DOE Office of Scientific and Technical Information (OSTI.GOV)
MACKEY TC; ABBOTT FG; CARPENTER BG
2007-02-16
The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.
Insulation Requirements of High-Voltage Power Systems in Future Spacecraft
NASA Technical Reports Server (NTRS)
Qureshi, A. Haq; Dayton, James A., Jr.
1995-01-01
The scope, size, and capability of the nation's space-based activities are limited by the level of electrical power available. Long-term projections show that there will be an increasing demand for electrical power in future spacecraft programs. The level of power that can be generated, conditioned, transmitted, and used will have to be considerably increased to satisfy these needs, and increased power levels will require that transmission voltages also be increased to minimize weight and resistive losses. At these projected voltages, power systems will not operate satisfactorily without the proper electrical insulation. Open or encapsulated power supplies are currently used to keep the volume and weight of space power systems low and to protect them from natural and induced environmental hazards. Circuits with open packaging are free to attain the pressure of the outer environment, whereas encapsulated circuits are imbedded in insulating materials, which are usually solids, but could be liquids or gases. Up to now, solid insulation has usually been chosen for space power systems. If the use of solid insulation is continued, when voltages increase, the amount of insulation for encapsulation also will have to increase. This increased insulation will increase weight and reduce system reliability. Therefore, non-solid insulation media must be examined to satisfy future spacecraft power and voltage demands. In this report, we assess the suitability of liquid, space vacuum, and gas insulation for space power systems.
Miki, Takanori; Kusaka, Takashi; Yokoyama, Toshifumi; Ohta, Ken-ichi; Suzuki, Shingo; Warita, Katsuhiko; Jamal, Mostofa; Wang, Zhi-Yu; Ueki, Masaaki; Liu, Jun-Qian; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki
2014-02-01
Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.
Propulsion Risk Reduction Activities for Non-Toxic Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth
2010-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for non-toxic or "green" propellants. The PCAD project focuses on the development of non-toxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of non-toxic propellants for space missions. Implementation of non-toxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that non-toxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.
Propulsion Risk Reduction Activities for Nontoxic Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth L.
2010-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for nontoxic or "green" propellants. The PCAD project focuses on the development of nontoxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of nontoxic propellants for space missions. Implementation of nontoxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that nontoxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.
NASA Astrophysics Data System (ADS)
Sass, J. P.; Fesmire, J. E.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.; Augustynowicz, S. D.
2008-03-01
A technology demonstration test project was conducted by the Cryogenics Test Laboratory at the Kennedy Space Center (KSC) to provide comparative thermal performance data for glass microspheres, referred to as bubbles, and perlite insulation for liquid hydrogen tank applications. Two identical 1/15th scale versions of the 3,200,000 liter spherical liquid hydrogen tanks at Launch Complex 39 at KSC were custom designed and built to serve as test articles for this test project. Evaporative (boil-off) calorimeter test protocols, including liquid nitrogen and liquid hydrogen, were established to provide tank test conditions characteristic of the large storage tanks that support the Space Shuttle launch operations. This paper provides comparative thermal performance test results for bubbles and perlite for a wide range of conditions. Thermal performance as a function of cryogenic commodity (nitrogen and hydrogen), vacuum pressure, insulation fill level, tank liquid level, and thermal cycles will be presented.
Colón, Cristóbal; Alvarez, J Victor; Castaño, Cristina; Gutierrez-Solana, Luís G; Marquez, Ana M; O'Callaghan, María; Sánchez-Valverde, Félix; Yeste, Carmen; Couce, María-Luz
2017-05-01
The mucopolysaccharidoses (MPSs) are underdiagnosed but they are evaluated in few newborn screening programs, probably due to the many challenges remaining, such as the identification of late-onset phenotypes. Systematic screening at the onset of clinical symptoms could help to early identify patients who may benefit from specific treatments. The aim of this prospective study was to assess a novel selective screening program, the FIND project, targeting patients aged 0 to 16 years with clinical manifestations of MPS. The project was designed to increase awareness of these diseases among pediatricians and allow early diagnosis.From July 2014 to June 2016, glycosaminoglycan (GAG) levels normalized to creatinine levels were determined in urine-impregnated analytical paper submitted by pediatricians who had patients with clinical signs and/or symptoms compatible with MPS. When high GAG concentrations were detected, a new liquid urine sample was requested to confirm and identify the GAG present. When a specific form of MPS was suspected, enzyme activity was analyzed using blood-impregnated paper to determine MPS type (I, IIIB, IIIC, IVA, IVB, VI, or VII). Age-specific reference values for GAG were previously established using 145 urine samples from healthy children.GAG levels were normal in 147 (81.7%) of the 180 initial samples received. A liquid sample was requested for the other 33 cases (18.3%); GAG levels were normal in 13 of these and slightly elevated in 12, although the electrophoresis study showed no evidence of MPS. Elevated levels with corresponding low enzymatic activity were confirmed in 8 cases. The mean time from onset of clinical symptoms to detection of MPS was 22 months, and just 2 cases were detected at the beginning of the project were detected with 35 and 71 months of evolution of clinical symptoms. Our screening strategy for MPS had a sensitivity of 100%, a specificity of 85%, and a positive predictive value of 24%.The FIND project is a useful and cost-effective screening method for increasing awareness of MPS among pediatricians and enabling the detection of MPS at onset of clinical symptoms.
Liquid Rocket Engine Testing Overview
NASA Technical Reports Server (NTRS)
Rahman, Shamim
2005-01-01
Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, D.L.; et al.
The 35-ton prototype for the Deep Underground Neutrino Experiment far detector was a single-phase liquid argon time projection chamber with an integrated photon detector system, all situated inside a membrane cryostat. The detector took cosmic-ray data for six weeks during the period of February 1, 2016 to March 12, 2016. The performance of the photon detection system was checked with these data. An installed photon detector was demonstrated to measure the arrival times of cosmic-ray muons with a resolution better than 32 ns, limited by the timing of the trigger system. A measurement of the timing resolution using closely-spaced calibration pulses yielded a resolution of 15 ns for pulses at a level of 6 photo-electrons. Scintillation light from cosmic-ray muons was observed to be attenuated with increasing distance with a characteristic length ofmore » $$155 \\pm 28$$ cm.« less
First experiment on liquid hydrogen transportation by ship inside Osaka bay
NASA Astrophysics Data System (ADS)
Maekawa, K.; Takeda, M.; Hamaura, T.; Suzuki, K.; Miyake, Y.; Matsuno, Y.; Fujikawa, S.; Kumakura, H.
2017-12-01
A project to import a large amount of liquid hydrogen (LH2) from Australia by a cargo carrier, which is equipped with two 1250 m3 tanks, is underway in Japan. It is important to understand sloshing and boil-off characteristics inside the LH2 tank during marine transportation. However, the LH2 sloshing and boil-off characteristics on the sea have not yet been clarified. First experiment on the LH2 transportation of 20 liter with magnesium diboride (MgB2) level sensors by the training ship “Fukae-maru”, which has 50 m long and 449 ton gross weight, was carried out successfully inside Osaka bay on February 2, 2017. In the experiment, synchronous measurements of liquid level, temperature, pressure, ship motions, and accelerations as well as the rapid depressurization test were done. The increase rate of the temperature and the pressure inside the LH2 tank were discussed under the rolling and the pitching conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, David, W.
2012-02-14
Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology formore » air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.« less
The upgrade of the ATLAS first-level calorimeter trigger
NASA Astrophysics Data System (ADS)
Yamamoto, Shimpei; Atlas Collaboration
2016-07-01
The first-level calorimeter trigger (L1Calo) had operated successfully through the first data taking phase of the ATLAS experiment at the CERN Large Hadron Collider. Towards forthcoming LHC runs, a series of upgrades is planned for L1Calo to face new challenges posed by the upcoming increases of the beam energy and the luminosity. This paper reviews the ATLAS L1Calo trigger upgrade project that introduces new architectures for the liquid-argon calorimeter trigger readout and the L1Calo trigger processing system.
Clouds enhance Greenland ice sheet mass loss
NASA Astrophysics Data System (ADS)
Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.
2015-04-01
Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.
Novel Fission-Product Separation based on Room-Temperature Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Robin D.
2004-12-31
U.S. DOE's underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive cesium-137 and strontium-90. Because the primary chemical components of alkaline supernatants are sodium nitrate and sodium hydroxide, the majority of this could be disposed of as low level waste if radioactive cesium-137 and strontium- 90 could be selectively removed. The underlying goal of this project was to investigate the application of ionic liquids as novel solvents for new solvent extraction processes for separation of cesium-137 and strontium-90 from tank wastes. Ionic liquids are a distinct sub-set of liquids, comprising only of cationsmore » and anions they are proving to be increasingly interesting fluids for application in systems from electrochemistry to energetic materials, and are also rapidly establishing their promise as viable media for synthesis and separations operations. Properties including low melting points, electrochemical conductivity, wide liquid ranges, lack of vapor-pressure, and chemical tunability have encouraged researchers to explore the uses of ILs in place of volatile organic solvents. The most promising current developments arise from control of the unique combinations of chemical and physical properties characteristic of ionic liquids.« less
Ong, Jane Jun-Xin; Steele, Catriona M; Duizer, Lisa M
2018-06-01
Sensory characteristics are important for the acceptance of thickened liquids, but those of liquids thickened to the new standards put forth by the International Dysphagia Diet Standardization Initiative (IDDSI) are unknown. This research sought to identify and rate the perception of important sensory properties of liquids thickened to levels specified in the IDDSI framework. Samples were made with water, with and without added barium sulfate, and were thickened with a cornstarch or xanthan gum based thickener. Samples were characterized using projective mapping/ultra-flash profiling to identify important sample attributes, and then with trained descriptive analysis panels to characterize those attributes in non-barium and barium thickened liquids. Three main groups of attributes were observed. Taste and flavor attributes decreased in intensity with increasing thickener. Thickener specific attributes included graininess and chalkiness for the cornstarch thickened samples, and slipperiness for the xanthan gum samples. Within the same type of thickener, ratings of thickness-related attributes (perceived viscosity, adhesiveness, manipulation, and swallowing) at different IDDSI levels were significantly different from each other. However, in non-barium samples, cornstarch samples were perceived as thicker than xanthan gum samples even though they had similar apparent viscosities at 50 s -1 . On the other hand, the two thickeners had similar perceived thickness in the barium samples even though the apparent viscosities of cornstarch samples were higher than those of the xanthan gum samples. In conclusion, IDDSI levels can be distinguished based on sensory properties, but these properties may be affected by the type of thickener and medium being thickened.
Multi-Scale Simulation of High Energy Density Ionic Liquids
2007-06-19
and simulation of ionic liquids (ILs). A polarizable model was developed to simulate ILs more accurately at the atomistic level. A multiscale coarse...propellant, 1- hydroxyethyl-4-amino-1, 2, 4-triazolium nitrate (HEATN), were studied with the all-atom polarizable model. The mechanism suggested for HEATN...with this AFOSR-supported project, a polarizable forcefield for the ionic liquids such as 1-ethyl-3-methylimidazolium nitrate (EMIM*/NO3-) was
Soldier-Warfighter Operationally Responsive Deployer for Space
NASA Technical Reports Server (NTRS)
Davis, Benny; Huebner, Larry; Kuhns, Richard
2015-01-01
The Soldier-Warfighter Operationally Responsive Deployer for Space (SWORDS) project was a joint project between the U.S. Army Space & Missile Defense Command (SMDC) and NASA. The effort, lead by SMDC, was intended to develop a three-stage liquid bipropellant (liquid oxygen/liquid methane), pressure-fed launch vehicle capable of inserting a payload of at least 25 kg to a 750-km circular orbit. The vehicle design was driven by low cost instead of high performance. SWORDS leveraged commercial industry standards to utilize standard hardware and technologies over customized unique aerospace designs. SWORDS identified broadly based global industries that have achieved adequate levels of quality control and reliability in their products and then designed around their expertise and business motivations.
Effect of low electric fields on alpha scintillation light yield in liquid argon
NASA Astrophysics Data System (ADS)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.
2017-01-01
Measurements were made of scintillation light yield of alpha particles from the 222Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a ~2% increase in light yield compared to alphas in no field.
26 CFR 1.43-0 - Table of contents.
Code of Federal Regulations, 2010 CFR
2010-04-01
... unaffected reservoir volume. (3) Terminated projects. (4) Change in tertiary recovery method. (5) Examples.... (g) Examples. § 1.43-2Qualified enhanced oil recovery project. (a) Qualified enhanced oil recovery project. (b) More than insignificant increase. (c) First injection of liquids, gases, or other matter. (1...
Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues
2014-01-01
Over the past five years, rapid growth in U.S. onshore natural gas and oil production has led to increased volumes of natural gas plant liquids (NGPL) and liquefied refinery gases (LRG). The increasing economic importance of these volumes, as a result of their significant growth in production, has revealed the need for better data accuracy and transparency to improve the quality of historical data and projections for supply, demand, and prices of these liquids, co-products, and competing products. To reduce confusion in terminology and improve its presentation of data, EIA has worked with industry and federal and state governments to clarify gas liquid terminology and has developed the term Hydrocarbon Gas Liquids, or HGL.
NASA Astrophysics Data System (ADS)
Takeda, Takeshi; Maruyama, Yu; Watanabe, Tadashi; Nakamura, Hideo
Experiments simulating PWR intermediate-break loss-of-coolant accidents (IBLOCAs) with 17% break at hot leg or cold leg were conducted in OECD/NEA ROSA-2 Project using the Large Scale Test Facility (LSTF). In the hot leg IBLOCA test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing (LSC) induced by steam condensation on accumulator coolant injected into cold leg. Water remained on upper core plate in upper plenum due to counter-current flow limiting (CCFL) because of significant upward steam flow from the core. In the cold leg IBLOCA test, core dryout took place due to rapid liquid level drop in the core before LSC. Liquid was accumulated in upper plenum, steam generator (SG) U-tube upflow-side and SG inlet plenum before the LSC due to CCFL by high velocity vapor flow, causing enhanced decrease in the core liquid level. The RELAP5/MOD3.2.1.2 post-test analyses of the two LSTF experiments were performed employing critical flow model in the code with a discharge coefficient of 1.0. In the hot leg IBLOCA case, cladding surface temperature of simulated fuel rods was underpredicted due to overprediction of core liquid level after the core uncovery. In the cold leg IBLOCA case, the cladding surface temperature was underpredicted too due to later core uncovery than in the experiment. These may suggest that the code has remaining problems in proper prediction of primary coolant distribution.
Effect of low electric fields on alpha scintillation light yield in liquid argon
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...
2017-01-24
Measurements were made of scintillation light yield of alpha particles from themore » $$^{222}$$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. Furthermore, the light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.« less
Overhead Projection Cell for Streamline Flow
ERIC Educational Resources Information Center
Waage, Harold M.
1969-01-01
Describes the construction and operation of an overhead projection apparatus designed to demonstrate streamline flow of a liquid. The apparatus consists of a Plexiglass tank containing water in which plates forming the cell are submerged, a constant level reservoir, an overflow device and a system for marking the flow lines with a dye. (LC)
Dependence of Liquid Supercooling on Liquid Overheating Levels of Al Small Particles
Mei, Qingsong; Li, Juying
2015-01-01
The liquid thermal history effect on liquid supercooling behavior has been found in various metals and alloys; typically the degree of liquid supercooling (ΔT−) increases with the increase of liquid overheating (ΔT+) up to several to tens of degrees above the equilibrium melting point (T0). Here we report quantitative experimental measurements on the ΔT−-ΔT+ relationship of Al small particles encapsulated in Al2O3 shells by using a differential scanning calorimeter. We find a remarkable dependence of ΔT− on ΔT+ of Al small particles, extending to at least 340 °C above T0 of Al (~1.36T0), which indicates the existence of temperature-dependent crystallization centers in liquid Al up to very high liquid overheating levels. Our results demonstrate quantitatively the significant effect of liquid thermal history on the supercooling behavior of Al and its alloys, and raise new considerations about the dependence of ΔT− on ΔT+ at very high ΔT+ levels. PMID:28787806
A dual-parameter tilted fiber Bragg grating-based sensor for liquid level and temperature monitoring
NASA Astrophysics Data System (ADS)
Osuch, Tomasz; Jurek, Tomasz; Markowski, Konrad; Jedrzejewski, Kazimierz
2016-09-01
In this paper, the concept and experimental characterization of tilted fiber Bragg grating (TFBG) based sensor for temperature and liquid level measurement are presented. It is shown that, when liquid level increases the peak amplitudes of cladding modes linearly decreases (in dB). In turn, changes in temperature causes a shift of the TFBG transmission spectrum, which can be accurately measured by monitoring the Bragg wavelength corresponding to the liquid level independent core mode. The main advantages of proposed sensor are simple design as well as linear responses to liquid level and temperature.
49 CFR 260.17 - Credit risk premium analysis.
Code of Federal Regulations, 2012 CFR
2012-10-01
... past and projected: (A) Profitability; (B) Liquidity; (C) Financial strength; (D) Size; and (E) Level... improving revenues, profitability and cash flow from operations; and (B) Reliance on third parties for...
49 CFR 260.17 - Credit risk premium analysis.
Code of Federal Regulations, 2014 CFR
2014-10-01
... past and projected: (A) Profitability; (B) Liquidity; (C) Financial strength; (D) Size; and (E) Level... improving revenues, profitability and cash flow from operations; and (B) Reliance on third parties for...
49 CFR 260.17 - Credit risk premium analysis.
Code of Federal Regulations, 2011 CFR
2011-10-01
... past and projected: (A) Profitability; (B) Liquidity; (C) Financial strength; (D) Size; and (E) Level... improving revenues, profitability and cash flow from operations; and (B) Reliance on third parties for...
49 CFR 260.17 - Credit risk premium analysis.
Code of Federal Regulations, 2013 CFR
2013-10-01
... past and projected: (A) Profitability; (B) Liquidity; (C) Financial strength; (D) Size; and (E) Level... improving revenues, profitability and cash flow from operations; and (B) Reliance on third parties for...
A Compact Self-Driven Liquid Lithium Loop for Industrial Neutron Generation
NASA Astrophysics Data System (ADS)
Stemmley, Steven; Szott, Matt; Kalathiparambil, Kishor; Ahn, Chisung; Jurczyk, Brian; Ruzic, David
2017-10-01
A compact, closed liquid lithium loop has been developed at the University of Illinois to test and utilize the Li-7(d,n) reaction. The liquid metal loop is housed in a stainless steel trench module with embedded heating and cooling. The system was designed to handle large heat and particle fluxes for use in neutron generators as well as fusion devices, solely operating via thermo-electric MHD. The objectives of this project are two-fold, 1) produce a high energy, MeV-level, neutron source and 2) provide a self-healing, low Z, low recycling plasma facing component. The flowing volume will keep a fresh, clean, lithium surface allowing Li-7(d,n) reactions to occur as well as deuterium adsorption in the fluid, increasing the overall neutron output. Expected yields of this system are 107 n/s for 13.5 MeV neutrons and 108 n/s for 2.45 MeV neutrons. Previous work has shown that using a tapered trench design prevents dry out and allows for an increase in velocity of the fluid at the particle strike point. For heat fluxes on the order of 10's MW/m2, COMSOL models have shown that high enough velocities ( 70 cm/s) are attainable to prevent significant lithium evaporation. Future work will be aimed at addressing wettability issues of lithium in the trenches, experimentally determine the velocities required to prevent dry out, and determine the neutron output of the system. The preliminary results and discussion will be presented. DOE SBIR project DE-SC0013861.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovic, Bojan; Maldonado, Ivan
2016-04-14
The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate (“plank”) fuel. Proposal to FY12 NEUP entitled “Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors” was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed onmore » December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project’s success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.« less
NASA Technical Reports Server (NTRS)
Vonderhaar, Thomas H.; Randel, David L.; Reinke, Donald L.; Stephens, Graeme L.; Ringerud, Mark A.; Combs, Cynthia L.; Greenwald, Thomas J.; Wittmeyer, Ian L.
1994-01-01
In recent years climate research scientists have recognized the need for increased time and space resolution precipitable and liquid water data sets. This project is designed to meet those needs. Specifically, NASA is funding STC-METSAT to develop a total integrated column and layered precipitable water data set. This is complemented by a total column liquid water data set. These data are global in extent, 1 deg x 1 deg in resolution, with daily grids produced. Precipitable water is measured by a combination of in situ radiosonde observations and satellite derived infrared and microwave retrievals from four satellites. This project combines these data into a coherent merged product for use in global climate research. This report is the Year 2 Annual Report from this NASA-sponsored project and includes progress-to-date on the assigned tasks.
Design and Testing of Non-Toxic RCS Thrusters for Second Generation Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Calvignac, Jacky; Tramel, Terri
2003-01-01
The current NASA Space Shuttle auxiliary propulsion system utilizes nitrogen tetroxide (NTO) and monomethylhydrazine (MMH), hypergolic propellants. This use of these propellants has resulted in high levels of maintenance and precautions that contribute to costly launch operations. By employing alternate propellant combinations, those less toxic to humans, the hazards and time required between missions can be significantly reduced. Use of alternate propellants can thereby increase the efficiency and lower the cost in launch operations. In support of NASA's Space Launch Initiative (SLI), TRW proposed a three-phase project structured to significantly increase the technology readiness of a high-performance reaction control subsystem (RCS) thruster using non-toxic propellant for an operationally efficient and reusable auxiliary propulsion system (APS). The project enables the development of an integrated primary/vernier thruster capable of providing dual-thrust levels of both 1000-lbf class thrust and 25-lbf thrust. The intent of the project is to reduce the risk associated with the development of an improved RCS flight design that meets the primary NASA objectives of improved safety and reliability while reducing systems operations and maintenance costs. TRW proposed two non-toxic auxiliary propulsion engine designs, one using liquid oxygen and liquid hydrogen and the other using liquid oxygen and liquid ethanol, as candidates to meet the goals of reliability and affordability at the RCS level. Both of these propellant combinations offer the advantage of a safe environment for maintenance, while at the same time providing adequate to excellent performance for a conventional liquid propulsion systems. The key enabling technology incorporated in both TRW thrusters is the coaxial liquid on liquid pintle injector. This paper will concentrate on only the design and testing of one of the thrusters, the liquid oxygen (LOX) and liquid hydrogen (LH2) thruster. The LOX/LH2 thruster design includes a LOX-centered pintle injector, consisting of two rows of slots that create a radial spoke spray pattern in the combustion chamber. The main fuel injector creates a continuous sheet of LH2 originating upstream of the LOX pintle injector. The two propellants impinge at the pintle slots, where the resulting momentum ratio and spray pattern determines the combustion efficiency and thermal effects on the hardware. Another enabling technology used in the design of this thruster is fuel film cooling through a duct, lining the inner wall of the combustion chamber barrel section. The duct is also acts as a secondary fuel injection point. The variation in the amount of LH2 used for the duct allows for adjustments in the cooling capacity for the thruster. The Non-Toxic LOX-LH2 RCS Workhorse Thruster was tested at the NASA Marshall Space Flight Center's Test Stand 500. Hot-fire tests were conducted between March 08, 2002 and April 05, 2002. All testing during the program base period were performed at sea-level conditions. During the test program, 7 configurations were tested, including 2 combustion chambers, 3 LOX injector pintle tips, and 4 LH2 injector stroke settings. The operating conditions that were surveyed varied thrust levels, mixture ratio and LH2 duct cooling flow. The copper heat sink chamber was used for 16 burns, each burn lasting from 0.4 to 10 seconds, totaling 51.4 seconds, followed by Haynes chamber testing ranging from 0.9 to 120 seconds, totaling 300.9 seconds. The total accumulated burn time for the test program is 352.3 seconds. C* efficiency was calculated and found to be within expectable limits for most operating conditions. The temperature on the Haynes combustion chamber remained below established material limits, with the exception of one localized hot spot. The test results demonstrate that both the coaxial liquid-on-liquid pintle injector design and fuel duct concepts are viable for the intended application. The thruster head-e design maintained cryogenic injection temperatures while firing, which validates the concept for minimal heat soak back. By injecting fuel into the duct, the throat temperatures were manageable, yet the split of fuel through the cooling duct does not compromise the overall combustion efficiency, which indicates that, provided proper design refinement, such a concept can be applied to a high-performance version of the thruster. These hot fire tests demonstrate the robustness of the duct design concept and good capability to withstand off-nominal operating conditions without adversely impacting the thermal response of the engine, a key design feature for a cryogenic thruster.
Short-Term Outlook for Hydrocarbon Gas Liquids
2016-01-01
U.S. liquid fuels production increased from 7.43 million barrels per day (b/d) in 2008 to 13.75 million b/d in 2015. However, the Short-Term Energy Outlook (STEO) expects liquid fuels production to decline to 12.99 million b/d in 2017, mainly as a result of prolonged low oil prices. The liquid fuels production forecast reflects a 1.24 million b/d decline in crude oil production by 2017 that is partially offset by a 450,000 b/d increase in the production of hydrocarbon gas liquids (HGL)—a group of products including ethane, propane, butane (normal and isobutane), natural gasoline, and refinery olefins. This analysis will discuss the outlook for each of these four HGL streams and related infrastructure projects through 2017.
NASA Astrophysics Data System (ADS)
Gursoy, Kadir Ali; Yavuz, Mehmet Metin
2014-11-01
In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.
Zooming in on vibronic structure by lowest-value projection reconstructed 4D coherent spectroscopy
NASA Astrophysics Data System (ADS)
Harel, Elad
2018-05-01
A fundamental goal of chemical physics is an understanding of microscopic interactions in liquids at and away from equilibrium. In principle, this microscopic information is accessible by high-order and high-dimensionality nonlinear optical measurements. Unfortunately, the time required to execute such experiments increases exponentially with the dimensionality, while the signal decreases exponentially with the order of the nonlinearity. Recently, we demonstrated a non-uniform acquisition method based on radial sampling of the time-domain signal [W. O. Hutson et al., J. Phys. Chem. Lett. 9, 1034 (2018)]. The four-dimensional spectrum was then reconstructed by filtered back-projection using an inverse Radon transform. Here, we demonstrate an alternative reconstruction method based on the statistical analysis of different back-projected spectra which results in a dramatic increase in sensitivity and at least a 100-fold increase in dynamic range compared to conventional uniform sampling and Fourier reconstruction. These results demonstrate that alternative sampling and reconstruction methods enable applications of increasingly high-order and high-dimensionality methods toward deeper insights into the vibronic structure of liquids.
MSFC Combustion Devices in 2001
NASA Technical Reports Server (NTRS)
Dexter, Carol; Turner, James (Technical Monitor)
2001-01-01
The objectives of the project detailed in this viewgraph presentation were to reduce thrust assembly weights to create lighter engines and to increase the cycle life and/or operating temperatures. Information is given on material options (metal matrix composites and polymer matrix composites), ceramic matrix composites subscale liners, lightweight linear chambers, lightweight injector development, liquid/liquid preburner tasks, and vortex chamber tasks.
Mangus, J.D.; Redding, A.H.
1975-07-15
A system for maintaining two distinct sodium levels within the shell of a heat exchanger having a plurality of J-shaped modular tube bundles each enclosed in a separate shell which extends from a common base portion. A lower liquid level is maintained in the base portion and an upper liquid level is maintained in the shell enwrapping the long stem of the J-shaped tube bundles by utilizing standpipes with a notch at the lower end which decreases in open area the distance from the end of the stand pipe increases and a supply of inert gas fed at a constant rate to produce liquid levels, which will remain generally constant as the flow of liquid through the vessel varies. (auth)
Advanced Supported Liquid Membranes for CO2 Control in Extravehicular Activity Applications
NASA Technical Reports Server (NTRS)
Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda
2014-01-01
Developing a new, robust, portable life support system (PLSS) is currently a high priority for NASA in order to support longer and safer extravehicular activity (EVA) missions. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. Although the Metal Oxide (MetOx) canister has worked well, it has a finite CO2 adsorption capacity. Consequently, the unit would have to be larger and heavier to extend EVA times. Therefore, new CO2 control technologies must be developed to meet mission objectives without increasing the size of the PLSS. Although recent work has centered on sorbents that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that selectively vents CO2 to space. A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Unfortunately, conventional gas separation membranes do not have adequate selectivity for use in the PLSS. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a micro porous material filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a current Phase II SBIR project, Reaction Systems has developed a new reactive liquid, which has effectively zero vapor pressure making it an ideal candidate for use in an SLM. The SLM function has been demonstrated with representative pressures of CO2, O2, and water (H2O). In addition to being effective for CO2 control, the SLM also vents moisture to space. Therefore, this project has demonstrated the feasibility of using an SLM to control CO2 in an EVA application.
Advanced Supported Liquid Membranes for CO2 Control in Extravehicular Activity Applications
NASA Technical Reports Server (NTRS)
Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda
2014-01-01
Developing a new, robust, portable life support system (PLSS) is currently a high priority for NASA in order to support longer and safer extravehicular activity (EVA) missions. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. Although the Metal Oxide (MetOx) canister has worked well, it has a finite CO2 adsorption capacity. Consequently, the unit would have to be larger and heavier to extend EVA times. Therefore, new CO2 control technologies must be developed to meet mission objectives without increasing the size of the PLSS. Although recent work has centered on sorbents that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that selectively vents CO2 to space. A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Unfortunately, conventional gas separation membranes do not have adequate selectivity for use in the PLSS. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a micro porous material filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a current Phase II SBIR project, Reaction Systems has developed a new reactive liquid, which has effectively zero vapor pressure making it an ideal candidate for use in an SLM. The SLM function has been demonstrated with representative pressures of CO2, O2, and water (H2O). In addition to being effective for CO2 control, the SLM also vents moisture to space. Therefore, this project has demonstrated the feasibility of using an SLM to control CO2 in an EVA application. 1 President
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEDESCHI AR; CORBETT JE; WILSON RA
2012-01-26
Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactivemore » species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.« less
The LUX-Zeplin Dark Matter Detector
NASA Astrophysics Data System (ADS)
Mock, Jeremy; Lux-Zeplin (Lz) Collaboration
2016-03-01
The LUX-ZEPLIN (LZ) detector is a second generation dark matter experiment that will operate at the 4850 foot level of the Sanford Underground Research Experiment as a follow-up to the LUX detector, currently the world's most sensitive WIMP direct detection experiment. The LZ detector will contain 7 tonnes of active liquid xenon with a 5.6 tonne fiducial mass in the TPC. The TPC is surrounded by an active, instrumented, liquid-xenon ``skin'' region to veto gammas, then a layer of liquid scintillator to veto neutrons, all contained within a water shield. Modeling the detector is key to understanding the expected background, which in turn leads to a better understanding of the projected sensitivity, currently expected to be 2e-48 cm2 for a 50 GeV WIMP. I will discuss the current status of the LZ experiment as well as its projected sensitivity.
Neutron scattering as a probe of liquid crystal polymer-reinforced composite materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hjelm, R.P.; Douglas, E.P.; Benicewicz, B.C.
1995-12-31
This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to obtain nanoscale and molecular level information on the mechanism of reinforcement in liquid crystal polymer (LCP)-reinforced composites, to realize molecular-reinforced LCP composites, and to test the validity of the concept of molecular reinforcement. Small-angle neutron scattering was used to study the structures in the ternary phase diagram of LCP with liquid crystal thermosets and solvent on length scales ranging from 1-100 nm. The goal of the scattering measurements is to understand the phase morphologymore » and degree of segregation of the reinforcing and matrix components. This information helps elucidate the physics of self assembly in these systems. This work provides an experimental basis for a microengineering approach to composites of vastly improved properties.« less
Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber
NASA Astrophysics Data System (ADS)
Acciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.; Bagby, L.; Baller, B.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2017-03-01
We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.
Dual Telecentric Lens System For Projection Onto Tilted Toroidal Screen
NASA Technical Reports Server (NTRS)
Gold, Ronald S.; Hudyma, Russell M.
1995-01-01
System of two optical assemblies for projecting image onto tilted toroidal screen. One projection lens optimized for red and green spectral region; other for blue. Dual-channel approach offers several advantages which include: simplified color filtering, simplified chromatic aberration corrections, less complex polarizing prism arrangement, and increased throughput of blue light energy. Used in conjunction with any source of imagery, designed especially to project images formed by reflection of light from liquid-crystal light valve (LCLV).
Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.
1992-01-01
Thermal stratification and self-pressurization of partially filled liquid hydrogen (LH2) storage tanks under microgravity condition is studied theoretically. A spherical tank is subjected to a uniform and constant wall heat flux. It is assumed that a vapor bubble is located in the tank center such that the liquid-vapor interface and tank wall form two concentric spheres. This vapor bubble represents an idealized configuration of a wetting fluid in microgravity conditions. Dimensionless mass and energy conservation equations for both vapor and liquid regions are numerically solved. Coordinate transformation is used to capture the interface location which changes due to liquid thermal expansion, vapor compression, and mass transfer at liquid-vapor interface. The effects of tank size, liquid fill level, and wall heat flux on the pressure rise and thermal stratification are studied. Liquid thermal expansion tends to cause vapor condensation and wall heat flux tends to cause liquid evaporation at the interface. The combined effects determine the direction of mass transfer at the interface. Liquid superheat increases with increasing wall heat flux and liquid fill level and approaches an asymptotic value.
High Performance Mars Liquid Cooling and Ventilation Garment Project
NASA Technical Reports Server (NTRS)
Terrier, Douglas; Clayton, Ronald; Whitlock, David; Conger, Bruce
2015-01-01
EVA space suit mobility in micro-gravity is enough of a challenge and in the gravity of Mars, improvements in mobility will enable the suited crew member to efficiently complete EVA objectives. The idea proposed is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area in order to free up the arms and legs by removing the liquid tubes currently used in the ISS EVA suit in the limbs. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased to provide the entire liquid cooling requirement and increase mobility by freeing up the arms and legs. Additional potential benefits of this approach include reduced LCVG mass, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development.
NASA Technical Reports Server (NTRS)
Melcher, John C.; Morehead, Robert L.
2014-01-01
The project Morpheus liquid oxygen (LOX) / liquid methane (LCH4) main engine is a Johnson Space Center (JSC) designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. The engine met or exceeded all performance requirements without experiencing any in- ight failures, but the engine exhibited acoustic-coupled combustion instabilities during sea-level ground-based testing. First tangential (1T), rst radial (1R), 1T1R, and higher order modes were triggered by conditions during the Morpheus vehicle derived low chamber pressure startup sequence. The instability was never observed to initiate during mainstage, even at low power levels. Ground-interaction acoustics aggravated the instability in vehicle tests. Analysis of more than 200 hot re tests on the Morpheus vehicle and Stennis Space Center (SSC) test stand showed a relationship between ignition stability and injector/chamber pressure. The instability had the distinct characteristic of initiating at high relative injection pressure drop at low chamber pressure during the start sequence. Data analysis suggests that the two-phase density during engine start results in a high injection velocity, possibly triggering the instabilities predicted by the Hewitt stability curves. Engine ignition instability was successfully mitigated via a higher-chamber pressure start sequence (e.g., 50% power level vs 30%) and operational propellant start temperature limits that maintained \\cold LOX" and \\warm methane" at the engine inlet. The main engine successfully demonstrated 4:1 throttling without chugging during mainstage, but chug instabilities were observed during some engine shutdown sequences at low injector pressure drop, especially during vehicle landing.
Market trends in the projection display industry
NASA Astrophysics Data System (ADS)
Dash, Sweta
2001-03-01
The projection display industry represents a multibillion- dollar market that includes four distinct technologies. High-volume consumer products and high-value business products drive the market, with different technologies being used in different application markets. The consumer market is dominated by rear CRT technology, especially in the projection TV segment. Rear LCD (liquid crystal display), MEMS/DLP (or Digital Light Processing TM) and LCOS (Liquid-crystal-on-silicon) TVs are slowly emerging as future competitors to rear CRT projectors. Front CRT projectors are also facing challenges from LCD and DLP technology for the home theater market while the business market is completely dominated by front LCD and DLP technology. Three-chip DLP projectors have replaced liquid crystal light valves in large venue applications where projectors have higher light output requirements. In recent years front LCD and LCOS projectors have been increasingly competing with 3-chip DLP projectors especially at the low end of the large venue application market. Within the next five years the projection market will experience very fast growth. Sales and presentation applications, which are the fastest growing applications in the business market, will continue to be the major driving force for the growth for front projectors, and the shift in the consumer market to digital and HDTV products will drive the rear projection market.
A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric D. Larson; Stefano Consonni; Ryan E. Katofsky
Production of liquid fuels and chemicals via gasification of kraft black liquor and woody residues (''biorefining'') has the potential to provide significant economic returns for kraft pulp and paper mills replacing Tomlinson boilers beginning in the 2010-2015 timeframe. Commercialization of gasification technologies is anticipated in this period, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are in most cases already commercially established today in the ''gas-to-liquids'' industry. These conclusions are supported by detailed analysis carried out in a two-year project co-funded by the American Forest and Paper Association and the Biomass Programmore » of the U.S. Department of Energy. This work assessed the energy, environment, and economic costs and benefits of biorefineries at kraft pulp and paper mills in the United States. Seven detailed biorefinery process designs were developed for a reference freesheet pulp/paper mill in the Southeastern U.S., together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. Commercial (''Nth'') plant levels of technology performance and cost were assumed. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which would be refined to vehicle fuels at existing petroleum refineries), dimethyl ether (a diesel engine fuel or LPG substitute), or an ethanol-rich mixed-alcohol product. Compared to installing a new Tomlinson power/recovery system, a biorefinery would require larger capital investment. However, because the biorefinery would have higher energy efficiencies, lower air emissions, and a more diverse product slate (including transportation fuel), the internal rates of return (IRR) on the incremental capital investments would be attractive under many circumstances. For nearly all of the cases examined in the study, the IRR lies between 14% and 18%, assuming a 25-year levelized world oil price of $50/bbl--the US Department of Energy's 2006 reference oil price projection. The IRRs would rise to as high as 35% if positive incremental environmental benefits associated with biorefinery products are monetized (e.g., if an excise tax credit for the liquid fuel is available comparable to the one that exists for ethanol in the United States today). Moreover, if future crude oil prices are higher ($78/bbl levelized price, the US Department of Energy's 2006 high oil price scenario projection, representing an extrapolation of mid-2006 price levels), the calculated IRR exceeds 45% in some cases when environmental attributes are also monetized. In addition to the economic benefits to kraft pulp/paper producers, biorefineries widely implemented at pulp mills in the U.S. would result in nationally-significant liquid fuel production levels, petroleum savings, greenhouse gas emissions reductions, and criteria-pollutant reductions. These are quantified in this study. A fully-developed pulpmill biorefinery industry could be double or more the size of the current corn-ethanol industry in the United States in terms of annual liquid fuel production. Forest biomass resources are sufficient in the United States to sustainably support such a scale of forest biorefining in addition to the projected growth in pulp and paper production.« less
Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber
Acciarri, R.; Adams, C.; An, R.; ...
2017-03-14
Here, we present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Lastly, we also address technical issues that arise when applying this technique to data from a large LArTPCmore » at or near ground level.« less
NASA Technical Reports Server (NTRS)
Bain, Addison
1990-01-01
Liquid hydrogen will continue to be an integral element in virtually every major space program, and it has also become a significant merchant product for certain commercial markets. Liquid hydrogen is not a universally available commodity, and the number of supply sources historically have been limited to regions having concentrated consumption patterns. With the increased space program activity it becomes necessary to assess all future programs on a collective and unified basis. An initial attempt to identify projected requirements on a long range basis is presented.
Optical design of ultrashort throw liquid crystal on silicon projection system
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2017-05-01
An ultrashort throw liquid crystal on silicon (LCoS) projector for home cinema, virtual reality, and automobile heads-up display has been designed and fabricated. To achieve the best performance and highest-quality image, this study aimed to design wide-angle projection optics and optimize the illumination for LCoS. Based on the telecentric lens projection system and optimized Koehler illumination, the optical parameters were calculated. The projector's optical system consisted of a conic aspheric mirror and image optics using either symmetric double Gauss or a large-angle eyepiece to achieve a full projection angle larger than 155 deg. By applying Koehler illumination, image resolution was enhanced and the modulation transfer function of the image in high spatial frequency was increased to form a high-quality illuminated image. The partial coherence analysis verified that the design was capable of 2.5 lps/mm within a 2 m×1.5 m projected image. The throw ratio was less than 0.25 in HD format.
SUNLAB - The Project of a Polish Underground Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisiel, J.; Dorda, J.; Konefall, A.
2010-11-24
The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedz S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector - GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.
SUNLAB-The Project of a Polish Underground Laboratory
NASA Astrophysics Data System (ADS)
Kisiel, J.; Budzanowski, M.; Chorowski, M.; Cygan, S.; Dorda, J.; Hanzel, S.; Harańczyk, M.; Horoszczak, L.; Januszewska, K.; Jaroń, L.; Konefalł, A.; Kozak, K.; Lankof, L.; Mania, S.; Markiewicz, A.; Markowski, P.; Mazur, J.; Mertuszka, P.; Mietelski, J. W.; Poliński, J.; Puchalska, M.; Pytel, W.; Raczyński, M.; Sadecki, Z.; Sadowski, A.; Ślizowski, J.; Sulej, R.; Szarska, M.; Szeglowski, T.; Tomankiewicz, E.; Urbańczyk, K.; Zalewska, A.
2010-11-01
The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedź S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector-GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.
Keller, Martin; Hettich, Robert
2009-03-01
The increase in sequencing capacity led to a new wave of metagenomic projects, enabling and setting the prerequisite for the application of environmental proteomics technologies. This review describes the current status of environmental proteomics. It describes sample preparation as well as the two major technologies applied within this field: two-dimensional electrophoresis-based environmental proteomics and liquid chromatography-mass spectrometry-based environmental proteomics. It also highlights current publications and describes major scientific findings. The review closes with a discussion of critical improvements in the area of integrating experimental mass spectrometry technologies with bioinformatics as well as improved sample handling.
Prediction of the acoustic and bubble fields in insonified freeze-drying vials.
Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F
2015-09-01
The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. Copyright © 2015 Elsevier B.V. All rights reserved.
Electronic circuit provides automatic level control for liquid nitrogen traps
NASA Technical Reports Server (NTRS)
Turvy, R. R.
1968-01-01
Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Arrington, Lynn A.; Kleinhenz, Julie E.; Marshall, William M.
2012-01-01
A relocated rocket engine test facility, the Altitude Combustion Stand (ACS), was activated in 2009 at the NASA Glenn Research Center. This facility has the capability to test with a variety of propellants and up to a thrust level of 2000 lbf (8.9 kN) with precise measurement of propellant conditions, propellant flow rates, thrust and altitude conditions. These measurements enable accurate determination of a thruster and/or nozzle s altitude performance for both technology development and flight qualification purposes. In addition the facility was designed to enable efficient test operations to control costs for technology and advanced development projects. A liquid oxygen-liquid methane technology development test program was conducted in the ACS from the fall of 2009 to the fall of 2010. Three test phases were conducted investigating different operational modes and in addition, the project required the complexity of controlling propellant inlet temperatures over an extremely wide range. Despite the challenges of a unique propellant (liquid methane) and wide operating conditions, the facility performed well and delivered up to 24 hot fire tests in a single test day. The resulting data validated the feasibility of utilizing this propellant combination for future deep space applications.
Impact of e-cigarette refill liquid exposure on rat kidney.
Golli, Narges El; Jrad-Lamine, Aicha; Neffati, Hajira; Dkhili, Houssem; Rahali, Dalila; Dallagi, Yosra; El May, Michele V; El Fazaa, Saloua
2016-06-01
Electronic-cigarettes (e-cigarette), the alternative to classic cigarettes are becoming extremely popular but their safety is not still established. Recent studies have showed cytotoxic effects of the electronic cigarette and its recharge e-liquid, in vitro. The present study was designed to evaluate e-cigarette liquid nephrotoxicity in rats. For this purpose, 32 rats were treated for 28 days as follows: Control group was injected intraperitoneally with NaCl 9 g/l; e-cigarette 0% treated group received an intraperitoneal injection of e-liquid without nicotine diluted in NaCl 9 g/l, e-cigarette treated group, received an intraperitoneal injection of e-liquid containing 0.5 mg of nicotine/kg of body weight/day diluted in NaCl 9 g/l and nicotine-treated group received an intraperitoneal injection of 0.5 mg of nicotine/kg of body weight/day diluted in NaCl 9 g/l. In nicotine group, creatinine level was increased, whereas urea and acid uric levels were decreased. In e-liquid-exposed groups, levels of uric acid and mainly urea were lower. Interestingly, after e-liquid exposure, oxidative stress status showed increased total protein and sulfhydril content, whereas superoxide dismutase and catalase activities were decreased. However, the levels of lipid peroxides were not increased after e-liquid exposure. Histological studies identified excess of cells with reduced and dark nuclei exclusively located in the renal collecting ducts. Thus, e-liquid seems to alter anti-oxidant defense and to promote minor changes in renal function parameters. This preliminary study raises some flags about possible nephrotoxicity of e-cigarette liquids in rats. As some features observed in rats may not be observed in human smokers, additional studies are needed to further qualify conclusions that might be applicable to actual users of e-cigarettes. Copyright © 2016 Elsevier Inc. All rights reserved.
Present status of MHD research and development in Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branover, H.; Lesin, S.
1994-12-31
As in the previous years the Israel MHD program is concentrating exclusively on Liquid Metal MHD (LMMHD). The main effort is the development of gravitational heavy metal power generation systems with a Faraday type generator (ETGAR-type system). However, in the wake of this main development a number of diverse research projects are also elaborated. Two of those projects are reflected in this paper. First is the direct contact boiling of volatile thermodynamic liquids in hot liquid metals and the second is MHD turbulence with a variety of applications. The LMMHD power generation project is now about to enter the stagemore » of building a semi-commercial scale demonstration plant. The concept and performance parameters of this plant have been presented already at SEAM 30. Direct contact boiling of the volatile liquid in a hot metal leads to a substantial decrease of the cost of a LMMHD power generation system. Indeed, in this case a separate boiler is not needed. Moreover, the overall efficiency of the system is increased through achieving a more desirable two-phase flow pattern. A Special integrated facility for this study is in advanced stage of assembly and it will be put in operation soon. It will work with lead and water at temperatures up to 750{degrees}K. In the field of MHD Turbulence research, studies of two applications are pursued. The first is related to the engineering of liquid metal blankets in thermonuclear reactors. The second is connected with a possibility to simulate large scale atmospheric and oceanic turbulence using a laboratory MHD channel with liquid metal flow.« less
Liquid-metal dip seal with pneumatic spring
Poindexter, Allan M.
1977-01-01
An improved liquid-metal dip seal for sealing the annulus between rotating plugs in the reactor vessel head of a liquid-metal fast-breeder nuclear reactor has two legs of differing widths communicating under a seal blade; the wide leg is also in communication with cover gas of the reactor and the narrow leg is also in communication with an isolated plug annulus above the seal. The annulus contains inert gas which acts as a pneumatic spring. Upon increasing cover gas pressure which depresses the level in the wide leg and greatly increases the level in the narrow leg, the pneumatic spring is compressed, and resists further level changes, thus preventing radioactive cover gas from bubbling through the seal.
Compendium of Instrumentation Whitepapers on Frontier Physics Needs for Snowmass 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipton, R.
2013-01-01
Contents of collection of whitepapers include: Operation of Collider Experiments at High Luminosity; Level 1 Track Triggers at HL-LHC; Tracking and Vertex Detectors for a Muon Collider; Triggers for hadron colliders at the energy frontier; ATLAS Upgrade Instrumentation; Instrumentation for the Energy Frontier; Particle Flow Calorimetry for CMS; Noble Liquid Calorimeters; Hadronic dual-readout calorimetry for high energy colliders; Another Detector for the International Linear Collider; e+e- Linear Colliders Detector Requirements and Limitations; Electromagnetic Calorimetry in Project X Experiments The Project X Physics Study; Intensity Frontier Instrumentation; Project X Physics Study Calorimetry Report; Project X Physics Study Tracking Report; The LHCbmore » Upgrade; Neutrino Detectors Working Group Summary; Advanced Water Cherenkov R&D for WATCHMAN; Liquid Argon Time Projection Chamber (LArTPC); Liquid Scintillator Instrumentation for Physics Frontiers; A readout architecture for 100,000 pixel Microwave Kinetic In- ductance Detector array; Instrumentation for New Measurements of the Cosmic Microwave Background polarization; Future Atmospheric and Water Cherenkov ?-ray Detectors; Dark Energy; Can Columnar Recombination Provide Directional Sensitivity in WIMP Search?; Instrumentation Needs for Detection of Ultra-high Energy Neu- trinos; Low Background Materials for Direct Detection of Dark Matter; Physics Motivation for WIMP Dark Matter Directional Detection; Solid Xenon R&D at Fermilab; Ultra High Energy Neutrinos; Instrumentation Frontier: Direct Detection of WIMPs; nEXO detector R&D; Large Arrays of Air Cherenkov Detectors; and Applications of Laser Interferometry in Fundamental Physics Experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Daniel T.; Hartmann, Dennis L.; Zelinka, Mark D.
Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Modelsmore » that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. As a result, it is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.« less
NASA Astrophysics Data System (ADS)
Abustam, E.; Said, M. I.; Yusuf, M.
2018-02-01
This study aims to look at the role of liquid smoke as an antioxidant added in feed supplement block and administered to cattle for 45 days on the functional properties of meat. The level of liquid smoke in the feed and the time of maturation in Muscle Longissimus dorsi after slaughtering cattle were the two treatment factors observed for the functional properties of meat. The study used a complete randomized design in which factor 1 was a 10% smoke level in the feed (0, 1, 2%) and factor 2 was maturation time (0, 2, 4, 6, 8 days). The parameters observed were water holding capacity (WHC), raw meat shear force (RMSF), fat oxidation rate (thiobarbituric acid reactive substance) and antioxidant activity (DPPH). The results showed that liquid smoke levels lowered the WHC, RMSF more or less the same, increased fat oxidation rate, and antioxidant activity more or less the same. While maturation tends to increase WHC, increase RMSF, fat oxidation rate, and antioxidant activity. It can be concluded that liquid smoke as an antioxidant in the diet of block supplements can maintain the functional properties of Muscle Longissimus dorsi of Bali cattle during maturation.
NASA Astrophysics Data System (ADS)
Bernard, Ethan; LZ Collaboration
2013-10-01
Astrophysical and cosmological observations show that dark matter is concentrated in halos around galaxies and is approximately five times more abundant than baryonic matter. Dark matter has evaded direct detection despite a series of increasingly sensitive experiments. The LZ (LUX-ZEPLIN) experiment will use a two-phase liquid-xenon time projection chamber to search for elastic scattering of xenon nuclei by WIMP (weakly interactive massive particle) dark matter. The detector will contain seven tons of liquid xenon shielded by an active organic scintillator veto and a water tank within the Sanford Underground Research Facility (SURF) in Lead, South Dakota. The LZ detector scales up the demonstrated light-sensing, cryogenic, radiopurity and shielding technologies of the LUX experiment. Active shielding, position fiducialization, radiopurity control and signal discrimination will reduce backgrounds to levels subdominant to solar neutrino scattering. This experiment will reach a sensitivity to the WIMP-nucleon spin-independent cross section approaching ~ 2 .10-48 cm2 for a 50 GeV WIMP mass, which is about three orders of magnitude smaller than current limits.
Ciriaco, F M; Henry, D D; Mercadante, V R G; Schulmeister, T; Ruiz-Moreno, M; Lamb, G C; DiLorenzo, N
2015-05-01
Two experiments were performed to evaluate the effects of different levels of supplementation with a 50:50 (as-fed) mixture of molasses:crude glycerol on animal performance, total tract digestibility of nutrients, and ruminal in situ degradability of nutrients in beef heifers and steers consuming Tifton 85 Bermuda grass (Cynodon spp.) hay. For Exp. 1, 24 Angus crossbred heifers (380 ± 31 kg BW) were used in a generalized randomized block design. For Exp. 2, 8 ruminally cannulated Angus crossbred steers (323 ± 42 kg BW) were used in a 4 × 4 duplicated Latin square design. For both experiments, animals were housed in individual pens at the University of Florida Feed Efficiency Facility, had ad libitum access to Tifton 85 Bermuda grass hay, and were randomly assigned to 1 of 4 treatments: 1) CTRL, no supplementation; 2) SUP1, 0.45 kg/d (as fed) of 50:50 mixture; 3) SUP3, 1.36 kg/d (as fed) of 50:50 mixture; and 4) SUP5, 2.27 kg/d (as fed) of a 50:50 mixture. Individual feed intake was recorded. Total DMI increased linearly (P = 0.005) as the level of supplementation increased. Hay intake ranged from 1.36 (CTRL) to 1.23% (SUP5) of BW, and was not affected (P ≥ 0.10) by liquid supplementation. Final BW was not affected by liquid supplementation ( ≥ 0.10). There was a linear increase (P = 0.027) in ADG as the liquid supplementation amounts increased. Liquid supplementation did not affect G:F (P ≥ 0.10). Apparent total tract digestibility of DM, OM, NDF, and ADF increased linearly (P < 0.001), while CP total tract digestibility decreased linearly (P = 0.002) as the level of supplementation increased. Ruminal pH was decreased linearly (P = 0.012) as the level of supplementation increased. No effect (P ≥ 0.10) of liquid supplementation was detected on lag time for NDF and ADF content of bermudagrass hay; however, rate of degradation (Kd) of NDF tended (P = 0.076) to be affected cubically by liquid supplementation. In addition, liquid supplementation linearly decreased (P < 0.05) ED of OM, CP, NDF, and ADF. In conclusion, supplementing up to 2.27 kg/d of a 50:50 mixture of molasses:crude glycerol may stimulate microbial growth and fermentative activity, thereby increasing nutrient digestibility. Increased fiber digestion, along with energy supplementation, led to increased ADG in heifers consuming Bermuda grass hay.
NASA Technical Reports Server (NTRS)
1981-01-01
Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated. The baseline diffusion masking and drive processes were compared with those involving direct liquid applications to the dendritic web silicon strips. Attempts were made to control the number of variables by subjecting dendritic web strips cut from a single web crystal to both types of operations. Data generated reinforced earlier conclusions that efficiency levels at least as high as those achieved with the baseline back junction formation process can be achieved using liquid diffusion masks and liquid dopants. The deliveries of dendritic web sheet material and solar cells specified by the current contract were made as scheduled.
McCue, Michael J
2011-01-01
Prior literature provides only a descriptive view of the types and numbers of capital expenditures made by hospitals. This study conducted an empirical analysis to assess simultaneously what market, organizational, and financial factors relate to the number of capital projects as well as the specific types: medical equipment, expansion, and maintenance projects. Sampling California hospital capital expenditure data from 2002 to 2007, this study aggregated the number of capital projects by each type of capital investment decision: medical equipment, expansion, and maintenance/renovation per hospital. Using ordinary least squares regression, this study evaluated the association of these factors with these types of capital investment projects. This study found that hospitals capturing a greater share of the market, maintaining high levels of liquidity, and operating with more than 350 beds invested in a greater number of capital projects per hospital as well as medical equipment and expansionary projects per hospital. Within the state of California, the demand for health care services within a hospital market as well as cash and investment reserves were key drivers in the hospital CEOs and boards' decision to increase their capital purchases. The types of purchases included capital outlays related to medical equipment, such as CT scanners, MRIs, and surgical systems, and revenue-generating expansionary projects, such as new bed towers, hospitals wings, operating and emergency rooms, and replacement hospitals from 2002 to 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
TC MACKEY; FG ABATT; MW RINKER
2009-01-14
The essential difference between Revision 1 and the original issue of this report is in the spring constants used to model the anchor bolt response for the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. Consequently, focus was placed on the changes in the anchor bolt responses, and a full reevaluation of all tank components was judged to be unnecessary. To confirm this judgement, primary tank stresses from the revised analysis of the BES-BEC case are compared to the original analysis and it was verified that the changes are small, as expected.
Multiphysics analysis of liquid metal annular linear induction pumps: A project overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maidana, Carlos Omar; Nieminen, Juha E.
Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less
Multiphysics analysis of liquid metal annular linear induction pumps: A project overview
Maidana, Carlos Omar; Nieminen, Juha E.
2016-03-14
Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less
Liquid Acquisition Device Design Sensitivity Study
NASA Technical Reports Server (NTRS)
VanDyke, M. K.; Hastings, L. J.
2012-01-01
In-space propulsion often necessitates the use of a capillary liquid acquisition device (LAD) to assure that gas-free liquid propellant is available to support engine restarts in microgravity. If a capillary screen-channel device is chosen, then the designer must determine the appropriate combination screen mesh and channel geometry. A screen mesh selection which results in the smallest LAD width when compared to any other screen candidate (for a constant length) is desirable; however, no best screen exists for all LAD design requirements. Flow rate, percent fill, and acceleration are the most influential drivers for determining screen widths. Increased flow rates and reduced percent fills increase the through-the-screen flow pressure losses, which drive the LAD to increased widths regardless of screen choice. Similarly, increased acceleration levels and corresponding liquid head pressures drive the screen mesh selection toward a higher bubble point (liquid retention capability). After ruling out some screens on the basis of acceleration requirements alone, candidates can be identified by examining screens with small flow-loss-to-bubble point ratios for a given condition (i.e., comparing screens at certain flow rates and fill levels). Within the same flow rate and fill level, the screen constants inertia resistance coefficient, void fraction, screen pore or opening diameter, and bubble point can become the driving forces in identifying the smaller flow-loss-to-bubble point ratios.
Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models
McCoy, Daniel T.; Hartmann, Dennis L.; Zelinka, Mark D.; ...
2015-08-21
Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Modelsmore » that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. As a result, it is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.« less
The DarkSide direct dark matter search with liquid argon
NASA Astrophysics Data System (ADS)
Edkins, E.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2017-11-01
The DarkSide-50 direct dark matter detector is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator neutron veto (LSV) and a water Cerenkov muon veto (WCV). Located under 3800 m.w.e. at the Laboratori Nazionali del Gran Sasso, Italy, it is the only direct dark matter experiment currently operating background free. The atmospheric argon target was replaced with argon from underground sources in April, 2015. The level of 39Ar, a β emitter present in atmospheric argon (AAr), has been shown to have been reduced by a factor of (1.4 ± 0.2) x 103. The combined spin-independent WIMP exclusion limit of 2.0 x 10-44 cm2 (mχ = 100 GeV/c2) is currently the best limit on a liquid argon target.
Evaluation of target efficiencies for solid-liquid separation steps in biofuels production.
Kochergin, Vadim; Miller, Keith
2011-01-01
Development of liquid biofuels has entered a new phase of large scale pilot demonstration. A number of plants that are in operation or under construction face the task of addressing the engineering challenges of creating a viable plant design, scaling up and optimizing various unit operations. It is well-known that separation technologies account for 50-70% of both capital and operating cost. Additionally, reduction of environmental impact creates technological challenges that increase project cost without adding to the bottom line. Different technologies vary in terms of selection of unit operations; however, solid-liquid separations are likely to be a major contributor to the overall project cost. Despite the differences in pretreatment approaches, similar challenges arise for solid-liquid separation unit operations. A typical process for ethanol production from biomass includes several solid-liquid separation steps, depending on which particular stream is targeted for downstream processing. The nature of biomass-derived materials makes it either difficult or uneconomical to accomplish complete separation in a single step. Therefore, setting realistic efficiency targets for solid-liquid separations is an important task that influences overall process recovery and economics. Experimental data will be presented showing typical characteristics for pretreated cane bagasse at various stages of processing into cellulosic ethanol. Results of generic material balance calculations will be presented to illustrate the influence of separation target efficiencies on overall process recoveries and characteristics of waste streams.
Laser Processed Heat Exchangers
NASA Technical Reports Server (NTRS)
Hansen, Scott
2017-01-01
The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.
2011-01-01
The migration characteristics of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling were investigated experimentally. Four types of carbon nanotubes with the outside diameters from 15 to 80 nm and the lengths from 1.5 to 10 μm were used in the experiments. The refrigerants include R113, R141b and n-pentane. The oil concentration is from 0 to 10 wt.%, the heat flux is from 10 to 100 kW·m-2, and the initial liquid-level height is from 1.3 to 3.4 cm. The experimental results indicate that the migration ratio of carbon nanotube increases with the increase of the outside diameter or the length of carbon nanotube. For the fixed type of carbon nanotube, the migration ratio decreases with the increase of the oil concentration or the heat flux, and increases with the increase of the initial liquid-level height. The migration ratio of carbon nanotube increases with the decrease of dynamic viscosity of refrigerant or the increase of liquid phase density of refrigerant. A model for predicting the migration ratio of carbon nanotubes in the refrigerant-based nanofluid pool boiling is proposed, and the predictions agree with 92% of the experimental data within a deviation of ±20%. PMID:21711730
High pressure liquid level monitor
Bean, Vern E.; Long, Frederick G.
1984-01-01
A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.
40 CFR 60.112a - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2010 CFR
2010-07-01
... space vents is to provide a projection below the liquid surface. Each opening in the roof except for... for automatic bleeder vents and the rim space vents is to provide a projection below the liquid... for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification...
40 CFR 60.112a - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2013 CFR
2013-07-01
... space vents is to provide a projection below the liquid surface. Each opening in the roof except for... for automatic bleeder vents and the rim space vents is to provide a projection below the liquid... for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification...
40 CFR 60.112a - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2012 CFR
2012-07-01
... space vents is to provide a projection below the liquid surface. Each opening in the roof except for... for automatic bleeder vents and the rim space vents is to provide a projection below the liquid... for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification...
40 CFR 60.112a - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2011 CFR
2011-07-01
... space vents is to provide a projection below the liquid surface. Each opening in the roof except for... for automatic bleeder vents and the rim space vents is to provide a projection below the liquid... for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification...
40 CFR 60.112a - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2014 CFR
2014-07-01
... space vents is to provide a projection below the liquid surface. Each opening in the roof except for... for automatic bleeder vents and the rim space vents is to provide a projection below the liquid... for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification...
NASA Technical Reports Server (NTRS)
Vandresar, N. T.; Hasan, M. M.; Lin, C.-S.
1991-01-01
Experimental results are presented for the self pressurization and thermal stratification of a 4.89 cu m liquid hydrogen storage tank subjected to low heat flux (2.0 and 3.5 W/sq m) in normal gravity. The test tank was representative of future spacecraft tankage, having a low mass to volume ratio and high performance multilayer thermal insulation. Tests were performed at fill levels of 29 and 49 pcts. (by volume) and complement previous tests at 83 pct. fill. As the heat flux increases, the pressure rise rate at each fill level exceeds the homogeneous rate by an increasing ratio. Herein, this ratio did not exceed a value of 2. The slowest pressure rise rate was observed for the 49 pct. fill level at both heat fluxes. This result is attributed to the oblate spheroidal tank geometry which introduces the variables of wetted wall area, liquid-vapor interfacial area, and ratio of side wall to bottom heating as a function of fill level or liquid depth. Initial tank thermal conditions were found to affect the initial pressure rise rate. Quasi steady pressure rise rates are independent of starting conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CORBETT JE; TEDESCH AR; WILSON RA
2011-02-14
A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal.more » This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.« less
Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test
NASA Technical Reports Server (NTRS)
Callahan, M. R.; Lubman, A.; Pickering, Karen D.
2009-01-01
Recovery of potable water from wastewater is essential for the success of long-duration manned missions to the Moon and Mars. Honeywell International and a team from NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, referred to as the Cascade Distillation Subsystem (CDS), utilizes an innovative and efficient multistage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage subsystem unit has been designed, built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing. A major test objective of the project is to demonstrate the advancement of the CDS technology from the breadboard level to a subsystem level unit. An initial round of CDS performance testing was completed in fiscal year (FY) 2008. Based on FY08 testing, the system is now in development to support an Exploration Life Support (ELS) Project distillation comparison test expected to begin in early 2009. As part of the project objectives planned for FY09, the system will be reconfigured to support the ELS comparison test. The CDS will then be challenged with a series of human-gene-rated waste streams representative of those anticipated for a lunar outpost. This paper provides a description of the CDS technology, a status of the current project activities, and data on the system s performance to date.
Study of Liquid Breakup Process in Solid Rocket Motors
2014-01-01
waves. The breakup level increases with the surrounding gas velocity; more liquid breakup in the nozzle throat reduces the liquid alumina droplet size...process of a liquid film that flows along the wall of a straight channel while a high-speed gas moves over it. We have used an unsteady-flow Reynolds...Averaged Navier-Stokes code (URANS) to investigate the interaction of the liquid film flow with the gas flow, and analyzed the breakup process for
W-007H B Plant Process Condensate Treatment Facility. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rippy, G.L.
1995-01-20
B Plant Process Condensate (BCP) liquid effluent stream is the condensed vapors originating from the operation of the B Plant low-level liquid waste concentration system. In the past, the BCP stream was discharged into the soil column under a compliance plan which expired January 1, 1987. Currently, the BCP stream is inactive, awaiting restart of the E-23-3 Concentrator. B Plant Steam Condensate (BCS) liquid effluent stream is the spent steam condensate used to supply heat to the E-23-3 Concentrator. The tube bundles in the E-23-3 Concentrator discharge to the BCS. In the past, the BCS stream was discharged into themore » soil column. Currently, the BCS stream is inactive. This project shall provide liquid effluent systems (BCP/BCS/BCE) capable of operating for a minimum of 20 years, which does not include the anticipated decontamination and decommissioning (D and D) period.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prod'homme, A.; Drouvot, O.; Gregory, J.
In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) atmore » the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)« less
Student Science Research Associates (SSRA) 1996 Research Journal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knezovich, J.
The following student projects are reported: SSRA water research projects, various effects on polliwogs` growth and development, effects of Willow Park Golf Course on nitrate and phosphate levels in San Leandro Creek, water quality evaluation using color infrared photography, biochemical analysis of aquatic insects, effects of miracid/calcium chloride/liquid plant food on stringless bush beans, effects of vegetable oil on bean growth, effect of river water on lima beans, effect of storm water runoff on pH and phosphate levels of Dry Creek, acid rain in Modesto, use of random amplified polymorphic DNA to study Egeria Densa, and effect of marination onmore » formation of heterocyclic aromatic amines in cooked chicken meat.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salamon, Todd
2012-12-13
Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned phasemore » change or two-phase pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature. Results of a 100 kW prototype data center installation of the refrigerant-based modular cooling technology were dramatic in terms of energy efficiency and the ability to cool high-heat-density equipment. The prototype data center installation consisted of 10 racks each loaded with 10 kW of high-heat-density IT equipment with the racks arranged in a standard hot-aisle/cold-aisle configuration with standard cabinet spacing. A typical chilled-water CRAC unit would require approximately 16 kW to cool such a heat load. In contrast, the refrigerant-based modular cooling technology required only 2.3 kW of power for the refrigerant pump and shelf-level fans, a reduction of 85 percent. Differences in hot-aisle and cold-aisle temperature were also substantially reduced, mitigating many issues that arise in purely air-based cooling systems, such as mixing of hot and cold air streams, or from placing high-heat-density equipment in close proximity. The technology is also such that it is able to retro-fit live equipment without service interruption, which is particularly important to the large installed ICT customer base, thereby providing a means of mitigating reliability and performance concerns during the installation, training and validation phases of product integration. Moreover, the refrigerant used in our approach, R134a, is a widely-used, non-toxic dielectric liquid which, unlike water, is non-conducting and non-corrosive and will not damage electronics in the case of a leak a triple-play win over alternative water-based liquid coolant technologies. Finally, through use of a pumped refrigerant, pressures are modest (~60 psi), and toxic lubricants and oils are not required, in contrast to compressorized refrigerant systems another environmental win. Project Activities - The ARCTIC project goal was to further develop and dramatically accelerate the commercialization of this game-changing, refrigerant-based, liquid-cooling technology and achieve a revolutionary increase in energy efficiency and carbon footprint reduction for our nation's Information and Communications Technology (ICT) infrastructure. The specific objectives of the ARCTIC project focused in the following three areas: i) advanced research innovations that dramatically enhance the ability to deal with ever-increasing device heat densities and footprint reduction by bringing the liquid cooling much closer to the actual heat sources; ii) manufacturing optimization of key components; and iii) ensuring rapid market acceptance by reducing cost, thoroughly understanding system-level performance, and developing viable commercialization strategies. The project involved participants with expertise in all aspects of commercialization, including research & development, manufacturing, sales & marketing and end users. The team was lead by Alcatel-Lucent, and included subcontractors Modine and USHose.« less
Enhanced Carbon Concentration in Camelina: Development of a Dedicated, High-value Biofuels Crop
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-01-01
PETRO Project: UMass is developing an enhanced, biofuels-producing variant of Camelina, a drought-resistant, cold-tolerant oilseed crop that can be grown in many places other plants cannot. The team is working to incorporate several genetic traits into Camelina that increases its natural ability to produce oils and add the production of energy-dense terpene molecules that can be easily converted into liquid fuels. UMass is also experimenting with translating a component common in algae to Camelina that should allow the plants to absorb higher levels of carbon dioxide (CO2), which aids in enhancing photosynthesis and fuel conversion. The process will first bemore » demonstrated in tobacco before being applied in Camelina.« less
Vehicle-Level Oxygen/Methane Propulsion System Hotfire Testing at Thermal Vacuum Conditions
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.; Desai, Pooja; Werlink, Rudy
2017-01-01
A prototype integrated liquid oxygen/liquid methane propulsion system was hot-fire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). This test campaign served two purposes: 1) Characterize the performance of the Plum Brook facility in vacuum accumulator mode and 2) Collect the unique data set of an integrated LOX/Methane propulsion system operating in high altitude and thermal vacuum environments (a first). Data from this propulsion system prototype could inform the design of future spacecraft in-space propulsion systems, including landers. The test vehicle for this campaign was the Integrated Cryogenic Propulsion Test Article (ICPTA), which was constructed for this project using assets from the former Morpheus Project rebuilt and outfitted with additional new hardware. The ICPTA utilizes one 2,800 lbf main engine, two 28 lbf and two 7 lbf reaction control engines mounted in two pods, four 48-inch propellant tanks (two each for liquid oxygen and liquid methane), and a cold helium system for propellant tank pressurization. Several hundred sensors on the ICPTA and many more in the test cell collected data to characterize the operation of the vehicle and facility. Multiple notable experiments were performed during this test campaign, many for the first time, including pressure-fed cryogenic reaction control system characterization over a wide range of conditions, coil-on-plug ignition system demonstration at the vehicle level, integrated main engine/RCS operation, and a non-intrusive propellant mass gauging system. The test data includes water-hammer and thermal heat leak data critical to validating models for use in future vehicle design activities. This successful test campaign demonstrated the performance of the updated Plum Brook In-Space Propulsion thermal vacuum chamber and incrementally advanced the state of LOX/Methane propulsion technology through numerous system-level and subsystem experiments.
Preliminary technical data summary No. 3 for the Defense Waste Processing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landon, L.F.
1980-05-01
This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor)
1992-01-01
A relatively small and low-cost system is provided for projecting a large and bright television image onto a screen. A miniature liquid crystal array is driven by video circuitry to produce a pattern of transparencies in the array corresponding to a television image. Light is directed against the rear surface of the array to illuminate it, while a projection lens lies in front of the array to project the image of the array onto a large screen. Grid lines in the liquid crystal array are eliminated by a spacial filter which comprises a negative of the Fourier transform of the grid.
NASA Technical Reports Server (NTRS)
Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda
2015-01-01
The development of a new, robust, portable life support system (PLSS) is a high priority for NASA in order to support longer and safer extravehicular activity (EVA) missions. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. Although the Metal Oxide (MetOx) canister has historically performed very well, it has a finite CO2 adsorption capacity. Therefore, the size and weight of the unit would have to be increased to extend EVA times. Consequently, new CO2 control technologies must be developed in order to meet mission objectives without increasing the size of the PLSS. Recent work has centered on sorbents that can be regenerated during the EVA; however, this strategy increases the system complexity and power consumption. A much simpler approach is to employ a membrane that vents CO2 to space and retains oxygen (O2). A membrane has many advantages over current technology: it is a continuous system with no limit on capacity, it requires no consumables, and it does not need any hardware to switch beds between absorption and regeneration. Unfortunately, conventional gas separation membranes do not have the needed selectivity for use in the PLSS. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous material filled with a liquid that selectively reacts with CO2 over O2. In a recently completed Phase II SBIR project, Reaction Systems, Inc. achieved the required CO2 permeance and selectivity with an SLM in a flat sheet configuration. This paper describes work to convert the SLM into a more compact form and to scale it up to handle more representative process flow rates.
NASA Technical Reports Server (NTRS)
Palac, Donald T.
2011-01-01
The Fission Surface Power Systems Project became part of the ETDP on October 1, 2008. Its goal was to demonstrate fission power system technology readiness in an operationally relevant environment, while providing data on fission system characteristics pertinent to the use of a fission power system on planetary surfaces. During fiscal years 08 to 10, the FSPS project activities were dominated by hardware demonstrations of component technologies, to verify their readiness for inclusion in the fission surface power system. These Pathfinders demonstrated multi-kWe Stirling power conversion operating with heat delivered via liquid metal NaK, composite Ti/H2O heat pipe radiator panel operations at 400 K input water temperature, no-moving-part electromagnetic liquid metal pump operation with NaK at flight-like temperatures, and subscale performance of an electric resistance reactor simulator capable of reproducing characteristics of a nuclear reactor for the purpose of system-level testing, and a longer list of component technologies included in the attached report. Based on the successful conclusion of Pathfinder testing, work began in 2010 on design and development of the Technology Demonstration Unit (TDU), a full-scale 1/4 power system-level non-nuclear assembly of a reactor simulator, power conversion, heat rejection, instrumentation and controls, and power management and distribution. The TDU will be developed and fabricated during fiscal years 11 and 12, culminating in initial testing with water cooling replacing the heat rejection system in 2012, and complete testing of the full TDU by the end of 2014. Due to its importance for Mars exploration, potential applicability to missions preceding Mars missions, and readiness for an early system-level demonstration, the Enabling Technology Development and Demonstration program is currently planning to continue the project as the Fission Power Systems project, including emphasis on the TDU completion and testing.
Cryogenic Technology Development for Exploration Missions
NASA Technical Reports Server (NTRS)
Chato, David J.
2007-01-01
This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.
Solidification of II-VI Compounds in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Gillies, D. C.; Volz, M. P.; Mazuruk, K.; Motakef, S.; Dudley, M.; Matyi, R.
1999-01-01
This project is aimed at using a rotating magnetic field (RMF) to control fluid flow and transport during directional solidification of elemental and compound melts. Microgravity experiments have demonstrated that small amounts of residual acceleration of less than a micro-g can initiate and prolong fluid flow, particularly when there is a static component of the field perpendicular to the liquid solid interface. Thus a true diffusion boundary layer is not formed, and it becomes difficult to verify theories of solidification or to achieve diffusion controlled solidification. The RMF superimposes a stirring effect on an electrically conducting liquid, and with appropriate field strengths and frequencies, controlled transport of material through a liquid column can be obtained. As diffusion conditions are precluded and complete mixing conditions prevail, the technique is appropriate for traveling solvent zone or float zone growth methods in which the overall composition of the liquid can be maintained throughout the growth experiment. Crystals grown by RMF techniques in microgravity in previous, unrelated missions have shown exceptional properties. The objective of the project is two-fold, namely (1) using numerical modeling to simulate the behavior of a solvent zone with applied thermal boundary conditions and demonstrate the effects of decreasing gravity levels, or an increasing applied RMF, or both, and (2) to grow elements and II-VI compounds from traveling solvent zones both with and without applied RMFs, and to determine objectively how well the modeling predicts solidification parameters. Numerical modeling has demonstrated that, in the growth of CdTe from a tellurium solution, a rotating magnetic field can advantageously modify the shape of the liquid solid interface such that the interface is convex as seen from the liquid. Under such circumstances, the defect structure is reduced as any defects which are formed tend to grow out and not propagate. The flow of liquid, however, is complex due to the competing flow induced by the rotating magnetic field and the buoyancy driven convection. When the acceleration forces are reduced to one thousandth of gravity, the flow pattern is much simplified and well controlled material transport through the solvent zone can be readily achieved. Triple axis diffractometry and x-ray synchrotron topography have demonstrated that there is no significant improvement in crystal quality for HgCdTe grown on earth from a tellurium solution when a rotating magnetic field is applied. However, modeling shows that the flow in microgravity with a rotating magnetic field would produce a superior product.
Sun, Jianghao; Kou, Liping; Geng, Ping; Huang, Huilian; Yang, Tianbao; Luo, Yaguang; Chen, Pei
2015-02-18
Preharvest calcium application has been shown to increase broccoli microgreen yield and extend shelf life. In this study, we investigated the effect of calcium application on its metabolome using ultra-high-performance liquid chromatography with mass spectrometry. The data collected were analyzed using principal component analysis and orthogonal projection to latent structural discriminate analysis. Chemical composition comparison shows that glucosinolates, a very important group of phytochemicals, are the major compounds enhanced by preharvest treatment with 10 mM calcium chloride (CaCl2). Aliphatic glucosinolates (glucoerucin, glucoiberin, glucoiberverin, glucoraphanin, pentyl glucosinolate, and hexyl glucosinolate) and indolic glucosinolates (glucobrassicin, neoglucobrassicin, and 4-hydroxyglucobrassicin) were increased significantly in the CaCl2 treated microgreens using metabolomic approaches. Targeted glucosinolate analysis using the ISO 9167-1 method was further employed to confirm the findings. Results indicate that glucosinolates can be considered as a class of compounds that are responsible for the difference between two groups and a higher glucosinolate level was found in CaCl2 treated groups at each time point after harvest in comparison with the control group.
Koštál, Vladimír; Zahradníčková, Helena; Šimek, Petr
2011-01-01
The larva of the drosophilid fly, Chymomyza costata, is probably the most complex metazoan organism that can survive submergence in liquid nitrogen (-196 °C) in a fully hydrated state. We examined the associations between the physiological and biochemical parameters of differently acclimated larvae and their freeze tolerance. Entering diapause is an essential and sufficient prerequisite for attaining high levels of survival in liquid nitrogen (23% survival to adult stage), although cold acclimation further improves this capacity (62% survival). Profiling of 61 different metabolites identified proline as a prominent compound whose concentration increased from 20 to 147 mM during diapause transition and subsequent cold acclimation. This study provides direct evidence for the essential role of proline in high freeze tolerance. We increased the levels of proline in the larval tissues by feeding larvae proline-augmented diets and found that this simple treatment dramatically improved their freeze tolerance. Cell and tissue survival following exposure to liquid nitrogen was evident in proline-fed nondiapause larvae, and survival to adult stage increased from 0% to 36% in proline-fed diapause-destined larvae. A significant statistical correlation was found between the whole-body concentration of proline, either natural or artificial, and survival to the adult stage in liquid nitrogen for diapause larvae. Differential scanning calorimetry analysis suggested that high proline levels, in combination with a relatively low content of osmotically active water and freeze dehydration, increased the propensity of the remaining unfrozen water to undergo a glass-like transition (vitrification) and thus facilitated the prevention of cryoinjury. PMID:21788482
Kostál, Vladimír; Zahradnícková, Helena; Šimek, Petr
2011-08-09
The larva of the drosophilid fly, Chymomyza costata, is probably the most complex metazoan organism that can survive submergence in liquid nitrogen (-196 °C) in a fully hydrated state. We examined the associations between the physiological and biochemical parameters of differently acclimated larvae and their freeze tolerance. Entering diapause is an essential and sufficient prerequisite for attaining high levels of survival in liquid nitrogen (23% survival to adult stage), although cold acclimation further improves this capacity (62% survival). Profiling of 61 different metabolites identified proline as a prominent compound whose concentration increased from 20 to 147 mM during diapause transition and subsequent cold acclimation. This study provides direct evidence for the essential role of proline in high freeze tolerance. We increased the levels of proline in the larval tissues by feeding larvae proline-augmented diets and found that this simple treatment dramatically improved their freeze tolerance. Cell and tissue survival following exposure to liquid nitrogen was evident in proline-fed nondiapause larvae, and survival to adult stage increased from 0% to 36% in proline-fed diapause-destined larvae. A significant statistical correlation was found between the whole-body concentration of proline, either natural or artificial, and survival to the adult stage in liquid nitrogen for diapause larvae. Differential scanning calorimetry analysis suggested that high proline levels, in combination with a relatively low content of osmotically active water and freeze dehydration, increased the propensity of the remaining unfrozen water to undergo a glass-like transition (vitrification) and thus facilitated the prevention of cryoinjury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Rakesh; Delgass, W. N.; Ribeiro, F.
2013-08-31
The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H 2Bioil) using supplementary hydrogen (H 2) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H 2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitivemore » for the cases when supplementary H 2 is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H 2Bioilprocess for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H 2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.« less
Manan, A; Ibrahim, M
2003-01-01
In this paper we explain the current condition of the Bau-Bau River, examine community participation for management of the river system, and consider options for improving the institutional capacity for a community-based approach. This assessment is based on a research project with the following objectives: (1) analyse the biophysical and socio-economic condition of the river as a basis for future planning; (2) identify current activities which contribute waste or pollution to the river; (3) assess the status and level of pollution in the river; (4) analyse community participation related to all stages of river management; and (5) identify future river management needs and opportunities. Due to the increasing population in Bau-Bau city, considerable new land is required for housing, roads, agriculture, social facilities, etc. Development in the city and elsewhere has increased run-off and erosion, as well as sedimentation in the river. In addition, household activities are generating more solid and domestic waste that causes organic pollution in the river. The research results show that the water quality in the upper river system is still good, whilst the quality of water in the vicinity of Bau-Bau city, from the mid-point of the watershed to the estuary, is not good, being contaminated with heavy metals (Cd and Pb) and organic pollutants. However, the levels of those pollutants are still below regulatory standards. The main reasons for pollution in the river are mainly lack of management for both liquid and solid wastes, as well as lack of community participation in river management. The government of Bau-Bau city and the community are developing a participatory approach for planning to restore and conserve the Bau-Bau River as well as the entire catchment. The activities of this project are: (1) forming institutional arrangements to support river conservation; (2) implementing extension initiatives to empower the community; (3) identifying a specific location to establish an urban forest; (4) implementing demonstration projects for liquid system management; (5) promoting coordination amongst the different organisations and agencies in the catchment; (6) improving domestic waste transportation; and (7) recycling waste to create compost material to become an income source for the community.
Fluorescent optical liquid level sensor
Weiss, Jonathan D.
2001-01-01
A liquid level sensor comprising a transparent waveguide containing fluorescent material that is excited by light of a first wavelength and emits at a second, longer wavelength. The upper end of the waveguide is connected to a light source at the first wavelength through a beveled portion of the waveguide such that the input light is totally internally reflected within the waveguide above an air/liquid interface in a tank but is transmitted into the liquid below this interface. Light is emitted from the fluorescent material only in those portions of the waveguide that are above the air/liquid interface, to be collected at the upper end of the waveguide by a detector that is sensitive only to the second wavelength. As the interface moves down in the tank, the signal strength from the detector will increase.
12 CFR 1815.110 - Categorical exclusion.
Code of Federal Regulations, 2011 CFR
2011-01-01
.../or social services; (l) Actions involving Fund financial assistance that is used to increase the permanent capital and/or liquidity of an applicant; (m) Actions where no use of Federal funds is involved in the activity or Project; and (n) Actions directly related to the provision of working capital, the...
The inverse method of measuring resistivity in a rotating magnetic field: a student project
NASA Astrophysics Data System (ADS)
Kraftmakher, Yaakov
2018-07-01
An experiment is proposed for undergraduate laboratories, which can be used as a student project. An inverse method of contactless measuring resistivity in a rotating magnetic field is described: instead of the torque acting on the sample, the torque acting on the coils creating the rotating field is determined. This modification provides significant advantages. Originally, the technique was designed for measurement of the resistivity of metals at liquid helium temperatures and for controlling the purity and physical perfectness of metals. Our aim is to introduce this novelty as a subject of student projects. Liquid helium is rarely available in undergraduate laboratories, so the projects can be limited to liquid nitrogen or room temperatures.
Boswell, Paul G; Abate-Pella, Daniel; Hewitt, Joshua T
2015-09-18
Compound identification by liquid chromatography-mass spectrometry (LC-MS) is a tedious process, mainly because authentic standards must be run on a user's system to be able to confidently reject a potential identity from its retention time and mass spectral properties. Instead, it would be preferable to use shared retention time/index data to narrow down the identity, but shared data cannot be used to reject candidates with an absolute level of confidence because the data are strongly affected by differences between HPLC systems and experimental conditions. However, a technique called "retention projection" was recently shown to account for many of the differences. In this manuscript, we discuss an approach to calculate appropriate retention time tolerance windows for projected retention times, potentially making it possible to exclude candidates with an absolute level of confidence, without needing to have authentic standards of each candidate on hand. In a range of multi-segment gradients and flow rates run among seven different labs, the new approach calculated tolerance windows that were significantly more appropriate for each retention projection than global tolerance windows calculated for retention projections or linear retention indices. Though there were still some small differences between the labs that evidently were not taken into account, the calculated tolerance windows only needed to be relaxed by 50% to make them appropriate for all labs. Even then, 42% of the tolerance windows calculated in this study without standards were narrower than those required by WADA for positive identification, where standards must be run contemporaneously. Copyright © 2015 Elsevier B.V. All rights reserved.
Spin-orbital quantum liquid on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Corboz, Philippe
2013-03-01
The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.
Hanford analytical sample projections FY 1998--FY 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, S.M.
1998-02-12
Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management,more » and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.« less
The XENON1T dark matter experiment
NASA Astrophysics Data System (ADS)
Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Antunes, B.; Arneodo, F.; Balata, M.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Chiarini, A.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Corrieri, R.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Disdier, J.-M.; Doets, M.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Front, D.; Fulgione, W.; Rosso, A. Gallo; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Giboni, K.-L.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; James, A.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Maier, R.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orlandi, D.; Othegraven, R.; Pakarha, P.; Parlati, S.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; García, D. Ramírez; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Santos, J. M. F. dos; Saldanha, R.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stern, M.; Stein, A.; Tatananni, D.; Tatananni, L.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Vargas, M.; Wack, O.; Walet, R.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.
2017-12-01
The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.
NASA Astrophysics Data System (ADS)
Rizqi, Fauziah; Supriyanto, Agus; Lestari, Intan; Lita Indri D., L.; Elmi Irmayanti, A.; Rahmaniyah, Fadilatur
2016-03-01
Many activities in this market is directly proportional to increase production of vegetables waste, especially surabaya. Therefore, in this study aims to utilize liquid waste of vegetables into liquid organic fertilizer by mixing microbial consorsium. The microbial consorsium consist of Azotobacter chrococcum, Azospirillum brasilense, Rhizobium leguminosarum, Bacillus subtilis, Bacillus megaterium, Pseudomonas putida, and Pseudomonas fluorescens. Ttreatment of microbial concentrations (5%, 10%, 15%) and the length of the incubation period (7 days, 14 days, 21 days) used in this research. The parameters used are: C/N ratio, levels of CNP, and BOD value. This study uses a standard organic fertilizer value according SNI19-7030-2004, The results show the value of C/N ratio comply with the ISO standards. C levels showed an increase during the incubation period but not compare with standards. N levels that compare with standards are microbial treatment in all group concentration except control group with an incubation period of 21 days is > 7. P levels compare with the existing standards in the group of microbe concentration of 10% and 15% during the incubation period. The value of the initial BOD liquid waste of vegetable is 790.25 mg / L, this value indicates that the waste should not go into the water body. Accordingly, the results of this study can not be used as a liquid organic fertilizer, but potentially if it is used as a natural career or build natural soil. The Building natural soil is defined as the natural ingredients that can be used to improve soil properties.
Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project)
NASA Astrophysics Data System (ADS)
Balducci, A.; Jeong, S. S.; Kim, G. T.; Passerini, S.; Winter, M.; Schmuck, M.; Appetecchi, G. B.; Marcilla, R.; Mecerreyes, D.; Barsukov, V.; Khomenko, V.; Cantero, I.; De Meatza, I.; Holzapfel, M.; Tran, N.
This manuscript presents the work carried out within the European project ILLIBATT, which was dedicated to the development of green, safe and high performance ionic liquids-based lithium batteries. Different types of ionic liquids-based electrolytes were developed in the project, based on different ionic liquids and polymers. Using these electrolytes, the performance of several anodic and cathodic materials has been tested and promising results have been obtained. Also, electrodes were formulated using water soluble binders. Using these innovative components, lithium-ion and lithium-metal battery prototypes (0.7-0.8 Ah) have been assembled and cycled between 100% and 0% SOC. The results of these tests showed that such ionic liquids-based prototypes are able to display high capacity, high coulombic efficiency and high cycle life. Moreover, safety tests showed that the introduction of these alternative electrolytes positively contribute to the safety of the batteries.
[Human body composition during extended stay in microgravity].
Noskov, V B; Nichiporuk, I A; Vasilieva, G Yu; Smirnov, Yu I
2015-01-01
According to the Sprut-2 protocol, bio-impedancemetry of ISS cosmonauts was performed once a month and also before and after mission. Multiple non-invasive body measurements were carried out in 15 cosmonauts in real time. Relocation of extracellular liquid along the body axis led to its reduction in legs and, on the contrary, an increase in the abdomen. Volumes of total body liquid as well as intra- and extracellular liquids decreased in comparison with pre-flight levels. Lean body mass also became less in microgravity, whereas fat mass showed an increase.
Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M
2013-07-16
Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.
Compression Frequency Choice for Compression Mass Gauge Method and Effect on Measurement Accuracy
NASA Astrophysics Data System (ADS)
Fu, Juan; Chen, Xiaoqian; Huang, Yiyong
2013-12-01
It is a difficult job to gauge the liquid fuel mass in a tank on spacecrafts under microgravity condition. Without the presence of strong buoyancy, the configuration of the liquid and gas in the tank is uncertain and more than one bubble may exist in the liquid part. All these will affect the measure accuracy of liquid mass gauge, especially for a method called Compression Mass Gauge (CMG). Four resonance resources affect the choice of compression frequency for CMG method. There are the structure resonance, liquid sloshing, transducer resonance and bubble resonance. Ground experimental apparatus are designed and built to validate the gauging method and the influence of different compression frequencies at different fill levels on the measurement accuracy. Harmonic phenomenon should be considered during filter design when processing test data. Results demonstrate the ground experiment system performances well with high accuracy and the measurement accuracy increases as the compression frequency climbs in low fill levels. But low compression frequencies should be the better choice for high fill levels. Liquid sloshing induces the measurement accuracy to degrade when the surface is excited to wave by external disturbance at the liquid natural frequency. The measurement accuracy is still acceptable at small amplitude vibration.
LArSoft: toolkit for simulation, reconstruction and analysis of liquid argon TPC neutrino detectors
NASA Astrophysics Data System (ADS)
Snider, E. L.; Petrillo, G.
2017-10-01
LArSoft is a set of detector-independent software tools for the simulation, reconstruction and analysis of data from liquid argon (LAr) neutrino experiments The common features of LAr time projection chambers (TPCs) enable sharing of algorithm code across detectors of very different size and configuration. LArSoft is currently used in production simulation and reconstruction by the ArgoNeuT, DUNE, LArlAT, MicroBooNE, and SBND experiments. The software suite offers a wide selection of algorithms and utilities, including those for associated photo-detectors and the handling of auxiliary detectors outside the TPCs. Available algorithms cover the full range of simulation and reconstruction, from raw waveforms to high-level reconstructed objects, event topologies and classification. The common code within LArSoft is contributed by adopting experiments, which also provide detector-specific geometry descriptions, and code for the treatment of electronic signals. LArSoft is also a collaboration of experiments, Fermilab and associated software projects which cooperate in setting requirements, priorities, and schedules. In this talk, we outline the general architecture of the software and the interaction with external libraries and detector-specific code. We also describe the dynamics of LArSoft software development between the contributing experiments, the projects supporting the software infrastructure LArSoft relies on, and the core LArSoft support project.
Ultrasonic Waves in Water Visualized With Schlieren Imaging
NASA Technical Reports Server (NTRS)
Juergens, Jeffrey R.
2000-01-01
The Acoustic Liquid Manipulation project at the NASA Glenn Research Center at Lewis Field is working with high-intensity ultrasound waves to produce acoustic radiation pressure and acoustic streaming. These effects can be used to propel liquid flows to manipulate floating objects and liquid surfaces. Interest in acoustic liquid manipulation has been shown in acoustically enhanced circuit board electroplating, microelectromechanical systems (MEMS), and microgravity space experiments. The current areas of work on this project include phased-array ultrasonic beam steering, acoustic intensity measurements, and schlieren imaging of the ultrasonic waves.
Miron, Richard J; Fujioka-Kobayashi, Masako; Buser, Daniel; Zhang, Yufeng; Bosshardt, Dieter D; Sculean, Anton
Collagen barrier membranes were first introduced to regenerative periodontal and oral surgery to prevent fast ingrowing soft tissues (ie, epithelium and connective tissue) into the defect space. More recent attempts have aimed at combining collagen membranes with various biologics/growth factors to speed up the healing process and improve the quality of regenerated tissues. Recently, a new formulation of enamel matrix derivative in a liquid carrier system (Osteogain) has demonstrated improved physico-chemical properties for the adsorption of enamel matrix derivative to facilitate protein adsorption to biomaterials. The aim of this pioneering study was to investigate the use of enamel matrix derivative in a liquid carrier system in combination with collagen barrier membranes for its ability to promote osteoblast cell behavior in vitro. Undifferentiated mouse ST2 stromal bone marrow cells were seeded onto porcine-derived collagen membranes alone (control) or porcine membranes + enamel matrix derivative in a liquid carrier system. Control and enamel matrix derivative-coated membranes were compared for cell recruitment and cell adhesion at 8 hours; cell proliferation at 1, 3, and 5 days; and real-time polymerase chain reaction (PCR) at 3 and 14 days for genes encoding Runx2, collagen1alpha2, alkaline phosphatase, and bone sialoprotein. Furthermore, alizarin red staining was used to investigate mineralization. A significant increase in cell adhesion was observed at 8 hours for barrier membranes coated with enamel matrix derivative in a liquid carrier system, whereas no significant difference could be observed for cell proliferation or cell recruitment. Enamel matrix derivative in a liquid carrier system significantly increased alkaline phosphatase mRNA levels 2.5-fold and collagen1alpha2 levels 1.7-fold at 3 days, as well as bone sialoprotein levels twofold at 14 days postseeding. Furthermore, collagen membranes coated with enamel matrix derivative in a liquid carrier system demonstrated a sixfold increase in alizarin red staining at 14 days when compared with collagen membrane alone. The combination of enamel matrix derivative in a liquid carrier system with a barrier membrane significantly increased cell attachment, differentiation, and mineralization of osteoblasts in vitro. Future animal testing is required to fully characterize the additional benefits of combining enamel matrix derivative in a liquid carrier system with a barrier membrane for guided bone or tissue regeneration.
NASA Astrophysics Data System (ADS)
Luo, S.
2016-12-01
Radiation field and cloud properties over the Southern Ocean area generated by the Australian Community Climate and Earth System Simulator (ACCESS) are evaluated using multiple-satellite products from the Fast Longwave And Shortwave radiative Fluxes (FLASHFlux) project and NASA/GEWEX surface radiation budget (SRB) data. The cloud properties are also evaluated using the observational simulator package COSP, a synthetic brightness temperature model (SBTM) and cloud liquid-water path data (UWisc) from the University of Wisconsin satellite retrievals. All of these evaluations are focused on the Southern Ocean area in an effort to understand the reasons behind the short-wave radiation biases at the surface. It is found that the model overestimates the high-level cloud fraction and frequency of occurrence of small ice-water content and underestimates the middle and low-level cloud fraction and water content. In order to improve the modelled radiation fields over the Southern Ocean area, two main modifications have been made to the physical schemes in the ACCESS model. Firstly the autoconversion rate at which the cloud water is converted into rain and the accretion rate in the warm rain scheme have been modified, which increases the cloud liquid-water content in warm cloud layers. Secondly, the scheme which determines the fraction of supercooled liquid water in mixed-phase clouds in the parametrization of cloud optical properties has been changed to use one derived from CALIPSO data which provides larger liquid cloud fractions and thus higher optical depths than the default scheme. Sensitivity tests of these two schemes in ACCESS climate runs have shown that applying either can lead to a reduction of the solar radiation reaching the surface and reduce the short-wave radiation biases.
Comparison between electronic cigarette refill liquid and nicotine on metabolic parameters in rats.
El Golli, Narges; Dkhili, Houssem; Dallagi, Yosra; Rahali, Dalila; Lasram, Montassar; Bini-Dhouib, Ines; Lebret, Maryline; Rosa, Jean-Philippe; El Fazaa, Saloua; Allal-El Asmi, Monia
2016-02-01
Nicotine is known to promote body weight loss and to disturb glucose homeostasis and lipoprotein metabolism. Electronic cigarettes, as a substitute to nicotine, are becoming increasingly popular, although there is no evidence regarding their safety. Considering the dearth of information about e-cigarette toxicity, the present study was designed to compare nicotine alone to e-liquid with or without nicotine on metabolic parameters in Wistar rats. For this purpose, e-liquid with or without nicotine and nicotine alone (0.5mg/kg of body weight) were administered intra-peritoneally during 28 days. Our results show a significant decrease in food and energy intake after nicotine or e-liquid with nicotine exposure, when compared to control or e-liquid without nicotine. Analysis of lipid status identified a significant decrease in cholesterol and LDL levels in e-cigarette groups, suggesting an improvement in lipid profile. Interestingly, e-liquid without nicotine induced hyperglycemia which is negatively correlated to hepatic glycogen level, acting like nicotine alone. Furthermore, an increase in liver biomarkers was observed in all treated groups. qRT-PCR analysis showed GSK3β up-regulation in e-liquid with nicotine as well as, surprisingly, in e-liquid without nicotine exposure. In contrast, PEPCK genes were only up-regulated in e-liquid with nicotine. While some features observed in rats may not be observed in human smokers, most of our data are consistent with, e-liquid per se i.e. without nicotine, not being neutral from a metabolic stand point since disrupting glucose homeostasis in rats. Copyright © 2016 Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
2008-08-01
This report summarizes the efforts and results from four of six State-level demonstration projects supported with cooperative agreements from the National Highway Traffic Safety Administration. The projects were intended to increase seat belt use sta...
Final test results for the ground operations demonstration unit for liquid hydrogen
NASA Astrophysics Data System (ADS)
Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.
2017-12-01
Described herein is a comprehensive project-a large-scale test of an integrated refrigeration and storage system called the Ground Operations and Demonstration Unit for Liquid Hydrogen (GODU LH2), sponsored by the Advanced Exploration Systems Program and constructed at Kennedy Space Center. A commercial cryogenic refrigerator interfaced with a 125,000 l liquid hydrogen tank and auxiliary systems in a manner that enabled control of the propellant state by extracting heat via a closed loop Brayton cycle refrigerator coupled to a novel internal heat exchanger. Three primary objectives were demonstrating zero-loss storage and transfer, gaseous liquefaction, and propellant densification. Testing was performed at three different liquid hydrogen fill-levels. Data were collected on tank pressure, internal tank temperature profiles, mass flow in and out of the system, and refrigeration system performance. All test objectives were successfully achieved during approximately two years of testing. A summary of the final results is presented in this paper.
Quality characteristic of liquid smoked straw mushroom (Volvariella volvacea) ball during storage
NASA Astrophysics Data System (ADS)
Kurniawan, C. W.; Atmaka, W.; Manuhara, G. J.; Sanjaya, A. P.
2018-01-01
Straw mushroom (Volvariella volvacea) ball was soaked for 15, 30, and 45 minutes with the concentration level 1%, 2%, and 3% (v/v) of the coconut shell liquid smoke. The chemical characteristics (water contains, total phenol, carbonil contains, total-N, TVB-N, and pH), microbiological characteristics (Total Plate Count), and sensory characteristics (color, flavor, taste, texture, and overalls) of the liquid smoked straw mushroom ball during 14 days storage at freezing temperature were investigated. The result showed that the water content and TVB-N were decreased after soaked and were increased after storaged. On the other hand, the result of total phenol, carbonyl content, and Total-N were increased after soaked and were decreased after storage. The level of pH and Total Plate Count of the straw mushroom ball were decreased during storage. Due to the sensory characteristics of the straw mushroom ball, the panelists provide high values for the straw mushroom ball which was soaked in 3% concentration level with 30 minutes soaked time. The best-soaked treatment was by soaked at 30 minutes with 3% concentration level liquid smoke. The straw mushroom ball has 70.95±0.10% water contains; 0.32±0.02% total phenol; 1.08±0.22% carbonyl contains; and 2.29±0.07% total-N.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortright, Randy
The purpose of this project was to demonstrate the technical and commercial feasibility of producing liquid fuels, particularly jet fuel, from lignocellulosic materials, such as corn stover. This project was led by Virent, Inc. (Virent) which has developed a novel chemical catalytic process (the BioForming ® platform) capable of producing “direct replacement” liquid fuels from biomass-derived feedstocks. Virent has shown it is possible to produce an advantaged jet fuel from biomass that meets or exceeds specifications for commercial and military jet fuel through Fuel Readiness Level (FRL) 5, Process Validation. This project leveraged The National Renewable Energy Lab’s (NREL) expertisemore » in converting corn stover to sugars via dilute acid pretreatment and enzymatic hydrolysis. NREL had previously developed this deconstruction technology for the conversion of corn stover to ethanol. In this project, Virent and NREL worked together to condition the NREL generated hydrolysate for use in Virent’s catalytic process through solids removal, contaminant reduction, and concentration steps. The Idaho National Laboratory (INL) was contracted in this project for the procurement, formatting, storage and analysis of corn stover and Northwestern University developed fundamental knowledge of lignin deconstruction that can help improve overall carbon recovery of the combined technologies. Virent conducted fundamental catalytic studies to improve the performance of the catalytic process and NREL provided catalyst characterization support. A technoeconomic analysis (TEA) was conducted at each stage of the project, with results from these analyses used to inform the direction of the project.« less
Identifying the parameters for effective implementation of liquid-only plow routes.
DOT National Transportation Integrated Search
2010-10-05
This project focused on two key areas. The first was taking a snapshot of current best practices : in regard to during-storm liquid applications for snow and ice control. The project learned why, : where, when and how the duri...
Experimental demonstration of liquid antistrip in hot mix asphalt pavement.
DOT National Transportation Integrated Search
2017-04-01
In 2010, the Maine Department of Transportation constructed two projects with the use of Liquid Antistrip. : The intent of these projects is to determine if an anti-strip admixture will improve the pavement : quality in Northern Maine as well as othe...
Random lasing from dye-doped negative liquid crystals using ZnO nanoparticles as tunable scatters
NASA Astrophysics Data System (ADS)
Li, Long-Wu; Shang, Zhen-Zhen; Deng, Luogen
2016-09-01
This work demonstrates the realization of a lasing in scattering media, which contains dispersive solution of ZnO nanoparticles (NPs) and laser dye 4-dicyanomethylene-2-methyle-6-(p-dimethylaminostyryl)-4H-pyran(DCM) in negative liquid crystals (LCs) that was injected into a cell. The lasing intensity of the dye-doped negative LC laser can be tuned from low to high if the NPs concentration is increased. The tunability of the laser is attributable to the clusters-sensitive feature in effective refractive index of the negative LCs. Such a tunable negative liquid crystal laser can be used in the fabrication of new optical sources, optical communication, and liquid crystal laser displays. Project supported by the Doctoral Science Research Start-up Funding of Guizhou Normal University, China (Grant No. 11904-0514162) and the National Natural Science Foundation of China (Grant No. 11474021).
Nutrients content and quality of liquid fertilizer made from goat manure
NASA Astrophysics Data System (ADS)
Sunaryo, Yacobus; Purnomo, Djoko; Theresia Darini, Maria; Ratri Cahyani, Vita
2018-05-01
Quality of liquid fertilizer is determined by the content of nutrients and other chemical factors such as pH and EC. This research aimed to examine nutrient contents and dynamic of pH and EC of liquid fertilizer made from goat manure in combination with sugar and ammonium sulfate (ZA) and using Effective Microorganisms (EM) as the decomposer. This research was conducted by employing 3 x 3 factorial experiment with three replications. Each treatment combination was applied in 20 L of water. The first factor was the quantity of sugar which consisted of 3 levels: 12.5, 25, and 50 g L-1 of water. The second factor was the quantity of ZA which consisted of 3 levels: 25, 37.5, and 50 g L-1 of water. All combinations were added by 100 g of air dried goat manure L-1 of water and EM solution 1 ml L-1 of water, and incubated for five months. Results of the experiment indicated that the increasing concentration of ZA resulted in the significantly increase of N total and S total. Increasing concentration of sugar resulted in decreasing pH and increasing lactic acid; whereas, increasing concentration of ZA followed by increasing Electrical Conductivity (EC). There was no significantly change of pH and EC of the liquid fertilizer during five months incubation.
NASA Astrophysics Data System (ADS)
Zhang, Yingzi; Hou, Yulong; Zhang, Yanjun; Hu, Yanjun; Zhang, Liang; Gao, Xiaolong; Zhang, Huixin; Liu, Wenyi
2018-02-01
A simple and low-cost continuous liquid-level sensor based on two parallel plastic optical fibers (POFs) in a helical structure is presented. The change in the liquid level is determined by measuring the side-coupling power in the passive fiber. The side-coupling ratio is increased by just filling the gap between the two POFs with ultraviolet-curable optical cement, making the proposed sensor competitive. The experimental results show that the side-coupling power declines as the liquid level rises. The sensitivity and the measurement range are flexible and affected by the geometric parameters of the helical structure. A higher sensitivity of 0.0208 μW/mm is acquired for a smaller curvature radius of 5 mm, and the measurement range can be expanded to 120 mm by enlarging the screw pitch to 40 mm. In addition, the reversibility and temperature dependence are studied. The proposed sensor is a cost-effective solution offering the advantages of a simple fabrication process, good reversibility, and compensable temperature dependence.
Design of a Very Large Pulse Tube Cryocooler for HTS Cable Application
NASA Astrophysics Data System (ADS)
Tanchon, J.; Ercolani, E.; Trollier, T.; Ravex, A.; Poncet, J. M.
2006-04-01
The needs for large cooling powers are more and more increasing together with the increase of superconductor capabilities. Within the framework of an High Voltage HTS cable project (LIPA project funded by the DOE with American Superconductor AMSC, Nexans, LIPA and Air Liquide as consortium partners), the Technologies & Innovation Department of Air Liquide with the partnership of the CEA/SBT are currently developing a prototype of a Very Large Pulse Tube Cooler (VLPTC). This prototype is traditionally based on an In-Line pulse tube configuration, making use of an inertance and a buffer volume as phase shifter. The expected performances are 280W heat lift at 65K with a 300K rejection temperature. The cold head prototype has been manufactured and preliminary tests have been carried out with a 8 kW flexure bearing Stirling Technology Corporation STC linear compressor. One of the objectives of this prototype is to compete the Gifford-MacMahon coolers in term of cooling capacity while offering the advantage of the high frequency Pulse Tube in term of high lifetime, reliability and reduced exported vibrations.
2010-05-12
multicomponent steady-state model for liquid -feed solid polymer electrolyte DBFCs. These fuel cells use sodium borohydride (NaBH4) in alkaline media...layers, diffusion layers and the polymer electrolyte membrane for a liquid feed DBFC. Diffusion of reactants within and between the pores is accounted...projected for futuristic portable applications. In this project we developed a three- dimensional, multicomponent steady-state model for liquid -feed solid
Pålsson, Erik; Jakobsson, Joel; Södersten, Kristoffer; Fujita, Yuko; Sellgren, Carl; Ekman, Carl-Johan; Ågren, Hans; Hashimoto, Kenji; Landén, Mikael
2015-01-01
Glutamate is the major excitatory neurotransmitter in the brain. Aberrations in glutamate signaling have been linked to the pathophysiology of mood disorders. Increased plasma levels of glutamate as well as higher glutamine+glutamate levels in the brain have been demonstrated in patients with bipolar disorder as compared to healthy controls. In this study, we explored the glutamate hypothesis of bipolar disorder by examining peripheral and central levels of amino acids related to glutamate signaling. A total of 215 patients with bipolar disorder and 112 healthy controls from the Swedish St. Göran bipolar project were included in this study. Glutamate, glutamine, glycine, L-serine and D-serine levels were determined in serum and in cerebrospinal fluid using high performance liquid chromatography with fluorescence detection. Serum levels of glutamine, glycine and D-serine were significantly higher whereas L-serine levels were lower in patients with bipolar disorder as compared to controls. No differences between the patient and control group in amino acid levels were observed in cerebrospinal fluid. The observed differences in serum amino acid levels may be interpreted as a systemic aberration in amino acid metabolism that affects several amino acids related to glutamate signaling. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
LCLS-II 1.3 GHz cryomodule design - lessons learned from testing at Fermilab
NASA Astrophysics Data System (ADS)
Kaluzny, J.; Hurd, J.; Orlov, Y.; He, Y.; Bossert, R.; Grimm, C.; Schappert, W.; Atassi, O. Al; Wang, R.; Arkan, T.; Theilacker, J.; Klebaner, A.; White, M.; Wu, G.; Makara, J.; Ginsburg, C.; Pei, L.; Holzbauer, J.; Hansen, B.; Stanek, R.; Peterson, T.; Harms, E.
2017-12-01
Fermilab’s 1.3 GHz prototype cryomodule for the Linac Coherent Light Source Upgrade (LCLS-II) has been tested at Fermilab’s Cryomodule Test Facility (CMTF). Aspects of the cryomodule design have been studied and tested. The cooldown circuit was used to quickly cool the cavities through the transition temperature, and a heater on the circuit was used to heat incoming helium for warmup. Due to the 0.5% slope of the cryomodule, the liquid level is not constant along the length of the cryomodule. This slope as well as the pressure profile caused liquid level management to be a challenge. The microphonics levels in the cryomodule were studied and efforts were made to reduce them throughout testing. Some of the design approaches and studies performed on these aspects will be presented. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. This work was supported, in part, by the LCLS-II Project.
Gannett, Marshall W.; Breen, Katherine H.
2015-07-28
The use of groundwater to supplement surface-water supplies for the Bureau of Reclamation Klamath Project in the upper Klamath Basin of Oregon and California markedly increased between 2000 and 2014. Pre-2001 groundwater pumping in the area where most of this increase occurred is estimated to have been about 28,600 acre-feet per year. Subsequent supplemental pumping rates have been as high as 128,740 acre-feet per year. During this period of increased pumping, groundwater levels in and around the Bureau of Reclamation Klamath Project have declined by about 20-25 feet. Water-level declines are largely due to the increased supplemental pumping, but other factors include increased pumping adjacent to the Klamath Project and drying climate conditions. This report summarizes the distribution and magnitude of supplemental groundwater pumping and groundwater-level declines, and characterizes the relation between the stress and response in subareas of the Klamath Project to aid decision makers in developing groundwater-management strategies.
Effect of Hydrogenated, Liquid and Ghee Oils on Serum Lipids Profile
Mohammadifard, Noushin; Nazem, Masoud; Naderi, Gholam-Ali; Saghafian, Faezeh; Sajjadi, Firoozeh; Maghroon, Maryam; Bahonar, Ahmad; Alikhasi, Hasan; Nouri, Fatemeh
2010-01-01
BACKGROUND Trans fatty acids are known as the most harmful type of dietary fats, so this study was done to compare the effects of hydrogenated, liquid and ghee oils on serum lipids profile of healthy adults. METHODS This study was a randomized clinical trial conducted on 129 healthy participants aged from 20 to 60 years old who were beneficiaries of Imam-e-Zaman charitable organization. Subjects were randomly divided into 3 groups and each group was treated with a diet containing cooking and frying liquid, ghee, or hydrogenated for 40 days. Fasting serum lipids, including total cholesterol (TC), triglyceride (TG), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), apoprotein A (Apo A), and apoprotein B (Apo B) were measured before and after the study. RESULTS TC, TG and Apo B had a significant reduction in the liquid oil group compared to the hydrogenated oil group. In the ghee group TG declined and Apo A increased significantly (P < 0.01). Liquid oil group had a significant reduction in HDL-C, compared to the ghee oil group (P < 0.05). CONCLUSION It was concluded that consuming liquid oil along with frying oil caused to reduce all serum lipid levels. However, ghee oil only reduced TG and increased HDL-C levels. PMID:22577408
CFTR is required for maximal transepithelial liquid transport in pig alveolar epithelia.
Li, Xiaopeng; Comellas, Alejandro P; Karp, Philip H; Ernst, Sarah E; Moninger, Thomas O; Gansemer, Nicholas D; Taft, Peter J; Pezzulo, Alejandro A; Rector, Michael V; Rossen, Nathan; Stoltz, David A; McCray, Paul B; Welsh, Michael J; Zabner, Joseph
2012-07-01
A balance between alveolar liquid absorption and secretion is critical for maintaining optimal alveolar subphase liquid height and facilitating gas exchange in the alveolar space. However, the role of cystic fibrosis transmembrane regulator protein (CFTR) in this homeostatic process has remained elusive. Using a newly developed porcine model of cystic fibrosis, in which CFTR is absent, we investigated ion transport properties and alveolar liquid transport in isolated type II alveolar epithelial cells (T2AECs) cultured at the air-liquid interface. CFTR was distributed exclusively to the apical surface of cultured T2AECs. Alveolar epithelia from CFTR(-/-) pigs failed to increase liquid absorption in response to agents that increase cAMP, whereas cAMP-stimulated liquid absorption in CFTR(+/-) epithelia was similar to that in CFTR(+/+) epithelia. Expression of recombinant CFTR restored stimulated liquid absorption in CFTR(-/-) T2AECs but had no effect on CFTR(+/+) epithelia. In ex vivo studies of nonperfused lungs, stimulated liquid absorption was defective in CFTR(-/-) alveolar epithelia but similar between CFTR(+/+) and CFTR(+/-) epithelia. When epithelia were studied at the air-liquid interface, elevating cAMP levels increased subphase liquid height in CFTR(+/+) but not in CFTR(-/-) T2AECs. Our findings demonstrate that CFTR is required for maximal liquid absorption under cAMP stimulation, but it is not the rate-limiting factor. Furthermore, our data define a role for CFTR in liquid secretion by T2AECs. These insights may help to develop new treatment strategies for pulmonary edema and respiratory distress syndrome, diseases in which lung liquid transport is disrupted.
Li, John T; Bonneau, Laura A; Zimmerman, Jerry J; Weiss, Daniel J
2007-05-01
Adenovirus and cationic liposome mediated transfer of Interleukin-10 (IL-10), a potent anti-inflammatory cytokine, has been shown to decrease pro-inflammatory cytokine levels and overall lung inflammation in models of lung transplantation and injury. Limitations to current approaches of IL-10 gene therapy include poor vector delivery methods and pro-inflammatory properties of human IL-10 under certain conditions. We hypothesize that using perfluorochemical (PFC) liquid to deliver the highly homologous viral IL-10 (vIL-10), which is predominantly anti-inflammatory with minimal pro-inflammatory activities, can potentially be a more effective strategy to combat inflammatory lung diseases. In this study, we compare the use of PFC liquid versus aerosolized method to deliver adenovirus encoding the vIL-10 gene (AdvIL-10) in C57Bl6 mice. Detectable vIL-10 levels were measured from bronchoalveolar lavage fluid and lung homogenates at one, four, ten and thirty days after AdvIL-10. Furthermore, we determined if use of PFC liquid could allow for the use of a lower dose of AdvIL-10 by comparing the levels of detectable vIL-10 at different doses of AdvIL-10 delivered +/- PFC liquid. Results showed that PFC liquid enhanced detectable vIL-10 by up to ten fold and that PFC liquid allowed the use of ten-fold less vector. PFC liquid increased detectable vIL-10 in lung homogenates at all time points; however, the increase in detectable vIL-10 in BAL fluid peaked at four days and was no longer evident by thirty days after intratracheal instillation. In summary, this is the first report utilizing PFC liquid to enhance the delivery of a potentially therapeutic molecule, vIL-10. We believe this strategy can be used to perform future studies on the use of the predominantly anti-inflammatory vIL-10 to treat inflammatory lung diseases.
Active Co-Storage of Cryogenic Propellants for Lunar Explortation
NASA Technical Reports Server (NTRS)
Mustafi, S.; Canavan, E. R.; Boyle, R. F.; Panek, J. S.; Riall, S. M.; Miller, F. K.
2008-01-01
Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used dual cryogens with different temperatures to cool instruments. This technology utilizes a higher temperature cryogen to provide a stage that efficiently intercepts a large fraction of the heat that would otherwise be incident on the lower temperature cryogen. This interception reduces the boil-off of the lower temperature cryogen and increasing the overall life-time of the mission. The Active Co-Storage concept is implemented similarly; the 101 K liquid oxygen thermally shields the 24 K liquid hydrogen. A thermal radiation shield that is linked to the liquid oxygen tank shrouds the liquid hydrogen tank, thereby preventing the liquid hydrogen tank from being directly exposed to the 300 K external environment. Modern cryocooler technology can eliminate the liquid oxygen boil-off and also cool the thermal radiation shield thereby reducing the liquid hydrogen boil-off to a small fraction of the unshielded rate. The thermal radiation shield can be a simple conductive shroud or a more sophisticated but lighter Broad Area Cooling (BAC) shroud. The paper describes the design impact of an active co-storage system for the Altair Descent Vehicle. This paper also compares the spacecraft-level impacts of the conductive shroud and the BAC shroud active co-storage concepts with a passive storage option in the context of the different scales of spacecraft that will be used for the lunar exploration effort - the Altair Ascent and Descent Vehicles, the Orion, and the Ares V Earth Departure Stage. The paper also reports on a subscale test of this active co-storage configuration. The test tank is 0.7 m in diameter, approximately one-third the dimension of tanks that would be needed in a lunar ascent module. A thin-walled fiberglass skirt supports and isolates the tank from a 100 K stage. A similar thin-walled skirt supports the lOOK stage from the ambient temperature structure. An aluminum shield with a heavy MLI blanket surrounds the tank and is attached at the 100 K stage. In this initial phase of the project, there is no tank on the 100 K stage, but it is actively cooled by a single-stage cryocooler similar in design to the one used on the RHESSI mission. The test configuration includes a number of innovative elements, including a helical support heat exchanger and an external thermodynamic vent/heat interception system. To avoid the complexity of an explosive gas handling system, testing will be done with liquid helium and liquid neon as simulant fluids. The properties of these fluids bracket the properties of liquid hydrogen. Instrumentation allows tank temperature and shield temperature profiles, tank liquid levels, and pressure drops through the flow lines, to be measured.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Members of the engineering team are meeting in the Launch Control Center to review data and possible troubleshooting plans for the liquid hydrogen tank low-level fuel cut-off sensor. At left is John Muratore, manager of Systems Engineering and Integration for the Space Shuttle Program; Ed Mango, JSC deputy manager of the orbiter project office; and Carol Scott, KSC Integration Manager. The sensor failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).
NASA Astrophysics Data System (ADS)
Anderson, Philip W.; Casey, Philip A.
2010-04-01
We present a formalism for dealing directly with the effects of the Gutzwiller projection implicit in the t-J model which is widely believed to underlie the phenomenology of the high-Tc cuprates. We suggest that a true Bardeen-Cooper-Schrieffer condensation from a Fermi liquid state takes place, but in the unphysical space prior to projection. At low doping, however, instead of a hidden Fermi liquid one gets a 'hidden' non-superconducting resonating valence bond state which develops hole pockets upon doping. The theory which results upon projection does not follow conventional rules of diagram theory and in fact in the normal state is a Z = 0 non-Fermi liquid. Anomalous properties of the 'strange metal' normal state are predicted and compared against experimental findings.
A new solution to emulsion liquid membrane problems by non-Newtonian conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skelland, A.H.P.; Meng, X.
1996-02-01
Surfactant-stabilized emulsion liquid membrane processes constitute an emerging separation technology that has repeatedly been shown to be highly suited for such diverse separation processes as metal recovery or removal from dilute aqueous solutions; separations in the food industry; removal of organic bases and acids from water; and separation of hydrocarbons. Emulsion liquid membrane separation processes remain excessively vulnerable to one or more of four major problems. Difficulties lie in developing liquid membranes that combine high levels of both stability and permeability with acceptably low levels of swelling and ease of subsequent demulsification for membrane and solute recovery. This article providesmore » a new technique for simultaneously overcoming the first three problems, while identifying physical indications that the proposed solution may have little adverse effect on the fourth problem (demulsification) and may even alleviate it. Numerous benefits of optimized conversion of the membrane phase into suitable non-Newtonian form are identified, their mechanisms outlined, and experimental verifications provided. These include increased stability, retained (or enhanced) permeability, reduced swelling, increased internal phase volume, and increased stirrer speeds. The highly favorable responsiveness of both aliphatic and aromatic membranes to the new technique is demonstrated.« less
Numerical Investigation of Hydrogen and Kerosene Combustion in Supersonic Air Streams
NASA Technical Reports Server (NTRS)
Taha, A. A.; Tiwari, S. N.; Mohieldin, T. O.
1999-01-01
The effect of mixing schemes on the combustion of both gaseous hydrogen and liquid kerosene is investigated. Injecting pilot gaseous hydrogen parallel to the supersonic incoming air tends to maintain the stabilization of the main liquid kerosene, which is normally injected. Also the maximum kerosene equivalence ratio that can maintain stable flame can be increased by increasing the pilot energy level. The wedge flame holding contributes to an increased kerosene combustion efficiency by the generation of shock-jet interaction.
Formation Mechanism of Surface Crack in Low Pressure Casting of A360 Alloy
NASA Astrophysics Data System (ADS)
Liu, Shan-Guang; Cao, Fu-Yang; Ying, Tao; Zhao, Xin-Yi; Liu, Jing-Shun; Shen, Hong-Xian; Guo, Shu; Sun, Jian-Fei
2017-12-01
A surface crack defect is normally found in low pressure castings of Al alloy with a sudden contraction structure. To further understand the formation mechanism of the defect, the mold filling process is simulated by a two-phase flow model. The experimental results indicate that the main reason for the defect deformation is the mismatching between the height of liquid surface in the mold and pressure in the crucible. In the case of filling, a sudden contraction structure with an area ratio smaller than 0.5 is obtained, and the velocity of the liquid front increases dramatically with the influence of inertia. Meanwhile, the pressurizing speed in the crucible remains unchanged, resulting in the pressure not being able to support the height of the liquid level. Then the liquid metal flows back to the crucible and forms a relatively thin layer solidification shell on the mold wall. With the increasing pressure in the crucible, the liquid level rises again, engulfing the shell and leading to a surface crack. As the filling velocity is characterized by the damping oscillations, surface cracks will form at different heights. The results shed light on designing a suitable pressurizing speed for the low pressure casting process.
Application of LC and LCoS in Multispectral Polarized Scene Projector (MPSP)
NASA Astrophysics Data System (ADS)
Yu, Haiping; Guo, Lei; Wang, Shenggang; Lippert, Jack; Li, Le
2017-02-01
A Multispectral Polarized Scene Projector (MPSP) had been developed in the short-wave infrared (SWIR) regime for the test & evaluation (T&E) of spectro-polarimetric imaging sensors. This MPSP generates multispectral and hyperspectral video images (up to 200 Hz) with 512×512 spatial resolution with active spatial, spectral, and polarization modulation with controlled bandwidth. It projects input SWIR radiant intensity scenes from stored memory with user selectable wavelength and bandwidth, as well as polarization states (six different states) controllable on a pixel level. The spectral contents are implemented by a tunable filter with variable bandpass built based on liquid crystal (LC) material, together with one passive visible and one passive SWIR cholesteric liquid crystal (CLC) notch filters, and one switchable CLC notch filter. The core of the MPSP hardware is the liquid-crystal-on-silicon (LCoS) spatial light modulators (SLMs) for intensity control and polarization modulation.
Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, P.H.
The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.
Support of the eight-foot high-temperature tunnel modifications project
NASA Technical Reports Server (NTRS)
Hodges, Donald Y.; Shebalin, John V.
1987-01-01
An ultrasonic level sensor was developed to measure the liquid level in a storage vessel under high pressures, namely up to 6000 psi. The sensor is described. A prototype sensor was installed in the cooling-water storage vessel of the Eight-Foot High-Temperature Tunnel. Plans are being made to install the readout instrument in the control room, so that tunnel operators can monitor the water level during the course of a tunnel run. It was discovered that the sensor will operate at cryogenic temperatures. Consequently, a sensor will be installed in the modified Eight-Foot High-Temperature Tunnel to measure the sound speed of liquid oxygen (LOX) as it is transferred from a storage vessel to the tunnel combustor at pressure of about 3000 psi. The sound speed is known to be a reliable indicator of contamination of LOX by pressurized gaseous nitrogen, which will be used to effect the transfer. Subjecting the sensor to a temperature cycle from room temperature to liquid nitrogen temperature and back again several times revealed no deterioration in sensor performance. The method using this sensor is superior to the original method, which was to bleed samples of LOX from the storage vessel to an independent chamber for measurement of the sound speed.
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Bennett, William R.; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.
2014-01-01
We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N -methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 xLi+ 0.33) and temperature (298 K T 393 K). Structurally, Li+ is shown to be solvated by three anion neigh- bors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi+ we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi+, the contribution of Li+ to ionic conductivity increases until reach- ing a saturation doping level of xLi+ 0.10. Comparatively, the Li+ conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. Our transport results also demonstrate the necessity of long MD simulation runs ( 200 ns) required to converge transport properties at room T. The differences in Li+ transport are reflected in the residence times of Li+ with the anions (Li), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li+ transport in each liquid, we find that while the net motion of Li+ with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of transport through anion exchange (hopping) increases at high xLi+ and in liquids with large anions.
2012-06-25
A frame grab from a mounted video camera on the E-3 Test Stand at Stennis Space Center documents testing of the new Project Morpheus engine. The new liquid methane, liquid oxygen engine will power the Morpheus prototype lander, which could one day evolve to carry cargo safely to the moon, asteroids or Mars surfaces.
NASA Astrophysics Data System (ADS)
Levashov, V. A.
2014-11-01
In order to gain insight into the connection between the vibrational dynamics and the atomic-level Green-Kubo stress correlation function in liquids, we consider this connection in a model crystal instead. Of course, vibrational dynamics in liquids and crystals are quite different and it is not expected that the results obtained on a model crystal should be valid for liquids. However, these considerations provide a benchmark to which the results of the previous molecular dynamics simulations can be compared. Thus, assuming that vibrations are plane waves, we derive analytical expressions for the atomic-level stress correlation functions in the classical limit and analyze them. These results provide, in particular, a recipe for analysis of the atomic-level stress correlation functions in Fourier space and extraction of the wave-vector and frequency-dependent information. We also evaluate the energies of the atomic-level stresses. The energies obtained are significantly smaller than the energies previously determined in molecular dynamics simulations of several model liquids. This result suggests that the average energies of the atomic-level stresses in liquids and glasses are largely determined by the structural disorder. We discuss this result in the context of equipartition of the atomic-level stress energies. Analysis of the previously published data suggests that it is possible to speak about configurational and vibrational contributions to the average energies of the atomic-level stresses in a glass state. However, this separation in a liquid state is problematic. We also introduce and briefly consider the atomic-level transverse current correlation function. Finally, we address the broadening of the peaks in the pair distribution function with increase of distance. We find that the peaks' broadening (by ≈40 % ) occurs due to the transverse vibrational modes, while contribution from the longitudinal modes does not change with distance.
NASA Technical Reports Server (NTRS)
Melcher, John C.; Morehead, Robert L.; Atwell, Matthew J.; Hurlbert, Eric A.
2015-01-01
A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marker, Terry; Roberts, Michael; Linck, Martin
The goal of this Bioincubator Project was to improve the pyrolysis of biomass through the use of methane. Our initial concept was to use methane as a fluidizing gas with a hydrogen transfer catalyst. The results of the experiments did show that methane as a fluidizing gas, with a hydrogen transfer catalyst, does enhance catalytic pyrolysis over that which is achieved with an inert fluidizing gas. Using methane as a fluidizing gas, with a hydrogen transfer catalyst, consistently produced better products with lower oxygen content than the products produced when an inert gas was used. These improvements were also consistentmore » with the results obtained through pure component testing as well. However, the improvement was too small to justify any significant expense. The addition of hydrogen with a hydrogen transfer catalyst consistently showed a much greater, more significant effect than methane. This indicates that hydropyrolysis is a more effective approach to improved catalytic pyrolysis than methane addition. During the course of this project, another way to significantly increase biogenic liquid yields from pyrolysis through the use of methane was discovered. We discovered a remarkably stable CO2/steam reforming catalyst which directly makes a 2:1 H2/CO synthesis gas from the CO, CO2, methane, ethane and propane product gas from integrated hydropyrolysis and hydroconversion (IH2®). The biogenic synthesis gas can then be converted to liquid hydrocarbons using Fischer Tropsch. The hydrogen for the IH2 unit would then be provided through the use of added methane. By utilizing the biogenic gas to make liquids, 40% more biogenic liquid hydrocarbons can be made from wood, thereby increasing liquid yields from IH2 from 86GPT to 126GPT. It also simplifies the hydrogen plant since no CO or CO2 removal is required.« less
Non-Abelian S =1 chiral spin liquid on the kagome lattice
NASA Astrophysics Data System (ADS)
Liu, Zheng-Xin; Tu, Hong-Hao; Wu, Ying-Hai; He, Rong-Qiang; Liu, Xiong-Jun; Zhou, Yi; Ng, Tai-Kai
2018-05-01
We study S =1 spin liquid states on the kagome lattice constructed by Gutzwiller-projected px+i py superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the fermionic mean-field state. By calculating the modular matrices S and T , we confirm that projected topological superconductors are non-Abelian chiral spin liquid (NACSL). The chiral central charge and the spin Hall conductance we obtained agree very well with the S O (3) 1 (or, equivalently, S U (2) 2 ) field-theory predictions. We propose a local Hamiltonian which may stabilize the NACSL. From a variational study, we observe a topological phase transition from the NACSL to the Z2 Abelian spin liquid.
NASA Astrophysics Data System (ADS)
Kim, Sung-Wan; Choi, Hyoung-Suk; Park, Dong-Uk; Baek, Eun-Rim; Kim, Jae-Min
2018-02-01
Sloshing refers to the movement of fluid that occurs when the kinetic energy of various storage tanks containing fluid (e.g., excitation and vibration) is continuously applied to the fluid inside the tanks. As the movement induced by an external force gets closer to the resonance frequency of the fluid, the effect of sloshing increases, and this can lead to a serious problem with the structural stability of the system. Thus, it is important to accurately understand the physics of sloshing, and to effectively suppress and reduce the sloshing. Also, a method for the economical measurement of the water level response of a liquid storage tank is needed for the exact analysis of sloshing. In this study, a method using images was employed among the methods for measuring the water level response of a liquid storage tank, and the water level response was measured using an image filter processing algorithm for the reduction of the noise of the fluid induced by light, and for the sharpening of the structure installed at the liquid storage tank. A shaking table test was performed to verify the validity of the method of measuring the water level response of a liquid storage tank using images, and the result was analyzed and compared with the response measured using a water level gauge.
Development of techniques for the analysis of isoflavones in soy foods and nutraceuticals.
Dentith, Susan; Lockwood, Brian
2008-05-01
For over 20 years, soy isoflavones have been investigated for their ability to prevent a wide range of cancers and cardiovascular problems, and numerous other disease states. This research is underpinned by the ability of researchers to analyse isoflavones in various forms in a range of raw materials and biological fluids. This review summarizes the techniques recently used in their analysis. The speed of high performance liquid chromatography analysis has been improved, allowing analysis of more samples, and increasing the sensitivity of detection techniques allows quantification of isoflavones down to nanomoles per litre levels in biological fluids. The combination of high-performance liquid chromatography with immunoassay has allowed identification and estimation of low-level soy isoflavones. The use of soy isoflavone supplements has shown an increase in their circulating levels in plasma and urine, aiding investigation of their biological effects. The significance of the metabolite equol has spurned research into new areas, and recently the specific enantiomers have been studied. High-performance liquid chromatography, capillary electrophoresis and gas chromatography are widely used with a range of detection systems. Increasingly, immunoassay is being used because of its high sensitivity and low cost.
Anatomy of the Chaco cryogenic project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milios, P.B.; Harris, R.A.
1997-12-31
In the first quarter of 1996 El Paso Field Services (EPFS) began operation of a new Chaco liquids extraction plant. The plant, located in northwest New Mexico, has the capacity to extract more natural gas liquids (NGL) than any other turboexpander plant in the lower 48 states; 50,000 b/d of NGL from 600 MMscfd of gas. Its existence is the result of El Paso`s desire to combine state-of-the-art processing with processing rates that align EPFS`s interests with the interests of the producers, in order to secure a long term competitive position in the San Juan Basin. All the project stakeholders,more » the producers, the liquids transporter, the construction contractor, and the processor have benefited from the project. Without regulatory reform the project would not have happened.« less
NASA Technical Reports Server (NTRS)
Klem, Mark D.; Smith, Timothy D.
2008-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project in the Exploration Technology Development Program is developing technologies as risk mitigation for Orion and the Lunar Lander. An integrated main and reaction control propulsion system has been identified as a candidate for the Lunar Lander Ascent Module. The propellants used in this integrated system are Liquid Oxygen (LOX)/Liquid Methane (LCH4) propellants. A deep throttle pump fed Liquid Oxygen (LOX)/Liquid Hydrogen (LH2) engine system has been identified for the Lunar Lander Descent Vehicle. The propellant combination and architecture of these propulsion systems are novel and would require risk reduction prior to detailed design and development. The PCAD Project addresses the technology requirements to obtain relevant and necessary test data to further the technology maturity of propulsion hardware utilizing these propellants. This plan and achievements to date will be presented.
Low NO sub x heavy fuel combustor concept program phase 1A gas tests
NASA Technical Reports Server (NTRS)
Cutrone, M. B.; Beebe, K. W.; Cutrone, M. B.
1982-01-01
The emissions performance of a rich lean combustor (developed for liquid fuels) for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf were assessed. The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. Although meeting NOx goals for the 167 Btu/scf gas, NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx generation from NH3 was significant at ammonia concentrations significantly less tha 0.5%. These levels occur depending on fuel gas cleanup system design, However, NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher.
Mississippi State University Sustainable Energy Research Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, W. Glenn
The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies thatmore » each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for themore » facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-17
... propose to construct gas processing facilities in the project area to separate natural gas liquids from... natural gas liquids to market pipelines located near Wamsutter, Wyoming (approximately 100 miles south of... Environmental Impact Statement (EIS) for the proposed Moneta Divide Natural Gas and Oil Development Project...
Splash bar for cooling tower fill assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stackhouse, D.W.; Heidl, S.C.
1987-11-10
A crossflow cooling tower fill assembly for allowing liquid to fall down through the fill assembly and for allowing cooling air to flow through the fill assembly transverse to the flow of the liquid in order to cool the liquid is described. The assembly comprises: longitudinal splash bars; and means for supporting the splash bars so that the splash bars are substantially horizontal and parallel to one another and arranged in vertically spaced, substantially horizontal planes. The splash bars in each plane are horizontally spaced from one another to allow the liquid to fall down between the splash bars tomore » the planes of splash bars below. Each splash bar includes a substantially horizontal, longitudinally extending top web member having (1) longitudinally extending, downwardly projecting vertical side web members, both of the side web members having a lower longitudinal edge with a longitudinally extending, inwardly projecting flange, and (2) at least one longitudinally extending, downardly projecting rib web member between the side web members. Each rib web member has a lower longitudinal edge with a longitudinally extending, laterally projecting flange.« less
Adjustable liquid aperture to eliminate undesirable light in holographic projection.
Wang, Di; Liu, Chao; Li, Lei; Zhou, Xin; Wang, Qiong-Hua
2016-02-08
In this paper, we propose an adjustable liquid aperture to eliminate the undesirable light in a holographic projection. The aperture is based on hydrodynamic actuation. A chamber is formed with a cylindrical tube. A black droplet is filled in the sidewall of the cylinder tube and the outside space is the transparent oil which is immiscible with the black droplet. An ultrathin glass sheet is attached on the bottom substrate of the device and a black shading film is secured to the central area of the glass sheet. By changing the volume of the black droplet, the black droplet will move to the middle or sidewall due to hydrodynamic actuation, so the device can be used as an adjustable aperture. A divergent spherical wave and a solid lens are used to separate the focus planes of the reconstructed image and diffraction beams induced by the liquid crystal on silicon in the holographic projection. Then the aperture is used to eliminate the diffraction beams by adjusting the size of the liquid aperture and the holographic projection does not have undesirable light.
Effects of glutamine administration on inflammatory responses in chronic ethanol-fed rats.
Peng, Hsiang-Chi; Chen, Ya-Ling; Chen, Jiun-Rong; Yang, Sien-Sing; Huang, Kuan-Hsun; Wu, Yi-Chin; Lin, Yun-Ho; Yang, Suh-Ching
2011-03-01
The purpose of this study was to investigate the effects of glutamine supplementation on inflammatory responses in chronic ethanol-fed rats. Male Wistar rats weighing about 160 g were divided into five groups. Two groups were fed a normal liquid diet and three groups were fed a glutamine-containing liquid diet. After 1 week, one of the normal liquid diet groups was fed an ethanol-containing liquid diet (CE), and the other group served as the control (CC) group. At the same time, one of the glutamine-containing liquid diet groups was continually fed the same diet (GCG), but the other two groups were fed ethanol-containing diet supplemented with glutamine (GEG) or without glutamine (GE). The following items were analyzed: (1) liver function, (2) cytokine contents, and (3) hepatic oxidative stress. The activities of aspartate transaminase (AST) and alanine transaminase (ALT) and levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the CE group had significantly increased. In addition, hepatic cytochrome P450 2E1 (CYP2E1) expression had significantly increased in the CE, GE and GEG groups. However, the activities of AST and ALT and levels of TNF-α and IL-1β in the GE group were significantly lower than those of the CE group. The results suggest that the plasma inflammatory responses of rats fed an ethanol-containing liquid diet for 7 weeks significantly increased. However, pretreatment with glutamine improved the plasma inflammatory responses induced by ethanol. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
McKnight, D. M.; Lyons, W. B.; Fountain, A. G.; Gooseff, M. N.; Doran, P. T.; Wall, D. H.; Virginia, R. A.; Priscu, J. C.; Adams, B.; Vesbach-Takacs, C.; Barrett, J. E.; Howkins, A.
2014-12-01
The McMurdo Dry Valleys of Antarctica is comprised of alpine and terminal glaciers, large expanses of patterned ground, and permanently ice-covered lakes in the valley floors, which are linked by glacial meltwater streams that flow during the austral summer. These valleys were first explored by Robert Scott and his party in 1903. In 1968 the New Zealand Antarctic Program began a gauging network on the Onyx River, a 32 km river in Wright Valley which is the longest river in Antarctica. As part of the McMurdo Dry Valleys Long-Term Ecological research project our research group has monitored meteorological conditions, glacial mass balance, lake level and streamflow in the adjacent Taylor Valley. The extent of liquid water throughout the landscape is strongly controlled by summer climate, and the availability of liquid water in turn is a limitation to the microscopic life that is present in the diverse habitats in the valleys. We have studied the responses of soil, lake, stream and cryoconite ecosystems through a sustained cooling period that has been driven by atmospheric changes associated with the ozone hole. In the past decade, this cooling period appears to have ceased and summer conditions have become more variable. Three warm sunny summers have occurred since 2001/02. These conditions have created weeks long "flood events" in the valleys, causing wet areas to emerge in the soils, thermokarsting in some stream channels and increases in lake level. These flood events can be considered as pulse events that drive an increase in ecosystem connectivity, changing rates of biogeochemical processes and the distribution of biota. Collectively the ecosystems of the McMurdo Dry Valleys are highly responsive to dynamic climatic influences associated with the ozone hole and global warming.
Max, M; Kuhlen, R; Falter, F; Reyle-Hahn, M; Dembinski, R; Rossaint, R
2000-04-01
Partial liquid ventilation, positive end-expiratory pressure (PEEP) and inhaled nitric oxide (NO) can improve ventilation/perfusion mismatch in acute lung injury (ALI). The aim of the present study was to compare gas exchange and hemodynamics in experimental ALI during gaseous and partial liquid ventilation at two different levels of PEEP, with and without the inhalation of nitric oxide. Seven pigs (24+/-2 kg BW) were surfactant-depleted by repeated lung lavage with saline. Gas exchange and hemodynamic parameters were assessed in all animals during gaseous and subsequent partial liquid ventilation at two levels of PEEP (5 and 15 cmH2O) and intermittent inhalation of 10 ppm NO. Arterial oxygenation increased significantly with a simultaneous decrease in cardiac output when PEEP 15 cmH2O was applied during gaseous and partial liquid ventilation. All other hemodynamic parameters revealed no relevant changes. Inhalation of NO and instillation of perfluorocarbon had no additive effects on pulmonary gas exchange when compared to PEEP 15 cmH2O alone. In experimental lung injury, improvements in gas exchange are most distinct during mechanical ventilation with PEEP 15 cmH2O without significantly impairing hemodynamics. Partial liquid ventilation and inhaled NO did not cause an additive increase of PaO2.
Apparatus for real-time acoustic imaging of Rayleigh-Bénard convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuehn, Kerry, K.
We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh Bénard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heatmore » transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii) they are stable, but not in the region of the stability diagram which has been studied by this experimenter. Our second objective was to use the apparatus to study other optically opaque fluids. To this end, we have obtained the first ultrasound images of Rayleigh-Bénard convection in a ferrofluid (EFH1). This project has provided a vehicle for the scientific training of five undergraduate research assistants during the past four years. It allowed students at Wisconsin Lutheran College, a small undergraduate liberal arts college in Milwaukee, to become directly involved in a significant scientific project from its inception through publication of scientific results. The funding of this project has also strengthened the research and teaching infrastructure at the Wisconsin Lutheran College in three major ways. The project has funded the PI and his students in the design and construction of a major piece of scientific apparatus which is capable of performing novel studies of Rayleigh-Bénard convection in opaque fluids. With the acquisition of this apparatus, we are able to embark on a broad research program to study problems in pattern formation in alloys, ferro-fluids, opaque gels, and liquid metals under thermal or magnetic stresses. This project has allowed the PI to purchase auxiliary equipment necessary for establishing a fluid dynamics research laboratory at the College. And this project has served as an impetus for the College to invest in a new machine shop in the basement of the Science Building at the College in order to support this, and other, scientific projects at the College. The PI has presented work funded by this grant at physics and engineering colloquia at a nearby university and at the keynote presentation at an undergraduate research symposium at Wisconsin Lutheran College. Also, the work was featured in local magazine and newspaper articles, and is described on the PI's research webpage. Such scientific outreach serves to advance the cause of science by making it interesting and accessible to a wider audience, and to bring attention to the work done by the Office of Basic Energy Sciences of the Department of Energy.« less
DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Ram S. Mohan; Dr. Ovadia Shoham
The U.S. Department of Energy (DOE) has awarded a five-year (1997-2002) grant (Mohan and Shoham, DE-FG26-97BC15024, 1997) to The University of Tulsa, to develop compact multiphase separation components for 3-phase flow. The research activities of this project have been conducted through cost sharing by the member companies of the Tulsa University Separation Technology Projects (TUSTP) research consortium and the Oklahoma Center for the Advancement of Science and Technology (OCAST). As part of this project, several individual compact separation components have been developed for onshore and offshore applications. These include gas-liquid cylindrical cyclones (GLCC{copyright}), liquid-liquid cylindrical cyclones (LLCC{copyright}), and the gas-liquid-liquidmore » cylindrical cyclones (GLLCC{copyright}). A detailed study has also been completed for the liquid-liquid hydrocyclones (LLHC). Appropriate control strategies have been developed for proper operation of the GLCC{copyright} and LLCC{copyright}. Testing of GLCC{copyright} at high pressure and real crude conditions for field applications is also completed. Limited studies have been conducted on flow conditioning devices to be used upstream of the compact separators for performance improvement. This report presents a brief overview of the activities and tasks accomplished during the 5-year project period, October 1, 1997-March 31, 2003 (including the no-cost extended period of 6 months). An executive summary is presented initially followed by the tasks of the 5-year budget periods. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section, followed by relevant references. The publications resulting from this study in the form of MS Theses, Ph.D. Dissertation, Journal Papers and Conference Presentations are provided at the end of this report.« less
Etonitazene as a reinforcer: oral intake of etonitazene by rhesus monkeys.
Carroll, M E; Meisch, R A
1978-12-08
Drinking of etonitazene HCI was studied in three rhesus monkeys during daily 3-h sessions. As the drug concentration was increased, the number of liquid deliveries decreased, and etonitazene intake (microgram/kg body weight) increased. As fixed-ratio (FR) requirements were increased, rate of responding increased, and liquid deliveries slightly decreased. When water was substituted for the drug, there was a large increase in responding for several sessions, followed by a slow decline to low rates. When etonitazene was reintroduced, responding abruptly increased to previous drug levels. These data suggest that etonitazene can serve as a positive reinforcer when taken orally by rhesus monkeys.
Level indicator for pressure vessels
Not Available
1982-04-28
A liquid-level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic-field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal-processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.
Barium Tagging from nEXO Using Resonance Ionization Spectroscopy
NASA Astrophysics Data System (ADS)
Twelker, K.; Kravitz, S.
nEXO is a 5-ton liquid enriched-xenon time projection chamber (TPC) to search for neutrinoless double-beta decay, designed to have the sensitivity to completely probe the inverted mass hierarchy of Majorana neutrinos. The detector will accommodate-as a background reduction technique-a system to recover and identify the barium decay product. This upgrade will allow a background-free measurement of neutrinoless double-beta decay and increase the half-life sensitivity of the experiment by at least one order of magnitude. Ongoing research and development includes a system to test barium extraction from liquid xenon using surface adsorption and Resonance Ionization Spectroscopy (RIS).
Mugisha, J F
2009-01-01
This project revitalised continuing professional development (CPD) among rural health professionals in Uganda, Africa, using information and communication technology (ICT). The project was piloted in 3 rural hospitals where CPD activities were failing to meet demand because activities were not properly coordinated, the meetings were too infrequent, the delivery methods were inappropriate, and the content was highly supply-driven and generally irrelevant to the performance needs of the health workers. The project intervention involved the installation of various ICT equipment including computers, liquid crystal display (LCD) projectors, office copiers, printers, spiral binders and CDs. A number of health workers were also trained in ICT use. Three years later, an evaluation study was conducted using interviews, focus group discussions and document review. The results indicated that there had been a rapid increase in the number of staff attending the CPD sessions, an increased staff mix among participants, improved quality of CPD presentations, increased use of locally produced content, more relevant topics discussed and an increased interest by hospital management in CPD, manifested by commitment of staff training funds. Staff motivation, attitude and responsiveness to clients had also improved as a result of the invigorated CPD activities.
A Self-Referencing Intensity Based Polymer Optical Fiber Sensor for Liquid Detection
Montero, David Sánchez; Vázquez, Carmen; Möllers, Ingo; Arrúe, Jon; Jäger, Dieter
2009-01-01
A novel self-referencing fiber optic intensity sensor based on bending losses of a partially polished polymer optical fiber (POF) coupler is presented. The coupling ratio (K) depends on the external liquid in which the sensor is immersed. It is possible to distinguish between different liquids and to detect their presence. Experimental results for the most usual liquids found in industry, like water and oil, are given. K value increases up to 10% from the nominal value depending on the liquid. Sensor temperature dependence has also been studied for a range from 25 °C (environmental condition) to 50 °C. Any sector requiring liquid level measurements in flammable atmospheres can benefit from this intrinsically safe technology. PMID:22454594
Capacity enhancement of indigenous expansion engine based helium liquefier
NASA Astrophysics Data System (ADS)
Doohan, R. S.; Kush, P. K.; Maheshwari, G.
2017-02-01
Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.
Wang, P M; Lai-Fook, S J
1998-01-01
The hypothesis of this study is that pleural lubrication is enhanced by hyaluronan acting as a boundary lubricant in pleural liquid and by pleural filtration as reflected in changes in protein concentration with ventilation. Anesthetized rabbits were injected intravenously with Evans blue dye and ventilated with 100% O2 at either of two levels of ventilation for 6 h. Postmortem values of hyaluronan, total protein, and Evans blue-dyed albumin (EBA) concentrations in pleural liquid were greater at the higher ventilation, consistent with increases in boundary lubrication, pleural membrane permeability, and pleural filtration. To determine whether these effects were caused by hyperoxia or anesthesia, conscious rabbits were ventilated with either 3% CO2 or room air in a box for 6, 12, or 24 h. Similar to the anesthetized rabbits, pleural liquid hyaluronan concentration after 24 h was higher in the conscious rabbits with the hypercapnic-induced greater ventilation. By contrast, the time course of total protein and EBA in pleural liquid was similar in both groups of conscious rabbits, indicating no effect of ventilation on pleural permeability. The increase in pleural liquid hyaluronan concentration might be the result of mesothelial cell stimulation by a ventilation-induced increase in pleural liquid shear stress.
Nano Icy Moons Propellant Harvester
NASA Technical Reports Server (NTRS)
VanWoerkom, Michael (Principal Investigator)
2017-01-01
As one of just a few bodies identified in the solar system with a liquid ocean, Europa has become a top priority in the search for life outside of Earth. However, cost estimates for exploring Europa have been prohibitively expensive, with estimates of a NASA Flagship class orbiter and lander approaching $5 billion. ExoTerra's NIMPH offers an affordable solution that can not only land, but return a sample from the surface to Earth. NIMPH combines solar electric propulsion (SEP) technologies being developed for the asteroid redirect mission and microsatellite electronics to reduce the cost of a full sample return mission below $500 million. A key to achieving this order-of-magnitude cost reduction is minimizing the initial mass of the system. The cost of any mission is directly proportional to its mass. By keeping the mission within the constraints of an Atlas V 551 launch vehicle versus an SLS, we can significantly reduce launch costs. To achieve this we reduce the landed mass of the sample return lander, which is the largest multiplier of mission mass, and shrink propellant mass through high efficiency SEP and gravity assists. The NIMPH projects first step in reducing landed mass focuses on development of a micro-In Situ Resource Utilization (micro-ISRU) system. ISRU allows us to minimize landed mass of a sample return mission by converting local ice into propellants. The project reduces the ISRU system to a CubeSat-scale package that weighs just 1.74 kg and consumes just 242 W of power. We estimate that use of this ISRU vs. an identical micro-lander without ISRU reduces fuel mass by 45 kg. As the dry mass of the lander grows for larger missions, these savings scale exponentially. Taking full advantage of the micro-ISRU system requires the development of a micro-liquid oxygen-liquid hydrogen engine. The micro-liquid oxygen-liquid hydrogen engine is tailored for the mission by scaling it to match the scale of the micro-lander and the low gravity of the target moon. We also tailor the engine for a near stoichiometric mixture ratio of 7.5. Most high-performance liquid oxygen-liquid hydrogen engines inject extra liquid hydrogen to lower the average molecular weight of the exhaust, which improves specific impulse. However, this extra liquid hydroden requires additional power and processing time on the surface for the ISRU to create. This increases mission cost, and on missions within high radiation environments such as Europa, increases radiation shielding mass. The resulting engine weighs just 1.36 kg and produces 71.5 newton of thrust at 364 s specific impulse. Finally, the mission reduces landed mass by taking advantage of the SEP modules solar power to beam energy to the surface using a collimated laser. This allows us to replace an 45 kg MMRTG with a 2.5 kg resonant array. By using the combination of ISRU, a liquid oxygen-liquid hydrogen engine, and beamed power, we reduce the initial mass of the lander to just 51.5 kg. When combined with an SEP module to ferry the lander to Europa the initial mission mass is just 6397 kg - low enough to be placed on an Earth escape trajectory using an Atlas V 551 launch vehicle. By comparison, we estimate a duplicate lander using an MMRTG and semi-storable propellants such as liquid oxygen-methane would result in an order of magnitude increase in initial lander mass to 445 kg. Attempting to perform the trajectory with a 450 s liquid oxygen-liquid hydrogen engine would increase initial mass to approximately 135,000 kg. Using an Atlas V 1 U.S. Dollar per kg rate to Earth escape value of $27.7k per kg, just the launch savings are over $3.5 billion.
Containerless high temperature property measurements
NASA Technical Reports Server (NTRS)
Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.
1991-01-01
Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.
Boswell, Paul G.; Abate-Pella, Daniel; Hewitt, Joshua T.
2015-01-01
Compound identification by liquid chromatography-mass spectrometry (LC-MS) is a tedious process, mainly because authentic standards must be run on a user’s system to be able to confidently reject a potential identity from its retention time and mass spectral properties. Instead, it would be preferable to use shared retention time/index data to narrow down the identity, but shared data cannot be used to reject candidates with an absolute level of confidence because the data are strongly affected by differences between HPLC systems and experimental conditions. However, a technique called “retention projection” was recently shown to account for many of the differences. In this manuscript, we discuss an approach to calculate appropriate retention time tolerance windows for projected retention times, potentially making it possible to exclude candidates with an absolute level of confidence, without needing to have authentic standards of each candidate on hand. In a range of multi-segment gradients and flow rates run among seven different labs, the new approach calculated tolerance windows that were significantly more appropriate for each retention projection than global tolerance windows calculated for retention projections or linear retention indices. Though there were still some small differences between the labs that evidently were not taken into account, the calculated tolerance windows only needed to be relaxed by 50% to make them appropriate for all labs. Even then, 42% of the tolerance windows calculated in this study without standards were narrower than those required by WADA for positive identification, where standards must be run contemporaneously. PMID:26292624
Combining liquid inertia with pressure recovery from bubble expansion for enhanced flow boiling
NASA Astrophysics Data System (ADS)
Kalani, A.; Kandlikar, S. G.
2015-11-01
In this paper, we demonstrate using liquid inertia force in a taper gap microchannel geometry to provide a high level of heat dissipation capacity accompanied by a high heat transfer coefficient and low pressure drop during flow boiling. The high mass flux increases liquid inertia force and promotes vapor removal from the manifold, thereby increasing critical heat flux (CHF) and heat transfer coefficient. The tapered gap above the microchannels provides an increasing cross-sectional area in the flow direction. This gap allows bubbles to emerge from microchannels and expand within the gap along the flow direction. The bubble evaporation and expansion in tapered gap causes pressure recovery and reduces the total pressure drop. The pressure recovery increases with the increased evaporation rate at higher heat fluxes. Using a 6% taper and a moderately high inlet liquid flow Reynolds number of 1095, we have reached a CHF of 1.07 kW/cm2 with a heat transfer coefficient of 295 kW/m2 °C and a pressure drop of 30 kPa.
26 CFR 1.43-2 - Qualified enhanced oil recovery project.
Code of Federal Regulations, 2012 CFR
2012-04-01
... combustion. The combustion of oil or fuel in the reservoir sustained by injection of air, oxygen-enriched air... meaning of section 638(1)); (3) The first injection of liquids, gases, or other matter for the project (as... amount of crude oil that ultimately will be recovered. (c) First injection of liquids, gases, or other...
26 CFR 1.43-2 - Qualified enhanced oil recovery project.
Code of Federal Regulations, 2013 CFR
2013-04-01
... combustion. The combustion of oil or fuel in the reservoir sustained by injection of air, oxygen-enriched air... meaning of section 638(1)); (3) The first injection of liquids, gases, or other matter for the project (as... amount of crude oil that ultimately will be recovered. (c) First injection of liquids, gases, or other...
Ice versus liquid water saturation in simulations of the indian summer monsoon
NASA Astrophysics Data System (ADS)
Glazer, Russell H.; Misra, Vasubandhu
2018-02-01
At the same temperature, below 0 °C, the saturation vapor pressure (SVP) over ice is slightly less than the SVP over liquid water. Numerical models use the Clausius-Clapeyron relation to calculate the SVP and relative humidity, but there is not a consistent method for the treatment of saturation above the freezing level where ice and mixed-phase clouds may be present. In the context of current challenges presented by cloud microphysics in climate models, we argue that a better understanding of the impact that this treatment has on saturation-related processes like cloud formation and precipitation, is needed. This study explores the importance of the SVP calculation through model simulations of the Indian summer monsoon (ISM) using the regional spectral model (RSM) at 15 km grid spacing. A combination of seasonal and multiyear simulations is conducted with two saturation parameterizations. In one, the SVP over liquid water is prescribed through the entire atmospheric column (woIce), and in another the SVP over ice is used above the freezing level (wIce). When SVP over ice is prescribed, a thermodynamic drying of the middle and upper troposphere above the freezing level occurs due to increased condensation. In the wIce runs, the model responds to the slight decrease in the saturation condition by increasing, relative to the SVP over liquid water only run, grid-scale condensation of water. Increased grid-scale mean seasonal precipitation is noted across the ISM region in the simulation with SVP over ice prescribed. Modification of the middle and upper troposphere moisture results in a decrease in mean seasonal mid-level cloud amount and an increase in high cloud amount when SVP over ice is prescribed. Multiyear simulations strongly corroborate the qualitative results found in the seasonal simulations regarding the impact of ice versus liquid water SVP on the ISM's mean precipitation and moisture field. The mean seasonal rainfall difference over All India between wIce and woIce is around 10% of the observed interannual variability of seasonal All India rainfall.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A (Inventor); Pearson, J Boise (Inventor)
2014-01-01
An ignitron apparatus has an airtight tubular housing having a first sealed end and a second sealed end. An anode is connected at the first sealed end, projecting into the housing, and a recess at the second sealed and forms a well which contains a quantity of liquid gallium or gallium alloy making up the cathode. An ignitor projects through the liquid metal and into the housing. The inner surface of the housing includes at least one plating-reduction structure to prevent electrical shorting of the apparatus caused by plating of the liquid metal.
Montubi completes mile-long liquid ethylene pipeline project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-12-01
Montubi has completed the mile-long liquid ethylene pipeline project for Solvay S.p.A. at Vada, Italy, a line that extends 3.4 mi from an offshore unloading dock to an onshore gasification facility for Solvay's chemical plant at Rosignano. The 18 mo project included a mile-long 1750 ton jetty; one eight-leg main unloading platform; eight mooring dolphins plus four breasting dolphins; one small platform for firefighting pump units; and a concrete service road along the jetty.
NASA Technical Reports Server (NTRS)
1980-01-01
Many manufacturers of loudspeakers are now using a magnetic liquid cooling agent known as ferrofluid. Commercialized by Ferrofluids Corporation, ferrofluid is a liquid material in which sub-microscopic particles of iron oxide are permanently suspended. Injected into the voice coil segment of speaker system, magnetic liquid serves as superior heat transfer medium for cooling the voice coil, thus substantially increasing the system's ability to handle higher power levels and decreasing chance of speaker failure. Ferrofluid offers several additional advantages which add up to improved speaker performance, lower manufacturing costs and fewer rejects.
Adjustable Lid Aids Silicon-Ribbon Growth
NASA Technical Reports Server (NTRS)
Mchugh, J. P.; Steidensticker, R. G.; Duncan, C. S.
1985-01-01
Closely-spaced crucible cover speeds up solidification. Growth rate of dendritic-web silicon ribbon from molten silicon increased by controlling distance between crucible susceptor lid and liquid/solid interface. Lid held in relatively high position when crucible newly filled with chunks of polycrystalline silicon. As silicon melts and forms pool of liquid at lower level, lid gradually lowered.
A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales
NASA Technical Reports Server (NTRS)
Slangen, A. B. A.; Adloff, F.; Jevrejeva, S.; Leclercq, P. W.; Marzeion, B.; Wada, Yoshihide; Winkelmann, R.
2016-01-01
Sea-level change (SLC) is a much-studied topic in the area of climate research, integrating a range of climate science disciplines, and is expected to impact coastal communities around the world. As a result, this field is rapidly moving, and the knowledge and understanding of processes contributing to SLC is increasing. Here, we discuss noteworthy recent developments in the projection of SLC contributions and in the global mean and regional sea-level projections. For the Greenland Ice Sheet contribution to SLC, earlier estimates have been confirmed in recent research, but part of the source of this contribution has shifted from dynamics to surface melting. New insights into dynamic discharge processes and the onset of marine ice sheet instability increase the projected range for the Antarctic contribution by the end of the century. The contribution from both ice sheets is projected to increase further in the coming centuries to millennia. Recent updates of the global glacier outline database and new global glacier models have led to slightly lower projections for the glacier contribution to SLC (7-17 cm by 2100), but still project the glaciers to be an important contribution. For global mean sea-level projections, the focus has shifted to better estimating the uncertainty distributions of the projection time series, which may not necessarily follow a normal distribution. Instead, recent studies use skewed distributions with longer tails to higher uncertainties. Regional projections have been used to study regional uncertainty distributions, and regional projections are increasingly being applied to specific regions, countries, and coastal areas.
Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy
NASA Technical Reports Server (NTRS)
Edwards, Lawrence G.; Haberbusch, Mark
1993-01-01
The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
NASA Astrophysics Data System (ADS)
Gouwens, C.; Dragosavic, M.
The large reserves and increasing use of natural gas as a source of energy have resulted in its storage and transport becoming an urgent problem. Since a liquid of the same mass occupies only a fraction of the volume of a gas, it is economical to store natural gas as a liquid. Liquefied natural gas is stored in insulated tanks and also carried by ship at a temperature of -160 C to 170 C. If a serious accident allows the LNG to escape, a gas cloud forms. The results of a possible explosion from such a gas cloud are studied. The development of a leak, escape and evaporation, size and propagation of the gas cloud, the explosive pressures to be expected and the results on the environment are investigated. Damage to buildings is examined making use of the preliminary conclusions of the other sub-projects and especially the explosive pressures.
Catalytic cracking of a Wilmington vacuum oil gas and selected hydrotreated products: Topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, J.W.; Zagula, E.J.
1987-05-01
The catalytic cracking of a Wilmington vacuum gas oil and the products from mild hydrotreating and severe hydrotreating of this gas oil was evaluated over a low metal equilibrium catalyst in a microconfined bed unit (MCBU). Two levels of catalytic cracking severity were evaluated for these three samples. The performance and product analysis showed that hydrotreating improves the quality of catalytic cracker feedstock and the resultant products. The results also indicated that a level of hydrotreating exists above which the quality of the liquid products and the yields of coke and heavy oil are not affected significantly by the severitymore » of the catalytic cracking process. As expected, the sulfur and nitrogen content of the liquid products (gasolines, light cycle oil, and heavy cycle oil) were found to decrease as the severity of the feed hydrotreating increased. The distribution of sulfur and nitrogen in the liquid products was found to be independent of cracking conditions or product yields for a given level of hydrogenation. Analysis of the gas products shows that the degree of hydrogen transfer increases with the severity of hydrogenation. As cracking severity increases, the apparent degree of hydrogen transfer decreases, and the concentration of olefinic compounds increases relative to the saturated compounds. In the future, these results will be compared to similar results from a Mayan vacuum gas oil. 10 refs., 17 figs., 10 tabs.« less
Haskins, Justin B; Bennett, William R; Wu, James J; Hernández, Dionne M; Borodin, Oleg; Monk, Joshua D; Bauschlicher, Charles W; Lawson, John W
2014-09-25
We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 ≤ xLi(+) ≤ 0.33) and temperature (298 K ≤ T ≤ 393 K). Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi(+) we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD simulations and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi(+), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of xLi(+) = 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 and 0.3 mS/cm. Our transport results also demonstrate the necessity of long MD simulation runs (∼200 ns) to converge transport properties at room temperature. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions (τ(Li/-)), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li(+) transport in each liquid, we find that while the net motion of Li(+) with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of transport through anion exchange increases at high xLi(+) and in liquids with large anions.
First observation of low energy electron neutrinos in a liquid argon time projection chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; Asaadi, J.
Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino (more » $$\
Farsalinos, Konstantinos E.; Gillman, I. Gene; Melvin, Matt S.; Paolantonio, Amelia R.; Gardow, Wendy J.; Humphries, Kathy E.; Brown, Sherri E.; Poulas, Konstantinos; Voudris, Vassilis
2015-01-01
Background. Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. Methods. Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. Results. Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from −21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200–300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. Conclusions. NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2–3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products. PMID:25811768
Farsalinos, Konstantinos E; Gillman, I Gene; Melvin, Matt S; Paolantonio, Amelia R; Gardow, Wendy J; Humphries, Kathy E; Brown, Sherri E; Poulas, Konstantinos; Voudris, Vassilis
2015-03-24
Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from -21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200-300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2-3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products.
Transport of viruses through saturated and unsaturated columns packed with sand
Anders, R.; Chrysikopoulos, C.V.
2009-01-01
Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173-179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media. ?? Springer Science+Business Media B.V. 2008.
Development of the reactor antineutrino detection technology within the iDream project
NASA Astrophysics Data System (ADS)
Gromov, M.; Kuznetsov, D.; Murchenko, A.; Novikova, G.; Obinyakov, B.; Oralbaev, A.; Plakitina, K.; Skorokhvatov, M.; Sukhotin, S.; Chepurnov, A.; Etenko, A.
2017-12-01
The iDREAM (industrial Detector for reactor antineutrino monitoring) project is aimed at remote monitoring of the operating modes of the atomic reactor on nuclear power plant to ensure a technical support of IAEA non-proliferation safeguards. The detector is a scintillator spectrometer. The sensitive volume (target) is filled with a liquid organic scintillator based on linear alkylbenzene where reactor antineutrinos will be detected via inverse beta-decay reaction. We present first results of laboratory tests after physical launch. The detector was deployed at sea level without background shielding. The number of calibrations with radioactive sources was conducted. All data were obtained by means of a slow control system which was put into operation.
A Heat Transfer Investigation of Liquid and Two-Phase Methane
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan
2010-01-01
A heat transfer investigation was conducted for liquid and two-phase methane. The tests were conducted at the NASA Glenn Research Center Heated Tube Facility (HTF) using resistively heated tube sections to simulate conditions encountered in regeneratively cooled rocket engines. This testing is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. Nontoxic propellants, such as liquid oxygen/liquid methane (LO2/LCH4), offer potential benefits in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications. Regeneratively cooled thrust chambers are one solution for high performance, robust LO2/LCH4 engines, but cooling data on methane is limited. Several test runs were conducted using three different diameter Inconel 600 tubes, with nominal inner diameters of 0.0225-, 0.054-, and 0.075-in. The mass flow rate was varied from 0.005 to 0.07 lbm/sec. As the current focus of the PCAD project is on pressure fed engines for LO2/LCH4, the average test section outlet pressures were targeted to be 200 psia or 500 psia. The heat flux was incrementally increased for each test condition while the test section wall temperatures were monitored. A maximum average heat flux of 6.2 Btu/in.2 sec was achieved and, at times, the temperatures of the test sections reached in excess of 1800 R. The primary objective of the tests was to produce heat transfer correlations for methane in the liquid and two-phase regime. For two-phase flow testing, the critical heat flux values were determined where the fluid transitions from nucleate boiling to film boiling. A secondary goal of the testing was to measure system pressure drops in the two-phase regime.
Clark, Brian R.; Bumgarner, Johnathan R.; Houston, Natalie A.; Foster, Adam L.
2014-01-01
The model was used to simulate groundwater-level altitudes resulting from prolonged pumping to evaluate sustainability of current and projected water-use demands. Each of three scenarios utilized a continuation of the calibrated model. Scenario 1 extended recent (2008) irrigation and nonirrigation pumping values for a 30-year period from 2010 to 2040. Projected groundwater-level changes in and around the Fort Stockton area under scenario 1 change little from current conditions, indicating that the groundwater system is near equilibrium with respect to recent (2008) pumping stress. Projected groundwater-level declines in the eastern part of the model area ranging from 5.0 to 15.0 feet are likely the result of nonequilibrium conditions associated with recent increases in pumping after a prolonged water-level recovery period of little or no pumping. Projected groundwater-level declines (from 15.0 to 31.0 feet) occurred in localized areas by the end of scenario 1 in the Leon-Belding area. Scenario 2 evaluated the effects of extended recent (2008) pumping rates as assigned in scenario 1 with year-round maximum permitted pumping rates in the Belding area. Results of scenario 2 are similar in water-level decline and extent as those of scenario 1. The extent of the projected groundwater-level decline in the range from 5.0 to 15.0 feet in the Leon-Belding irrigation area expanded slightly (about a 2-percent increase) from that of scenario 1. Maximum projected groundwater-level declines in the Leon-Belding irrigation area were approximately 31.3 feet in small isolated areas. Scenario 3 evaluated the effects of periodic increases in pumping rates over the 30-year extended period. Results of scenario 3 are similar to those of scenario 2 in terms of the areas of groundwater-level decline; however, the maximum projected groundwater-level decline increased to approximately 34.5 feet in the Leon-Belding area, and the extent of the decline was larger in area (about a 17-percent increase) than that of scenario 2. Additionally, the area of projected groundwater-level declines in the eastern part of the model area increased from that of scenario 2—two individual areas of decline coalesced into one larger area. The localized nature of the projected groundwater-level declines is a reflection of the high degree of fractured control on storage and hydraulic conductivity in the Edwards-Trinity aquifer. Additionally, the finding that simulated spring flow is highly dependent on the transient nature of hydraulic heads in the underlying aquifer indicates the importance of adequately understanding and characterizing the entire groundwater system.
Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J
2012-05-01
Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Sefcik, Robert J.; Fittje, James E.; McCurdy, David R.; Qualls, Arthur L.; Schnitzler, Bruce G.; Werner, James E.; Weitzberg, Abraham; Joyner, Claude R.
2015-01-01
The Nuclear Thermal Rocket (NTR) represents the next evolutionary step in cryogenic liquid rocket engines. Deriving its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core, the NTR can generate high thrust at a specific impulse of approx. 900 seconds or more - twice that of today's best chemical rockets. In FY'11, as part of the AISP project, NASA proposed a Nuclear Thermal Propulsion (NTP) effort that envisioned two key activities - "Foundational Technology Development" followed by system-level "Technology Demonstrations". Five near-term NTP activities identified for Foundational Technology Development became the basis for the NCPS project started in FY'12 and funded by NASA's AES program. During Phase 1 (FY'12-14), the NCPS project was focused on (1) Recapturing fuel processing techniques and fabricating partial length "heritage" fuel elements for the two candidate fuel forms identified by NASA and the DOE - NERVA graphite "composite" and the uranium dioxide (UO2) in tungsten "cermet". The Phase 1 effort also included: (2) Engine Conceptual Design; (3) Mission Analysis and Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable and Sustainable NTP Development Strategy. During FY'14, a preliminary plan for DDT&E was outlined by GRC, the DOE and industry for NASA HQ that involved significant system-level demonstration projects that included GTD tests at the NNSS, followed by a FTD mission. To reduce development costs, the GTD and FTD tests use a small, low thrust (approx. 7.5 or 16.5 klbf) engine. Both engines use graphite composite fuel and a "common" fuel element design that is scalable to higher thrust (approx. 25 klbf) engines by increasing the number of elements in a larger diameter core that can produce greater thermal power output. To keep the FTD mission cost down, a simple "1-burn" lunar flyby mission was considered along with maximizing the use of existing and flight proven liquid rocket and stage hardware (e.g., from the RL10-B2 engine and Delta Cryogenic Second Stage) to further ensure affordability. This paper provides a preliminary NASA, DOE and industry assessment of what is required - the key DDT&E activities, development options, and the associated schedule - to affordably build, ground test and fly a small NTR engine and stage within a 10-year timeframe.
NASA Technical Reports Server (NTRS)
Grugel, Richard
2015-01-01
The intent of the work proposed here is to ascertain the viability of ionic liquid (IL) epoxy based carbon fiber composites for use as storage tanks at cryogenic temperatures. This IL epoxy has been specifically developed to address composite cryogenic tank challenges associated with achieving NASA's in-space propulsion and exploration goals. Our initial work showed that an unadulterated ionic liquid (IL) carbon-fiber composite exhibited improved properties over an optimized commercial product at cryogenic temperatures. Subsequent investigative work has significantly improved the IL epoxy and our first carbon-fiber Composite Overwrap Pressure Vessel (COPV) was successfully fabricated. Here additional COPVs, using a further improved IL epoxy, will be fabricated and pressure tested at cryogenic temperatures with the results rigorously analyzed. Investigation of the IL composite for lower pressure liner-less cryogenic tank applications will also be initiated. It is expected that the current Technology Readiness Level (TRL) will be raised from about TRL 3 to TRL 5 where unambiguous predictions for subsequent development/testing can be made.
Petroleum Market Model of the National Energy Modeling System. Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcoholsmore » and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.« less
NASA Astrophysics Data System (ADS)
Pettersson, K. A.
1981-03-01
The conditions for the construction of an economical plant of wet composting are considered. Eleven cu. m. oil were saved when 90,000 SEK were invested. By means of a heat pump the temperature was increased to 600 C. The properties of the manure are improved which simplifies the subsequent handling.
Nontoxic Ionic Liquid Fuels for Exploration Applications
NASA Technical Reports Server (NTRS)
Coil, Millicent
2015-01-01
The toxicity of propellants used in conventional propulsion systems increases not only safety risks to personnel but also costs, due to special handling required during the entire lifetime of the propellants. Orbital Technologies Corporation (ORBITEC) has developed and tested novel nontoxic ionic liquid fuels for propulsion applications. In Phase I of the project, the company demonstrated the feasibility of several ionic liquid formulations that equaled the performance of conventional rocket propellant monomethylhydrazine (MMH) and also provided low volatility and low toxicity. In Phase II, ORBITEC refined the formulations, conducted material property tests, and investigated combustion behavior in droplet and microreactor experiments. The company also explored the effect of injector design on performance and demonstrated the fuels in a small-scale thruster. The ultimate goal is to replace propellants such as MMH with fuels that are simultaneously high-performance and nontoxic. The fuels will have uses in NASA's propulsion applications and also in a range of military and commercial functions.
Nuclear recoil measurements with the ARIS experiment
NASA Astrophysics Data System (ADS)
Fan, Alden; ARIS Collaboration
2017-01-01
As direct dark matter searches become increasingly sensitive, it is important to fully characterize the target of the search. The goal of the Argon Recoil Ionization and Scintillation (ARIS) experiment is to quantify information related to the scintillation and ionization energy scale, quenching factor, ion recombination probability, and scintillation time response of nuclear recoils, as expected from WIMPs, in liquid argon. A time projection chamber with an active mass of 0.5 kg of liquid argon and capable of full 3D position reconstruction was exposed to an inverse kinematic neutron beam at the Institut de Physique Nucleaire d'Orsay in France. A scan of nuclear recoil energies was performed through coincidence with a set of neutron detectors to quantify properties of nuclear recoils in liquid argon at various electric fields. The difference in ionization and scintillation response with differing recoil track angle to the electric field was also studied. The preliminary results of the experiment will be presented.
Ground-Based Icing Condition Remote Sensing System Definition
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Koenig, George G.
2001-01-01
This report documents the NASA Glenn Research Center activities to assess and down select remote sensing technologies for the purpose of developing a system capable of measuring icing condition hazards aloft. The information generated by such a remote sensing system is intended for use by the entire aviation community, including flight crews. air traffic controllers. airline dispatchers, and aviation weather forecasters. The remote sensing system must be capable of remotely measuring temperature and liquid water content (LWC), and indicating the presence of super-cooled large droplets (SLD). Technologies examined include Profiling Microwave Radiometer, Dual-Band Radar, Multi-Band Radar, Ka-Band Radar. Polarized Ka-Band Radar, and Multiple Field of View (MFOV) Lidar. The assessment of these systems took place primarily during the Mt. Washington Icing Sensors Project (MWISP) in April 1999 and the Alliance Icing Research Study (AIRS) from November 1999 to February 2000. A discussion of the various sensing technologies is included. The result of the assessment is that no one sensing technology can satisfy all of the stated project goals. Therefore a proposed system includes radiometry and Ka-band radar. A multilevel approach is proposed to allow the future selection of the fielded system based upon required capability and available funding. The most basic level system would be the least capable and least expensive. The next level would increase capability and cost, and the highest level would be the most capable and most expensive to field. The Level 1 system would consist of a Profiling Microwave Radiometer. The Level 2 system would add a Ka-Band Radar. The Level 3 system would add polarization to the Ka-Band Radar. All levels of the system would utilize hardware that is already under development by the U.S. Government. However, to meet the needs of the aviation community, all levels of the system will require further development. In addition to the proposed system, it is also recommended that NASA continue to foster the development of Multi-Band Radar and airborne microwave radiometer technologies.
X-33 XRS-2200 Linear Aerospike Engine Sea Level Plume Radiation
NASA Technical Reports Server (NTRS)
DAgostino, Mark G.; Lee, Young C.; Wang, Ten-See; Turner, Jim (Technical Monitor)
2001-01-01
Wide band plume radiation data were collected during ten sea level tests of a single XRS-2200 engine at the NASA Stennis Space Center in 1999 and 2000. The XRS-2200 is a liquid hydrogen/liquid oxygen fueled, gas generator cycle linear aerospike engine which develops 204,420 lbf thrust at sea level. Instrumentation consisted of six hemispherical radiometers and one narrow view radiometer. Test conditions varied from 100% to 57% power level (PL) and 6.0 to 4.5 oxidizer to fuel (O/F) ratio. Measured radiation rates generally increased with engine chamber pressure and mixture ratio. One hundred percent power level radiation data were compared to predictions made with the FDNS and GASRAD codes. Predicted levels ranged from 42% over to 7% under average test values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanden Berg, Michael; Morgan, Craig; Chidsey, Thomas
The enclosed report is the culmination of a multi-year and multi-faceted research project investigating Utah’s unconventional tight oil potential. From the beginning, the project team focused efforts on two different plays: (1) the basal Green River Formation’s (GRF) Uteland Butte unconventional play in the Uinta Basin and (2) the more established but understudied Cane Creek shale play in the Paradox Basin. The 2009-2014 high price of crude oil, coupled with lower natural gas prices, generated renewed interest in exploration and development of liquid hydrocarbon reserves. Following the success of the mid-2000s shale gas boom and employing many of the samemore » well completion techniques, petroleum companies started exploring for liquid petroleum in shale formations. In fact, many shales targeted for natural gas include areas in which the shale is more prone to liquid production. In Utah, organic-rich shales in the Uinta and Paradox Basins have been the source of significant hydrocarbon generation, with companies traditionally targeting the interbedded sands or carbonates for their conventional resource recovery. Because of the advances in horizontal drilling and hydraulic fracturing techniques, operators in these basins started to explore the petroleum production potential of the shale units themselves. The GRF in the Uinta Basin has been studied for over 50 years, since the first hydrocarbon discoveries. However, those studies focused on the many conventional sandstone reservoirs currently producing oil and gas. In contrast, less information was available about the more unconventional crude oil production potential of thinner carbonate/shale units, most notably the basal Uteland Butte member. The Cane Creek shale of the Paradox Basin has been a target for exploration periodically since the 1960s and produces oil from several small fields. The play generated much interest in the early 1990s with the successful use of horizontal drilling. Recently, the USGS assessed the undiscovered oil resource in the Cane Creek shale of the Paradox Basin at 103 million barrels at a 95 percent confidence level and 198 million barrels at a 50 percent confidence level. Nonetheless, limited research was available or published to further define the play and the reservoir characteristics. The specific objectives of the enclosed research were to (1) characterize geologic, geochemical, and geomechanical rock properties of target zones in the two designated basins by compiling data and by analyzing available cores, cuttings, and well logs; (2) describe outcrop reservoir analogs of GRF plays (Cane Creek shale is not exposed) and compare them to subsurface data; (3) map major regional trends for targeted intervals and identify “sweet spots” that have the greatest oil potential; (4) reduce exploration costs and drilling risks, especially in environmentally sensitive areas; (5) improve drilling and fracturing effectiveness by determining optimal well completion design; and (6) reduce field development costs, maximize oil recovery, and increase reserves. These objectives are all addressed in a series of nine publications that resulted from this extensive research project. Each publication is included in this report as an independent appendix.« less
Liquid sodium testing of in-house phased array EMAT transducer for L-wave applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Bourdais, F.; Le Polles, T.; Baque, F.
2015-07-01
This paper describes the development of an in-house phased array EMAT transducer for longitudinal wave inspection in liquid sodium. The work presented herein is part of an undergoing project aimed at improving in-service inspection techniques for the ASTRID reactor project. The design process of the phased array EMAT probe is briefly explained and followed by a review of experimental test results. We first present test results obtained in the laboratory while the last part of the paper describes the liquid sodium testing and the produced ultrasound images. (authors)
Reflective liquid crystal light valve with hybrid field effect mode
NASA Technical Reports Server (NTRS)
Boswell, Donald D. (Inventor); Grinberg, Jan (Inventor); Jacobson, Alexander D. (Inventor); Myer, Gary D. (Inventor)
1977-01-01
There is disclosed a high performance reflective mode liquid crystal light valve suitable for general image processing and projection and particularly suited for application to real-time coherent optical data processing. A preferred example of the device uses a CdS photoconductor, a CdTe light absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The non-coherent light image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the AC voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state (voltage off the liquid crystal) and the optical birefringence effect to create the bright on-state. The liquid crystal thus modulates the polarization of the coherent read-out or projection light responsively to the non-coherent image. An analyzer is used to create an intensity modulated output beam.
Temperature-tunable lasing in negative dielectric chiral nematic liquid crystal
NASA Astrophysics Data System (ADS)
Wu, Ri-Na; Wu, Jie; Wu, Xiao-Jiao; Dai, Qin
2015-05-01
In this work, negative dielectric nematic liquid crystal SLC12V620-400, chiral dopant S811, and laser dye DCM are used to prepare dye-doped chiral nematic liquid crystal laser sample. In order to investigate temperature-tunable lasing in negative dielectric chiral nematic liquid crystal, we measure the transmission and lasing spectrum of this sample. The photonic band gap (PBG) is observed to red shift with its width reducing from 71.2 nm to 40.2 nm, and its short-wavelength band edge moves 55.3 nm while the long-wavelength band edge only moves 24.9 nm. The wavelength of output laser is found to red shift from 614.4 nm at 20 °C to 662.8 nm at 67 °C, which is very different from the previous experimental phenomena. The refractive indices, parallel and perpendicular to the director in chiral nematic liquid crystal have different dependencies on temperature. The experiment shows that the pitch of this chiral nematic liquid crystal increases with the increase of temperature. The decrease in the PBG width, different shifts of band edges, and the red shift of laser wavelength are the results of refractive indices change and pitch thermal elongation. Project supported by the National Natural Science Foundation of China (Grant No. 61378042), the Outstanding Young Scholars Growth Plans of Colleges and Universities in Liaoning Province, China (Grant No. LJQ2013022), the Science and Technology Research of Liaoning Province, China (Grant No. L2010465), the Open Funds of Liaoning Province Key Laboratory of Laser and Optical Information of Shenyang Ligong University, China.
World Oil Prices and Production Trends in AEO2010 (released in AEO2010)
2010-01-01
In Annual Energy Outlook 2010, the price of light, low-sulfur (or "sweet") crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. The Energy Information Administration makes projections of future supply and demand for "total liquids,"" which includes conventional petroleum liquids -- such as conventional crude oil, natural gas plant liquids, and refinery gain -- in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.
EERC Center for Biomass Utilization 2008-2010. Phases I-III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zygarlicke, Christopher J.; Hurley, John P.; Auich, Ted R.
The U.S. Department of Energy (DOE) Energy Information Administration (EIA) projects nonhydro renewable electric energy increases of 140% and liquid transportation biofuels growing by 32,200 barrels a day between 2012 and 2040 (U.S. Energy Information Administration, 2014). This is the EIA base case scenario, and this outlook could be a low estimate depending on the many assumptions involved in making such projections, not the least of which are climate change and the resultant legislation. The climate change postulate is based on increasing levels of CO 2 being introduced into the atmosphere through anthropogenic activity such as fossil fuel combustion formore » energy use. Renewable energy, and biomass conversion to energy in particular, is a net-zero CO 2 emission generator. When biomass is converted to energy, it emits CO 2; however, this CO 2 is balanced in a cycle where the production of biomass removes CO 2 from the atmosphere for growth and then releases it back into the atmosphere to be taken up by new growth of biomass feedstocks for energy. In comparison, fossil fuels are examples of CO 2 that has been removed from the atmosphere and sequestered and which, when converted to energy, is a new addition to the atmospheric levels of CO 2, which has been linked to climate change. While recent advances in technology used for extracting oil and gas from tight formations have increased the availability of fossil fuels for energy, the end game needs to focus on providing sustainable energy sources for the United States as well as the world. If, in the future, legislation is enacted that places a fee on atmospheric CO 2 emissions, this may make the use of biomass for energy more economically attractive, increasing its use. Research that focuses on the future sustainability of energy production is part of the answer to bringing about game-changing technologies that can provide energy in a timely, reliable, sustainable fashion.« less
MiX: a position sensitive dual-phase liquid xenon detector
NASA Astrophysics Data System (ADS)
Stephenson, S.; Haefner, J.; Lin, Q.; Ni, K.; Pushkin, K.; Raymond, R.; Schubnell, M.; Shutty, N.; Tarlé, G.; Weaverdyck, C.; Lorenzon, W.
2015-10-01
The need for precise characterization of dual-phase xenon detectors has grown as the technology has matured into a state of high efficacy for rare event searches. The Michigan Xenon detector was constructed to study the microphysics of particle interactions in liquid xenon across a large energy range in an effort to probe aspects of radiation detection in liquid xenon. We report the design and performance of a small 3D position sensitive dual-phase liquid xenon time projection chamber with high light yield (Ly122=15.2 pe/keV at zero field), long electron lifetime (τ > 200 μs), and excellent energy resolution (σ/E = 1% for 1,333 keV gamma rays in a drift field of 200 V/cm). Liquid xenon time projection chambers with such high energy resolution may find applications not only in dark matter direct detection searches, but also in neutrinoless double beta decay experiments and other applications.
NASA Astrophysics Data System (ADS)
Chen, Shu-Hsia; Wu, Shin-Tson
1992-10-01
A broad range of interdisciplinary subjects related to display technologies is addressed, with emphasis on high-definition displays, CRTs, projection displays, materials for display application, flat-panel displays, display modeling, and polymer-dispersed liquid crystals. Particular attention is given to a CRT approach to high-definition television display, a superhigh-resolution electron gun for color display CRT, a review of active-matrix liquid-crystal displays, color design for LCD parameters in projection and direct-view applications, annealing effects on ZnS:TbF3 electroluminescent devices prepared by RF sputtering, polycrystalline silicon thin film transistors with low-temperature gate dielectrics, refractive index dispersions of liquid crystals, a new rapid-response polymer-dispersed liquid-crystal material, and improved liquid crystals for active-matrix displays using high-tilt-orientation layers. (No individual items are abstracted in this volume)
JTEC panel on display technologies in Japan
NASA Technical Reports Server (NTRS)
Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm
1992-01-01
This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).
Impact of electronic-cigarette refill liquid on rat testis.
El Golli, N; Rahali, D; Jrad-Lamine, A; Dallagi, Y; Jallouli, M; Bdiri, Y; Ba, N; Lebret, M; Rosa, J P; El May, M; El Fazaa, S
2016-07-01
Electronic cigarettes (e-cigarettes) are becoming the fashionable alternative to decrease tobacco smoking, although their impact on health has not been fully assessed yet. The present study was designed to compare the impact of e-cigarette refill liquid (e-liquid) without nicotine to e-liquid with nicotine on rat testis. For this purpose, e-liquid with nicotine and e-liquid without nicotine (0.5 mg/kg of body weight) were administered to adult male Wistar rats via the intraperitoneally route during four weeks. Results showed that e-liquid with or without nicotine leads to diminished sperm density and viability, such as a decrease in testicular lactate dehydrogenase activity and testosterone level. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) analysis identified a reduction in cytochrome P450 side-chain cleavage (P450 scc) and 17 beta-hydroxysteroid dehydrogenase (17βHSD) mRNA level, two key enzymes of steroidogenesis. Following e-liquid exposure, histopathological examination showed alterations in testis tissue marked by germ cells desquamation, disorganization of the tubular contents of testis and cell deposits in seminiferous tubules. Finally, analysis of oxidative stress status pointed an outbreak of antioxidant enzyme activities such as superoxide dismutase, catalase and gluthatione-S-transferase, as well as an important increase in sulfhydril group content. Taken together, these results indicate that e-liquid per se induces toxicity in Wistar rat testis, similar to e-liquid with nicotine, by disrupting oxidative balance and steroidogenesis.
Grasso, A.P.
1984-02-21
A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.
Grasso, Albert P.
1986-01-01
A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
10 CFR 609.15 - Default, demand, payment, and collateral liquidation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Default, demand, payment, and collateral liquidation. 609.15 Section 609.15 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS LOAN GUARANTEES FOR PROJECTS THAT EMPLOY INNOVATIVE TECHNOLOGIES § 609.15 Default, demand, payment, and collateral liquidation...
Determination of the mass-transfer coefficient in liquid phase in a stream-bubble contact device
NASA Astrophysics Data System (ADS)
Dmitriev, A. V.; Dmitrieva, O. S.; Madyshev, I. N.
2016-09-01
One of the most effective energy saving technologies is the improvement of existing heat and mass exchange units. A stream-bubble contact device is designed to enhance the operation efficiency of heat and mass exchange units. The stages of the stream-bubble units that are proposed by the authors for the decarbonization process comprise contact devices with equivalent sizes, whose number is determined by the required performance of a unit. This approach to the structural design eliminates the problems that arise upon the transition from laboratory samples to industrial facilities and makes it possible to design the units of any required performance without a decrease in the effectiveness of mass exchange. To choose the optimal design that provides the maximum effectiveness of the mass-exchange processes in units and their intensification, the change of the mass-transfer coefficient is analyzed with the assumption of a number of parameters. The results of the study of the effect of various structural parameters of a stream-bubble contact device on the mass-transfer coefficient in the liquid phase are given. It is proven that the mass-transfer coefficient increases in the liquid phase, in the first place, with the growth of the level of liquid in the contact element, because the rate of the liquid run-off grows in this case and, consequently, the time of surface renewal is reduced; in the second place, with an increase in the slot diameter in the downpipe, because the jet diameter and, accordingly, their section perimeter and the area of the surface that is immersed in liquid increase; and, in the third place, with an increase in the number of slots in the downpipe, because the area of the surface that is immersed in the liquid of the contact element increases. Thus, in order to increase the mass-transfer coefficient in the liquid phase, it is necessary to design the contact elements with a minimum width and a large number of slots and their increased diameter; in this case, the filling degree of contact elements by the liquid must be maximum.
NASA Astrophysics Data System (ADS)
Cai, Haibing; Xu, Liuxun; Yang, Yugui; Li, Longqi
2018-05-01
Artificial liquid nitrogen freezing technology is widely used in urban underground engineering due to its technical advantages, such as simple freezing system, high freezing speed, low freezing temperature, high strength of frozen soil, and absence of pollution. However, technical difficulties such as undefined range of liquid nitrogen freezing and thickness of frozen wall gradually emerge during the application process. Thus, the analytical solution of the freezing-temperature field of a single pipe is established considering the freezing temperature of soil and the constant temperature of freezing pipe wall. This solution is then applied in a liquid nitrogen freezing project. Calculation results show that the radius of freezing front of liquid nitrogen is proportional to the square root of freezing time. The radius of the freezing front also decreases with decreased the freezing temperature, and the temperature gradient of soil decreases with increased distance from the freezing pipe. The radius of cooling zone in the unfrozen area is approximately four times the radius of the freezing front. Meanwhile, the numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe is conducted using the Abaqus finite-element program. Results show that the numerical simulation of soil temperature distribution law well agrees with the analytical solution, further verifies the reliability of the established analytical solution of the liquid nitrogen freezing-temperature field of a single pipe.
Decommissioning of the 247-F Fuel Manufacturing Facility at the Savannah River Site (SRS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Joseph K.; Chostner, Stephen M.
Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980's. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the need for naval fuel declined, the facility was shut down and underwent initial deactivation, which was completed in 1990. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping andmore » equipment systems, a significant volume of liquid remained after initial deactivation. After initial deactivation, a non-destructive assay of the process area identified approximately 17 ({+-}100%) kg of uranium held up in equipment and piping. The facility was placed in Surveillance and Maintenance mode until 2003, when the decision was made to perform final deactivation, and then decommission the facility. The following lessons were learned as a result of the D and D of building 247-F. Successful D and D of a major radiochemical process building requires significant up-front planning by a team of knowledgeable personnel led by a strong project manager. The level of uncertainty and resultant risk to timely, cost effective project execution was found to be high. Examples of the types of problems encountered which had high potential to adversely impact cost and schedule performance are described below. Low level and sanitary waste acceptance criteria do not allow free liquids in waste containers. These liquids, which are often corrosive, must be safely removed from the equipment before it is loaded to waste containers. Drained liquids must be properly managed, often as hazardous or mixed waste. Tapping and draining of process lines is a dangerous operation, which must be performed carefully. The temptation to become complacent when breaking into lines is great. Incidents of personnel exposure to liquids during draining are likely. Records from the initial 1990 deactivation led early work planners to assume the facility was cold, dark and dry. This turned out to be a poor assumption. Work instructions had to be modified to require that engineers evaluate each of several hundred process lines to identify the low point, where a tap and drain system could be installed to allow positive verification that the line was empty before the line was cut for removal. During the period between facility shut down in 1990 and the start of final deactivation in 2003, roof leaks had developed, allowing rain water to enter building 247-F, which provided an environment for mold growth. Sampling confirmed the presence of Stachybotrys chartarum, a toxic indoor mold that grows on wet cellulosic material, such as drywall paper. D and D workers in areas where this hazard was identified were required to where proper personal protective equipment, which complicated work execution. Discovery of the potential presence of uniquely hazardous chemicals such as shock sensitive compounds and toxic uranium hexafluoride became issues which required investigation and special handling strategies. Team access to subject matter experts, who could quickly provide the required guidance for safe material handling, was critical to keeping the project on schedule. In old legacy facilities, it is possible that the D and D workers will be exposed to undocumented energy sources such as energized electrical conductors and pipes containing hazardous materials that originate outside the boundaries of the facility. Significant effort must be expended on adequate mechanical and electrical isolation. Subdividing the facility into well defined zones for which detailed zone-specific end points could be developed proved to be a highly effective project management strategy. Waste management must be carefully planned. The rate of waste generation as the facility is converted from a structure to waste can frequently exceed the D and D team's resources to characterize, package, store and transport the waste to a disposal facility in a timely manner. This can lead to schedule delays and/or increased project cost.« less
Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites
NASA Astrophysics Data System (ADS)
Bennett, Matthew; Leo, Donald
2005-05-01
Ionic liquids have shown promise as replacements for water in ionic polymer transducers. Ionic liquids are non-volatile and have a larger electrochemical stability window than water. Therefore, transducers employing ionic liquids can be operated for long periods of time in air and can be actuated with higher voltages. Furthermore, transducers based on ionic liquids do not exhibit the characteristic back relaxation that is common with water-swollen materials. However, the physics of transduction in the ionic liquid-swollen materials is not well understood. In this paper, the morphology of Nafion/ionic liquid composites is characterized using small-angle X-ray scattering (SAXS). The electromechanical transduction behavior of the composites is also investigated. For this testing, five different counterions and two ionic liquids are used. The results reveal that both the morphology and transduction performance of the composites is affected by the identity of the ionic liquid, the cation, and the swelling level of ionic liquid within the membrane. Specifically, speed of response is found to be lower for the membranes that were exchanged with the smaller lithium and potassium ions. The response speed is also found to increase with increased content of ionic liquid. Furthermore, for the two ionic liquids studied, the actuators swollen with the less viscous ionic liquid exhibited a slower response. The slower speed of response corresponds to less contrast between the ionically conductive phase and the inert phase of the polymer. This suggests that disruption of the clustered morphology in the ionic liquid-swollen membranes as compared to water-swollen membranes attenuates ion mobility within the polymer. This attenuation is attributed to swelling of the non-conductive phase by the ionic liquids.
A study of waste liquid crystal display generation in mainland China.
Liu, Zhifeng; Xu, Zeying; Huang, Haihong; Li, Bingbing
2016-01-01
The generation of liquid crystal display waste is becoming a serious social problem. Predicting liquid crystal display waste status is the foundation for establishing a recycling network; however, the difficulty in predicting liquid crystal display waste quantity lies in data mining. In order to determine the quantity and the distribution of liquid crystal display waste in China, the four top-selling liquid crystal display products (liquid crystal display TVs, desktop PCs, notebook PCs, and mobile phones) were selected as study objects. Then, the extended logistic model and market supply A method was used to predict the quantity of liquid crystal display waste products. Moreover, the distribution of liquid crystal display waste products in different regions was evaluated by examining the consumption levels of household equipment. The results revealed that the quantity of waste liquid crystal displays would increase rapidly in the next decade. In particular, the predicted quantity of waste liquid crystal displays would rise to approximately 4.262 × 10(9) pieces in 2020, and the total display area (i.e. the surface area of liquid crystal display panels) of waste liquid crystal displays would reach 5.539 × 10(7) m(2). The prediction on the display area of waste liquid crystal display TVs showed that it would account for 71.5% of the total display area by 2020. Meanwhile, the quantity of waste mobile phones would significantly grow, increasing 5.8 times from 2012 to 2020. In terms of distribution, Guangdong is the top waste liquid crystal display-generating province in China, followed by Jiangsu, Shandong, Henan, Zhejiang, and Sichuan. Considering its regional characteristics, Guangdong has been proposed to be the most important location of the recycling network. © The Author(s) 2015.
Substitute fluid examinations for liquid manure
NASA Astrophysics Data System (ADS)
Schrader, Kevin; Riedel, Marco; Eichert, Helmut
For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.
Luc, John E; Pang, Wenjing; Crow, William T; Giblin-Davis, Robin M
2010-06-01
The effect of nematode population density at the time of application and formulations of in vitro-produced Pasteuria spp. endospores on the final population density of Belonolaimus longicaudatus was studied in an 84-d-long pot bioassay. The experiment utilized a factorial design consisting of 30 or 300 B. longicaudatus /100 cm(3) of sandy soil and three formulations of in vitro-produced Pasteuria spp. endospores (nontreated, granular, or liquid). No differences were observed in percent endospore attachment between nematode inoculum levels during either trial. Granular and liquid formulations of in vitro-produced endospores suppressed nematode population densities by 22% and 59% in the first trial and 20% and 63% in the second, respectively compared with the nontreated control. The liquid formulation increased percent endospore attachment by 147% and 158%, respectively, compared with the granular formulation. The greatest root retention by the host plant was observed at the lower B. longicaudatus inoculation level following application of the liquid formulation. While both the granular and liquid formulations reduced B. longicaudatus population densities in the soil, the liquid spore suspension was most effective.
Luc, John E.; Pang, Wenjing; Crow, William T.; Giblin-Davis, Robin M.
2010-01-01
The effect of nematode population density at the time of application and formulations of in vitro-produced Pasteuria spp. endospores on the final population density of Belonolaimus longicaudatus was studied in an 84-d-long pot bioassay. The experiment utilized a factorial design consisting of 30 or 300 B. longicaudatus /100 cm3 of sandy soil and three formulations of in vitro-produced Pasteuria spp. endospores (nontreated, granular, or liquid). No differences were observed in percent endospore attachment between nematode inoculum levels during either trial. Granular and liquid formulations of in vitro-produced endospores suppressed nematode population densities by 22% and 59% in the first trial and 20% and 63% in the second, respectively compared with the nontreated control. The liquid formulation increased percent endospore attachment by 147% and 158%, respectively, compared with the granular formulation. The greatest root retention by the host plant was observed at the lower B. longicaudatus inoculation level following application of the liquid formulation. While both the granular and liquid formulations reduced B. longicaudatus population densities in the soil, the liquid spore suspension was most effective. PMID:22736843
Feedback control impedance matching system using liquid stub tuner for ion cyclotron heating
NASA Astrophysics Data System (ADS)
Nomura, G.; Yokota, M.; Kumazawa, R.; Takahashi, C.; Torii, Y.; Saito, K.; Yamamoto, T.; Takeuchi, N.; Shimpo, F.; Kato, A.; Seki, T.; Mutoh, T.; Watari, T.; Zhao, Y.
2001-10-01
A long pulse discharge more than 2 minutes was achieved using Ion Cyclotron Range of Frequency (ICRF) heating only on the Large Helical Device (LHD). The final goal is a steady state operation (30 minutes) at MW level. A liquid stub tuner was newly invented to cope with the long pulse discharge. The liquid surface level was shifted under a high RF voltage operation without breakdown. In the long pulse discharge the reflected power was observed to gradually increase. The shift of the liquid surface was thought to be inevitably required at the further longer discharge. An ICRF heating system consisting of a liquid stub tuner was fabricated to demonstrate a feedback control impedance matching. The required shift of the liquid surface was predicted using a forward and a reflected RF powers as well as the phase difference between them. A liquid stub tuner was controlled by the multiprocessing computer system with CINOS (CHS Integration No Operating System) methods. The prime objective was to improve the performance of data processing and controlling a signal response. By employing this method a number of the program steps was remarkably reduced. A real time feedback control was demonstrated in the system using a temporally changed electric resistance.
Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis
NASA Astrophysics Data System (ADS)
Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A. B. A.
2017-07-01
One of the main consequences of mean sea level rise (SLR) on human settlements is an increase in flood risk due to an increase in the intensity and frequency of extreme sea levels (ESL). While substantial research efforts are directed towards quantifying projections and uncertainties of future global and regional SLR, corresponding uncertainties in contemporary ESL have not been assessed and projections are limited. Here we quantify, for the first time at global scale, the uncertainties in present-day ESL estimates, which have by default been ignored in broad-scale sea-level rise impact assessments to date. ESL uncertainties exceed those from global SLR projections and, assuming that we meet the Paris agreement goals, the projected SLR itself by the end of the century in many regions. Both uncertainties in SLR projections and ESL estimates need to be understood and combined to fully assess potential impacts and adaptation needs.
NASA Astrophysics Data System (ADS)
Kopp, Robert E.; DeConto, Robert M.; Bader, Daniel A.; Hay, Carling C.; Horton, Radley M.; Kulp, Scott; Oppenheimer, Michael; Pollard, David; Strauss, Benjamin H.
2017-12-01
Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.
NASA Technical Reports Server (NTRS)
Kopp, Robert E.; DeConto, Robert M.; Bader, Daniel A.; Hay, Carling C.; Horton, Radley M.; Kulp, Scott; Oppenheimer, Michael; Pollard, David; Strauss, Benjamin
2017-01-01
Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.
NASA Astrophysics Data System (ADS)
Tao, R.; Tang, H.
Chocolate is one of the most popular food types and flavors in the world. Unfortunately, at present, chocolate products contain too much fat, leading to obesity. For example, a typical molding chocolate has various fat up to 40% in total and chocolate for covering ice cream has fat 50 -60%. Especially, as children are the leading chocolate consumers, reducing the fat level in chocolate products to make them healthier is important and urgent. While this issue was called into attention and elaborated in articles and books decades ago and led to some patent applications, no actual solution was found unfortunately. Why is reducing fat in chocolate so difficult? What is the underlying physical mechanism? We have found that this issue is deeply related to the basic science of soft matters, especially to their viscosity and maximally random jammed (MRJ) density φx. All chocolate productions are handling liquid chocolate, a suspension with cocoa solid particles in melted fat, mainly cocoa butter. The fat level cannot be lower than 1-φxin order to have liquid chocolate to flow. Here we show that that with application of an electric field to liquid chocolate, we can aggregate the suspended particles into prolate spheroids. This microstructure change reduces liquid chocolate's viscosity along the flow direction and increases its MRJ density significantly. Hence the fat level in chocolate can be effectively reduced. We are looking forward to a new class of healthier and tasteful chocolate coming to the market soon. Dept. of Physics, Temple Univ, Philadelphia, PA 19122.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
... Available Liquidity Resources November 28, 2012. Pursuant to Section 19(b)(1) of the Securities Exchange Act... available liquidity resources. II. Self-Regulatory Organization's Statement of Purpose of, and Statutory..., including where a Clearing Member's projected settlement obligations could exceed OCC's available liquidity...
40 CFR 61.271 - Emission standard.
Code of Federal Regulations, 2010 CFR
2010-07-01
... provide a projection below the liquid surface. Except for automatic bleeder vents, rim space vents, roof... floating roof means a cover that rests on the liquid surface (but not necessarily in complete contact with... floating on the liquid surface at all times, except during initial fill and during those intervals when the...
40 CFR 61.271 - Emission standard.
Code of Federal Regulations, 2014 CFR
2014-07-01
... provide a projection below the liquid surface. Except for automatic bleeder vents, rim space vents, roof... floating roof means a cover that rests on the liquid surface (but not necessarily in complete contact with... floating on the liquid surface at all times, except during initial fill and during those intervals when the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Douglas
2012-06-01
Project Independence proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Wisconsin Rapids, isconsin. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage Wisconsin System Incorporated’s Wisconsin Rapids Mill, and when in full operation would both generate renewable energy for Wisconsin Rapids Mill and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compellingmore » new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with biomass being harvested, sized, conditioned and fed into a ThermoChem Recovery International (TRI) steam reformer where it is converted to high quality synthetic gas (syngas). The syngas is then cleaned, compressed, scrubbed, polished and fed into the Fischer-Tropsch (F-T) catalytic reactors where the gas is converted into two, sulfur-free, clean crude products which will be marketed as revenue generating streams. Additionally, the Fischer-Tropsch products could be upgraded for use in automotive, aviation and chemical industries as valuable products, if desired. As the Project Independence project set out to prove forest products could be used to commercially produce biofuels, they planned to address and mitigate issues as they arose. In the early days of the Project Independence project, the plant was sized to process 500 dry tons of biomass per day but would generate a blend of synthesis gas for the lime kiln and a minimum of Fischer-Tropsch liquids for sale. This was to be done using a single stage of Fischer-Tropsch reaction at roughly a 70% yield. The capability of the Wisconsin Rapids Mill lime kiln to run on the relatively low heating value of the product synthesis gas was problematic. The design was then changed to maximize Fischer-Tropsch liquids production using a two stage Fischer-Tropsch process. Project Independence progressed with the design of the mill as ThermoChem Recovery International worked on the technical details of the project as well as develop information from their pilot plant. The pilot plant work uncovered several problems with the synthesis gas clean-up that solutions. ThermoChem Recovery International found these solutions and developed a very good path forward on the technical side. The technical solutions were demonstrated in the pilot plant to everyone’s satisfaction. In July 2010, NewPage Corporation had been severely affected by the downturn in the economy and actively went to find a strategic partner. By April 2011 the Abell Foundation entered the picture as this strategic partner. The Abell Foundation would join forces as Project Independence Inc. to build the 500 dry ton per day Project Independence plant. The design of this facility progress even after NewPage Corporation declared Chapter 11 Bankruptcy protection in September, 2011. This continued until April 2012 when NewPage Corporation determined that continued work on Project Independence Inc. presented too much risk with little reward for NewPage Corporation. The project was terminated at this point.« less
NASA Astrophysics Data System (ADS)
Kay, Jennifer E.; Bourdages, Line; Miller, Nathaniel B.; Morrison, Ariel; Yettella, Vineel; Chepfer, Helene; Eaton, Brian
2016-04-01
Spaceborne lidar observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite are used to evaluate cloud amount and cloud phase in the Community Atmosphere Model version 5 (CAM5), the atmospheric component of a widely used state-of-the-art global coupled climate model (Community Earth System Model). By embedding a lidar simulator within CAM5, the idiosyncrasies of spaceborne lidar cloud detection and phase assignment are replicated. As a result, this study makes scale-aware and definition-aware comparisons between model-simulated and observed cloud amount and cloud phase. In the global mean, CAM5 has insufficient liquid cloud and excessive ice cloud when compared to CALIPSO observations. Over the ice-covered Arctic Ocean, CAM5 has insufficient liquid cloud in all seasons. Having important implications for projections of future sea level rise, a liquid cloud deficit contributes to a cold bias of 2-3°C for summer daily maximum near-surface air temperatures at Summit, Greenland. Over the midlatitude storm tracks, CAM5 has excessive ice cloud and insufficient liquid cloud. Storm track cloud phase biases in CAM5 maximize over the Southern Ocean, which also has larger-than-observed seasonal variations in cloud phase. Physical parameter modifications reduce the Southern Ocean cloud phase and shortwave radiation biases in CAM5 and illustrate the power of the CALIPSO observations as an observational constraint. The results also highlight the importance of using a regime-based, as opposed to a geographic-based, model evaluation approach. More generally, the results demonstrate the importance and value of simulator-enabled comparisons of cloud phase in models used for future climate projection.
Multivariate analysis of light scattering spectra of liquid dairy products
NASA Astrophysics Data System (ADS)
Khodasevich, M. A.
2010-05-01
Visible light scattering spectra from the surface layer of samples of commercial liquid dairy products are recorded with a colorimeter. The principal component method is used to analyze these spectra. Vectors representing the samples of dairy products in a multidimensional space of spectral counts are projected onto a three-dimensional subspace of principal components. The magnitudes of these projections are found to depend on the type of dairy product.
NASA Astrophysics Data System (ADS)
Lamer, K.; Fridlind, A. M.; Luke, E. P.; Tselioudis, G.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.
2016-12-01
The presence of supercooled liquid in clouds affects surface radiative and hydrological budgets, especially at high latitudes. Capturing these effects is crucial to properly quantifying climate sensitivity. Currently, a number of CGMs disagree on the distribution of cloud phase. Adding to the challenge is a general lack of observations on the continuum of clouds, from high to low-level and from warm to cold. In the current study, continuous observations from 2011 to 2014 are used to evaluate all clouds produced by the GISS ModelE GCM over the ARM North Slope of Alaska site. The International Satellite Cloud Climatology Project (ISCCP) Global Weather State (GWS) approach reveals that fair-weather (GWS 7, 32% occurrence rate), as well as mid-level storm related (GWS 5, 28%) and polar (GWS 4, 14%) clouds, dominate the large-scale cloud patterns at this high latitude site. At higher spatial and temporal resolutions, ground-based cloud radar observations reveal a majority of single layer cloud vertical structures (CVS). While clear sky and low-level clouds dominate (each with 30% occurrence rate) a fair amount of shallow ( 10%) to deep ( 5%) convection are observed. Cloud radar Doppler spectra are used along with depolarization lidar observations in a neural network approach to detect the presence, layering and inhomogeneity of supercooled liquid layers. Preliminary analyses indicate that most of the low-level clouds sampled contain one or more supercooled liquid layers. Furthermore, the relationship between CVS and the presence of supercooled liquid is established, as is the relationship between the presence of supercool liquid and precipitation susceptibility. Two approaches are explored to bridge the gap between large footprint GCM simulations and high-resolution ground-based observations. The first approach consists of comparing model output and ground-based observations that exhibit the same column CVS type (i.e. same cloud depth, height and layering). Alternatively, the second approach consists of comparing model output and ground-based observations that exhibit the same large-scale GWS type (i.e. same cloud top pressure and optical depth patterns) where ground-based observations are associated to large-scale GWS every 3 hours using the closest satellite overpass.
US/Australia Collaborative Research Project on Corrosion Fatigue in D6AC Steel Joints
1978-12-01
Life of Exposure Groups at 80,000 psi Max Load Level (R=0.1) 77 10 Location of Observable Fatigue Cracks on Failed D6AC Steel Specimen Surfaces 78 11...ing the machining and assembly process. Such liquids might have a serious deleterious effect on the fatigue life of the aircraft. Further, there was...control tests were to provide a base for determining the various corrosion effects on fatigue life , and to deter- mine any differences in laboratory
Hamman, Josheph J; Hamlet, Alan F.; Fuller, Roger; Grossman, Eric E.
2016-01-01
Current understanding of the combined effects of sea level rise (SLR), storm surge, and changes in river flooding on near-coastal environments is very limited. This project uses a suite of numerical models to examine the combined effects of projected future climate change on flooding in the Skagit floodplain and estuary. Statistically and dynamically downscaled global climate model scenarios from the ECHAM-5 GCM were used as the climate forcings. Unregulated daily river flows were simulated using the VIC hydrology model, and regulated river flows were simulated using the SkagitSim reservoir operations model. Daily tidal anomalies (TA) were calculated using a regression approach based on ENSO and atmospheric pressure forcing simulated by the WRF regional climate model. A 2-D hydrodynamic model was used to estimate water surface elevations in the Skagit floodplain using resampled hourly hydrographs keyed to regulated daily flood flows produced by the reservoir simulation model, and tide predictions adjusted for SLR and TA. Combining peak annual TA with projected sea level rise, the historical (1970–1999) 100-yr peak high water level is exceeded essentially every year by the 2050s. The combination of projected sea level rise and larger floods by the 2080s yields both increased flood inundation area (+ 74%), and increased average water depth (+ 25 cm) in the Skagit floodplain during a 100-year flood. Adding sea level rise to the historical FEMA 100-year flood resulted in a 35% increase in inundation area by the 2040's, compared to a 57% increase when both SLR and projected changes in river flow were combined.
NASA Astrophysics Data System (ADS)
Marques, Carlos A. F.; Peng, Gang-Ding; Webb, David J.
2015-05-01
Liquid-level sensing technologies have attracted great prominence, because such measurements are essential to industrial applications, such as fuel storage, flood warning and in the biochemical industry. Traditional liquid level sensors are based on electromechanical techniques; however they suffer from intrinsic safety concerns in explosive environments. In recent years, given that optical fiber sensors have lots of well-established advantages such as high accuracy, costeffectiveness, compact size, and ease of multiplexing, several optical fiber liquid level sensors have been investigated which are based on different operating principles such as side-polishing the cladding and a portion of core, using a spiral side-emitting optical fiber or using silica fiber gratings. The present work proposes a novel and highly sensitive liquid level sensor making use of polymer optical fiber Bragg gratings (POFBGs). The key elements of the system are a set of POFBGs embedded in silicone rubber diaphragms. This is a new development building on the idea of determining liquid level by measuring the pressure at the bottom of a liquid container, however it has a number of critical advantages. The system features several FBG-based pressure sensors as described above placed at different depths. Any sensor above the surface of the liquid will read the same ambient pressure. Sensors below the surface of the liquid will read pressures that increase linearly with depth. The position of the liquid surface can therefore be approximately identified as lying between the first sensor to read an above-ambient pressure and the next higher sensor. This level of precision would not in general be sufficient for most liquid level monitoring applications; however a much more precise determination of liquid level can be made by linear regression to the pressure readings from the sub-surface sensors. There are numerous advantages to this multi-sensor approach. First, the use of linear regression using multiple sensors is inherently more accurate than using a single pressure reading to estimate depth. Second, common mode temperature induced wavelength shifts in the individual sensors are automatically compensated. Thirdly, temperature induced changes in the sensor pressure sensitivity are also compensated. Fourthly, the approach provides the possibility to detect and compensate for malfunctioning sensors. Finally, the system is immune to changes in the density of the monitored fluid and even to changes in the effective force of gravity, as might be obtained in an aerospace application. The performance of an individual sensor was characterized and displays a sensitivity (54 pm/cm), enhanced by more than a factor of 2 when compared to a sensor head configuration based on a silica FBG published in the literature, resulting from the much lower elastic modulus of POF. Furthermore, the temperature/humidity behavior and measurement resolution were also studied in detail. The proposed configuration also displays a highly linear response, high resolution and good repeatability. The results suggest the new configuration can be a useful tool in many different applications, such as aircraft fuel monitoring, and biochemical and environmental sensing, where accuracy and stability are fundamental.
Proteomic alterations induced by ionic liquids in Aspergillus nidulans and Neurospora crassa.
Martins, Isabel; Hartmann, Diego O; Alves, Paula C; Planchon, Sébastien; Renaut, Jenny; Leitão, M Cristina; Rebelo, Luís P N; Silva Pereira, Cristina
2013-12-06
This study constitutes the first attempt to understand at the proteomic level the fungal response to ionic liquid stress. Ascomycota are able to grow in media supplemented with high concentrations of an ionic liquid, which, in turn, lead to major alterations in the fungal metabolic footprint. Herein, we analysed the differential accumulation of mycelial proteins in Aspergillus nidulans and Neurospora crassa after their exposure to two of the most commonly used ionic liquids: 1-ethyl-3-methylimidazolium chloride or cholinium chloride. Data obtained showed that numerous stress-responsive proteins (e.g. anti-ROS defence proteins) as well as several critical biological processes and/or pathways were affected by either ionic liquid. Amongst other changes, these compounds altered developmental programmes in both fungi (e.g. promoting the development of Hülle cells or conidiation) and led to accumulation of osmolytes, some of which may play an important role in multiple stress responses. In particular, in N. crassa, both ionic liquids increased the levels of proteins which are likely involved in the biosynthesis of unusual metabolites. These data potentially open new perspectives on ionic liquid research, furthering their conscious design and their use to trigger production of targeted metabolites. The present study emphasises the importance of understanding ionic liquid's stress responses, crucial to further their safe large-scale usage. Knowledge of the alterations prompted at a cellular and biochemical level gives also fresh perspectives on how to employ these "novel" compounds to manipulate proteins or pathways of biotechnological value. The results presented here provide meaningful insights into the understanding of fungi stress and adaptation responses to anthropogenic chemicals used in industry. © 2013.
Effect of Hibiscus sabdariffa on obesity in MSG mice.
Alarcon-Aguilar, Francisco J; Zamilpa, Alejandro; Perez-Garcia, Ma Dolores; Almanza-Perez, Julio C; Romero-Nuñez, Eunice; Campos-Sepulveda, Efrain A; Vazquez-Carrillo, Laura I; Roman-Ramos, Ruben
2007-10-08
The aim of the present investigation was determine whether a standardized Hibiscus sabdariffa calyces aqueous extract has an effect on body weight in an obese animal model induced by the administration of monosodium glutamate. Hibiscus sabdariffa aqueous extract, containing 33.64 mg of total anthocyanins per each 120 mg of extract, was orally administered (120 mg/kg/day) for 60 days to healthy and obese mice, and body weight gain, food and liquid intake, aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol, and triglycerides levels were measured. Hibiscus sabdariffa administration significantly reduced body weight gain in obese mice and increased liquid intake in healthy and obese mice. ALT levels were significantly increased on the 15th and 45th days in obese mice, but AST levels did not show significant changes. Mortality was not observed in the Hibiscus sabdariffa treated groups. Triglycerides and cholesterol levels showed non-significant reductions in animals treated with Hibiscus sabdariffa. Our data confirm the anti-obesity effect of Hibiscus sabdariffa reported by the Mexican population.
Improvements in Ice-Sheet Sea-Level Projections
NASA Technical Reports Server (NTRS)
Shepherd, Andrew; Nowicki, Sophie
2017-01-01
Ice losses from Antarctica and Greenland are the largest uncertainty in sea-level projections. Nevertheless, improvements in ice-sheet models over recent decades have led to closer agreement with satellite observations, keeping track with their increasing contribution to global sea-level rise.
Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics
NASA Technical Reports Server (NTRS)
Griffin, DeVon W.; Marshall, Keneth L.
2002-01-01
The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal tends to become more transparent, thus introducing a rather large amount of error into the phase-shifting measurement. While that error can be greatly reduced by normalization, we prefer eliminating the source of the error. To that end, we have pursued development of a 'blend' of custom dyes that will not exhibit these properties. That goal has not yet been fully achieved. Guardalben, et al, presented a similar set of interferograms in a paper partially funded by this grant. Shearing interferometers are a second class of common path interferometers. Typically they consist of a thick glass plate optimized for equal reflection from the front and back surface. While not part of the original thrust of the project, through the course of laboratory work, we demonstrated a prototype of a shearing interferometer capable of phase shifting using a commercial liquid crystal retardation plate. A schematic of this liquid crystal shearing interferometer (LCSI) and a sample set of interferograms are in the reference. This work was also supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. Additional information is included in the original extended abstract.
Pad B Liquid Hydrogen Storage Tank
NASA Technical Reports Server (NTRS)
Hall, Felicia
2007-01-01
Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.
Characterizing Droplet Formation from Non-Linear Slosh in a Propellant Tank
NASA Technical Reports Server (NTRS)
Brodnick, Jacob; Yang, Hong; West, Jeffrey
2015-01-01
The Fluid Dynamics Branch (ER42) at the Marshall Space Flight Center (MSFC) was tasked with characterizing the formation and evolution of liquid droplets resulting from nonlinear propellant slosh in a storage tank. Lateral excitation of propellant tanks can produce high amplitude nonlinear slosh waves through large amplitude excitations and or excitation frequencies near a resonance frequency of the tank. The high amplitude slosh waves become breaking waves upon attaining a certain amplitude or encountering a contracting geometry such as the upper dome section of a spherical tank. Inherent perturbations in the thinning regions of breaking waves result in alternating regions of high and low pressure within the fluid. Droplets form once the force from the local pressure differential becomes larger than the force maintaining the fluid interface shape due to surface tension. Droplets released from breaking waves in a pressurized tank may lead to ullage collapse given the appropriate conditions due to the increased liquid surface area and thus heat transfer between the fluids. The goal of this project is to create an engineering model that describes droplet formation as a function of propellant slosh for use in the evaluation of ullage collapse during a sloshing event. The Volume of Fluid (VOF) model in the production level Computational Fluid Dynamics (CFD) code Loci-Stream was used to predict droplet formation from breaking waves with realistic surface tension characteristics. Various excitation frequencies and amplitudes were investigated at multiple fill levels for a single storage tank to create the engineering model of droplet formation from lateral propellant slosh.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, W.J.; Brown, W.R.; Siwajek, L.
1998-09-01
The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfillmore » gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.« less
21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that is...
21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that is...
21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that is...
21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that is...
21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that is...
NASA Technical Reports Server (NTRS)
1987-01-01
The design course is an eight semester credit multi-disciplinary engineering design course taught primarily to Engineering Science, Aerospace, Electrical and Mechanical Engineering seniors. This year the course project involved the design of the three interrelated loops: atmospheric, liquid nutrient and solid waste management, associated with growing higher plants to support man during long-term space missions. The project is complementary to the NASA Kennedy Space Center Controlled Environmental Life Support System (CELSS) project. The first semester the class worked on a preliminary design for a complete system. This effort included means for monitoring and control of composition, temperature, flow rate, etc., for the atmosphere and liquid nutrient solution; disease and contaminant monitoring and control; plant mechanical support, propagation and harvesting; solid and liquid waste recycling; and system maintenance and refurbishing. The project has significant biological, mechanical, electrical and Al/Robotics aspects. The second semester a small number of subsystems or components, identified as important and interesting during the first semester, were selected for detail design, fabrication, and testing. The class was supported by close cooperation with The Kennedy Space Center and by two teaching assistants. The availability of a dedicated, well equipped project room greatly enhanced the communication and team spirit of the class.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, P. D., E-mail: grigorev@itp.ac.ru; Dyugaev, A. M.; Lebedeva, E. V.
2008-02-15
The temperature dependence of electron mobility is examined. We calculate the contribution to the electron scattering rate from the surface level atoms (SLAs), proposed in [10]. This contribution is substantial at low temperatures T < 0.5, when the He vapor concentration is exponentially small. We also study the effect of depopulation of the lowest energy subband, which leads to an increase in the electron mobility at high temperature. The results explain certain long-standing discrepancies between the existing theory and experiment on electron mobility on the surface of liquid helium.
Composite Materials for Maxillofacial Prostheses.
1980-08-01
projected composite systems are elastomeric-shelled, liquid-filled * microcapsules . Experiments continued on the interfacial polymerization process with...filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules achieved. Needs identified are...consists of liquid-filled, elastomeric-shelled microcapsules held together to form a deformable mass; this is to simulate the semi-liquid cellular structure
Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas
2014-04-01
Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All rights reserved.
Janaki R. R. Alavalapati; Pankaj Lal; Andres Susaeta; Robert C. Abt; David N. Wear
2013-01-01
Key FindingsHarvesting woody biomass for use as bioenergy is projected to range from 170 million to 336 million green tons by 2050, an increase of 54 to 113 percent over current levels.Consumption projections for forest biomass-based energy, which are based on Energy Information Administration projections, have a high level of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries,more » product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.« less
Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Howard; Zhou, S James; Ding, Yong
2012-03-31
This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separationmore » membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating solvents. GTI and PGC have developed a nanoporous and superhydrophobic PEEK-based hollow fiber membrane contactor tailored for the membrane contactor/solvent absorption application for syngas cleanup. The membrane contactor modules were scaled up to 8-inch diameter commercial size modules. We have performing extensive laboratory and bench testing using pure gases, simulated water-gas-shifted (WGS) syngas stream, and a slipstream from a gasification derived syngas from GTI's Flex-Fuel Test Facility (FFTF) gasification plant under commercially relevant conditions. The team have also carried out an engineering and economic analysis of the membrane contactor process to evaluate the economics of this technology and its commercial potential. Our test results have shown that 90% CO{sub 2} capture can be achieved with several physical solvents such as water and chilled methanol. The rate of CO{sub 2} removal by the membrane contactor is in the range of 1.5 to 2.0 kg/m{sup 2}/hr depending on the operating pressures and temperatures and depending on the solvents used. The final economic analysis has shown that the membrane contactor process will cause the cost of electricity to increase by 21% from the base plant without CO{sub 2} capture. The goal of 10% increase in levelized cost of electricity (LCOE) from base DOE Case 1(base plant without capture) is not achieved by using the membrane contactor. However, the 21% increase in LCOE is a substantial improvement as compared with the 31.6% increase in LCOE as in DOE Case 2(state of art capture technology using 2-stages of Selexol{TM}).« less
2007-02-08
was employed to study the vapor cavitation during liquid carbon dioxide expansion through a sharp-orifice nozzle. Numerical experiments demonstrated...Combustion Dynamics for 6b. GRANT NUMBER Liquid Propellants at Supercritical Conditions FA9550-04-1-0014 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...fundamental knowledge of supercritical combustion of liquid propellants under conditions representative of contemporary rocket engines. Both shear and
Low gravity liquid level sensor rake
NASA Technical Reports Server (NTRS)
Grayson, Gary D. (Inventor); Craddock, Jeffrey C. (Inventor)
2003-01-01
The low gravity liquid level sensor rake measures the liquid surface height of propellant in a propellant tank used in launch and spacecraft vehicles. The device reduces the tendency of the liquid propellant to adhere to the sensor elements after the bulk liquid level has dropped below a given sensor element thereby reducing the probability of a false liquid level measurement. The liquid level sensor rake has a mast attached internal to a propellant tank with an end attached adjacent the tank outlet. Multiple sensor elements that have an arm and a sensor attached at a free end thereof are attached to the mast at locations selected for sensing the presence or absence of the liquid. The sensor elements when attached to the mast have a generally horizontal arm and a generally vertical sensor.
US North Slope gas and Asian LNG markets
Attanasi, E.D.
1994-01-01
Prospects for export of liquified natural gas (LNG) from Alaska's North Slope are assessed. Projected market conditions to 2010 show that new LNG capacity beyond announced expansions will be needed to meet regional demand and that supplies will probably come from outside the region. The estimated delivered costs of likely suppliers show that Alaska North Slope gas will not be competitive. The alternative North Slope gas development strategies of transport and sale to the lower 48 states and use on the North Slope for either enhanced oil recovery or conversion to liquids are examined. The alternative options require delaying development until US gas prices increase, exhaustion of certain North Slope oil fields, or advances occur in gas to liquid fuels conversion technology. ?? 1995.
An Analysis of the Second Project High Water Data
NASA Technical Reports Server (NTRS)
Woodbridge, David D.; Lasater, James A.; Fultz, Bennett M.; Clark, Richard E.; Wylie, Nancy
1963-01-01
Early in 1962 NASA established "Project High Water" to investigate the sudden release of large quantities of water into the upper atmosphere. The primary objectives of these experiments were to obtain information on the behavior of liquids released in the ionosphere and the localized effects on the ionosphere produced by the injection of large quantities of water. The data obtained in the two (2) Project High Water experiments have yielded an extensive amount of information concerning the complex phenomena associated with the sudden release of liquids in the Ionosphere. The detailed analysis of data obtained during the second Project High Water experiment (i.e., the third Saturn I vehicle test or SA-3) presented in this report demonstrates that the objectives of the Project High Water were achieved. In addition, the Project High Water has provided essential information relevant to a number of problems vital to manned explorations of space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasley, J.N.; Rice, R.L.; McCullough, S.S.
The role of gastrointestinal peptides in eating disorders has yet to be determined. Methods: In this study we examined plasma levels of gastrin (G), cholecystokinin (CCK), and pancreatic polypeptide (PP) in adolescent anorexic, and obese female subjects hospitalized for feeding behavior disorders. Six anorexic, six obese and six control young females (ages 13-26) were studied after an overnight fast and after consuming a liquid test meal. The liquid test meal (Ensure, Ross Laboratories; Columbus OH) consisted of 14% calories as protein, 31.5% calories as fat and 54.5% calories as carbohydrate in a 240ml volume. Plasma levels of gastrointestinal peptides, G,more » CCK and PP were determined by specific radioimmunoassay. The data were analyzed by one way analysis of variance and the Student's t-test. Results: show that fasting levels of G were greater in control and obese groups than the anorexic subjects. Postprandial G levels for controls were higher than the anorexic, and obese groups respectively. When fasting and postprandial G levels were compared among the same groups only the controls increased after eating. Fasting CCK levels were lower in control and anorexic groups than the obese group. Postprandial CCK levels were higher among control patients compared to anorexic and obese subjects. When fasting and postprandial CCK levels were compared among groups, only control levels increased after eating. Fasting and postprandial PP levels were not different between groups. Postprandial PP levels increased over fasting PP levels only in controls.« less
Specialist gelator for ionic liquids.
Hanabusa, Kenji; Fukui, Hiroaki; Suzuki, Masahiro; Shirai, Hirofusa
2005-11-08
Cyclo(l-beta-3,7-dimethyloctylasparaginyl-L-phenylalanyl) (1) and cyclo(L-beta-2-ethylhexylasparaginyl-L-phenylalanyl) (2), prepared from L-asparaginyl-L-phenylalanine methyl ester, have been found to be specialist gelators for ionic liquids. They can gel a wide variety of ionic liquids, including imizazolium, pyridinium, pyrazolidinium, piperidinium, morpholinium, and ammonium salts. The mean minimum gel concentrations (MGCs) necessary to make gels at 25 degrees C were determined for ionic liquids. The gel strength increased at a rate nearly proportional to the concentration of added gelator. The strength of the transparent gel of 1-butylpyridinium tetrafluoroborate ([C(4)py]BF(4)), prepared at a concentration of 60 g L(-1) (gelator 1/[C(4)py]BF(4)), was ca. 1500 g cm(-2). FT-IR spectroscopy indicated that a driving force for gelation was intermolecular hydrogen bonding between amides and that the phase transition from gel to liquid upon heating was brought about by the collapse of hydrogen bonding. The gels formed from ionic liquids were very thermally stable; no melting occurs up to 140 degrees C when the gels were prepared at a concentration of 70 g L(-1) (gelator/ionic liquid). The ionic conductivities of the gels were nearly the same as those of pure ionic liquids. The gelator had electrochemical stability and a wide electrochemical window. When the gels were prepared from ionic liquids containing propylene carbonate, the ionic conductivities of the resulting gels increased to levels rather higher than those of pure ionic liquids. The gelators also gelled ionic liquids containing supporting electrolytes.
1981-01-01
The Space Shuttle main propulsion system includes three major elements. One of those elements is the External Tank (ET). The ET holds over one-half million gallons of liquid oxygen and liquid hydrogen that fuel the main engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Broad Funding Opportunity Announcement Project: Led by MIT professor Donald Sadoway, the Electroville project team is creating a community-scale electricity storage device using new materials and a battery design inspired by the aluminum production process known as smelting. A conventional battery includes a liquid electrolyte and a solid separator between its 2 solid electrodes. MIT’s battery contains liquid metal electrodes and a molten salt electrolyte. Because metals and salt don’t mix, these 3 liquids of different densities naturally separate into layers, eliminating the need for a solid separator. This efficient design significantly reduces packaging materials, which reduces cost and allowsmore » more space for storing energy than conventional batteries offer. MIT’s battery also uses cheap, earth-abundant, domestically available materials and is more scalable. By using all liquids, the design can also easily be resized according to the changing needs of local communities.« less
Free-surface liquid jet impingement on rib patterned superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Maynes, D.; Johnson, M.; Webb, B. W.
2011-05-01
We report experimental results characterizing the dynamics of a liquid jet impinging normally on hydrophilic, hydrophobic, and superhydrophobic surfaces spanning the Weber number (based on the jet velocity and diameter) range from 100 to 1900. The superhydrophobic surfaces are fabricated with both hydrophobically coated silicon and polydimethylsiloxane that exhibit alternating microribs and cavities. For all surfaces a transition from a thin radially moving liquid sheet occurs. This takes the form of the classical hydraulic jump for the hydrophilic surfaces but is markedly different for the hydrophobic and superhydrophobic surfaces, where the transition is significantly influenced by surface tension and a break-up into droplets is observed at high Weber number. For the superhydrophobic surfaces, the transition exhibits an elliptical shape with the major axis being aligned parallel to the ribs, concomitant with the frictional resistance being smaller in the parallel direction than in the transverse direction. However, the total projected area of the ellipse exhibits a nearly linear dependence on the jet Weber number, and was nominally invariant with varying hydrophobicity and relative size of the ribs and cavities. For the hydrophobic and superhydrophobic scenarios, the local Weber number based on the local radial velocity and local depth of the radially moving liquid sheet is observed to be of order unity at the transition location. The results also reveal that for increasing relative size of the cavities, the ratio of the ellipse axis (major-to-minor) increases.
Design of a 2000 lbf LOX/LCH4 Throttleable Rocket Engine for a Vertical Lander
NASA Astrophysics Data System (ADS)
Lopez, Israel
Liquid oxygen (LOX) and liquid methane (LCH4) has been recognized as an attractive rocket propellant combination because of its in-situ resource utilization (ISRU) capabilities, namely in Mars. ISRU would allow launch vehicles to carry greater payloads and promote missions to Mars. This has led to an increasing interest to develop spacecraft technologies that employ this propellant combination. The UTEP Center for Space Exploration and Technology Research (cSETR) has focused part of its research efforts to developing LOX/LCH4 systems. One of those projects includes the development of a vertical takeoff and landing vehicle called JANUS. This vehicle will employ a LOX/LCH 4 propulsion system. The main propulsion engine is called CROME-X and is currently being developed as part of this project. This rocket engine will employ LOX/LCH4 propellants and is intended to operate from 2000-500 lbf thrust range. This thesis describes the design and development of CROME-X. Specifically, it describes the design process for the main engine components, the design criteria for each, and plans for future engine development.
NASA Technical Reports Server (NTRS)
Durian, Douglas J.; Zimmerli, Gregory A.
2002-01-01
The Foam Optics and Mechanics (FOAM) project will exploit the microgravity environment to more accurately measure the rheological and optical characteristics of wet aqueous foams. Using both rheology and laser light scattering diagnostics, the goal is to quantify the unusual elastic character of foams in terms of their underlying microscopic structure and dynamics. Of particular interest is determining how the elastic character vanishes, i.e., how the foam 'melts' into a simple viscous liquid, as a function of both increasing liquid content and increasing shear strain rate. The unusual elastic character of foams will be quantified macroscopically by measurement of the shear stress as a function of shear strain rate and of time following a step strain. Such data will be analyzed in terms of a yield stress, shear moduli, and dynamical time scales. Microscopic information about bubble packing and rearrangement dynamics, from which the macroscopic non-Newtonian properties ultimately arise, will be obtained non-invasively by multiple-light scattering: diffuse transmission spectroscopy (DTS) and diffusing wave spectroscopy (DWS). Quantitative trends with materials parameters, most importantly average bubble size and liquid content, will be sought in order to elucidate the fundamental connection between the microscopic structure and dynamics and the macroscopic rheology.
Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer
NASA Astrophysics Data System (ADS)
Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore
2017-11-01
The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.
Electron Attenuation Measurement using Cosmic Ray Muons at the MicroBooNE LArTPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meddage, Varuna
2017-10-01
The MicroBooNE experiment at Fermilab uses liquid argon time projection chamber (LArTPC) technology to study neutrino interactions in argon. A fundamental requirement for LArTPCs is to achieve and maintain a low level of electronegative contaminants in the liquid to minimize the capture of drifting ionization electrons. The attenuation time for the drifting electrons should be long compared to the maximum drift time, so that the signals from particle tracks that generate ionization electrons with long drift paths can be detected efficiently. In this talk we present MicroBooNE measurement of electron attenuation using cosmic ray muons. The result yields a minimummore » electron 1/e lifetime of 18 ms under typical operating conditions, which is long compared to the maximum drift time of 2.3 ms.« less
Monitoring xenon purity in the LUX detector with a mass spectrometry system
NASA Astrophysics Data System (ADS)
Balajthy, Jon; LUX Experiment Collaboration
2015-04-01
The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. To monitor for radioactive impurities such as krypton and impurities which limit charge yield such as oxygen, LUX uses a xenon sampling system consisting of a mass spectrometer and a liquid nitrogen cold trap. The cold trap separates the gaseous impurities from a small sample of xenon and allows them to pass to the mass spectrometer for analysis. We report here on results from the LUX xenon sampling program. We also report on methods to enhance the sensitivity of the cold trap technique in preparation for the next-generation LUX-ZEPLIN experiment which will have even more stringent purity requirements.
Performance of NCAP projection displays
NASA Astrophysics Data System (ADS)
Jones, Philip J.; Tomita, Akira; Wartenberg, Mark
1991-08-01
Prototypes of projection displays based on dispersions of liquid crystal in polymer matrices are beginning to appear. The principle of operation depends on electrically switchable light scattering. They are potentially much brighter than current cathode ray tube (CRT) or twisted nematic liquid crystal (TN LC) cell based displays. Comparisons of efficacy and efficiency show this. The contrast and brightness of such displays depend on a combination of the f- number of the projection system and the scattering characteristics of the light valve. Simplified equations can be derived to show these effects. The degree of scattering of current NCAP formulations is sufficient to produce good contrast projection displays, at convenient voltages, that are around three times brighter than TN LC projectors because of the lack of polarizers in the former.
NASA Astrophysics Data System (ADS)
Rasyid, B.
2018-05-01
Soil quality and plant productivity are main issue in agriculture production. The purpose of this research was to obtain sustainable crop management in effort to improve soil quality and increase maize production through collaboration of liquid bio-ameliorant and compost. Field experiment was carried out in two planting season with factorial experimental design replicated three times in 2m x 2m plots. Duncan multiple range test was used to analysis the effect of treatment on all parameters evaluated. The first planting season, treatments were arranged in three factors as: (1) planting space with two spaces, (2) three concentration of liquid bio-ameliorant, and (3) three level of urea fertilizer. The second planting season, treatments were arranged in two factors as: (1) liquid bio-ameliorant (LBA) with four concentrations and (2) compost with four levels. In the first season, result showed in soil quality parameters such as microbial density and soil chemical properties increased approximately 28%. The highest yield of 9.00 ton ha-1 was found in application 300 ml l-1 LBA + urea 240 kg ha-1. In the second season, collaboration treatment of 250 ml l-1 LBA + 10 ton ha-1 compost had the highest yield by 10.47 ton ha-1. This study confirmed that collaboration of liquid bio-ameliorant and compost could be used as fertilizer complement and reducing inorganic fertilizer utilization to sustain crop production and soil quality.
46 CFR 154.1305 - Liquid level gauging system: Standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level gauging system: Standards. 154.1305 Section...
46 CFR 154.1305 - Liquid level gauging system: Standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level gauging system: Standards. 154.1305 Section...
46 CFR 154.1305 - Liquid level gauging system: Standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level gauging system: Standards. 154.1305 Section...
46 CFR 154.1305 - Liquid level gauging system: Standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level gauging system: Standards. 154.1305 Section...
46 CFR 154.1305 - Liquid level gauging system: Standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level gauging system: Standards. 154.1305 Section...
Supercomputing Aspects for Simulating Incompressible Flow
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kris, Cetin C.
2000-01-01
The primary objective of this research is to support the design of liquid rocket systems for the Advanced Space Transportation System. Since the space launch systems in the near future are likely to rely on liquid rocket engines, increasing the efficiency and reliability of the engine components is an important task. One of the major problems in the liquid rocket engine is to understand fluid dynamics of fuel and oxidizer flows from the fuel tank to plume. Understanding the flow through the entire turbo-pump geometry through numerical simulation will be of significant value toward design. One of the milestones of this effort is to develop, apply and demonstrate the capability and accuracy of 3D CFD methods as efficient design analysis tools on high performance computer platforms. The development of the Message Passage Interface (MPI) and Multi Level Parallel (MLP) versions of the INS3D code is currently underway. The serial version of INS3D code is a multidimensional incompressible Navier-Stokes solver based on overset grid technology, INS3D-MPI is based on the explicit massage-passing interface across processors and is primarily suited for distributed memory systems. INS3D-MLP is based on multi-level parallel method and is suitable for distributed-shared memory systems. For the entire turbo-pump simulations, moving boundary capability and efficient time-accurate integration methods are built in the flow solver, To handle the geometric complexity and moving boundary problems, an overset grid scheme is incorporated with the solver so that new connectivity data will be obtained at each time step. The Chimera overlapped grid scheme allows subdomains move relative to each other, and provides a great flexibility when the boundary movement creates large displacements. Two numerical procedures, one based on artificial compressibility method and the other pressure projection method, are outlined for obtaining time-accurate solutions of the incompressible Navier-Stokes equations. The performance of the two methods is compared by obtaining unsteady solutions for the evolution of twin vortices behind a flat plate. Calculated results are compared with experimental and other numerical results. For an unsteady flow, which requires small physical time step, the pressure projection method was found to be computationally efficient since it does not require any subiteration procedure. It was observed that the artificial compressibility method requires a fast convergence scheme at each physical time step in order to satisfy the incompressibility condition. This was obtained by using a GMRES-ILU(0) solver in present computations. When a line-relaxation scheme was used, the time accuracy was degraded and time-accurate computations became very expensive.
High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gygi, Francois; Galli, Giulia; Schwegler, Eric
This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solarmore » energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex systems relevant to energy conversion devices.« less
Process for stabilization of coal liquid fractions
Davies, Geoffrey; El-Toukhy, Ahmed
1987-01-01
Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.
Atomic and electronic structures of an extremely fragile liquid.
Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi
2014-12-18
The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.
Atomic and electronic structures of an extremely fragile liquid
Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T.; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi
2014-01-01
The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia–Thornton number–number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr–O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr–O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid. PMID:25520236
Emery, R J
1997-03-01
Institutional radiation safety programs routinely use wipe test sampling and liquid scintillation counting analysis to indicate the presence of removable radioactive contamination. Significant volumes of liquid waste can be generated by such surveillance activities, and the subsequent disposal of these materials can sometimes be difficult and costly. In settings where large numbers of negative results are regularly obtained, the limited grouping of samples for analysis based on expected value statistical techniques is possible. To demonstrate the plausibility of the approach, single wipe samples exposed to varying amounts of contamination were analyzed concurrently with nine non-contaminated samples. Although the sample grouping inevitably leads to increased quenching with liquid scintillation counting systems, the effect did not impact the ability to detect removable contamination in amounts well below recommended action levels. Opportunities to further improve this cost effective semi-quantitative screening procedure are described, including improvements in sample collection procedures, enhancing sample-counting media contact through mixing and extending elution periods, increasing sample counting times, and adjusting institutional action levels.
Zambonin, C G; Aresta, A; Palmisano, F; Specchia, G; Liso, V
1999-12-01
A simple reversed-phase liquid chromatographic (LC) method for the determination of urinary 5-methyl-2'-deoxycytidine (m5dCyd), recently claimed (on the basis of an imuno-technique) to be a potential marker for leukaemia, has been developed. Sample pre-treatment is based on a microcolumn clean-up step with an average recovery of 79% and a RSD of 3%. Detection limit was 0.2 microg/ml which is about tenfold lower than levels previously measured by an ELISA method in urine of healthy individuals. The creatinine (Cre) excretion, necessary for normalising the m5dCyd excretion, was evaluated by ion-pair liquid chromatography which permitted the simultaneous determination of pseudouridine (psi), a modified nucleoside also potentially useful as a marker for leukaemia. The described LC procedures were applied to the analysis of urine samples from healthy individuals and leukaemia patients. While the urinary psi/Cre ratio was found significantly increased for leukaemia patients, the urinary m5dCyd levels in healthy individuals were below the detection limits and did not increase in presence of the malignant disease.
Effect of MMF stub on the sensitivity of a photonic crystal fiber interferometer sensor at 1550 nm
NASA Astrophysics Data System (ADS)
Dhara, P.; Singh, Vinod K.
2015-01-01
A simple photonic crystal fiber (PCF) based Mach-Zehnder interferometric sensor is reported for sensing the refractive index and level of liquid. The sensing head is formed by all-fiber in-line single mode-multi mode-photonic crystal-single mode fiber structure using the fusion splicing method. The interferometric pattern, observed in the PCF interferometer using monochromatic source and temperature sensing arrangement, is novel and reported for the first time to the best of our knowledge. The refractive index sensitivity of the interferometric device is increased by using multimode fiber. The output intensity at the end of lead-out single mode fiber decreases with increase in refractive index of surrounding. The index sensitivities of the interferometric devices are 440.32 μw/RIU, 267.48 μw/RIU and 195.36 μw/RIU with sensing length 2.10 cm, 5.50 cm and 7.20 cm respectively. A 7.20 cm longed PCF sensor exhibits liquid level sensitivities -1.032 μw/cm, -1.197 μw/cm, and -1.489 μw/cm for three different liquid respectively.
Methane digester for wastewater grown aquatic plants. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-01-01
The purpose of this project was to build and test a small-scale, prototype anaerobic digester using wastewater grown aquatic plants as feed stock. Two 150 gal. digesters of the horizontal ''bag'' shape were constructed and fed with water hyacinths and duckweed plants grown on wastewater. Bio-films were added to increase methane bacteria surface attachment area, and solar heating was used to increase operating temperatures. Repeated difficulties were encountered with the low cost materials and construction techniques used, causing leaks of liquids and methane gas, and in the solar heat exchanger. As a consequence, no reliable data were obtained on performance.more » Due to an inadequate budget, the project was terminated without making construction changes needed to properly operate the system for a long period of time. 15 refs., 7 figs.« less
NASA Astrophysics Data System (ADS)
Takizawa, Kuniharu
A novel three-dimensional (3-D) projection display used with polarized eyeglasses is proposed. It consists of polymer-dispersed liquid crystal-light valves that modulate the illuminated light based on light scattering, a polarization beam splitter, and a Schlieren projection system. The features of the proposed display include a 3-D image display with a single projector, half size and half power consumption compared with a conventional 3-D projector with polarized glasses. Measured electro-optic characteristics of a polymer-dispersed liquid-crystal cell inserted between crossed polarizers suggests that the proposed display achieves small cross talk and high-extinction ratio.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
... a liquid form at an existing natural gas facility in North Dakota. The ethane that would be... maintenance of pipeline facilities of natural gas liquids and also evaluates reasonable alternatives to the... Pipeline Project would be an underground high vapor pressure pipeline that would carry liquid ethane from...
Tailored Assembly of 2D Heterostructures beyond Graphene
2017-05-11
liquid crystal and catalyst application. Another important approach we have explored during this project is the solution phase assembly of two...graphene oxide, and its potential functionalities in liquid crystal and catalyst application. Another important approach we have explored during...exfoliation, liquid phase exfoliation, and chemical vapor deposition, and opened up new opportunities to graphene based platform for novel
Projection display industry market and technology trends
NASA Astrophysics Data System (ADS)
Castellano, Joseph A.; Mentley, David E.
1995-04-01
The projection display industry is diverse, embracing a variety of technologies and applications. In recent years, there has been a high level of interest in projection displays, particularly those using LCD panels or light valves because of the difficulty in making large screen, direct view displays. Many developers feel that projection displays will be the wave of the future for large screen HDTV (high-definition television), penetrating the huge existing market for direct view CRT-based televisions. Projection displays can have the images projected onto a screen either from the rear or the front; the main characteristic is their ability to be viewed by more than one person. In addition to large screen home television receivers, there are numerous other uses for projection displays including conference room presentations, video conferences, closed circuit programming, computer-aided design, and military command/control. For any given application, the user can usually choose from several alternative technologies. These include CRT front or rear projectors, LCD front or rear projectors, LCD overhead projector plate monitors, various liquid or solid-state light valve projectors, or laser-addressed systems. The overall worldwide market for projection information displays of all types and for all applications, including home television, will top DOL4.6 billion in 1995 and DOL6.45 billion in 2001.
Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Schannwell, C.; Barrand, N. E.; Radic, V.
2016-12-01
Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. Here the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. The British Antarctic Survey Antarctic Peninsula Ice Sheet Model (BAS-APISM), previously shown to be suitable for the unique topographic setting from the AP, is forced by temperature output from 13 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to the high greenhouse gas emission scenario (Representative Concentration Pathway (RCP)8.5), simulations project contribution to SLR of 28±16 to 32±16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers ( ˜8-18 mm). In this cooler scenario, 2.4±1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ˜70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11±2 and 32±16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR. Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. Here the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. The British Antarctic Survey Antarctic Peninsula Ice Sheet Model (BAS-APISM), previously shown to be suitable for the unique topographic setting from the AP, is forced by temperature output from 13 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to the high greenhouse gas emission scenario (Representative Concentration Pathway (RCP)8.5), simulations project contribution to SLR of 28±16 to 32±16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers ( ˜8-18 mm). In this cooler scenario, 2.4±1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ˜70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11±2 and 32±16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR.
Effect of gravity on liquid plug transport through an airway bifurcation model.
Zheng, Y; Anderson, J C; Suresh, V; Grotberg, J B
2005-10-01
Many medical therapies require liquid plugs to be instilled into and delivered throughout the pulmonary airways. Improving these treatments requires a better understanding of how liquid distributes throughout these airways. In this study, gravitational and surface mechanisms determining the distribution of instilled liquids are examined experimentally using a bench-top model of a symmetrically bifurcating airway. A liquid plug was instilled into the parent tube and driven through the bifurcation by a syringe pump. The effect of gravity was adjusted by changing the roll angle (phi) and pitch angle (gamma) of the bifurcation (phi = gamma =0 deg was isogravitational). Phi determines the relative gravitational orientation of the two daughter tubes: when phi not equal to 0 deg, one daughter tube was lower (gravitationally favored) compared to the other. Gamma determines the component of gravity acting along the axial direction of the parent tube: when gamma not equal to 0 deg, a nonzero component of gravity acts along the axial direction of the parent tube. A splitting ratio Rs, is defined as the ratio of the liquid volume in the upper daughter to the lower just after plug splitting. We measured the splitting ratio, Rs, as a function of: the parent-tube capillary number (Cap); the Bond number (Bo); phi; gamma; and the presence of pre-existing plugs initially blocking either daughter tube. A critical capillary number (Cac) was found to exist below which no liquid entered the upper daughter (Rs = 0), and above which Rs increased and leveled off with Cap. Cac increased while Rs decreased with increasing phi, gamma, and Bo for blocked and unblocked cases at a given Cap > Ca,. Compared to the nonblockage cases, Rs decreased (increased) at a given Cap while Cac increased (decreased) with an upper (lower) liquid blockage. More liquid entered the unblocked daughter with a blockage in one daughter tube, and this effect was larger with larger gravity effect. A simple theoretical model that predicts Rs and Cac is in qualitative agreement with the experiments over a wide range of parameters.
NASA Technical Reports Server (NTRS)
Henneberry, Hugh M.; Snyder, Christopher A.
1993-01-01
An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.
46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...
46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...
46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...
46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...
46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...
Remote sensing of liquid level measurement using Fiber Bragg grating sensor
NASA Astrophysics Data System (ADS)
Sengupta, Dipankar; Shankar, M. Sai; Srimannarayana, K.; Vengal Rao, P.
2013-09-01
The present work proposes a simple low cost sensor head design making use of FBG sensor, for the measurement of liquid level. The sensor head consists of a lever, a buoyancy tube and an FBG. The lever is used to transfer the buoyancy force due to change in liquid level to the FBG resulting in shift in Bragg wavelength. The Flexibility of this design enables to measure the liquid level in an open or closed tank. The arrangement shows that liquid level sensitivity is high and is 10.7pm/mm.
Tokarz, Richard D.
1983-01-01
A liquid level sensing device comprising a load cell supporting a column or stack of segments freely resting on one another. The density of each element is substantially identical to that of the surrounding liquid. The elements are freely guided within a surrounding tube. As each element is exposed above the liquid level, its weight will be impressed through the column to the load cell, thereby providing a signal at the load cell directly proportional to the liquid level elevation.
Shibata, Katsumi; Nakata, Chifumi; Fukuwatari, Tsutomu
2016-01-01
B-group vitamins are involved in the catabolism of 2-oxo acids. To identify the functional biomarkers of B-group vitamins, we developed a high-performance liquid chromatographic method for profiling 2-oxo acids in urine and applied this method to urine samples from rats deficient in vitamins B1 and B6 and pantothenic acid. 2-Oxo acids were reacted with 1,2-diamino-4,5-methylenebenzene to produce fluorescent derivatives, which were then separated using a TSKgel ODS-80Ts column with 30 mmol/L of KH2PO4 (pH 3.0):acetonitrile (7:3) at a flow rate of 1.0 mL/min. Vitamin B1 deficiency increased urinary levels of all 2-oxo acids, while vitamin B6 deficiency only increased levels of sum of 2-oxaloacetic acid and pyruvic acid, and pantothenic acid deficiency only increased levels of 2-oxoisovaleric acid. Profiles of 2-oxo acids in urine samples might be a non-invasive way of clarifying the functional biomarker of B-group vitamins.
Fission Surface Power Technology Development Update
NASA Technical Reports Server (NTRS)
Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott
2011-01-01
Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, T. J.; MacVean, S. A.; Szlis, K. A.
2002-02-26
This paper describes the progress on cleanup of the West Valley Demonstration Project (WVDP), an environmental management project located south of Buffalo, NY. The WVDP was the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States (1966 to 1972). Former fuel reprocessing operations generated approximately 600,000 gallons of liquid high-level radioactive waste stored in underground tanks. The U.S. Congress passed the WVDP Act in 1980 (WVDP Act) to authorize cleanup of the 220-acre facility. The facility is unique in that it sits on the 3,345-acre Western New York Nuclear Service Center (WNYNSC), whichmore » is owned by New York State through the New York State Energy Research and Development Authority (NYSERDA). The U.S. Department of Energy (DOE) has overall responsibility for the cleanup that is authorized by the WVDP Act, paying 90 percent of the WVDP costs; NYSERDA pays 10 percent. West Valley Nuclear Services Company (WVNSCO) is the management contractor at the WVDP. This paper will provide a description of the many accomplishments at the WVDP, including the pretreatment and near completion of vitrification of all the site's liquid high-level radioactive waste, a demonstration of technologies to characterize the remaining material in the high-level waste tanks, the commencement of decontamination and decommissioning (D&D) activities to place the site in a safe configuration for long-term site management options, and achievement of several technological firsts. It will also include a discussion of the complexities involved in completing the WVDP due to the various agency interests that require integration for future cleanup decisions.« less
NASA Astrophysics Data System (ADS)
Kopp, R. E., III; Delgado, M.; Horton, R. M.; Houser, T.; Little, C. M.; Muir-Wood, R.; Oppenheimer, M.; Rasmussen, D. M., Jr.; Strauss, B.; Tebaldi, C.
2014-12-01
Global mean sea level (GMSL) rise projections are insufficient for adaptation planning; local decisions require local projections that characterize risk over a range of timeframes and tolerances. We present a global set of local sea level (LSL) projections to inform decisions on timescales ranging from the coming decades through the 22nd century. We present complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling [1]. We illustrate the application of this framework by estimating the joint distribution of future sea-level change and coastal flooding, and associated economic costs [1,2]. In much of the world in the current century, differences in median LSL projections are due primarily to varying levels of non-climatic uplift or subsidence. In the 22nd century and in the high-end tails, larger ice sheet contributions, particularly from the Antarctic ice sheet (AIS), contribute significantly to site-to-site differences. Uncertainty in GMSL and most LSL projections is dominated by the uncertain AIS component. Sea-level rise dramatically reshapes flood risk. For example, at the New York City (Battery) tide gauge, our projections indicate a likely (67% probability) 21st century LSL rise under RCP 8.5 of 65--129 cm (1-in-20 chance of exceeding 154 cm). Convolving the distribution of projected sea-level rise with the extreme value distribution of flood return periods indicates that this rise will cause the current 1.80 m `1-in-100 year' flood event to occur an expected nine times over the 21st century -- equivalent to the expected number of `1-in-11 year' floods in the absence of sea-level change. Projected sea-level rise for 2100 under RCP 8.5 would likely place 80-160 billion of current property in New York below the high tide line, with a 1-in-20 chance of losses >190 billion. Even without accounting for potential changes in storms themselves, it would likely increase average annual storm damage by 2.6-5.2 billion (1-in-20 chance of >7 billion). Projected increases in tropical cyclone intensity would further increase damages [2]. References: [1] R. E. Kopp et al. (2014), Earth's Future, doi:10.1002/2014EF000239. [2] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org.
Barone, Michele; Iannone, Andrea; Brunetti, Natale Daniele; Sebastiani, Francesco; Cecere, Onofrio; Berardi, Elsa; Antonica, Gianfranco; Di Leo, Alfredo
2015-05-01
The correlation between liver stiffness (LS) variations and portal blood flow (PBF) modifications induced by a standardized liquid meal consumption and the clinical relevance of this matter are two aspects not yet fully elucidated. Herein, we evaluated the variations of LS and PBF after a standardized liquid meal intake in patients with chronic liver disease. PBF and LS were determined after an overnight fasting period in 54 patients. They were divided in three groups according to baseline LS (absent, moderate, and severe). They consumed 200 ml of water and a standardized liquid meal (300 Kcal/200 ml) after 60 min. PBF and LS were measured at 30 min after water and liquid meal consumption. In all groups, LS and PBF values significantly increased only after meal consumption. A significant correlation between baseline LS values and post-meal increase of LS was observed. Moreover, higher basal stiffness values were associated to a larger increase of LS variation after meal consumption. The effect of the meal on LS remained statistically significant after multiple regression analysis. A significant correlation between increase of LS and PBF was found in patients with absent and moderate baseline LS. Nine patients (17%) switched from a lower to a higher level of LS after meal consumption. A low calories/low-volume meal is capable of significantly increasing LS regardless of the grade of stiffness, determining a reclassification rate of 17%. In presence of minimal or moderate stiffness, the increase of LS is significantly correlated with the augment of PBF.
Coaxial cavity for measuring level of liquid in a container
Booman, Glenn L.; Phelps, Frank R.
1979-01-01
A method and means for measuring the level of a liquid in a container. A coaxial cavity having a perforated outer conductor is partially submerged in the liquid in the container wherein the liquid enters and terminates the annular region of the coaxial cavity. The fundamental resonant frequency of the portion of the coaxial cavity which does not contain liquid is determined experimentally and is used to calculate the length of the liquid-free portion of the coaxial cavity and thereby the level of liquid in the container.
Update on the MiniCLEAN dark matter experiment
Rielage, K.; Akashi-Ronquest, M.; Bodmer, M.; ...
2015-03-24
The direct search for dark matter is entering a period of increased sensitivity to the hypothetical Weakly Interacting Massive Particle (WIMP). One such technology that is being examined is a scintillation only noble liquid experiment, MiniCLEAN. MiniCLEAN utilizes over 500 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter and serves as a demonstration for a future detector of order 50 to 100 tonnes. The liquid cryogen is interchangeable between argon and neon to study the A² dependence of the potential signal and examine backgrounds. MiniCLEAN utilizes a unique modular design with spherical geometry to maximize themore » light yield using cold photomultiplier tubes in a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron recoil backgrounds. MiniCLEAN will be spiked with additional ³⁹Ar to demonstrate the effective reach of the pulse shape discrimination capability. Assembly of the experiment is underway at SNOLAB and an update on the project is given.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, R.L.
1995-12-31
The United States has vast natural gas reserves which could contribute significantly to our energy security if economical technologies for conversion to liquid fuels and chemicals were developed. Many of these reserves are small scale or in remote locations and of little value unless they can be transported to consumers. Transportation is economically performed via pipeline, but this route is usually unavailable in remote locations. Another option is to convert the methane in the gas to liquid hydrocarbons, such as methanol, which can easily and economically be transported by truck. Therefore, the conversion of methane to liquid hydrocarbons has themore » potential to decrease our dependence upon oil imports by opening new markets for natural gas and increasing its use in the transportation and chemical sectors of the economy. In this project, we are attempting to develop, and explore new catalysts capable of direct oxidation of methane to methanol. The specific objectives of this work are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rielage, K.; Akashi-Ronquest, M.; Bodmer, M.
The direct search for dark matter is entering a period of increased sensitivity to the hypothetical Weakly Interacting Massive Particle (WIMP). One such technology that is being examined is a scintillation only noble liquid experiment, MiniCLEAN. MiniCLEAN utilizes over 500 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter and serves as a demonstration for a future detector of order 50 to 100 tonnes. The liquid cryogen is interchangeable between argon and neon to study the A² dependence of the potential signal and examine backgrounds. MiniCLEAN utilizes a unique modular design with spherical geometry to maximize themore » light yield using cold photomultiplier tubes in a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron recoil backgrounds. MiniCLEAN will be spiked with additional ³⁹Ar to demonstrate the effective reach of the pulse shape discrimination capability. Assembly of the experiment is underway at SNOLAB and an update on the project is given.« less
EIA model documentation: Petroleum market model of the national energy modeling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-28
The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supplymore » for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.« less
Internal Corrosion Detection in Liquids Pipelines
DOT National Transportation Integrated Search
2012-01-01
PHMSA project DTRS56-05-T-0005 "Development of ICDA for Liquid Petroleum Pipelines" led to the development of a Direct Assessment (DA) protocol to prioritize locations of possible internal corrosion. The underlying basis LP-ICDA is simple; corrosion ...
Future of Liquid Biofuels for APEC Economies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milbrandt, A.; Overend, R. P.
2008-05-01
This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.
ERIC Educational Resources Information Center
Dindial, Myrna J.
This practicum was designed to increase higher level thinking skills of gifted students in primary school. The project sought to retrain students from recalling science information from the textbook to a more challenging and active form of learning through individual projects and small group and large group activities. Students were given…
Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joan F. Brennecke; Mihir Sen; Edward J. Maginn
2009-01-11
The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILsmore » appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.« less
Gim, Yeonghyeon; Ko, Han Seo
2016-04-15
In this Letter, a three-dimensional (3D) optical correction method, which was verified by simulation, was developed to reconstruct droplet-based flow fields. In the simulation, a synthetic phantom was reconstructed using a simultaneous multiplicative algebraic reconstruction technique with three detectors positioned at the synthetic object (represented by the phantom), with offset angles of 30° relative to each other. Additionally, a projection matrix was developed using the ray tracing method. If the phantom is in liquid, the image of the phantom can be distorted since the light passes through a convex liquid-vapor interface. Because of the optical distortion effect, the projection matrix used to reconstruct a 3D field should be supplemented by the revision ray, instead of the original projection ray. The revision ray can be obtained from the refraction ray occurring on the surface of the liquid. As a result, the error on the reconstruction field of the phantom could be reduced using the developed optical correction method. In addition, the developed optical method was applied to a Taylor cone which was caused by the high voltage between the droplet and the substrate.
The use of the German V-2 in US for upper atmosphere research
NASA Technical Reports Server (NTRS)
Curtis, S. A.
1979-01-01
Early U.S. space experiments involving the liquid propellant German V-2 are discussed. Although the primary objective of the experiments conducted under project Hermes after World War II was initially the development of missile technology, scientific objectives were soon given the priority. The missile was modified for scientific experiments and the payload increased from 6.8% to 47% between 1946 and 1949. Among other instruments, the payload included a cosmic ray telescope, ionosphere transmitter and spectrograph for solar spectral measurements. While the scientific success of the program established a positive public attitude towards space research, the Upper Atmosphere Research Panel, formed to coordinate the project, set a pattern for future scientific advisory bodies.
GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard S. Meyer
A new project was initiated this quarter to develop gas/liquid membranes for natural gas upgrading. Efforts have concentrated on legal agreements, including alternative field sites. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbingmore » liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less
Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.
2012-07-31
Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed tomore » mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.« less
Secchi, Francesca; Zwieniecki, Maciej A.
2012-01-01
It is assumed that the refilling of drought-induced embolism requires the creation of an osmotic gradient between xylem parenchyma cells and vessel lumens to generate the water efflux needed to fill the void. To assess the mechanism of embolism repair, it is crucial to determine if plants can up-regulate the efflux of osmotically active substances into embolized vessels and identify the major components of the released osmoticum. Here, we introduce a new approach of sap collection designed to separate water from nonembolized (functional) and embolized (nonfunctional) vessels. This new approach made possible the chemical analysis of liquid collected from both types of vessels in plants subjected to different levels of water stress. The technique also allowed us to determine the water volumes in nonfunctional vessels as a function of stress level. Overall, with the increase of water stress in plants, the osmotic potential of liquid collected from nonfunctional vessels increased while its volume decreased. These results revealed the presence of both sugars and ions in nonfunctional vessels at elevated levels in comparison with liquid collected from functional vessels, in which only traces of sugars were found. The increased sugar concentration was accompanied by decreased xylem sap pH. These results provide new insight into the biology of refilling, underlining the role of sugar and sugar transporters, and imply that a large degree of hydraulic compartmentalization must exist in the xylem during the refilling process. PMID:22837359
Research notes : ensuring project performance and adherence to completion dates.
DOT National Transportation Integrated Search
2009-04-01
A recently completed ODOT research project, led by David Sillars at Oregon State University, sought to identify alternative methods to liquidated damages for ODOT to encourage on-time project delivery and to develop a model to aid in selecting among ...
Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.
ERIC Educational Resources Information Center
Verdía, Pedro; Santamarta, Francisco; Tojo, Emilia
2017-01-01
An experiment for an undergraduate organic chemistry class based on the application of an ionic liquid as solvent and catalyst of an organic reaction is reported. The whole experiment requires three 3-h lab sessions. First, students prepare the ionic liquid dimethylimidazolium methylsulfate, which is then used as a recyclable catalyst/reaction…
Water evaporation: a transition path sampling study.
Varilly, Patrick; Chandler, David
2013-02-07
We use transition path sampling to study evaporation in the SPC/E model of liquid water. On the basis of thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.
Radiometric liquid level gauge with linear-detection (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaeser, M.; Emmelmann, K.P.
1973-09-01
A description is given of a radiometric liquid level gauge with linear detection. It consists of a set of radioactive sources (e.g., /sup 137/Cs) with quadratic graduation in their activities, of a scintillation counter with electronic back-up unit and of a slender tube. The tube, sources and scintillation counter form a compact snd easily transportsble liquid level gauge. It is-especially adapted for liquid level measurements in slender, difficulty accessible and opaque containers. The device supplements the different methods for liquid level measurement with a new variant which is adopted for many cases in practice. (auth)
This project was initiated with the overall objective of developing organized information pertaining to the costs of various sewage sludge transport systems. Transport of liquid and dewatered sludge by truck and rail and liquid sludge by barge and pipeline is included. The report...
July 2012 Greenland melt extent enhanced by low-level liquid clouds.
Bennartz, R; Shupe, M D; Turner, D D; Walden, V P; Steffen, K; Cox, C J; Kulie, M S; Miller, N B; Pettersen, C
2013-04-04
Melting of the world's major ice sheets can affect human and environmental conditions by contributing to sea-level rise. In July 2012, an historically rare period of extended surface melting was observed across almost the entire Greenland ice sheet, raising questions about the frequency and spatial extent of such events. Here we show that low-level clouds consisting of liquid water droplets ('liquid clouds'), via their radiative effects, played a key part in this melt event by increasing near-surface temperatures. We used a suite of surface-based observations, remote sensing data, and a surface energy-balance model. At the critical surface melt time, the clouds were optically thick enough and low enough to enhance the downwelling infrared flux at the surface. At the same time they were optically thin enough to allow sufficient solar radiation to penetrate through them and raise surface temperatures above the melting point. Outside this narrow range in cloud optical thickness, the radiative contribution to the surface energy budget would have been diminished, and the spatial extent of this melting event would have been smaller. We further show that these thin, low-level liquid clouds occur frequently, both over Greenland and across the Arctic, being present around 30-50 per cent of the time. Our results may help to explain the difficulties that global climate models have in simulating the Arctic surface energy budget, particularly as models tend to under-predict the formation of optically thin liquid clouds at supercooled temperatures--a process potentially necessary to account fully for temperature feedbacks in a warming Arctic climate.
Multimodel Assessment of the Factors Driving Stratospheric Ozone Evolution over the 21st Century
NASA Technical Reports Server (NTRS)
Oman, L. D.; Plummer, D. A.; Waugh, D. W.; Austin, J.; Scinocca, J. F.; Douglass, A. R.; Salawitch, R. J.; Canty, T.; Akiyoshi, H.; Bekki, S.;
2010-01-01
The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from 14 chemistry-climate models, driven by prescribed levels of halogens and greenhouse gases. There is general agreement among the models that total column ozone reached a minimum around year 2000 at all latitudes, projected to be followed by an increase over the first half of the 21st century. In the second half of the 21st century, ozone is projected to continue increasing, level off, or even decrease depending on the latitude. Separation into partial columns above and below 20 hPa reveals that these latitudinal differences are almost completely caused by differences in the model projections of ozone in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and is projected to return to 1960 levels well before the end of the century, although there is a spread among models in the dates that ozone returns to specific historical values. We find decreasing halogens and declining upper atmospheric temperatures, driven by increasing greenhouse gases, contribute almost equally to increases in upper stratospheric ozone. In the tropical lower stratosphere, an increase in upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in most of the models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century, returning to 1960 levels well before the end of the century in most models.
Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi
2013-09-01
Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well. Copyright © 2013 Elsevier B.V. All rights reserved.
Somers, Keith M; Kilgour, Bruce W; Munkittrick, Kelly R; Arciszewski, Tim J
2018-05-16
Environmental effects monitoring (EEM) has been traditionally used to evaluate the effects of existing facilities discharging liquid effluents into natural receiving waters in Canada. EEM also has the potential to provide feedback to an ongoing project in an adaptive management context, and can inform the design of future projects. EEM, consequently, can and should also be used to test the predictions of effects related to new projects. Despite EEM's potential for widespread applicability, challenges related to the effective implementation of EEM include the use of appropriate study designs, as well as to the adoption of tiers for increasing or decreasing monitoring intensity. Herein we describe a template for designing and implementing a six-tiered EEM program that utilizes information from the project-planning and pre-development baseline data collection stages to build on forecasts from the initial environmental impact assessment project-design stage, and feeds into an adaptive management process. Movement between the six EEM tiers is based on the exceedance of Baseline Monitoring Triggers, Forecast Triggers and Management Triggers at various stages in the EEM process. To distinguish these types of triggers, we review the historical development of numeric and narrative triggers as applied to chemical (water and sediment) and biological (plankton, benthos, fish) endpoints. We also provide an overview of historical study design issues and discuss how the six EEM tiers and associated triggers influence the temporal-spatial experimental design options and how the information gained through EEM could be used in an adaptive management context. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
HHP treatment of liquid egg at 200-350 MPa
NASA Astrophysics Data System (ADS)
Tóth, A.; Németh, Cs; Palotás, P.; Surányi, J.; Zeke, I.; Csehi, B.; Castillo, L. A.; Friedrich, L.; Balla, Cs
2017-10-01
High hydrostatic pressure (HHP) treatment of egg proteins partially limits their sensitivity to pressure. According to the literature, at the 450 MPa level, denaturation of some proteins sets in to the extent that sensory and functional characteristics are impacted. This study involved treating liquid egg (egg white, yolk, and melange) at less than the above-mentioned value, after which the microbiological effect was examined. For the study, pressure pouches were filled with 100ml of raw liquid egg per pouch. Then the samples were treated at 200, 250, 300 and 350 MPa. In each case, the level was reached by increasing pressure at a rate of 100 MPa/min. Measurements were taken at the Corvinus University of Budapest, Faculty of Food Science, Dept. of Refrigeration and Livestock Products Technology RESATO FPU 100-2000 equipment. Denaturation was determined with calorimetric (DSC) tests. From our results, it appears that even at 250 MPa pressure treatment, the viable cell count decreases. Further, it can be said that microbe count went down in the egg white samples at 300-350 MPa, below the impact level. Significant denaturation was not detected during our examinations. In summary, we state that the most HHP-sensitive liquid egg type, egg white, can be pressure treated to reduce microbe count at a level less than that which causes denaturation. Microbe reduction was smaller in yolk and melange, so higher pressure values are appropriate for these products.
Optical Cryogenic Tank Level Sensor
NASA Technical Reports Server (NTRS)
Duffell, Amanda
2005-01-01
Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.
Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity
Wang, Jian-Neng; Luo, Ching-Ying
2012-01-01
This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds. PMID:22666046
Long-period fiber grating sensors for the measurement of liquid level and fluid-flow velocity.
Wang, Jian-Neng; Luo, Ching-Ying
2012-01-01
This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO(2)-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1-5 were in the range of 1.35-9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7-12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.
Near-Infrared Scintillation of Liquid Argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilly, Elizabeth; Escobar, Carlos
2017-01-01
Liquid argon is well known to scintillate in the vacuum ultraviolet (VUV) range which is inherently difficult to detect. There has been recent evidence to suggest that it also emits near infrared (NIR) light. If this is the case, many large-scale time projection chambers and other similar detectors will be able to maximize light collection while minimizing cost. The goal of this project is to confirm and quantify this NIR emission. In order to accomplish this, an α-source was placed in a volume of highly purified liquid argon and observed using an infrared PMT with a filter excluding light withmore » wavelength <715 nm. Performing a simple counting experiment, there were indications of NIR scintillation. Further analysis is in progress.« less
Liquid Thermal Diffusion during the Manhattan Project
NASA Astrophysics Data System (ADS)
Cameron Reed, B.
2011-06-01
On the basis of Manhattan Engineer District documents, a little known Naval Research Laboratory report of 1946, and other sources, I construct a more complete history of the liquid-thermal-diffusion method of uranium enrichment during World War II than is presented in official histories of the Manhattan Project. This method was developed by Philip Abelson (1913-2004) and put into operation at the rapidly-constructed S-50 plant at Oak Ridge, Tennessee, which was responsible for the first stage of uranium enrichment, from 0.72% to 0.85% U-235, producing nearly 45,000 pounds of enriched U-235 by July 1945 at a cost of just under 20 million. I review the history, design, politics, construction, and operation of the S-50 liquid-thermal-diffusion plant.
Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations
NASA Astrophysics Data System (ADS)
Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter S. K.; Zelenyuk, Alla
2011-01-01
Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m-2. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5°C to -40°C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.
Automatic cryogenic liquid level controller is safe for use near combustible substances
NASA Technical Reports Server (NTRS)
Krejsa, M.
1966-01-01
Automatic mechanical liquid level controller that is independent of any external power sources is used with safety in the presence of combustibles. A gas filled capillary tube which leads from a pressurized chamber, is inserted into the cryogenic liquid reservoir and becomes a liquid level sensing element or probe.
46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...
46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...
46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...
46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...
46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...
Striking changes in tea metabolites due to elevational effects.
Kfoury, Nicole; Morimoto, Joshua; Kern, Amanda; Scott, Eric R; Orians, Colin M; Ahmed, Selena; Griffin, Timothy; Cash, Sean B; Stepp, John Richard; Xue, Dayuan; Long, Chunlin; Robbat, Albert
2018-10-30
Climate effects on crop quality at the molecular level are not well-understood. Gas and liquid chromatography-mass spectrometry were used to measure changes of hundreds of compounds in tea at different elevations in Yunnan Province, China. Some increased in concentration while others decreased by 100's of percent. Orthogonal projection to latent structures-discriminant analysis revealed compounds exhibiting analgesic, antianxiety, antibacterial, anticancer, antidepressant, antifungal, anti-inflammatory, antioxidant, anti-stress, and cardioprotective properties statistically (p = 0.003) differentiated high from low elevation tea. Also, sweet, floral, honey-like notes were higher in concentration in the former while the latter displayed grassy, hay-like aroma. In addition, multivariate analysis of variance showed low elevation tea had statistically (p = 0.0062) higher concentrations of caffeine, epicatechin gallate, gallocatechin, and catechin; all bitter compounds. Although volatiles represent a small fraction of the total mass, this is the first comprehensive report illustrating how normal variations in temperature, 5 °C, due to elevational effects impact tea quality. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuźniak, M.; Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Dering, K.; DiGioseffo, J.; Duncan, F.; Flower, T.; Ford, R.; Giampa, P.; Gorel, P.; Graham, K.; Grant, D. R.; Guliyev, E.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Jillings, C. J.; Lawson, I.; Li, O.; Liimatainen, P.; Majewski, P.; McDonald, A. B.; McElroy, T.; McFarlane, K.; Monroe, J.; Muir, A.; Nantais, C.; Ng, C.; Noble, A. J.; Ouellet, C.; Palladino, K.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Seeburn, N.; Singhrao, K.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.; DEAP Collaboration
2016-04-01
The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing β / γ backgrounds and helped to develop low radioactivity techniques to mitigate surface-related α backgrounds. Construction of the DEAP-3600 detector is nearly complete and commissioning is starting in 2014. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons of 10-46cm2 will allow one order of magnitude improvement in sensitivity over current searches at 100 GeV WIMP mass. This paper presents an overview and status of the DEAP-3600 project and discusses plans for a future multi-tonne experiment, DEAP-50T.
Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties.
Kiehl, Jeffrey T; Shields, Christine A
2013-10-28
The Palaeocene-Eocene Thermal Maximum (PETM) was a significant global warming event in the Earth's history (approx. 55 Ma). The cause for this warming event has been linked to increases in greenhouse gases, specifically carbon dioxide and methane. This rapid warming took place in the presence of the existing Early Eocene warm climate. Given that projected business-as-usual levels of atmospheric carbon dioxide reach concentrations of 800-1100 ppmv by 2100, it is of interest to study past climates where atmospheric carbon dioxide was higher than present. This is especially the case given the difficulty of climate models in simulating past warm climates. This study explores the sensitivity of the simulated pre-PETM and PETM periods to change in cloud condensation nuclei (CCN) and microphysical properties of liquid water clouds. Assuming lower levels of CCN for both of these periods leads to significant warming, especially at high latitudes. The study indicates that past differences in cloud properties may be an important factor in accurately simulating past warm climates. Importantly, additional shortwave warming from such a mechanism would imply lower required atmospheric CO2 concentrations for simulated surface temperatures to be in reasonable agreement with proxy data for the Eocene.
REFRACTOMETRY AS A TOOL IN DIABETIC STUDIES
Kavitha, S.; Murthy, V.R.
2006-01-01
The refractive index as well as molar refraction, is the true index of purity of substance and plays a vital role in solution chemistry. A small addition of a foreign substance either in solid state of liquid form is going to effect the refractive index. As such the variation of refractive indices in pure glucose solution as a function of concentration is studied in detail and this principle is extended to the study of the refractive indices of urine solution of diabetic patients. The refractive indices are measured by spectrometry and abbe refractometry. A detailed study of variation of refractive indices of urine samples containing different sugar concentrations, of patients of different age groups revealed that the increase in refractive index follows a linear scale and can be explained by the equation, n=no [l+0.00251og (a s)1/4] [l+0.031og0.011C]. These study provided an opportunity to project refractometry as an effective tool in diagnosing the diabetic level of a patient by making use of a simple calibration curve of increment in refractive index ‘Δn, as a function of level of the disease. PMID:22557211
A pixelated charge readout for Liquid Argon Time Projection Chambers
NASA Astrophysics Data System (ADS)
Asaadi, J.; Auger, M.; Ereditato, A.; Goeldi, D.; Hänni, R.; Kose, U.; Kreslo, I.; Lorca, D.; Luethi, M.; von Rohr, C. Rudolf; Sinclair, J.; Stocker, F.; Tognina, C.; Weber, M.
2018-02-01
Liquid Argon Time Projection Chambers (LArTPCs) are ideally suited to perform long-baseline neutrino experiments aiming to measure CP violation in the lepton sector, and determine the ordering of the three neutrino mass eigenstates. LArTPCs have used projective wire readouts for charge detection since their conception in 1977. However, wire readouts are notoriously fragile and therefore a limiting factor in the design of any large mass detectors. Furthermore, a wire readout also introduces intrinsic ambiguities in event reconstruction. Within the ArgonCube concept—the liquid argon component of the DUNE near detector—we are developing a pixelated charge readout for LArTPCs. Pixelated charge readout systems represent the single largest advancement in the sensitivity of LArTPCs. They are mechanically robust and provide direct 3D readout, serving to minimise reconstruction ambiguities, enabling more advanced triggers, further reducing event pile-up and improving background rejection. This article presents first results from a pixelated LArTPC prototype built and operated in Bern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.
2015-06-19
DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an importantmore » technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant fraction of petroleum based fuels with advanced biofuels, leading to increased energy security and decreased carbon footprint; and (2) establishment of a new biofuel industry segment, leading to the creation of U.S. engineering, manufacturing, construction, operations and agricultural jobs. PNNL development of CHG progressed at two levels. Initial tests were made in the laboratory in both mini-scale and bench-scale continuous flow reactor systems. Following positive results, the next level of evaluation was in the scaled-up engineering development system, which was operated at PNNL.« less
The Effect of Peer Assessment on Project Performance of Students at Different Learning Levels
ERIC Educational Resources Information Center
Li, Lan; Gao, Fei
2016-01-01
Peer assessment has been increasingly integrated in educational settings as a strategy to foster student learning. Yet little has been studied about how students at different learning levels may benefit from peer assessment. This study examined how peer-assessment and students' learning levels influenced students' project performance using a…
Evolution of a phase separated gravity independent bioreactor
NASA Technical Reports Server (NTRS)
Villeneuve, Peter E.; Dunlop, Eric H.
1992-01-01
The evolution of a phase-separated gravity-independent bioreactor is described. The initial prototype, a zero head-space manifold silicone membrane based reactor, maintained large diffusional resistances. Obtaining oxygen transfer rates needed to support carbon-recycling aerobic microbes is impossible if large resistances are maintained. Next generation designs (Mark I and II) mimic heat exchanger design to promote turbulence at the tubing-liquid interface, thereby reducing liquid and gas side diffusional resistances. While oxygen transfer rates increased by a factor of ten, liquid channeling prevented further increases. To overcome these problems, a Mark III reactor was developed which maintains inverted phases, i.e., media flows inside the silicone tubing, oxygen gas is applied external to the tubing. This enhances design through changes in gas side driving force concentration and liquid side turbulence levels. Combining an applied external pressure of 4 atm with increased Reynolds numbers resulted in oxygen transfer intensities of 232 mmol O2/l per hr (1000 times greater than the first prototype and comparable to a conventional fermenter). A 1.0 liter Mark III reactor can potentially deliver oxygen supplies necessary to support cell cultures needed to recycle a 10-astronaut carbon load continuously.
High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls
Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; ...
2015-05-15
The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10 x compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid,more » exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Finally, Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.« less
Guo, Shuang; Zhu, Chenqi; Gao-Yang, Yaya; Qiu, Bailing; Wu, Di; Liang, Qihui; He, Jiayuan; Han, Nanyin
2016-02-01
Gravitational field-flow fractionation is the simplest field-flow fractionation technique in terms of principle and operation. The earth' s gravity is its external field. Different sized particles are injected into a thin channel and carried by carrier fluid. The different velocities of the carrier liquid in different places results in a size-based separation. A gravitational field-flow fractionation (GrFFF) instrument was designed and constructed. Two kinds of polystyrene (PS) particles with different sizes (20 µm and 6 µm) were chosen as model particles. In this work, the separation of the sample was achieved by changing the concentration of NaN3, the percentage of mixed surfactant in the carrier liquid and the flow rate of carrier liquid. Six levels were set for each factor. The effects of these three factors on the retention ratio (R) and plate height (H) of the PS particles were investigated. It was found that R increased and H decreased with increasing particle size. On the other hand, the R and H increased with increasing flow rate. The R and H also increased with increasing NaN3 concentration. The reason was that the electrostatic repulsive force between the particles and the glass channel wall increased. The force allowed the samples approach closer to the channel wall. The results showed that the resolution and retention time can be improved by adjusting the experimental conditions. These results can provide important values to the further applications of GrFFF technique.
LIQUID CLATHRATE FORMATION IN IONIC LIQUIDS/AROMATIC MIXTURES. (R828257)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Plasma corticotropin releasing hormone during the feeling of induced emotions.
Martin Martins, Joao; Vale, Sónia do; Ferreira, Florbela; Fagundes, Maria Joao; Carmo, Isabel do; Saldanha, Carlota; Martins E Silva, J
2010-01-01
Central neuropeptides modulate behaviour. Plasma levels of neuropeptides may reflect central levels due to specific brain-to-blood transport systems. We purposed to show the modulation of plasma corticotropin releasing hormone (CRH) levels in relation to induced emotions. Three groups were defined. For experimental groups A and B, an emotionally significant movie fragment was projected for 20 min, while no film projection occurred in group C. Peripheral venous blood samples were collected before, 10 and 60 min after the film or at 0 and 30 min for group C. Total CRH was measured in plasma. Personality was evaluated by the Minnesota Multiphasic Personality Inventory (MMPI). Plasma CRH levels did not change in the condition with no movie projection - group C - 346 + or - 198 vs. 327 + or - 143 pg/mL. Plasma CRH levels dramatically increased with the projection of a dramatic movie - group A - 394 + or - 147 vs. 791 + or - 636 vs. 803 + or - 771 pg/mL, p<0.05. Plasma CRH increased less markedly in the condition with the projection of a comic movie - group B - 364 + or - 138 vs. 486 + or - 260 vs. 483 + or - 228 pg/mL, p<0.05 for differences between samples 1 and 3. Baseline plasma CRH was significantly and independently related to the neurotic triad and psychotic dyad - partial r=0.328 and 0.267, respectively, p<0.05. We conclude that plasma CRH levels increase with experimental emotion induction and that baseline levels are significantly related to behavioural traits. Plasma levels of neuropeptides may reflect central levels and may be useful in clinical medicine and in the study of behavioural disorders.
Information system of quality assessment for liquid and gaseous medium production
NASA Astrophysics Data System (ADS)
Bobrov, V. N.; Us, N. A.; Davidov, I. S.
2018-05-01
A method and a technical solution for controlling the quality of production of liquid and gaseous media is proposed. It is also proposed to monitor harmful factors in production while ensuring safe working conditions. Initially, using the mathematical model of an ideal atmosphere, the projection to the horizontal surface of the observation trajectory is calculated. At the second stage, the horizontal projection of the observation trajectory in real conditions is measured. The quality of the medium is judged by the difference between the projections of observation trajectories. The technical result is presented in the form of a device allowing obtaining information about the quality of the medium under investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Fan, A.; Fiorillo, G.
Rare event search experiments, such as those searching for dark matter and observations of neutrinoless double beta decay, require ultra low levels of radioactive background for unmistakable identification. In order to reduce the radioactive background of detectors used in these types of event searches, low background photosensors are required, as the physical size of these detectors become increasing larger, and hence the number of such photosensors used also increases rapidly. Considering that most dark matter and neutrinoless double beta decay experiments are turning towards using noble liquids as the target choice, liquid xenon and liquid argon for instance, photosensors thatmore » can work well at cryogenic temperatures are required, 165 K and 87 K for liquid xenon and liquid argon, respectively. The Silicon Geiger Hybrid Tube (SiGHT) is a novel photosensor designed specifically for use in ultra low background experiments operating at cryogenic temperatures. It is based on the proven photocathode plus silicon photomultiplier (SiPM) hybrid technology and consists of very few other, but also ultra radio-pure, materials like fused silica and silicon for the SiPM. Lastly, the introduction of the SiGHT concept, as well as a feasibility study for its production, is reported in this article.« less
Murillo-Rodriguez, Eric; Blanco-Centurion, Carlos; Sanchez, Cristina; Piomelli, Daniele; Shiromani, Priyattam J
2003-12-15
The principal component of marijuana, delta-9-tetrahydrocannabinol increases sleep in humans. Endogenous cannabinoids, such as N-arachidonoylethanolamine (anandamide), also increase sleep. However, the mechanism by which these molecules promote sleep is not known but might involve a sleep-inducing molecule such as adenosine. Microdialysis samples were collected from the basal forebrain in order to detect levels of adenosine before and after injection of anandamide. Rats were implanted for sleep studies, and a cannula was placed in the basal forebrain to collect microdialysis samples. Samples were analyzed using high-performance liquid chromatography. Basic neuroscience research laboratory. Three-month-old male F344 rats. At the start of the lights-on period, animals received systemic injections of dimethyl sulfoxide (vehicle), anandamide, SR141716A (cannabinoid receptor 1 [CB1] antagonist), or SR141716A and anandamide. One hour after injections, microdialysis samples were collected (5 microL) from the basal forebrain every hour over a 20-minute period for 5 hours. The samples were immediately analyzed via high-performance liquid chromatography for adenosine levels. Sleep was also recorded continuously over the same period. Anandamide increased adenosine levels compared to vehicle controls with the peak levels being reached during the third hour after drug injection. There was a significant increase in slow-wave sleep during the third hour. The induction in sleep and the rise in adenosine were blocked by the CB1-receptor antagonist, SR141716A. Anandamide increased adenosine levels in the basal forebrain and also increased sleep. The soporific effects of anandamide were mediated by the CB1 receptor, since the effects were blocked by the CB1-receptor antagonist. These findings identify a potential therapeutic use of endocannabinoids to induce sleep in conditions where sleep may be severely attenuated.
Liquid Hot Water Pretreatment of Olive Tree Pruning Residues
NASA Astrophysics Data System (ADS)
Cara, Cristóbal; Romero, Inmaculada; Oliva, Jose Miguel; Sáez, Felicia; Castro, Eulogio
Olive tree pruning generates an abundant, renewable lignocellulose residue, which is usually burnt on fields to prevent propagation of vegetal diseases, causing economic costs and environmental concerns. As a first step in an alternative use to produce fuel ethanol, this work is aimed to study the pretreatment of olive tree pruning residues by liquid hot water. Pretreatment was carried out at seven temperature levels in the range 170-230°C for 10 or 60 min. Sugar recoveries in both solid and liquid fractions resulting from pretreatment as well as enzymatic hydrolysis yield of the solid were used to evaluate pretreatment performance. Results show that the enzyme accessibility of cellulose in the pretreated solid fraction increased with pretreatment time and temperature, although sugar degradation in the liquid fraction was concomitantly higher.
Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels
NASA Astrophysics Data System (ADS)
Li, Kun; Wang, Guoqing; Liu, Chang
2018-01-01
As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.
Composites in small and simple devices to increase mixing on detector surfaces
NASA Astrophysics Data System (ADS)
Hernandez, L. F.; Lima, R. R.; Leite, A. R.; Fachini, E. R.; Silva, M. L. P.
2013-03-01
This work aims at three different applications for the betterment of plasma generated-composite thin films: pre-mixing, spray formation in miniaturized structures and an increase in the performance of detector surfaces. Miniaturized structures were projected, simulated with FEMLAB® 3.2 software and then constructed. Clustered films made from tetraethoxysilane (TEOS) and nonafluoro(iso)butyl ether (HFE®) precursors were deposited on silicon, acrylic and quartz substrates for different kinds of film characterization/or in the projected structures. Physical and chemical characterization guided the selection of best films previous to/after UVC exposure. The active surfaces (plasma-deposited films) in structures were modified by UVC exposure and then tested. The applications include pre-mixing of liquids and/or spray formation, best results being obtained with surface covered by derivative-HFE films, which acted as passivation layers. Preliminary results show good humidity sensing for TEOS-derivative films.
Kim, Sung Yeon; Kim, Suhan; Park, Moon Jeong
2010-10-05
Proton exchange fuel cells (PEFCs) have the potential to provide power for a variety of applications ranging from electronic devices to transportation vehicles. A major challenge towards economically viable PEFCs is finding an electrolyte that is both durable and easily passes protons. In this article, we study novel anhydrous proton-conducting membranes, formed by incorporating ionic liquids into synthetic block co-polymer electrolytes, poly(styrenesulphonate-b-methylbutylene) (S(n)MB(m)), as high-temperature PEFCs. The resulting membranes are transparent, flexible and thermally stable up to 180 °C. The increases in the sulphonation level of S(n)MB(m) co-polymers (proton supplier) and the concentration of the ionic liquid (proton mediator) produce an overall increase in conductivity. Morphology effects were studied by X-ray scattering and electron microscopy. Compared with membranes having discrete ionic domains (including Nafion 117), the nanostructured membranes revealed over an order of magnitude increase in conductivity with the highest conductivity of 0.045 S cm(-1) obtained at 165 °C.
Impact of Ionic Liquids on the Structure and Dynamics of Collagen.
Tarannum, Aafiya; Adams, Alina; Blümich, Bernhard; Fathima, Nishter Nishad
2018-01-25
The changes in the structure and dynamics of collagen treated with two different classes of ionic liquids, bis-choline sulfate (CS) and 1-butyl-3-methyl imidazolium dimethyl phosphate (IDP), have been studied at the molecular and fibrillar levels. At the molecular level, circular dichroic studies revealed an increase in molar ellipticity values for CS when compared with native collagen, indicating cross-linking, albeit pronounced conformational changes for IDP were witnessed indicating denaturation. The impedance was analyzed to correlate the conformational changes with the hydration dynamics of protein. Changes in the dielectric properties of collagen observed upon treatment with CS and IDP reported molecular reorientation in the surrounding water milieu, suggesting compactness or destabilization of the collagen. This was further confirmed by proton transverse NMR relaxation time measurements, which demonstrated that the water mobility changes in the presence of the ILs. At the fibrillar level, differential scanning calorimetry thermograms for rat tail tendon collagen fibers treated with CS show a 5 °C increase in denaturation temperature, suggesting imparted stability. On the contrary, a significant temperature decrease was noticed for IDP, indicating the destabilization of collagen fibers. The obtained results clearly indicate that the changes in the secondary structure of protein are due to the changes in the hydration dynamics of collagen upon interaction with ILs. Thus, this study on the interaction of collagen with ionic liquids unfolds the propensity of ILs to stabilize or destabilize collagen depending on the changes invoked at the molecular level in terms of structure and dynamics of protein, which also got manifested at the fibrillar level.
Field, M.E.; Sullivan, W.H.
A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.
Fuzzy control for a nonlinear mimo-liquid level problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.
2001-01-01
Nonlinear systems are very common in the chemical process industries. Control of these systems, particularly multivariable systems, is extremely difficult. In many chemical plants, because of this difficulty, control is seldom optimal. Quite often, the best control is obtained in the manual mode using experienced operators. Liquid level control is probably one of the most common control problems in a chemical plant. Liquid level is important in heat exchanger control where heat and mass transfer rates can be controlled by the amount of liquid covering the tubes. Distillation columns, mixing tanks, and surge tanks are other examples where liquid levelmore » control is very important. The problem discussed in this paper is based on the simultaneous level control of three tanks connected in series. Each tank holds slightly less than 0.01 m{sup 3} of liquid. All three tanks are connected, Liquid is pumped into the first and the third tanks to maintain their levels. The third tank in the series drains to the system exit. The levels in the first and third tank control the level in the middle tank. The level in the middle tank affects the levels in the two end tanks. Many other chemical plant systems can be controlled in a manner similar to this three-tank system. For example, in any distillation column liquid level control problems can be represented as a total condenser with liquid level control, a reboiler with liquid level control, with the interactive column in between. The solution to the three-tank-problem can provide insight into many of the nonlinear control problems in the chemical process industries. The system was tested using the fuzzy logic controller and a proportional-integral (PI) controller, in both the setpoint tracking mode and disturbance rejection mode. The experimental results are discussed and comparisons between fuzzy controller and the standard PI controller are made.« less
NASA Technical Reports Server (NTRS)
Glasser, Philip W
1950-01-01
An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.
Agile lensing-based non-contact liquid level optical sensor for extreme environments
NASA Astrophysics Data System (ADS)
Reza, Syed Azer; Riza, Nabeel A.
2010-09-01
To the best of the author's knowledge, demonstrated is the first opto-fluidic technology- based sensor for detection of liquid levels. An opto-fluidic Electronically Controlled Variable Focus Lens (ECVFL) is used to change the spatial intensity profile of the low power optical beam falling on the liquid surface. By observing, tuning and measuring the liquid surface reflected intensity profile to reach its smallest size, the liquid level is determined through a beam spot size versus ECVFL focal length calibration table. Using a 50 μW 632.8 nm laser wavelength liquid illuminating beam, a proof-of-concept sensor is tested using engine oil, vegetable oil, and detergent fluid with measured liquid levels over a 75 cm range. This non-contact Radio Frequency (RF) modulation-free sensor is particularly suited for hazardous fluids in window-accessed sealed containers including liquid carrying vessels in Electromagnetic Interference (EMI) rich environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinsey, Daniel Nicholas
The McKinsey group at Yale has been awarded a grant from DTRA for the building of a Liquid Xenon Gamma Ray Color Camera (LXe-GRCC), which combines state-of-the-art detection of LXe scintillation light and time projection chamber (TPC) charge readout. The DTRA application requires a movable detector and hence only a single phase (liquid) xenon detector can be considered in this case. We propose to extend the DTRA project to applications that allow a two phase (liquid/gas) xenon TPC. This entails additional (yet minimal) hardware and extension of the research effort funded by DTRA. The two phase detector will have bettermore » energy and angular resolution. Such detectors will be useful for PET medical imaging and detection of special nuclear material in stationary applications (e.g. port of entry). The expertise of the UConn group in gas phase TPCs will enhance the capabilities of the Yale group and the synergy between the two groups will be very beneficial for this research project as well as the education and research projects of the two universities. The LXe technology to be used in this project has matured rapidly over the past few years, developed for use in detectors for nuclear physics and astrophysics. This technology may now be applied in a straightforward way to the imaging of gamma rays. According to detailed Monte Carlo simulations recently performed at Yale University, energy resolution of 1% and angular resolution of 3 degrees may be obtained for 1.0 MeV gamma rays, using existing technology. With further research and development, energy resolution of 0.5% and angular resolution of 1.3 degrees will be possible at 1.0 MeV. Because liquid xenon is a high density, high Z material, it is highly efficient for scattering and capturing gamma rays. In addition, this technology scales elegantly to large detector areas, with several square meter apertures possible. The Yale research group is highly experienced in the development and use of noble liquid detectors for astrophysics, most recently in the XENON10 experiment. The existing facilities at Yale are fully adequate for the completion of this project. The facilities of the UConn group at the LNS at Avery Point include a (clean) lab for detector development and this group recently delivered an Optical Readout TPC (O-TPC) for research in Nuclear Astrophysics at the TUNL in Duke University. The machine shop at UConn will be used (free of charge) for producing the extra hardware needed for this project including grids and frames.« less
Evolution of plasma homovanillic acid (HVA) levels during treatment in schizo-affective disorder.
Galinowski, A; Castelnau, C; Spreux-Varoquaux, O; Bourdel, M C; Olie, J P; Loo, H; Poirier, M F
2000-11-01
1. Plasma Homovanillic Acid (p HVA) levels were measured by HPLC (high performance liquid chromatography) in 5 schizo-affective depressed patients receiving a standardized treatment. (lithium, chlorpromazine and clomipramine) during 4 weeks. 2. Four patients were pretreated, without a washout period. 3. No significant difference was observed between patients and normal controls at baseline. Under treatment, pHVA levels increased (p<0.02) with clinical improvement (MADRS and PANSS scores). 4. Although effects of medications prior to the study period were not controlled, these findings suggest that depressed schizo-affective patients may have normal pHVA levels that increase with clinical improvement, unlike schizophrenic patients whose increased pHVA concentrations decline with neuroleptic treatment.
Lerner, Chad A.; Sundar, Isaac K.; Yao, Hongwei; Gerloff, Janice; Ossip, Deborah J.; McIntosh, Scott; Robinson, Risa; Rahman, Irfan
2015-01-01
Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a “vaping” session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to unrealized health consequences. PMID:25658421
Review of road user costs and methods.
DOT National Transportation Integrated Search
2013-07-01
The South Dakota Department of Transportation (SDDOT) uses road user costs (RUC) to calculate incentive or disincentive compensation for contractors, quantify project-specific liquidated damages, select the ideal sequencing of a project, and forecast...
Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Schannwell, Clemens; Barrand, Nicholas E.; Radić, Valentina
2016-11-01
Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. In this paper, the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. An ice-sheet model forced by temperature output from 13 global climate models (GCMs), in response to the high greenhouse gas emission scenario (RCP8.5), projects AP contribution to SLR of 28 ± 16 to 32 ± 16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers (∼8-18 mm). In this cooler scenario, 2.4 ± 1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ∼70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11 ± 2 and 32 ± 16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR.
Field, Michael E.; Sullivan, William H.
1985-01-01
A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.
Liquid hydrogen sphere project
2011-06-22
A 107,000-gallon liquid hydrogen sphere no longer needed at Stennis Space Center is barged through the facility locks June 21. The rocket engine test facility has teamed with the Mississippi Department of Marine Resource to place the sphere in offshore waters as an artificial reef.
Remote photoacoustic detection of liquid contamination of a surface.
Perrett, Brian; Harris, Michael; Pearson, Guy N; Willetts, David V; Pitter, Mark C
2003-08-20
A method for the remote detection and identification of liquid chemicals at ranges of tens of meters is presented. The technique uses pulsed indirect photoacoustic spectroscopy in the 10-microm wavelength region. Enhanced sensitivity is brought about by three main system developments: (1) increased laser-pulse energy (150 microJ/pulse), leading to increased strength of the generated photoacoustic signal; (2) increased microphone sensitivity and improved directionality by the use of a 60-cm-diameter parabolic dish; and (3) signal processing that allows improved discrimination of the signal from noise levels through prior knowledge of the pulse shape and pulse-repetition frequency. The practical aspects of applying the technique in a field environment are briefly examined, and possible applications of this technique are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferng, Y.M.; Liao, L.Y.
1996-01-01
During the operating history of the Maanshan nuclear power plant (MNPP), five reactor trips have occurred as a result of the moisture separator reheater (MSR) high-level signal. These MSR high-level reactor trips have been a very serious concern, especially during the startup period of MNPP. Consequently, studying the physical phenomena of this particular event is worthwhile, and analytical work is performed using the RELAP5/MOD3 code to investigate the thermal-hydraulic phenomena of two-phase behaviors occurring within the MSR high-level reactor trips. The analytical model is first assessed against the experimental data obtained from several test loops. The same model can thenmore » be applied with confidence to the study of this topic. According to the present calculated results, the phenomena of liquid droplet accumulation ad residual liquid blowing in the horizontal section of cross-under-lines can be modeled. In addition, the present model can also predict the different increasing rates of inlet steam flow rate affecting the liquid accumulation within the cross-under-lines. The calculated conclusion is confirmed by the revised startup procedure of MNPP.« less
Two-Step Multi-Physics Analysis of an Annular Linear Induction Pump for Fission Power Systems
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Reid, Terry V.
2016-01-01
One of the key technologies associated with fission power systems (FPS) is the annular linear induction pump (ALIP). ALIPs are used to circulate liquid-metal fluid for transporting thermal energy from the nuclear reactor to the power conversion device. ALIPs designed and built to date for FPS project applications have not performed up to expectations. A unique, two-step approach was taken toward the multi-physics examination of an ALIP using ANSYS Maxwell 3D and Fluent. This multi-physics approach was developed so that engineers could investigate design variations that might improve pump performance. Of interest was to determine if simple geometric modifications could be made to the ALIP components with the goal of increasing the Lorentz forces acting on the liquid-metal fluid, which in turn would increase pumping capacity. The multi-physics model first calculates the Lorentz forces acting on the liquid metal fluid in the ALIP annulus. These forces are then used in a computational fluid dynamics simulation as (a) internal boundary conditions and (b) source functions in the momentum equations within the Navier-Stokes equations. The end result of the two-step analysis is a predicted pump pressure rise that can be compared with experimental data.
A generalized public goods game with coupling of individual ability and project benefit
NASA Astrophysics Data System (ADS)
Zhong, Li-Xin; Xu, Wen-Juan; He, Yun-Xin; Zhong, Chen-Yang; Chen, Rong-Da; Qiu, Tian; Shi, Yong-Dong; Ren, Fei
2017-08-01
Facing a heavy task, any single person can only make a limited contribution and team cooperation is needed. As one enjoys the benefit of the public goods, the potential benefits of the project are not always maximized and may be partly wasted. By incorporating individual ability and project benefit into the original public goods game, we study the coupling effect of the four parameters, the upper limit of individual contribution, the upper limit of individual benefit, the needed project cost and the upper limit of project benefit on the evolution of cooperation. Coevolving with the individual-level group size preferences, an increase in the upper limit of individual benefit promotes cooperation while an increase in the upper limit of individual contribution inhibits cooperation. The coupling of the upper limit of individual contribution and the needed project cost determines the critical point of the upper limit of project benefit, where the equilibrium frequency of cooperators reaches its highest level. Above the critical point, an increase in the upper limit of project benefit inhibits cooperation. The evolution of cooperation is closely related to the preferred group-size distribution. A functional relation between the frequency of cooperators and the dominant group size is found.
Natural vibration frequencies of horizontal tubes partially filled with liquid
NASA Astrophysics Data System (ADS)
Santisteban Hidalgo, Juan Andrés; Gama, Antonio Lopes; Moreira, Roger Matsumoto
2017-11-01
This work presents an experimental and numerical study on the flexural vibration of horizontal circular tubes partially filled with liquid. The tube is configured as a free-free beam with attention being directed to the case of small amplitudes of transverse oscillation whereas the axial movements of the tube and liquid are disregarded. At first vertical and horizontal polarizations of the flexural tube are investigated experimentally for different amounts of filling liquid. In contrast with the empty and fully-filled tubes, it is observed that natural frequencies of the vertical and horizontal polarizations are different due to asymmetry induced by the liquid layer, which acts like an added mass. Less mass of liquid is added to the tube when oscillating horizontally; as a consequence, eigenfrequencies for the horizontal polarization are found to be greater than the case of the vertically polarized tube. A simple method to calculate the natural vibration frequencies using coefficients of added mass of liquid is proposed. It is shown that the added mass coefficient increases with the liquid's level and viscosity. At last a numerical investigation of the interaction between the liquid and the tube is carried out by solving in two-dimensions the full Navier-Stokes equations via a finite volume method, with the free-surface flow being modeled with a homogeneous multiphase Eulerian-Eulerian fluid approach. Vertical and horizontal polarizations are imposed to the tube with pressure and shear stresses being determined numerically to assess the liquid's forcing onto the tube's wall. The coefficient of added mass of liquid is then estimated by the ratio between the resulting force and the acceleration imposed to the wall. A good agreement is found between experimental and numerical results, especially for the horizontally oscillating tube. It is also shown that viscosity can noticeably affect the added mass coefficients, particularly at low filling levels.
Roberts, Deborah D; Pollien, Philippe; Watzke, Brigitte
2003-01-01
The purpose of this work was to study two key parameters of the lipid phase that influence flavor release-lipid level and lipid type-and to relate the results to a mass balance partition coefficient-based mathematical model. Release of 10 volatile compounds from milk-based emulsions at 10, 25, and 50 degrees C was monitored by 1-min headspace sampling with a solid-phase microextraction fiber, followed by GC-MS analysis. As compared to the observations for milk fat, changing to a lipophilic lipid (medium-chain triglycerides, MCT) and adding a monoglyceride-based surfactant did not influence the volatiles release. However, increasing the solid fat content was found to increase the release. At 25 degrees C, and even more so at 10 degrees C, concurrent with an increase in their solid fat content, hydrogenated palm fat emulsions showed increased flavor release over that observed for emulsions made with coconut oil, coconut oil with surfactant, milk fat, and MCT. However, at 50 degrees C, when hydrogenated palm fat emulsions had zero solid fat content, there was no difference in flavor release from that observed for milk fat emulsions. Varying milk fat at nine levels between 0 and 4.5% showed a systematic dependence of the release on the lipid level, dependent on compound lipophilicity. Close correlations were found between the experimental and model predictions with lipid level and percent liquid lipid as variables.
Increased D.U.I. enforcement program : Stockton, California project evaluation
DOT National Transportation Integrated Search
1977-01-01
This report concerns the evaluation of the first six-month operational phase of the Increased D.U.I. Enforcement Demonstration Project in Stockton, California. The D.U.I. Enforcement Program involves the use of varying levels of personnel specificall...
NASA Astrophysics Data System (ADS)
Wenzel, Thomas J.
2001-09-01
The availability of state-of-the-art instruments such as high performance liquid chromatograph, gas chromatograph-mass spectrometer, inductively coupled plasma-atomic emission spectrometer, capillary electrophoresis system, and ion chromatograph obtained through four Instructional Laboratory Improvement and one Course, Curriculum, and Laboratory Improvement grants from the National Science Foundation has led to a profound change in the structure of the analytical and general chemistry courses at Bates College. Students in both sets of courses now undertake ambitious, semester-long, small-group projects. The general chemistry course, which fulfills the prerequisite requirement for all upper-level chemistry courses, focuses on the connection between chemistry and the study of the environment. The projects provide students with an opportunity to conduct a real scientific investigation. The projects emphasize problem solving, team work, and communication, while still fostering the development of important laboratory skills. Cooperative learning is also used extensively in the classroom portion of these courses.
Wu, Tao; Liu, Jing-Han; Li, Hui; Zhou, Wu; Wang, Shu-Ying
2012-04-01
The aim of this study was to investigate the influence of S-nitrosoglutathione (GSNO) on agglutination and nitric oxide (NO) concentration in frozen platelets. The agglutination of platelets was detected by using platelet agglutination apparatus, the level of NO in platelets was detected by the nitrate enzyme reduction method. The results showed that the rates of agglutination in freeze platelets and frozen platelets treated with GSNO were (35.47 ± 2.93) and (24.43 ± 3.07), which were significantly lower than that in fresh liquid platelets (63.44 ± 2.96). The level of NO concentration in frozen platelets was (22.16 ± 6.38), which was significantly lower than that in fresh liquid platelets (31.59 ± 16.88). The level of NO concentration in frozen platelets treated with GSNO was (45.64 ± 6.31), which was significantly higher than that in fresh liquid platelets (P < 0.01). It is concluded that GSNO increases the concentration of NO in frozen platelets, inhibits platelet activation and maintains platelet function, thus GSNO can be used as a frozen protective agent.
Field, M.E.; Sullivan, W.H.
1985-01-29
A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.
NASA Technical Reports Server (NTRS)
Haskins, Justin Bradley; Bennett, William Raymond; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W., Jr.; Watson, John W.
2014-01-01
Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li (-) salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing xLi, the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of xLi 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular).
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Bennett, William R.; Hernandez-Lugo, Dione M.; Wu, James; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.
2014-01-01
Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-Nbutylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-Npropylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of x(sub Li) we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing x(sub Li), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of x(sub Li) is approximately 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 - 0.3 mS/cm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular).
Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lan, Ji-Wu; Lin, Wei-An; Xu, Xiao-Bing; He, Pin-Jing
2017-10-01
The high food waste content (HFWC) MSW at a landfill has the characteristics of rapid hydrolysis process, large leachate production rate and fast gas generation. The liquid-gas interactions at HFWC-MSW landfills are prominent and complex, and still remain significant challenges. This paper focuses on the liquid-gas interactions of HFWC-MSW observed from a large-scale bioreactor landfill experiment (5m×5m×7.5m). Based on the connected and quantitative analyses on the experimental observations, the following findings were obtained: (1) The high leachate level observed at Chinese landfills was attributed to the combined contribution from the great quantity of self-released leachate, waste compression and gas entrapped underwater. The contribution from gas entrapped underwater was estimated to be 21-28% of the total leachate level. (2) The gas entrapped underwater resulted in a reduction of hydraulic conductivity, decreasing by one order with an increase in gas content from 13% to 21%. (3) The "breakthrough value" in the gas accumulation zone was up to 11kPa greater than the pore liquid pressure. The increase of the breakthrough value was associated with the decrease of void porosity induced by surcharge loading. (4) The self-released leachate from HFWC-MSW was estimated to contribute to over 30% of the leachate production at landfills in Southern China. The drainage of leachate with a high organic loading in the rapid hydrolysis stage would lead to a loss of landfill gas (LFG) potential of 13%. Based on the above findings, an improved method considering the quantity of self-released leachate was proposed for the prediction of leachate production at HFWC-MSW landfills. In addition, a three-dimensional drainage system was proposed to drawdown the high leachate level and hence to improve the slope stability of a landfill, reduce the hydraulic head on a bottom liner and increase the collection efficiency for LFG. Copyright © 2017. Published by Elsevier Ltd.
New PDLC materials obtained from dispersion of LC under microgravity
NASA Astrophysics Data System (ADS)
Matos, M. R.; Leitao, J. C.; Andre, R. M.; Zambujal, R.; Carmelo Rosa, Carla; Simeao Carvalho, P.; Podgorski, Thomas
Aknowledgements: This project has been supported by ESA-Education, the University of Porto, IFIMUP and INESC-Porto. Bibliography: [1] F Bloisi and L Vicari. Optical Applications of Liquid Crystals, chapter 4: Polymer-dispersed liquid crystals. Institute of Physics Publishing, 2003. [2] J. William Doane. Liquid Crystals Applications and Uses, volume 1, chapter 14: Polymer Dispersed Liquid Crystal Displays, pages 361-391. World Scientific, 1990. [3] K. Parbhakar, J. M. Jin, H. M. Nguyen, and L. H. Dao. Effect of microgravity on the distribution of liquid-crystal droplets dispersed in a polymer matrix. CHEMISTRY OF MA-TERIALS, 8(??):1210-1216, Jun 1996. [4] Paul S. Drzaic. Liquid Crystal Dispersions, volume 1. World Scientific, 1995.
Liquid Argon Calorimetry for ATLAS
NASA Astrophysics Data System (ADS)
Robinson, Alan
2008-05-01
This summer, the largest collaborative physics project since the Manhattan project will go online. One of four experiments for the Large Hadron Collider at CERN in Geneva, ATLAS, employs over 2000 people. Canadians have helped design, construct, and calibrate the liquid argon calorimeters for ATLAS to capture the products of the high energy collisions produced by the LHC. From an undergraduate's perspective, explore how these calorimeters are made to handle their harsh requirement. From nearly a billion proton-proton collisions a second, physicists hope to discover the Higgs boson and other new fundamental particles.
Development of liquid crystal based adaptive optical elements for space applications
NASA Astrophysics Data System (ADS)
Geday, M. A.; Quintana, X.; Otón, E.; Cerrolaza, B.; Lopez, D.; Garcia de Quiro, F.; Manolis, I.; Short, A.
2017-11-01
In this paper we present the results obtained within the context of the ESA-funded project Programmable Optoelectronic Adaptive Element (AO/1-5476/07/NL/EM). The objective of this project is the development of adaptive (reconfigurable) optical elements for use in space applications and the execution of preliminary qualification tests in the relevant environment. The different designs and materials that have been considered and manufactured for a 2D beam steerer based on passive matrix liquid crystal programmable blaze grating will described and discussed.
NASA Astrophysics Data System (ADS)
Irby, Isaac D.; Friedrichs, Marjorie A. M.; Da, Fei; Hinson, Kyle E.
2018-05-01
The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic-biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO) concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L-1) will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.
ICAM-1, ELAM-1, TNF-alpha and IL-6 in serum and blister liquid of pemphigus vulgaris patients.
Alecu, M; Alecu, S; Coman, G; Gălăţescu, E; Ursaciuc, C
1999-01-01
The levels of ICAM-1, ELAM-1, TNF-alpha and IL-6 were determined in 12 patients with pemphigus vulgaris (PV) both in serum and the blister liquid. As a control, the same parameters were determined in 7 patients with herpes zoster (HZ). The patients with PV presented significantly higher values of ICAM-1 in the blister liquid, as compared to the serum values. The values of TNF-alpha and IL-6 were increased both in serum and the blister liquid. The ELAM-1 values did not show significant differences between serum and the blister liquid. In HZ patients, the blister liquid values did not significantly exceed the serum values both for ICAM-1 and ELAM-1. TNF-alpha and IL-6 presented high values both in serum and the blister liquid. We consider that the high values of ICAM-1 in the blister liquid from PV patients suggest the involvement of this adhesion molecule in the PV pathogenic features. The implication of ICAM-1 could be nonspecific and limited, and could possibly represent a reaction to the destruction of the desmosomal bonds within keratinocytes.
Capital planning for clinical integration.
Grauman, Daniel M; Neff, Gerald; Johnson, Molly Martha
2011-04-01
When assessing the financial implications of a physician alignment and clinical integration initiative, a hospital should measure the initiative's potential ROI, perhaps best using a combination of net present value and payback period. The hospital should compare its own historical and projected performance with rating agency median benchmarks for key financial indicators of profitability, debt service, capital and cash flow, and liquidity. The hospital should also consider potential indirect benefits, such as retained outpatient/ancillary revenue, increased inpatient revenue, improved cost control, and improved quality and reporting transparency.
2017-05-01
SUDDEN EXPANSION 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62203F 6. AUTHOR(S) Joseph Michael Cronin 5d. PROJECT ...heat transfer in order to manage the ever-increasing airframe and engine heat loads. Two-phase liquid-vapor refrigerant systems are one solution for...were compared with pressure drop correlations. 15. SUBJECT TERMS thermal management , two-phase flow, flow visualization, electric capacitance
Kamiya, Yusuke; Yoshimura, Yukie; Islam, Mohammad Tajul
2013-04-01
This paper reports the findings from a quasi-experimental impact evaluation of the Safe Motherhood Promotion Project (SMPP) conducted in the Narsingdi district of Bangladesh. SMPP is a Japanese aid-funded technical cooperation project aimed at developing local capacities to tackle maternal and newborn health problems in rural areas. We assessed whether the project interventions, in particular, community-based activities under the Model Union approach, had a favorable impact on women's access to and knowledge of maternal health care during pregnancy and childbirth. The project comprises a package of interlinked interventions to facilitate safe motherhood practices at primary and secondary care levels. The primary-level activities focused on community mobilization through participatory approaches. The secondary-level activities aimed at strengthening organizational and personnel capacities for delivering emergency obstetric care (EmOC) at district and sub-district level hospitals. The project impact was estimated by difference-in-differences logistic regressions using two rounds of cross-sectional household survey data. The results showed that the project successfully increased the utilization of antenatal visits and postpartum EmOC services and also enhanced women's knowledge of danger signs during pregnancy and delivery. The project also reduced income inequalities in access to antenatal care. In contrast, we found no significant increase in the use of skilled birth attendants (SBA) in the project site. Nonetheless, community mobilization activities and the government's voucher scheme played a complementary role in promoting the use of SBA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Flexible Cryogenic Temperature and Liquid-Level Probes
NASA Technical Reports Server (NTRS)
Haberbusch, Mark
2003-01-01
Lightweight, flexible probes have been developed for measuring temperatures at multiple locations in tanks that contain possibly pressurized cryogenic fluids. If the fluid in a given tank is subcritical (that is, if it consists of a liquid and its vapor), then in one of two modes of operation, the temperature measurements made by a probe of this type can be used to deduce the approximate level of the liquid. The temperature sensors are silicon diodes located at intervals along a probe. If the probe is to be used to measure a temperature gradient along a given axis in the tank, then the probe must be mounted along that axis. In the non-liquid-level-sensing temperature-measurement mode, a constant small electric current is applied to each diode and the voltage across the diode . a known function of the current and temperature . is measured as an indication of its temperature. For the purpose of this measurement, "small electric current" signifies a current that is not large enough to cause a significant increase in the measured temperature. More specifically, the probe design calls for a current of 10 A, which, in the cryogenic temperature range of interest, generates heat at a rate of only about 0.01 mW per diode. In the liquid-level-sensing mode, one applies a larger current (30 mA) to each diode so as to heat each diode appreciably (with a power of about 36 mW in the temperature range of interest). Because the liquid cools the diode faster than does the vapor, the temperature of the diode is less when diode is immersed in the liquid than when it is above the surface of the liquid. Thus, the temperature (voltage) reading from each diode can be used to determine whether the liquid level is above or below the diode, and one can deduce that the liquid level lies between two adjacent diodes, the lower one of which reads a significantly lower temperature. The aforementioned techniques for measuring temperature and deducing liquid level are not new. What is new here are the designs of the probes and of associated external electronic circuitry. In each probe, the diodes and the lead wires are embedded in a strong, lightweight, flexible polyimide strip. Each probe is constructed as an integral unit that includes a multipin input/output plug or socket for solderless connection of the lead wires to the external circuitry. The polyimide strip includes mounting tabs with holes that can accommodate rivets, screws, or other fasteners. Alternatively, a probe can be mounted by use of an epoxy. A probe can be manufactured to almost any length or width, and the diodes can be embedded at almost any desired locations along and across the polyimide strip. In designing a probe for a specific application, one seeks a compromise between (1) minimizing the number of diodes in order to minimize the complexity of input/output connections and external electronic circuitry while (2) using enough diodes to obtain the required precision. Optionally, to minimize spurious heating of the cryogenic fluid, the external circuitry can be designed to apply power to the probe only during brief measurement intervals. Assuming that the external circuitry is maintained at a steady temperature, a power-on interval of only a few seconds is sufficient to obtain accurate data on temperatures and/or the height of the liquid/vapor interface.
NASA Astrophysics Data System (ADS)
Tirandazi, Pooyan; Hidrovo, Carlos
2015-11-01
Over the last few years, microfluidic systems known as Lab-on-a-Chip (LOC) and micro total analysis systems (μTAS) have been increasingly developed as essential components for numerous biochemical applications. Droplet microfluidics, however, provides a distinctive attribute for delivering and processing discrete as well as ultrasmall volumes of fluid, which make droplet-based systems more beneficial over their continuous-phase counterparts. Droplet generation in its conventional scheme usually incorporates the injection of a liquid (water) into a continuous immiscible liquid (oil) medium. In this study we demonstrate a novel scheme for controlled generation of monodisperse droplets in confined gas-liquid microflows. We experimentally investigate the manipulation of water droplets in flow-focusing configurations using a high inertial air stream. Different flow regimes are observed by varying the gas and liquid flow rates, among which, the ``dripping regime'' where monodisperse droplets are generated is of great importance. The controlled size and generation rate of droplets in this region provide the capability for precise and contaminant-free delivery of microliter to nanoliter volumes of fluid. Furthermore, the high speed droplets generated in this method represent the basis for a new approach based on droplet pair collisions for fast efficient micromixing which provides a significant development in modern LOC and μTAS devices. This project is currently being supported by an NSF CAREER Award grant CBET-1151091.
Ultrasonic liquid level detector
Kotz, Dennis M.; Hinz, William R.
2010-09-28
An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.
Monitoring gross alpha and beta activity in liquids by using ZnS(Ag) scintillation detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevanato, L.; Cester, D.; Filippi, D.
In this work the possibility of monitoring gross alpha and beta activity in liquids using EJ-444 was investigated. Specific tests were carried out to determine the change of the detector properties in water tests. Possible protecting coating is also proposed and tested. Alpha/beta real-time monitoring in liquids is a goal of the EU project TAWARA{sub R}TM. (authors)
Containerless Liquid-Phase Processing of Ceramic Materials
NASA Technical Reports Server (NTRS)
Weber, J. K. Richard (Principal Investigator); Nordine, Paul C.
1996-01-01
The present project builds on the results of research supported under a previous NASA grant to investigate containerless liquid-phase processing of molten ceramic materials. The research used an aero-acoustic levitator in combination with cw CO2 laser beam heating to achieve containerless melting, superheating, undercooling, and solidification of poorly-conducting solids and liquids. Experiments were performed on aluminum oxide, binary aluminum oxide-silicon dioxide materials, and oxide superconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobar, C. O.; Rubinov, P.; Tilly, E.
After a short review of previous attempts to observe and measure the near-infrared scintillation in liquid argon, we present new results obtained with NIR, a dedicated cryostat at the Fermilab Proton Assembly Building (PAB). The new results give confidence that the near-infrared light can be used as the much needed light signal in large liquid argon time projection chambers.11 pages,
Novel Nanocomposite Structures as Active and Passive Barrier Materials
2010-06-01
during the course of this ARO-funded project. The development of a novel polymer material based on a diol-functionalized room-temperature ionic liquid ...material based on a diol-functionalized room- temperature ionic liquid (RTIL) monomer led to fabrication of membranes, which were tested for their...stimulant vapor. Technical Report A polymerizable room-temperature ionic liquid (4, Figure 1) was chosen as the starting material for making poly(RTIL
SOME NOVEL LIQUID PARTITIONING SYSTEMS: WATER-IONIC LIQUIDS AND AQUEOUS BIPHASIC SYSTEMS. (R828257)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Efficiency enhancement of liquid crystal projection displays using light recycle technology
NASA Technical Reports Server (NTRS)
Wang, Y.
2002-01-01
A new technology developed at JPL using low absorption color filters with polarization and color recycle system, is able to enhance efficiency of a single panel liquid crytal display (LCD) projector to the same efficiency of a 3 panel LCD projector.
LIQUID CRYSTAL POLYMERS (LCP) USED AS A MACHINING FLUID CD
This interactive CD was produced to present the science, research activities, and beneficial environmental and machining advantages for utilizing Liquid Crystal Polymers (LCPs) as a machine fluid in the manufacturing industry.
In 1995, the USEPA funded a project to cut flu...
SYNTHESIS REPORT ON FIVE DENSE, NONAQUEOUS-PHASE LIQUID (DNAPL) REMEDIATION PROJECTS
Dense non-aqueous phase liquid (DNAPL) poses a difficult problem for subsurface remediation because it serves as a continuing source to dissolved phase ground water contamination and is difficult to remove from interstitial pore space or bedrock fractures in the subsurface. Numer...
Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linville, B.
This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)
Anti-inflammatory and antioxidant effects of umbelliferone in chronic alcohol-fed rats
Sim, Mi-Ok; Lee, Hae-In; Ham, Ju Ri; Seo, Kwon-Il; Kim, Myung-Joo
2015-01-01
BACKGROUND/OBJECTIVES Inflammation is associated with various types of acute and chronic alcohol liver diseases. In this study, we examined whether umbelliferone (7-hydroxycoumarin, UF) ameliorates chronic alcohol-induced liver damage by modulating inflammatory response and the antioxidant system. METHODS Rats were fed a Liber-Decarli liquid diet containing 5% alcohol with or without UF (0.05 g/L) for 8 weeks, while normal rats received an isocaloric carbohydrate liquid diet. RESULTS Chronic alcohol intake significantly increased serum tumor necrosis factor-α (TNF-α) and interleukin 6 levels and decreased interleukin 10 level; however, UF supplementation reversed the cytokines related to liver damage. UF significantly suppressed hepatic lipopolysaccharide binding protein, toll-like receptor 4 (TLR4), nuclear factor kappa B, and TNF-α gene expression increases in response to chronic alcohol intake. Masson's trichrome staining revealed that UF improved mild hepatic fibrosis caused by alcohol, and UF also significantly increased the mRNA expressions and activities of superoxide dismutase and catalase in liver, and thus, decreased lipid peroxide and mitochondrial hydrogen peroxide levels. CONCLUSIONS The findings of this study indicate that UF protects against alcohol-induced liver damage by inhibiting the TLR4 signaling pathway and activating the antioxidant system. PMID:26244074
Barcenas, Mariana; Suhr, Teryn R; Scott, C Ronald; Turecek, Frantisek; Gelb, Michael H
2014-06-10
Treatments are being developed for metachromatic leukodystrophy (MLD), suggesting the need for eventual newborn screening. Previous studies have shown that sulfatide molecular species are increased in the urine of MLD patients compared to samples from non-MLD individuals, but there is no data using dried blood spots (DBS), the most common sample available for newborn screening laboratories. We used ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) to quantify sulfatides in DBS and dried urine spots from 14 MLD patients and 50 non-MLD individuals. Several sulfatide molecular species were increased in dried urine samples from all MLD samples compared to non-MLD samples. Sulfatides, especially low molecular species, were increased in DBS from MLD patients, but the sulfatide levels were relatively low. There was good separation in sulfatide levels between MLD and non-MLD samples when dried urine spots were used, but not with DBS, because DBS from non-MLD individuals have measurable levels of sulfatides. Sulfatide accumulation studies in urine, but not in DBS, emerges as the method of choice if newborn screening is to be proposed for MLD. Copyright © 2013 Elsevier B.V. All rights reserved.
Extensive Liquid Meltwater Storage in Firn Within the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Forster, Richard R.; Box, Jason E.; vandenBroeke, Michael R.; Miege, Clement; Burgess, Evan W.; vanAngelen, Jan H.; Lenaerts, Jan T. M.; Koenig, Lora S.; Paden, John; Lewis, Cameron;
2013-01-01
The accelerating loss of mass from the Greenland ice sheet is a major contribution to current sea level rise. Increased melt water runoff is responsible for half of Greenlands mass loss increase. Surface melt has been increasing in extent and intensity, setting a record for surface area melt and runoff in 2012. The mechanisms and timescales involved in allowing surface melt water to reach the ocean where it can contribute to sea level rise are poorly understood. The potential capacity to store this water in liquid or frozen form in the firn (multi-year snow layer) is significant, and could delay its sea-level contribution. Here we describe direct observation of water within a perennial firn aquifer persisting throughout the winter in the southern ice sheet,where snow accumulation and melt rates are high. This represents a previously unknown storagemode for water within the ice sheet. Ice cores, groundairborne radar and a regional climatemodel are used to estimate aquifer area (70 plue or minus 10 x 10(exp 3) square kilometers ) and water table depth (5-50 m). The perennial firn aquifer represents a new glacier facies to be considered 29 in future ice sheet mass 30 and energy budget calculations.
Detection of free liquid in containers of solidified radioactive waste
Greenhalgh, W.O.
Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.
Detection of free liquid in containers of solidified radioactive waste
Greenhalgh, Wilbur O.
1985-01-01
A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.
Daly, Paul; van Munster, Jolanda M; Blythe, Martin J; Ibbett, Roger; Kokolski, Matt; Gaddipati, Sanyasi; Lindquist, Erika; Singan, Vasanth R; Barry, Kerrie W; Lipzen, Anna; Ngan, Chew Yee; Petzold, Christopher J; Chan, Leanne Jade G; Pullan, Steven T; Delmas, Stéphane; Waldron, Paul R; Grigoriev, Igor V; Tucker, Gregory A; Simmons, Blake A; Archer, David B
2017-01-01
The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retaining more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL-pretreated straw, but not HT-pretreated straw, as feedstock for CAZyme production.
Ellipsometric measurement of liquid film thickness
NASA Technical Reports Server (NTRS)
Chang, Ki Joon; Frazier, D. O.
1989-01-01
The immediate objective of this research is to measure liquid film thickness from the two equilibrium phases of a monotectic system in order to estimate the film pressure of each phase. Thus liquid film thicknesses on the inside walls of the prism cell above the liquid level have been measured elliposmetrically for the monotectic system of succinonitrile and water. The thickness varies with temperature and composition of each plane. The preliminary results from both layers at 60 deg angle of incidence show nearly uniform thickness from about 21 to 23 C. The thickness increases with temperature but near 30 C the film appears foggy and scatters the laser beam. As the temperature of the cell is raised beyond room temperature it becomes increasingly difficult to equalize the temperature inside and outside the cell. The fogging may also be an indication that solution, not pure water, is adsorbed onto the substrate. Nevertheless, preliminary results suggest that ellipsometric measurement is feasible and necessary to measure more accurately and rapidly the film thickness and to improve thermal control of the prism walls.
NOx Emission Reduction by Oscillating combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Institute of Gas Technology
2004-01-30
High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.« less
NOx Emission Reduction by Oscillating Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
John C. Wagner
2004-03-31
High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.« less
NASA Astrophysics Data System (ADS)
Lee, Jong Cheol; Kim, Il Yong; Son, Yeri; Byeon, Seul Kee; Yoon, Dong Hyun; Son, Jun Seok; Song, Han Sol; Song, Wook; Seong, Je Kyung; Moon, Myeong Hee
2016-07-01
We compare comprehensive quantitative profiling of lipids at the molecular level from skeletal muscle tissues (gastrocnemius and soleus) of Zucker diabetic fatty rats and Zucker lean control rats during treadmill exercise by nanoflow liquid chromatography-tandem mass spectrometry. Because type II diabetes is caused by decreased insulin sensitivity due to excess lipids accumulated in skeletal muscle tissue, lipidomic analysis of muscle tissues under treadmill exercise can help unveil the mechanism of lipid-associated insulin resistance. In total, 314 lipid species, including phospholipids, sphingolipids, ceramides, diacylglycerols (DAGs), and triacylglycerols (TAGs), were analyzed to examine diabetes-related lipid species and responses to treadmill exercise. Most lysophospholipid levels increased with diabetes. While DAG levels (10 from the gastrocnemius and 13 from the soleus) were >3-fold higher in diabetic rats, levels of most of these decreased after exercise in soleus but not in gastrocnemius. Levels of 5 highly abundant TAGs (52:1 and 54:3 in the gastrocnemius and 48:2, 50:2, and 52:4 in the soleus) displaying 2-fold increases in diabetic rats decreased after exercise in the soleus but not in the gastrocnemius in most cases. Thus, aerobic exercise has a stronger influence on lipid levels in the soleus than in the gastrocnemius in type 2 diabetic rats.
Sørensen, Nina N; Tetens, Inge; Løje, Hanne; Lassen, Anne D
2016-12-01
To measure the effect of organic food conversion projects on the percentage of organic food used in Danish public kitchens participating in the Danish Organic Action Plan 2020. The current longitudinal study was based on measurements of organic food percentages in Danish public kitchens before and after kitchen employees participated in conversion projects. Public kitchens participating in the nine organic food conversion projects under the Danish Organic Action Plan 2020, initiated during autumn 2012 and spring 2013 and completed in summer 2015. A total of 622 public kitchens. The average (median) increase in organic food percentage from baseline to follow-up was 24 percentage points (P<0·001) during an overall median follow-up period of 1·5 years. When analysing data according to public kitchen type, the increase remained significant for seven out of eight kitchens. Furthermore, the proportion of public kitchens eligible for the Organic Cuisine Label in either silver (60-90 % organic food procurement) or gold (90-100 % organic food procurement) level doubled from 31 % to 62 %, respectively, during the conversion period. Conversion project curriculum mostly included elements of 'theory', 'menu planning', 'network' and 'Organic Cuisine Label method' to ensure successful implementation. The study reports significant increases in the level of organic food procurement among public kitchens participating in the Danish Organic Action Plan 2020. Recommendations for future organic conversion projects include adding key curriculum components to the project's educational content and measuring changes in organic food percentage to increase the chances of successful implementation.
Development of a Liquefied Noble Gas Time Projection Chamber
NASA Astrophysics Data System (ADS)
Lesser, Ezra; White, Aaron; Aidala, Christine
2015-10-01
Liquefied noble gas detectors have been used for various applications in recent years for detecting neutrinos, neutrons, photons, and potentially dark matter. The University of Michigan is developing a detector with liquid argon to produce scintillation light and ionization electrons. Our data collection method will allow high-resolution energy measurement and spatial reconstruction of detected particles by using multi-pixel silicon photomultipliers (SiPM) and a cylindrical time projection chamber (TPC) with a multi-wire endplate. We have already designed a liquid argon condenser and purification unit surrounded by an insulating vacuum, constructed circuitry for temperature and pressure sensors, and created software to obtain high-accuracy sensor readouts. The status of detector development will be presented. Funded through the Michigan Memorial Phoenix Project.
Liquid radwaste in-leakage reduction at TVA's Browns Ferry nuclear plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A.C.; Roccasano, J.J.
1987-01-01
Early in 1985, Tennessee Valley Authority's (TVA's) Browns Ferry Nuclear Plant (BFNP) decided to initiate a liquid radwaste in-leakage reduction project as part of their chemistry improvement program. The purpose of this project was to reduce the overall volume of water processed by the radwaste system at BFNP by restricting uncontrolled in-leakage through the floor drain system. Impell Corporation was contracted to perform the project, which consisted of several tasks, each design to provide data for the reduction of in-leakage or to reduce the in-leakage directly. The program was begun in March 1985. Buy July of that same year, liquidmore » input to radwaste through the floor drain system had been reduced by --30%.« less
Impact analysis of government investment on water projects in the arid Gansu Province of China
NASA Astrophysics Data System (ADS)
Wang, Zhan; Deng, Xiangzheng; Li, Xiubin; Zhou, Qing; Yan, Haiming
In this paper, we introduced three-nested Constant Elasticity of Substitution (CES) production function into a static Computable General Equilibrium (CGE) Model. Through four levels of factor productivity, we constructed three nested production function of land use productivity in the conceptual modeling frameworks. The first level of factor productivity is generated by the basic value-added land. On the second level, factor productivity in each sector is generated by human activities that presents human intervention to the first level of factor productivity. On the third level of factor productivity, water allocation reshapes the non-linear structure of transaction among first and second levels. From the perspective of resource utilization, we examined the economic efficiency of water allocation. The scenario-based empirical analysis results show that the three-nested CES production function within CGE model is well-behaved to present the economy system of the case study area. Firstly, water scarcity harmed economic production. Government investment on water projects in Gansu thereby had impacts on economic outcomes. Secondly, huge governmental financing on water projects bring depreciation of present value of social welfare. Moreover, water use for environment adaptation pressures on water supply. The theoretical water price can be sharply increased due to the increasing costs of factor inputs. Thirdly, water use efficiency can be improved by water projects, typically can be benefited from the expansion of water-saving irrigation areas even in those expanding dry area in Gansu. Therefore, increasing governmental financing on water projects can depreciate present value of social welfare but benefit economic efficiency for future generation.
Flow behavior in liquid molding
NASA Technical Reports Server (NTRS)
Hunston, D.; Phelan, F.; Parnas, R.
1992-01-01
The liquid molding (LM) process for manufacturing polymer composites with structural properties has the potential to significantly lower fabrication costs and increase production rates. LM includes both resin transfer molding and structural reaction injection molding. To achieve this potential, however, the underlying science base must be improved to facilitate effective process optimization and implementation of on-line process control. The National Institute of Standards and Technology (NIST) has a major program in LM that includes materials characterization, process simulation models, on-line process monitoring and control, and the fabrication of test specimens. The results of this program are applied to real parts through cooperative projects with industry. The key feature in the effort is a comprehensive and integrated approach to the processing science aspects of LM. This paper briefly outlines the NIST program and uses several examples to illustrate the work.
Numerical simulations of microwave heating of liquids: enhancements using Krylov subspace methods
NASA Astrophysics Data System (ADS)
Lollchund, M. R.; Dookhitram, K.; Sunhaloo, M. S.; Boojhawon, R.
2013-04-01
In this paper, we compare the performances of three iterative solvers for large sparse linear systems arising in the numerical computations of incompressible Navier-Stokes (NS) equations. These equations are employed mainly in the simulation of microwave heating of liquids. The emphasis of this work is on the application of Krylov projection techniques such as Generalized Minimal Residual (GMRES) to solve the Pressure Poisson Equations that result from discretisation of the NS equations. The performance of the GMRES method is compared with the traditional Gauss-Seidel (GS) and point successive over relaxation (PSOR) techniques through their application to simulate the dynamics of water housed inside a vertical cylindrical vessel which is subjected to microwave radiation. It is found that as the mesh size increases, GMRES gives the fastest convergence rate in terms of computational times and number of iterations.
The presence of functional groups key for biodegradation in ionic liquids: effect on gas solubility.
Deng, Yun; Morrissey, Saibh; Gathergood, Nicholas; Delort, Anne-Marie; Husson, Pascale; Costa Gomes, Margarida F
2010-03-22
The effect of the incorporation of either ester or ester and ether functions into the side chain of an 1-alkyl-3-methylimidazolium cation on the physico-chemical properties of ionic liquids containing bis(trifluoromethylsulfonyl)imide or octylsulfate anions is studied. It is believed that the introduction of an ester function into the cation of the ionic liquids greatly increases their biodegradability. The density of three such ionic liquids is measured as a function of temperature, and the solubility of four gases-carbon dioxide, ethane, methane, and hydrogen-is determined between 303 K and 343 K and at pressures close to atmospheric level. Carbon dioxide is the most soluble gas, followed by ethane and methane; the mole fraction solubilities vary from 1.8 x 10(-3) to 3.7 x 10(-2). These solubilities are of the same order of magnitude as those determined for alkylimidazolium-based ionic liquids. The chemical modification of the alkyl side chain does not result in a significant change of the solvation properties of the ionic liquid. All of the solubilities decrease with increasing temperature, corresponding to an exothermal solvation process. From the variation of this property with temperature, the thermodynamic functions of solvation (Gibbs energy, enthalpy, and entropy) are calculated and provide information about the solute-solvent interactions and the molecular structure of the solutions.
Simulation of fiber optic liquid level sensor demodulation system
NASA Astrophysics Data System (ADS)
Yi, Cong-qin; Luo, Yun; Zhang, Zheng-ping
Measuring liquid level with high accuracy is an urgent requirement. This paper mainly focus on the demodulation system of fiber-optic liquid level sensor based on Fabry-Perot cavity, design and simulate the demodulation system by the single-chip simulation software.
Tethered float liquid level sensor
Daily, III, William Dean
2016-09-06
An apparatus for sensing the level of a liquid includes a float, a tether attached to the float, a pulley attached to the tether, a rotation sensor connected to the pulley that senses vertical movement of said float and senses the level of the liquid.
[Liver injury and intervention of compound 912 liquid on it in rats with endotoxemia].
Hu, Lan; Zhang, Shu-Wen; Yin, Cheng-Hong
2007-06-01
To investigate the liver injury in model rats with endotoxemia and to observe the protective effect of Compound 912 Liquid on it. Rats were randomly divided into three groups, the endotoxemia model group (EMG, injected by lipoplysaccharides (LPS) peritoneally), the intervention group (IG, treated with Compound 912 Liquid via gastrogavage 1 h before model establishing) and the normal control group (NCG). Blood samples of rats were taken at the time points of the 2nd, 4th, 8th, 12th, 48th, 72nd hour and the 7th day after modeling for measuring liver function, levels of plasmatic endotoxin, tumor necrosis factor alpha (TNF-alpha), interleukin-10 (IL-10). The pathological change of liver was observed using light microscope and electro-transmission microscope. The peak concentration of endotoxin detected at 2 hour after modeling in the IG was significantly lower than that in the EMG (0.358 +/- 0.056 vs 0.685 +/- 0.030), but insignificant difference (P > 0.05) was shown between them in TNF-alpha level. The level of IL-10 continuously rose in IG after treatment, it was still higher than normal level until day 7 (49.096 +/- 4.076 vs 43.454 +/- 5.928, P < 0.05). LPS can induce the increase of serum inflammatory cytokines and anti-inflammatory cytokines in rats to injure liver. Therefore, the inflammatory reaction indicated by LPS may be one of the mechanisms for liver injury. Preventive medication with Compound 912 Liquid showed a significant liver protective effect.
Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung
2016-01-15
A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg(-1) in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L(-1) DOC solution with a of pH 2.0 at 25°C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH4(+)-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Liquid level sensor based on an excessively tilted fibre grating
NASA Astrophysics Data System (ADS)
Mou, Chengbo; Zhou, Kaiming; Yan, Zhijun; Fu, Hongyan; Zhang, Lin
2013-09-01
We propose and demonstrate an optical liquid level sensor based on the surrounding medium refractive index (SRI) sensing using an excessively tilted fibre grating (ETFG). When the ETFG submerged in water, two sets of cladding modes are coupled, corresponding to air- and water-surrounded grating structures, respectively. The coupling strengths of the two sets of cladding modes evolve with the submerging length of the grating, providing a mechanism to measure the liquid level. Comparing with long-period fibre grating based liquid level sensor, the ETFG sensor has a much higher SRI responsivity for liquids with refractive index around 1.33 and a lower thermal cross sensitivity.
NASA Technical Reports Server (NTRS)
1981-01-01
The preliminary grant assessed the use of laboratory experiments for simulating low g liquid drop experiments in the space shuttle environment. Investigations were begun of appropriate immiscible liquid systems, design of experimental apparatus and analyses. The current grant continued these topics, completed construction and preliminary testing of the experimental apparatus, and performed experiments on single and compound liquid drops. A continuing assessment of laboratory capabilities, and the interests of project personnel and available collaborators, led to, after consultations with NASA personnel, a research emphasis specializing on compound drops consisting of hollow plastic or elastic spheroids filled with liquids.
Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
NASA Astrophysics Data System (ADS)
Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bullard, B.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; De Geronimo, G.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, S.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Rescia, S.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Thorn, C.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Yu, B.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2017-08-01
The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.
NASA Technical Reports Server (NTRS)
1983-01-01
Meniscus coates tests, back junction formation using a new boron containing liquid, tests of various SiO2 and boron containing liquids, pelletized silicon for replenishment during web growth, and ion implantation compatibility/feasibility study are discussed.
INFLUENCE OF WETTABILITY AND SATURATION ON LIQUID-LIQUID INTERFACIAL AREA IN POROUS MEDIA. (R827116)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Technical Reports Server (NTRS)
1982-01-01
Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated.
Ishiwari, Keita; Mingote, Susana; Correa, Merce; Trevitt, Jennifer T; Carlson, Brian B; Salamone, John D
2004-12-30
Substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia that receives GABAergic projections from neostriatum and globus pallidus. Previous research has shown that local pharmacological manipulations of GABA in SNr can influence tremulous jaw movements in rats. Tremulous jaw movements are defined as rapid vertical deflections of the lower jaw that resemble chewing but are not directed at a particular stimulus, and evidence indicates that these movements share many characteristics with parkinsonian tremor in humans. In order to investigate the role of GABA in motor functions related to tremor, the present study tested the GABA uptake blocker beta-alanine for its ability to reduce pilocarpine-induced tremulous jaw movements. In a parallel experiment, the effect of an active dose of beta-alanine on dialysate levels of GABA in SNr was assessed using microdialysis methods. GABA levels in dialysis samples were measured using high performance liquid chromatography with electrochemical detection. beta-Alanine (250-500 mg/kg) significantly reduced tremulous jaw movements induced by pilocarpine (4.0 mg/kg). Moreover, systemic administration of beta-alanine at a dose that reduced tremulous jaw movements (500 mg/kg) resulted in a substantial increase in extracellular levels of GABA in SNr compared to the pre-injection baseline. Thus, the present results are consistent with the hypothesis that GABAergic tone in SNr plays a role in the regulation of tremulous jaw movements. This research may lead to a better understanding of how parkinsonian symptoms are modulated by SNr GABA mechanisms.
Hayes, David W.
1978-01-01
An apparatus for pumping a sample of water or other liquid that uses the energy generated from the rise and fall of the liquid level to force a sample of the liquid into a collection vessel. A suction vessel and booster vessel with interconnecting tubing and check valves are responsive to an oscillating liquid level to pump a portion of said liquid into a collection vessel.
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.
2015-01-01
Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid-phase systems provide similar estimates of electrochemical window, while Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems. Pure and hybrid functionals systematically provide an upper and lower bound, respectively, to the experimental electrochemical window for the systems studied here.
Kim, Sungroul; Goniewicz, Maciej L.; Yu, Sol; Kim, Bokyeong; Gupta, Ribhav
2015-01-01
Background: In South Korea, the consumption of liquid nicotine used in electronic cigarettes has dramatically increased from 4310 L in 2012 to 7220 L in 2013. This study aimed to examine the level of heterogeneity of contents of the labels and discrepancy of the nicotine content between that indicated on the label and the actual values for electronic cigarette liquid refill products in South Korea. Methods: We purchased 32 electronic cigarette liquid refill products (17 Korean domestic, 15 imported ones) and one pure nicotine product at six different electronic cigarette retail stores in Seoul between May and June 2014. The actual nicotine concentrations of each product were measured by a blinded analyst at Roswell Park Cancer Institute, Buffalo, NY, USA. Results: Three out of 15 imported liquid refill products provided manufacturing dates, while expiration dates were available on eight products. The range of nicotine concentration was from “not detected” to 17.5 mg/mL. Labeling discrepancies of the concentrations ranged from −32.2% to 3.3% among electronic cigarette liquid refill products. The highest concentration (150.3 ± 7.9 mg/mL) was found in a sample labeled as “pure nicotine”. Conclusions: There is no standardization of labelling among electronic cigarette liquids sampled from retail stores and the labels did not accurately reflect the content. One product labeled “pure nicotine” raises concerns, since it may be poisonous to consumers, especially to children. This study revealed the urgent need for the development of product regulations in South Korea. PMID:25950652
Long-term hydro-climatic changes in the Selenga river basin, Central Asia
NASA Astrophysics Data System (ADS)
Törnqvist, Rebecka; Asokan, Shilpa M.; Pietroń, Jan; Jarsjö, Jerker; Destouni, Georgia
2014-05-01
Climatic changes can lead to altered hydrological conditions, which in turn can impact pollutant loading patterns to the terminal recipient of a considered basin. Lake Baikal is the deepest and largest freshwater reservoir on Earth. The lake and its surroundings have been declared an UNESCO World Heritage Site due to its unique ecosystem with numerous endemic animal and plant species. The Selenga river basin, which is located in northern Mongolia and southern Siberia in Russia, is the largest sub-basin of the Lake Baikal. Mining is well developed in the region and has been identified to be the main pollution source for the water system in the sparsely populated region. We investigate long-term historic and projected future hydro-climatic conditions in the Selenga river basin with the aim to improve the understanding of such underlying conditions in the basin. This understanding is fundamental for preventing degradation of Lake Baikal's unique ecosystem from for instance mining activities. Specifically, our objective is to identify observed historical hydro-climatic changes during the 72-year period of 1938-2009. In addition, we assess multi-model ensemble means of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) in order to also consider future projections of hydro-climatic changes for a near future period (2010-2039) and a more distant future period (2070-2099). The results show that there has been an observed increase in mean annual temperature in the basin by about 1.5°C during the period 1938-2009. Moreover, a longer seasonal period of temperatures above zero (especially due to increasing spring temperatures) is detected. For the annual water balance components of precipitation, evapotranspiration and runoff, relatively small temporal changes are observed. However, in recent years there has been a detected decrease in runoff, with 10-year running averages reaching their lowest levels within the whole investigation period. In particular, there has been a decrease in peak discharges during summer and an increase in winter base flow. Such decreased intra-annual variability may be an indication of permafrost thawing, associated with increased active layer depth and thereby decreased subsurface storage of (liquid and frozen) water. Future projections indicate a continued large increase in temperature for the long distance future (2070-2099), from a mean annual temperature of -2.5°C for the period 1961-1990 to a mean annual temperature of 3°C for the period 2070-2099. Such a shift from mean annual temperatures below zero to well above zero may lead to further permafrost thawing. The magnitude of precipitation, evapotranspiration and runoff are expected to increase in the future. However, especially the projection for runoff is highly uncertain due to large variation in projections from individual models and an overall poor performance of the models to capture the observed trend.
El Paso/Yslete schools Get-Away Special Space Shuttle student projects
NASA Technical Reports Server (NTRS)
Azar, S. S.
1984-01-01
Student projects for the Get Away Special (GAS) space shuttle program were summarized. Experimental topics included: seed germination, shrimp growth, liquid lasers, planaria regeneration, fluid dynamics (wicking), soil molds, antibiotics, crystallization, the symbiosis of yeast and fungi, and the performance of electronic chips. A brief experimental design is included for each project.
Sea-Level Allowances along the World Coastlines
NASA Astrophysics Data System (ADS)
Vandewal, R.; Tsitsikas, C.; Reerink, T.; Slangen, A.; de Winter, R.; Muis, S.; Hunter, J. R.
2017-12-01
Sea level changes as a result of climate change. For projections we take ocean mass changes and volume changes into account. Including gravitational and rotational fingerprints this provide regional sea level changes. Hence we can calculate sea-level rise patterns based on CMIP5 projections. In order to take the variability around the mean state, which follows from the climate models, into account we use the concept of allowances. The allowance indicates the height a coastal structure needs to be increased to maintain the likelihood of sea-level extremes. Here we use a global reanalysis of storm surges and extreme sea levels based on a global hydrodynamic model in order to calculate allowances. It is shown that the model compares in most regions favourably with tide gauge records from the GESLA data set. Combining the CMIP5 projections and the global hydrodynamical model we calculate sea-level allowances along the global coastlines and expand the number of points with a factor 50 relative to tide gauge based results. Results show that allowances increase gradually along continental margins with largest values near the equator. In general values are lower at midlatitudes both in Northern and Southern Hemisphere. Increased risk for extremes are typically 103-104 for the majority of the coastline under the RCP8.5 scenario at the end of the century. Finally we will show preliminary results of the effect of changing wave heights based on the coordinated ocean wave project.
Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC
NASA Astrophysics Data System (ADS)
Rutherfoord, John; ATLAS Liquid Argon Calorimeter Group
2012-12-01
Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 1034 cm-2 s-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals with narrower liquid argon gaps, lowering the values of the protection resistors, and the addition of cooling loops. A second proposed solution, which does not require opening the cryostat cold volume, is the addition of a small, warm calorimeter in front of each existing FCal, resulting in a reduction of the particle flux to levels at which the existing FCal can operate normally.
Frisch-Daiello, Jessica L; Williams, Mary R; Waddell, Erin E; Sigman, Michael E
2014-03-01
The unsupervised artificial neural networks method of self-organizing feature maps (SOFMs) is applied to spectral data of ignitable liquids to visualize the grouping of similar ignitable liquids with respect to their American Society for Testing and Materials (ASTM) class designations and to determine the ions associated with each group. The spectral data consists of extracted ion spectra (EIS), defined as the time-averaged mass spectrum across the chromatographic profile for select ions, where the selected ions are a subset of ions from Table 2 of the ASTM standard E1618-11. Utilization of the EIS allows for inter-laboratory comparisons without the concern of retention time shifts. The trained SOFM demonstrates clustering of the ignitable liquid samples according to designated ASTM classes. The EIS of select samples designated as miscellaneous or oxygenated as well as ignitable liquid residues from fire debris samples are projected onto the SOFM. The results indicate the similarities and differences between the variables of the newly projected data compared to those of the data used to train the SOFM. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Catalyst activity maintenance study for the liquid phase dimethyl ether process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, X.D.; Toseland, B.A.; Underwood, R.P.
1995-12-31
The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizesmore » a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.« less
Tokarz, Richard D.
1982-01-01
A liquid level sensor having a pair of upright conductors spaced by an insulator defining a first high resistance path between the conductors. An electrically conductive path is interposed between the upright conductors at a discrete location at which liquid level is to be measured. It includes a liquid accessible gap of a dimension such that the electrical resistance across the conductor when the gap is filled with the liquid is detectably less than when the gap is emptied. The conductor might also be physically altered by temperature changes to serve also as an indicator of elevated temperature.
LEVELS OF SYNTHETIC MUSKS COMPOUNDS IN ...
There is no abstract available for this product. If further information is requested, please refer to the bibliographic citation and contact the person listed under Contact field. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansion, invited technical presentations, invited articles for peer-reviewed journals, interviews for media, responding to public inquiries. S
CORRELATION OF CHEMICAL MARKERS - NITRATE AND ...
Giving public water authorities another tool to monitor and measure levels of human waste contamination of waters simply and rapidly would enhance public protection. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansion, invited technical presentations, invited articles for peer-reviewed journals, interviews for media, responding to public inquiries. Subtask 3: To ap
Materials Processes (MP) Engineering Internship Projects
NASA Technical Reports Server (NTRS)
Tomsik, Elizabeth
2017-01-01
This poster illustrates my major and minor projects worked on during my entire time interning at KSC in the Materials Science Branch. My major projects consist of three Failure Analyses, a research project on Magnesium Alloys, and the manufacturing and mechanical testing of the Advanced Plant Habitat. My three Failure Analyses are Umbilical Testing Ground Plates, Lithium Ion Battery Locking Spring Blade, and a Liquid Oxygen Poppet.
Jasuja, Guneet Kaur; Travison, Thomas G; Davda, Maithili; Murabito, Joanne M; Basaria, Shehzad; Zhang, Anqi; Kushnir, Mark M; Rockwood, Alan L; Meikle, Wayne; Pencina, Michael J; Coviello, Andrea; Rose, Adam J; D'Agostino, Ralph; Vasan, Ramachandran S; Bhasin, Shalender
2013-06-01
Age trends in estradiol and estrone levels in men and how lifestyle factors, comorbid conditions, testosterone, and sex hormone-binding globulin affect these age trends remain poorly understood, and were examined in men of the Framingham Heart Study. Estrone and estradiol concentrations were measured in morning fasting samples using liquid chromatography tandem mass spectrometry in men of Framingham Offspring Generation. Free estradiol was calculated using a law of mass action equation. There were 1,461 eligible men (mean age [±SD] 61.1±9.5 years and body mass index [BMI] 28.8±4.5kg/m(2)). Total estradiol and estrone were positively associated with age, but free estradiol was negatively associated with age. Age-related increase in total estrone was greater than that in total estradiol. Estrone was positively associated with smoking, BMI, and testosterone, and total and free estradiol with diabetes, BMI, testosterone, and comorbid conditions; additionally, free estradiol was associated negatively with smoking. Collectively, age, BMI, testosterone, and other health and behavioral factors explained only 18% of variance in estradiol, and 9% of variance in estrone levels. Men in the highest quintile of estrone levels had significantly higher age and BMI, and a higher prevalence of smoking, diabetes, and cardiovascular disease than others, whereas those in the highest quintile of estradiol had higher BMI than others. Total estrone and estradiol levels in men, measured using liquid chromatography tandem mass spectrometry, revealed significant age-related increases that were only partially accounted for by cross-sectional differences in BMI, diabetes status, and other comorbidities and health behaviors. Longitudinal studies are needed to confirm these findings.
Modelling obesity trends in Australia: unravelling the past and predicting the future.
Hayes, A J; Lung, T W C; Bauman, A; Howard, K
2017-01-01
Modelling is increasingly being used to predict the epidemiology of obesity progression and its consequences. The aims of this study were: (a) to present and validate a model for prediction of obesity among Australian adults and (b) to use the model to project the prevalence of obesity and severe obesity by 2025. Individual level simulation combined with survey estimation techniques to model changing population body mass index (BMI) distribution over time. The model input population was derived from a nationally representative survey in 1995, representing over 12 million adults. Simulations were run for 30 years. The model was validated retrospectively and then used to predict obesity and severe obesity by 2025 among different aged cohorts and at a whole population level. The changing BMI distribution over time was well predicted by the model and projected prevalence of weight status groups agreed with population level data in 2008, 2012 and 2014.The model predicts more growth in obesity among younger than older adult cohorts. Projections at a whole population level, were that healthy weight will decline, overweight will remain steady, but obesity and severe obesity prevalence will continue to increase beyond 2016. Adult obesity prevalence was projected to increase from 19% in 1995 to 35% by 2025. Severe obesity (BMI>35), which was only around 5% in 1995, was projected to be 13% by 2025, two to three times the 1995 levels. The projected rise in obesity severe obesity will have more substantial cost and healthcare system implications than in previous decades. Having a robust epidemiological model is key to predicting these long-term costs and health outcomes into the future.
The effects of time-varying observation errors on semi-empirical sea-level projections
Ruckert, Kelsey L.; Guan, Yawen; Bakker, Alexander M. R.; ...
2016-11-30
Sea-level rise is a key driver of projected flooding risks. The design of strategies to manage these risks often hinges on projections that inform decision-makers about the surrounding uncertainties. Producing semi-empirical sea-level projections is difficult, for example, due to the complexity of the error structure of the observations, such as time-varying (heteroskedastic) observation errors and autocorrelation of the data-model residuals. This raises the question of how neglecting the error structure impacts hindcasts and projections. Here, we quantify this effect on sea-level projections and parameter distributions by using a simple semi-empirical sea-level model. Specifically, we compare three model-fitting methods: a frequentistmore » bootstrap as well as a Bayesian inversion with and without considering heteroskedastic residuals. All methods produce comparable hindcasts, but the parametric distributions and projections differ considerably based on methodological choices. In conclusion, our results show that the differences based on the methodological choices are enhanced in the upper tail projections. For example, the Bayesian inversion accounting for heteroskedasticity increases the sea-level anomaly with a 1% probability of being equaled or exceeded in the year 2050 by about 34% and about 40% in the year 2100 compared to a frequentist bootstrap. These results indicate that neglecting known properties of the observation errors and the data-model residuals can lead to low-biased sea-level projections.« less
The effects of time-varying observation errors on semi-empirical sea-level projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruckert, Kelsey L.; Guan, Yawen; Bakker, Alexander M. R.
Sea-level rise is a key driver of projected flooding risks. The design of strategies to manage these risks often hinges on projections that inform decision-makers about the surrounding uncertainties. Producing semi-empirical sea-level projections is difficult, for example, due to the complexity of the error structure of the observations, such as time-varying (heteroskedastic) observation errors and autocorrelation of the data-model residuals. This raises the question of how neglecting the error structure impacts hindcasts and projections. Here, we quantify this effect on sea-level projections and parameter distributions by using a simple semi-empirical sea-level model. Specifically, we compare three model-fitting methods: a frequentistmore » bootstrap as well as a Bayesian inversion with and without considering heteroskedastic residuals. All methods produce comparable hindcasts, but the parametric distributions and projections differ considerably based on methodological choices. In conclusion, our results show that the differences based on the methodological choices are enhanced in the upper tail projections. For example, the Bayesian inversion accounting for heteroskedasticity increases the sea-level anomaly with a 1% probability of being equaled or exceeded in the year 2050 by about 34% and about 40% in the year 2100 compared to a frequentist bootstrap. These results indicate that neglecting known properties of the observation errors and the data-model residuals can lead to low-biased sea-level projections.« less
Flowmeter for determining average rate of flow of liquid in a conduit
Kennerly, J.M.; Lindner, G.M.; Rowe, J.C.
1981-04-30
This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.
Flowmeter for determining average rate of flow of liquid in a conduit
Kennerly, John M.; Lindner, Gordon M.; Rowe, John C.
1982-01-01
This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.
Haskins, Justin B; Bauschlicher, Charles W; Lawson, John W
2015-11-19
Density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Li(+) on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Li(+) solvation shell through DFT computations of [Li(Anion)n]((n-1)-) clusters, DFT-MD simulations of isolated Li(+) in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having two to three anions are seen in both [pyr14][TFSI] and [pyr13][FSI], whereas solvation shells with four anions dominate in [EMIM][BF4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of four anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion)n]((n-1)-) clusters shows that our proposed structures are consistent with experiment. We then compute the ion diffusion coefficients and find measures from small-cell DFT-MD simulations to be the correct order of magnitude, but influenced by small system size and short simulation length. Correcting for these errors with complementary PFF-MD simulations, we find DFT-MD measures to be in close agreement with experiment. Finally, we compute electrochemical windows from DFT computations on isolated ions, interacting cation/anion pairs, and liquid-phase systems with Li-doping. For the molecular-level computations, we generally find the difference between ionization energy and electron affinity from isolated ions and interacting cation/anion pairs to provide upper and lower bounds, respectively, to experiment. In the liquid phase, we find the difference between the lowest unoccupied and highest occupied electronic levels in pure and hybrid functionals to provide lower and upper bounds, respectively, to experiment. Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems.
46 CFR 98.25-40 - Valves, fittings, and accessories.
Code of Federal Regulations, 2013 CFR
2013-10-01
... located at the highest practical point. The thermometer well shall terminate in the liquid space and be... and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices... to the tanks, except safety devices and liquid level gaging devices, shall have manually operated...
46 CFR 98.25-40 - Valves, fittings, and accessories.
Code of Federal Regulations, 2012 CFR
2012-10-01
... located at the highest practical point. The thermometer well shall terminate in the liquid space and be... and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices... to the tanks, except safety devices and liquid level gaging devices, shall have manually operated...
46 CFR 98.25-40 - Valves, fittings, and accessories.
Code of Federal Regulations, 2011 CFR
2011-10-01
... located at the highest practical point. The thermometer well shall terminate in the liquid space and be... and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices... to the tanks, except safety devices and liquid level gaging devices, shall have manually operated...
46 CFR 98.25-40 - Valves, fittings, and accessories.
Code of Federal Regulations, 2014 CFR
2014-10-01
... located at the highest practical point. The thermometer well shall terminate in the liquid space and be... and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices... to the tanks, except safety devices and liquid level gaging devices, shall have manually operated...
Aparicio, Santiago; Alcalde, Rafael; Atilhan, Mert
2010-05-06
Ionic liquids have attracted great attention, from both industry and academe, as alternative fluids for a large collection of applications. Although the term green is used frequently to describe ionic liquids in general, it is obvious that it cannot be applied to the huge quantity of possible ionic liquids, and thus, those with adequate environmental and technological profiles must be selected for further and deeper studies, from both basic science and applied approaches. In this work, 1-ethyl-3-methylimidazolium L-(+)-lactate ionic liquid is studied, because of its remarkable properties, through a wide-ranging approach considering thermophysical, spectroscopic, and computational tools, to gain a deeper insight into its complex liquid structure, both pure and mixed with water, thus implying the main factors that would control the technological applications that could be designed using this fluid. The reported results shows a strongly structured pure ionic liquid, in which hydrogen bonding, because of the hydroxyl group of the lactate anion, develops a remarkable role, together with Coulombic forces to determine the fluid's behavior. Upon mixing with water, the ionic liquid retains its structure up to very high dilution levels, with the effect of the ionic liquid on the water structure being very large, even for very low ionic liquid mole fractions. Thus, in water solution, the studied ionic liquid evolves from noninteracting ions solvated by water molecules toward large interacting structures with increasing ionic liquid content.
The VOrtex Ring Transit EXperiment (VORTEX) GAS project
NASA Technical Reports Server (NTRS)
Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.
1995-01-01
Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.
Feasibility study of SiGHT: a novel ultra low background photosensor for low temperature operation
Wang, Y.; Fan, A.; Fiorillo, G.; ...
2017-02-27
Rare event search experiments, such as those searching for dark matter and observations of neutrinoless double beta decay, require ultra low levels of radioactive background for unmistakable identification. In order to reduce the radioactive background of detectors used in these types of event searches, low background photosensors are required, as the physical size of these detectors become increasing larger, and hence the number of such photosensors used also increases rapidly. Considering that most dark matter and neutrinoless double beta decay experiments are turning towards using noble liquids as the target choice, liquid xenon and liquid argon for instance, photosensors thatmore » can work well at cryogenic temperatures are required, 165 K and 87 K for liquid xenon and liquid argon, respectively. The Silicon Geiger Hybrid Tube (SiGHT) is a novel photosensor designed specifically for use in ultra low background experiments operating at cryogenic temperatures. It is based on the proven photocathode plus silicon photomultiplier (SiPM) hybrid technology and consists of very few other, but also ultra radio-pure, materials like fused silica and silicon for the SiPM. Lastly, the introduction of the SiGHT concept, as well as a feasibility study for its production, is reported in this article.« less
Composite Materials for Maxillofacial Prostheses.
1981-08-01
necessary and Identify byv block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES 2,. ABSTRACT...used as fillers in the fabrication of maxillofacial prostheses. The projected systems are elastomeric-shelled, liquid-filled microcapsules . Improvements...elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules
2013-06-01
Interfacial Boundaries and Liquid Metals Dallas Trinkle Independent Contractor JUNE 2013 Final Report Approved for public...SIGNATURE//_________________ CHRISTOPHER WOODWARD, Project Engineer DANIEL EVANS, Chief Metals Branch Metals Branch Structural ...Materials Division Structural Materials Division ____//SIGNATURE//___________________ ROBERT T. MARSHALL, Deputy Chief
2012-11-08
NASA engineer Andy Guymon studies data in the E-3 Test Stand Control Center at John C. Stennis Space Center during testing of NASA's Project Morpheus engine. Nov. 8. The test of the liquid oxygen, liquid methane engine was one of 27 conducted in Stennis' E Test Complex the week of Nov. 5.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models.
Ferraz, Ricardo; Pinheiro, Marina; Gomes, Ana; Teixeira, Cátia; Prudêncio, Cristina; Reis, Salette; Gomes, Paula
2017-09-01
Primaquine-based ionic liquids, obtained by acid-base reaction between parent primaquine and cinnamic acids, were recently found as triple-stage antimalarial hits. These ionic compounds displayed significant activity against both liver- and blood-stage Plasmodium parasites, as well as against stage V P. falciparum parasites. Remarkably, blood-stage activity of the ionic liquids against both chloroquine-sensitive (3D7) and resistant (Dd2) P. falciparum strains was clearly superior to those of the respective covalent (amide) analogues and of parent primaquine. Having hypothesized that such behaviour might be ascribed to an enhanced ability of the ionic compounds to permeate into Plasmodium-infected erythrocytes, we have carried out a differential scanning calorimetry-based study of the interactions between the ionic liquids and membrane models. Results provide evidence, at the molecular level, that the primaquine-derived ionic liquids may contribute to an increased permeation of the parent drug into malaria-infected erythrocytes, which has relevant implications towards novel antimalarial approaches based on ionic liquids. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fiber-Optic Continuous Liquid Sensor for Cryogenic Propellant Gauging
NASA Technical Reports Server (NTRS)
Xu. Wei
2010-01-01
An innovative fiber-optic sensor has been developed for low-thrust-level settled mass gauging with measurement uncertainty <0.5 percent over cryogenic propellant tank fill levels from 2 to 98 percent. The proposed sensor uses a single optical fiber to measure liquid level and liquid distribution of cryogenic propellants. Every point of the sensing fiber is a point sensor that not only distinguishes liquid and vapor, but also measures temperature. This sensor is able to determine the physical location of each point sensor with 1-mm spatial resolution. Acting as a continuous array of numerous liquid/vapor point sensors, the truly distributed optical sensing fiber can be installed in a propellant tank in the same manner as silicon diode point sensor stripes using only a single feedthrough to connect to an optical signal interrogation unit outside the tank. Either water or liquid nitrogen levels can be measured within 1-mm spatial resolution up to a distance of 70 meters from the optical interrogation unit. This liquid-level sensing technique was also compared to the pressure gauge measurement technique in water and liquid nitrogen contained in a vertical copper pipe with a reasonable degree of accuracy. It has been demonstrated that the sensor can measure liquid levels in multiple containers containing water or liquid nitrogen with one signal interrogation unit. The liquid levels measured by the multiple fiber sensors were consistent with those virtually measured by a ruler. The sensing performance of various optical fibers has been measured, and has demonstrated that they can survive after immersion at cryogenic temperatures. The fiber strength in liquid nitrogen has also been measured. Multiple water level tests were also conducted under various actual and theoretical vibration conditions, and demonstrated that the signal-to-noise ratio under these vibration conditions, insofar as it affects measurement accuracy, is manageable and robust enough for a wide variety of spacecraft applications. A simple solution has been developed to absorb optical energy at the termination of the optical sensor, thereby avoiding any feedback to the optical interrogation unit
Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO 2) Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennecke, Joan; Degnan, Thomas; McCready, Mark
Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 μm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO 2-permeable polymer shells. Here wemore » report on the synthesis of the IL and PCIL materials, measurements of thermophysical properties including CO 2 capacity and reprotonation equilibrium and kinetics, encapsulation of the ILs and PCILs, mechanical and thermodynamic testing of the encapsulated materials, development of a rate based model of the absorber, and the design of a laboratory scale unit to test the encapsulated particles for CO 2 capture ability and efficiency. We show that the IL/PCIL materials can be successfully encapsulated, that they retain CO 2 uptake capacity, and that the uptake rates are increased relative to a stagnant sample of IL liquid or PCIL powder.« less
Development of Automotive Liquid Hydrogen Storage Systems
NASA Astrophysics Data System (ADS)
Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.
2004-06-01
Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.
Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.
2017-01-01
We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744
A longitudinal study of cotinine in long-term daily users of e-cigarettes.
Etter, Jean-François
2016-03-01
It is not clear whether, in established vapers, cotinine levels remain stable or change over time. We enrolled 98 exclusive users of e-cigarettes on websites and forums dedicated to smoking cessation and to e-cigarettes. We collected saliva vials by mail in 2013-2014 (baseline), and collected a second saliva vial eight months later (follow-up) in the same participants. Participants had not used any tobacco or nicotine medications in the previous five days. Cotinine in saliva was analyzed with liquid chromatography-mass spectrometry. Use of e-cigarettes, tobacco and nicotine medications was self-reported. All participants were former smokers, and 99% were using e-cigarettes daily. They had already been using e-cigarettes for nine months on average at baseline. The median cotinine level was 252ng/mL at baseline (quartiles: 124-421ng/mL) and 307ng/mL at follow-up (114-466ng/mL, W=0.9, p=0.4 for change over time). The median concentration of nicotine in refill liquids was 11mg/mL at baseline (quartiles: 6-15mg/mL) and 6mg/mL at follow-up (5-12mg/mL) (Wilcoxon signed rank test: W=5.2, p<0.001 for change over time). The median volume of e-liquid used per month was 80mL at baseline (quartiles: 50-130mL) and 100mL at follow-up (60-157mL, W=3.3, p=0.001 for change over time). In experienced e-cigarette users enrolled online, cotinine levels were similar to levels usually observed in cigarette smokers. Over time, these users decreased the concentration of nicotine in their e-liquids, but increased their consumption of e-liquid in order to maintain their cotinine levels constant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Smart lighting using a liquid crystal modulator
NASA Astrophysics Data System (ADS)
Baril, Alexandre; Thibault, Simon; Galstian, Tigran
2017-08-01
Now that LEDs have massively invaded the illumination market, a clear trend has emerged for more efficient and targeted lighting. The project described here is at the leading edge of the trend and aims at developing an evaluation board to test smart lighting applications. This is made possible thanks to a new liquid crystal light modulator recently developed for broadening LED light beams. The modulator is controlled by electrical signals and is characterized by a linear working zone. This feature allows the implementation of a closed loop control with a sensor feedback. This project shows that the use of computer vision is a promising opportunity for cheap closed loop control. The developed evaluation board integrates the liquid crystal modulator, a webcam, a LED light source and all the required electronics to implement a closed loop control with a computer vision algorithm.
Compton, Peggy; Ling, Walter; Chiang, C Nora; Moody, David E; Huber, Alice; Ling, Debbie; Charuvastra, Charles
2007-06-01
Although buprenorphine is approved for use in the outpatient treatment of opioid addiction in 2 tablet formulations, a monoproduct containing buprenorphine only (Subutex) and a buprenorphine/naloxone combination product (Suboxone), much of the clinical data that support the approval by the U.S. Food and Drug Administration were generated by using a sublingual liquid. To interpret the literature in prescribing parameters for tablet buprenorphine, this study was designed to determine steady state buprenorphine plasma levels for the 2 formulations and to assess the relative bioavailability of each. A randomized, double-blind, crossover study with dose increases was conducted during a 12-week period at an outpatient treatment clinic. Of the 184 subjects initially randomized to treatment, 133 (72.3%) were evaluated for the steady-state trough plasma concentration, 16 (8.7%) for relative bioavailability, and 31 (16.8%) for dose proportionality. At steady state, differences in the trough plasma concentrations of buprenorphine between the 2 formulations were found across all the dose levels. Average plasma concentration (Cavg) of the tablet at twice the milligram dose of the liquid was twice that of the liquid; intersubject variability was greater for the tablet. At double the dose of tablet, there is no difference in steady state plasma concentrations. The bioavailability seems equivalent for the 2 formulations across all the dose levels.
Measuring Air Leaks into the Vacuum Space of Large Liquid Hydrogen Tanks
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Starr, Stanley; Nurge, Mark
2012-01-01
Large cryogenic liquid hydrogen tanks are composed of inner and outer shells. The outer shell is exposed to the ambient environment while the inner shell holds the liquid hydrogen. The region between these two shells is evacuated and typically filled with a powderlike insulation to minimize radiative coupling between the two shells. A technique was developed for detecting the presence of an air leak from the outside environment into this evacuated region. These tanks are roughly 70 ft (approx. equal 21 m) in diameter (outer shell) and the inner shell is roughly 62 ft (approx. equal 19 m) in diameter, so the evacuated region is about 4 ft (approx. equal 1 m) wide. A small leak's primary effect is to increase the boil-off of the tank. It was preferable to install a more accurate fill level sensor than to implement a boil-off meter. The fill level sensor would be composed of an accurate pair of pressure transducers that would essentially weigh the remaining liquid hydrogen. This upgrade, allowing boil-off data to be obtained weekly instead of over several months, is ongoing, and will then provide a relatively rapid indication of the presence of a leak.
NASA Astrophysics Data System (ADS)
Parimaladevi, P.; Supriya, S.; Srinivasan, K.
2018-02-01
The influence of ultrasound on liquid-liquid phase separation (LLPS) and polymorphism of vanillin in aqueous solution has been investigated for the first time by varying the ultrasonic parameters such as power, pulse rate and insonation time at ambient condition. Results reveal that the application of ultrasound controls the impact of LLPS and accelerates the nucleation of vanillin within a short period at lower levels of ultrasonic process parameters, and also enhances the quality of the nucleated crystals. Moreover, the application of ultrasound induces the nucleation of rare and metastable polymorph of vanillin Form II in aqueous solution. But, at higher levels of power, pulse rate and insonation time, the rate of LLPS is found increased and the quality of the crystals becomes deteriorated. Morphology of the nucleated polymorphs were identified through optical microscopy and confirmed by optical goniometry. The internal structure and thermal stability of the grown stable Form I and metastable Form II of vanillin were confirmed through powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) analyses. Further, results suggest that the ultrasound has profound effect in controlling the LLPS and nucleation of vanillin polymorphs in aqueous solution.
NASA Astrophysics Data System (ADS)
Lou, Weimin; Chen, Debao; Shen, Changyu; Lu, Yanfang; Liu, Huanan; Wei, Jian
2016-01-01
A simple liquid level sensor using a small piece of hydrofluoric acid (HF) etched polarization maintaining fiber (PMF), with SMF-PMF-SMF fiber structure based on Mach- Zehnder interference (MZI) mechanism is proposed. The core-offset fusion splicing method induced cladding modes interfere with the core mode. Moreover, the changing liquid level would influence the optical path difference of the MZI since the effective refractive indices of the air and the liquid is different. Both the variations of the wavelength shifts and power intensity attenuation corresponding to the liquid level can be obtained with a sensitivity of 0.4956nm/mm and 0.2204dB/mm, respectively.
Neutrons on a surface of liquid helium
NASA Astrophysics Data System (ADS)
Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.
2016-08-01
We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.
Gueye, Birahima; Zhang, Yan; Wang, Yujuan; Chen, Yunfei
2015-07-08
The liquid lubrication, thermolubricity and dynamic lubricity due to mechanical oscillations are investigated with an atomic force microscope in ambient environmental conditions with different relative humidity (RH) levels. Experimental results demonstrate that high humidity at low-temperature regime enhances the liquid lubricity while at high-temperature regime it hinders the effect of the thermolubricity due to the formation of liquid bridges. Friction response to the dynamic lubricity in both high- and low-temperature regimes keeps the same trends, namely the friction force decreases with increasing the amplitude of the applied vibration on the tip regardless of the RH levels. An interesting finding is that for the dynamic lubricity at high temperature, high-humidity condition leads to the friction forces higher than that at low-humidity condition while at low temperature the opposite trend is observed. An extended two-dimensional dynamic model accounting for the RH is proposed to interpret the frictional mechanism in ambient conditions.
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...
Surface purity control during XMASS detector refurbishment
NASA Astrophysics Data System (ADS)
Kobayashi, Kazuyoshi
2015-08-01
The XMASS project aims at detecting dark matter, pp and 7Be solar neutrinos, and neutrino less double beta decay using large volume of pure liquid xenon. The first physics target of the XMASS project is to detect dark matter with 835 kg liquid xenon. After the commissioning runs, XMASS detector was refurbished to minimize the background contribution mainly from PMT sealing material and we restarted data taking in November 2013. We report how we control surface purity, especially how we prevent radon daughter accumulation on the detector copper surface, during XMASS detector refurbishment. The result and future plan of XMASS are also reported.
Project M: An Assessment of Mission Assumptions
NASA Technical Reports Server (NTRS)
Edwards, Alycia
2010-01-01
Project M is a mission Johnson Space Center is working on to send an autonomous humanoid robot to the moon (also known as Robonaut 2) in l000 days. The robot will be in a lander, fueled by liquid oxygen and liquid methane, and land on the moon, avoiding any hazardous obstacles. It will perform tasks like maintenance, construction, and simple student experiments. This mission is also being used as inspiration for new advancements in technology. I am considering three of the design assumptions that contribute to determining the mission feasibility: maturity of robotic technology, launch vehicle determination, and the LOX/Methane fueled spacecraft
To Flavor or Not to Flavor Extemporaneous Omeprazole Liquid.
Chuong, Monica C; Taglieri, Catherine A; Kerr, Stephen G
2017-01-01
Omeprazole is a proton pump inhibitor used to treat the symptoms of gastro esophageal reflux disease, ulcers, excess stomach acid, infection with Helicobacter pylori, and to control the gastric side effects of various drugs. The approved dosage forms in the U.S. are powder in compounding kits, delayed-release granules for oral suspension, oral delayed-release tablets, and oral delayed-release capsules. An extemporaneously compounded unsweetened oral liquid method, published in the International Journal of Pharmaceutical Compounding, was found to be commonly used by pharmacists. This project investigated the robustness of the compendium omeprazole high-performance liquid chromatographic assay in evaluating an oral liquid made from commercial delayed-release pellets, the potency of extemporaneously compounded solutions having a 1.125% v/v flavored versus unflavored samples stored at controlled cold temperatures at different time points, and examining the absorption spectrum of the flavoring agent. As part of the study, stability-indication testing was also conducted. The studies indicate that the chromatographic area under the plasma concentration-time curve of both study groups remained over 90% of the label claim during the follow-up period. The flavor did not significantly impact the pH of the oral liquid. This study further identified (1) an increase in resilient foam formation in the flavored liquid, potentially hindering dosing accuracy, (2) omeprazole is oxidized easily by 3% hydrogen peroxide, and (3) flavoring agent absorbs in an ultraviolet visible spectroscopy spectral range often used in assay detectors for quantification of drug molecules, and could interfere with assay protocols of the same. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Fluid intake patterns: an epidemiological study among children and adolescents in Brazil
2012-01-01
Background Energy from liquids is one of the most important factors that could impact on the high prevalence of children and adolescents obesity around the world. There are few data on the liquid consumption in Brazil. The aim of this study is to evaluate the volume and quality of liquids consumed by Brazilian children and adolescents and to determine the proportion of their daily energy intake composed of liquids. Methods A multicenter study was conducted in five Brazilian cities; the study included 831 participants between 3 and 17 years of age. A four-day dietary record specific to fluids was completed for each individual, and the volume of and Kcal from liquid intake were evaluated. The average number of Kcal in each beverage was determined based on label information, and the daily energy intake data from liquids were compared with the recommendations of the National Health Surveillance Agency (Agência Nacional de Vigilância Sanitária– ANVISA), the Brazilian food regulation authority, according to each subject’s age. Results As the children aged, the volume of carbonated beverages that they consumed increased significantly, and their milk intake decreased significantly. For children between the ages of 3 and 10, milk and dairy products contributed the greatest daily number of Kcal from liquids. Sugar sweetened beverages which included carbonated beverages, nectars and artificial beverages, accounted for 37% and 45% of the total Kcal from liquid intake in the 3- to 6-year-old and 7- to 10- year-old groups, respectively. Among adolescents (participants 11- to 17- years old), most of the energy intake from liquids came from carbonated beverages, which accounted for an average of 207 kcal/day in this group (42% of their total energy intake from liquids). Health professionals should be attentive to the excessive consumption of sugar sweetened beverages in children and adolescents. The movement toward healthier dietary patterns at the individual and population levels may help to improve programs for preventing overweight and obesity in children and adolescents. Conclusion From childhood to adolescence the daily volume of liquid ingested increased reaching a total of 2.0 liters on average. Of this volume, the daily volume of milk ingested decreased while the carbonated drinks, sweetened, nectars and artificial beverages increased significantly. The proportion of water remained constant in about 1/3 of the total volume. From 3 to 17 years of age the energy intake from carbonated beverages increased by about 20%. The carbonated drinks on average corresponded to a tenth of the daily requirements of energy of adolescents. PMID:23167254