic Model from the CFEPS Project. The size distribution of this population is found using the smallest satellite of Pluto, Styx, as a constraint, because it survives the collisional process for the solar system age. Results: We find that the mean intrinsic collisional probability and mean collision velocity between Pluto and the projectile population are ⟨ Pi ⟩ = 1.3098 × 10-22 km-2 yr-1 and ⟨ Vcol ⟩ = 2.005 ± 0.822 km s-1. If the projectile sample is separated between Plutinos and non-Plutinos and the intrinsic collisional probability of these sub-populations are taken into account, we find a ratio of approximately 20:1 in favor of non-Plutinos resulting in the greatest contribution to the cratering rate on Pluto. The projectile population for the inner trans-Neptunian belt is characterized using a double power-law mean-size distribution with exponents qA = 3.5 and qB = 5.14 for the small and large size end of the population, respectively, and break radius at rb = 11.86 km or 7.25 km for mean densities of the projectiles ρ1 = 1.85 g cm-3 and ρ2 = 1 g cm-3. With this mean-size distribution we find that an object with radius of 28 km produces a crater in Pluto with a diameter of 250 km in a time larger than the solar system age, indicating that this kind of large structure has a very low probability of occurrence.

  9. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Technical Reports Server (NTRS)

    Purcell, Patrick; Chander, Gyanesh; Jain, Peyush

    2016-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation's economy and protection of lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems, on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  10. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Jain, Peyush

    2014-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administrations (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAAs mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation’s economy and protection of lives and property. The National Aerospace and Atmospheric Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  11. Pluto Haze in Bands of Blue

    NASA Image and Video Library

    2016-01-14

    This processed image is the highest-resolution color look yet at the haze layers in Pluto's atmosphere. Shown in approximate true color, the picture was constructed from a mosaic of four panchromatic images from the Long Range Reconnaissance Imager (LORRI) splashed with Ralph/Multispectral Visible Imaging Camera (MVIC) four-color filter data, all acquired by NASA's New Horizons spacecraft on July 14, 2015. The resolution is 1 kilometer (0.6 miles) per pixel; the sun illuminates the scene from the right. Scientists believe the haze is a photochemical smog resulting from the action of sunlight on methane and other molecules in Pluto's atmosphere, producing a complex mixture of hydrocarbons such as acetylene and ethylene. These hydrocarbons accumulate into small particles, a fraction of a micrometer in size, and scatter sunlight to make the bright blue haze seen in this image. As they settle down through the atmosphere, the haze particles form numerous intricate, horizontal layers, some extending for hundreds of miles around Pluto. The haze layers extend to altitudes of over 200 kilometers (120 miles). Adding to the stark beauty of this image are mountains on Pluto's limb (on the right, near the 4 o'clock position), surface features just within the limb to the right, and crepuscular rays (dark finger-like shadows to the left) extending from Pluto's topographic features. http://photojournal.jpl.nasa.gov/catalog/PIA20362

  12. Digital-model study of ground-water hydrology, Columbia Basin Irrigation Project Area, Washington

    USGS Publications Warehouse

    Tanaka, H.H.; Hansen, A.J.; Skrivan, J.A.

    1974-01-01

    Since 1952 water diverted from the Columbia River at Grand Coulee Dam has been used to irrigate parts of the Columbia Basin Irrigation Project area in eastern Washington, and as a result ground-water levels generally have risen in the area. The rapid increases in ground-water inflow, outflow, and storage from irrigation have created a need for a better understanding of the ground-water system before and after the start of irrigation to establish guidelines necessary for management of the area's ground-water resource. Data and information from previous geologic and hydrologic studies were used as a basis for quantitative analyses of ground-water inflow and outflow by means of digital computer models representing three major areas--Quincy Basin, Pasco Basin, and Royal Slope.

  13. Advanced radioisotope power source options for Pluto Express

    SciTech Connect

    Underwood, M.L.

    1995-12-31

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

  14. Is Pluto a planet? Student powered video rap ';battle' over tiny Pluto's embattled planetary standing

    NASA Astrophysics Data System (ADS)

    Beisser, K.; Cruikshank, D. P.; McFadden, T.

    2013-12-01

    Is Pluto a planet? Some creative low income Bay-area middle-schoolers put a musical spin on this hot science debate with a video rap ';battle' over tiny Pluto's embattled planetary standing. The students' timing was perfect, with NASA's New Horizons mission set to conduct the first reconnaissance of Pluto and its moons in July 2015. Pluto - the last of the nine original planets to be explored by spacecraft - has been the subject of scientific study and speculation since Clyde Tombaugh discovered it in 1930, orbiting the Sun far beyond Neptune. Produced by the students and a very creative educator, the video features students 'battling' back and forth over the idea of Pluto being a planet. The group collaborated with actual space scientists to gather information and shot their video before a 'green screen' that was eventually filled with animations and visuals supplied by the New Horizons mission team. The video debuted at the Pluto Science Conference in Maryland in July 2013 - to a rousing response from researchers in attendance. The video marks a nontraditional approach to the ongoing 'great planet debate' while educating viewers on a recently discovered region of the solar system. By the 1990s, researchers had learned that Pluto possessed multiple exotic ices on its surface, a complex atmosphere and seasonal cycles, and a large moon (Charon) that likely resulted from a giant impact on Pluto itself. It also became clear that Pluto was no misfit among the planets - as had long been thought - but the largest and brightest body in a newly discovered 'third zone' of our planetary system called the Kuiper Belt. More recent observations have revealed that Pluto has a rich system of satellites - five known moons - and a surface that changes over time. Scientists even speculate that Pluto may possess an internal ocean. For these and other reasons, the 2003 Planetary Decadal Survey ranked a Pluto/Kuiper Belt mission as the highest priority mission for NASA's newly created

  15. New rotationally resolved spectra of Pluto-Charon from 350 - 900 nm

    NASA Astrophysics Data System (ADS)

    Throop, Henry B.; Gulbis, Amanda; Grundy, Will; Young, Leslie A.; Olkin, Cathy B.

    2014-11-01

    We are using the 11-meter Southern African Large Telescope (SALT) to acquire the first rotationally resolved visible spectra of Pluto-Charon in nearly 20 years. We use the Robert Sobie Spectrograph (RSS) to observe Pluto-Charon from 350 nm to 900 nm. At 500 nm, resolution is 0.05 nm ( 10,0000) and SNR per spectral resolution element is ~ 500.We planned observations for 13 dates during June - August 2014, spaced so as to evenly sample Pluto's 6.5-day rotational period. As of the abstract submission, we have 8 of these in hand, two of which sample the same hemisphere as the best planned color New Horizons image. We determined the surface reflectivity by comparing with the solar-type star HD 146233. Our results will provide constraint on the composition and spatial distribution of material on Pluto's surface, enabling comparison to previous epochs and near-infrared results, and giving a present-day 'ground truth' ahead of New Horizons' July 2015 flyby. In addition, our data will allow us to search for new spectral features in the range 350 nm to 600 nm, at a sensitivity substantially higher than all previously published searches.

  16. New rotationally resolved spectra of Pluto-Charon from 350 - 900 nm

    NASA Astrophysics Data System (ADS)

    Throop, Henry B.; Grundy, Will; Olkin, Cathy B.; Young, Leslie A.; Sickafoose, Amanda A.

    2015-11-01

    We are using the 11-meter Southern African Large Telescope (SALT) to acquire high-resolution rotationally resolved visible spectra of Pluto-Charon. We use the Robert Stobie Spectrograph (RSS) to observe Pluto-Charon from 350 nm to 900 nm. At 500 nm, resolution is 0.05 nm (R ~ 10,0000) and SNR per spectral resolution element is ~ 500.We planned observations for 13 dates during June-September 2014, and 13 more dates during June-September 2015. The observations for each season were spaced so as to equally sample Pluto's 6.5-day rotational period. As of the abstract submission, we have data from 11 nights (2014) and 9 nights (2015) in hand. Most of the observations were taken with observations of solar-type star HD 146233 to determine the surface reflectivity.Our results will provide constraint on the composition and spatial distribution of material on Pluto's surface, enabling comparison to previous epochs and near-infrared results, and giving a ground-truth for New Horizons' July 2015 flyby. In addition, our data will allow us to search for new spectral features in the range 350 nm to 600 nm, at a sensitivity substantially higher than previously published searches.

  17. Photometry of Pluto-Charon mutual events and Hirayama family asteroids

    NASA Technical Reports Server (NTRS)

    Binzel, Richard P.

    1988-01-01

    Once every 124 years, nature provides earth-bound astronomers with the opportunity to observe occultation and transit phenomena between Pluto and its satellite, Charon. Ground-based observations of these events will allow precise physical parameters for the Pluto-Charon system to be derived which are unlikely to be improved upon until in situ spacecraft observations are obtained. The proposed program will continue to support photometry observations from McDonald Observatory, a critical location in an international Pluto Campaign network. Knowledge of the diameters, masses, densities, and compositions derived from these observations will augment our understanding of Pluto's origin and its context within the problem of solar system formation. A second task will continue to research the evolutionary processes which have occurred in the asteroid belt by measuring the physical properties of specific Hirayama family members. Photoelectric lightcurve observations of Koronis and Themis family members will be used to investigate the individual catastrophic collision events which formed each family. By comparing these properties with results of laboratory and numerical experiments, the outcomes of catastrophic disruptions and collisional evolution may be more precisely determined.

  18. Resolved CCD Photometry of Pluto and Charon

    SciTech Connect

    Jones, J.H.; Waddell, P.; Christian, C.A.

    1988-04-01

    Highly resolved CCD images of Pluto and Charon near maximum separation are measured with point spread function fitting techniques to determine independent magnitudes and an accurate separation for Pluto and Charon. A measured separation of 0.923 + or - 0.005 arcsec at a position angle of 173.3 + or - 0.3 deg on June 18, 1987 UT produced a value of 19558.0 + or - 153.0 km for the radius of Charon's orbit. An apparent B magnitude of 14.877 + or - 0.009 and (B-I) color of 1.770 + or - 0.015 are determined for Pluto, while Charon is fainter with B = 18.826 + or - 0.011 and slightly bluer with (B-I) = 1.632 + or - 0.018. 18 references.

  19. The Atmospheres of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Gladstone, R.; Summers, M. E.; Stern, A.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Strobel, D. F.; Hinson, D. P.; Kammer, J.; Parker, A. H.; Steffl, A.; Linscott, I.; Parker, J. W.; Cheng, A. F.; Versteeg, M. H.; Greathouse, T.; Retherford, K. D.; Throop, H.; Woods, W. W.; Singer, K. N.; Tsang, C.; Schindhelm, E.; Wong, M. L.; Yung, Y. L.; Zhu, X.; Curdt, W.; Lavvas, P.; Young, E. F.; Tyler, G. L.

    2015-12-01

    Major goals of the New Horizons (NH) mission are to explore and characterize the structure and composition of Pluto's atmosphere, and to determine whether Charon has a measurable atmosphere of its own. Several instruments onboard NH contribute to these goals, primarily: 1) the REX instrument, through uplink X-band radio occultations, 2) the Alice instrument, through extreme- and far-ultraviolet solar occultations, and 3) the LORRI panchromatic imager, through high-phase-angle imaging. The associated datasets were obtained following closest approach of NH to Pluto. Pressure and temperature profiles of the lower atmosphere are derived from the REX data, the composition and structure of the extended atmosphere are derived from the Alice data (supported by approach observations of reflected ultraviolet sunlight), and the distribution and properties of Pluto's hazes are derived from the LORRI data. In this talk an overview of the early atmosphere science results will be presented.

  20. Pick-up ions at Pluto

    NASA Astrophysics Data System (ADS)

    Kecskemety, K.; Cravens, T. E.

    1993-04-01

    Methane molecules escaping from Pluto's atmosphere are ionized, and the resulting ions are picked up by the solar wind. The mass loading associated with this ion pick-up can produce a cometlike interaction of the solar wind with Pluto. Heavy ion gyroradii are as large as a half million km in the weak interplanetary magnetic field that exists at 30 AU, which is about an order of magnitude larger than the size of the 'interaction region'. We have calculated velocity space distributions of pick-up ions using numerically determined ion trajectories. The predicted pick-up ion fluxes are high enough to be detectable by standard charged particle detectors as far upstream of Pluto as 10 exp 6 km.

  1. New Horizons Very Best View of Pluto

    NASA Image and Video Library

    2015-12-05

    This frame from a movie is composed of the sharpest views of Pluto that NASA's New Horizons spacecraft obtained during its flyby of the distant planet on July 14, 2015. The pictures are part of a sequence taken near New Horizons' closest approach to Pluto, with resolutions of about 250-280 feet (77-85 meters) per pixel -- revealing features smaller than half a city block on Pluto's diverse surface. The images include a wide variety of spectacular, cratered, mountainous and glacial terrains -- giving scientists and the public alike a breathtaking, super-high resolution window on Pluto's geology. The images form a strip 50 miles (80 kilometers) wide trending from Pluto's jagged horizon about 500 miles (800 kilometers) northwest of the informally named Sputnik Planum, across the al-Idrisi mountains, onto the shoreline of Sputnik Planum and then across its icy plains. They were made with the telescopic Long Range Reconnaissance Imager (LORRI) aboard New Horizons, over a timespan of about a minute centered on 11:36 UT on July 14 -- just about 15 minutes before New Horizons' closest approach to Pluto -- from a range of just 10,000 miles (17,000 kilometers). They were obtained with an unusual observing mode; instead of working in the usual "point and shoot," LORRI snapped pictures every three seconds while the Ralph/Multispectral Visual Imaging Camera (MVIC) aboard New Horizons was scanning the surface. This mode requires unusually short exposures to avoid blurring the images. http://photojournal.jpl.nasa.gov/catalog/PIA20202

  2. The Rich Color Variations of Pluto

    NASA Image and Video Library

    2015-09-24

    NASA's New Horizons spacecraft captured this high-resolution enhanced color view of Pluto on July 14, 2015. The image combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC). Pluto's surface sports a remarkable range of subtle colors, enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many landforms have their own distinct colors, telling a complex geological and climatological story that scientists have only just begun to decode. The image resolves details and colors on scales as small as 0.8 miles (1.3 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA19952

  3. Detection of Gaseous Methane on Pluto

    NASA Technical Reports Server (NTRS)

    Young, Leslie; Tokunaga, Alan; Elliot, J.; deBergh, Catherine; Owen, Tobias; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    We obtained Pluto's spectrum using the CSHELL echelle spectrograph at NASA's IRTF on Mauna Kea, on 25-26 May 1992, with a spectral resolution of 13,300. The spectral range (5998 - 6018 per centimeter, or 1661.8 - 1666.9 nm) includes the R(0) and the Q(1) - Q(9) lines of the 2v3 band of methane. The resulting spectrum shows the first detection of gaseous methane on Pluto, with a column height of 1.20 (sup +3.15) (sub -0.87) cm-A (3.22 (sup +8.46) (sub -2.34) x 10(exp 19) molecule per square centimeter)).

  4. Does Pluto Have a Haze Layer?

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    1997-01-01

    The goal of this research was to determine whether Pluto has a haze layer through observations (with the Kuiper Airborne Observatory) of a stellar occultation by Pluto that was originally predicted to occur on 1993 October 3. As described in the attached material, our extensive astrometric measurements determined that this occultation would not be visible from Earth, and we canceled plans to observe it with the KAO. Efforts were then directed toward improving our astrometric techniques so that we could find future occultations with which we could satisfy the original goals of the research proposed for this grant.

  5. Detection of Gaseous Methane on Pluto

    NASA Technical Reports Server (NTRS)

    Young, Leslie; Tokunaga, Alan; Elliot, J.; deBergh, Catherine; Owen, Tobias; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    We obtained Pluto's spectrum using the CSHELL echelle spectrograph at NASA's IRTF on Mauna Kea, on 25-26 May 1992, with a spectral resolution of 13,300. The spectral range (5998 - 6018 per centimeter, or 1661.8 - 1666.9 nm) includes the R(0) and the Q(1) - Q(9) lines of the 2v3 band of methane. The resulting spectrum shows the first detection of gaseous methane on Pluto, with a column height of 1.20 (sup +3.15) (sub -0.87) cm-A (3.22 (sup +8.46) (sub -2.34) x 10(exp 19) molecule per square centimeter)).

  6. The Pluto System At Small Phase Angles

    NASA Astrophysics Data System (ADS)

    Verbiscer, Anne J.; Buie, Marc W.; Binzel, Richard; Ennico, Kimberly; Grundy, William M.; Olkin, Catherine B.; Showalter, Mark Robert; Spencer, John R.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie; New Horizons Science Team

    2016-10-01

    Hubble Space Telescope observations of the Pluto system acquired during the New Horizons encounter epoch (HST Program 13667, M. Buie, PI) span the phase angle range from 0.06 to 1.7 degrees, enabling the measurement and characterization of the opposition effect for Pluto and its satellites at 0.58 microns using HST WFC3/UVIS with the F350LP filter, which has a broadband response and a pivot wavelength of 0.58 microns. At these small phase angles, differences in the opposition effect width and amplitude appear. The small satellites Nix and Hydra both exhibit a very narrow opposition surge, while the considerably larger moon Charon has a broader opposition surge. Microtextural surface properties derived from the shape and magnitude of the opposition surge of each surface contain a record of the collisional history of the system. We combine these small phase angle observations with those made at larger phase angles by the New Horizons Long Range Reconnaissance Imager (LORRI), which also has a broadband response with a pivot wavelength of 0.61 microns, to produce the most complete disk-integrated solar phase curves that we will have for decades to come. Modeling these disk-integrated phase curves generates sets of photometric parameters that will inform spectral modeling of the satellite surfaces as well as terrains on Pluto from spatially resolved New Horizons Ralph Linear Etalon Imaging Spectral Array (LEISA) data from 1.2 to 2.5 microns. Rotationally resolved phase curves of Pluto reveal opposition effects that only appear at phase angles less than 0.1 degree and have widths and amplitudes that are highly dependent on longitude and therefore on Pluto's diverse terrains. The high albedo region informally known as Sputnik Planum dominates the disk-integrated reflectance of Pluto on the New Horizons encounter hemisphere. These results lay the groundwork for observations at true opposition in 2018, when the Pluto system will be observable at phase angles so small that

  7. The Atmospheric Structure of Triton and Pluto

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    1998-01-01

    The goal of this research was to better determine the atmospheric structures of Triton and Pluto through further analysis of three occultation data sets obtained with the Kuiper Airborne Observatory (KAO.) As the research progressed, we concentrated our efforts on the Triton data, as this appeared to be the most fruitful. Three papers have been prepared as a result of this research. The first paper presents new results about Triton's atmospheric structure from the analysis of all ground-based stellar occultation data recorded to date, including one single-chord occultation recorded on 1993 July 10 and nine occultation lightcurves from the double-star event on 1995 August 14. These stellar occultation observations made both in the visible and in the infrared have good spatial coverage of Triton, including the first Triton central-flash observations, and are the first data to probe the altitude level 20-100 km on Triton. The small-planet lightcurve model of J. L. Elliot and L. A. Young was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude, indicating that Triton's atmosphere is spherically symmetric at approximately 50 km altitude to within the error of the measurements; however, asymmetry observed in the central flash indicates the atmosphere is not homogenous at the lowest levels probed (approximately 20 km altitude). From the average of the 1995 occultation data, the equivalent isothermal temperature of the atmosphere is 47 plus or minus 1 K and the atmospheric pressure at 1400 km radius (approximately 50 km altitude) is 1.4 plus or minus 0.1 microbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989. The atmospheric temperature from the occultation is 5 K colder than that predicted by the model and the observed pressure is a factor of 1.8 greater than the

  8. De-mystifying earned value management for ground based astronomy projects, large and small

    NASA Astrophysics Data System (ADS)

    Norton, Timothy; Brennan, Patricia; Mueller, Mark

    2014-08-01

    The scale and complexity of today's ground based astronomy projects have justifiably required Principal Investigator's and their project teams to adopt more disciplined management processes and tools in order to achieve timely and accurate quantification of the progress and relative health of their projects. Earned Value Management (EVM) is one such tool. Developed decades ago and used extensively in the defense and construction industries, and now a requirement of NASA projects greater than $20M; EVM has gained a foothold in ground-based astronomy projects. The intent of this paper is to de-mystify EVM by discussing the fundamentals of project management, explaining how EVM fits with existing principles, and describing key concepts every project can use to implement their own EVM system. This paper also discusses pitfalls to avoid during implementation and obstacles to its success. The authors report on their organization's most recent experience implementing EVM for the GMT-Consortium Large Earth Finder (G-CLEF) project. G-CLEF is a fiber-fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT), planned for construction at the Las Campanas Observatory in Chile's Atacama Desert region.

  9. Environmental Assessment of Ground Water Compliance at the Durango, Colorado, UMTRA Project Site

    SciTech Connect

    N /A

    2002-11-29

    The U.S. Department of Energy (DOE) is proposing a ground water compliance strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Durango, Colorado. DOE has prepared this environmental assessment to provide the public with information concerning the potential effects of this proposed strategy.

  10. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    NASA Technical Reports Server (NTRS)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  11. Preliminary report on ground water in the Michaud Flats Project, Power County, Idaho

    USGS Publications Warehouse

    Stewart, J.W.; Nace, Raymond L.; Deutsch, Morris

    1952-01-01

    The Michaud Flats Project area, as here described, includes about 65 square miles in central Power County, south of the Snake River in the southeastern Snake River Plain of Idaho. The principal town and commercial center of the area is American Falls. The immediate purpose of work in the area by the U.S. Geological Survey was to investigate the possibility of developing substantial quantities of ground water for irrigating high and outlying lands in the proposed Michaud Flats Project area of the U.S. Bureau of Reclamation. Initial findings are sufficiently favorable to warrant comprehensive further investigation. Advanced study would assist proper utilization of ground-water resources and would aid ultimate evaluation of total water resources available in the area. About 10,000 acres of low-lying lands in the Michaud Flats project could be irrigated with water from the Snake River under a low-line distribution system involving a maximum pumping lift of about 200 feet above the river. An additional larger area of high and outlying lands is suitable for irrigation with water pumped from wells. If sufficient ground water is economically available, the expense of constructing and operating a costly highline distribution system for surface water could be saved. Reconnaissance of the ground-water geology of the area disclosed surface outcrops of late Cenozoic sedimentary, pyroclastic, and volcanic rocks. Well logs and test borings show that similar materials are present beneath the land surface in the zone of saturation. Ground water occurs under perched, unconfined, and confined (artesian) conditions, but the aquifers have not been adequately explored. Existing irrigation wells, 300 feet or less in depth, yield several hundred to 1,400 gallons of water a minute, with pumping drawdowns of 6 to 50 feet, and perhaps more. A few wells have been pumped out at rates of less than 800 gallons a minute. Scientific well-construction and development methods would lead to more

  12. Satellite Cloud Data Validation through MAGIC Ground Observation and the S'COOL Project: Scientific Benefits grounded in Citizen Science

    NASA Astrophysics Data System (ADS)

    Crecelius, S.; Chambers, L. H.; Lewis, P. M.; Rogerson, T.

    2013-12-01

    The Students' Cloud Observation On-Line (S'COOL) Project was launched in 1997 as the Formal Education and Public Outreach arm of the Clouds and the Earth's Radiant Energy System (CERES) Mission. ROVER, the Citizen Scientist area of S'COOL, started in 2007 and allows participants to make 'roving' observations from any location as opposed to a fixed, registered classroom. The S'COOL Project aids the CERES Mission in trying to answer the research question: 'What is the Effect of Clouds on the Earth's Climate'. Participants from all 50 states, most U.S. Territories, and 63 countries have reported more than 100,500 observations to the S'COOL Project over the past 16 years. The Project is supported by an intuitive website that provides curriculum support and guidance through the observation steps; 1) Request satellite overpass schedule, 2) Observe clouds, and 3) Report cloud observations. The S'COOL Website also hosts a robust database housing all participants' observations as well as the matching satellite data. While the S'COOL observation parameters are based on the data collected by 5 satellite missions, ground observations provide a unique perspective to data validation. Specifically, low to mid level clouds can be obscured by overcast high-level clouds, or difficult to observe from a satellite's perspective due to surface cover or albedo. In these cases, ground observations play an important role in filling the data gaps and providing a better, global picture of our atmosphere and clouds. S'COOL participants, operating within the boundary layer, have an advantage when observing low-level clouds that affect the area we live in, regional weather patterns, and climate change. S'COOL's long-term data set provides a valuable resource to the scientific community in improving the "poorly characterized and poorly represented [clouds] in climate and weather prediction models'. The MAGIC Team contacted S'COOL in early 2012 about making cloud observations as part of the MAGIC

  13. Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site

    SciTech Connect

    N /A

    2002-08-13

    The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA).

  14. ISOPHOT observations of the Pluto-Charon system: Pluto's thermal lightcurve

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Laureijs, R.; Schmitt, B.; Quirico, E.; de Bergh, C.; Crovisier, J.; Coustenis, A.

    1998-09-01

    The Pluto-Charon system has been observed by the Imaging Photopolarimeter of the Infrared Space Observatory (ISOPHOT) in four filters at 60, 100 150 and 200 microns. In an attempt to determine the surface temperature distribution of Pluto, observations were performed in February, March and August 1997, covering in total 5 to 8 (depending on the filter) rotational phases of the Pluto-Charon system. The main results are the following: (i) the system is clearly detected at all four wavelengths (ii) the flux levels at 60 and 100 mu m are somewhat below those determined from IRAS (Sykes et al., Science, 237, 1336, 1987) but confirm that the brightness temperature is higher in the far-IR than at mm/submm wavelengths, (iii) the data indicate a rotational lightcurve, unambiguously at 60 mu m and more marginally at 100 mu m, providing a direct proof that Pluto's surface is not isothermal. With a maximum near an east longitude L=75(deg) and a minimum near L=200(deg) , this thermal lightcurve is roughly, but not exactly anticorrelated with Pluto's visible lightcurve, which has a mininum near L=100(deg) and a maximum near L=220(deg) (Buie et al. Icarus, 125, 233, 1997). In accordance with the visible lightcurve and HST imaging, the data can be modelled in terms of three different surface units (Charon, Pluto ``bright and cold" regions -- tentatively identified as N_2 ice at ~ 40 K -- and Pluto ``dark and warm" regions). The ``dark and warm" regions are found to have a dayside temperature of at least 50-60 K and a thermal inertia of ~ 2x10(4) erg cm(-2) s(-1/2) K(-1) . The low thermal inertia may contribute to the decrease of brightness temperatures towards longer wavelengths. Possible implications on the nature of Pluto's ``dark" terrains will be discussed.

  15. The ground track oblique Cassini projection used for producing VIIRS mapped imagery

    NASA Astrophysics Data System (ADS)

    Mills, Stephen

    2014-10-01

    The Suomi-NPP Visible Infrared Imager Radiometer Suite (VIIRS) radiance is mapped to make image products using the ground-track Mercator (GTM) algorithm developed at Raytheon. This algorithm defines a process for transforming gridded map (x/y) coordinates of the image into Earth coordinates (longitude/latitude). The y-axis reference is the satellite ground track, which is mapped with an even scale. Great circles placed orthogonally with respect to the ground track define the x-axis. In its current state the algorithm is only defined for the Map-to-Earth (MtE) transformation, but the Earth-to-Map (EtM) transformation has no mathematical algorithm, and instead must use a slow search algorithm for every point. Because of this, the GTM is not a true map projection. This paper remedies this by describing an EtM transformation algorithm using a Ground Track Oblique Cassini (GTOC) projection. This is in somewhat similar to the Space Oblique Mercator (SOM) Projection developed for Landsat. However, Landsat has a very narrow swath, and the GTOC projection better preserves scale across a wider swath, making it more suited for sensors such as VIIRS. Also, unlike the SOM, it keeps the ground-track centered, which is a more efficient use of screen area when it is viewed. This paper describes details of the algorithm, including adjustments necessary for an elliptical orbit and an ellipsoidal Earth. It evaluates Map parameters including conformality and scale preservation, comparing this with other projections, including the SOM. It also evaluates improvements in efficiency relative to a search algorithm.

  16. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  17. Orbital and Rotational Dynamics of Pluto's Small Moons

    NASA Astrophysics Data System (ADS)

    Showalter, Mark; Weaver, Harold; Spencer, John; Porter, Simon; Hamilton, Douglas; Binzel, Richard; Buie, Marc; Grundy, William; Nimmo, Francis; Jacobson, Robert; Brozovic, Marina; Stern, S. Alan; Olkin, Cathy; Young, Leslie; Ennico, Kimberly

    2016-04-01

    Four small moons, Styx, Nix, Kerberos and Hydra, orbit the central binary planet comprising Pluto and Charon. Showalter and Hamilton (Nature 522, 45-49, 2015) analyzed Hubble Space Telescope (HST) data from 2010-2012 to explore some of the dynamical consequences of orbiting a binary planet. They noted evidence for a chaotic rotation of Nix and Hydra, and identified a possible three-body resonance between Styx, Nix and Hydra. We revisit the dynamics of the outer moons based on the data from the New Horizons flyby of July 2015, combined with three more years of HST data. As New Horizons was approaching Pluto, the LORRI camera regularly imaged the moons over a period of ~100 days. It also resolved the moons in closeup images, revealing details about the moons' sizes, shapes and surface properties. The LORRI data set has made it possible to derive light curves, rotation rates and pole orientations unambiguously. The moons rotate much faster than they orbit and have high obliquities, suggesting that tidal de-spinning has not played a dominant role in their rotational evolution. We will discuss the latest conclusions from a joint analysis of the LORRI and HST data sets, combined with new dynamical simulations. This work was supported by NASA's New Horizons project and by Space Telescope Science Institute.

  18. Orbital and Rotational Dynamics of Pluto's Small Moons

    NASA Astrophysics Data System (ADS)

    Showalter, Mark R.; Weaver, Harold A.; Spencer, John R.; Porter, Simon; Hamilton, Douglas P.; Binzel, Richard P.; Buie, Marc W.; Grundy, William M.; Nimmo, Francis; Jacobson, Robert A.; Brozovic, Marina; Throop, Henry B.; Stern, S. A.; Olkin, Catherine B.; Young, Leslie; Ennico, Kimberly; The New Horizons Science Team

    2016-05-01

    Four small moons, Styx, Nix, Kerberos and Hydra, orbit the central binary planet comprising Pluto and Charon. Showalter and Hamilton (Nature 522, 45-49, 2015) analyzed Hubble Space Telescope (HST) data from 2010-2012 to explore some of the dynamical consequences of orbiting a binary planet. They noted evidence for a chaotic rotation of Nix and Hydra, and identified a possible three-body resonance between Styx, Nix and Hydra. We revisit the dynamics of the outer moons based on the data from the New Horizons flyby of July 2015, combined with three more years of HST data. As New Horizons was approaching Pluto, the LORRI camera regularly imaged the moons over a period of approximately 100 days. It also resolved the moons in closeup images, revealing details about the moons' sizes, shapes and surface properties. The LORRI data set has made it possible to derive light curves, rotation rates and pole orientations unambiguously. The moons rotate much faster than they orbit and have high obliquities, suggesting that tidal de-spinning has not played the dominant role in their rotational evolution; impacts may also have played an important role. We will discuss the latest conclusions from a joint analysis of the LORRI and HST data sets, combined with new dynamical simulations. This work was supported by NASA's New Horizons project and by Space Telescope Science Institute.

  19. Spectrophotometry of pluto-charon mutual events: individual spectra of pluto and charon.

    PubMed

    Sawyer, S R; Barker, E S; Cochran, A L; Cochran, W D

    1987-12-11

    Time-resolved spectra of the 3 March and 4 April 1987 mutual events of Pluto and its satellite Charon were obtained with spectral coverage from 5,500 to 10,000 angstroms with 25 angstrom spectral resolution. Since both events were total occultations of Charon by Pluto, spectra were obtained of the anti-Charon-facing hemisphere of Pluto, with no contribution from Charon during totality. On 4 April, a combined spectrum of Pluto and Charon immediately before first contact was also obtained. The spectrum of the Pluto-facing hemisphere of Charon was extracted by differencing the pre-event and totality spectra. The spectra were reduced to reflectances by ratioing them to spectra of solar analog stars. Charon has a featureless reflectance spectrum, with no evidence of methane absorption. Charon's reflectance appears neutral in color and corresponds to a geometric albedo of approximately 0.37 at 6000 angstroms. The Pluto reflectance spectrum displays methane absorption bands at 7300, 7900, 8400, 8600, and 8900 angstroms and is red in color, with a geometric albedo of approximately 0.56 at 6000 angstroms. The signal-to-noise ratios of the eclipse spectra were not high enough to unambiguously identify the weaker methane band at 6200 angstroms.

  20. Pluto's implications for a Snowball Titan

    NASA Astrophysics Data System (ADS)

    Wong, Michael L.; Yung, Yuk L.; Randall Gladstone, G.

    2015-01-01

    The current Cassini-Huygens Mission to the Saturn system provides compelling evidence that the present state of Titan's dense atmosphere is unsustainable over the age of the Solar System. Instead, for most of its existence, Titan's atmosphere might have been in a Snowball state, characterized by a colder surface and a smaller amount of atmospheric CH4, similar to that of Pluto or Triton. We run a 1-D chemical transport model and show that the rates of organic synthesis on a Snowball Titan are significantly slower than those on present-day Titan. The primary method of methane destruction-photosensitized dissociation in the stratosphere-is greatly dampened on Snowball Titan. The downward flux of higher-order molecules through the troposphere is dominated not by hydrocarbons such as ethane, as is the case on Titan today, but by nitriles. This result presents a testable observation that could confirm the Snowball Titan hypothesis. Because Pluto's atmosphere is similar to Titan's in composition, it serves as a basis for comparison. Future observations of Pluto by the New Horizons Mission will inform photochemical models of Pluto's atmosphere and can help us understand the photochemical nature of paleo-Titan's atmosphere.

  1. The planets Uranus, Neptune, and Pluto (1971)

    NASA Technical Reports Server (NTRS)

    Palluconi, F. D.

    1972-01-01

    Design criteria relating to spacecraft intended to investigate the planets of Uranus, Neptune, and Pluto are presented. Assessments were made of the potential effects of environmental properties on vehicle performance. Pertinent data on the mass, radius, shape, mean density, rotational pole location, and mean orbital elements for the three planets are given in graphs and tables.

  2. Pluto results on jets and QCD

    SciTech Connect

    Pluto collaboration

    1981-02-01

    Results obtained with the PLUTO detector at PETRA are presented. Multihadron final states have been analysed with respect to clustering, energy-energy correlations and transverse momenta in jets. QCD predictions for hard gluon emission and soft gluon-quark cascades are discussed. Results on ..cap alpha../sub s/ and the gluon spin are given.

  3. The Formation of Pluto's Small Satellites

    NASA Astrophysics Data System (ADS)

    Levison, Harold F.; Walsh, K. J.

    2013-05-01

    Abstract (2,250 Maximum Characters): The Pluto systems is one of extremes. In addition to Pluto, the system contains at least 5 satellites. Charon is the most massive, being more than 1/9 the mass of Pluto. This makes it the most massive satellite, relative to the primary, of any other planet or dwarf-planet in the Solar System. The other satellites are much smaller - having radii that are probably significantly less than 50 km. They are on nearly-circular, co-planer orbits. Perhaps one of their most intriguing characteristics is that they are all close to n:1 mean motion resonances (MMRs) with Charon. In particular, Nix, P4, and Hydra are close to the 4:1, 5:1, and 6:1 MMR, respectively. (There is as yet no good orbit for P5). Observations are good enough for Nix and Hydra to conclude that while the are near their respective resonances, they do not appear to actually be librating in them. This a been a challenge for theories of their formation. I will review the formation and evolution of Pluto's family of satellites. In addition, I will present some new work exploring a heretofore unexplored dynamical mechanism that might help explain the puzzling orbits of the small satellites.

  4. Landslides on Charon and not on Pluto

    NASA Astrophysics Data System (ADS)

    Beyer, Ross A.; Singer, Kelsi N.; Nimmo, Francis; Moore, Jeffrey M.; McKinnon, William B.; Schenk, Paul M.; Spencer, John R.; Weaver, Harold A.; Olkin, Catherine B.; Young, Leslie; Ennico, Kimberly; Stern, S. Alan; New Horizons Science Team

    2016-10-01

    Landslide features are observed on Charon but not on Pluto. This observation is another that reinforces the different strength regime of surface materials on the two bodies. Pluto's surface, although underlain by strong water ice, is primarily mantled with a variety of geologically weak ice species. Observations of these features indicate that they flow and move, but do so in a manner similar to glacial flow, and the strength and steepening required to precipitate a landslide simply isn't present in these materials under the pressure and temperature conditions on Pluto's surface. There are certainly areas of local mass-wasting, but no substantial landslide deposits. There are some locations on Pluto, notably along the fossae walls, and perhaps on the steeper montes surfaces that could have fostered landslides, but no landslide deposits have been observed nor are there obvious landslide alcoves that would have sourced them. The resolution of observations along the fossae may prevent identification there, and the toes of the steeper montes are embayed by geologically recent plains material which could be overlaying any landslide deposits.Charon, however, has a water-ice surface which exhibits many strength-dominated geologic features, and also exhibits landslide deposits. There are not many of these features and they are confined to the informally named Serenity Chasma, which has relatively steep, tall slopes, perfect for landslide initiation. We will discuss the physical characteristics of these landslide deposits and their context amongst other landslide features in the solar system.

  5. Pluto Insolation and the South Polar Cap

    NASA Astrophysics Data System (ADS)

    Rubincam, D. P.

    2009-05-01

    Pluto's south polar cap is a puzzle. The planet's southern cap may be brighter than the north, even though it was the south pole which faced the Sun on Pluto's recent approach to perihelion. One would think that the brighter pole would be the one which received less insolation: volatiles would be expected to sublimate from the sunny south and condense in the north, enlarging the north polar cap with fresh and bright frost. Thus the north pole should be brighter than the south. However, it may be the other way around, although the evidence is not entirely clear. One suggested explanation of the (possible) paradox is that the south polar cap has, over the last several million years, received less insolation than the north, accumulating a larger supply of volatiles. However, expressing the solar insolation in terms of Pluto's orbital elements clearly shows that both the north and south poles have received nearly the same amount of sunlight over the past several million years. Hence any difference between the polar caps cannot be ascribed to a difference in the amount of long-term insolation received at each pole. Thus any difference between the poles, if there is one, must invoke conditions peculiar to Pluto's climate system, rather than rely on insolation alone.

  6. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    USGS Publications Warehouse

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  7. Geology Before Pluto: Pre-encounter Considerations

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey

    2014-05-01

    Jeffrey M. Moore (NASA Ames) and the New Horizons Science Team Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e. those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the

  8. Energetic Particles in the far and near Environment of Pluto

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Hill, M. E.; McNutt, R. L., Jr.; Brown, L. E.; Kusterer, M. B.; Vandegriff, J. D.; Smith, H. T.; Mitchell, D. G.; Haggerty, D. K.; Bagenal, F.; Krimigis, S. M.; Lisse, C. M.; Delamere, P. A.; Elliott, H. A.; Horanyi, M.; McComas, D. J.; Piquette, M. R.; Poppe, A. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Valek, P. W.; Weidner, S.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, A.

    2015-12-01

    The New Horizons spacecraft was launched in 2006, passed Jupiter and its magnetotail, took continuous measurements in the solar wind throughout the recent years, and flew by Pluto in July 2015. The onboard PEPSSI instrument measures ion and electron intensities, masses, and energies in the keV to MeV range. The closest approach distance to Pluto was 11 Pluto radii, inside the orbit of Charon. Data taken near Pluto is downlinked throughout August. We will present analysis of this data and set it into context with previous measurements. We expect a number of interesting particle structures around Pluto. Parts of Pluto's molecular nitrogen atmosphere is escaping and will co-orbit with Pluto, potentially forming a partial gas torus. This torus can be additionally sourced by other Kuiper belt objects. The neutrals are eventually ionized and pick-up by the solar wind brings them into the PEPSSI energy range. The measured ion densities can be used to constrain the Pluto torus. Pluto is not expected to have an intrinsic magnetic field, but the energetic particle data can be used to infer its properties, if any. Pluto interacts instead with the solar wind via the pick-up of its ions and the magnetic fields created by currents in its ionosphere. The relative role of these mechanisms can be revealed by the flyby data and directly compared to data that was taken at Jupiter with identical instrumentation.

  9. Climate zones on Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Binzel, Richard P.; Earle, Alissa M.; Buie, Marc W.; Young, Leslie A.; Stern, S. Alan; Olkin, Cathy B.; Ennico, Kimberly; Moore, Jeffrey M.; Grundy, Will; Weaver, Harold A.; Lisse, Carey M.; Lauer, Tod R.; New Horizons Geology; Geophysics Imaging Team

    2017-05-01

    We give an explanatory description of the unusual ;climate zones; on Pluto that arise from its high obliquity (mean 115°) and high amplitude (±12°) of obliquity oscillation over a 2.8 million year period. The zones we describe have astronomically defined boundaries and do not incorporate atmospheric circulation. For such a high mean obliquity, the lines of tropics (greatest latitudes where the Sun can be overhead) cycle closer to each pole than does each arctic circle, which in turn cycle nearly to the equator. As a consequence in an astronomical context, Pluto is more predominantly ;tropical; than ;arctic.; Up to 97% of Pluto's surface area can experience overhead Sun when the obliquity cycle is at its minimum of 103°. At this same obliquity phase (most recently occurring 0.8 Myr ago), 78% of Pluto's surface experienced prolonged intervals without sunlight or ;arctic winter; (and corresponding ;arctic summer;). The intersection of these climate zones implies that a very broad range of Pluto's latitudes (spanning 13-77° in each hemisphere; 75% of the total surface area) are both tropical and arctic. While some possible correlations to these climate zones are suggested by comparison with published maps of Pluto and Charon yielded by the New Horizons mission, in this work we present a non-physical descriptive analysis only. For example, the planet-wide dark equatorial band presented by Stern et al. (2015; Science, 350, 292-299) corresponds to Pluto's permanent ;diurnal zone.; In this zone spanning latitudes within ±13° of the equator, day-night cycles occur each Pluto rotation (6.4 days) such that neither ;arctic winter; nor ;arctic summer; has been experienced in this zone for at least 20 million years. The stability of this and other climate zones may extend over several Gyr. Temperature modeling shows that the continuity of diurnal cycles in this region may be the key factor enabling a long-term stability for the high albedo contrast between Tombaugh Regio

  10. Projected shell model study of ground state bands in 171-175Tm

    NASA Astrophysics Data System (ADS)

    Slathia, B.; Devi, R.; Khosa, S. K.

    2016-10-01

    The ground state bands of thulium isotopes with mass numbers (A), ranging from 171 to 175, have been investigated in the framework of the projected shell model. The theoretical results for the energy levels of ground state bands were found to be in reasonable agreement with the observed values. Predictably, E2 transition probabilities have got predicted vis-a-vis transitions with non-availability of experimental values. The E2 transition probability values have been observed to follow the same trend as seen in 171Tm.

  11. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    NASA Technical Reports Server (NTRS)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  12. Exploring potential Pluto-generated neutral tori

    NASA Astrophysics Data System (ADS)

    Smith, Howard T.; Hill, Matthew; KollMann, Peter; McHutt, Ralph

    2015-11-01

    The NASA New Horizons mission to Pluto is providing unprecedented insight into this mysterious outer solar system body. Escaping molecular nitrogen is of particular interest and possibly analogous to similar features observed at moons of Saturn and Jupiter. Such escaping N2 has the potential of creating molecular nitrogen and N (as a result of molecular dissociation) tori or partial toroidal extended particle distributions. The presence of these features would present the first confirmation of an extended toroidal neutral feature on a planetary scale in our solar system. While escape velocities are anticipated to be lower than those at Enceladus, Io or even Europa, particle lifetimes are much longer in Pluto’s orbit because as a result of much weaker solar interaction processes along Pluto’s orbit (on the order of tens of years). Thus, with a ~248 year orbit, Pluto may in fact be generating an extended toroidal feature along it orbit.For this work, we modify and apply our 3-D Monte Carlo neutral torus model (previously used at Saturn, Jupiter and Mercury) to study/analyze the theoretical possibility and scope of potential Pluto-generated neutral tori. Our model injects weighted particles and tracks their trajectories under the influence of all gravitational fields with interactions with other particles, solar photons and Pluto collisions. We present anticipated N2 and N tori based on current estimates of source characterization and environmental conditions. We also present an analysis of sensitivity to assumed initial conditions. Such results can provide insight into the Pluto system as well as valuable interpretation of New Horizon’s observational data.

  13. Hail prevention by ground-based silver iodide generators: Results of historical and modern field projects

    NASA Astrophysics Data System (ADS)

    Dessens, J.; Sánchez, J. L.; Berthet, C.; Hermida, L.; Merino, A.

    2016-03-01

    The science of hail suppression by silver iodide (AgI) cloud seeding was developed during the second half of the 20th century in laboratory and tested in several research or operational projects using three delivery methods for the ice forming particles: ground generators, aircraft, and rockets. The randomization process for the seeding was often considered as the imperative method for a better evaluation but failed to give firm results, mostly because the projects did not last long enough considering the hazardous occurrence of severe hailfalls, and also probably due to the use of improper hail parameters. At the same time and until now, a continuous long-term research and operational field project (1952-2015) using ground generator networks has been conducted in France under the leadership of the Association Nationale d'Etude et de Lutte contre les Fléaux Atmosphériques (ANELFA), with a control initially based on annual insurance loss-to-risk ratios, then on hailpad data. More recently (2000-2009), a companion ground seeding project was developed in the north of Spain, with control mostly based on microphysical and hailpad data. The present paper, which focuses on hail suppression by ground seeding, reviews the production of the AgI nuclei, their dispersion and measurement in the atmosphere, as well as their observed or simulated effects in clouds. The paper summarizes the results of the main historical projects in Switzerland, Argentina, and North America, and finally concentrates on the current French and Spanish projects, with a review of already published results, complemented by new ones recently collected in Spain. The conclusion, at least for France and Spain, is that if ground seeding is performed starting 3 hours before the hail falls at the ground with a 10-km mesh AgI generator network located in the developing hailstorm areas, each generator burning about 9 g of AgI per hour, the hailfall energy of the most severe hail days is decreased by about 50%.

  14. Pluto followed its heart: reorientation and faulting of Pluto due to volatile loading in Sputnik Planum

    NASA Astrophysics Data System (ADS)

    Tuttle Keane, James; Matsuyama, Isamu; Kamata, Shunichi; Steckloff, Jordan

    2016-10-01

    The New Horizons flyby of Pluto revealed the dwarf planet to be a strikingly diverse, geologically active world. Perhaps the most intriguing feature on the New Horizons encounter hemisphere is Sputnik Planum—a 1000 km diameter, probable impact basin, filled with several kilometers of actively convecting volatile ices (N2, CH4, CO). One salient characteristic of Sputnik Planum is its curious alignment with the Pluto-Charon tidal axis. The alignment of large geologic features with principal axis of inertia (such as the tidal axis) is the hallmark of global reorientation, i.e. true polar wander. Here we show that the present location of Sputnik Planum is a natural consequence of loading of 1-2 km of volatile ices within the Sputnik Planum basin. Larger volatile ice thicknesses (like those inferred from studies of ice convection within Sputnik Planum) betray an underlying negative gravity anomaly associated with the basin. As Pluto reoriented in response to the loading of volatile ices within Sputnik Planum, stresses accumulated within the lithosphere (as each geographic location experiences a change in tidal/rotational potential). These reorientation stresses, coupled with loading stresses, and stresses from the freezing of a subsurface ocean resulted in the fracturing of Pluto's lithosphere in a characteristic, global pattern of extensional faults. Our predicted pattern of extensional faults due to this reorientation closely replicates the observed distribution of faults on Pluto (more so than global expansion, orbit migration, de-spinning, or loading alone). Sputnik Planum likely formed ~60° northwest of its present location, and was loaded with volatile ices over millions of years due to seasonal volatile transport cycles. This result places Pluto in a truly unique category of planetary bodies where volatiles are not only controlling surface geology and atmospheric processes, but they are also directly controlling the orientation of the entire dwarf planet

  15. The albedos of Pluto and Charon - Wavelength dependence

    NASA Technical Reports Server (NTRS)

    Marcialis, Robert L.; Lebofsky, Larry A.; Disanti, Michael A.; Fink, Uwe; Tedesco, Edward F.; Africano, John

    1992-01-01

    The March 3, 1987 occultation of Charon by Pluto was monitored simultaneously with three telescopes. Each site covered a distinct wavelength interval with the total range spanning 0.44-2.4 microns. Observing the same event ensures an identical sun-Pluto-earth geometry for all three sites, and minimizes the assumptions which must be made to combine results. This spectrophotometry is used to derive the individual geometric albedos of Pluto and Charon over a factor of at least 5 in wavelength. Combining the results with those of Binzel (1988) improved (B - V) color estimates (on the 'Johnson Pluto' system) are obtained for the components of the system at rotational phase 0.75: (Pluto + Charon) = 0.843 +/- 0.006; Pluto alone = 0.866 +/- 0.007; and Charon alone = 0.702 +/- 0.010.

  16. The Exploration of the Pluto System by New Horizons

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan; NASA New Horizons Team

    2016-01-01

    The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long term activity raise fundamental questions about how small planets remain active many billions of years (Gyr) after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its North Pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected. In this talk I will summarize the objectives of the New Horizons mission, its scientific payload, and survey key results obtained to date about Pluto and its system of moons.

  17. Past epochs of significantly higher pressure atmospheres on Pluto

    NASA Astrophysics Data System (ADS)

    Stern, S. A.; Binzel, R. P.; Earle, A. M.; Singer, K. N.; Young, L. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; New Horizons Geology; Geophysics; Atmospheres Teams

    2017-05-01

    Pluto is known to have undergone thousands of cycles of obliquity change and polar precession. These variations have a large and corresponding impact on the total average solar insolation reaching various places on Pluto's surface as a function of time. Such changes could produce dramatic increases in surface pressure and may explain certain features observed by New Horizons on Pluto's surface, including some that indicate the possibility of surface paleo-liquids. This paper is the first to discuss multiple lines of geomorphological evidence consistent with higher pressure epochs in Pluto's geologic past, and it also the first to provide a mechanism for potentially producing the requisite high pressure conditions needed for an environment that could support liquids on Pluto. The presence of such liquids and such conditions, if borne out by future work, would fundamentally affect our view of Pluto's past climate, volatile transport, and geological evolution. This paper motivates future, more detailed climate modeling and geologic interpretation efforts in this area.

  18. Common ground: the HealthWeb project as a model for Internet collaboration.

    PubMed Central

    Redman, P M; Kelly, J A; Albright, E D; Anderson, P F; Mulder, C; Schnell, E H

    1997-01-01

    The establishment of the HealthWeb project by twelve health sciences libraries provides a collaborative means of organizing and enhancing access to Internet resources for the international health sciences community. The project is based on the idea that the Internet is common ground for all libraries and that through collaboration a more comprehensive, robust, and long-lasting information product can be maintained. The participants include more than seventy librarians from the health sciences libraries of the Committee on Institutional Cooperation (CIC), an academic consortium of twelve major research universities. The Greater Midwest Region of the National Network of Libraries of Medicine serves as a cosponsor. HealthWeb is an information resource that provides access to evaluated, annotated Internet resources via the World Wide Web. The project vision as well as the progress reported on its implementation may serve as a model for other collaborative Internet projects. PMID:9431420

  19. The Surfaces of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Roush, Ted L.; Moore, Jeffrey M.; Sykes, Mark V.; Owen, Tobias C.; Bartholomew, Mary Jane; Brown, Robert H.; Tryka, Kimberly A.

    1996-01-01

    Much of the surface of Pluto consists of high-albedo regions covered to an unknown depth by Beta-N2, contaminated with CH4, CO, and other molecules. A portion of the exposed surface appears to consist of solid H2O. The remainder is covered by lower albedo material of unknown composition. The N2 ice may occur as polar caps of large extent, leaving ices and other solids of lower volatility in the equatorial regions. The low-albedo material found primarily in the equatorial regions may consist in part of solid hydrocarbons and nitriles produced from N2 and CH4 in the atmosphere or in the surface ices. Alternatively, it may arise from deposition from impacting bodies and/or the chemistry of the impact process itself. Charon's surface is probably more compositionally uniform than that of Pluto, and is covered by H2O ice with possible contaminants or exposures of other materials that are as yet unidentified. The molecular ices discovered on Pluto and Charon have been identified from near-infrared spectra obtained with Earth-based telescopes. The quantitative interpretation of those data has been achieved through the computation of synthetic spectra using the Hapke scattering theory and the optical constants of various ices observed in the laboratory. Despite limitations imposed by the availability of laboratory data on ices in various mixtures, certain specific results have been obtained. It appears that CH4 and CO are trace constituents, and that some fraction of the CH4 (and probably the CO) on Pluto is dissolved in the matrix of solid N2. Pure CH4 probably also occurs on Pluto's surface, allowing direct access to the atmosphere. Study of the nitrogen absorption band at 2.148 micrometers shows that the temperature of the N2 in the present epoch is 40 +/-2 K. The global temperature regime of Pluto can be modeled from observations of the thermal flux at far-infrared and millimeter wavelengths. The low-albedo equatorial regions must be significantly warmer than the polar

  20. The Chemistry of Pluto and its Satellites

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2017-01-01

    Pluto's bulk composition and the composition of the surface layers hold clues to the origin and evolution of a number of other Solar System bodies of comparable size in the region beyond Neptune. The July 14, 2015 flyby of the Pluto system with the New Horizons spacecraft afforded the opportunity to corroborate and greatly improve discoveries about the planet and its satellites derived Earth-based studies. It also revealed extraordinary details of the surface and atmosphere of Pluto, as well as the geology and composition of Charon and two smaller satellites. With a mean density of 1.86 g/sq cm, the bulk composition of Pluto is about two-thirds anhydrous solar composition rocky material and one-third volatiles (primarily H2O in liquid and solid states) by mass, the surface is a veneer of ices dominated by N2, with smaller amounts of CH4 and CO, as well as limited exposures of H2O ice (considered to be "bedrock"). N2, CH4, and CO occur as solid solutions at temperature-dependent mutual concentrations, each component being soluble in the others. Frozen C2H6 as a minor component has also been identified. Sublimation and recondensation of N2, CH4, and CO over seasonal (248 y) and Milankovich-type megaseasons (approx. 3 My) result in the redistribution of these ices over time and with latitude control. Solid N2 is found in glaciers originating in higher elevations and flowing at the present time into a basin structure larger than the State of Texas, forming a convecting lens of N2 that overturns on a timescale of order 10 My. The varied colors of Pluto's landscape arise from the energetic processing of the surface ices in processes that break the simple molecules and reassemble complex organic structures consisting of groups of aromatic rings connected by aliphatic chains. When synthesized in the laboratory by UV or electron irradiation of a Pluto mix of ice, this material, called tholin, has colors closely similar to Pluto. The Pluto ice tholin analog contains

  1. Impact and cratering rates onto Pluto

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2015-09-01

    The New Horizons spacecraft fly-through of the Pluto system in July 2015 will provide humanity's first data for the crater populations on Pluto and its binary companion, Charon. In principle, these surfaces could be dated in an absolute sense, using the observed surface crater density (# craters/km2 larger than some threshold crater diameter D). Success, however, requires an understanding of both the cratering physics and absolute impactor flux. The Canada-France Ecliptic Plane Survey (CFEPS) L7 synthetic model of classical and resonant Kuiper belt populations (Petit, J.M. et al. [2011]. Astron. J. 142, 131-155; Gladman, B. et al. [2012]. Astron. J. 144, 23-47) and the scattering object model of Kaib et al. (Kaib, N., Roškar, R., Quinn, T. [2011]. Icarus 215, 491-507) calibrated by Shankman et al. (Shankman, C. et al. [2013]. Astrophys. J. 764, L2-L5) provide such impact fluxes and thus current primary cratering rates for each dynamical sub-population. We find that four sub-populations (the q < 42AU hot and stirred main classicals, the classical outers, and the plutinos) dominate Pluto's impact flux, each providing ≈ 15- 25 % of the total rate. Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with impactor diameter d > 100km) connects to smaller projectiles, we compute cratering rates using five model impactor size distributions: a single power-law, a power-law with a knee, a power-law with a divot, as well as the "wavy" size distributions described in Minton et al. (Minton, D.A. et al. [2012]. Asteroids Comets Meteors Conf. 1667, 6348) and Schlichting et al. (Schlichting, H.E., Fuentes, C.I., Trilling, D.E. [2013]. Astron. J. 146, 36-42). We find that there is only a small chance that Pluto has been hit in the past 4 Gyr by even one impactor with a diameter larger than the known break in the projectile size distribution (d ≈ 100km) which would create a basin on Pluto (D ⩾ 400km in diameter). We show that due to

  2. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    SciTech Connect

    Not Available

    1995-01-01

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site.

  3. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    SciTech Connect

    Wang, Hanquan

    2014-10-01

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.

  4. The TERESA project: from space research to ground tele-echography

    NASA Technical Reports Server (NTRS)

    Vieyres, Pierre; Poisson, Gerard; Courreges, Fabien; Merigeaux, Olivier; Arbeille, Philippe

    2003-01-01

    Ultrasound examinations represent one of the major diagnostic modalities of future healthcare. They are currently used to support medical space research but require a high skilled operator for both probe positioning on the patient's skin and image interpretation. TERESA is a tele-echography project that proposes a solution to bring astronauts and remotely located patients on ground quality ultrasound examinations despite the lack of a specialist at the location of the wanted medical act.

  5. The TERESA project: from space research to ground tele-echography.

    PubMed

    Vieyres, Pierre; Poisson, Gerard; Courreges, Fabien; Merigeaux, Olivier; Arbeille, Philippe

    2003-01-01

    Ultrasound examinations represent one of the major diagnostic modalities of future healthcare. They are currently used to support medical space research but require a high skilled operator for both probe positioning on the patient's skin and image interpretation. TERESA is a tele-echography project that proposes a solution to bring astronauts and remotely located patients on ground quality ultrasound examinations despite the lack of a specialist at the location of the wanted medical act.

  6. Pluto - comments on crustal composition, evidence for global differentiation

    SciTech Connect

    Stern, S.A. )

    1989-09-01

    Evidence is presented in support of the hypothesis that the crust of Pluto consists of nearly pure volatiles and that Pluto has differentiated. The evidence includes the rapid atmospheric escape rate and the presence of methane frost on Pluto. Consideration is given to the implications of the hypothesis, including atmospheric and surface composition, topography, and the implications for Charon and other bodies. The possibility of conducting observations to test the theory is discussed. 33 refs.

  7. Tholins as Coloring Agents on Pluto

    NASA Astrophysics Data System (ADS)

    Cruikshank, D. P.; Materese, C. K.; Imanaka, H.; Dalle Ore, C.; Sandford, S. A.; Nuevo, M.

    2015-12-01

    The shape of the reflectance spectrum of Pluto recorded with telescopes, 0.3-1.0 μm, shows the planet's yellow-red color (1). Additionally, multi-filter images of Pluto with the MVIC camera on the New Horizons spacecraft report concentrations of the coloring agent(s) in some regions of the surface, and apparent near absence in other regions. Tholins are refractory organic solids of complex structure and high molecular weight, with a wide range of color ranging from yellow and orange to dark red, and through tan to black. They are readily synthesized in the laboratory by energetic processing of mixtures of the ices (N2, CH4, CO) known on Pluto's surface (2), or the same molecules in the gas phase (3). Energy in the form of UV light, electrons, protons, or coronal discharge are all effective to one degree or another in producing various types of tholins; details of the composition and yield vary with experimental conditions. Chemical analysis of ice tholins shows carboxylic acids, urea, and HCN and other nitriles. Aromatic/olefinic, amide, and other functional groups are identified in XANES analysis (4). The ice tholins produce by e- irradiation have a higher concentration of N than UV ice tholins, with N/C ~0.9 (versus ~0.5 for UV tholins) and O/C~0.2. EUV photolysis of Pluto atmosphere analog yields pale yellow solids relatively transparent in the visual, and with aliphatic CH bonds prominent in IR spectra. This material may be responsible for Pluto's hazes (5). Various tholins are the principal coloring agents on Pluto's surface, probably Charon's colored region, and on numerous other outer Solar System bodies (6). Refs: 1. Cruikshank, D. P. et al. 2014 DPS abstract #419.04; 2. Cruikshank et al. 2015 Icarus 246, 82; 3. Krasnopolsky & Cruikshank 1999 JGR 104 E9, 21,979; 4. Materese, C. K. et al. 2014 Ap.J. 788:111, June 20; 5. Imanaka, H. et al. 2014 DPS abstract #419.10; 6. Cruikshank, D. P. et al. 2005 Adv. Space Res. 36, 178.

  8. The Jagged Shores of Pluto Highlands

    NASA Image and Video Library

    2016-06-09

    This enhanced color view from NASA's New Horizons spacecraft zooms in on the southeastern portion of Pluto's great ice plains, where at lower right the plains border rugged, dark highlands informally named Krun Macula. Krun Macula -- Krun is the lord of the underworld in the Mandaean religion, and a macula is a dark feature on a planetary surface -- is believed to get its dark red color from tholins, complex molecules found across Pluto. Krun Macula rises 1.5 miles (2.5 kilometers) above the surrounding plain -- informally named Sputnik Planum -- and is scarred by clusters of connected, roughly circular pits that typically reach between 5 and 8 miles (8 and 13 kilometers) across, and up to 1.5 miles (2.5 kilometers) deep. At the boundary with Sputnik Planum, these pits form deep valleys reaching more than 25 miles (40 kilometers) long, 12.5 miles (20 kilometers) wide and almost 2 miles (3 kilometers) deep (almost twice as deep as the Grand Canyon in Arizona), and have floors covered with nitrogen ice. New Horizons scientists think these pits may have formed through surface collapse, although what may have prompted such a collapse is a mystery. This scene was created using three separate observations made by New Horizons in July 2015. The right half of the image is composed of 260 feet- (80 meter-) per-pixel data from the Long Range Reconnaissance Imager (LORRI), obtained at 9,850 miles (15,850 kilometers) from Pluto, about 23 minutes before New Horizons' closest approach. The left half is composed of 410 feet- (125 meter-) per-pixel LORRI data, obtained about six minutes earlier, with New Horizons 15,470 miles (24,900 kilometers) from Pluto. These data respectively represent portions of the highest- and second-highest-resolution observations obtained by New Horizons in the Pluto system. The entire scene was then colorized using 2230 feet- (680 meter-) per-pixel data from New Horizons' Ralph/Multispectral Visual Imaging Camera (MVIC), obtained at 21,100 miles (33

  9. The Jagged Shores of Pluto Highlands

    NASA Image and Video Library

    2016-06-09

    This enhanced color view from NASA's New Horizons spacecraft zooms in on the southeastern portion of Pluto's great ice plains, where at lower right the plains border rugged, dark highlands informally named Krun Macula. Krun Macula -- Krun is the lord of the underworld in the Mandaean religion, and a macula is a dark feature on a planetary surface -- is believed to get its dark red color from tholins, complex molecules found across Pluto. Krun Macula rises 1.5 miles (2.5 kilometers) above the surrounding plain -- informally named Sputnik Planum -- and is scarred by clusters of connected, roughly circular pits that typically reach between 5 and 8 miles (8 and 13 kilometers) across, and up to 1.5 miles (2.5 kilometers) deep. At the boundary with Sputnik Planum, these pits form deep valleys reaching more than 25 miles (40 kilometers) long, 12.5 miles (20 kilometers) wide and almost 2 miles (3 kilometers) deep (almost twice as deep as the Grand Canyon in Arizona), and have floors covered with nitrogen ice. New Horizons scientists think these pits may have formed through surface collapse, although what may have prompted such a collapse is a mystery. This scene was created using three separate observations made by New Horizons in July 2015. The right half of the image is composed of 260 feet- (80 meter-) per-pixel data from the Long Range Reconnaissance Imager (LORRI), obtained at 9,850 miles (15,850 kilometers) from Pluto, about 23 minutes before New Horizons' closest approach. The left half is composed of 410 feet- (125 meter-) per-pixel LORRI data, obtained about six minutes earlier, with New Horizons 15,470 miles (24,900 kilometers) from Pluto. These data respectively represent portions of the highest- and second-highest-resolution observations obtained by New Horizons in the Pluto system. The entire scene was then colorized using 2230 feet- (680 meter-) per-pixel data from New Horizons' Ralph/Multispectral Visual Imaging Camera (MVIC), obtained at 21,100 miles (33

  10. Detecting Gravitational Waves with Ground and Space Interferometers - with Special Attention to the Space Project ASTROD

    NASA Astrophysics Data System (ADS)

    Rüediger, Albrecht

    The existence of gravitational waves is the most prominent of Einstein's predictions that has not yet been directly verified. The space projects LISA and (partially) ASTROD share their goal and principle of operation with the ground-based interferometers currently under construction: the detection and measurement of gravitational waves by laser interferometry. Ground and space detection differ in their frequency ranges, and thus the detectable sources. Towards low frequencies, ground-based detection is limited by seismic noise, and yet more fundamentally by `gravity gradient noise', thus covering the range from a few Hz to a few kHz. On five sites worldwide, detectors of armlengths from 0.3 to 4 km are nearing completion. they will progressively be put in operation in the years 2002 and 2003. Future enhanced versions are being planned, with scientific data not expected until 2008, i.e. near the launch of the space project LISA. It is only in space that detection of signals below, say, 1 Hz is possible, opening a wide window to a different class of interesting sources of gravitational waves. The project LISA consists of three spacecraft in heliocentric orbits, forming a triangle of 5 million km sides. A technology demonstrator, designed to test vital LISA technologies, is to be launched, aboard a SMART-2 mission, in 2006. The proposed mission ASTROD will, among other goals, also aim at detecting gravitational waves, at even lower frequencies than LISA. Its later start will allow it to benefit from the expertise gained with LISA.

  11. Occultations by Pluto and Charon - 1990-1999

    NASA Technical Reports Server (NTRS)

    Mink, Douglas J.; Klemola, Arnold R.; Buie, Marc W.

    1991-01-01

    The results of a photographic plate search for stars as faint as V = 16 which may be occulted by Pluto or Charon between January 1, 1990 and December 31, 1999 are presented. Circumstances for the closest approach of Pluto to 32 stars and Charon to 28 stars are presented. Photometric information is given for some of the brightest stars found in a search of the Space Telescope Guide Star Catalog for Pluto occultations. Finding charts from Space Telescope Guide Star plates are provided for some of the best events. The brightest star (V = 12.7) may be occulted by both Pluto and Charon on September 26, 1999.

  12. A Mountain Range within Pluto Heart

    NASA Image and Video Library

    2015-07-21

    A newly discovered mountain range lies near the southwestern margin of Pluto heart-shaped Tombaugh Regio Tombaugh Region, situated between bright, icy plains and dark, heavily-cratered terrain. This image was acquired by NASA's New Horizons' Long Range Reconnaissance Imager (LORRI) on July 14, 2015, from a distance of 48,000 miles (77,000 kilometers) and sent back to Earth on July 20. Features as small as a half-mile (1 kilometer) across are visible. These frozen peaks are estimated to be one-half mile to one mile (1-1.5 kilometers) high, about the same height as the United States' Appalachian Mountains. The Norgay Montes (Norgay Mountains) discovered by New Horizons on July 15 more closely approximate the height of the taller Rocky Mountains The names of features on Pluto have all been given on an informal basis by the New Horizons team. http://photojournal.jpl.nasa.gov/catalog/PIA19842

  13. Pluto Heart: Like a Cosmic Lava Lamp

    NASA Image and Video Library

    2016-06-01

    Like a cosmic lava lamp, a large section of Pluto's icy surface is being constantly renewed by a process called convection that replaces older surface ices with fresher material. Scientists from NASA's New Horizons mission used state-of-the-art computer simulations to show that the surface of Pluto's informally named Sputnik Planum is covered with churning ice "cells" that are geologically young and turning over due to a process called convection. The scene above, which is about 250 miles (400 kilometers) across, uses data from the New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC), gathered July 14, 2015. Their findings are published in the June 2, 2016, issue of the journal Nature. http://photojournal.jpl.nasa.gov/catalog/PIA20726

  14. Geological mapping of Sputnik Planitia on Pluto

    NASA Astrophysics Data System (ADS)

    White, Oliver L.; Moore, Jeffrey M.; McKinnon, William B.; Spencer, John R.; Howard, Alan D.; Schenk, Paul M.; Beyer, Ross A.; Nimmo, Francis; Singer, Kelsi N.; Umurhan, Orkan M.; Stern, S. Alan; Ennico, Kimberly; Olkin, Cathy B.; Weaver, Harold A.; Young, Leslie A.; Cheng, Andrew F.; Bertrand, Tanguy; Binzel, Richard P.; Earle, Alissa M.; Grundy, Will M.; Lauer, Tod R.; Protopapa, Silvia; Robbins, Stuart J.; Schmitt, Bernard; New Horizons Science Team

    2017-05-01

    The geology and stratigraphy of the feature on Pluto informally named Sputnik Planitia is documented through geologic mapping at 1:2,000,000 scale. All units that have been mapped are presently being affected to some degree by the action of flowing N2 ice. The N2 ice plains of Sputnik Planitia display no impact craters, and are undergoing constant resurfacing via convection, glacial flow and sublimation. Condensation of atmospheric N2 onto the surface to form a bright mantle has occurred across broad swathes of Sputnik Planitia, and appears to be partly controlled by Pluto's obliquity cycles. The action of N2 ice has been instrumental in affecting uplands terrain surrounding Sputnik Planitia, and has played a key role in the disruption of Sputnik Planitia's western margin to form chains of blocky mountain ranges, as well in the extensive erosion by glacial flow of the uplands to the east of Sputnik Planitia.

  15. The moons of Uranus, Neptune and Pluto

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Cruikshank, D. P.

    1985-01-01

    Voyager 2, launched in August 1977, will fly by Uranus in January, 1986, passing within 29,000 km of that planet's innermost moon, Miranda. It will subsequently encounter Neptune in August 1989, flying within 10,000 km of its inner satellite, Triton; images made of this moon by a high resolution camera are expected to reveal surface features as small as a few hundred meters in diameter. The composition of the Uranian moons will br inferred from their near-IR reflectance spectra and mean densities. While the spacecraft will not fly by Pluto, it is expected that the lessons learned from the Voyager encounters with Neptune and Uranus will expand current understanding of Pluto and its moon, Charon.

  16. Pluto Fast Flyby Mission and Science Overview

    NASA Technical Reports Server (NTRS)

    Stern, A.

    1993-01-01

    Planning for the Pluto Fast Flyby (PFF) mission centers on the launch of two small (110-160 kg) spacecraft late in the 1990s on fast, 6-8-year trajectories that do not require Jupiter flybys. The cost target of the two-spaceraft PFF mission is $400 million. Scientific payload definition by NASA's Outer Planets Science Working Group (OPSWG) and JPL design studies for the Pluto flyby spacecraft are now being completed, and the program is in Phase A development. Selection of a set of lightweight, low-power instrument demonstrations is planned for May 1993. According to plan, the completion of Phase A and then detailed Phase B spacecraft and payload design work will occur in FY94. The release of an instrument payload AO, followed by the selection of the flight payload, is also scheduled for FY94.

  17. The surface compositions of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Cruikshank, D. P.; Grundy, W. M.; DeMeo, F. E.; Buie, M. W.; Binzel, R. P.; Jennings, D. E.; Olkin, C. B.; Parker, J. W.; Reuter, D. C.; Spencer, J. R.; Stern, S. A.; Young, L. A.; Weaver, H. A.

    2015-01-01

    The surface of Pluto as it is understood on the eve of the encounter of the New Horizons spacecraft (mid-2015) consists of a spatially heterogeneous mix of solid N2, CH4, CO, C2H6, and an additional component that imparts color, and may not be an ice. The known molecular ices are detected by near-infrared spectroscopy. The N2 ice occurs in the hexagonal crystalline β-phase, stable at T > 35.6 K. Spectroscopic evidence for wavelength shifts in the CH4 bands attests to the complex mixing of CH4 and N2 in the solid state, in accordance with the phase diagram for N2 + CH4. Spectra obtained at several aspects of Pluto's surface as the planet rotates over its 6.4-day period show variability in the distribution of CH4 and N2 ices, with stronger CH4 absorption bands associated with regions of higher albedo, in correlation with the visible rotational light curve. CO and N2 ice absorptions are also strongly modulated by the rotation period; the bands are strongest on the anti-Charon hemisphere of Pluto. Longer term changes in the strengths of Pluto's absorption bands occur as the viewing geometry changes on seasonal time-scales, although a complete cycle has not been observed. The non-ice component of Pluto's surface may be a relatively refractory material produced by the UV and cosmic-ray irradiation of the surface ices and gases in the atmosphere, although UV does not generally penetrate the atmospheric CH4 to interact with the surface. Laboratory simulations indicate that a rich chemistry ensues by the irradiation of mixtures of the ices known to occur on Pluto, but specific compounds have not yet been identified in spectra of the planet. Charon's surface is characterized by spectral bands of crystalline H2O ice, and a band attributed to one or more hydrates of NH3. Amorphous H2O ice may also be present; the balance between the amorphization and crystallization processes on Charon remains to be clarified. The albedo of Charon and its generally spatially uniform neutral

  18. New Horizons Pluto Flyby Guest Operations

    NASA Astrophysics Data System (ADS)

    Simon, M.; Turney, D.; Fisher, S.; Carr, S. S.

    2015-12-01

    On July 14, 2015, after 9.5 years of cruise, NASA's New Horizons spacecraft flew past the Pluto system to gather first images humankind had ever seen on Pluto and its five moons. While much has been discovered about the Pluto system since New Horizons launch in 2006, the system has never been imaged at high resolution and anticipation of the "First Light" of the Pluto system had been anticipated by planetary enthusiasts for decades. The Johns Hopkins Applied Physics Laboratory (APL), which built and operates New Horizons, was the focal point for gathering three distinct groups: science and engineering team members; media and public affairs representatives; and invited public, including VIP's. Guest operations activities were focused on providing information primarily to the invited public and VIP's. High level objectives for the Guest Operations team was set to entertain and inform the general public, offer media reaction shots, and to deconflict activities for the guests from media activities wherever possible. Over 2000 people arrived at APL in the days surrounding closest approach for guest, science or media operations tracks. Reaction and coverage of the Guest Operations events was universally positive and global in impact: iconic pictures of the auditorium waving flags during the moment of closest approach were published in media outlets on every continent. Media relations activities ensured coverage in all key media publications targeted for release, such as the New York Times, Science, Le Monde, and Nature. Social and traditional media coverage of the events spanned the globe. Guest operations activities are designed to ensure that a guest has a memorable experience and leaves with a lifelong memory of the mission and their partnership in the activity. Results, lessons learned, and other data from the New Horizons guest operations activity will be presented and analyzed.

  19. Peering Closely at the Heart of Pluto

    NASA Image and Video Library

    2015-07-17

    Peering closely at the "heart of Pluto," in the western half of what mission scientists have informally named Tombaugh Regio (Tombaugh Region), NASA's New Horizons' Ralph instrument revealed evidence of carbon monoxide ice. The contours indicate that the concentration of frozen carbon monoxide increases towards the center of the "bull's eye." These data were acquired by the spacecraft on July 14 and transmitted to Earth on July 16. http://photojournal.jpl.nasa.gov/catalog/PIA19718

  20. From Pluto Mountains to Its Plains

    NASA Image and Video Library

    2015-09-24

    Images of Pluto taken by NASA New Horizons spacecraft before closest approach on July 14, 2015, reveal features as small as 270 yards (250 meters) across, from craters to faulted mountain blocks, to the textured surface of the vast basin informally called Sputnik Planum. Enhanced color has been added from the global color image. This image is about 330 miles (530 kilometers) across. http://photojournal.jpl.nasa.gov/catalog/PIA19955

  1. Surface Compositions Across Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Grundy, W. M.; Binzel, R. P.; Buratti, B. J.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Lunsford, A. W.; hide

    2016-01-01

    The Kuiper Belt hosts a swarm of distant, icy objects ranging in size from small, primordial planetesimals to much larger, highly evolved objects, representing a whole new class of previously unexplored cryogenic worlds. Pluto, the largest among them, along with its system of five satellites, has been revealed by NASAs New Horizons spacecraft flight through the system in July 2015, nearly a decade after its launch.

  2. Pluto's Lower Atmosphere from Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Buie, M. W.; Olkin, C. B.; Young, E. F.; French, R. G.; Howell, R. R.

    2008-09-01

    Ever since the Pluto occultation of 1988, the nature of Pluto's lower atmosphere has been a mystery: the lightcurve shows a difference between the upper and lower atmosphere, but it has been unclear whether this is due to hazes, a steep thermal gradient, or a combination of the two (Elliot & Young, 1992 AJ 103, 991; Hubbard et al. 1990, Icarus, 84, 1) Recent high-quality lightcurves allow us to place limits on the haze in Pluto's atmosphere. Especially important is the dual-wavelength (0.5 and 0.8 micron) occultation observed from Mount John Observatory in New Zealand on 2007 July 31. This site was 60 ± 4 km from the central track of the shadow, and the lightcurves clearly show a central flash, or a brightening due to strong lateral refocusing and the convergence of multiple images around the limb of an elliptical atmosphere. These lightcurves constrain the structure of the lower atmosphere in three ways. First, the surface-grazing ray must have a large enough bending angle to reach the center of the shadow. Second, haze of sufficient optical depth to affect the main drop in the lightcurve will also decrease the height of the central flash. The height and location of the central flash can be well modeled with a clear atmosphere. Third, hazes of the size expected at Pluto will have a wavelength-dependent absorption, but the red and blue channels of the Mount John lightcurves show no variation with wavelength. We will discuss limits on the hazes, and place these limits in the context of Triton hazes, heating by dust, and New Horizons detection limits.

  3. An Impact Formation of Pluto-Charon

    NASA Astrophysics Data System (ADS)

    Canup, R. M.

    2004-05-01

    The angular momentum of Pluto-Charon, LPC, is estimated to be between about 5.6 and 7 x 1037 g-cm2/sec (e.g., Olkin et al. 2003), likely exceeding the critical angular momentum for rotational stability for a single body containing the same total mass. An impact-triggered formation is favored (e.g. Stern, McKinnon & Lunine 1997), although unlike the relatively well-constrained situation for the formation of the Earth's Moon, key properties of Pluto and Charon - their mass ratio, rock/ice fractions, and densities - are still somewhat uncertain. However, a primary challenge to the impact hypothesis is obtaining sufficient material in bound orbit: Charon contains ˜ 10% of Pluto's mass, whereas the Moon has only ˜ 1% of the Earth's mass. Here I report results from a suite of smoothed particle hydrodynamics (SPH) simulations of potential Pluto-Charon forming impacts considering various impact angles, velocities, impactor sizes and pre-impact spin states. The most successful impacts involve an oblique, low velocity collision between two similarly sized objects. In the final stages of the collision, the rapidly rotating merged objects deform into a bar-like structure, angular momentum is redistributed as the cores of the objects merge and a 2-arm spiral structure emanates from the ends of the bar, leaving an ellipsoidal central planet and a circumplanetary disk. This evolution shares some commonalities with that seen in simulations of rapidly rotating protostellar clouds cores (e.g., Durisen et al. 1986; review by Tohline 2002). The results here display a relationship between the angular momentum of the post-impact planet-disk system and the disk mass, such that impacts capable of producing a planet-disk system with a L ˜ LPC also typically leave disks containing ˜ 8 to 13% of the central planet's mass. Support from the National Science Foundation's Planetary Astronomy program is gratefully acknowledged.

  4. The Development and Implementation of Ground Safety Requirements for Project Orion Abort Flight Testing - A Case Study

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul D.; Williams, Jeffrey G.; Condzella, Bill R.

    2008-01-01

    A rigorous set of detailed ground safety requirements is required to make sure that ground support equipment (GSE) and associated planned ground operations are conducted safely. Detailed ground safety requirements supplement the GSE requirements already called out in NASA-STD-5005. This paper will describe the initial genesis of these ground safety requirements, the establishment and approval process and finally the implementation process for Project Orion. The future of the requirements will also be described. Problems and issues encountered and overcame will be discussed.

  5. PLUTO'S SEASONS: NEW PREDICTIONS FOR NEW HORIZONS

    SciTech Connect

    Young, L. A.

    2013-04-01

    Since the last Pluto volatile transport models were published in 1996, we have (1) new stellar occultation data from 2002 and 2006-2012 that show roughly twice the pressure as the first definitive occultation from 1988, (2) new information about the surface properties of Pluto, (3) a spacecraft due to arrive at Pluto in 2015, and (4) a new volatile transport model that is rapid enough to allow a large parameter-space search. Such a parameter-space search coarsely constrained by occultation results reveals three broad solutions: a high-thermal inertia, large volatile inventory solution with permanent northern volatiles (PNVs; using the rotational north pole convention); a lower thermal-inertia, smaller volatile inventory solution with exchanges of volatiles between hemispheres and a pressure plateau beyond 2015 (exchange with pressure plateau, EPP); and solutions with still smaller volatile inventories, with exchanges of volatiles between hemispheres and an early collapse of the atmosphere prior to 2015 (exchange with early collapse, EEC). PNV and EPP are favored by stellar occultation data, but EEC cannot yet be definitively ruled out without more atmospheric modeling or additional occultation observations and analysis.

  6. Forming the small satellites of Pluto

    NASA Astrophysics Data System (ADS)

    Levison, Harold F.; Walsh, K.

    2013-10-01

    The Pluto systems is one of extremes. In addition to Pluto, the system contains at least 5 satellites. Charon is the most massive, being more than 1/9 the mass of Pluto. This makes it the most massive satellite, relative to the primary, of any other planet or dwarf-planet in the Solar System. The other satellites are much smaller - having radii that are probably significantly less than 50 km. They are on nearly circular, co-planer orbits. Perhaps one of their most intriguing characteristics is that they are all close to n:1 mean motion resonances (MMRs) with Charon. In particular, Nix, P4, and Hydra are close to the 4:1, 5:1, and 6:1 MMR, respectively. (There is as yet no good orbit for P5). Observations are good enough for Nix and Hydra to conclude that while the are near their respective resonances, they do not appear to actually be librating in them. This has been a challenge for theories of their formation. We will present some new work exploring a heretofore unexplored dynamical mechanism that might help explain the puzzling orbits of the small satellites.

  7. Pluto's Implications for a Snowball Titan

    NASA Astrophysics Data System (ADS)

    Wong, M.; Yung, Y. L.; Gladstone, R.

    2013-12-01

    The recent Cassini-Huygens Mission to the Saturnian system provides compelling evidence that the present state of Titan's dense atmosphere is unsustainable over the age of the Solar System. Instead, for most of the time Titan's atmosphere must have existed in a collapsed snowball state, characterized by a cold surface and a thin atmosphere, much like those of present-day Pluto and Triton. We will briefly review how the present Titan atmosphere exists due to a sensitive coupling between photochemistry, radiation, and dynamics. This delicate 'house of cards' must have collapsed in the past when it ran out of CH4 or when the sun was dimmer. We will investigate how the rate of organic synthesis on Snowball Titan differs from that of contemporary Titan. The forthcoming New Horizons Mission to Pluto and the Kuiper Belt may allow us to gain insights into the fine balance and the evolutionary history of certain planetary atmospheres. In particular, the high SNR solar occultations planned for observation with the Alice UV spectrograph on New Horizons are expected to yield abundance profiles of important hydrocarbons and nitriles in Pluto's atmosphere, providing detailed constraints for photochemical models such as those considered here.

  8. Speckle Camera Imaging of the Planet Pluto

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Horch, Elliott P.; Everett, Mark E.; Ciardi, David R.

    2012-10-01

    We have obtained optical wavelength (692 nm and 880 nm) speckle imaging of the planet Pluto and its largest moon Charon. Using our DSSI speckle camera attached to the Gemini North 8 m telescope, we collected high resolution imaging with an angular resolution of ˜20 mas, a value at the Gemini-N telescope diffraction limit. We have produced for this binary system the first speckle reconstructed images, from which we can measure not only the orbital separation and position angle for Charon, but also the diameters of the two bodies. Our measurements of these parameters agree, within the uncertainties, with the current best values for Pluto and Charon. The Gemini-N speckle observations of Pluto are presented to illustrate the capabilities of our instrument and the robust production of high accuracy, high spatial resolution reconstructed images. We hope our results will suggest additional applications of high resolution speckle imaging for other objects within our solar system and beyond. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  9. 134340 Pluto: nine years of CCD observations

    NASA Astrophysics Data System (ADS)

    Veiga, C. H.

    2008-08-01

    Aims: The purpose of this article is to present the new accurate astrometric CCD positions of Pluto, now designated as the minor planet 134340 Pluto and member of the Trans-Neptunian population. These positions were obtained from 1108 frames taken during 49 nights. The observations were distributed in 17 continuous missions between the years of 1995 and 2004. Methods: The USNO-A2.0 star catalog, locally corrected by UCAC2 catalog, was used for the astrometric calibration. All positions were compared with those calculated by the PLU017 ephemeris. Results: In this work precise positions of 134340 Pluto are presented. The residues, observed minus calculated positions, have mean and standard deviation smaller than 0.05 arcsec, in the right ascension and declination coordinates' directions. Based on observations made at the Laboratório Nacional de Astrofísica/MCT-Itajubá-Brazil. Full Table [see full text] is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/486/613

  10. The New Horizons Mission to Pluto and Flyby of Jupiter

    NASA Technical Reports Server (NTRS)

    Stern, Alan; Weaver, Hal; Young, Leslie; Bagenal, Fran; Binzel, Richard; Buratti, Bonnie; Cheng, andy; Cruikshank, Dale; Gladstone, Randy; Grundy, Will; hide

    2008-01-01

    New Horizons (NH) is NASA's mission to provide the first in situ reconnaissance of Pluto and its moons Charon, Nix, and Hydra. The NH spacecraft will reach Pluto in July 2015 and will then, if approved for an extended mission phase, continue on to a flyby encounter with one or more Kuiper belt objects (KBOs). NH was launched on 19 January 2006 and received a gravity assist during a flyby encounter with Jupiter (with closest approach at -32 RJ on 28 February 2007) that reduced its flight time to Pluto by 3 years. During the Jupiter flyby, NH collected a trove of multi-wavelength imaging and fields-and-particles measurements. Among the many science results at Jupiter were a detection of planet-wide mesoscale waves, eruptions of atmospheric ammonia clouds, unprecedented views of Io's volcanic plumes and Jupiter's tenuous ring system, a first close-up of the Little Red Spot (LRS), first sightings of polar lightning, and a trip down the tail of the magnetosphere. In 2015, NH will conduct a seven-month investigation of the Pluto system culminating in a closest approach some 12,500 km from Pluto's surface. Planning is presently underway for the Pluto encounter with special emphasis on longidentified science goals of studying the terrain, geology, and composition of the surfaces of Pluto and Charon, examining the composition and structure of Pluto's atmosphere, searching for an atmosphere on Charon, and characterizing Pluto's ionosphere and solar wind interaction. Detailed inspections will also be performed of the newly discovered satellites Nix and Hydra. Additionally, NH will characterize energetic particles in Pluto's environment, refine the bulk properties of Pluto and Charon, and search for additional satellites and rings.

  11. Pluto and Charon: A Case of Precession-Orbit Resonance?

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry; Smith, David E. (Technical Monitor)

    2000-01-01

    Pluto may be the only known case of precession-orbit resonance in the solar system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which is 250.8 Earth years. The observed parameters of the system are such that Charon may cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn drives Pluto near its precession period. Volatiles, which are expected to shuttle across Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the planet's dynamical flattening enough so that Pluto crosses the nearby resonance, forcing the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can reach as much as 2 deg after integrating over 5.6 x 10(exp 6) years, depending upon how close Pluto is to the resonance and the supply of volatiles. The second resonance is due to the Sun's traveling above and below Charon's orbital plane; it has a period half that of the eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger but still theoretically possible amount of volatiles. In this case the departure of Charon from an equatorial orbit is about 1 deg after integrating for 5.6 x 10(exp 6) years. The calculations ignore libration and tidal friction. It is not presently known how large the mutual tilt can grow over the age of the solar system, but if it remains only a few degrees, then observing such small angles from a Pluto flyby mission would be difficult. It is not clear why the parameters of the Pluto-Charon system are so close to the eccentricity resonance.

  12. The New Horizons Mission to Pluto and Flyby of Jupiter

    NASA Technical Reports Server (NTRS)

    Stern, Alan; Weaver, Hal; Young, Leslie; Bagenal, Fran; Binzel, Richard; Buratti, Bonnie; Cheng, andy; Cruikshank, Dale; Gladstone, Randy; Grundy, Will; Hinson, David; Horanyi, Mihaly; Jennings, Don; Linscott, Ivan; McComas, Dave; McKinnon, William; McNutt, Ralph; Moore, Jeffrey; Murchie, Scott; Olkin, Cathy; Porco, Carolyn; Reitsema, Harold; Reuter, Dennis; Slater, Dave; Spencer, John

    2008-01-01

    New Horizons (NH) is NASA's mission to provide the first in situ reconnaissance of Pluto and its moons Charon, Nix, and Hydra. The NH spacecraft will reach Pluto in July 2015 and will then, if approved for an extended mission phase, continue on to a flyby encounter with one or more Kuiper belt objects (KBOs). NH was launched on 19 January 2006 and received a gravity assist during a flyby encounter with Jupiter (with closest approach at -32 RJ on 28 February 2007) that reduced its flight time to Pluto by 3 years. During the Jupiter flyby, NH collected a trove of multi-wavelength imaging and fields-and-particles measurements. Among the many science results at Jupiter were a detection of planet-wide mesoscale waves, eruptions of atmospheric ammonia clouds, unprecedented views of Io's volcanic plumes and Jupiter's tenuous ring system, a first close-up of the Little Red Spot (LRS), first sightings of polar lightning, and a trip down the tail of the magnetosphere. In 2015, NH will conduct a seven-month investigation of the Pluto system culminating in a closest approach some 12,500 km from Pluto's surface. Planning is presently underway for the Pluto encounter with special emphasis on longidentified science goals of studying the terrain, geology, and composition of the surfaces of Pluto and Charon, examining the composition and structure of Pluto's atmosphere, searching for an atmosphere on Charon, and characterizing Pluto's ionosphere and solar wind interaction. Detailed inspections will also be performed of the newly discovered satellites Nix and Hydra. Additionally, NH will characterize energetic particles in Pluto's environment, refine the bulk properties of Pluto and Charon, and search for additional satellites and rings.

  13. New Horizons Investigations of Charon and Pluto's Small Moons

    NASA Astrophysics Data System (ADS)

    Weaver, Harold A.; Stern, S. A.; Young, L. A.; Olkin, C. B.; Ennico, K.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Grundy, W. M.; Cruikshank, D. P.; Gladstone, G. P.; Summers, M. E.; Bagenal, F.

    2015-11-01

    During the flyby of the Pluto system in July 2014, the instruments on the New Horizons spacecraft (Weaver et al. 2008, Space Sci. Rev. 140, 75) acquired spatially resolved measurements of Charon and Pluto's small moons (Styx, Nix, Kerberos, and Hydra). The sunlit hemisphere of Charon was mapped in panchromatic light with resolutions as high as 0.15 km/pix using LORRI, and in four different color bands (400-550 nm, 540-700 nm, 780-975 nm, 860-910 nm; the latter is centered on a weak CH4 band) with resolutions as high as 1.4 km/pix using MVIC. Composition maps of Charon were obtained with the LEISA infrared spectral imager in the wavelength range 1.25-2.50 microns, with a spectral resolving power of ~250 and with spatial resolutions up to 4.9 km/pix. Solar occultation observations with the Alice ultraviolet spectrograph, and radio occultation measurements with REX, were used to search for an atmosphere around Charon. Nix was observed by LORRI in panchromatic light at 0.30 km/pix, by MVIC in color at 2.0 km/pix, and by LEISA at 3.6 km/pix (the latter to be downlinked later). Hydra was observed by LORRI in panchromatic light at 1.1 km/pix, in color at 4.6 km/pix, and by LEISA at 14.9 km/pix (the latter to be downlinked later). Limited resolved measurements of Kerberos (2.0 km/pix panchromatic; 8.0 km/pix color) and Styx (3.2 km/pix panchromatic; 8.0 km/pix color) were also obtained but have not yet been downlinked. An extensive series of unresolved, photometric measurements of Pluto's small moons were obtained with LORRI during several months preceeding closest approach in mid-July, which place tight constraints on their shapes and rotational states.The New Horizons data have revealed that Charon has surprisingly diverse terrain, with evidence of tectonics and a heterogeneous crustal composition. Nix and Hydra are highly elongated bodies with high average albedos (suggesting water-ice dominated surfaces) and significant albedo and color variations over their surfaces

  14. Spectrophotometry of Pluto-Charon mutual events - Individual spectra of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Sawyer, S. R.; Barker, E. S.; Cochran, A. L.; Cochran, W. D.

    1987-01-01

    Time-resolved spectra of the March 3 and April 4, 1987 mutual events of Pluto and Charon, obtained with spectral coverage from 5500 to 10,000 A with 25-A spectral resolution, are discussed. Charon has a featureless reflectance spectrum, with no evidence of methane absorption. Charon's reflectance appears neutral in color and corresponds to a geometric albedo of about 0.37 at 6000 A. The Pluto reflectance spectrum displays methane absorption bands at 7300, 7900, 8400, 8600, and 8900 A and is red in color, with a geometric albedo of about 0.56 at 6000 A.

  15. Pluto's Atmosphere from the 29 June 2015 Occultation: SOFIA Airborne Results

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; MIT-Williams Occulation Group (MIT/Williams College/Lowell Observatory/SAAO), HIPO Instrument Group (Lowell Observatory/MIT), FLITECAM Instrument Group (UCLA), FPI+ Instrument Group (DSI/U. Stuttgart), SOFIA Operations Group (NASA/USRA/DSI)

    2016-01-01

    After an extensive prediction effort, the 29 June 2015 occultation by Pluto was observed from both airborne (Stratospheric Observatory for Infrared Astronomy - SOFIA) and numerous ground-based telescopes (Bosh et al. 2015, in prep.). Real-time prediction updates allowed placement of the SOFIA telescope with its four detectors deep within the central-flash region of the atmospheric occultation. Fortuitously, the Mount John University Observatory (Lake Tekapo, New Zealand) was also within the central-flash region. This happenstance allowed for direct mutual calibration of the SOFIA data with the ground-based data in multiple central-flash detections in several colors from each facility resulting in a full maping of the central-flash evolute.Combining all of the data allows for a precise measurement of the SOFIA flight path through the shadow, and direct measurement of Pluto's atmospheric shadow size.We will examine and discuss the central-flash signatures from the deepest pass yet recorded through a Pluto central flash. The relative orientations and asymmetries in the various central flash data allow us to use them to tightly constrain the lower atmospheric ellipticity and orientation of likely winds with respect to Pluto's figure. The ratio of the two separate central flashes (airborne and ground-based) is also a strong constraint on the geometric solution for the full occultation data set, and the absolute height of the central flashes with respect to those expected for a clear isothermal atmosphere places constraints on haze densities and thermal gradients in Pluto's lower atmosphere. We can also compare the central-flash signatures in several colors to establish bounds on haze-particle sizes in the lower atmosphere.SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was

  16. Occultation Evidence for Haze in Pluto's Atmosphere in 2015 at the New Horizons Encounter

    NASA Astrophysics Data System (ADS)

    Bosh, A. S.; Person, M. J.; Zuluaga, C.; Sickafoose, A. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Becklin, E.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Natusch, T.; Nelson, P.; Ngan, H.; Pfüller, E.; Röser, H. P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristram, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-12-01

    On UT 29 June 2015, the occultation by Pluto of a bright star (r'=11.9) was observed from the Stratospheric Observatory for Infrared Astronomy (SOFIA) as well as several ground-based stations in New Zealand and Australia. Pre-event astrometry allowed for an in-flight update to the SOFIA team with the result that SOFIA was deep within the central flash zone. Combined analysis of the data sets leads to the result that Pluto's middle atmosphere is essentially unchanged from 2011 and 2013 (Person et al. 2013; Bosh et al. 2015); there has been no significant expansion or contraction of the atmosphere. Additionally, we find that a haze component in the atmosphere is required to reproduce the light curves obtained. This haze scenario has implications for understanding the photochemistry of Pluto's atmosphere. This work was supported by NASA grants NNX15AJ82G (Lowell Observatory), NNX10AB27G (MIT), and NNX12AJ29G (Williams), and by the National Research Foundation of South Africa. Co-authors were visiting observers on SOFIA, at the Keck Observatory, the Magellan Observatory, the SARA-CT Observatory, the Mt. John University Observatory, and the Auckland Observatory.

  17. PLUTO 3-D Grid Generator (User’s Manual)

    DTIC Science & Technology

    1991-06-01

    PLUTO (Poisson Laplace U TFI Orthogonal), is a three dimensional gridding and smoothing program developed in-house at WL/FIMM. Its purpose is to: (1...spacing, smoothness and orthogonality, and (4) output grids in user selected ascii or binary formats. Initial grids are established by PLUTO with a three

  18. Tectonic activity on Pluto after the Charon-forming impact

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Collins, Geoffrey C.

    2015-01-01

    The Pluto-Charon system, likely formed from an impact, has reached the endpoint of its tidal evolution. During its evolution into the dual-synchronous state, the equilibrium tidal figures of Pluto and Charon would have also evolved as angular momentum was transferred from Pluto's spin to Charon's orbit. The rate of tidal evolution is controlled by Pluto's interior physical and thermal state. We examine three interior models for Pluto: an undifferentiated rock/ice mixture, differentiated with ice above rock, and differentiated with an ocean. For the undifferentiated case without an ocean, the Pluto-Charon binary does not evolve to its current state unless its internal temperature Ti > 200K , which would likely lead to strong tidal heating, melting, and differentiation. Without an ocean, Pluto's interior temperature must be higher than 240 K for Charon to evolve on a time scale less than the age of the Solar System. Further tidal heating would likely create an ocean. If New Horizons finds evidence of ancient tidally-driven tectonic activity on either body, the most likely explanation is that Pluto had an internal ocean during Charon's orbital evolution.

  19. Miniatue Propulsion Components for the Pluto Fast Flyby Spacecraft

    NASA Technical Reports Server (NTRS)

    Morash, D. H.; Strand, L.

    1994-01-01

    Pluto is the only planet in our solar system not yet visited by our spacecraft. Recent observations through the Hubble Space Telescope have given us a glimpse of Pluto and it's moon Charon, but their small size and immense distance from earth have preserved their mystery.

  20. Miniatue Propulsion Components for the Pluto Fast Flyby Spacecraft

    NASA Technical Reports Server (NTRS)

    Morash, D. H.; Strand, L.

    1994-01-01

    Pluto is the only planet in our solar system not yet visited by our spacecraft. Recent observations through the Hubble Space Telescope have given us a glimpse of Pluto and it's moon Charon, but their small size and immense distance from earth have preserved their mystery.

  1. The New Horizons Mission to Pluto and the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Weaver, Harold; Grundy, William; Stern, Alan; Young, Leslie; Bagenal, Fran; Binzel, Richard; Buratti, Bonnie; Cheng, A.; Cruikshan, Dale; Gladstone, Randy; Hinson, David; Horanyi, Mihaly; Jennings, Don; Linscott, Ivan; McComas, Dave; McKinnon, William; McNutt, R.; Moore, Jeffrey; Murchie, S.; Olkin, Cathy; Porco, Carolyn; Reitsema, Harold; Reuter, Dennis; Slater, Dave; Spencer, John; Strobel, Darrell; Summers, Michael; Tyler, Len

    New Horizons (NH) is a NASA mission that will provide the first in situ reconnaissance of Pluto and its moons Charon, Nix, and Hydra. The NH spacecraft was launched on 2006 January 19, received a gravity assist from Jupiter during closest approach on 2007 February 28 at a distance of ˜32 RJ, and is currently heading for a flyby encounter with the Pluto system. Among the many science results at Jupiter were a detection of planet-wide mesoscale waves, eruptions of atmospheric ammonia clouds, unprecedented views of Io's volcanic plumes and Jupiter's tenuous ring system, the first close-up view of the Little Red Spot (LRS), the discovery of polar lightning, and the first trip down the tail of the magnetosphere. In 2015, NH will conduct a seven-month investigation of the Pluto system culminating in a closest approach some 12,500 km from Pluto's surface on 2014 July 14. Planning is presently underway for the Pluto encounter with special emphasis on long-identified science goals of studying the terrain, geology, and composition of the surfaces of Pluto and Charon, examining the composition and structure of Pluto's atmosphere, searching for an atmosphere on Charon, and characterizing Pluto's ionosphere and solar wind interaction. Detailed investigations will also be performed of the smaller satellites Nix and Hydra. Additionally, NH will characterize energetic particles in Pluto's environment, refine the bulk properties of Pluto and Charon, and search for additional satellites and rings. If approved for an extended mission phase after the Pluto encounter, NH will continue on to a flyby encounter with one or more Kuiper belt objects (KBOs). The NH spacecraft and its instruments have continued to perform nominally, as verified by annual checkout (ACO) activities conducted each year. Serendipitously, NH the spacecraft will be occulted by Earth's Moon four different times during 2011-2012, allowing for an in-flight test of the radio uplink occultation technique that will be

  2. Continued Volatile Transport on Pluto: First Results from the 2014 Observing Season

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.; Hicks, Michael D.; Dalba, Paul A.; Chu, Devin S.; O'Neill, Ariel; Hillier, John K.; Banholzer, Sophianna

    2014-11-01

    With its high eccentricity and obliquity, Pluto should exhibit seasonal volatile transport on its surface. This transport should be detectable through changes in its historical rotational light curve, once all variations due to viewing geometry have been modelled. Observations of Pluto’s light curve between 1950 and 1999 suggest a stable albedo pattern. Starting in the early part of this millennium, both new Hubble Space Telescope maps and light curve measurements obtained at JPL’s Table Mountain Observatory show evidence of small changes in Pluto’s distribution of surface albedo (Hicks et al. 2008, B.A.A.S. 40, 460.; Buie et al., 2010, Astron. J. 139, 1128). Supporting possible surface volatile transport is the doubling of Pluto’s atmospheric pressure over the past two decades (Young et al., 2013, Ap. J. 766, L22). With the New Horizons spacecraft due to encounter Pluto in July 2015, close scrutiny of this dwarf ice planet has begun in earnest. Ground-based observations are especially critical for context and for a larger temporal excursion. Rotational light curves of Pluto have been created in two recent epochs: 2007-2008, and 2012-2014. Both light curves show a smaller amplitude than that expected for a static frost model based on albedo maps from the earliest HST images (Stern et al. 1997, Astron. J. 113, 827). Observations of both Buie et al. (2010) and our own between 2007 and 2014 show that Pluto is becoming redder. This observation makes sense if nitrogen frost is being removed from the surface to uncover a red, photolyzed substrate of methane. Funded by NASA.

  3. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    SciTech Connect

    2003-04-23

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as

  4. Methane on Triton and Pluto - New CCD spectra

    NASA Technical Reports Server (NTRS)

    Apt, J.; Carleton, N. P.; Mackay, C. D.

    1983-01-01

    Spectra of Triton and of Pluto from 4553-9558 A at 25 A resolution are presented. Both spectra show the methane absorption near 8900 A; its equivalent width was 16 times greater on Pluto than on Triton at the time of the observations. This is the first published observation of the 8900 A feature in Triton's spectrum. The previously reported 27 m-amagat abundance of the Pluto atmosphere ignored contributions due to methane ice and should therefore be regarded as an upper limit. The observations of the Pluto spectrum discussed here show sharp structure in the 8900 and 8600 A bands; the case for an atmosphere on Pluto may turn on whether new laboratory measurements show that such structure is present in methane ice.

  5. The interiors of Pluto and Charon: Structure, composition, and implications

    SciTech Connect

    Simonelli, D.P. Cornell Univ., Ithaca, NY ); Reynolds, R.T. )

    1989-11-01

    The authors review recent models of the internal structure of Pluto and Charon made possible by analysis of the Pluto/Charon mutual events. At a mean density of just over 2 g cm{sup {minus}3} and a predicted rock mass fraction of roughly 0.7, the Pluto/Charon system is significantly rockier than the icy satellites of the giant planets, a contrast which may reflect its formation in a CO-rich outer solar nebula rather than a circumplanetary nebula. Pluto and Charon may in fact be so rocky that they lost volatiles early in their history (possibly during a Charon-forming impact event), although this is still an open issue. Finally, they review the outlook for future study of the Pluto and Charon interiors.

  6. Methane on Triton and Pluto - New CCD spectra

    NASA Astrophysics Data System (ADS)

    Apt, J.; Carleton, N. P.; Mackay, C. D.

    1983-07-01

    Spectra of Triton and of Pluto from 4553-9558 A at 25 A resolution are presented. Both spectra show the methane absorption near 8900 A; its equivalent width was 16 times greater on Pluto than on Triton at the time of the observations. This is the first published observation of the 8900 A feature in Triton's spectrum. The previously reported 27 m-amagat abundance of the Pluto atmosphere ignored contributions due to methane ice and should therefore be regarded as an upper limit. The observations of the Pluto spectrum discussed here show sharp structure in the 8900 and 8600 A bands; the case for an atmosphere on Pluto may turn on whether new laboratory measurements show that such structure is present in methane ice.

  7. Photometric Properties of Pluto and Charon: Comparison to Other Bodies

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Momary, T.; Zangari, A. M.; Binzel, R. P.

    2015-12-01

    The New Horizons spacecraft provided the first detailed views of the photometric properties of Pluto and Charon, and how these properties relate to geophysical processes. Among the first results are the distribution of albedo on the surfaces of both bodies, and the surface phase function for both high- and low-albedo regions of Pluto, which yields information on macroscopic roughness and particle properties. The highest albedos on Pluto are similar to those of the bright icy moons of Saturn and Jupiter. The range of albedos on Pluto is surprisingly large, surpassed only by Saturn's moon Iapetus. Charon has a more limited range, with a bifurcated distribution. The disk-integrated phase function of Pluto is similar to those of the icy moons of Saturn. The geologic implications of these results will be discussed. Funded by NASA

  8. Circumstances for Pluto-Charon mutual events in 1987

    NASA Technical Reports Server (NTRS)

    Tholen, David J.; Buie, Marc W.; Swift, Catherine E.

    1987-01-01

    Circumstances are tabulated for 88 Pluto-Charon mutual events occurring during the 1987 opposition. Charon is predicted to be completely obscured either by Pluto or Pluto's shadow during each passage behind Pluto during this opposition, providing several opportunities to study Pluto uncontaminated by the light of Charon. The duration of these total events is predicted to be from 32 to 79 min. The mutual-event season is now expected to conclude during the 1990 opposition. Two new stars have been selected as comparison stars for events occurring prior to opposition in 1987. Standardization of the primary comparison stars used in 1985 and 1986 has yielded the following magnitudes: B = 12.6044 + or - 0.0015 and V = 11.7956 + or - 0.0017 (1985 Primary); B = 13.1238 + or 0.0008 and V = 12.3885 + or - 0.0014 (1986 Primary).

  9. The fate of debris in the Pluto-Charon system

    NASA Astrophysics Data System (ADS)

    Smullen, Rachel; Kratter, Kaitlin M.

    2016-05-01

    Pluto has recently been thrust into the spotlight with the fly-by of New Horizons. This dwarf planet and its moons provide an opportunity to study circumbinary dynamics close to home. We perform N-body simulations of a test-particle disk around the Pluto-Charon binary to study the fate of debris that should result from the formation of the Pluto-Charon binary. We not only investigate the stability and time evolution of debris within the Pluto system, but also track ejected debris to see where it may collect in the solar system. By studying the dynamics of the Pluto-Charon system, we may be able to place constraints on the cratering rates from its natal disk and identify tracers of the formation of this system.

  10. Pluto's Atmosphere and Surface Ices as Simulated by the PlutoWRF GCM

    NASA Astrophysics Data System (ADS)

    Toigo, A. D.; French, R. G.; Gierasch, P. J.; Richardson, M. I.; Guzewich, S.

    2013-12-01

    The PlutoWRF general circulation model (GCM) was built to examine the large-scale structure and dynamics of the atmosphere, the nature and propagation of waves within the atmosphere, and the exchanges of volatiles between the atmosphere and the surface. We seek to provide an comprehensive framework for the study of the increasingly rich observational data sets (including stellar occultations of the atmosphere) and to provide context and analysis of observations from the New Horizons mission. The PlutoWRF GCM is based on the planetary adaptation of the NCAR Weather Research and Forecasting (WRF) model. It is a compressible, nonhydrostatic model where we have added physics to treat radiative transfer following Zhu et al. (2013), a bulk nitrogen cycle including condensation of surface ice, and cycles of additional trace volatile species. Existing subsurface heat diffusion, surface layer exchange and boundary layer mixing schemes have been adapted to Pluto. Boundary conditions for initial ice distribution and surface pressure are taken from energy balance and non-GCM volatile transport models constrained by observations. In this work we focus on the performance of the PlutoWRF GCM compared with our linear tidal model (Toigo et al., 2010), and will examine the generation and propagation of large-scale gravity waves associated with diurnal sublimation and condensation.

  11. "Pluto Has Been a Planet My Whole Life!" Emotions, Attitudes, and Conceptual Change in Elementary Students' Learning about Pluto's Reclassification

    ERIC Educational Resources Information Center

    Broughton, Suzanne H.; Sinatra, Gale M.; Nussbaum, E. Michael

    2013-01-01

    Learning about certain scientific topics has potential to spark strong emotions among students. We investigated whether emotions predicted students' attitudes after engaging in independent rereading and/or rereading plus discussion about Pluto's reclassification. Fifth and sixth grade students read a refutation text on Pluto's reclassification.…

  12. Pluto in Hi-Def Note: There is debate within the science community as to whether Pluto should be

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image demonstrates the first detection of Pluto using the high-resolution mode on the New Horizons Long-Range Reconnaissance Imager (LORRI). The mode provides a clear separation between Pluto and numerous nearby background stars. When the image was taken on October 6, 2007, Pluto was located in the constellation Serpens, in a region of the sky dense with background stars.

    Typically, LORRI's exposure time in hi-res mode is limited to approximately 0.1 seconds, but by using a special pointing mode that allowed an increase in the exposure time to 0.967 seconds, scientists were able to spot Pluto, which is approximately 15,000 times fainter than human eyes can detect.

    New Horizons was still too far from Pluto (3.6 billion kilometers, or 2.2 billion miles) for LORRI to resolve any details on Pluto's surface that won't happen until summer 2014, approximately one year before closest approach. For now the entire Pluto system remains a bright dot to the spacecraft's telescopic camera, though LORRI is expected to start resolving Charon from Pluto seeing them as separate objects in summer 2010.

  13. Pluto in Hi-Def Note: There is debate within the science community as to whether Pluto should be

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image demonstrates the first detection of Pluto using the high-resolution mode on the New Horizons Long-Range Reconnaissance Imager (LORRI). The mode provides a clear separation between Pluto and numerous nearby background stars. When the image was taken on October 6, 2007, Pluto was located in the constellation Serpens, in a region of the sky dense with background stars.

    Typically, LORRI's exposure time in hi-res mode is limited to approximately 0.1 seconds, but by using a special pointing mode that allowed an increase in the exposure time to 0.967 seconds, scientists were able to spot Pluto, which is approximately 15,000 times fainter than human eyes can detect.

    New Horizons was still too far from Pluto (3.6 billion kilometers, or 2.2 billion miles) for LORRI to resolve any details on Pluto's surface that won't happen until summer 2014, approximately one year before closest approach. For now the entire Pluto system remains a bright dot to the spacecraft's telescopic camera, though LORRI is expected to start resolving Charon from Pluto seeing them as separate objects in summer 2010.

  14. "Pluto Has Been a Planet My Whole Life!" Emotions, Attitudes, and Conceptual Change in Elementary Students' Learning about Pluto's Reclassification

    ERIC Educational Resources Information Center

    Broughton, Suzanne H.; Sinatra, Gale M.; Nussbaum, E. Michael

    2013-01-01

    Learning about certain scientific topics has potential to spark strong emotions among students. We investigated whether emotions predicted students' attitudes after engaging in independent rereading and/or rereading plus discussion about Pluto's reclassification. Fifth and sixth grade students read a refutation text on Pluto's reclassification.…

  15. Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE.

    PubMed

    Esmiller, Bruno; Jacquelard, Christophe; Eckel, Hans-Albert; Wnuk, Edwin

    2014-11-01

    Studies show that the number of debris in low Earth orbit is exponentially growing despite future debris release mitigation measures considered. Specifically, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is today a concrete threat to operational satellites. A ground-based laser solution which can remove, at low expense and in a nondestructive way, hazardous debris around selected space assets appears as a highly promising answer. This solution is studied within the framework of the CLEANSPACE project which is part of the FP7 space program. The overall CLEANSPACE objective is: to propose an efficient and affordable global system architecture, to tackle safety regulation aspects, political implications and future collaborations, to develop affordable technological bricks, and to establish a roadmap for the development and the future implantation of a fully functional laser protection system. This paper will present the main conclusions of the CLEANSPACE project.

  16. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  17. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  18. Sfm_georef: Automating image measurement of ground control points for SfM-based projects

    NASA Astrophysics Data System (ADS)

    James, Mike R.

    2016-04-01

    Deriving accurate DEM and orthomosaic image products from UAV surveys generally involves the use of multiple ground control points (GCPs). Here, we demonstrate the automated collection of GCP image measurements for SfM-MVS processed projects, using sfm_georef software (James & Robson, 2012; http://www.lancaster.ac.uk/staff/jamesm/software/sfm_georef.htm). Sfm_georef was originally written to provide geo-referencing procedures for SfM-MVS projects. It has now been upgraded with a 3-D patch-based matching routine suitable for automating GCP image measurement in both aerial and ground-based (oblique) projects, with the aim of reducing the time required for accurate geo-referencing. Sfm_georef is compatible with a range of SfM-MVS software and imports the relevant files that describe the image network, including camera models and tie points. 3-D survey measurements of ground control are then provided, either for natural features or artificial targets distributed over the project area. Automated GCP image measurement is manually initiated through identifying a GCP position in an image by mouse click; the GCP is then represented by a square planar patch in 3-D, textured from the image and oriented parallel to the local topographic surface (as defined by the 3-D positions of nearby tie points). Other images are then automatically examined by projecting the patch into the images (to account for differences in viewing geometry) and carrying out a sub-pixel normalised cross-correlation search in the local area. With two or more observations of a GCP, its 3-D co-ordinates are then derived by ray intersection. With the 3-D positions of three or more GCPs identified, an initial geo-referencing transform can be derived to relate the SfM-MVS co-ordinate system to that of the GCPs. Then, if GCPs are symmetric and identical, image texture from one representative GCP can be used to search automatically for all others throughout the image set. Finally, the GCP observations can be

  19. The Wind, Temperature, and Surface Pressure on Pluto from a Pluto General Circulation Model

    NASA Astrophysics Data System (ADS)

    Zalucha, A. M.; Gulbis, A.

    2011-12-01

    A variety of methods have been used to derive Pluto's atmospheric temperature, composition, and surface pressure from spectra and stellar occultation data, while wind is less easily determined. Gravity wave dissipation has been investigated [1] in the 18 March 2007 stellar occultation dataset [2], demonstrating that wind is occurring in the form of perturbations about a mean. Rossby waves have also been proposed [2] as an explanation to the 2007 dataset; however the method was used incorrectly. General circulation models (GCMs) are a ubiquitous tool in the field of planetary atmospheres to solve for the global state of the atmosphere in a physically consistent manner, but only recently have they began to be developed for Pluto. We use a Pluto version of the Massachusetts Institute of Technology (MIT) GCM to solve for the first time for wind, temperature, and surface pressure globally in Pluto's atmosphere. The Pluto version of the MIT GCM (PGCM) uses the MIT GCM dynamical core [3] with a radiative-conductive model [4]. It includes vertical thermal conduction and non-local thermodynamic equilibrium heating and cooling by methane at 3.3 um and 7.6 um, respectively. We perform a parameter sweep with methane volume mixing ratios of 0.2, 0.6, and 1% and initial global mean surface pressures of 6-26 ubar. We ran the model from rest starting in the model year 1973. We compared the PGCM results with occultation data from the years 1988, 2002, 2006, and 2007. Model light curves were calculated from the PGCM temperature output (averaged at 90 day intervals) at the corresponding date and Pluto latitudes of each occultation. The match between data and PGCM is better than between data and the radiative-conductive equilibrium solution (i.e. no wind), but the PGCM light curves contain wave-like features while the data do not. We do not believe that this feature represents an atmospheric wave; rather, it is numerical noise known to occur in 2D GCMs. The PGCM-predicted zonal

  20. Point-source stochastic-method simulations of ground motions for the PEER NGA-East Project

    USGS Publications Warehouse

    Boore, David

    2015-01-01

    Ground-motions for the PEER NGA-East project were simulated using a point-source stochastic method. The simulated motions are provided for distances between of 0 and 1200 km, M from 4 to 8, and 25 ground-motion intensity measures: peak ground velocity (PGV), peak ground acceleration (PGA), and 5%-damped pseudoabsolute response spectral acceleration (PSA) for 23 periods ranging from 0.01 s to 10.0 s. Tables of motions are provided for each of six attenuation models. The attenuation-model-dependent stress parameters used in the stochastic-method simulations were derived from inversion of PSA data from eight earthquakes in eastern North America.

  1. Final programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project. Volume 1

    SciTech Connect

    1996-04-01

    The first step in the UMTRA Ground Water Project is the preparation of this programmatic environmental impact statement (PEIS). This document analyzes the potential impacts of four alternatives for conducting the Ground Water Project. One of these alternatives is the proposed action. These alternatives do not address site-specific ground water compliance strategies because the PEIS is a planning document only. It assesses the potential programmatic impacts of conducting the Ground Water Project, provides a method for determining the site-specific ground water compliance strategies, and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently. This PEIS differs substantially from a site-specific environmental impact statement because multiple ground water compliance strategies, each with its own set of potential impacts, could be used to implement all the alternatives except the no action alternative. In a traditional environmental impact statement, an impacts analysis leads directly to the defined alternatives. The impacts analysis for implementing alternatives in this PEIS first involves evaluating a ground water compliance strategy or strategies, the use of which will result in site-specific impacts. This PEIS impacts analysis assesses only the potential impacts of the various ground water compliance strategies, then relates them to the alternatives to provide a comparison of impacts.

  2. Seasonal variations in Pluto's atmospheric tides

    NASA Astrophysics Data System (ADS)

    French, Richard G.; Toigo, Anthony D.; Gierasch, Peter J.; Hansen, Candice J.; Young, Leslie A.; Sicardy, Bruno; Dias-Oliveira, Alex; Guzewich, Scott D.

    2015-01-01

    Pluto's tenuous atmosphere exhibits remarkable seasonal change as a result of the planet's substantial obliquity and highly eccentric orbit. Over the past two decades, occultations have revealed that the atmospheric pressure on Pluto has increased substantially, perhaps by a factor as large as 2 to 4, as the planet has moved from equinox towards solstice conditions. These data have also shown variations in the strength of the dynamical activity in the atmosphere, as revealed by the varying abundance and amplitude of spikes in the occultation light curves resulting from refractive focussing by atmospheric waves. Toigo et al. (Toigo et al. [2010]. Icarus, 208, 402-411) explored the possibility that these waves are caused by solar-induced sublimation and diurnal deposition from N2 frost patches, driven by weak vertical winds resulting from the rising and sinking gas as it is released from or deposited onto the surface. Here, we extend this model to account explicitly for seasonal variations in average insolation and for the significant damping of vertical wave propagation by kinematic viscosity and thermal diffusivity (Hubbard et al. [2009]. Icarus, 204, 284-289). Damping is extremely effective in suppressing vertical propagation of waves with vertical wavelengths of a few kilometers or less, and the dominant surviving tidal modes have characteristic vertical wavelengths λ ∼ 10-13 km . We estimate the expected strength and regional characteristics of atmospheric tides over the course of Pluto's orbit for a variety of assumed spatial distributions of surface frost and atmospheric surface pressure. We compute the predicted strength of tide-induced wave activity based on the actual frost distribution observed on Pluto from Hubble Space Telescope (HST) observations (Stern et al. [1997]. Astron. J., 113, 827; Buie et al. [2010]. Astron. J., 139, 1128-1143), and compare the results to calculations for volatile transport models of Young (Young [2013]. Astrophys. J., 766

  3. Radiation hydrodynamics integrated in the PLUTO code

    NASA Astrophysics Data System (ADS)

    Kolb, Stefan M.; Stute, Matthias; Kley, Wilhelm; Mignone, Andrea

    2013-11-01

    Aims: The transport of energy through radiation is very important in many astrophysical phenomena. In dynamical problems the time-dependent equations of radiation hydrodynamics have to be solved. We present a newly developed radiation-hydrodynamics module specifically designed for the versatile magnetohydrodynamic (MHD) code PLUTO. Methods: The solver is based on the flux-limited diffusion approximation in the two-temperature approach. All equations are solved in the co-moving frame in the frequency-independent (gray) approximation. The hydrodynamics is solved by the different Godunov schemes implemented in PLUTO, and for the radiation transport we use a fully implicit scheme. The resulting system of linear equations is solved either using the successive over-relaxation (SOR) method (for testing purposes) or using matrix solvers that are available in the PETSc library. We state in detail the methodology and describe several test cases to verify the correctness of our implementation. The solver works in standard coordinate systems, such as Cartesian, cylindrical, and spherical, and also for non-equidistant grids. Results: We present a new radiation-hydrodynamics solver coupled to the MHD-code PLUTO that is a modern, versatile, and efficient new module for treating complex radiation hydrodynamical problems in astrophysics. As test cases, either purely radiative situations, or full radiation-hydrodynamical setups (including radiative shocks and convection in accretion disks) were successfully studied. The new module scales very well on parallel computers using MPI. For problems in star or planet formation, we added the possibility of irradiation by a central source.

  4. Projections of grounding line retreat in West Antarctica carried out with an adaptive mesh model

    NASA Astrophysics Data System (ADS)

    Cornford, Stephen; Payne, Antony; Martin, Daniel; Le Brocq, Anne

    2013-04-01

    Present and future sea level rise associated with mass loss from West Antarctica is typically attributed to marine glaciers retreating in response to a warming ocean. Warmer waters melt the floating ice shelves that restrain some, if not all, marine glaciers, and the glaciers themselves respond by speeding up. That leads to thinning and in turn grounding line retreat. Satellite observations indicate that Amundsen Sea Embayment and, in particular, Pine Island Glacier, are undergoing this kind of dynamic change today. Numerical models, however, struggle to reproduce the observed behavior because either high resolution or some other kind special treatment is required at the grounding line. We present 200-year projections of three major glacier systems of West Antarctica: those that drain into the Amundsen Sea , the Filchner-Ronne Ice Shelf and the Ross Ice shelf. We do so using the newly developed BISICLES ice­ sheet model, which employs adaptive ­mesh refinement to maintain sub-kilometer resolution close to the grounding line and coarser resolution elsewhere. Ice accumulation and ice­ shelf melt-rate are derived from a range of models of the Antarctic atmosphere and ocean forced by the SRES A1B and E1 scenarios. We find that a substantial proportion of the grounding line in West Antarctica retreats, however the total sea level rise is less than 50 mm by 2100, and less than 100 mm by 2200. The lion's share of the mass loss is attributed to Pine Island Glacier, while its immediate neighbor Thwaites Glacier does not retreat until the end of the simulations.

  5. The Radii and Oblateness of Pluto and Charon: Preliminary Results from the 2015 New Horizons Flyby

    NASA Astrophysics Data System (ADS)

    Lisse, Carey M.; Nimmo, Francis; McKinnon, William B.; Umurhan, Orkan M.; Buie, Marc W.; Lauer, Tod R.; Roberts, James H.; Stern, S. Alan; Weaver, Hal A.; Young, Leslie A.; Ennico-Smith, Kimberly; Olkin, Cathy B.

    2015-11-01

    We present preliminary results for the radii and oblateness of Pluto and Charon. Accurate determinations of the mean radii of Pluto and Charon are important for establishing their densities and bulk composition. A fossil bulge, if present, would place constraints on the thermal and orbital evolution of these bodies [1,2]. The New Horizons LORRI imaging system [3] has provided global images of Pluto and Charon, with best resolutions of 3.8 and 2.3 km/pix, respectively. Three separate approaches have been used to determine mean radii and oblateness from the images, two using a threshold DN value [4,5] and one using a maximum gradient method. These approaches were validated using synthetic images having a range of photometric functions. Tradeoffs between the limb center location and the derived shape in individual images can be reduced by combining limb pixel locations obtained from different imaged rotational phases.This work was supported by NASA's New Horizons project.[1] Robuchon & Nimmo, Icarus 216, 426, 2011. [2] McKinnon & Singer, DPS 46, abs. no. 419.07, 2014. [3] Cheng et al., SSR 140, 189, 2008. [4] Dermott & Thomas, Icarus 73, 25, 1988. [5] Thomason & Nimmo, LPSC 46, abs. no. 1462, 2015.

  6. The Laplace Planes of Uranus and Pluto

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, Anthony R.

    1993-01-01

    Satellite orbits close to an oblate planet precess about its equatorial plane, while distant satellites precess around the plane of the planet's heliocentric orbit. In between, satellites in nearly circular orbits precess about a warped intermediate surface called the Laplace 'plane.' Herein we derive general formulas for locating the Laplace plane. Because Uranus and Pluto have high obliquities, their Laplace planes are severely warped. We present maps of these Laplace planes, of interest in telescopic searches for new satellites. The Laplace plane of the Solar System as a whole is similarly distorted, but comets in the inner Oort cloud precess too slowly to sense the Laplace plane.

  7. Occultation evidence for an atmosphere on Pluto

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Hunten, D. M.; Dieters, S. W.; Hill, K. M.; Watson, R. D.

    1988-01-01

    Observations from different sources of Pluto occulting a 12th-magnitude star indicate an extended atmosphere around the planet. Here, data obtained from the 1 m telescope at the University of Tasmania, Hobart are interpreted in terms of a theory for occultation by an atmosphere whose thickness is comparable to the planetary radius. The data can be satisfactorily fitted with a methane atmosphere at plausible pressures and temperatures. The surface pressures inferred from this single chord are uncertain by an order of magnitude, but are consistent with spectroscopic constraints.

  8. The temperature of nitrogen on Pluto

    NASA Technical Reports Server (NTRS)

    Tryka, K. A.; Brown, R. H.; Cruikshank, D. P.; Owen, T. C.

    1994-01-01

    With Hapke scattering theory and absorption coefficients derived from our laboratory measurements of solid N2 we have modeled the spectrum of Triton. By comparing a Hapke scattering model to the measured spectrum from Triton, we determined the temperature of the N2 on the satellite's surface to be 38 (+2, -1) K which is in accord with the measurements of Voyager 2. Applying this technique to Pluto we find that the temperature of N2 on that body is 40 +/- 2 K. Other aspects of this investigation are discussed.

  9. Great debate probes Pluto's planetary credentials

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-09-01

    It had all the trappings of an Olympic boxing final: two fiery competitors, a partisan crowd and the attention of the global press. But no individual gold medalist emerged from the Great Planet Debate held last month in Baltimore to discuss what type of astronomical object Pluto really is. Rather, the contest between Neil de-Grasse Tyson, director of New York's Hayden Planetarium, and Mark Sykes of the University of Arizona's Planetary Science Institute provided a view of how science deals with controversial issues of definition.

  10. City of Flagstaff Project: Ground Water Resource Evaluation, Remote Sensing Component

    USGS Publications Warehouse

    Chavez, Pat S.; Velasco, Miguel G.; Bowell, Jo-Ann; Sides, Stuart C.; Gonzalez, Rosendo R.; Soltesz, Deborah L.

    1996-01-01

    Many regions, cities, and towns in the Western United States need new or expanded water resources because of both population growth and increased development. Any tools or data that can help in the evaluation of an area's potential water resources must be considered for this increasingly critical need. Remotely sensed satellite images and subsequent digital image processing have been under-utilized in ground water resource evaluation and exploration. Satellite images can be helpful in detecting and mapping an area's regional structural patterns, including major fracture and fault systems, two important geologic settings for an area's surface to ground water relations. Within the United States Geological Survey's (USGS) Flagstaff Field Center, expertise and capabilities in remote sensing and digital image processing have been developed over the past 25 years through various programs. For the City of Flagstaff project, this expertise and these capabilities were combined with traditional geologic field mapping to help evaluate ground water resources in the Flagstaff area. Various enhancement and manipulation procedures were applied to the digital satellite images; the results, in both digital and hardcopy format, were used for field mapping and analyzing the regional structure. Relative to surface sampling, remotely sensed satellite and airborne images have improved spatial coverage that can help study, map, and monitor the earth surface at local and/or regional scales. Advantages offered by remotely sensed satellite image data include: 1. a synoptic/regional view compared to both aerial photographs and ground sampling, 2. cost effectiveness, 3. high spatial resolution and coverage compared to ground sampling, and 4. relatively high temporal coverage on a long term basis. Remotely sensed images contain both spectral and spatial information. The spectral information provides various properties and characteristics about the surface cover at a given location or pixel

  11. Image Analysis of The 2012 Pluto (Near) Occultation

    NASA Astrophysics Data System (ADS)

    Knox, K.

    2013-09-01

    Imagery was gathered at the AMOS observatory on the 3.6-meter telescope for the expected occultation of a star by the dwarf planet, Pluto, on 29 June 2012. The imagery was taken at 5 Hz for 40 minutes before and after the expected time of occultation. The initial analysis of the photometry indicated that Pluto did not occult the star. This conclusion could not be determined from a simple visual inspection of the imagery. Understanding why and by how much Pluto missed occulting the star can aid in predicting future occultations. To analyze the imagery, a least squares method was developed to measure the closest approach, in arc seconds. The method is based on averaging the modulus squared of the Fourier transform of the imagery. This is similar to Labeyrie's technique in speckle interferometry. From this method, fringes were detected and measured as a function of time over the period before and after the near occultation. The analysis showed that Pluto missed the star by 0.135 arcsec with an accuracy of 0.0025 arcsec. The use of over 24,000 image frames leads to this high level of precision. In addition, Labeyrie's technique applied to the images of Pluto by itself shows that Pluto and its moon, Charon, were oriented perpendicularly to the direction of travel, making it even less likely that Pluto would overlap with the star. This talk will describe the methods developed to conduct this analysis and how the conclusions were reached.

  12. Projective virtual reality in space applications: a telerobotic ground station for a space mission

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Commanding complex robotic systems over long distances in an intuitive manner requires new techniques of man-machine- interaction. A first disadvantage of conventional approaches is that the user has to be a robotic expert because he directly has to command the robots. He often is part of the real-time control loop while moving the robot and thus has to cope with long delays. Experience with space robot missions showed that it is very difficult to control a robot just by camera images. At the IRF, a new approach to overcome such problems was developed. By means of Projective Virtual Reality, we introduce a new, intuitive way of man-machine communication based on a combination of action planning and Virtual Reality methods. Using data-helmet and data-glove the user can immerse into the virtual world and interact with the virtual objects as he would do in reality. The Virtual Reality System derives the user's intention from his actions and then projects the tasks in to the physical world by means of robots. The robots carry out the action physically that is equivalent to the user's action in the virtual world. The developed Projective Virtual Reality System is of especially great use for space applications. During the joint project GETEX (German ETS-VII Experiment), the IRF realized the telerobotic ground station for the free flying robot ERA on board the Japanese satellite ETS-VII. During the mission in April 1999 the Virtual Reality based command interface turned out to be an ideally suited platform for the intuitive commanding and supervision of the robot in space. During the mission, it first had to be verified that the system is fully operational, but then out Japanese colleagues allowed to take the full control over the real robot by the Projective Virtual Reality System. The final paper will describe key issues of this approach and the results and experiences gained during the GETEX mission.

  13. In search of a signature of binary Kuiper Belt Objects in the Pluto-Charon crater population

    NASA Astrophysics Data System (ADS)

    Zangari, Amanda Marie; Parker, Alex; Singer, Kelsi N.; Stern, S. Alan; Young, Leslie; Olkin, Catherine B.; Ennico, Kimberly; Weaver, Harold A.; New Horizons Geology, Geophysics and Imaging Science Theme Team

    2016-10-01

    In July 2015, New Horizons flew by Pluto and Charon, allowing mapping of the encounter hemisphere at high enough resolution to produce crater counts from the surfaces of the pair. We investigate the distribution of craters in search of a signature of binary impactors. The Kuiper Belt -- especially the cold classical region -- has a large fraction of binary objects, many of which are close-in, equal-mass binaries. We will present results on how the distribution of craters seen on Pluto and Charon compares to a random distribution of single body impactors on the surfaces of each. Examining the surfaces of Pluto and Charon proves challenging due to resurfacing, and the presence of tectonic and other geographic features. For example, the informally-named Cthulhu region is among the oldest on Pluto, yet it abuts a craterless region millions of years young. On Charon, chastmata divide the surface into regions informally named Vulcan Planum and Oz terra. In our statistics, we pay careful attention to the boundaries of where craters may appear, and the dependence of our results on crater size. This work was supported by NASA's New Horizons project.

  14. Constraints on Pluto's Hazes from 2-Color Occultation Lightcurves

    NASA Astrophysics Data System (ADS)

    Hartig, Kara; Barry, T.; Carriazo, C. Y.; Cole, A.; Gault, D.; Giles, B.; Giles, D.; Hill, K. M.; Howell, R. R.; Hudson, G.; Loader, B.; Mackie, J. A.; Olkin, C. B.; Rannou, P.; Regester, J.; Resnick, A.; Rodgers, T.; Sicardy, B.; Skrutskie, M. F.; Verbiscer, A. J.; Wasserman, L. H.; Watson, C. R.; Young, E. F.; Young, L. A.; Buie, M. W.; Nelson, M.

    2015-11-01

    The controversial question of aerosols in Pluto's atmosphere first arose in 1988, when features in a Pluto occultation lightcurve were alternately attributed to haze opacity (Elliot et al. 1989) or a thermal inversion (Eshleman 1989). A stellar occultation by Pluto in 2002 was observed from several telescopes on Mauna Kea in wavelengths ranging from R- to K-bands (Elliot et al. 2003). This event provided compelling evidence for haze on Pluto, since the mid-event baseline levels were systematically higher at longer wavelengths (as expected if there were an opacity source that scattered more effectively at shorter wavelengths). However, subsequent occultations in 2007 and 2011 showed no significant differences between visible and IR lightcurves (Young et al. 2011).The question of haze on Pluto was definitively answered by direct imaging of forward-scattering aerosols by the New Horizons spacecraft on 14-JUL-2015. We report on results of a bright stellar occultation which we observed on 29-JUN-2015 in B- and H-bands from both grazing and central sites. As in 2007 and 2011, we see no evidence for wavelength-dependent extinction. We will present an analysis of haze parameters (particle sizes, number density profiles, and fractal aggregations), constraining models of haze distribution to those consistent with and to those ruled out by the occultation lightcurves and the New Horizons imaging.References:Elliot, J.L., et al., "Pluto's Atmosphere." Icarus 77, 148-170 (1989)Eshleman, V.R., "Pluto's Atmosphere: Models based on refraction, inversion, and vapor pressure equilibrium." Icarus 80 439-443 (1989)Elliot, J.L., et al., "The recent expansion of Pluto's atmosphere." Nature 424 165-168 (2003)Young, E.F., et al., "Search for Pluto's aerosols: simultaneous IR and visible stellar occultation observations." EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France (2011)

  15. Destination pluto: New horizons performance during the approach phase

    NASA Astrophysics Data System (ADS)

    Flanigan, Sarah H.; Rogers, Gabe D.; Guo, Yanping; Kirk, Madeline N.; Weaver, Harold A.; Owen, William M.; Jackman, Coralie D.; Bauman, Jeremy; Pelletier, Frederic; Nelson, Derek; Stanbridge, Dale; Dumont, Phillip J.; Williams, Bobby; Stern, S. Alan; Olkin, Cathy B.; Young, Leslie A.; Ennico, Kimberly

    2016-11-01

    The New Horizons spacecraft began its journey to the Pluto-Charon system on January 19, 2006 on-board an Atlas V rocket from Cape Canaveral, Florida. As the first mission in NASA's New Frontiers program, the objective of the New Horizons mission is to perform the first exploration of ice dwarfs in the Kuiper Belt, extending knowledge of the solar system to include the icy "third zone" for the first time. Arriving at the correct time and correct position relative to Pluto on July 14, 2015 depended on the successful execution of a carefully choreographed sequence of events. The Core command sequence, which was developed and optimized over multiple years and included the highest-priority science observations during the closest approach period, was contingent on precise navigation to the Pluto-Charon system and nominal performance of the guidance and control (G&C) subsystem. The flyby and gravity assist of Jupiter on February 28, 2007 was critical in placing New Horizons on the path to Pluto. Once past Jupiter, trajectory correction maneuvers (TCMs) became the sole source of trajectory control since the spacecraft did not encounter any other planetary bodies along its flight path prior to Pluto. During the Pluto approach phase, which formally began on January 15, 2015, optical navigation images were captured primarily with the Long Range Reconnaissance Imager to refine spacecraft and Pluto-Charon system trajectory knowledge, which in turn was used to design TCMs. Orbit determination solutions were also used to update the spacecraft's on-board trajectory knowledge throughout the approach phase. Nominal performance of the G&C subsystem, accurate TCM designs, and high-quality orbit determination solutions resulted in final Pluto-relative B-plane arrival conditions that facilitated a successful first reconnaissance of the Pluto-Charon system.

  16. Pluto and Charon: Surface Colors and Compositions - A Hypothesis

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    2016-01-01

    The surface of Pluto displays an array of colors ranging from yellow to red to brown, while the surface of Charon is largely gray with a north polar zone of red color similar to regions on Pluto. Pluto's surface shows layers of intensely colored material in tilted and transported blocks, and fractured geo-graphical units. This arrangement suggests episodes of formation or deposition of that material interspersed with episodes of emplacement of ices having little or no color. The ices identified on the surfaces of these two bodies (N2, CH4, CO, C2H6, H2O on Pluto, and H2O and NH3 on Charon) are colorless, as are nearly all ices in a powdery state. The colors on Pluto probably arise from the in situ formation of a macro-molecular carbonaceous material generated by energetic processing of the ices on the surface. Laboratory experiments producing refractory tholins particularly relevant to Pluto explored the chemistry of both UV and low-energy electron bombardment of a mix of Pluto ices (N2:CH4:CO = 100:1:1). We can term this Pluto ice tholin PIT. Water ice in the crystalline state characterizes Charon's surface, and while most of Charon's surface is neutral in color, with geometric albedo approximately 0.38, the polar zone and a light cover of fainter but similar reddish color over some surface regions suggest a common origin with the colored material on Pluto. NH3 or NH3 x nH2O was identified from disk-integrated Earth-based spectra, and a few concentrated NH3 exposures have been found in the New Horizons spectral images.

  17. Multi-component symmetry-projected approach for molecular ground state correlations

    NASA Astrophysics Data System (ADS)

    Jiménez-Hoyos, Carlos A.; Rodríguez-Guzmán, R.; Scuseria, Gustavo E.

    2013-11-01

    The symmetry-projected Hartree-Fock ansatz for the electronic structure problem can efficiently account for static correlation in molecules, yet it is often unable to describe dynamic correlation in a balanced manner. Here, we consider a multi-component, systematically improvable approach, that accounts for all ground state correlations. Our approach is based on linear combinations of symmetry-projected configurations built out of a set of non-orthogonal, variationally optimized determinants. The resulting wavefunction preserves the symmetries of the original Hamiltonian even though it is written as a superposition of deformed (broken-symmetry) determinants. We show how short expansions of this kind can provide a very accurate description of the electronic structure of simple chemical systems such as the nitrogen and the water molecules, along the entire dissociation profile. In addition, we apply this multi-component symmetry-projected approach to provide an accurate interconversion profile among the peroxo and bis(μ-oxo) forms of [Cu2O2]2+, comparable to other state-of-the-art quantum chemical methods.

  18. Forced resonant migration of Pluto's outer satellites by Charon.

    PubMed

    Ward, William R; Canup, Robin M

    2006-08-25

    Two small moons of Pluto have been discovered in low-eccentricity orbits exterior to Pluto's large satellite, Charon. All three satellite orbits are nearly coplanar, implying a common origin. It has been argued that Charon formed as a result of a giant impact with primordial Pluto. The orbital periods of the two new moons are nearly integer multiples of Charon's period, suggesting that they were driven outward by resonant interactions with Charon during its tidal orbital expansion. This could have been accomplished if Charon's orbit was eccentric during most of this orbital evolution, with the small moons originating as debris from the collision that produced Charon.

  19. A giant impact origin of Pluto-Charon.

    PubMed

    Canup, Robin M

    2005-01-28

    Pluto and its moon, Charon, are the most prominent members of the Kuiper belt, and their existence holds clues to outer solar system formation processes. Here, hydrodynamic simulations are used to demonstrate that the formation of Pluto-Charon by means of a large collision is quite plausible. I show that such an impact probably produced an intact Charon, although it is possible that a disk of material orbited Pluto from which Charon later accumulated. These findings suggest that collisions between 1000-kilometer-class objects occurred in the early inner Kuiper belt.

  20. Features of surface topography and the geological activity of Pluto

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    According to the data "New Horizons" of the spacecraft, researchers were able to specify the diameter of Pluto-2374 km. Its surface temperature in the equatorial region varies from 33 to 55 K over the planet's orbital period around the Sun in ~248 years. Presumably the surface of Pluto has a rocky base covered with a mantle of water ice, of frozen methane, nitrogen, ammonia and CO. Due to the large eccentricity of the orbit of Pluto, as it approaches the Sun, the ice melts, and the atmosphere is formed mainly of nitrogen and methane; while removing of the planet from the Sun - the atmosphere freezes out again.

  1. New Horizons Event: The First Mission to the Pluto System

    NASA Image and Video Library

    2014-08-25

    Dr. Jim Green, Director of NASA’s Planetary Division, speaks on a panel at the "New Horizons: The First Mission to the Pluto System and the Kuiper Belt" Event at NASA Headquarters in Washington, DC Monday, August 25, 2014. Scientists discussed how the first images of Pluto and its moons would be captured by the New Horizons spacecraft during a five month long reconnaissance flyby study starting in the summer of 2015. New Horizons launched on January 19, 2006 and is scheduled to make its closest approach to Pluto on July 14, 2015. Photo Credit: (NASA/Aubrey Gemignani)

  2. New Horizons Event: The First Mission to the Pluto System

    NASA Image and Video Library

    2014-08-25

    Dr. Alan Stern, New Horizons principal investigator, speaks on a panel at the "New Horizons: The First Mission to the Pluto System and the Kuiper Belt" Event at NASA Headquarters in Washington, DC Monday, August 25, 2014. Scientists discussed how the first images of Pluto and its moons would be captured by the New Horizons spacecraft during a five month long reconnaissance flyby study starting in the summer of 2015. New Horizons launched on January 19, 2006 and is scheduled to make its closest approach to Pluto on July 14, 2015. Photo Credit: (NASA/Aubrey Gemignani)

  3. New Horizons Event: The First Mission to the Pluto System

    NASA Image and Video Library

    2014-08-25

    An audience member asks the panelists a question at the "New Horizons: The First Mission to the Pluto System and the Kuiper Belt" Event at NASA Headquarters in Washington, DC Monday, August 25, 2014. Scientists discussed how the first images of Pluto and its moons would be captured by the New Horizons spacecraft during a five month long reconnaissance flyby study starting in the summer of 2015. New Horizons launched on January 19, 2006 and is scheduled to make its closest approach to Pluto on July 14, 2015. Photo Credit: (NASA/Aubrey Gemignani)

  4. New Horizons Event: The First Mission to the Pluto System

    NASA Image and Video Library

    2014-08-25

    Audience members view images of Neptune taken by Voyager while scientists discuss how the first images of Pluto and its moons will be captured during the "New Horizons: The First Mission to the Pluto System and the Kuiper Belt" Event at NASA Headquarters in Washington, DC Monday, August 25, 2014. The New Horizons spacecraft launched on January 19, 2006 will conduct a five month long reconnaissance flyby study of Pluto and its moons starting in the summer of 2015. Photo Credit: (NASA/Aubrey Gemignani)

  5. New Horizons Event: The First Mission to the Pluto System

    NASA Image and Video Library

    2014-08-25

    Audience members view slides from a presentation by Dr. Jim Green, Dr. Ed Stone, and Dr. Alan Stern at the "New Horizons: The First Mission to the Pluto System and the Kuiper Belt" Event at NASA Headquarters in Washington, DC Monday, August 25, 2014. They discussed how the first images of Pluto and its moons would be captured by the New Horizons spacecraft during a five month long reconnaissance flyby study starting in the summer of 2015. New Horizons launched on January 19, 2006 and is scheduled to make its closest approach to Pluto on July 14, 2015. Photo Credit: (NASA/Aubrey Gemignani)

  6. New Horizons Event: The First Mission to the Pluto System

    NASA Image and Video Library

    2014-08-25

    Dr. Jim Green, Dr. Ed Stone, and Dr. Alan Stern speak on a panel at the "New Horizons: The First Mission to the Pluto System and the Kuiper Belt" Event at NASA Headquarters in Washington, DC Monday, August 25, 2014. They discussed how the first images of Pluto and its moons would be captured by the New Horizons spacecraft during a five month long reconnaissance flyby study starting in the summer of 2015. New Horizons launched on January 19, 2006 and is scheduled to make its closest approach to Pluto on July 14, 2015. Photo Credit: (NASA/Aubrey Gemignani)

  7. Kuiper Belt Objects Along the Pluto Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David C.

    1998-01-01

    The science objective of this work was to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto-Kuiper Express. Currently, launch is scheduled for 2004 with a flight time of about 1 decade. Early identification of post-Pluto targets is important for mission design and orbit refinement. An object or objects close enough to the flight path can be visited and studied at high resolution, using only residual gas in the thrusters to affect a close encounter.

  8. The impactor flux in the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1994-01-01

    Current impact rates of comets on Pluto and Charon are estimated. It is shown that the dominant sources of impactors are comets from the Kuiper belt and the inner Oort cloud, each of whose perihelion distribution extends across Pluto's orbit. In contrast, long-period comets from the outer Oort cloud are a negligible source of impactors. The total predicted number of craters is not sufficient to saturate the surface areas of either Pluto of Charon over the age of the Solar System. However, heavy cratering may have occurred early in the Solar System's history during clearing of planetesimals from the outer planets' zone.

  9. Kuiper Belt Objects Along the Pluto Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David C.

    1998-01-01

    The science objective of this work was to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto-Kuiper Express. Currently, launch is scheduled for 2004 with a flight time of about 1 decade. Early identification of post-Pluto targets is important for mission design and orbit refinement. An object or objects close enough to the flight path can be visited and studied at high resolution, using only residual gas in the thrusters to affect a close encounter.

  10. Kuiper Belt Objects Along the Pluto-Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David (Principal Investigator)

    1997-01-01

    The science objective of this work is to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto Express. Our hope is that we will find a Kuiper Belt object or objects close enough that a spacecraft flyby will be possible. If we find a suitable object, the science yield of Pluto Express will be substantially enhanced. The density of objects in the Kuiper Belt is such that we are reasonably likely to find an object close enough to the flight path that on-board gas thrusters can effect a close encounter.

  11. The impactor flux in the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1994-01-01

    Current impact rates of comets on Pluto and Charon are estimated. It is shown that the dominant sources of impactors are comets from the Kuiper belt and the inner Oort cloud, each of whose perihelion distribution extends across Pluto's orbit. In contrast, long-period comets from the outer Oort cloud are a negligible source of impactors. The total predicted number of craters is not sufficient to saturate the surface areas of either Pluto of Charon over the age of the Solar System. However, heavy cratering may have occurred early in the Solar System's history during clearing of planetesimals from the outer planets' zone.

  12. Kuiper Belt Objects Along the Pluto-Express Path

    NASA Astrophysics Data System (ADS)

    Jewitt, David C.

    1997-11-01

    The science objective of this work is to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto Express. Our hope is that we will find a Kuiper Belt object or objects close enough that a spacecraft flyby will be possible. If we find a suitable object, the science yield of Pluto Express will be substantially enhanced. The density of objects in the Kuiper Belt is such that we are reasonably likely to find an object close enough to the flight path that on-board gas thrusters can effect a close encounter.

  13. Geology of Pluto and Charon Overview

    NASA Astrophysics Data System (ADS)

    Moore, J. M.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.

    2015-12-01

    Pluto's surface was found to be remarkably diverse in terms of its range of landforms, terrain ages, and inferred geological processes. There is a latitudinal zonation of albedo. The conspicuous bright albedo heart-shaped feature informally named Tombaugh Regio is comprised of several terrain types. Most striking is Texas-sized Sputnik Planum, which is apparently level, has no observable craters, and is divided by polygons and ovoids bounded by shallow troughs. Small smooth hills are seen in some of the polygon-bounding troughs. These hills could either be extruded or exposed by erosion. Sputnik Planum polygon/ovoid formation hypotheses range from convection to contraction, but convection is currently favored. There is evidence of flow of plains material around obstacles. Mountains, especially those seen south of Sputnik Planum, exhibit too much relief to be made of CH4, CO, or N2, and thus are probably composed of H2O-ice basement material. The north contact of Sputnik Planum abuts a scarp, above which is heavily modified cratered terrain. Pluto's large moon Charon is generally heavily to moderately cratered. There is a mysterious structure in the arctic. Charon's surface is crossed by an extensive system of rift faults and graben. Some regions are smoother and less cratered, reminiscent of lunar maria. On such a plain are large isolated block mountains surrounded by moats. At this conference we will present highlights of the latest observations and analysis.

  14. Ground-water investigations of the Project Gnome area, Eddy and Lea Counties, New Mexico

    USGS Publications Warehouse

    Cooper, J.B.

    1962-01-01

    The U.S. Atomic Energy Commission, through the Office of Test Operations, Albuquerque Operations Office, plans to detonate a nuclear device in a massive salt bed 1,200 feet beneath the land surface. The project, known as Project Gnome, is an element of the Plowshare program--a study of peacetime applications of nuclear fission. The location of the proposed underground shot is in a sparsely-populated area in southeastern Eddy County, N. Mex., east of the Pecos River and about 25 miles southeast of the city of Carlsbad. The area is arid to Semiarid and ground water is a vital factor in the economic utilization of the land, which is primarily used for stock raising. An investigation of the Project Gnome site and surrounding area for the purposes of evaluating the ground-water resources and the possible effect upon them from the detonation of the nuclear shot was desired by the Commission. This report describes work done by the U.S. Geological Survey on behalf of the Commission and presents results of the investigation of the ground-water resources and geology of the area. The most intensive investigations were made within a 15-mile radius of the site of Project Gnome and mainly on the east side of the Pecos River. The total area of study of over 1,200 square miles includes parts of Eddy and Lea Counties, N. Mex. The Project Gnome site is in the sedimentary Delaware Basin. It is underlain by about 18,000 feet of sedimentary rocks ranging in age from Ordovician to Recent. Upper Permian evaporitic rocks, which contain the principal source of potash available in the United States, are worked in nearby mines. The potash minerals are found in a massive salt bed about 1,400 feet thick in the Salado Formation of Permian age. The land surface of the area is covered mostly by a wind-blown sand and caliche; however, rocks of the Rustler Formation of Permian age and younger rocks of Permian, Triassic, Pleistocene(?) and Recent age crop out at several localities. Solution by

  15. Ground-water hydrology and projected effects of ground-water withdrawals in the Sevier Desert, Utah

    USGS Publications Warehouse

    Holmes, Walter F.

    1984-01-01

    The principal ground-water reservoir in the Sevier Desert is the unconsolidated basin fill. The fill has been divided generally into aquifers and confining beds, although there are no clearcut boundaries between these units--the primary aquifers are the shallow and deep artesian aquifers. Recharge to the ground-water reservoir is by infiltration of precipitation; seepage from streams, canals, reservoirs, and unconsumed irrigation water; and subsurface inflow from consolidated rocks in mountain areas and from adjoining areas. Discharge is by wells, springs, seepage to the Sevier River, evapotranspiration, and subsurface outflow to adjoining areas.

  16. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  17. Implementation plan for the programmatic environmental impact statement for the Department of Energy UMTRA Ground Water Project

    SciTech Connect

    1994-04-01

    Under the Uranium Mill Tailings Remedial Action (UMTRA) Project, the U.S. Department of Energy (DOE) is cleaning up contamination to protect human health and the environment at 24 inactive uranium processing sites located in 10 states. Five of the sites are either on or near Native American lands. The UMTRA Project is divided into two projects: Surface and Ground Water. On November 18, 1992, the DOE issued a notice of intent (57 FR 54374, 1992) to prepare a programmatic environmental impact statement (PEIS) for the UMTRA Ground Water Project. The PEIS will result in a record of decision that will determine how the UMTRA Ground Water Project will address ground water contamination resulting from milling operations at the UMTRA Project processing sites. DOE regulations (10 CFR {section} 1021.312) require that an implementation plan be prepared to provide guidance for preparing a PEIS and to record the results of the scoping process. This implementation plan describes and records the results of the PEIS scoping process; summarizes comments received and their disposition; describes the purpose of and need for agency action, the proposed action, and alternatives; lists alternatives considered and eliminated from review; identifies cooperating agencies, their roles, and responsibilities; provides a draft PEIS outline, which includes the planned PEIS scope and content (Attachment A); and provides a schedule for the PEIS process. This plan will be placed in the UMTRA Project libraries listed in Attachment B. The PEIS will identify and evaluate the potential impacts associated with alternatives for conducting the UMTRA Ground Water Project. The PEIS will not assess site-specific impacts; site-specific impacts must be analyzed in separate National Environmental Policy Act (NEPA) documents that will tier off the PEIS. This tiering process will streamline the preparation of site-specific NEPA documents.

  18. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    USGS Publications Warehouse

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  19. Pluto behaving badly: false beliefs and their consequences.

    PubMed

    Berkowitz, Shari R; Laney, Cara; Morris, Erin K; Garry, Maryanne; Loftus, Elizabeth F

    2008-01-01

    We exposed college students to suggestive materials in order to lead them to believe that, as children, they had a negative experience at Disneyland involving the Pluto character. A sizable minority of subjects developed a false belief or memory that Pluto had uncomfortably licked their ear. Suggestions about a positive experience with Pluto led to even greater acceptance of a lovable ear-licking episode. False beliefs and memories had repercussions; those seduced by the bad suggestions were not willing to pay as much for a Pluto souvenir. These findings are among the first to demonstrate that false beliefs can have repercussions for people, meaning that they can influence their later thoughts, beliefs, and behaviors.

  20. Pluto Majestic Mountains, Frozen Plains and Foggy Hazes

    NASA Image and Video Library

    2015-09-17

    Just 15 minutes after its closest approach to Pluto on July 14, 2015, NASA's New Horizons spacecraft looked back toward the sun and captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto's horizon. The smooth expanse of the informally named icy plain Sputnik Planum (right) is flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. To the right, east of Sputnik, rougher terrain is cut by apparent glaciers. The backlighting highlights more than a dozen layers of haze in Pluto's tenuous but distended atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 780 miles (1,250 kilometers) wide. http://photojournal.jpl.nasa.gov/catalog/PIA19948

  1. New Horizons Best Close-Up of Pluto Surface

    NASA Image and Video Library

    2016-05-27

    This mosaic strip, extending across the hemisphere that faced the New Horizons spacecraft as it flew past Pluto on July 14, 2015, now includes all of the highest-resolution images taken by the NASA probe.

  2. The Pluto Case and the Nature of Science

    NASA Astrophysics Data System (ADS)

    Nóbrega de Albuquerque, Vanessa; Leite, Cristina

    2016-08-01

    Pluto had its classification changed in 2006, from planet to “dwarf planet”. This change had great impact in the media. Pluto returned to the news due to the arrival of New Horizons probe to Pluto in July 2015. Whereas the understanding of the complexity involved in the definition of celestial bodies could help us to show science as a historic, social, collective, non-linear and non-neutral process, it is presented a historical survey of the episodes involving the various definitions for planet, since the first observations of the sky made by our ancestors until the resolutions that defined which are the attributes of a "planet " made at the 26th General Assembly of the International Astronomical Union, meeting at which it was decided to reclassify Pluto. In order contribute to help perform discussions about the nature of science involving Astronomy themes, it is explained which features of scientific knowledge become evident during the study of the mentioned episodes.

  3. Surface Ice Spectroscopy of Pluto, Charon and Triton

    NASA Astrophysics Data System (ADS)

    Protopapa, Silvia; Herbst, Tom; Böhnhardt, Hermann

    2007-09-01

    We present new reflectance spectra of Pluto and Triton taken with the ESO adaptive optics instrument NACO at the VLT and covering the wavelength range 1 5 µm. Apart from known and expected absorption bands from methane ice, our data reveal new absorption bands centred around 4.0 µm and 4.6 µm never detected before. The latter absorption could be related to the presence of CO ice at the body surfaces. Charon's spectrum is also measured in the wavelength range 1 4 µm, for the first time simultaneously with, but isolated from, that of Pluto. The non-detection of Pluto's moonlets (unknown at the time of observation) in acquisition images of Pluto-Charon provides a lower limit of 18.8 mag for the K-band brightness of Hydra and Nix.

  4. Geological Mapping of the Encounter Hemisphere on Pluto

    NASA Astrophysics Data System (ADS)

    White, O. L.; Moore, J. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.; Young, L. A.; Cheng, A. F.; New Horizons GGI Theme Team

    2016-06-01

    We present mapping of Pluto's encounter hemisphere performed to date (focusing on Sputnik Planum and the immediately surrounding area) and offer preliminary descriptions of terrains further afield that will be the subject of future mapping.

  5. To Pluto from a First-Class Postage Stamp

    NASA Technical Reports Server (NTRS)

    Staehle, R.; Terrile, R.; Weinstein, S.

    1993-01-01

    The first mission to Pluto is presently under development at NASA's Jet Propulsion Laboratory. Inspired by a nagging 29-cent postage stamp, the mission concept began with a chance conversation between two engineers.

  6. The Exploration of the Pluto System by New Horizons

    NASA Astrophysics Data System (ADS)

    Weaver, Harold; Stern, S. Alan

    2016-07-01

    The New Horizons (NH) mission was selected by NASA in November 2001 to conduct the first in situ reconnaissance of Pluto and the Kuiper belt. The NH spacecraft was launched on 2006 January 19, received a gravity assist from Jupiter during closest approach on 2007 February 28, and flew 12,500 km above Pluto's surface on 2015 July 14. NH carried a sophisticated suite of seven scientific instruments, altogether weighing less than 30 kg and drawing less than 30 W of power, that includes panchromatic and color imagers, ultraviolet and infrared spectral imagers, a radio science package, plasma and charged particle sensors, and a dust counting experiment. The NH flyby of the Pluto system executed flawlessly, providing unprecedented detail on the Pluto-Charon binary and Pluto's four small moons (Styx, Nix, Kerberos, and Hydra, in order of their orbital distance from Pluto). Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. NH discovered trace hydrocarbons in Pluto's atmosphere, multiple global haze layers, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long term activity raise fundamental questions about how small planets remain active many billions of years (Gyr) after formation. Charon displays tectonics, evidence for a heterogeneous crustal composition, and a puzzling giant hood of dark material covering its North Pole. Crater density statistics for Charon's surface give a crater retention age of 4-4.5 Ga, indicating that Charon's geological evolution largely ceased early in its history. Nix and Hydra have high albedos suggestive of H2O-ice covered surfaces. Crater densities on Nix and Hydra indicate surface ages > 4 Ga. All the small satellites have highly elongated shapes and are rotating much faster then synchronous with their orbital

  7. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  8. DAZZLE project: UAV to ground communication system using a laser and a modulated retro-reflector

    NASA Astrophysics Data System (ADS)

    Thueux, Yoann; Avlonitis, Nicholas; Erry, Gavin

    2014-10-01

    The advent of the Unmanned Aerial Vehicle (UAV) has generated the need for reduced size, weight and power (SWaP) requirements for communications systems with a high data rate, enhanced security and quality of service. This paper presents the current results of the DAZZLE project run by Airbus Group Innovations. The specifications, integration steps and initial performance of a UAV to ground communication system using a laser and a modulated retro-reflector are detailed. The laser operates at the wavelength of 1550nm and at power levels that keep it eye safe. It is directed using a FLIR pan and tilt unit driven by an image processing-based system that tracks the UAV in flight at a range of a few kilometers. The modulated retro-reflector is capable of a data rate of 20Mbps over short distances, using 200mW of electrical power. The communication system was tested at the Pershore Laser Range in July 2014. Video data from a flying Octocopter was successfully transmitted over 1200m. During the next phase of the DAZZLE project, the team will attempt to produce a modulated retro-reflector capable of 1Gbps in partnership with the research institute Acreo1 based in Sweden. A high speed laser beam steering capability based on a Spatial Light Modulator will also be added to the system to improve beam pointing accuracy.

  9. 2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis

    1997-01-01

    The Solar Dynamic Ground Test Demonstration (SDGTD) successfully demonstrated a solar-powered closed Brayton cycle system in a relevant space thermal environment. In addition to meeting technical requirements the project was completed 4 months ahead of schedule and under budget. The following conclusions can be supported: 1. The component technology for solar dynamic closed Brayton cycle technology has clearly been demonstrated. 2. The thermal, optical, control, and electrical integration aspects of systems integration have also been successfully demonstrated. Physical integration aspects were not attempted as these tend to be driven primarily by mission-specific requirements. 3. System efficiency of greater than 15 percent (all losses fully accounted for) was demonstrated using equipment and designs which were not optimized. Some preexisting hardware was used to minimize cost and schedule. 4. Power generation of 2 kWe. 5. A NASA/industry team was developed that successfully worked together to accomplish project goals. The material presented in this report will show that the technology necessary to design and fabricate solar dynamic electrical power systems for space has been successfully developed and demonstrated. The data will further show that achieved results compare well with pretest predictions. The next step in the development of solar dynamic space power will be a flight test.

  10. Feasibility of ground-water features of the alternate plan for the Mountain Home project, Idaho

    USGS Publications Warehouse

    Nace, Raymond L.; West, S.W.; Mowder, R.W.

    1957-01-01

    An early plan of the U. S. Bureau of Reclamation proposed to irrigate 183,000 acres on the arid Snake River Plain south of Boise, Idaho (Mountain Home project) with Boise River water. That water would have been replaced to the Boise Valley with water imported from the Payette River. An alternate plan, proposed in 1953, would divert water from the Boise River to the plain; part of the water would be replaced by pumping ground water in the Boise valley and by importing water from the Snake River. Pumping of ground water in the Boise Valley also would help to drain waterlogged land. The present report evaluates the feasibility of the alternate plan in relation to geology and the occurrence and quality of ground water. The mean annual temperature at Boise is 50.8 ? F and there is an average of 172 days between killing frosts. The annual evaporation rate from open-water surfaces in the area is about 33 inches. Runoff in the Boise River is chiefly from precipitation on mountain slopes at altitudes above 3,000 feet, east of Boise Diversion Dam. The surface-water supply of the Boise Valley is more Than ample for the valley, owing to large upstream storage and regulatory dams and reservoirs. The valley also contains a large volume of ground water in storage, and the perennial rate of recharge is large. The computed consumptive depletion of surface water in the valley is nearly 600,000 acre-feet a year. Apparent depletion, computed from adjusted runoff at Notus, is 1,070,000 acre-feet. The difference of 470,000 acre-feet represents ground-water underflow and ungaged surface outflow from the area east of Notus. After the beginning of irrigation, around the turn of the century, the water table in the Boise Valley rose steadily; the amount of rise at some places was as much as 140 feet. Shallow perched zones of saturation were created locally. More than 100,000 acres of Boise Valley land now is waterlogged or threatened with waterlogging, despite the presence of more than 325

  11. Informal Names for Features on Pluto Moon Charon

    NASA Image and Video Library

    2015-07-29

    This image contains the initial, informal names being used by NASA's New Horizons team for the features on Pluto's largest moon, Charon. Names were selected based on the input the team received from the Our Pluto naming campaign. Names have not yet been approved by the International Astronomical Union (IAU). For more information on the maps and feature naming, visit http://www.ourpluto.org/maps. http://photojournal.jpl.nasa.gov/catalog/PIA19864

  12. Informal Names for Features on Pluto Sputnik Planum

    NASA Image and Video Library

    2015-07-29

    This image contains the initial, informal names being used by NASA's New Horizons team for the features on Pluto's Sputnik Planum (plain). Names were selected based on the input the team received from the Our Pluto naming campaign. Names have not yet been approved by the International Astronomical Union (IAU). For more information on the maps and feature naming, visit http://www.ourpluto.org/maps. http://photojournal.jpl.nasa.gov/catalog/PIA19865

  13. Separate spectra of Pluto and its satellite Charon

    SciTech Connect

    Fink, U.; Disanti, M.A.

    1988-01-01

    The March 3, 1987 occultation of Charon by Pluto was observed spectroscopically from 5400 to 10,200 A at a resolution of 12 A. The midpoint of the event occurred at 11:06 UT; the depth of the event at 6800 A was 0.162 mag. The spectrum of Charon is completely featureless and almost perfectly flat; the red slope and the CH4 absorption features can be attributed solely to Pluto. 17 references.

  14. Optical Navigation Preparations for New Horizons Pluto Flyby

    NASA Technical Reports Server (NTRS)

    Owen, William M., Jr.; Dumont, Philip J.; Jackman, Coralie D.

    2012-01-01

    The New Horizons spacecraft will encounter Pluto and its satellites in July 2015. As was the case for the Voyager encounters with Jupiter, Saturn, Uranus and Neptune, mission success will depend heavily on accurate spacecraft navigation, and accurate navigation will be impossible without the use of pictures of the Pluto system taken by the onboard cameras. We describe the preparations made by the New Horizons optical navigators: picture planning, image processing algorithms, software development and testing, and results from in-flight imaging.

  15. Pristine impact crater morphology on Pluto - Expectations for New Horizons

    NASA Astrophysics Data System (ADS)

    Bray, Veronica J.; Schenk, Paul M.

    2015-01-01

    This paper combines previous cratering studies and numerical modeling of the impact process at different impact velocities to predict crater morphology on Pluto. As an icy body, Pluto's craters are expected to be similar in morphology to those on the icy satellites: lesser depth-diameter ratios (d/D), shallower wall slopes and the development of central uplifts in craters of smaller rim-to-rim diameter than craters on rocky bodies of similar gravity. The low impact velocity of the Pluto system (∼2 km s-1) might cause deviation from this generalization as the simulations presented in this work suggest that decreasing impact velocity from 10 km s-1 to 2 km s-1 results in deeper craters (larger d/D) and a simple-to-complex transition diameter at larger crater sizes than predicted based on gravity scaling alone (D > 6 km). Conversely, decreasing impact velocity from 2 km s-1 to 300 m s-1 produced smaller d/D, akin to the lower d/D noted for secondary craters. This complex relationship between impact velocity and d/D suggests that there might be a larger range of 'pristine' simple crater depths on Pluto than on bodies with higher mean impact velocity. The low impact velocities and correspondingly low volumes of impact melt generated at Pluto might prevent the occurrence, or limit the size, of floor-pits if their formation involves impact melt water. The presence, or not, of central floor-pit craters on Pluto will thus provide a valuable test of floor-pit formation theories. The presence of summit-pits or concentric craters on Pluto is plausible and would indicate the presence of layering in the near sub-surface. Palimpsests, multi-ring basins and other crater morphologies associated with high heat flow are not expected and would have important implications for Pluto's thermal history if observed by New Horizons.

  16. The floating ices on the surface of Pluto

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    The average temperature of of Pluto surface is about 40 K. Because of the substantial eccentricity of the orbit of Pluto when approaching the Sun - the ice melts on its surface, and this leads to the formation of an atmosphere consisting mainly of nitrogen and methane sublimated. Water ice is not only deep, but there is also on the surface of the planet, forming a mountain range up to 3-4 km altitude, and small unique icebergs.

  17. Albedo maps of Pluto and Charon - Initial mutual event results

    NASA Technical Reports Server (NTRS)

    Buie, Marc W.; Tholen, David J.; Horne, Keith

    1992-01-01

    By applying the technique of maximum entropy image reconstruction to invert observed lightcurves, surface maps of single-scattering albedo are obtained for the surfaces of Pluto and Charon from 1954 to 1986. The albedo features of the surface of Pluto are similar to those of the Buie and Tholen (1989) spot model maps; a south polar cap is evident. The map of Charon is somewhat darker, with single-scattering albedos as low as 0.03.

  18. Impact and Cratering History of the Pluto System

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2014-11-01

    The observational opportunity of the New Horizons spacecraft fly-through of the Pluto system in July 2015 requires a current understanding of the Kuiper belt dynamical sub-populations to accurately interpret the cratering history of the surfaces of Pluto and its satellites. We use an Opik-style collision probability code to compute impact rates and impact velocity distributions onto Pluto and its binary companion Charon from the Canada-France Ecliptic Plane Survey (CFEPS) model of classical and resonant Kuiper belt populations (Petit et al., 2011; Gladman et al., 2012) and the scattering model of Kaib et al. (2011) calibrated to Shankman et al. (2013). Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with diameter d>100 km) connects to smaller objects, we compute cratering rates using three simple impactor size distribution extrapolations (a single power-law, a power-law with a knee, and a power-law with a divot) as well as the "curvy" impactor size distributions from Minton et al. (2012) and Schlichting et al. (2013). Current size distribution uncertainties cause absolute ages computed for Pluto surfaces to be entirely dependent on the extrapolation to small sizes and thus uncertain to a factor of approximately 6. We illustrate the relative importance of each Kuiper belt sub-population to Pluto's cratering rate, both now and integrated into the past, and provide crater retention ages for several cases. We find there is only a small chance a crater with diameter D>200 km has been created on Pluto in the past 4 Gyr. The 2015 New Horizons fly-through coupled with telescope surveys that cover objects with diameters d=10-100 km should eventually drop current crater retention age uncertainties on Pluto to <30%. In addition, we compute the "disruption timescale" (to a factor of three accuracy) for Pluto's smaller satellites: Styx, Nix, Kerberos, and Hydra.

  19. Kepler K2 Precision Lightcurve Observations of Pluto: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Lisse, Casey M.; Benecchi, Susan D.; Binzel, Richard; Schwamb, Megan Elizabeth; New Horizons Science Team

    2016-10-01

    Pluto is a key object in the third zone of our Solar System and provides important insight into formation and collisional processes that were at work in the early solar system. In July 2015 the New Horizons spacecraft successfully obtained high resolution fly-by clear filter imaging observations of the Pluto system. We report on our continued monitoring of the Pluto system from October-December 2015 using the Kepler spacecraft's imaging photometer during Campaign 7 of the K2 extended mission (Howell et al. 2014). We obtained an unprecedented 83-day nearly continuous lightcurve with measurements every 30 minutes using Kepler's long cadence sampling. The result was 3,980 discrete, unresolved measurements of the combined Pluto system. The 3-month baseline allowed us to sample rotational variations and solar phase angles ranging from 1.1°-1.7° during the period of observation. This dataset is a key baseline for advancing the study of Pluto's actively evolving surface-atmosphere interaction as revealed by the surface geomorphology discovered by New Horizons. Our challenge is to gain an understanding of the ways in which Pluto's surface can be evolving as it recedes from the Sun, and of the influence of Pluto and Charon on each other. In this paper, we present our preliminary results from our K2 dataset. We describe the challenges in reducing the K2 lightcurve data for a target moving across the K2 FOV, and our progress in understanding the lightcurve's variability, which in our current reduction is due to a combination of systematics in the K2 dataset and inherent characteristics of the Pluto system's rotation and changing orbital geometry wrt the Sun and the Earth.This work was supported by NASA's K2 and New Horizons missions.

  20. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Fran Bagenal, senior scientist at the University of Colorado, far right, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  1. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute, answers a question from the audience during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  2. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute in Boulder, Colorado, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  3. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Alan Stern, Principal Investigator on NASA's New Horizons Mission, left, delivers closing remarks following a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  4. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Bonnie Buratti, senior scientist at NASA's Jet Propultion Laboratory, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  5. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Fran Bagenal, senior scientist at the University of Colorado, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  6. Optical Navigation Preparations for New Horizons Pluto Flyby

    NASA Technical Reports Server (NTRS)

    Owen, William M., Jr.; Dumont, Philip J.; Jackman, Coralie D.

    2012-01-01

    The New Horizons spacecraft will encounter Pluto and its satellites in July 2015. As was the case for the Voyager encounters with Jupiter, Saturn, Uranus and Neptune, mission success will depend heavily on accurate spacecraft navigation, and accurate navigation will be impossible without the use of pictures of the Pluto system taken by the onboard cameras. We describe the preparations made by the New Horizons optical navigators: picture planning, image processing algorithms, software development and testing, and results from in-flight imaging.

  7. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Alan Stern, Principal Investigator on NASA's New Horizons Mission, delivers closing remarks following a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  8. Image Analysis of the 2012 Pluto (Near) Occultation

    DTIC Science & Technology

    2013-09-01

    5 Hz for 40 minutes before and after the expected time of occultation. The initial analysis of the photometry indicated that Pluto did not occult...that we would see it. The photometry said that we did not. From our viewpoint, the data had value in addition to the possibility of investigating...minutes before and after the expected time of occultation. The initial analysis of the photometry indicated that Pluto did not occult the star. This

  9. Radio occultation measurements of Pluto's neutral atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Linscott, I. R.; Young, L. A.; Tyler, G. L.; Stern, S. A.; Beyer, R. A.; Bird, M. K.; Ennico, K.; Gladstone, G. R.; Olkin, C. B.; Pätzold, M.; Schenk, P. M.; Strobel, D. F.; Summers, M. E.; Weaver, H. A.; Woods, W. W.

    2017-07-01

    On 14 July 2015 New Horizons performed a radio occultation (RO) that sounded Pluto's atmosphere down to the surface. The sensitivity of the measurements was enhanced by a unique configuration of ground equipment and spacecraft instrumentation. Signals were transmitted simultaneously by four antennas of the NASA Deep Space Network, each radiating 20 kW at a wavelength of 4.2 cm. The polarization was right circular for one pair of signals and left circular for the other pair. New Horizons received the four signals and separated them by polarization for processing by two independent receivers, each referenced to a different ultra-stable oscillator. The two data streams were digitized, filtered, and stored on the spacecraft for later transmission to Earth. The results reported here are the first to utilize the complete set of observations. We calibrated each signal to remove effects not associated with Pluto's atmosphere, including the limb diffraction pattern. We then applied a specialized method of analysis to retrieve profiles of number density, pressure, and temperature from the combined phase measurements. Occultation entry sounded the atmosphere at sunset at 193.5°E, 17.0°S - on the southeast margin of an ice-filled basin known informally as Sputnik Planitia (SP); occultation exit occurred at sunrise at 15.7°E, 15.1°N - near the center of the Charon-facing hemisphere. Above 1215 km radius (∼25 km altitude) there is no discernible difference between the measurements at entry and exit, and the RO profiles are consistent with results derived from ground-based stellar occultation measurements. At lower altitudes the RO measurements reveal horizontal variations in atmospheric structure that had not been observed previously, and they are the first to reach the ground. The entry profile has a strong temperature inversion that ends 3.5 km above the surface, and the temperature in the cold boundary layer beneath the inversion is nearly constant, 38.9 ± 2.1 K, and

  10. New Horizons Very Best View of Pluto Mosiac

    NASA Image and Video Library

    2015-12-05

    This mosaic is composed of the sharpest views of Pluto that NASA's New Horizons spacecraft obtained during its flyby of the distant planet on July 14, 2015. The pictures are part of a sequence taken near New Horizons' closest approach to Pluto, with resolutions of about 250-280 feet (77-85 meters) per pixel -- revealing features smaller than half a city block on Pluto's diverse surface. The images include a wide variety of spectacular, cratered, mountainous and glacial terrains -- giving scientists and the public alike a breathtaking, super-high resolution window on Pluto's geology. The images form a strip 50 miles (80 kilometers) wide trending from Pluto's jagged horizon about 500 miles (800 kilometers) northwest of the informally named Sputnik Planum, across the al-Idrisi mountains, onto the shoreline of Sputnik Planum and then across its icy plains. They were made with the telescopic Long Range Reconnaissance Imager (LORRI) aboard New Horizons, over a timespan of about a minute centered on 11:36 UT on July 14 -- just about 15 minutes before New Horizons' closest approach to Pluto -- from a range of just 10,000 miles (17,000 kilometers). They were obtained with an unusual observing mode; instead of working in the usual "point and shoot," LORRI snapped pictures every three seconds while the Ralph/Multispectral Visual Imaging Camera (MVIC) aboard New Horizons was scanning the surface. This mode requires unusually short exposures to avoid blurring the images. http://photojournal.jpl.nasa.gov/catalog/PIA20201

  11. Pluto's insolation history: Latitudinal variations and effects on atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.

    2015-04-01

    Since previous long-term insolation modeling in the early 1990s, new atmospheric pressure data, increased computational power, and the upcoming flyby of the Pluto system by NASA's New Horizons spacecraft have generated new motivation and increased capabilities for the study of Pluto's complex long-term (million-years) insolation history. The two primary topics of interest in studying Pluto's insolation history are the variations in insolation patterns when integrated over different intervals and the evolution of diurnal insolation patterns over the last several decades. We find latitudinal dichotomies when comparing average insolation over timescales of days, decades, centuries, and millennia, where all timescales we consider are short relative to the predicted timescales for Pluto's chaotic orbit. Depending on the timescales of volatile migration, some consequences of these insolation patterns may be manifested in the surface features revealed by New Horizons. We find the Maximum Diurnal Insolation (MDI) at any latitude is driven most strongly when Pluto's obliquity creates a long arctic summer (or "midnight sun") beginning just after perihelion. Pluto's atmospheric pressure, as measured through stellar occultation observations during the past three decades, shows a circumstantial correlation with this midnight sun scenario as quantified by the MDI parameter.

  12. Introduction to the Pluto system science special issue

    NASA Astrophysics Data System (ADS)

    Grundy, Will; Stern, Alan; Bagenal, Fran; Gladstone, Randy; Buratti, Bonnie

    2015-01-01

    Pluto and its complex system of moons have been the subject of scientific inquiry, speculation, and study since it was famously discovered by Clyde Tombaugh in 1930, orbiting far beyond Neptune. By the 1990s, Pluto had been found to possess multiple exotic ices on its surface, a complex atmosphere and seasonal cycles, an unusually "contrasty" surface, and a large moon indicative of a giant impact origin for the pair. Also in the 1990s it became clear that Pluto was no misfit among the planets, as had long been thought; instead, it was revealed to be the harbinger of, and the brightest and largest of an abundant new planetary class of ice dwarfs in the Kuiper Belt-the third zone of our planetary system. In more recent years, Pluto has been shown to have an unexpectedly rich system of satellites and to show strong evidence for surface changes that occur on human timescales. It has even been speculated that Pluto and Charon may possess internal oceans. These and other considerations caused the 2003 Planetary Decadal Survey to rank a Pluto Kuiper Belt mission as the highest priority New Frontiers destination needing a new start.

  13. The improvement of the Pluto orbit using additional new data

    NASA Astrophysics Data System (ADS)

    Girdiuk, A.

    2015-08-01

    Observational series of the Pluto dwarf planet have started since 1913. At this moment observations have covered only a third of the Pluto orbit, therefore, the Pluto orbital elements are defined with insufficient accuracy. A growing number of observations leads to the improvement of the accuracy of the orbit determination. The database of the Pluto's observations was expanded with the help of about 350 observations during 1930-1996 obtained at the Pulkovo Observatory, and about 5500 observations (1995-2013) including occultation data from Brazilian colleagues obtained at the European Southern Observatory and the Pico dos Dias Observatory, and the new analyzed 469 historical photographic observations archived at Lowell Observatory. The new cross-platform software ERA-8 has been developed in IAA RAS and has been used for implementation of all mathematical procedures for constructing Pluto orbit. The modern ephemerides (EPM2011, EPM2013, DE430, DE432, INPOP13c) are chosen for comparison of the ephemeris positions: equatorial coordinates and heliocentric distance. The main result of the work - construction of ephemerides EPM2014a is a significant improvement of the Pluto's orbit using additional observations.

  14. Charon's Impact on the Pluto-Solar Wind Interaction

    NASA Astrophysics Data System (ADS)

    Hale, J. M.; Paty, C. S.

    2015-12-01

    This work studies Charon's effects on the Pluto-solar wind interaction using a multifluid MHD model which simulates the interactions of Pluto and Charon with the solar wind and each other. Specifically, it investigates the magnetospheric dynamics of a two body system in which either one or both bodies posses an ionosphere. In order to more accurately capture the behavior of the Pluto-Charon system, ion-neutral interactions, including source and loss processes, have been incorporated into the model. Ion-neutral interactions are important due to the highly extended atmosphere in the system, with pick up ions having been detected several million kilometers upstream of the system by the PEPSSI instrument aboard New Horizons. In order to more fully characterize the system, simulations with various system geometries have been performed, in which Charon's position relative to Pluto varies. In addition to the New Horizons system encounter geometry, simulations in which Charon is directly upstream and directly downstream of Pluto are considered. Depending on the bow shock stand-off distance upstream of Pluto, Charon could periodically pass outside of the shock. The results of this study demonstrate that in these circumstances Charon modifies the upstream flow, both in the case in which Charon possesses an ionosphere, and in the case in which Charon is without an ionosphere.

  15. The Orbits and Masses of Pluto's Satellites after New Horizons

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert A.; Brozovic, Marina; Buie, Marc; Porter, Simon; Showalter, Mark; Spencer, John; Stern, S. Alan; Weaver, Harold; Young, Leslie; Ennico, Kimberly; Olkin, Cathy

    2015-11-01

    Brozović et al. (2015 Icarus 246, 317) reported on Pluto's mass and the masses and numerically integrated orbits of Pluto's satellites, Charon, Nix, Hydra, Kerberos, and Styx. These were determined via a fit to an extensive set of astrometric, mutual event, and stellar occultation observations over the time interval April 1965 to July 2012. The data set contained the Hubble Space Telescope (HST) observations of Charon relative to Pluto that were corrected for the Pluto center-of-figure center-of-light offset due to the Pluto albedo variations (Buie et al. 2012 AJ 144, 15). Also included were all of the available HST observations of Nix, Hydra, Kerberos, and Styx. For the New Horizons encounter with the Pluto system, the initial satellite ephemerides (PLU043) and the initial planet and satellite masses were taken from the Brozović et al. analysis. During the New Horizons approach, the ephemerides and masses were periodically updated along with the spacecraft trajectory by the New Horizons navigation team using imaging of the planet and satellites against the stellar background. In this work, we report on our post-flyby analysis of the masses and satellite orbits derived from a combination of the original PLU043 data set, the New Horizions imaging data, and HST observations acquired after 2012.

  16. Characterizing Pluto's plasma environment through multifluid MHD modelling

    NASA Astrophysics Data System (ADS)

    Hale, J. M.; Paty, C. S.

    2013-12-01

    We will report on preliminary results from simulations of the Hadean magnetosphere using a refined version of the global multifluid MHD model which has been successfully used to simulate numerous planetary systems, including Ganymede [Paty et al., 2008], Pluto [Harnett et al., 2005], Saturn [Kidder at al., 2012], and Titan [Snowden et al., 2011a,b], among others. This initial study focuses on exploring the exospheric and solar wind parameter space local to Pluto. We explore multiple system geometries including a simulation in which Pluto has no ionosphere, as appears to be the case due to freezing when Pluto resides at apoapsis, as well as several scenarios with different ionospheric and exospheric densities. Ionospheric densities are based on chemical modeling reported in Krasnopolsky and Cruikshank [1999] and solar wind conditions are based on system geometry at periapsis, apoapsis, and at the time of the New Horizons system flyby. We examine the role of the ionosphere and exosphere in determining the location and structure of the bow shock, as well as characterizing the impact of the variability of solar wind pressure and magnetic field throughout Pluto's orbit. This work supports the characterization of the magnetospheric environment of the Pluto system in preparation for the New Horizons encounter in 2015.

  17. The Difficult Birth of NASA's Pluto Mission

    NASA Astrophysics Data System (ADS)

    Neufeld, Michael J.

    2016-10-01

    The complex and contested origins of the New Horizons mission to Pluto, launched by NASA in 2006, provides a window on how space science policy has been formulated in the United States before and after the turn of the twenty-first century, and how the shifting network of institutions that support and shape space science have changed since 1989. Those decades that have so far been little studied except by policy scholars seeking lessons from the NASA Administrator Daniel Goldin's attempt to force a small-spacecraft technological revolution on space science in the 1990s. The New Horizons case study reveals a shift in the balance of power around 2000 among the important players in the field, increasing the influence of non-NASA actors—notably Congress, science groups and planetary-exploration lobbies. In addition, the origins of New Horizons reveals how contingent the emergence of a particular space science mission can be.

  18. Pluto loses its status as a planet

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah; Kumar, Mohi

    2006-08-01

    Astronomers nave accepted a definition for 'planet' that excludes Pluto, instead relegating that object and at least two others to the status of 'dwarf planet,' in a series of votes taken on 24 August at the International Astronomical Union (IAU) 2006 General Assembly in Prague, Czech Republic.Michael Brown, the California Institute of Technology astronomer who discovered the newly classified dwarf planet 2003 UB313, said, "If you started from scratch, and you looked at the solar system as you were flying in from outer space, you would very quickly realize that there are eight really large objects in the solar system and you would put those into one category and use one word to describe them…All of the other objects in the solar system are much smaller, and they belong to these vast populations of other objects."

  19. Pluto Stellar Occultation on 2008 Aug 25

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Young, L. A.; Young, E. F.; Olkin, C. B.; Terrell, D.; Parker, J. W.; Durda, D.; Stansberry, J. A.; Reitsema, H.; French, R. G.; Shoemaker, K.; Brown, M. E.; Schaller, E. L.; Bauer, J. M.; Young, J. W.; Wasserman, L. H.; Pasachoff, J. M.; Lust, N.; Fernandez, Y. R.; Dellinger, J. A.; Garossino, P. G. A.; Grigsby, B.; Stone, R. P. S.; Dillon, W. G.; Mezzalira, F.; Ryan, E. V.; Ryan, W.; Souza, S. P.; Williams, R.; Sexton, C.

    2009-01-01

    We report on a successful occultation of a star by Pluto that was observable over much of the south and western United States. The centerline was close to WIRO. We will present seven complete lightcurves from Crossley/Lick, WIRO, SBO/CU, Palomar, JPL/TMO, Sierra Stars Obs., and Magdalena Ridge Observatory. We have 2 partial lightcurves from Lowell Obs. and McDonald Obs. where data loss was caused by clouds. There were attempts at the Steward 90", George Observatory, and New Mexico Skies that were clouded out. The UCF station near Orlando was clearly an appulse. A number of other amateurs also succeeded in collecting data. Our presentation will provide a final geometric solution for the event as well as baseline fits to the atmospheric structure. This work was supported by NASA Planetary Astronomy grants NNX08AO626 and NNX08AO50G.

  20. Surface compositions across Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Binzel, R. P.; Buratti, B. J.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Philippe, S.; Protopapa, S.; Quirico, E.; Reuter, D. C.; Schmitt, B.; Singer, K. N.; Verbiscer, A. J.; Beyer, R. A.; Buie, M. W.; Cheng, A. F.; Jennings, D. E.; Linscott, I. R.; Parker, J. Wm.; Schenk, P. M.; Spencer, J. R.; Stansberry, J. A.; Stern, S. A.; Throop, H. B.; Tsang, C. C. C.; Weaver, H. A.; Weigle, G. E.; Young, L. A.

    2016-03-01

    The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto’s surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto’s water ice “bedrock” was also mapped, with isolated outcrops occurring in a variety of settings. Pluto’s surface exhibits complex regional color diversity associated with its distinct provinces. Charon’s color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon’s near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta.

  1. Fusion-Enabled Pluto Orbiter and Lander

    NASA Technical Reports Server (NTRS)

    Thomas, Stephanie

    2017-01-01

    The Pluto orbiter mission proposed here is credible and exciting. The benefits to this and all outer-planet and interstellar-probe missions are difficult to overstate. The enabling technology, Direct Fusion Drive, is a unique fusion engine concept based on the Princeton Field-Reversed Configuration (PFRC) fusion reactor under development at the Princeton Plasma Physics Laboratory. The truly game-changing levels of thrust and power in a modestly sized package could integrate with our current launch infrastructure while radically expanding the science capability of these missions. During this Phase I effort, we made great strides in modeling the engine efficiency, thrust, and specific impulse and analyzing feasible trajectories. Based on 2D fluid modeling of the fusion reactors outer stratum, its scrape-off-layer (SOL), we estimate achieving 2.5 to 5 N of thrust for each megawatt of fusion power, reaching a specific impulse, Isp, of about 10,000 s. Supporting this model are particle-in-cell calculations of energy transfer from the fusion products to the SOL electrons. Subsequently, this energy is transferred to the ions as they expand through the magnetic nozzle and beyond. Our point solution for the Pluto mission now delivers 1000 kg of payload to Pluto orbit in 3.75 years using 7.5 N constant thrust. This could potentially be achieved with a single 1 MW engine. The departure spiral from Earth orbit and insertion spiral to Pluto orbit require only a small portion of the total delta-V. Departing from low Earth orbit reduces mission cost while increasing available mission mass. The payload includes a lander, which utilizes a standard green propellant engine for the landing sequence. The lander has about 4 square meters of solar panels mounted on a gimbal that allows it to track the orbiter, which beams 30 to 50 kW of power using a 1080 nm laser. Optical communication provides dramatically high data rates back to Earth. Our mass modeling investigations revealed that if

  2. Portion of Pluto Sputnik Planum Sputnik Plain

    NASA Image and Video Library

    2015-07-17

    This annotated view of a portion of Pluto's Sputnik Planum (Sputnik Plain), named for Earth's first artificial satellite, shows an array of enigmatic features. The surface appears to be divided into irregularly shaped segments that are ringed by narrow troughs, some of which contain darker materials. Features that appear to be groups of mounds and fields of small pits are also visible. This image was acquired by the Long Range Reconnaissance Imager (LORRI) on July 14 from a distance of 48,000 miles (77,000 kilometers). Features as small as a half-mile (1 kilometer) across are visible. The blocky appearance of some features is due to compression of the image. http://photojournal.jpl.nasa.gov/catalog/PIA19714

  3. Pluto's lightcurve: Results from four oppositions

    NASA Technical Reports Server (NTRS)

    Tholen, David J.; Tedesco, Edward F.

    1994-01-01

    The rotational lightcurve, phase function, and orbital lightcurve of the Pluto-Charon system were measured in blue light over four consecutive oppositions spanning 1980 to 1983. Compared with observations made in the three previous decades, our lightcurve shows a higher amplitude of 0.29 mag, as well as a fainter rotationally averaged brightness, which provide constraints on the surface albedo distribution of the two bodies. The synodic rotational period of 6.38726 +/- 0.00007 days is consistent with the orbital period of Charon, which provides evidence for a completely tidally evolved system. The phase coefficient is 0.0372 +/- 0.0016 mag/deg, indicating a very shallow opposition surge compared with asteroids, but consistent with a high albedo surface. The orbital lightcurve shows substantially less fading than the earlier observations, which suggests that there is not a gross difference in average albedo between the southern and northern hemispheres.

  4. Pluto's lightcurve: Results from four oppositions

    NASA Technical Reports Server (NTRS)

    Tholen, David J.; Tedesco, Edward F.

    1994-01-01

    The rotational lightcurve, phase function, and orbital lightcurve of the Pluto-Charon system were measured in blue light over four consecutive oppositions spanning 1980 to 1983. Compared with observations made in the three previous decades, our lightcurve shows a higher amplitude of 0.29 mag, as well as a fainter rotationally averaged brightness, which provide constraints on the surface albedo distribution of the two bodies. The synodic rotational period of 6.38726 +/- 0.00007 days is consistent with the orbital period of Charon, which provides evidence for a completely tidally evolved system. The phase coefficient is 0.0372 +/- 0.0016 mag/deg, indicating a very shallow opposition surge compared with asteroids, but consistent with a high albedo surface. The orbital lightcurve shows substantially less fading than the earlier observations, which suggests that there is not a gross difference in average albedo between the southern and northern hemispheres.

  5. Putting Pluto's Geology on the Map

    NASA Image and Video Library

    2016-02-11

    This geological map covers a portion of Pluto's surface that measures 1,290 miles (2,070 kilometers) from top to bottom, and includes the vast nitrogen-ice plain informally named Sputnik Planum and surrounding terrain. The map is overlain with colors that represent different geological terrains. Each terrain, or unit, is defined by its texture and morphology -- smooth, pitted, craggy, hummocky or ridged, for example. How well a unit can be defined depends on the resolution of the images that cover it. All of the terrain in this map has been imaged at a resolution of approximately 1,050 feet (320 meters) per pixel or better, meaning scientists can map units with relative confidence. The various blue and greenish units that fill the center of the map represent different textures seen across Sputnik Planum, from the cellular terrain in the center and north, to the smooth and pitted plains in the south. The black lines represent the troughs that mark the boundaries of cellular regions in the nitrogen ice. The purple unit represents the chaotic, blocky mountain ranges that line Sputnik's western border, and the pink unit represents the scattered, floating hills at its eastern edge. The possible cryovolcanic feature informally named Wright Mons is mapped in red in the southern corner of the map. The rugged highlands of the informally named Cthulhu Regio is mapped in dark brown along the western edge, and is pockmarked by many large impact craters, mapped in yellow. The base map for this geologic map is a mosaic of 12 images obtained by the Long Range Reconnaissance Imager (LORRI) at a resolution of 1,280 feet (about 390 meters) per pixel. The mosaic was obtained at a range of approximately 48,000 miles (77,300 kilometers) from Pluto, about an hour and 40 minutes before New Horizons' closest approach on July 14, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA20465

  6. Simulating a Thin Accretion Disk Using PLUTO

    NASA Astrophysics Data System (ADS)

    Phillipson, Rebecca; Vogeley, Michael S.; Boyd, Patricia T.

    2017-08-01

    Accreting black hole systems such as X-ray binaries and active galactic nuclei exhibit variability in their luminosity on many timescales ranging from milliseconds to tens of days, and even hundreds of days. The mechanism(s) driving this variability and the relationship between short- and long-term variability is poorly understood. Current studies on accretion disks seek to determine how the changes in black hole mass, the rate at which mass accretes onto the central black hole, and the external environment affect the variability on scales ranging from stellar-mass black holes to supermassive black holes. Traditionally, the fluid mechanics equations governing accretion disks have been simplified by considering only the kinematics of the disk, and perhaps magnetic fields, in order for their phenomenological behavior to be predicted analytically. We seek to employ numerical techniques to study accretion disks including more complicated physics traditionally ignored in order to more accurately understand their behavior over time. We present a proof-of-concept three dimensional, global simulation using the astrophysical hydrodynamic code PLUTO of a simplified thin disk model about a central black hole which will serve as the basis for development of more complicated models including external effects such as radiation and magnetic fields. We also develop a tool to generate a synthetic light curve that displays the variability in luminosity of the simulation over time. The preliminary simulation and accompanying synthetic light curve demonstrate that PLUTO is a reliable code to perform sophisticated simulations of accretion disk systems which can then be compared to observational results.

  7. Zooming in on Pluto Pattern of Pits

    NASA Image and Video Library

    2015-12-10

    On July 14, 2015, the telescopic camera on NASA's New Horizons spacecraft took the highest resolution images ever obtained of the intricate pattern of "pits" across a section of Pluto's prominent heart-shaped region, informally named Tombaugh Regio. Mission scientists believe these mysterious indentations may form through a combination of ice fracturing and evaporation. The scarcity of overlying impact craters in this area also leads scientists to conclude that these pits -- typically hundreds of yards across and tens of yards deep -- formed relatively recently. Their alignment provides clues about the ice flow and the exchange of nitrogen and other volatile materials between the surface and the atmosphere. The image is part of a sequence taken by New Horizons' Long Range Reconnaissance Imager (LORRI) as the spacecraft passed within 9,550 miles (15,400 kilometers) of Pluto's surface, just 13 minutes before the time of closest approach. The small box on the global view shows the section of the region imaged in the southeast corner of the giant ice sheet informally named Sputnik Planum. The magnified view is 50-by-50 miles (80-by-80 kilometers) across. The large ring-like structure near the bottom right of the magnified view -- and the smaller one near the bottom left -- may be remnant craters. The upper-left quadrant of the image shows the border between the relatively smooth Sputnik Planum ice sheet and the pitted area, with a series of hills forming slightly inside this unusual "shoreline." http://photojournal.jpl.nasa.gov/catalog/PIA20212

  8. RCRA (Resource Conservation and Recovery Act) ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    SciTech Connect

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs.

  9. New Horizons Observations of the Atmospheres of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico, K. A.; Olkin, C. B.; Cheng, A. F.; Greathouse, T. K.; Hinson, D. P.; Kammer, J. A.; Linscott, I. R.; Parker, A. H.; Parker, J. Wm.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A. J.; Strobel, D. F.; Summers, M. E.; Tsang, C. C. C.; Tyler, G. L.; Versteeg, M. H.; Woods, W. W.; Cunningham, N.; Curdt, W.

    2015-11-01

    Major goals of the New Horizons (NH) mission are to explore and characterize the structure and composition of Pluto’s atmosphere, and to establish whether Charon has a measurable atmosphere of its own. The primary instruments onboard NH which contribute to these goals are the REX instrument, through uplink X-band radio occultations, the Alice instrument, through extreme- and far-ultraviolet solar occultations, and the LORRI panchromatic imager, through high-phase-angle imaging. The associated datasets were obtained following closest approach of NH to Pluto. Pressure and temperature profiles of the lower atmosphere are derived from the REX data, the composition and structure of the extended atmosphere are derived from the Alice data (supported by approach observations of reflected ultraviolet sunlight), and the distribution and properties of Pluto’s hazes are derived from the LORRI data. In this talk an overview of the early atmosphere science results will be presented.This work was supported by NASA's New Horizons project.

  10. Test holes drilled in support of ground-water investigations, Project Gnome, Eddy County, New Mexico

    USGS Publications Warehouse

    Cooper, J.B.

    1962-01-01

    Project Gnome is a proposed underground nuclear shot to be detonated within a massive salt bed in Eddy County, N. Mex. Potable and neat potable ground water is present in rocks above the salt and is being studied in relation to this nuclear event. This report presents details of two test holes which were drilled to determine ground-water conditions in the near vicinity of the shot point. A well-defined aquifer is present at the site of USGS test hole 1, about 1,000 feet south of the access shaft to the underground shot point. Water with 75 feet of artesian pressure head is contained in the Culebra dolomite member of the Rustler formation. The dolomite aquifer is 32 feet thick and its top lies at a depth of 517 feet below land surface. The aquifer yielded 100 gpm (gallons per minute) with a drawdown of 40 feet during a pumping period of 24 hours. Water was not found in rocks above or below the Culebra dolomite. At the site of USGS test hole 2, about 2 miles southwest of the access shaft no distinctive aquifer exists. About one-half gpm was yielded to the well from the rocks between the Culebra dolomite and the top of the salt. Water could not be detected in the Culebra dolomite or overlying rocks. The report contains drawdown and recovery curves of yield tests, drilling-time charts, and electric logs. The data are given in tables; they include summaries of hole construction, sample description logs, water measurements, drilling-time logs, and water analyses.

  11. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon : Coordination and Technical Assistance, 2004-2005 Annual Report.

    SciTech Connect

    Faucera, Jason

    2005-06-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  12. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2003-2004 Annual Report.

    SciTech Connect

    Faucera, Jason

    2004-05-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  13. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2002-2003 Annual Report.

    SciTech Connect

    Faucera, Jason

    2003-06-23

    This project was designed to provide project coordination and technical assistance to producers in Sherman County for on the ground water quality enhancement and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Enhancement Reserve Program (CREP) and other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Three of those four streams and one other major Sherman County stream are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Temperature in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns

  14. Pluto Through Stained Glass: A Movie from the Edge of the Solar System

    NASA Image and Video Library

    This colorful movie drifting across Pluto by was recorded by New Horizons' LEISA infrared imaging spectrometer during the July 14 closest approach. The discovery of water ice on Pluto was made usin...

  15. Dynamical and observational constraints on satellites in the inner Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Parker, Joel William; Duncan, Martin J.; Snowdall, J. Clark, Jr.; Levison, Harold F.

    1994-01-01

    It is not known if Pluto has other satellites besides its massive partner Charon. In the past, searches for additional satellites in the Pluto-Charon system have extended from the solar-tidal stability boundary (approximately 90 arcsec from Pluto) inward to about 1 arcsec from Pluto. Here we further explore the inner (i.e., less than 10 arcsec) region of the Pluto-Charon system to determine where additional satellites might lie. In particular, we report on (1) dynamical simulations to delineate the region where unstable orbits lie around Charon, (2) dynamical simulations which use the low orbital eccentricity of Charon to constrain the mass of any third body near Pluto, and (3) analysis of Hubble Space Telescope (HST) archival images to search for satellites in the inner Pluto-Charon system. Although no objects were found, significant new constraints on bodies orbiting in the inner Pluto-Charon system were obtained.

  16. Dynamical and observational constraints on satellites in the inner Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Parker, Joel William; Duncan, Martin J.; Snowdall, J. Clark, Jr.; Levison, Harold F.

    1994-01-01

    It is not known if Pluto has other satellites besides its massive partner Charon. In the past, searches for additional satellites in the Pluto-Charon system have extended from the solar-tidal stability boundary (approximately 90 arcsec from Pluto) inward to about 1 arcsec from Pluto. Here we further explore the inner (i.e., less than 10 arcsec) region of the Pluto-Charon system to determine where additional satellites might lie. In particular, we report on (1) dynamical simulations to delineate the region where unstable orbits lie around Charon, (2) dynamical simulations which use the low orbital eccentricity of Charon to constrain the mass of any third body near Pluto, and (3) analysis of Hubble Space Telescope (HST) archival images to search for satellites in the inner Pluto-Charon system. Although no objects were found, significant new constraints on bodies orbiting in the inner Pluto-Charon system were obtained.

  17. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2005-2006 Annual Report.

    SciTech Connect

    Faucera, Jason

    2006-06-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  18. Aviation System Capacity Program Terminal Area Productivity Project: Ground and Airborne Technologies

    NASA Technical Reports Server (NTRS)

    Giulianetti, Demo J.

    2001-01-01

    Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.

  19. North American Ground Surface Temperature Histories: A Contribution to the PAGES2k North American Project

    NASA Astrophysics Data System (ADS)

    Mareschal, J. C.; Jaume Santero, F.; Beltrami, H.

    2015-12-01

    Within the framework of the PAGES NorthAmerica2k project, three hundred and seventy three (373) North American temperature-depth profiles from boreholes deeper than 300 meters were analyzed for recent climate. To facilitate comparisons and examine the same time period, the profiles were truncated at 300 m. The ground surface temperature (GST) histories for the last 500 years were inverted from the subsurface temperature anomalies using singular value decomposition for a model of 10 temperature changes along time-intervals of increasing duration. The inversion retains four singular values and accounts for the data acquisition time difference. The reference surface temperature and geothermal gradient were estimated by linear regression to the deepest 100 meters with a 95% confidence interval. Additionally, a Monte-Carlo method was used to find the range of solutions within a maximum subsurface anomaly error determined by the root mean square between the model and the data. The GST history results for North America, given by the mean and 95% confidence interval, reveal in most cases, a warming up to 1°C - 2.5°C during the last 100-150 years.

  20. Mass-radius relationships and constraints on the composition of Pluto. II

    NASA Technical Reports Server (NTRS)

    Lupo, M. J.; Lewis, J. S.

    1980-01-01

    A model of Pluto's interior is presented based on new estimates of its mass within the range of possible masses. The model is consistent with the most recent observations by Arnold et al., and calls for a silicate-poor, H2O ice-rock bulk composition of Pluto. The results of the Charon-Pluto eclipses will lead to a more conclusive constraint to Pluto's bulk composition.

  1. A Central Flash at an Occultation of a Bright Star by Pluto Soon Before New Horizons' Flyby

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Babcock, Bryce A.; Durst, Rebecca F.; Seeger, Christina H.; Levine, Stephen E.; Bosh, Amanda S.; Sickafoose, Amanda A.; Person, Michael J.; Abe, Fumio; Suzuki, Daisuke; Nagakane, Masayuki; Tristam, Paul J.

    2015-11-01

    From the Mt. John Observatory, New Zealand, we were so close to the center of the occultation path on 29 June 2015 UTC that we observed a modest central flash from the focusing of starlight from a 12th-magnitude star. The star was one of the brightest ever in our years of continual monitoring that started in 2002. At the time of Pluto's perihelion in 1989, it was feared from models that Pluto's atmosphere might collapse by now, a motivation for the timely launch of New Horizons; some models now allow Pluto to retain its atmosphere throughout its orbit.We used our frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope of Canterbury U. We also observed with a Lowell Obs. infrared camera on the "AAVSO" 0.6-m Optical Craftsman telescope; and obtained 3-color photometry at a slower cadence on a second 0.6-m telescope. We coordinated with the overflight of SOFIA and its 2.5-m telescope, which benefited from last-minute astrometry, and the Auckland Observatory's and other ground-based telescopes.Our light curves show a modest central flash; our tentative geometrical solution shows that we were only about 50 km from the occultation path's centerline. The flash is from rays lower than otherwise accessible in Pluto's atmosphere. Our light curves, at such high cadence that we see spikes caused by atmospheric effects that we had not seen so well since our 2002 Mauna Kea occultation observations, show that Pluto's atmosphere had not changed drastically since our previous year's observations. Our data provide a long-term context for New Horizon's highly-detailed observations of Pluto's atmosphere in addition to providing a chord for the geometrical solution that includes SOFIA's observations.Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We are grateful to Alan Gilmore, Pam Kilmartin, Robert Lucas

  2. Observational Constraints on a Pluto Torus of Circumsolar Neutral Gas

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Smith, H. T.; Bagenal, F.; Brown, L. E.; Elliott, H. A.; Haggerty, D. K.; Horanyi, M.; Krimigis, S. M.; Kusterer, M. B.; Lisse, C. M.; McComas, D. J.; Piquette, M. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Vandegriff, J. D.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, S. A.

    2015-12-01

    We present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto's orbit, and place observational constraints based primarily on comparison of New Horizons (NH) measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, should result from neutral N2 escaping from Pluto's exosphere. Unlike other more massive planets closer to the Sun, neutrals escape Pluto readily owing, e.g., to the high thermal speed relative to the escape velocity. Importantly, escaped neutrals have a long lifetime due to the great distance from the Sun, ~100 years for photoionization of N2 and ~180 years for photoionization of N, which results from disassociated N2. Despite the lengthy 248-year orbit, these long e-folding lifetimes may allow an enhanced neutral population to form an extended gas cloud that modifies the N2 spatial profile near Pluto. These neutrals are not directly observable by NH but once ionized N2+ or N+ are picked up by the solar wind, reaching ~50 keV, making these pickup ions (PUIs) detectable by NH's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. PEPSSI observations analyzed to date may constrain the N2 density; the remaining ~95% of the encounter data, scheduled for downlink in August along with similarly anticipated data from the Solar Wind Around Pluto (SWAP) experiment, should help determine the Pluto outgassing rates. Measurements from SWAP include the solar wind speed, a quantity that greatly enhances PUI studies by enabling us to directly account for the PUI distribution's sensitive dependence on plasma speed. Note that anomalous cosmic ray Si observed at Voyager is overabundant by a factor of ~3000 relative to interstellar composition. This might be related to "outer source" PUIs, but the fact that N2 and Si are indistinguishable in many instruments could mean that N2 is actually driving this apparent Si discrepancy.

  3. Haze in Pluto's Atmosphere: Implications for Processes and Evolution

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew F.; Summers, Michael; Gladstone, Randy; Strobel, Darrell F.; Young, Leslie; Lavvas, Panayotis; Kammer, Joshua A.; Lisse, Casey M.; Parker, Alex Harrison; Young, Eliot F.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine B.; Ennico, Kimberly

    2016-10-01

    Haze in Pluto's atmosphere was detected by New Horizons imaging to altitudes above 200 km at solar phase angles from ~20° to ~169°, and it was detected by the UV solar occultation up to 300 km altitude. The haze is strongly forward scattering in the visible, and a microphysical model of haze reproduces the visible phase function just above the surface with 0.5 µm spherical particles, but also invokes fractal aggregate particles to fit the visible phase function at 45 km altitude and to account for UV extinction. The visible phase function at the bottom of the atmosphere has a back scatter lobe which is absent from the phase function measured 45 km above the surface, making the latter phase function similar to that for haze in Titan's upper atmosphere. Pluto's haze is found at altitudes where direct condensation is not possible, but the haze may form by similar processes to those responsible for the detached haze layer in the upper atmosphere of Titan. It is suggested that haze particles form fractal aggregates which grow larger and more spherical as they settle downwards through the bottom 15 km of the atmosphere. Haze particles settle onto Pluto's surface, at a rate sufficient to alter surface optical properties on seasonal (hundred-year) time scales. However, if this picture applies to Pluto's atmosphere throughout the Pluto year, then haze particles would rapidly accumulate to an optically thick surface layer within thousands of years. These particles would not be processed into tholins except by cosmic rays, and the striking albedo contrasts on Pluto, with very bright and dark regions, would be difficult to understand. Pluto's regional scale albedo contrasts may be preserved by atmospheric collapse.

  4. Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-95, with projections to 2020

    USGS Publications Warehouse

    Kernodle, J.M.

    1998-01-01

    The ground-water-flow model of the Albuquerque Basin (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) was updated to include new information on the hydrogeologic framework (Hawley, J.W., Haase, C.S., and Lozinsky, R.P., 1995, An underground view of the Albuquerque Basin: Proceedings of the 39th Annual New Mexico Water Conference, November 3-4, 1994, p. 37-55). An additional year of ground-water-withdrawal data was appended to the simulation of the historical period and incorporated into the base for future projections to the year 2020. The revised model projects the simulated ground-water levels associated with an aerally enlarged occurrence of the relatively high hydraulic conductivity in the upper part of the Santa Fe Group east and west of the Rio Grande in the Albuquerque area and north to Bernalillo. Although the differences between the two model versions are substantial, the revised model does not contradict any previous conclusions about the effect of City of Albuquerque ground-water withdrawals on flow in the Rio Grande or the net benefits of an effort to conserve ground water. Recent revisions to the hydrogeologic model (Hawley, J.W., Haneberg, W.C., and Whitworth, P.M., in press, Hydrogeologic investigations in the Albuquerque Basin, central New Mexico, 1992-1995: Socorro, New Mexico Bureau of Mines and Mineral Resources Open- File Report 402) of the Albuquerque Basin eventually will require that this model version also be revised and updated.

  5. The rapid formation of Sputnik Planitia early in Pluto's history.

    PubMed

    Hamilton, Douglas P; Stern, S A; Moore, J M; Young, L A

    2016-11-30

    Pluto's Sputnik Planitia is a bright, roughly circular feature that resembles a polar ice cap. It is approximately 1,000 kilometres across and is centred on a latitude of 25 degrees north and a longitude of 175 degrees, almost directly opposite the side of Pluto that always faces Charon as a result of tidal locking. One explanation for its location includes the formation of a basin in a giant impact, with subsequent upwelling of a dense interior ocean. Once the basin was established, ice would naturally have accumulated there. Then, provided that the basin was a positive gravity anomaly (with or without the ocean), true polar wander could have moved the feature towards the Pluto-Charon tidal axis, on the far side of Pluto from Charon. Here we report modelling that shows that ice quickly accumulates on Pluto near latitudes of 30 degrees north and south, even in the absence of a basin, because, averaged over its orbital period, those are Pluto's coldest regions. Within a million years of Charon's formation, ice deposits on Pluto concentrate into a single cap centred near a latitude of 30 degrees, owing to the runaway albedo effect. This accumulation of ice causes a positive gravity signature that locks, as Pluto's rotation slows, to a longitude directly opposite Charon. Once locked, Charon raises a permanent tidal bulge on Pluto, which greatly enhances the gravity signature of the ice cap. Meanwhile, the weight of the ice in Sputnik Planitia causes the crust under it to slump, creating its own basin (as has happened on Earth in Greenland). Even if the feature is now a modest negative gravity anomaly, it remains locked in place because of the permanent tidal bulge raised by Charon. Any movement of the feature away from 30 degrees latitude is countered by the preferential recondensation of ices near the coldest extremities of the cap. Therefore, our modelling suggests that Sputnik Planitia formed shortly after Charon did and has been stable, albeit gradually losing

  6. Impactor flux and cratering on the Pluto-Charon system

    NASA Astrophysics Data System (ADS)

    de Elía, G. C.; di Sisto, R. P.; Brunini, A.

    2010-10-01

    Aims: We study the impactor flux and cratering on Pluto and Charon caused by the collisional evolution of Plutinos. Plutinos are trans-Neptunian objects located at ~39.5 AU, in the 3:2 mean motion resonance with Neptune. Methods: We develop a statistical code that includes catastrophic collisions and cratering events, and takes into account the stability and instability zones of the 3:2 mean motion resonance with Neptune. Our numerical algorithm proposes different initial populations that account for the uncertainty in the size distribution of Plutinos at small sizes. Results: Depending on the initial population, our results indicate the following. The number of D > 1 km Plutinos streaking Pluto over 3.5 Gyr is between 1271 and 5552. For Charon, the number of D > 1 km Plutino impactors is between 354 and 1545. The number of D > 1 km craters on Pluto produced by Plutinos in the past 3.5 Gyr is between 43 076 and 113 879. For Charon, the number of D > 1 km craters is between 20 351 and 50 688. On the other hand, the largest Plutino impactor onto Pluto has a diameter of between ~17 and 23 km, which produces a crater with a diameter of ~31-39 km. In the same way, the largest Plutino impactor onto Charon has a diameter of between ~10 and 15 km, which produces a crater with a diameter of ~24-33 km. Finally, we test the dependence of results on the number of Pluto-sized objects in the Plutino population. If two Pluto-sized objects are assumed in the 3:2 Neptune resonance, the total number of Plutino impactors onto both Pluto and Charon with diameters D > 1 km is a factor of ~1.6-1.8 larger than that obtained considering only one Pluto-sized object in this resonant region. Conclusions: Given the structure of the trans-Neptunian region, with its dynamically different populations, it is necessary to study in detail the contribution of all the potential sources of impactors onto the Pluto-Charon system, to determine the main contributor and the whole production of craters

  7. The rapid formation of Sputnik Planitia early in Pluto's history

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.; Stern, S. A.; Moore, J. M.; Young, L. A.; Binzel, R. P.; Buie, M. W.; Buratti, B. J.; Cheng, A. F.; Ennico, K.; Grundy, W. M.; Linscott, I. R.; McKinnon, W. B.; Olkin, C. B.; Reitsema, H. J.; Reuter, D. C.; Schenk, P.; Showalter, M. R.; Spencer, J. R.; Tyler, G. L.; Weaver, H. A.

    2016-12-01

    Pluto's Sputnik Planitia is a bright, roughly circular feature that resembles a polar ice cap. It is approximately 1,000 kilometres across and is centred on a latitude of 25 degrees north and a longitude of 175 degrees, almost directly opposite the side of Pluto that always faces Charon as a result of tidal locking. One explanation for its location includes the formation of a basin in a giant impact, with subsequent upwelling of a dense interior ocean. Once the basin was established, ice would naturally have accumulated there. Then, provided that the basin was a positive gravity anomaly (with or without the ocean), true polar wander could have moved the feature towards the Pluto-Charon tidal axis, on the far side of Pluto from Charon. Here we report modelling that shows that ice quickly accumulates on Pluto near latitudes of 30 degrees north and south, even in the absence of a basin, because, averaged over its orbital period, those are Pluto's coldest regions. Within a million years of Charon's formation, ice deposits on Pluto concentrate into a single cap centred near a latitude of 30 degrees, owing to the runaway albedo effect. This accumulation of ice causes a positive gravity signature that locks, as Pluto's rotation slows, to a longitude directly opposite Charon. Once locked, Charon raises a permanent tidal bulge on Pluto, which greatly enhances the gravity signature of the ice cap. Meanwhile, the weight of the ice in Sputnik Planitia causes the crust under it to slump, creating its own basin (as has happened on Earth in Greenland). Even if the feature is now a modest negative gravity anomaly, it remains locked in place because of the permanent tidal bulge raised by Charon. Any movement of the feature away from 30 degrees latitude is countered by the preferential recondensation of ices near the coldest extremities of the cap. Therefore, our modelling suggests that Sputnik Planitia formed shortly after Charon did and has been stable, albeit gradually losing

  8. Blue Rays: New Horizons High-Res Farewell to Pluto

    NASA Image and Video Library

    2017-03-24

    This is the highest-resolution color departure shot of Pluto's receding crescent from NASA's New Horizons spacecraft, taken when the spacecraft was 120,000 miles (200,000 kilometers) away from Pluto. Shown in approximate true color, the picture was constructed from a mosaic of six black-and-white images from the Long Range Reconnaissance Imager (LORRI), with color added from a lower resolution Ralph/Multispectral Visible Imaging Camera (MVIC) color image, all acquired between 15:20 and 15:45 UT -- about 3.5 hours after closest approach to Pluto -- on July 14, 2015. The resolution of the LORRI images is about 0.6 miles (1 kilometer) per pixel; the sun illuminates the scene from the other side of Pluto and somewhat toward the top of this image. The image is dominated by spectacular layers of blue haze in Pluto's atmosphere. Scientists believe the haze is a photochemical smog resulting from the action of sunlight on methane and other molecules in Pluto's atmosphere, producing a complex mixture of hydrocarbons such as acetylene and ethylene. These hydrocarbons accumulate into small haze particles, a fraction of a micrometer in size, which preferentially scatter blue sunlight -- the same process that can make haze appear bluish on Earth. As they settle down through the atmosphere, the haze particles form numerous intricate, horizontal layers, some extending for hundreds of miles around large portions of the limb of Pluto. The haze layers extend to altitudes of over 120 miles (200 kilometers). Pluto's circumference is 4,667 miles (7,466 kilometers). Adding to the beauty of this picture are mountains and other topographic features on Pluto's surface that are silhouetted against the haze near the top of the image. Sunlight casts dramatic and beautiful finger-like shadows from many of these features onto the haze (especially on the left, near the 11 o'clock position), forming crepuscular rays like those often seen in Earth's atmosphere near sunrise or sunset. https

  9. Interplanetary dust influx to the Pluto-Charon system

    NASA Astrophysics Data System (ADS)

    Poppe, Andrew R.

    2015-01-01

    The influx of interplanetary dust grains (IDPs) to the Pluto-Charon system is expected to drive several physical processes, including the formation of tenuous dusty rings and/or exospheres, the deposition of neutral material in Pluto's atmosphere through ablation, the annealing of surface ices, and the exchange of ejecta between Pluto and its satellites. The characteristics of these physical mechanisms are dependent on the total incoming mass, velocity, variability, and composition of interplanetary dust grains; however, our knowledge of the IDP environment in the Edgeworth-Kuiper Belt has, until recently, remained rather limited. Newly-reported measurements by the New Horizons Student Dust Counter combined with previous Pioneer 10 meteoroid measurements and a dynamical IDP tracing model have improved the characterization of the IDP environment in the outer Solar System, including at Pluto-Charon. Here we report on this modeling and data comparison effort, including a discussion of the IDP influx to Pluto and its moons, and the implications thereof.

  10. IRAS observations of the Pluto-Charon system

    SciTech Connect

    Aumann, H.H.; Walker, R.G.

    1987-10-01

    High-signal-to-noise-ratio observations of the Pluto-Charon system at 25, 60, and 100 microns using IRAS are combined with visual-magnitude and mutual-eclipse constraints to evaluate thermal models of Pluto and Charon. These models are consistent with eclipse observation by Dunbar and Tedesco (1986) but not with Reinsch and Pakull (1987). The most likely model for Charon is the standard asteroid model, typical for the icy Galilean and Saturnian satellites. Charon models with a significant atmosphere can be ruled out. Based on currently available radius and albedo constraints, no significant numerical distinction is possible between Pluto models ranging from isothermal spheres with surface emissivity between 0.4 and 0.9. Concerns regarding the viability of an emissivity as low as 0.4 favor the higher-emissivity models. The globally uniform surface temperature of Pluto may thus at present be as low as 45 K, with a methane column abundance of 6.7 cm atm. The most likely models are centered on radii of 1180 and 747 km and albedos of 0.47 and 0.26 for Pluto and Charon, respectively. 21 references.

  11. Pluto and Charon in False Color Show Compositional Diversity

    NASA Image and Video Library

    2015-07-14

    This July 13, 2015, image of Pluto and Charon is presented in false colors to make differences in surface material and features easy to see. It was obtained by the Ralph instrument on NASA's New Horizons spacecraft, using three filters to obtain color information, which is exaggerated in the image. These are not the actual colors of Pluto and Charon, and the apparent distance between the two bodies has been reduced for this side-by-side view. The image reveals that the bright heart-shaped region of Pluto includes areas that differ in color characteristics. The western lobe, shaped like an ice-cream cone, appears peach color in this image. A mottled area on the right (east) appears bluish. Even within Pluto's northern polar cap, in the upper part of the image, various shades of yellow-orange indicate subtle compositional differences. The surface of Charon is viewed using the same exaggerated color. The red on the dark northern polar cap of Charon is attributed to hydrocarbon materials including a class of chemical compounds called tholins. The mottled colors at lower latitudes point to the diversity of terrains on Charon. This image was taken at 3:38 a.m. EDT on July 13, one day before New Horizons' closest approach to Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA19707

  12. Surface ice spectroscopy of Pluto, Charon and Triton

    NASA Astrophysics Data System (ADS)

    Protopapa, S.; Herbst, T.; Boehnhardt, H.

    2007-08-01

    New reflectance spectra of Pluto and Triton taken with ESO adaptive optics instrument NACO at the VLT in the wavelength range (1-5)μm are presented. For Pluto, it is the first time that the L band is measured without contamination by light from Charon, and for both objects M band spectra were never measured before. Apart from known and expected absorption bands from methane ice, our data reveal new absorption bands centered around 4.0μm and 4.6μm never detected before. The latter absorption could be related to the presence of CO ice at the body surfaces. Charon's spectrum is also measured in the wavelength range (1-4)μm, for the first time simultaneously with, but isolated from that of Pluto. Charon's spectrum has previously been studied in some detail in the JHK wavelength region but was never measured above 2.5μm. As expected, our Charon spectrum is dominated by the absorption bands of water ice but a narrow absorption band, unidentified still, is found around 3.7 μm. The nondetection of the - at that time - unknown Pluto moonlets in our short exposures for slit acquisition of Pluto-Charon allows to put a lower limit of 18.8mag for the K band brightness of Hydra and Nix.

  13. Comparative Planetary Nitrogen Atmospheres: Titan, Triton and Pluto

    NASA Astrophysics Data System (ADS)

    Strobel, Darrell F.; Zhu, Xun

    2016-06-01

    Titan has a massive atmosphere in comparison to Triton and Pluto which are widely regarded as the largest endmembers of Kuiper-Belt objects and as 'twins' with thin buffered N2 atmospheres controlled by interactions with surface ices, primarily N2 and CH4 frost. But one can compare them with Titan's upper atmosphere by noting that 14 microbars on Titan is at an altitude of approximately 400 km. At this level Titan has haze layers as Pluto does and less so on Triton. The talk will emphasize the fundamental role that CH4 plays in controlling the thermal structure of these atmospheres and is one of the principal reasons for the differences in the thermal structure of Pluto's and Triton's atmospheres. Titan and Pluto have in common photochemical production of nitriles at detectable abundances, whereas Triton does not. The cold upper atmosphere of Pluto remains a mystery as the reported abundances of HCN are insufficient to cool the atmosphere in contrast to Titan's thermosphere.

  14. An exploration of Pluto's environment through stellar occultations

    NASA Astrophysics Data System (ADS)

    Boissel, Y.; Sicardy, B.; Roques, F.; Gaulme, P.; Doressoundiram, A.; Widemann, T.; Ivanov, V. D.; Marco, O.; Mason, E.; Ageorges, N.; Mousis, O.; Rousselot, P.; Dhillon, V. S.; Littlefair, S. P.; Marsh, T. R.; Assafin, M.; Braga Ribas, F.; da Silva Neto, D.; Camargo, J. I. B.; Andrei, A.; Vieira Martins, R.; Behrend, R.; Kretlow, M.

    2014-01-01

    Context. Pluto has five known satellites with diameters ranging from ~1200 km down to ~40 km, a possible outcome of a collisional origin. Smaller objects probably exist and may maintain tenuous rings, thus representing hazards during the New Horizons flyby of July 2015. Aims: The goal is to provide an upper limit for the numbers of unseen small bodies and/or equivalent widths of putative Pluto rings. Methods: We use a Pluto stellar appulse on April 10, 2006, and a stellar occultation by the dwarf planet on June 14, 2007, to scan Pluto's surroundings. Results: Our best data set places a 3σ upper limit of 0.3 km for the radius of isolated moonlets that we can detect. In the absence of detection, we derive an upper limit of 15 000 for the number of such bodies at distances smaller than ~70 000 km from Pluto's system barycenter. We place a 3σ upper limit of typically 30-100 m for the equivalent width of ring material at barycentric distances ranging from 13 000 to 70 000 km. This limit applies for narrow rings only, i.e. less than about 10 km in width.

  15. The Surface Compositions of Triton, Pluto, and Charon

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Roush, Ted L.; Owen, Tobias C.; Quirico, Eric; DeBergh, Catherine

    1995-01-01

    Neptune's satellite Triton, and the planet-satellite binary Pluto and Charon, are the most distant planetary bodies on which ices have been directly detected. Triton and Pluto have very similar dimensions and mean densities, suggesting a similar or common origin. Through earth-based spectroscopic observations in the near-infrared, solid N2, CH4, and CO have been found on both bodies, with the additional molecule C02 on Triton. N2 dominates both surfaces, although the coverage is not spatially uniform. On Triton, the CH4 and CO are mostly or entirely frozen in the N2 matrix, while CO2 may be spatially segregated. On Pluto, some CH4 and the CO are frozen in the N2 matrix, but there is evidence for additional CH4 in a pure state, perhaps lying as a lag deposit on a subsurface layer of N2. Despite their compositional and dimensional similarities, Pluto and Triton are quite different from one another in detail. Additional hydrocarbons and other volatile ices have been sought spectroscopically but not yet have been detected. The only molecule identified on Pluto's satellite Charon is solid H2O, but the spectroscopic data are of low precision and admit the presence of other ices such as CH4.

  16. Pluto and Charon in Color: Barycentric View Animation

    NASA Image and Video Library

    2015-06-11

    The first color movies from NASA's New Horizons mission show Pluto and its largest moon, Charon, and the complex orbital dance of the two bodies, known as a double planet. A near-true color movie was assembled from images made in three colors -- blue, red and near-infrared -- by the Multispectral Visible Imaging Camera on the instrument known as Ralph. The images were taken on nine different occasions from May 29-June 3, 2015. The movie is barycentric, meaning that both Pluto and Charon are shown in motion around the binary's barycenter -- the shared center of gravity between the two bodies as they do a planetary jig. Because Pluto is much more massive than Charon, the barycenter (marked by a small "x" in the movie) is much closer to Pluto than to Charon. Looking closely at the images in this movie, one can detect a regular shift in Pluto's brightness-due to the brighter and darker terrains on its differing faces. http://photojournal.jpl.nasa.gov/catalog/PIA19688

  17. Dynamic Universe Model Predicts the trajectory of New Horizons satellite GOING TO PLUTO .....

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    New Horizons is NASA's artificial satellite now going towards to the dwarf planet Pluto. It has crossed Jupiter. It is expected to be the first spacecraft to go near and study Pluto and its moons, Charon, Nix, and Hydra. These are the predictions for New Horizons (NH) space craft as on A.D. 2009-Aug-09 00:00:00.0000 hrs. The behavior of NH is similar to Pioneer Space craft as NH traveling is alike to Pioneer. NH is supposed to reach Pluto in 2014 AD. There was a gravity assist taken at Jupiter about a year back. As Dynamic universe model explains Pioneer anomaly and the higher gravitational attraction forces experienced towards SUN, It can explain NH also in a similar fashion. I am giving the predictions for NH by Dynamic Universe Model in the following Table 4. Here first two rows give Dynamic Universe Model predictions based on 02-01-2009 00:00 hrs data with Daily time step and hourly time step. Third row gives Ephemeris from Jet propulsion lab.Dynamic Universe Model can predict further to 09-Aug-2009. These Ephemeris data is from their web as on 28th June 2009 Any new data can be calculated..... For finding trajectories of Pioneer satellite (Anomaly), New Horizons satellite going to Pluto, the Calculations of Dynamic Universe model can be successfully applied. No dark matter is assumed within solar system radius. The effect on the masses around SUN shows as though there is extra gravitation pull toward SUN. It solves the Dynamics of Extra-solar planets like Planet X, satellite like Pioneer and NH for 3-Position, 3-velocity 3-accelaration for their masses, considering the complex situation of Multiple planets, Stars, Galaxy parts and Galaxy centre and other Galaxies Using simple Newtonian Physics. It already solved problems Missing mass in Galaxies observed by galaxy circular velocity curves successfully. `SITA Simulations' software was developed about 18 years back for Dynamic Universe Model of Cosmology. It is based on Newtonian physics. It is Classical

  18. Resource conservation and recovery act ground-water monitoring projects for Hanford facilities: Progress report, January 1--March 31, 1989

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-06-01

    This document describes the progress of 13 Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1989. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality. 32 refs., 30 figs., 103 tabs.

  19. The long-wavelength thermal emission of the Pluto-Charon system from Herschel observations. Evidence for emissivity effects

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Santos-Sanz, P.; Fornasier, S.; Lim, T.; Stansberry, J.; Vilenius, E.; Kiss, Cs.; Müller, T.; Marton, G.; Protopapa, S.; Panuzzo, P.; Moreno, R.

    2016-04-01

    Thermal observations of the Pluto-Charon system acquired by the Herschel Space Observatory in February 2012 are presented. They consist of photometric measurements with the PACS and SPIRE instruments (nine visits to the Pluto system each), covering six wavelengths from 70 to 500 μm altogether. The thermal light curve of Pluto-Charon is observed in all filters, albeit more marginally at 160 and especially 500 μm. Putting these data into the context of older ISO, Spitzer and ground-based observations indicates that the brightness temperature (TB) of the system (rescaled to a common heliocentric distance) drastically decreases with increasing wavelength, from ~53 K at 20 μm to ~35 K at 500 μm, and perhaps ever less at longer wavelengths. Considering a variety of diurnal and/or seasonal thermophysical models, we show that TB values of 35 K are lower than any expected temperature for the dayside surface or subsurface of Pluto and Charon, implying a low surface emissivity. Based on multiterrain modeling, we infer a spectral emissivity that decreases steadily from 1 at 20-25 μm to ~0.7 at 500 μm. This kind of behavior is usually not observed in asteroids (when proper allowance is made for subsurface sounding), but is found in several icy surfaces of the solar system. We tentatively identify that a combination of a strong dielectric constant and a considerable surface material transparency (typical penetration depth ~1 cm) is responsible for the effect. Our results have implications for the interpretation of the temperature measurements by REX/New Horizons at 4.2 cm wavelength. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  20. ESO Signs Largest-Ever European Industrial Contract For Ground-Based Astronomy Project ALMA

    NASA Astrophysics Data System (ADS)

    2005-12-01

    ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, announced today that it has signed a contract with the consortium led by Alcatel Alenia Space and composed also of European Industrial Engineering (Italy) and MT Aerospace (Germany), to supply 25 antennas for the Atacama Large Millimeter Array (ALMA) project, along with an option for another seven antennas. The contract, worth 147 million euros, covers the design, manufacture, transport and on-site integration of the antennas. It is the largest contract ever signed in ground-based astronomy in Europe. The ALMA antennas present difficult technical challenges, since the antenna surface accuracy must be within 25 microns, the pointing accuracy within 0.6 arc seconds, and the antennas must be able to be moved between various stations on the ALMA site. This is especially remarkable since the antennas will be located outdoor in all weather conditions, without any protection. Moreover, the ALMA antennas can be pointed directly at the Sun. ALMA will have a collecting area of more than 5,600 square meters, allowing for unprecedented measurements of extremely faint objects. The signing ceremony took place on December 6, 2005 at ESO Headquarters in Garching, Germany. "This contract represents a major milestone. It allows us to move forward, together with our American and Japanese colleagues, in this very ambitious and unique project," said ESO's Director General, Dr. Catherine Cesarsky. "By building ALMA, we are giving European astronomers access to the world's leading submillimetre facility at the beginning of the next decade, thereby fulfilling Europe's desire to play a major role in this field of fundamental research." Pascale Sourisse, Chairman and CEO of Alcatel Alenia Space, said: "We would like to thank ESO for trusting us to take on this new challenge. We are bringing to the table not only our recognized expertise in antenna development, but also our long-standing experience in