Sample records for projected future environmental

  1. Children as Community Planners: Report on an Environmental Design Project 1.

    ERIC Educational Resources Information Center

    Hanley, Gerard L.; And Others

    1981-01-01

    Describes a six-month project emphasizing participant-observation teaching strategy in which a third-grade class of 24 students employed methods of environmental design to design communities within a modern forest and more primitive tundra and desert regions. Discusses project goals, results, and implications for future use of environmental design…

  2. Environmental change and water-related, vector borne diseases in eastern Africa: the HEALTHY FUTURES project

    NASA Astrophysics Data System (ADS)

    Taylor, David; Kienberger, Stefan; Tompkins, Adrian

    2015-04-01

    Pathogens that spend time outside the human body, and any organisms involved in their transmission, have particular ecological requirements; as environment, including climate, conditions change, then the transmission characteristics of associated pathogens - and the diseases caused - are also likely to vary. Relationships between environment and health in many parts of the world remain poorly studied and are often overlooked, however. This is particularly the case in developing countries, because of budgetary and available expertise constraints. Moreover the relationship is often confounded by other factors. These other factors contribute to human vulnerability, and thus to the overall disease risk due to environmental change. This presentation will highlight the importance of environmental, including climate, change information to a better understanding of the risks to health of projected future environmental changes, and to the more efficient and effective use of scarce health resources in the developing world. The paper will focus on eastern Africa, and in particular the health effects of future projected environmental change impacts on water-related, vector borne diseases in the East African Community region. Moreover the paper will highlight how the EU FP7-funded project HEALTHY FUTURES is, through a broadly-based, integrative approach that distinguishes environmental change-induced health hazard from health risk aims to support the health decisions making process, thereby attempting to help mitigate negative health impacts.

  3. Future leisure environments

    Treesearch

    Elwood L. Shafer; George H. Moeller; Russell E. Getty

    1974-01-01

    As an aid to policy- and decision-making about future environmental problems, a panel of experts was asked to predict the probabilities of future events associated with natural-resource management, wildland-recreation management, environmental pollution, population-workforce-leisure, and urban environments. Though some of the predictions projected to the year 2050 may...

  4. 75 FR 25288 - Notice of Availability of the Draft Environmental Impact Report and Draft Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... a connector hub for solar energy that may be produced by future solar generation projects in the... authorization to SCE for the proposed EITP project. The EITP would carry electricity from several renewable energy projects proposed in and around the Ivanpah Valley, including the Ivanpah Solar Energy Generation...

  5. Environmental Dystopias: Margaret Atwood and the Monstrous Child

    ERIC Educational Resources Information Center

    Bone, Jane

    2016-01-01

    The future of childhood is often described in terms of utopian thinking. Here, the turn is towards dystopia as a fertile source of wild imaginings about the future. The dystopian literary fictions featured here act as a message and are projections of an uneasy future requiring a reader to see the present differently. Such projections make reading…

  6. Future Remains: Industrial Heritage at the Hanford Plutonium Works

    NASA Astrophysics Data System (ADS)

    Freer, Brian

    This dissertation argues that U.S. environmental and historic preservation regulations, industrial heritage projects, history, and art only provide partial frameworks for successfully transmitting an informed story into the long range future about nuclear technology and its related environmental legacy. This argument is important because plutonium from nuclear weapons production is toxic to humans in very small amounts, threatens environmental health, has a half-life of 24, 110 years and because the industrial heritage project at Hanford is the first time an entire U.S. Department of Energy weapons production site has been designated a U.S. Historic District. This research is situated within anthropological interest in industrial heritage studies, environmental anthropology, applied visual anthropology, as well as wider discourses on nuclear studies. However, none of these disciplines is really designed or intended to be a completely satisfactory frame of reference for addressing this perplexing challenge of documenting and conveying an informed story about nuclear technology and its related environmental legacy into the long range future. Others have thought about this question and have made important contributions toward a potential solution. Examples here include: future generations movements concerning intergenerational equity as evidenced in scholarship, law, and amongst Native American groups; Nez Perce and Confederated Tribes of the Umatilla Indian Reservation responses to the Hanford End State Vision and Hanford's Canyon Disposition Initiative; as well as the findings of organizational scholars on the advantages realized by organizations that have a long term future perspective. While these ideas inform the main line inquiry of this dissertation, the principal approach put forth by the researcher of how to convey an informed story about nuclear technology and waste into the long range future is implementation of the proposed Future Remains clause, as originated by the author, by amendment to two U.S. federal laws: National Historic Preservation Act and Comprehensive Environmental Response, Compensation, and Liability Act. The dissertation provides a case study in public anthropology. The findings of the dissertation include recommendations whereby the Future Remains clause gives historic preservation and cultural resources a leading and ongoing role in facilitating real-time forward looking historical documentation at environmental restoration projects at United States National Priorities List (i.e., "Superfund") sites.

  7. Model Projections of Future Fluvial Sediment Delivery to Major Deltas Under Environmental Change

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Dunn, F.; Nicholls, R. J.; Cohen, S.; Zarfl, C.

    2017-12-01

    Deltas are important hot spots for climate change impacts on which over half a billion people live worldwide. Most of the world's deltas are sinking as a result of natural and anthropogenic subsidence and due to eustatic sea level rise. The ability to predict rates of delta aggradation is therefore critical to assessments of the extent to which sedimentation can potentially offset sea level rise, but our ability to make such predictions is severely hindered by a lack of insight into future trends of the fluvial sediment load supplied to their deltas by feeder watersheds. To address this gap we investigate fluvial sediment fluxes under future environmental change for a selection (47) of the world's major river deltas. Specifically, we employed the numerical model WBMsed to project future variations in mean annual fluvial sediment loads under a range of environmental change scenarios that account for changes in climate, socio-economics and dam construction. Our projections indicate a clear decrease (by 34 to 41% on average, depending on the specific scenario) in future fluvial sediment supply to most of the 47 deltas. These reductions in sediment delivery are driven primarily by anthropogenic disturbances, with reservoir construction being the most influential factor globally. Our results indicate the importance of developing new management strategies for reservoir construction and operation.

  8. ASSESSMENTS OF FUTURE ENVIRONMENTAL TRENDS AND PROBLEMS OF INCREASED USE, RECYCLING, AND COMBUSTION OF FIBER-REINFORCED, PLASTIC AND METAL COMPOSITE MATERIALS

    EPA Science Inventory

    The purpose of the study is to identify and define future environmental concerns related to the projected utilization, recycling, and combustion of composite materials. The study is being conducted for the Office of Strategic Assessment and Special Studies (OSASS) of the U.S. Env...

  9. A critical reflection of a decade of urbanization and global environmental change research and science coordination

    NASA Astrophysics Data System (ADS)

    Griffith, C.

    2015-12-01

    The Urbanization and Global Environmental Change (UGEC) Project was established in 2005 when attention to the bidirectional interactions of urbanization and GEC issues and the associated system responses was very new and the community of UGEC researchers very small. Much of the urban scholarship used specific disciplinary lenses through which to understand the city, e.g., in terms of demographics and population growth, ecology of cities or economics of cities. Over the last decade new analytical lenses have revealed much more about how cities function, the underlying socio-economic and ecological processes that drive urbanization, their dynamic and teleconnected nature, and other bio-physical interactions within the Earth system. Furthermore, it is within the cities that the impacts of current and projected urbanization and environmental changes are felt, but also where action is taken and where great potential for intervention of urbanization trajectories exists towards creating more livable urban futures. A former IHDP core project, now Future Earth project, UGEC is in its sunset/synthesis phase and exploring future directions. This presentation will: Give an brief overview of UGEC evolution over the course of the last decade not only in terms of the science, but also the institution Present preliminary results from a critical analysis of UGEC's ten year role as a GEC research coordination project including its impact, strengths and weaknesses Make the case for greater interdisciplinarity (particularly across the physical sciences and humanities) and involvement of other stakeholders (private sector and decisionmakers) in future urbanization and environmental research, as 'urban' is a crosscutting issue that has both global to local scale implications Present work that UGEC is leading, which is to advance an urban agenda within the new Future Earth initiative as part of the recently awarded Cluster Activity 'Livable Urban Futures', as an example of research coordination in a new era of GEC governance, the associated challenges and also successes Provide insight into the practical aspects of research coordination from an IPO management perspective including the day to day management, what's required, challenging and what can be improved upon for the betterment of coordinated and networked science.

  10. Community Visions for the Paducah Gaseous Diffusion Plant Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ormsbee, Lindell e; Kipp, James A

    2011-09-01

    This report focuses on assessing community preferences for the future use of the PGDP site, given the site's pending closure by US DOE. The project approach fostered interaction and engagement with the public based on lessons learned at other complex DOE environmental cleanup sites and upon the integration of a number of principles and approaches to public engagement from the Project Team's local, state, regional and international public engagement experience. The results of the study provide the community with a record of the diversity of values and preferences related to the environmental cleanup and future use of the site.

  11. The Farm--Its Function and Future. Environmental Ecological Education Project. Revised.

    ERIC Educational Resources Information Center

    Parkway School District, Chesterfield, MO.

    This unit, designed for use in the primary grades (K-3), focuses on the farm and its functions. The various aspects of farming are discussed from an ecological and environmental point of view through such topics as soil, plants, animals, machinery, production of food, job opportunities, and the future of the farm. There is also a comparison of the…

  12. Advanced Exploration Systems Atmosphere Resource Recovery and Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Perry, J.; Abney, M.; Conrad, R.; Garber, A.; Howard, D.; Kayatin, M.; Knox, J.; Newton, R.; Parrish, K.; Roman, M.; hide

    2016-01-01

    In September 2011, the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project was commissioned by NASA's Advanced Exploration Systems program to advance Atmosphere Revitalization Subsystem (ARS) and Environmental Monitoring Subsystem (EMS) technologies for enabling future crewed space exploration missions beyond low Earth orbit. The ARREM project's period of performance covered U.S. Government fiscal years 2012-2014. The ARREM project critically assessed the International Space Station (ISS) ARS and EMS architectures and process technologies as the foundation for an architecture suitable for deep space exploration vehicles. The project's technical content included technical tasks focused on improving the reliability and life cycle cost of ARS and EMS technologies as well as reducing future flight project developmental risk and design, development, test, and evaluation costs. Targeted technology development and maturation tasks, including key technical trade assessments, were accomplished and integrated ARS architectures were demonstrated. The ARREM project developed, demonstrated, and tested leading process technology candidates and subsystem architectures that met or exceeded key figures of merit, addressed capability gaps, and significantly improved the efficiency, safety, and reliability over the state-of-the-art ISS figures of merit. Promising EMS instruments were developed and functionally demonstrated in a simulated cabin environment. The project's technical approach and results are described and recommendations for continued development are provided.

  13. 78 FR 26319 - Deepwater Horizon Oil Spill; Proposal of Future Early Restoration Projects and Environmental Reviews

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... participate in Trustee decision-making. U.S. Environmental Protection Agency (USEPA); State of Louisiana Coastal Protection and Restoration Authority, Oil Spill Coordinator's Office, Department of Environmental... important species and their nearshore and offshore habitats in the Gulf of Mexico and along the coastal...

  14. Health and Environment Linked for Information Exchange (HELIX)-Atlanta: A CDC-NASA Joint Environmental Public Health Tracking Collaborative Project

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Luvall, Jeff; Crosson, Bill; Estes, Maury; Limaye, Ashutosh; Quattrochi, Dale; Rickman, Doug

    2008-01-01

    HELIX-Atlanta was developed to support current and future state and local EPHT programs to implement data linking demonstration projects which could be part of the CDC EPHT Network. HELIX-Atlanta is a pilot linking project in Atlanta for CDC to learn about the challenges the states will encounter. NASA/MSFC and the CDC are partners in linking environmental and health data to enhance public health surveillance. The use of NASA technology creates value added geospatial products from existing environmental data sources to facilitate public health linkages. Proving the feasibility of the approach is the main objective

  15. Developing sustainable transportation performance measures for TXDOT's strategic plan : technical report.

    DOT National Transportation Integrated Search

    2009-04-01

    For this research project, sustainable transportation can be viewed as the provision of safe, effective, and : efficient access and mobility into the future while considering economic, social, and environmental needs. : This project developed a perfo...

  16. Building a Sustainable Future: A Report on the Environmental Protection Agency's Brownfields Sustainability Pilots

    EPA Pesticide Factsheets

    This report describes each of the Brownfields Sustainability Pilots and provides findings and recommendations for future projects. It is intended for use by people, communities, organizations, and agencies helping make brownfields more sustainable.

  17. Projecting Future Urbanization with Prescott College's Spatial Growth Model to Promote Environmental Sustainability and Smart Growth, A Case Study in Atlanta, Georgia

    NASA Technical Reports Server (NTRS)

    Estes, Maurice G., Jr.; Crosson, William; Limaye, Ashutosh; Johnson, Hoyt; Quattrochi, Dale; Lapenta, William; Khan, Maudood

    2006-01-01

    Planning is an integral element of good management and necessary to anticipate events not merely respond to them. Projecting the quantity and spatial distribution of urban growth is essential to effectively plan for the delivery of city services and to evaluate potential environmental impacts. The major drivers of growth in large urban areas are increasing population, employment opportunities, and quality of life attractors such as a favorable climate and recreation opportunities. The spatial distribution of urban growth is dictated by the amount and location of developable land, topography, energy and water resources, transportation network, climate change, and the existing land use configuration. The Atlanta region is growing very rapidly both in population and the consumption of forestland or low-density residential development. Air pollution and water availability are significant ongoing environmental issues. The Prescott Spatial Growth Model (SGM) was used to make growth projections for the metropolitan Atlanta region to 2010,2020 and 2030 and results used for environmental assessment in both business as usual and smart growth scenarios. The Prescott SGM is a tool that uses an ESRI ArcView extension and can be applied at the parcel level or more coarse spatial scales and can accommodate a wide range of user inputs to develop any number of growth rules each of which can be weighted depending on growth assumptions. These projections were used in conjunction with meteorological and air quality models to evaluate future environmental impacts. This presentation will focus on the application of the SGM to the 13-County Atlanta Regional Commission planning jurisdiction as a case study. The SGM will be described, including how rule sets are developed and the decision process for allocation of future development to available land use categories. Data inputs required to effectively run the model will be discussed. Spatial growth projections for ten, twenty, and thirty year planning horizons will be presented and results discussed, including regional climate and air quality impacts.

  18. Construction and Validation of Textbook Analysis Grids for Ecology and Environmental Education

    ERIC Educational Resources Information Center

    Caravita, Silvia; Valente, Adriana; Luzi, Daniela; Pace, Paul; Valanides, Nicos; Khalil, Iman; Berthou, Guillemette; Kozan-Naumescu, Adrienne; Clement, Pierre

    2008-01-01

    Knowledge about ecology and environmental education (EE) constitutes a basic tool for promoting a sustainable future, and was a target area of the BIOHEAD-Citizen Project. School textbooks were considered as representative sources of evidence in terms of ecology and environmental education, and were used for comparison among the countries…

  19. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies

    DOE PAGES

    Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.

    2016-06-06

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, wemore » were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.« less

  20. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies.

    PubMed

    DeRolph, Christopher R; Schramm, Michael P; Bevelhimer, Mark S

    2016-10-01

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multi-faceted explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, we were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements are functions of a range of factors, from biophysical to socio-political. Project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, wemore » were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.« less

  2. 76 FR 46721 - Salmon-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project Environmental Impact... improve the health of the ecosystem and reach the desired future condition. DATES: Comments concerning the... Ecosystem Restoration Project EIS, P.O. Box 180, 11 Casey Rd., North Fork, ID 83466. Comments may also be...

  3. Summary of Session Activities: Coordination of Environmental Education Projects

    NASA Technical Reports Server (NTRS)

    Keeler, Michael; Mahootian, Farzad

    1995-01-01

    In this session, we address four fundamental questions related to environmental fields with emphasis on education. These are: What are the goals, objectives, and practical opportunities for coordinating our projects? How can we improve awareness of, interest in, access to, and support the products of our work? How can we build relationships between projects for scientific, educational, technical, and programmatic benefit? How can we evaluate the effectiveness of coordination efforts. In this working session, we produced answers to these questions and proposed a structure for future collaboration.

  4. Environmental assessment of the proposed nonelectric application of geothermal resources at Desert Hot Springs, California

    NASA Technical Reports Server (NTRS)

    Rosenberg, L.

    1978-01-01

    The paper presents an environmental analysis performed in evaluating various proposed geothermal demonstration projects at Desert Hot Springs. These are categorized in two ways: (1) indirect, or (2) direct uses. Among the former are greenhouses, industrial complexes, and car washes. The latter include aquaculture, a cascaded agribusiness system, and a mobile home park. Major categories of environmental impact covered are: (1) site, (2) construction of projects, and (3) the use of the geothermal source. Attention is also given to the disposal of the geothermal fluid after use. Finally, it is concluded that there are no major problems forseen for each project, and future objectives are discussed.

  5. Environmental impact assessment in the Philippines: Progress, problems, and directions for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, W.A.

    1994-07-01

    The environmental impact statement (EIS) system of the Philippines is reviewed, identifying progress made in its effective implementation since 1986. Improvement in coverage is noted and real commitment to good environmental impact assessment (EIA) practice is found in those responsible for the EIS system. Project proponents show a modest acceptance of the system. Major problems remaining are: (1) the EIS system is seen as a bureaucratic requirement needed to obtain project approvals; (2) political interference determines the outcome of some environmental reviews; (3) questionable practices by public servants serve to discredit the system; and (4) the treatment of projects inmore » environmentally critical areas is less than satisfactory. Based on the principle that it is essential to establish a credible process seen to work effectively by the public, politicians, the government bureaucracy, and proponents, suggestions for improvement are made. They deal with the treatment of EISs for projects already under construction, EIA training courses, and simple adjustments to the EIS system to focus it on the most important projects.« less

  6. What weight should be assigned to future environmental impacts? A probabilistic cost benefit analysis using recent advances on discounting.

    PubMed

    Almansa, Carmen; Martínez-Paz, José M

    2011-03-01

    Cost-benefit analysis is a standard methodological platform for public investment evaluation. In high environmental impact projects, with a long-term effect on future generations, the choice of discount rate and time horizon is of particular relevance, because it can lead to very different profitability assessments. This paper describes some recent approaches to environmental discounting and applies them, together with a number of classical procedures, to the economic evaluation of a plant for the desalination of irrigation return water from intensive farming, aimed at halting the degradation of an area of great ecological value, the Mar Menor, in South Eastern Spain. A Monte Carlo procedure is used in four CBA approaches and three time horizons to carry out a probabilistic sensitivity analysis designed to integrate the views of an international panel of experts in environmental discounting with the uncertainty affecting the market price of the project's main output, i.e., irrigation water for a water-deprived area. The results show which discounting scenarios most accurately estimate the socio-environmental profitability of the project while also considering the risk associated with these two key parameters. The analysis also provides some methodological findings regarding ways of assessing financial and environmental profitability in decisions concerning public investment in the environment. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Environmental Scanning for Occupational Education. A Facilitator's Guide. A Model for Environmental Scanning to Systematically Assess Future Occupational Education and Training Needs of a Michigan Community College Service Area.

    ERIC Educational Resources Information Center

    Kellogg Foundation, Battle Creek, MI.

    This manual is designed to facilitate the planning and implementation of an environmental scanning project in Michigan's community colleges. (Environmental scanning is a systematic process for gathering and analyzing information about the external environment and relating it to an organization's internal environment.) This facilitator's guide is…

  8. Comparing Manned Aerial Surveys to Unmanned Aerial Surveys for Cetacean Monitoring in the Arctic: Field Report

    DTIC Science & Technology

    2015-01-01

    environmental conditions, particularly potential for icing conditions, which might impact the flight. The information from the sensor was viewed on...future Arctic projects should be as flexible as possible. Pay attention specifically to weather and altitude limitations and the impact they will have...these issues did not significantly impact ability to fly, they could impact future projects. Use of a shore-based location for the primary

  9. EPA'S ECOLOGICAL EFFECTS BRANCH: PLANNING FOR AN UNCERTAIN FUTURE

    EPA Science Inventory

    The seminar will address two topics: 1) a brief overview of Dr. Hammer’s professional experiences that preceded his appointment with the Environmental Protection Agency; and 2) a summary of current projects being planned by the Ecological Effects Branch of the Environmental Prote...

  10. Technology and Environmental Education: An Integrated Curriculum

    ERIC Educational Resources Information Center

    Willis, Jana M.; Weiser, Brenda

    2005-01-01

    Preparing teacher candidates to integrate technology into their future classrooms effectively requires experience in instructional planning that utilizes technology to enhance student learning. Teacher candidates need to work with curriculum that supports a variety of technologies. Using Project Learning Tree and environmental education (EE),…

  11. Projecting the global distribution of the emerging amphibian fungal pathogen, batrachochytrium dendrobatidis, based on IPCC climate futures

    Treesearch

    Gisselle Yang Xie; Deanna H. Olson; Andrew R. Blaustein

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate...

  12. Environmental health impact assessment: evaluation of a ten-step model.

    PubMed

    Fehr, R

    1999-09-01

    "Environmental impact assessment" denotes the attempt to predict and assess the impact of development projects on the environment. A component dealing specifically with human health is often called an "environmental health impact assessment." It is widely held that such impact assessment offers unique opportunities for the protection and promotion of human health. The following components were identified as key elements of an integrated environmental health impact assessment model: project analysis, analysis of status quo (including regional analysis, population analysis, and background situation), prediction of impact (including prognosis of future pollution and prognosis of health impact), assessment of impact, recommendations, communication of results, and evaluation of the overall procedure. The concept was applied to a project of extending a waste disposal facility and to a city bypass highway project. Currently, the coverage of human health aspects in environmental impact assessment still tends to be incomplete, and public health departments often do not participate. Environmental health impact assessment as a tool for health protection and promotion is underutilized. It would be useful to achieve consensus on a comprehensive generic concept. An international initiative to improve the situation seems worth some consideration.

  13. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.

    PubMed

    Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.

  14. AnnAGNPS Model Application for the Future Midwest Landscape Study

    EPA Science Inventory

    The Future Midwest Landscape (FML) project is part of the US Environmental Protection Agency (EPA)’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes that include crop lands, conservation areas, wetlands, lakes, and streams af...

  15. Environmental, Transient, Three-Dimensional, Hydrothermal, Mass Transport Code - FLESCOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Bao, Jie; Glass, Kevin A.

    The purpose of the project was to modify and apply the transient, three-dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam reservoirs, river mouths, and coastal areas. The ultimate objective of the FLESCOT simulation is to predict future changes of cesium accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing and future environmental remediation activities and policies in a systematic and comprehensive manner.

  16. An Environmentally Sustainable Development in Australia

    ERIC Educational Resources Information Center

    Woods, Ruth

    2003-01-01

    The future Kelvin Grove Urban Village in Queensland, Australia, is an example of how principles of environmentally sustainable design have translated into practice. Those responsible for the new project recognise the importance of building design that respects the environment by using resources efficiently and minimising pollution. The site's…

  17. One Environmental Education Center's Industry Initiative: Collaborating to Create More Environmentally and Economically Sustainable Businesses

    ERIC Educational Resources Information Center

    Hollweg, Karen S.

    2009-01-01

    The Centre for Environment Education (CEE) added an Industry Initiative to its portfolio of more traditional environmental education programs in 1993. This article documents the start-up and evolution of that program and the ways that businesses and CEE have worked together for a sustainable future. A specific 18-month project, in which CEE and an…

  18. Projected distributions and diversity of flightless ground beetles within the Australian Wet Tropics and their environmental correlates.

    PubMed

    Staunton, Kyran M; Robson, Simon K A; Burwell, Chris J; Reside, April E; Williams, Stephen E

    2014-01-01

    With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group's primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region.

  19. Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates

    PubMed Central

    Staunton, Kyran M.; Robson, Simon K. A.; Burwell, Chris J.; Reside, April E.; Williams, Stephen E.

    2014-01-01

    With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group’s primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region. PMID:24586362

  20. How to Reach the Goal of a Sustainable Enterprise--Implementation of Environmental Education and Training in Business.

    ERIC Educational Resources Information Center

    Lillehagen, Hans Christian

    1998-01-01

    The Sustainable Business Challenge is an Internet-based course designed to make future business leaders aware of environmental and social challenges in business administration. Similar projects are being conducted in Norway, Latin America, Finland, the United States, and the United Kingdom. (SK)

  1. 76 FR 33361 - Notice of Availability of the Final Environmental Impact Statement for the Madera Irrigation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Impact Statement for the Madera Irrigation District Water Supply Enhancement Project located in Madera... Madera Irrigation District Water Supply Enhancement Project (MID WSEP). Reclamation proposes to approve... supply reliability and flexibility for current and future water demand, and reduce local overdraft, MID...

  2. AnnAGNPS Model Application for Nitrogen Loading Assessment for the Future Midwest Landscape Study

    EPA Science Inventory

    The Future Midwest Landscape (FML) project is part of the US Environmental Protection Agency (EPA)’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes that include crop lands, conservation areas, wetlands, lakes, and streams af...

  3. The Future Community College

    ERIC Educational Resources Information Center

    Elsner, Paul A.

    2003-01-01

    Community colleges have encountered many factors that may reshape their future. Environmental imperatives weigh heavily on community colleges, as does the new integration of the sciences, such as breakthroughs in the biochemical sciences, such as the human genome project. It is also important to pay attention to the forms in which knowledge is…

  4. Biodiversity scenarios neglect future land-use changes.

    PubMed

    Titeux, Nicolas; Henle, Klaus; Mihoub, Jean-Baptiste; Regos, Adrián; Geijzendorffer, Ilse R; Cramer, Wolfgang; Verburg, Peter H; Brotons, Lluís

    2016-07-01

    Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge. © 2016 John Wiley & Sons Ltd.

  5. Advanced situation awareness with localised environmental community observatories in the Future Internet

    NASA Astrophysics Data System (ADS)

    Sabeur, Z. A.; Denis, H.; Nativi, S.

    2012-04-01

    The phenomenal advances in information and communication technologies over the last decade have led to offering unprecedented connectivity with real potentials for "Smart living" between large segments of human populations around the world. In particular, Voluntary Groups(VGs) and individuals with interest in monitoring the state of their local environment can be connected through the internet and collaboratively generate important localised environmental observations. These could be considered as the Community Observatories(CO) of the Future Internet(FI). However, a set of FI enablers are needed to be deployed for these communities to become effective COs in the Future Internet. For example, these communities will require access to services for the intelligent processing of heterogeneous data and capture of advancend situation awarness about the environment. This important enablement will really unlock the communities true potential for participating in localised monitoring of the environment in addition to their contribution in the creation of business entreprise. Among the eight Usage Areas(UA) projects of the FP7 FI-PPP programme, the ENVIROFI Integrated Project focuses on the specifications of the Future Internet enablers of the Environment UA. The specifications are developed under multiple environmental domains in context of users needs for the development of mash-up applications in the Future Internet. It will enable users access to real-time, on-demand fused information with advanced situation awareness about the environment at localised scales. The mash-up applications shall get access to rich spatio-temporal information from structured fusion services which aggregate COs information with existing environmental monitoring stations data, established by research organisations and private entreprise. These applications are being developed in ENVIROFI for the atmospheric, marine and biodiversity domains, together with a potential to be extended to other domains and scenarios concerning smart and safe living in the Future Internet.

  6. Applicability of the "Frame of Reference" approach for environmental monitoring of offshore renewable energy projects.

    PubMed

    Garel, Erwan; Rey, Cibran Camba; Ferreira, Oscar; van Koningsveld, Mark

    2014-08-01

    This paper assesses the applicability of the Frame of Reference (FoR) approach for the environmental monitoring of large-scale offshore Marine Renewable Energy (MRE) projects. The focus is on projects harvesting energy from winds, waves and currents. Environmental concerns induced by MRE projects are reported based on a classification scheme identifying stressors, receptors, effects and impacts. Although the potential effects of stressors on most receptors are identified, there are large knowledge gaps regarding the corresponding (positive and negative) impacts. In that context, the development of offshore MRE requires the implementation of fit-for-purpose monitoring activities aimed at environmental protection and knowledge development. Taking European legislation as an example, it is suggested to adopt standardized monitoring protocols for the enhanced usage and utility of environmental indicators. Towards this objective, the use of the FoR approach is advocated since it provides guidance for the definition and use of coherent set of environmental state indicators. After a description of this framework, various examples of applications are provided considering a virtual MRE project located in European waters. Finally, some conclusions and recommendations are provided for the successful implementation of the FoR approach and for future studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Economic and environmental evaluations of extractable coal resources conducted by the U. S. Geological Survey

    USGS Publications Warehouse

    Ellis, M.S.; Rohrbacher, T.J.; Carter, M.D.; Molnia, C.L.; Osmonson, L.M.; Scott, D.C.

    2001-01-01

    The Economic and Environmental Evaluations of Extractable Coal Resources (E4CR) project integrates economic analyses of extractable coal resources with environmental and coal quality considerations in order to better understand the contribution that coal resources can make to help meet the Nation’s future energy needs. The project utilizes coal resource information derived from the recent National Coal Resource Assessment (NCRA), National Oil and Gas Assessment (NOGA), and Coal Availability and Recoverability Studies (CARS) conducted by the U.S. Geological Survey and other State and Federal cooperating agencies. The E4CR evaluations are designed to augment economic models created by the U.S. Geological Survey CARS and NCRA projects and by the Department of Energy/Energy Information Administration (DOE/EIA). E4CR evaluations are conducted on potentially minable coal beds within selected coalfields in the United States. Emphasis is placed on coalfields containing Federally owned coal and within or adjacent to Federal lands, as shown in U.S. Geological Survey Fact Sheets 012-98, 145-99, and 011-00 (U.S. Geological Survey, 1998, 1999, 2000). Other considerations for the selection of study areas include coal quality, potential environmental impact of coal production activities and coal utilization, the potential for coalbed methane development from the coal, and projected potential for future mining. Completion dates for the E4CR studies loosely follow the schedule for analogous NOGA studies to allow for a comparison of different energy resources in similar geographic areas.

  8. 77 FR 55466 - Environmental Impact Statement for Short Range-Projects and Update of the Real Property Master...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... future development and management of land, facilities, resources and infrastructure based on the... Related Army Actions at Fort Belvoir, VA (2007) and BRAC-related changes made since 2007. ADDRESSES: Please send written comments to: Fort Belvoir Directorate of Public Works, Environmental and Natural...

  9. NASA Satellite Observations: A Unique Asset for the Study of the Environment and Implications for Public

    NASA Technical Reports Server (NTRS)

    Estes, Sue

    2010-01-01

    Health providers/researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. The field of geospatial health remains in its infancy, and this program will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential. NASA will discuss some of their Public Health Projects and also providing the audience with information on opportunities for future collaborations with NASA for future research.

  10. Assessing SWAT’s Performance in the Kaskaskia River Watershed as Influenced by the Number of Calibration Stations Used

    EPA Science Inventory

    The Future Midwestern Landscapes (FML) project is part of the U.S. Environmental Protection Agency’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes affect human well-being. The goal of the FML project is to quantify curren...

  11. Assessment in Early Intervention and Early Childhood Special Education: Building on the Past to Project into Our Future.

    ERIC Educational Resources Information Center

    McConnell, Scott R.

    2000-01-01

    This article discusses three future directions of early childhood assessment: attention to assessment of progress and growth, adaptation of methods typically associated with ecobehavioral research to assess environmental conditions that affect performance, and continued integration and linkage of assessment and intervention, which will yield more…

  12. The NASA John C. Stennis Environmental Geographic Information System

    NASA Technical Reports Server (NTRS)

    Cohan, Tyrus

    2002-01-01

    Contents include the following: 1. Introduction: Background information. Initial applications of the SSC EGIS. Ongoing projects. 2.Scope of SSC EGIS. 3. Data layers. 4. Onsite operations. 5. Landcover classifications. 6. Current activities. 7. GIS/Key. 8. Infrastructure base map - development. 9. Infrastructure base map - application. 10. Incorrected layer. 11. Corrected layer. 12. Emergency environmental response tool. 13. Future directions. 14. Bridging the gaps. 15. Environmental geographical information system.

  13. Future Secretariat: an innovation research coordination and governance structure

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Johan, R.; Cramer, W.; Fukushi, K.; Allard, S.

    2014-12-01

    Future Earth, an emerging global sustainability research program, will be managed by a novel, internationally distributed secretariat spanning the globe and providing a platform for co-design, co-production, and co-delivery of knowledge to support research on the earth system, global development and transformation toward sustainability. The Future Earth secretariat has an innovative structure consisting of five global hubs functioning as a single entity; these hubs are located in Canada, Japan, France, Sweden, and the United States. The secretariat's reach is extended through a set of regional hubs covering Latin America, the Middle East, Africa, Europe, and Asia, with the potential to expand to additional areas. This secretariat will operate under the auspices of the Future Earth Governing Council The Future Earth Secretariat will support and enable the implementation of knowledge-sharing between research and stakeholder communities to enable society to cope with and to alter global environmental trends, and to transition society toward sustainability. The secretariat will provide coordination support to over 25 global environmental core projects and committees; coordinate scientific work across the whole Future Earth agenda; develop and implement innovative mechanisms for bottom-up inputs, synthesis and integration. Future Earth, as a research program, aims to support global transformations toward sustainability through partnerships among scientific and stakeholder communities worldwide. It brings together existing international environmental research core projects associated with DIVERSITAS, the International Geosphere-Biosphere Programme, the International Human Dimensions Programme, and the World Climate Research Programme—to support coordinated, interdisciplinary research that can be used by decision makers seeking to reduce their impact and provide more sustainable products and services. USGCRP partners with Future Earth through scientific participation in and annual funding for its constituent programs.

  14. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures

    PubMed Central

    Olson, Deanna H.; Blaustein, Andrew R.

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats. PMID:27513565

  15. Electrification Futures Study: End-Use Electric Technology Cost and Performance Projections through 2050

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadun, Paige; McMillan, Colin; Steinberg, Daniel

    This report is the first in a series of Electrification Futures Study (EFS) publications. The EFS is a multiyear research project to explore widespread electrification in the future energy system of the United States. More specifically, the EFS is designed to examine electric technology advancement and adoption for end uses in all major economic sectors as well as electricity consumption growth and load profiles, future power system infrastructure development and operations, and the economic and environmental implications of widespread electrification. Because of the expansive scope and the multiyear duration of the study, research findings and supporting data will be publishedmore » as a series of reports, with each report released on its own timeframe.« less

  16. Enhancing the Environmental Legacy of the International Polar Year 2007- 2008

    NASA Astrophysics Data System (ADS)

    Tin, T.; Roura, R.; Perrault, M.

    2006-12-01

    The International Geophysical Year (IGY) left a legacy of peace and international cooperation in the form of the 1959 Antarctic Treaty. Since the IGY, the 1991 Protocol of Environmental Protection to the Antarctic Treaty was signed and entered into force. The Protocol establishes that the protection of the environment and the wilderness values of Antarctica "shall be fundamental considerations in the planning and conduct of all activities in the Antarctic Treaty area". Fifty years on, the IPY 2007-08 can, in turn, leave behind a positive environmental legacy - where the sharing of facilities and logistics are encouraged, the human footprint in Antarctica is minimized and a future generation of environmentally aware scientists, logisticians and visitors is fostered. Based on an analysis of all Expressions of Interest submitted to the IPY, we found that about three-quarters of IPY's Antarctic projects plan to have fieldwork components. About one-third of these field projects expect to leave physical infrastructure in Antarctica. A number of projects plan to develop large-scale infrastructure, such as stations and observatories, in hitherto pristine areas. Fewer than one percent of Antarctic field projects address the issue of their environmental legacy: four projects indicated that the site will be cleaned up or the equipment will be removed at the end of the project; two projects indicated that their results may be useful for the management of the Antarctic environment, e.g., in the control of invasive species or setting up of marine protected areas. With the goal of increasing the environmental awareness of Antarctic field scientists, our contribution will review current research on the impacts of human activities science, tourism, exploitation of marine resources and global climate change - on the Antarctic environment. A preliminary analysis of the cumulative impacts of IPY activities will be presented. Case studies of scientific projects in Antarctica with a potentially positive environmental legacy will be highlighted, and suggestions of actions that could be taken to increase the environmental friendliness of scientific projects will be discussed.

  17. Potential effects of climate change on the distribution range of the main silicate sinker of the Southern Ocean.

    PubMed

    Pinkernell, Stefan; Beszteri, Bánk

    2014-08-01

    Fragilariopsis kerguelensis, a dominant diatom species throughout the Antarctic Circumpolar Current, is coined to be one of the main drivers of the biological silicate pump. Here, we study the distribution of this important species and expected consequences of climate change upon it, using correlative species distribution modeling and publicly available presence-only data. As experience with SDM is scarce for marine phytoplankton, this also serves as a pilot study for this organism group. We used the maximum entropy method to calculate distribution models for the diatom F. kerguelensis based on yearly and monthly environmental data (sea surface temperature, salinity, nitrate and silicate concentrations). Observation data were harvested from GBIF and the Global Diatom Database, and for further analyses also from the Hustedt Diatom Collection (BRM). The models were projected on current yearly and seasonal environmental data to study current distribution and its seasonality. Furthermore, we projected the seasonal model on future environmental data obtained from climate models for the year 2100. Projected on current yearly averaged environmental data, all models showed similar distribution patterns for F. kerguelensis. The monthly model showed seasonality, for example, a shift of the southern distribution boundary toward the north in the winter. Projections on future scenarios resulted in a moderately to negligibly shrinking distribution area and a change in seasonality. We found a substantial bias in the publicly available observation datasets, which could be reduced by additional observation records we obtained from the Hustedt Diatom Collection. Present-day distribution patterns inferred from the models coincided well with background knowledge and previous reports about F. kerguelensis distribution, showing that maximum entropy-based distribution models are suitable to map distribution patterns for oceanic planktonic organisms. Our scenario projections indicate moderate effects of climate change upon the biogeography of F. kerguelensis.

  18. Student Participation in Community-Based Participatory Research to Improve Migrant and Seasonal Farmworker Environmental Health: Issues for Success

    ERIC Educational Resources Information Center

    Rao, Pamela; Arcury, Thomas A.; Quandt, Sara A.

    2004-01-01

    Involving students in community-based participatory research is a useful mechanism for engaging the community and helping it build future capacity. This article describes student involvement in a series of community-based environmental health research projects with migrant and seasonal farmworkers in North Carolina. High school, undergraduate,…

  19. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change

    Treesearch

    Wen J. Wang; Hong S. He; Frank R. Thompson; Martin A. Spetich; Jacob S. Fraser

    2018-01-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are notwell represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts.We investigate how species biological...

  20. Projecting trends in agronomic, economic, and environmental performance of Canadian dairy farms under future climate conditions

    USDA-ARS?s Scientific Manuscript database

    Climate change is expected to increase agricultural productivity in Canada as in many northern areas in the world. This will likely come along with changes in the environmental and economic performance of dairy farms, one of the most important agricultural sectors in Canada. The objective of this s...

  1. Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change

    Treesearch

    Eric J. Gustafson; Arjan M.G. De Bruijn; Robert E. Pangle; Jean-Marc Limousin; Nate G. McDowell; William T. Pockman; Brian R. Sturtevant; Jordan D. Muss; Mark E. Kubiske

    2015-01-01

    Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and...

  2. Spatial allocation of future landscape patterns for biomass and alleviation of hydrologic impacts of climate change

    NASA Astrophysics Data System (ADS)

    Ssegane, H.; Negri, M. C.

    2015-12-01

    Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. Concurrently, the Intergovernmental Panel on Climate Change (IPCC) predicts an increase of 2 to 4°C over the next 100 years above the preindustrial baseline, beginning as early as 2016 to 2035 over all seasons in the North America. This climate change is projected to further strain water resources currently stressed by anthropogenic activities. Therefore, placement of bioenergy crops on strategically selected sub-field areas in an agricultural landscape has the potential to increase the environmental and economic sustainability if location and choice of the crops result in minimal disruption of current food production systems and therefore cause minimal indirect land use change. This study identified sub-field marginal areas in an agricultural watershed using soil-based environmental sustainability criteria and a crop productivity index. Future landscape patterns (FLPs) were developed by allocating bioenergy crops (switchgrass: Panicum virgatum or shrub willows: Salix spp.) to these marginal areas (20% of the watershed). SWAT hydrologic model and dynamically downscaled climatic projection were used to asses impact of climate change on extreme flow conditions, total annual production of commodity and bioenergy crops, and water quality under current and future landscape patterns for the mid-21st century (2045-2055) and late 21st century (2085-2095) climatic projections. The frequency of flood and drought conditions was projected to increase while the corresponding durations to decrease. Sediment yields were projected to increase by 85% to 170% while FLPs would mitigate this increase by 26% to 32%.

  3. Observations from Space: A Unique Vantage Point for the Study of the Environment and Possible Associations with Disease Occurrence

    NASA Technical Reports Server (NTRS)

    Estes, S.; Haynes, J.; Hamdan, M. Al; Estes, M.; Sprigg, W.

    2009-01-01

    Health providers/researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. The field of geospatial health remains in its infancy, and this program will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential. NASA will discuss the Public Health Projects developed to work with Grantees and the CDC while providing them with information on opportunities for future collaborations with NASA for future research.

  4. The NextData Project: a national Italian system for the retrieval, storage, access and diffusion of environmental and climate data from mountain and marine areas

    NASA Astrophysics Data System (ADS)

    Provenzale, Antonello

    2013-04-01

    Mountains are sentinels of climate and environmental change and many marine regions provide information on past climate variations. The Project of Interest NextData will favour the implementation of measurement networks in remote mountain and marine areas and will develop efficient web portals to access meteoclimatic and atmospheric composition data, past climate information from ice and sediment cores, biodiversity and ecosystem data, measurements of the hydrological cycle, marine reanalyses and climate projections at global and regional scale. New data on the present and past climatic variability and future climate projections in the Alps, the Himalaya-Karakoram, the Mediterranean region and other areas of interest will be obtained and made available. The pilot studies conducted during the project will allow for obtaining new estimates on the availability of water resources and on the effects of atmospheric aerosols on high-altitude environments, as well as new assessments of the impact of climate change on ecosystems, health and societies in mountain regions. The system of archives and the scientific results produced by the NextData project will provide a unique data base for research, for environmental management and for the estimate of climate change impacts, allowing for the development of knowledge-based environmental and climate adaptation policies.

  5. The Southern Ocean ecosystem under multiple climate change stresses--an integrated circumpolar assessment.

    PubMed

    Gutt, Julian; Bertler, Nancy; Bracegirdle, Thomas J; Buschmann, Alexander; Comiso, Josefino; Hosie, Graham; Isla, Enrique; Schloss, Irene R; Smith, Craig R; Tournadre, Jean; Xavier, José C

    2015-04-01

    A quantitative assessment of observed and projected environmental changes in the Southern Ocean (SO) with a potential impact on the marine ecosystem shows: (i) large proportions of the SO are and will be affected by one or more climate change processes; areas projected to be affected in the future are larger than areas that are already under environmental stress, (ii) areas affected by changes in sea-ice in the past and likely in the future are much larger than areas affected by ocean warming. The smallest areas (<1% area of the SO) are affected by glacier retreat and warming in the deeper euphotic layer. In the future, decrease in the sea-ice is expected to be widespread. Changes in iceberg impact resulting from further collapse of ice-shelves can potentially affect large parts of shelf and ephemerally in the off-shore regions. However, aragonite undersaturation (acidification) might become one of the biggest problems for the Antarctic marine ecosystem by affecting almost the entire SO. Direct and indirect impacts of various environmental changes to the three major habitats, sea-ice, pelagic and benthos and their biota are complex. The areas affected by environmental stressors range from 33% of the SO for a single stressor, 11% for two and 2% for three, to <1% for four and five overlapping factors. In the future, areas expected to be affected by 2 and 3 overlapping factors are equally large, including potential iceberg changes, and together cover almost 86% of the SO ecosystem. © 2014 John Wiley & Sons Ltd.

  6. Environmental Management Science Program Workshop. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as thatmore » performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.« less

  7. Geospatial intelligence and visual classification of environmentally observed species in the Future Internet

    NASA Astrophysics Data System (ADS)

    Arbab-Zavar, B.; Chakravarthy, A.; Sabeur, Z. A.

    2012-04-01

    The rapid development of advanced smart communication tools with good quality and resolution video cameras, audio and GPS devices in the last few years shall lead to profound impacts on the way future environmental observations are conducted and accessed by communities. The resulting large scale interconnections of these "Future Internet Things" form a large environmental sensing network which will generate large volumes of quality environmental observations and at highly localised spatial scales. This enablement in environmental sensing at local scales will be of great importance to contribute in the study of fauna and flora in the near future, particularly on the effect of climate change on biodiversity in various regions of Europe and beyond. The Future Internet could also potentially become the de facto information space to provide participative real-time sensing by communities and improve our situation awarness of the effect of climate on local environments. In the ENVIROFI(2011-2013) Usage Area project in the FP7 FI-PPP programme, a set of requirements for specific (and generic) enablers is achieved with the potential establishement of participating community observatories of the future. In particular, the specific enablement of interest concerns the building of future interoperable services for the management of environmental data intelligently with tagged contextual geo-spatial information generated by multiple operators in communities (Using smart phones). The classification of observed species in the resulting images is achieved with structured data pre-processing, semantic enrichement using contextual geospatial information, and high level fusion with controlled uncertainty estimations. The returned identification of species is further improved using future ground truth corrections and learning by the specific enablers.

  8. Archaeological Chemistry.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1983-01-01

    Research projects and methodology in archeochemistry are discussed. Topics include radiocarbon dating, thermoluminescence, amino acid dating, obsidian hydration dating, bone studies, metals/metallurgy, pottery, stone/glass, and future directions. Includes reports on funding, insights into nuclear waste/environmental problems provided by…

  9. Toward more robust projections of forest landscape dynamics under novel environmental conditions: embedding PnET within LANDIS-II

    Treesearch

    A. De Bruijn; E.J. Gustafson; B.R. Sturtevant; J.R. Foster; B.R. Miranda; N.I. Lichti; D.F. Jacobs

    2014-01-01

    Ecological models built on phenomenological relationships and behavior of the past may not be robustunder novel conditions of the future because global changes are producing environmental conditions that forests have not experienced historically. We developed a new succession extension for the LANDIS-II forest landscape model, PnET-Succession, to simulate forest growth...

  10. Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison

    DOE PAGES

    Prestele, Reinhard; Alexander, Peter; Rounsevell, Mark D. A.; ...

    2016-05-02

    Model-based global projections of future land use and land cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change models representing a wide range of assumptions of future biophysical and socio-economic conditions. We attribute components of uncertainty to input data, modelmore » structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g. boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process as well as improving the allocation mechanisms of LULC change models remain important challenges. Furthermore, current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches and many studies ignore the uncertainty in LULC projections in assessments of LULC change impacts on climate, water resources or biodiversity.« less

  11. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison.

    PubMed

    Prestele, Reinhard; Alexander, Peter; Rounsevell, Mark D A; Arneth, Almut; Calvin, Katherine; Doelman, Jonathan; Eitelberg, David A; Engström, Kerstin; Fujimori, Shinichiro; Hasegawa, Tomoko; Havlik, Petr; Humpenöder, Florian; Jain, Atul K; Krisztin, Tamás; Kyle, Page; Meiyappan, Prasanth; Popp, Alexander; Sands, Ronald D; Schaldach, Rüdiger; Schüngel, Jan; Stehfest, Elke; Tabeau, Andrzej; Van Meijl, Hans; Van Vliet, Jasper; Verburg, Peter H

    2016-12-01

    Model-based global projections of future land-use and land-cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change models representing a wide range of assumptions of future biophysical and socioeconomic conditions. We attribute components of uncertainty to input data, model structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios, we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g., boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process and improving the allocation mechanisms of LULC change models remain important challenges. Current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches, and many studies ignore the uncertainty in LULC projections in assessments of LULC change impacts on climate, water resources or biodiversity. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  12. Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prestele, Reinhard; Alexander, Peter; Rounsevell, Mark D. A.

    Model-based global projections of future land use and land cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change models representing a wide range of assumptions of future biophysical and socio-economic conditions. We attribute components of uncertainty to input data, modelmore » structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g. boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process as well as improving the allocation mechanisms of LULC change models remain important challenges. Furthermore, current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches and many studies ignore the uncertainty in LULC projections in assessments of LULC change impacts on climate, water resources or biodiversity.« less

  13. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA)more » of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).« less

  14. Leading trends in environmental regulation that affect energy development. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, R V; Attaway, L D; Christerson, J A

    1980-01-01

    Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive surveymore » of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.« less

  15. A Model Marine Science Laboratory, North Kitsap Marine Environmental Center.

    ERIC Educational Resources Information Center

    Driscoll, Andrew L.; And Others

    The project had two overall goals: (1) to establish and maintain a model marine science facility to be used as a teaching station and a base for research; and (2) to increase student and public awareness about the oceans and the important role they will play in man's future. The project served all the school districts in Kitsap County (Washington)…

  16. 78 FR 20169 - Notice of Availability of an Environmental Assessment for the Proposed Hudson Yards Concrete...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... disasters. Amtrak anticipates constructing the proposed Project using Federal funding and, as the proposed...-2788; Phone (212) 275-6975. The EA is also available for review on the FRA Web site at http://www.fra... address future disasters in the NEC. Construction of the Project is proposed at this time because a real...

  17. Operational Agility (La Maniabilite Operationnelle)

    DTIC Science & Technology

    1994-04-01

    the use of attitude projection 171. The procedure described above is schematically shown in figure 2.10. i Maneuvers...with the performance margins expected of future projects . (9,15) The agility factor concept was developed from that described in Reference 12 and...and in support of , a land battle between enemy forces. The nature of the combined arms battlefield and the terrain and environmental

  18. Remote Sensing, Air Quality, and Public Health

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Rickman, Douglas; Mohammad, Al-Hamdan; Crosson, William; Estes, Maurice, Jr.; Limaye, Ashutosh; Qualters, Judith

    2008-01-01

    HELIX-Atlanta was developed to support current and future state and local EPHT programs to implement data linking demonstratio'n projects which could be part of the EPHT Network. HELIX-Atlanta is a pilot linking project in Atlanta for CDC to learn about the challenges the states will encounter. NASA/MSFC and the CDC are partners in linking environmental and health data to enhance public health surveillance. The use of NASA technology creates value - added geospatial products from existing environmental data sources to facilitate public health linkages. Proving the feasibility of the approach is the main objective

  19. Environmental problems caused by Istanbul subway excavation and suggestions for remediation

    NASA Astrophysics Data System (ADS)

    Ocak, Ibrahim

    2009-10-01

    Many environmental problems caused by subway excavations have inevitably become an important point in city life. These problems can be categorized as transporting and stocking of excavated material, traffic jams, noise, vibrations, piles of dust mud and lack of supplies. Although these problems cause many difficulties, the most pressing for a big city like Istanbul is excavation, since other listed difficulties result from it. Moreover, these problems are environmentally and regionally restricted to the period over which construction projects are underway and disappear when construction is finished. Currently, in Istanbul, there are nine subway construction projects in operation, covering approximately 73 km in length; over 200 km to be constructed in the near future. The amount of material excavated from ongoing construction projects covers approximately 12 million m3. In this study, problems—primarily, the problem with excavation waste (EW)—caused by subway excavation are analyzed and suggestions for remediation are offered.

  20. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  1. A case study of the development of environmental action projects from the framework of participatory action research within two middle school classrooms

    NASA Astrophysics Data System (ADS)

    Charmatz, Kim

    The purpose of this study was to understand student and teacher empowerment through a socially critical environmental education perspective. The main research question guiding this study was: How do participants make sense of a learning experience in which students design and carry out an environmental action project in their community? This study used participatory action research and critical theory as practical and theoretical frameworks. These frameworks were relevant as this study sought to examine social change, power, and relationships through participants' experiences. The context of this study was within one seventh and one eighth grade classroom participating in environmental projects. The study was conducted in spring 2005 with an additional follow-up data collection period during spring 2006. The school was located in a densely populated metropolitan suburb. Fifty-three students, a teacher researcher, and three science teachers participated. Data sources were written surveys, scores on Middle School Environmental Literacy Survey Instrument (MSELI), observations, interviews, and student work. This study used a mixed methodological approach. Quantitative data analysis involved dependent samples t-test scores on the MSELI before and after the completion of the projects. Qualitative data were analyzed using an inductive analysis approach. This study has implications for educators interested in democratic education. Environmental action projects provide a context for students and teachers to learn interdisciplinary content knowledge, develop personal beliefs, and learn ways to take action in their communities. This pedagogy has the potential to increase cooperation, communication, and tensions within school communities. Students' participation in the development of environmental action projects may lead to feelings of empowerment or being able to make a difference in their community, as an individual or member of a group. Future research is needed to discern why participants experience this type of educational experience differently, for example, how does the type of environmental action project influence individual and group empowerment?

  2. European monitoring systems and data for assessing environmental and climate impacts on human infectious diseases.

    PubMed

    Nichols, Gordon L; Andersson, Yvonne; Lindgren, Elisabet; Devaux, Isabelle; Semenza, Jan C

    2014-04-09

    Surveillance is critical to understanding the epidemiology and control of infectious diseases. The growing concern over climate and other drivers that may increase infectious disease threats to future generations has stimulated a review of the surveillance systems and environmental data sources that might be used to assess future health impacts from climate change in Europe. We present an overview of organizations, agencies and institutions that are responsible for infectious disease surveillance in Europe. We describe the surveillance systems, tracking tools, communication channels, information exchange and outputs in light of environmental and climatic drivers of infectious diseases. We discuss environmental and climatic data sets that lend themselves to epidemiological analysis. Many of the environmental data sets have a relatively uniform quality across EU Member States because they are based on satellite measurements or EU funded FP6 or FP7 projects with full EU coverage. Case-reporting systems for surveillance of infectious diseases should include clear and consistent case definitions and reporting formats that are geo-located at an appropriate resolution. This will allow linkage to environmental, social and climatic sources that will enable risk assessments, future threat evaluations, outbreak management and interventions to reduce disease burden.

  3. European Monitoring Systems and Data for Assessing Environmental and Climate Impacts on Human Infectious Diseases

    PubMed Central

    Nichols, Gordon L.; Andersson, Yvonne; Lindgren, Elisabet; Devaux, Isabelle; Semenza, Jan C.

    2014-01-01

    Surveillance is critical to understanding the epidemiology and control of infectious diseases. The growing concern over climate and other drivers that may increase infectious disease threats to future generations has stimulated a review of the surveillance systems and environmental data sources that might be used to assess future health impacts from climate change in Europe. We present an overview of organizations, agencies and institutions that are responsible for infectious disease surveillance in Europe. We describe the surveillance systems, tracking tools, communication channels, information exchange and outputs in light of environmental and climatic drivers of infectious diseases. We discuss environmental and climatic data sets that lend themselves to epidemiological analysis. Many of the environmental data sets have a relatively uniform quality across EU Member States because they are based on satellite measurements or EU funded FP6 or FP7 projects with full EU coverage. Case-reporting systems for surveillance of infectious diseases should include clear and consistent case definitions and reporting formats that are geo-located at an appropriate resolution. This will allow linkage to environmental, social and climatic sources that will enable risk assessments, future threat evaluations, outbreak management and interventions to reduce disease burden. PMID:24722542

  4. The climate of Kazakhstan: an examination of current conditions and future needs

    NASA Astrophysics Data System (ADS)

    Russell, Andrew; Ali, Maged; Althonayan, Abraham; Akhmetov, Kanat; Gazdiyeva, Bella; Ghalaieny, Mohamed; Kurmanbayeva, Aygul; McCann, Meg; Mukanov, Yelzhas; Tucker, Allan; Zhumabayeva, Sara

    2017-04-01

    Environmental Health is an essential aspect of any successful society; indeed, it was recognised as a cornerstone of the UN's Agenda 21 action plan for sustainable development. Clean air and water, safe food, minimal exposure to toxic materials, disaster preparedness, planning for climate change and effective waste management are all fundamental to a healthy population and socio-economic progress. In recent years, particularly since 2000, Kazakhstan's economic development has been exceptional. However, health indicators such as life expectancy are lagging behind nations with similar economies. It is likely that this "health lag" is, to a large extent, caused or aggravated by the poor state of Kazakhstan's natural environment. In this paper, we focus on the role of recent and future climate change in Kazakhstan. We examine ECMWF re-analysis data, data derived directly from observations and CMIP5 climate projections for the region to understand how climate may impact environmental health in the country. This analysis is part of a larger project that aims to take a more holistic approach to the analysis of environmental health in a developing nation.

  5. Improving Future Ecosystem Benefits through Earth Observations: the H2020 Project ECOPOTENTIAL

    NASA Astrophysics Data System (ADS)

    Provenzale, Antonello; Beierkuhnlein, Carl; Ziv, Guy

    2016-04-01

    Terrestrial and marine ecosystems provide essential goods and services to human societies. In the last decades, however, anthropogenic pressures caused serious threats to ecosystem integrity, functions and processes, potentially leading to the loss of essential ecosystem services. ECOPOTENTIAL is a large European-funded H2020 project which focuses its activities on a targeted set of internationally recognised protected areas in Europe, European Territories and beyond, blending Earth Observations from remote sensing and field measurements, data analysis and modelling of current and future ecosystem conditions and services. The definition of future scenarios is based on climate and land-use change projections, addressing the issue of uncertainties and uncertainty propagation across the modelling chain. The ECOPOTENTIAL project addresses cross-scale geosphere-biosphere interactions and landscape-ecosystem dynamics at regional to continental scales, using geostatistical methods and the emerging approaches in Macrosystem Ecology and Earth Critical Zone studies, addressing long-term and large-scale environmental and ecological challenges. The project started its activities in 2015, by defining a set of storylines which allow to tackle some of the most crucial issues in the assessment of present conditions and the estimate of the future state of selected ecosystem services. In this contribution, we focus on some of the main storylines of the project and discuss the general approach, focusing on the interplay of data and models and on the estimate of projection uncertainties.

  6. Future water supply and demand in response to climate change and agricultural expansion in Texas

    NASA Astrophysics Data System (ADS)

    Lee, K.; Zhou, T.; Gao, H.; Huang, M.

    2016-12-01

    With ongoing global environmental change and an increasing population, it is challenging (to say the least) to understand the complex interactions of irrigation and reservoir systems. Irrigation is critical to agricultural production and food security, and is a vital component of Texas' agricultural economy. Agricultural irrigation currently accounts for about 60% of total water demand in Texas, and recent occurrences of severe droughts has brought attention to the availability and use of water in the future. In this study, we aim to assess future agricultural irrigation water demand, and to estimate how changes in the fraction of crop irrigated land will affect future water availability in Texas, which has the largest farm area and the highest value of livestock production in the United States. The Variable Infiltration Capacity (VIC) model, which has been calibrated and validated over major Texas river basins during the historical period, is employed for this study. The VIC model, coupling with an irrigation scheme and a reservoir module, is adopted to simulate the water management and regulations. The evolution on agricultural land is also considered in the model as a changing fraction of crop for each grid cell. The reservoir module is calibrated and validated based on the historical (1915-2011) storage records of major reservoirs in Texas. The model is driven by statistically downscaled climate projections from Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The lowest (RCP 2.6) and highest (RC P8.5) greenhouse-gas concentration scenarios are adopted for future projections to provide an estimate of uncertainty bounds. We expect that our results will be helpful to assist decision making related to reservoir operations and agricultural water planning for Texas under future climate and environmental changes.

  7. Biological responses to environmental heterogeneity under future ocean conditions.

    PubMed

    Boyd, Philip W; Cornwall, Christopher E; Davison, Andrew; Doney, Scott C; Fourquez, Marion; Hurd, Catriona L; Lima, Ivan D; McMinn, Andrew

    2016-08-01

    Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats - from short-lived phytoplankton to long-lived corals - in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate-change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate-change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate-change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate-change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to physiologically straddle wide-ranging timescales in the alteration of ocean conditions, including the need to adapt to rapidly rising CO2 and also acclimate to environmental heterogeneity in more slowly changing properties such as warming. © 2016 John Wiley & Sons Ltd.

  8. Climate change impacts on water availability in the Red River Basin and critical areas for future water conservation

    NASA Astrophysics Data System (ADS)

    Zamani Sabzi, H.; Moreno, H. A.; Neeson, T. M.; Rosendahl, D. H.; Bertrand, D.; Xue, X.; Hong, Y.; Kellog, W.; Mcpherson, R. A.; Hudson, C.; Austin, B. N.

    2017-12-01

    Previous periods of severe drought followed by exceptional flooding in the Red River Basin (RRB) have significantly affected industry, agriculture, and the environment in the region. Therefore, projecting how climate may change in the future and being prepared for potential impacts on the RRB is crucially important. In this study, we investigated the impacts of climate change on water availability across the RRB. We used three down-scaled global climate models and three potential greenhouse gas emission scenarios to assess precipitation, temperature, streamflow and lake levels throughout the RRB from 1961 to 2099 at a spatial resolution of 1/10°. Unit-area runoff and streamflow were obtained using the Variable Infiltration Capacity (VIC) model applied across the entire basin. We found that most models predict less precipitation in the western side of the basin and more in the eastern side. In terms of temperature, the models predict that average temperature could increase as much as 6°C. Most models project slightly more precipitation and streamflow values in the future, specifically in the eastern side of the basin. Finally, we analyzed the projected meteorological and hydrologic parameters alongside regional water demand for different sectors to identify the areas on the RRB that will need water-environmental conservation actions in the future. These hotspots of future low water availability are locations where regional environmental managers, water policy makers, and the agricultural and industrial sectors must proactively prepare to deal with declining water availability over the coming decades.

  9. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    PubMed

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. EXPOsOMICS: final policy workshop and stakeholder consultation.

    PubMed

    Turner, Michelle C; Vineis, Paolo; Seleiro, Eduardo; Dijmarescu, Michaela; Balshaw, David; Bertollini, Roberto; Chadeau-Hyam, Marc; Gant, Timothy; Gulliver, John; Jeong, Ayoung; Kyrtopoulos, Soterios; Martuzzi, Marco; Miller, Gary W; Nawrot, Timothy; Nieuwenhuijsen, Mark; Phillips, David H; Probst-Hensch, Nicole; Samet, Jonathan; Vermeulen, Roel; Vlaanderen, Jelle; Vrijheid, Martine; Wild, Christopher; Kogevinas, Manolis

    2018-02-15

    The final meeting of the EXPOsOMICS project "Final Policy Workshop and Stakeholder Consultation" took place 28-29 March 2017 to present the main results of the project and discuss their implications both for future research and for regulatory and policy activities. This paper summarizes presentations and discussions at the meeting related with the main results and advances in exposome research achieved through the EXPOsOMICS project; on other parallel research initiatives on the study of the exposome in Europe and in the United States and their complementarity to EXPOsOMICS; lessons learned from these early studies on the exposome and how they may shape the future of research on environmental exposure assessment; and finally the broader implications of exposome research for risk assessment and policy development on environmental exposures. The main results of EXPOsOMICS in relation to studies of the external exposome and internal exposome in relation to both air pollution and water contaminants were presented as well as new technologies for environmental health research (adductomics) and advances in statistical methods. Although exposome research strengthens the scientific basis for policy development, there is a need in terms of showing added value for public health to: improve communication of research results to non-scientific audiences; target research to the broader landscape of societal challenges; and draw applicable conclusions. Priorities for future work include the development and standardization of methodologies and technologies for assessing the external and internal exposome, improved data sharing and integration, and the demonstration of the added value of exposome science over conventional approaches in answering priority policy questions.

  11. Current and Future Environmental Balance of Small-Scale Run-of-River Hydropower.

    PubMed

    Gallagher, John; Styles, David; McNabola, Aonghus; Williams, A Prysor

    2015-05-19

    Globally, the hydropower (HP) sector has significant potential to increase its capacity by 2050. This study quantifies the energy and resource demands of small-scale HP projects and presents methods to reduce associated environmental impacts based on potential growth in the sector. The environmental burdens of three (50-650 kW) run-of-river HP projects were calculated using life cycle assessment (LCA). The global warming potential (GWP) for the projects to generate electricity ranged from 5.5-8.9 g CO2 eq/kWh, compared with 403 g CO2 eq/kWh for UK marginal grid electricity. A sensitivity analysis accounted for alternative manufacturing processes, transportation, ecodesign considerations, and extended project lifespan. These findings were extrapolated for technically viable HP sites in Europe, with the potential to generate 7.35 TWh and offset over 2.96 Mt of CO2 from grid electricity per annum. Incorporation of ecodesign could provide resource savings for these HP projects: avoiding 800 000 tonnes of concrete, 10 000 tonnes of steel, and 65 million vehicle miles. Small additional material and energy contributions can double a HP system lifespan, providing 39-47% reductions for all environmental impact categories. In a world of finite resources, this paper highlights the importance of HP as a resource-efficient, renewable energy system.

  12. Analysis of Factors Influencing Building Refurbishment Project Performance

    NASA Astrophysics Data System (ADS)

    Ishak, Nurfadzillah; Aswad Ibrahim, Fazdliel; Azizi Azizan, Muhammad

    2018-03-01

    Presently, the refurbishment approach becomes favourable as it creates opportunities to incorporate sustainable value with other building improvement. In this regard, this approach needs to be implemented due to the issues on overwhelming ratio of existing building to new construction, which also can contribute to the environmental problem. Refurbishment principles imply to minimize the environmental impact and upgrading the performance of an existing building to meet new requirements. In theoretically, building project's performance has a direct bearing on related to its potential for project success. However, in refurbishment building projects, the criteria for measure are become wider because the projects are a complex and multi-dimensional which encompassing many factors which reflect to the nature of works. Therefore, this impetus could be achieve by examine the direct empirical relationship between critical success factors (CSFs) and complexity factors (CFs) during managing the project in relation to delivering success on project performance. The research findings will be expected as the basis of future research in establish appropriate framework that provides information on managing refurbishment building projects and enhancing the project management competency for a better-built environment.

  13. Scoping Future Policy Dynamics in Raw Materials Through Scenarios Testing

    NASA Astrophysics Data System (ADS)

    Correia, Vitor; Keane, Christopher; Sturm, Flavius; Schimpf, Sven; Bodo, Balazs

    2017-04-01

    The International Raw Materials Observatory (INTRAW) project is working towards a sustainable future for the European Union in access to raw materials, from an availability, economical, and environmental framework. One of the major exercises for the INTRAW project is the evaluation of potential future scenarios for 2050 to frame economic, research, and environmental policy towards a sustainable raw materials supply. The INTRAW consortium developed three possible future scenarios that encompass defined regimes of political, economic, and technological norms. The first scenario, "Unlimited Trade," reflects a world in which free trade continues to dominate the global political and economic environment, with expectations of a growing demand for raw materials from widely distributed global growth. The "National Walls" scenario reflects a world where nationalism and economic protectionism begins to dominate, leading to stagnating economic growth and uneven dynamics in raw materials supply and demand. The final scenario, "Sustainability Alliance," examines the dynamics of a global political and economic climate that is focused on environmental and economic sustainability, leading towards increasingly towards a circular raw materials economy. These scenarios were reviewed, tested, and provided simulations of impacts with members of the Consortium and a panel of global experts on international raw materials issues which led to expected end conditions for 2050. Given the current uncertainty in global politics, these scenarios are informative to identifying likely opportunities and crises. The details of these simulations and expected responses to the research demand, technology investments, and economic components of raw materials system will be discussed.

  14. Appropriating Video Surveillance for Art and Environmental Awareness: Experiences from ARTiVIS.

    PubMed

    Mendes, Mónica; Ângelo, Pedro; Correia, Nuno; Nisi, Valentina

    2018-06-01

    Arts, Real-Time Video and Interactivity for Sustainability (ARTiVIS) is an ongoing collaborative research project investigating how real-time video, DIY surveillance technologies and sensor data can be used as a tool for environmental awareness, activism and artistic explorations. The project consists of a series of digital contexts for aesthetic contemplation of nature and civic engagement, aiming to foster awareness and empowerment of local populations through DIY surveillance. At the core of the ARTIVIS efforts are a series of interactive installations (namely B-Wind!, Hug@tree and Play with Fire), that make use of surveillance technologies and real-time video as raw material to promote environmental awareness through the emotion generated by real-time connections with nature. Throughout the project development, the surveillance concept has been shifting from the use of surveillance technology in a centralized platform, to the idea of veillance with distributed peer-to-peer networks that can be used for science and environmental monitoring. In this paper we present the history of the ARTiVIS project, related and inspiring work, describe ongoing research work and explore the present and future challenges of appropriating surveillance technology for artistic, educational and civic engagement purposes.

  15. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema

    Majumdar, Arun

    2017-12-09

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  16. MOLECULAR GENETIC TOOLS FOR ASSESSING THE STATUS AND VULNERABILITY OF AQUATIC RESOURCES

    EPA Science Inventory

    Development of ecological indicators that efficiently capture the present condition and project future vulnerabilities of biological resources is critical to sound environmental management. For this reason, the ORD's Ecological Research Program is developing genetic methodologies...

  17. Improving Environmental Health Literacy and Justice through Environmental Exposure Results Communication

    PubMed Central

    Ramirez-Andreotta, Monica D.; Brody, Julia Green; Lothrop, Nathan; Loh, Miranda; Beamer, Paloma I.; Brown, Phil

    2016-01-01

    Understanding the short- and long-term impacts of a biomonitoring and exposure project and reporting personal results back to study participants is critical for guiding future efforts, especially in the context of environmental justice. The purpose of this study was to evaluate learning outcomes from environmental communication efforts and whether environmental health literacy goals were met in an environmental justice community. We conducted 14 interviews with parents who had participated in the University of Arizona’s Metals Exposure Study in Homes and analyzed their responses using NVivo, a qualitative data management and analysis program. Key findings were that participants used the data to cope with their challenging circumstances, the majority of participants described changing their families’ household behaviors, and participants reported specific interventions to reduce family exposures. The strength of this study is that it provides insight into what people learn and gain from such results communication efforts, what participants want to know, and what type of additional information participants need to advance their environmental health literacy. This information can help improve future report back efforts and advance environmental health and justice. PMID:27399755

  18. Assessment of 21st century drought conditions at Shasta Dam based on dynamically projected water supply conditions by a regional climate model coupled with a physically-based hydrology model.

    PubMed

    Trinh, T; Ishida, K; Kavvas, M L; Ercan, A; Carr, K

    2017-05-15

    Along with socioeconomic developments, and population increase, natural disasters around the world have recently increased the awareness of harmful impacts they cause. Among natural disasters, drought is of great interest to scientists due to the extraordinary diversity of their severity and duration. Motivated by the development of a potential approach to investigate future possible droughts in a probabilistic framework based on climate change projections, a methodology to consider thirteen future climate projections based on four emission scenarios to characterize droughts is presented. The proposed approach uses a regional climate model coupled with a physically-based hydrology model (Watershed Environmental Hydrology Hydro-Climate Model; WEHY-HCM) to generate thirteen equally likely future water supply projections. The water supply projections were compared to the current water demand for the detection of drought events and estimation of drought properties. The procedure was applied to Shasta Dam watershed to analyze drought conditions at the watershed outlet, Shasta Dam. The results suggest an increasing water scarcity at Shasta Dam with more severe and longer future drought events in some future scenarios. An important advantage of the proposed approach to the probabilistic analysis of future droughts is that it provides the drought properties of the 100-year and 200-year return periods without resorting to any extrapolation of the frequency curve. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Student and Community Engagement in Earth, Space, and Environmental Sciences Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alaa; Ahmed, Yasmin

    2015-04-01

    Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science This work is part of the PEER research project 2-239 sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htm website: http://CleanAirEgypt.org Links to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: https://vimeo.com/100427525

  20. Student and Community Engagement in Earth, Space, and Environmental Sciences Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. I.; Tutwiler, R.; Zakey, A.; Shokr, M. E.; Ahmed, Y.; Jereidini, D.; Eid, M.

    2014-12-01

    Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science Note: This presentation is a PEER project sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htmwebsite: http://CleanAirEgypt.orgLinks to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: http://CleanAirEgypt.org

  1. Modeling Water Quality Benefits of Conservation Practices

    EPA Science Inventory

    The Future Midwest Landscape (FML) project is part of the U.S. Environmental Protection Agency’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes that include crop lands, conservation areas, wetlands, lakes and streams affect...

  2. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema

    Majumdar, Arun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering and Dept. of Mechanical Engineering

    2018-05-04

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  3. Extinctions in ancient and modern seas.

    PubMed

    Harnik, Paul G; Lotze, Heike K; Anderson, Sean C; Finkel, Zoe V; Finnegan, Seth; Lindberg, David R; Liow, Lee Hsiang; Lockwood, Rowan; McClain, Craig R; McGuire, Jenny L; O'Dea, Aaron; Pandolfi, John M; Simpson, Carl; Tittensor, Derek P

    2012-11-01

    In the coming century, life in the ocean will be confronted with a suite of environmental conditions that have no analog in human history. Thus, there is an urgent need to determine which marine species will adapt and which will go extinct. Here, we review the growing literature on marine extinctions and extinction risk in the fossil, historical, and modern records to compare the patterns, drivers, and biological correlates of marine extinctions at different times in the past. Characterized by markedly different environmental states, some past periods share common features with predicted future scenarios. We highlight how the different records can be integrated to better understand and predict the impact of current and projected future environmental changes on extinction risk in the ocean. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Ecological niche modeling for a cultivated plant species: a case study on taro (Colocasia esculenta) in Hawaii.

    PubMed

    Kodis, Mali'o; Galante, Peter; Sterling, Eleanor J; Blair, Mary E

    2018-04-26

    Under the threat of ongoing and projected climate change, communities in the Pacific Islands face challenges of adapting culture and lifestyle to accommodate a changing landscape. Few models can effectively predict how biocultural livelihoods might be impacted. Here, we examine how environmental and anthropogenic factors influence an ecological niche model (ENM) for the realized niche of cultivated taro (Colocasia esculenta) in Hawaii. We created and tuned two sets of ENMs: one using only environmental variables, and one using both environmental and cultural characteristics of Hawaii. These models were projected under two different Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs) for 2070. Models were selected and evaluated using average omission rate and area under the receiver operating characteristic curve (AUC). We compared optimal model predictions by comparing the percentage of taro plots predicted present and measured ENM overlap using Schoener's D statistic. The model including only environmental variables consisted of 19 Worldclim bioclimatic variables, in addition to slope, altitude, distance to perennial streams, soil evaporation, and soil moisture. The optimal model with environmental variables plus anthropogenic features also included a road density variable (which we assumed as a proxy for urbanization) and a variable indicating agricultural lands of importance to the state of Hawaii. The model including anthropogenic features performed better than the environment-only model based on omission rate, AUC, and review of spatial projections. The two models also differed in spatial projections for taro under anticipated future climate change. Our results demonstrate how ENMs including anthropogenic features can predict which areas might be best suited to plant cultivated species in the future, and how these areas could change under various climate projections. These predictions might inform biocultural conservation priorities and initiatives. In addition, we discuss the incongruences that arise when traditional ENM theory is applied to species whose distribution has been significantly impacted by human intervention, particularly at a fine scale relevant to biocultural conservation initiatives. © 2018 by the Ecological Society of America.

  5. Hydropower resources at risk: The status of hydropower regulation and development - 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, R.T.; Hunt, J.A.

    This report documents today`s hydropower licensing and development status based on published data as follows: (a) Federal Energy Regulatory Commission (FERC) databases, maintained by FERC`s Office of Hydropower Licensing, of: (1) operating FERC-regulated projects, federal projects, and known unlicensed projects; (2) surrendered licenses; and, (3) recent licensing and relicensing actions; (b) Energy Information Administration (EIA) data on installed capacity and generation from 1949 through 1995 for the various resources used to produce electricity in the U.S.; and, (c) FERC licensing orders, and environmental assessments or environmental impact statements for each individual project relicensed since 1980. The analysis conducted to preparemore » this paper includes the effects of all FERC hydropower licensing actions since 1980, and applies those findings to estimate the costs of hydropower licensing and development activity for the next 15 years. It also quantifies the national cost of hydropower regulation. The future estimates are quite conservative. The are presented in 1996 dollars without speculating on the effects of future inflation, license surrenders, conditions imposed through open-ended license articles, license terms greater than 30 years, or low water years. Instead, they show the most directly predictable influences on licensing outcomes using actual experiences since ECPA (after 1986).« less

  6. Survival of the hospital emergency department: strategic alternatives for the future.

    PubMed

    Widra, L S; Fottler, M D

    1988-01-01

    Diverse and pervasive environmental forces are reshaping hospital emergency services as hospitals strive to respond to consumer preferences related to cost and convenience. Complacency can no longer serve as a standard operating procedure for hospital emergency departments competing against lower-priced, consumer-oriented, free-standing facilities. Strategic alternatives, a five-step strategy for survival and growth, and a projection of future models of hospital emergency services are examined.

  7. MORTALITY RISK VALUATION AND STATED PREFERENCE METHODS: AN EXPLORATORY STUDY

    EPA Science Inventory

    The purposes of this project are: (1) to improve understanding of cognitive processes involved in the valuation of mortality risk reductions that occur in an environmental pollution context, and (2) to translate this understanding into survey language appropriate for future stat...

  8. Environmental impacts of biofuel production and use

    EPA Science Inventory

    The 2007 Energy Independence and Security Act (EISA) required a significant increase in the production and use of renewable fuels. Given the current state of technology and infrastructure, nearly all of the projected volume of biofuel consumption over the foreseeable future is ex...

  9. A CONCEPT MAP FOR INTEGRATED ENVIRONMENTAL ASSESSMENT AND FUTURES MODELING

    EPA Science Inventory

    Integrated assessment models are differentiated from other models by their explicit concern for results that are useful to decision makers. While the details will differ greatly for each particular integrated assessments project, there are certain concepts that will be present f...

  10. Status and Significance of Credentialing.

    ERIC Educational Resources Information Center

    Musgrave, Dorothea

    1984-01-01

    Discusses the current status, significance, and future of credentialing in the field of environmental health. Also discusses four phases of a Bureau of Health Professions (BHP) Credentialing Program and BHP-funded projects related to their development and implementation. Phases include role delineation, resources development, examination…

  11. Cacao Intensification in Sulawesi: A Green Prosperity Model Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, K.; Elchinger, M.; Hill, G.

    2014-09-01

    NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates techniques to improve cacao farming in Sulawesi Indonesia with an emphasis on Farmer Field Schools and Cocoa Development Centers to educate farmers and for train the trainer programs. The study estimates the economic viability of cacao farming if smallholder implement techniques to increase yield as well as social and environmental impacts of the project.

  12. Environmental impact assessment and environmental audit in large-scale public infrastructure construction: the case of the Qinghai-Tibet Railway.

    PubMed

    He, Guizhen; Zhang, Lei; Lu, Yonglong

    2009-09-01

    Large-scale public infrastructure projects have featured in China's modernization course since the early 1980s. During the early stages of China's rapid economic development, public attention focused on the economic and social impact of high-profile construction projects. In recent years, however, we have seen a shift in public concern toward the environmental and ecological effects of such projects, and today governments are required to provide valid environmental impact assessments prior to allowing large-scale construction. The official requirement for the monitoring of environmental conditions has led to an increased number of debates in recent years regarding the effectiveness of Environmental Impact Assessments (EIAs) and Governmental Environmental Audits (GEAs) as environmental safeguards in instances of large-scale construction. Although EIA and GEA are conducted by different institutions and have different goals and enforcement potential, these two practices can be closely related in terms of methodology. This article cites the construction of the Qinghai-Tibet Railway as an instance in which EIA and GEA offer complementary approaches to environmental impact management. This study concludes that the GEA approach can serve as an effective follow-up to the EIA and establishes that the EIA lays a base for conducting future GEAs. The relationship that emerges through a study of the Railway's construction calls for more deliberate institutional arrangements and cooperation if the two practices are to be used in concert to optimal effect.

  13. Examples of coupled human and environmental systems from the extractive industry and hydropower sector interfaces.

    PubMed

    Castro, Marcia C; Krieger, Gary R; Balge, Marci Z; Tanner, Marcel; Utzinger, Jürg; Whittaker, Maxine; Singer, Burton H

    2016-12-20

    Large-scale corporate projects, particularly those in extractive industries or hydropower development, have a history from early in the twentieth century of creating negative environmental, social, and health impacts on communities proximal to their operations. In many instances, especially for hydropower projects, the forced resettlement of entire communities was a feature in which local cultures and core human rights were severely impacted. These projects triggered an activist opposition that progressively expanded and became influential at both the host community level and with multilateral financial institutions. In parallel to, and spurred by, this activism, a shift occurred in 1969 with the passage of the National Environmental Policy Act in the United States, which required Environmental Impact Assessment (EIA) for certain types of industrial and infrastructure projects. Over the last four decades, there has been a global movement to develop a formal legal/regulatory EIA process for large industrial and infrastructure projects. In addition, social, health, and human rights impact assessments, with associated mitigation plans, were sequentially initiated and have increasingly influenced project design and relations among companies, host governments, and locally impacted communities. Often, beneficial community-level social, economic, and health programs have voluntarily been put in place by companies. These flagship programs can serve as benchmarks for community-corporate-government partnerships in the future. Here, we present examples of such positive phenomena and also focus attention on a myriad of challenges that still lie ahead.

  14. Examples of coupled human and environmental systems from the extractive industry and hydropower sector interfaces

    PubMed Central

    Castro, Marcia C.; Krieger, Gary R.; Balge, Marci Z.; Tanner, Marcel; Utzinger, Jürg; Whittaker, Maxine; Singer, Burton H.

    2016-01-01

    Large-scale corporate projects, particularly those in extractive industries or hydropower development, have a history from early in the twentieth century of creating negative environmental, social, and health impacts on communities proximal to their operations. In many instances, especially for hydropower projects, the forced resettlement of entire communities was a feature in which local cultures and core human rights were severely impacted. These projects triggered an activist opposition that progressively expanded and became influential at both the host community level and with multilateral financial institutions. In parallel to, and spurred by, this activism, a shift occurred in 1969 with the passage of the National Environmental Policy Act in the United States, which required Environmental Impact Assessment (EIA) for certain types of industrial and infrastructure projects. Over the last four decades, there has been a global movement to develop a formal legal/regulatory EIA process for large industrial and infrastructure projects. In addition, social, health, and human rights impact assessments, with associated mitigation plans, were sequentially initiated and have increasingly influenced project design and relations among companies, host governments, and locally impacted communities. Often, beneficial community-level social, economic, and health programs have voluntarily been put in place by companies. These flagship programs can serve as benchmarks for community–corporate–government partnerships in the future. Here, we present examples of such positive phenomena and also focus attention on a myriad of challenges that still lie ahead. PMID:27791077

  15. Applying landscape genomic tools to forest management and restoration of Hawaiian koa (Acacia koa) in a changing environment.

    PubMed

    Gugger, Paul F; Liang, Christina T; Sork, Victoria L; Hodgskiss, Paul; Wright, Jessica W

    2018-02-01

    Identifying and quantifying the importance of environmental variables in structuring population genetic variation can help inform management decisions for conservation, restoration, or reforestation purposes, in both current and future environmental conditions. Landscape genomics offers a powerful approach for understanding the environmental factors that currently associate with genetic variation, and given those associations, where populations may be most vulnerable under future environmental change. Here, we applied genotyping by sequencing to generate over 11,000 single nucleotide polymorphisms from 311 trees and then used nonlinear, multivariate environmental association methods to examine spatial genetic structure and its association with environmental variation in an ecologically and economically important tree species endemic to Hawaii, Acacia koa . Admixture and principal components analyses showed that trees from different islands are genetically distinct in general, with the exception of some genotypes that match other islands, likely as the result of recent translocations. Gradient forest and generalized dissimilarity models both revealed a strong association between genetic structure and mean annual rainfall. Utilizing a model for projected future climate on the island of Hawaii, we show that predicted changes in rainfall patterns may result in genetic offset, such that trees no longer may be genetically matched to their environment. These findings indicate that knowledge of current and future rainfall gradients can provide valuable information for the conservation of existing populations and also help refine seed transfer guidelines for reforestation or replanting of koa throughout the state.

  16. The Environmental Control and Life Support System (ECLSS) advanced automation project

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, Ray

    1990-01-01

    The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.

  17. Socioecological Aspects of High-rise Construction

    NASA Astrophysics Data System (ADS)

    Eichner, Michael; Ivanova, Zinaida

    2018-03-01

    In this article, the authors consider the socioecological problems that arise in the construction and operation of high-rise buildings. They study different points of view on high-rise construction and note that the approaches to this problem are very different. They also analyse projects of modern architects and which attempts are made to overcome negative impacts on nature and mankind. The article contains materials of sociological research, confirming the ambivalent attitude of urban population to high-rise buildings. In addition, one of the author's sociological survey reveals the level of environmental preparedness of the university students, studying in the field of "Construction of unique buildings and structures", raising the question of how future specialists are ready to take into account socioecological problems. Conclusion of the authors: the construction of high-rise buildings is associated with huge social and environmental risks, negative impact on the biosphere and human health. This requires deepened skills about sustainable design methods and environmental friendly construction technologies of future specialists. Professor M. Eichner presents in the article his case study project results on implementation of holistic eco-sustainable construction principles for mixed-use high-rise building in the metropolis of Cairo.

  18. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worthington, Monty

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whalesmore » in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.« less

  19. PROJECTING WILDLIFE RESPONSES TO ALTERNATIVE FUTURE LANDSCAPES IN OREGON'S WILLAMETTE VALLEY

    EPA Science Inventory

    Increasingly, environmental quality is becoming recognized as a critical factor that should constrain land use planning. One important measure of a landscape's quality is its capacity to support viable populations of wildlife species. But the ability of land managers to balance c...

  20. EPA Settlement with UConn Resolves Improper PCB Disposal Activity

    EPA Pesticide Factsheets

    The University of Connecticut has taken steps to ensure its PCB waste is properly disposed of in the future to settle claims by the U.S. Environmental Protection Agency (EPA) that it improperly disposed of PCBs during a 2013 renovation project at its Storr

  1. Carbon Offset Forestry: Forecasting Ecosystem Effects (COFFEE) Project Implementation Plan

    EPA Science Inventory

    COFFEE will evaluate the environmental impacts of implementing various COF practices by using the amount of total ecosystem C (TEC) sequestered in forests as the integrative response metric. These evaluations will be done for current-climate and future-climate scenarios and will...

  2. Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change.

    PubMed

    Supple, Megan Ann; Bragg, Jason G; Broadhurst, Linda M; Nicotra, Adrienne B; Byrne, Margaret; Andrew, Rose L; Widdup, Abigail; Aitken, Nicola C; Borevitz, Justin O

    2018-04-24

    As species face rapid environmental change, we can build resilient populations through restoration projects that incorporate predicted future climates into seed sourcing decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in Australia that is a target for restoration. We examined genomic and phenotypic variation to make empirical based recommendations for seed sourcing. We examined isolation by distance and isolation by environment, determining high levels of gene flow extending for 500 km and correlations with climate and soil variables. Growth experiments revealed extensive phenotypic variation both within and among sampling sites, but no site-specific differentiation in phenotypic plasticity. Model predictions suggest that seed can be sourced broadly across the landscape, providing ample diversity for adaptation to environmental change. Application of our landscape genomic model to E. melliodora restoration projects can identify genomic variation suitable for predicted future climates, thereby increasing the long term probability of successful restoration. © 2018, Supple et al.

  3. Renewable energy for rural electrification in developing countries

    NASA Astrophysics Data System (ADS)

    Morgenstern, Joy

    The environmental destruction caused by traditional methods of generating electricity and the environmental benefits of using renewable energy technologies are well-known. In additional to the environmental benefits, small, decentralized renewable energy systems are often the most economical way to electrify the rural areas of developing countries, where most of the world's unelectrified population lives. However, diffusion of these systems is proceeding very slowly and many of these projects have failed. This dissertation examines the hypothesis that an important determinant of the success of these projects is the extent to which they are compatible with the social and cultural attributes of the communities in which they are located. The hypothesis was examined by evaluating sixteen solar, wind and hybrid electrification projects in Mexico, using a procedure which rates projects according to criteria which reflect technical, economic and financial, environmental, and sociocultural factors deemed necessary to achieve success. Reasons for poor ratings within these criteria were then used to determine six preconditions for project success. The evaluation indicates that most of the wind and hybrid projects visited had low success ratings because of technical problems. The solar home system projects experienced few technical problems, yet many were unsuccessful. Most of the projects were unsustainable due to lack of financial resources, insufficient financial mechanisms, poor user training. In none of the communities were the projects economically viable, nor were they compatible with the needs of the users. The future success of even the most successful projects seen is doubtful because of the lack of provision for any maintenance by trained technicians and the scarcity of financial resources. A direct relationship between failure at the sociocultural criteria and overall project failure was not found. In most cases, failure at particular criteria could be attributed to the project developers' inability to fulfill social and cultural aspects of the preconditions for success, thus establishing an indirect but causal relationship between sociocultural attributes of communities and project success.

  4. Critical review: Uncharted waters? The future of the electricity-water nexus.

    PubMed

    Sanders, Kelly T

    2015-01-06

    Electricity generation often requires large amounts of water, most notably for cooling thermoelectric power generators and moving hydroelectric turbines. This so-called "electricity-water nexus" has received increasing attention in recent years by governments, nongovernmental organizations, industry, and academics, especially in light of increasing water stress in many regions around the world. Although many analyses have attempted to project the future water requirements of electricity generation, projections vary considerably due to differences in temporal and spatial boundaries, modeling frameworks, and scenario definitions. This manuscript is intended to provide a critical review of recent publications that address the future water requirements of electricity production and define the factors that will moderate the water requirements of the electric grid moving forward to inform future research. The five variables identified include changes in (1) fuel consumption patterns, (2) cooling technology preferences, (3) environmental regulations, (4) ambient climate conditions, and (5) electric grid characteristics. These five factors are analyzed to provide guidance for future research related to the electricity-water nexus.

  5. Past and future drought in Mongolia.

    PubMed

    Hessl, Amy E; Anchukaitis, Kevin J; Jelsema, Casey; Cook, Benjamin; Byambasuren, Oyunsanaa; Leland, Caroline; Nachin, Baatarbileg; Pederson, Neil; Tian, Hanqin; Hayles, Laia Andreu

    2018-03-01

    The severity of recent droughts in semiarid regions is increasingly attributed to anthropogenic climate change, but it is unclear whether these moisture anomalies exceed those of the past and how past variability compares to future projections. On the Mongolian Plateau, a recent decade-long drought that exceeded the variability in the instrumental record was associated with economic, social, and environmental change. We evaluate this drought using an annual reconstruction of the Palmer Drought Severity Index (PDSI) spanning the last 2060 years in concert with simulations of past and future drought through the year 2100 CE. We show that although the most recent drought and pluvial were highly unusual in the last 2000 years, exceeding the 900-year return interval in both cases, these events were not unprecedented in the 2060-year reconstruction, and events of similar duration and severity occur in paleoclimate, historical, and future climate simulations. The Community Earth System Model (CESM) ensemble suggests a drying trend until at least the middle of the 21st century, when this trend reverses as a consequence of elevated precipitation. Although the potential direct effects of elevated CO 2 on plant water use efficiency exacerbate uncertainties about future hydroclimate trends, these results suggest that future drought projections for Mongolia are unlikely to exceed those of the last two millennia, despite projected warming.

  6. Past and future drought in Mongolia

    PubMed Central

    Hessl, Amy E.; Anchukaitis, Kevin J.; Jelsema, Casey; Cook, Benjamin; Byambasuren, Oyunsanaa; Leland, Caroline; Nachin, Baatarbileg; Pederson, Neil; Tian, Hanqin; Hayles, Laia Andreu

    2018-01-01

    The severity of recent droughts in semiarid regions is increasingly attributed to anthropogenic climate change, but it is unclear whether these moisture anomalies exceed those of the past and how past variability compares to future projections. On the Mongolian Plateau, a recent decade-long drought that exceeded the variability in the instrumental record was associated with economic, social, and environmental change. We evaluate this drought using an annual reconstruction of the Palmer Drought Severity Index (PDSI) spanning the last 2060 years in concert with simulations of past and future drought through the year 2100 CE. We show that although the most recent drought and pluvial were highly unusual in the last 2000 years, exceeding the 900-year return interval in both cases, these events were not unprecedented in the 2060-year reconstruction, and events of similar duration and severity occur in paleoclimate, historical, and future climate simulations. The Community Earth System Model (CESM) ensemble suggests a drying trend until at least the middle of the 21st century, when this trend reverses as a consequence of elevated precipitation. Although the potential direct effects of elevated CO2 on plant water use efficiency exacerbate uncertainties about future hydroclimate trends, these results suggest that future drought projections for Mongolia are unlikely to exceed those of the last two millennia, despite projected warming. PMID:29546236

  7. Evaluating characteristics of dry spell changes in Lake Urmia Basin using an ensemble CMIP5 GCM models

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Drought is a natural phenomenon that can cause significant environmental, ecological, and socio-economic losses in water scarce regions. Studies of drought under climate change are essential for water resources planning and management. Dry spells and number of consecutive days with precipitation below a certain threshold can be used to identify the severity of hydrological drought. In this study, we analyzed the projected changes of number of dry days in two future periods, 2011-2040 and 2071-2100, for both seasonal and annual time scales in the Lake Urmia Basin. The lake and its wetlands, located in northwestern Iran, have invaluable environmental, social, and economic importance for the region. The lake level has been shrinking dramatically since 1995 and now the water volume is less than 30% of its original. Moreover, frequent dry spells have struck the region and effected the region's water resources and lake ecosystem as in other parts of Iran too. Analyzing future drought and dry spells characteristics in the region is crucial for sustainable water management and lake restoration plans. We used daily projected precipitation from 20 climate models used in the CMIP5 (Coupled Model Inter-comparison Project Phase 5) driven by three representative paths, RCP2.6, RCP4.5, and, RCP8.5. The model outputs were statistically downscaled and validated based on the historical observation period 1980-2010. We defined days with precipitation less than 1 mm as dry days for both observation periods and model projections. The model validation showed that all models underestimated the number of dry days. An ensemble based on the validation results consisting of five models which were in best agreement with observations was used to assess the changes in number of future dry days in Lake Urmia Basin. The entire ensemble showed increase in number of dry days for all seasons. The projected changes in winter and spring were larger than for summer and autumn. All models projected dryer winter and spring periods in the near and far future periods. The ensemble mean for future annual dry days increased by 6.5 % to 7.3% for the different climate change related emission and concentration pathway RCP2.6, RCP4.5, and, RCP8.5.

  8. Environmental legislation and aquatic ecotoxicology in Mexico: past, present and future scenarios.

    PubMed

    Mendoza-Cantú, Ania; Ramírez-Romero, Patricia; Pica-Granados, Yolanda

    2007-08-01

    The consolidation of environmental legislation is fundamental for governments that wish to support and promote different actions focused on reducing pollution and protecting natural water resources in order to maintain the present and future benefits that water provides for human beings and wild life. Environmental laws are essential for sustaining human activities and health, preserving biodiversity and promoting sustainable development. In this context, it is important that environmental regulations concentrate on preventing or reducing the harmful impact of pollutants on organisms and ecosystems. The introduction of toxicity bioassays in environmental regulations is a positive step toward achieving this goal. In Mexico, the development of environmental legislation and the introduction of bioassays in water regulation are part of a very recent and complex journey. This article describes how aquatic ecotoxicology tools, particularly bioassays, have influenced water pollution policies in Mexico. Three scenarios are reviewed: the background of Mexican legislation on water protection and Mexico's participation in the Watertox project; the actual efforts of SEMARNAT to develop bioassay batteries for this country; and, the challenges and perspectives of ecotoxicological bioassays as regulatory instruments.

  9. An Innovation Teaching Experience Following Guidelines of European Space of Higher Education in the Interactive Learning

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Rodríguez, M. L.; Ramos-Ridao, A. F.; Pasadas, M.; Priego, I.

    The Area of Environmental Technology in Department of Civil Engineering has developed an innovation education project, entitled Application of new Information and Communication Technologies in Area of Environmental Technology teaching, to create a Web site that benefits both parties concerned in teaching-learning process, teachers and students. Here teachers conduct a supervised teaching and students have necessary resources to guide their learning process according to their capacities and possibilities. The project has also included a pilot experience to introduce European Space of Higher Education (ESHE) new teaching concept based on student's work, in one subject of Environmental Science degree, considering interactive learning complementary to presence teaching. The experience has showed strength and weakness of the method and it is the beginning in a gradual process to guide e-learning education in future.

  10. Detailed performance and environmental monitoring of aquifer heating and cooling systems

    NASA Astrophysics Data System (ADS)

    Acuna, José; Ahlkrona, Malva; Zandin, Hanna; Singh, Ashutosh

    2016-04-01

    The project intends to quantify the performance and environmental impact of large scale aquifer thermal energy storage, as well as point at recommendations for operating and estimating the environmental footprint of future systems. Field measurements, test of innovative equipment as well as advanced modelling work and analysis will be performed. The following aspects are introduced and covered in the presentation: -Thermal, chemical and microbiological influence of akvifer thermal energy storage systems: measurement and evaluation of real conditions and the influence of one system in operation. -Follow up of energy extraction from aquifer as compared to projected values, recommendations for improvements. -Evaluation of the most used thermal modeling tool for design and calculation of groundwater temperatures, calculations with MODFLOW/MT3DMS -Test and evaluation of optical fiber cables as a way to measure temperatures in aquifer thermal energy storages

  11. 2013 SRNL LDRD Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McWhorter, S.

    2014-03-07

    This report demonstrates the execution of our LDRD program within the objectives and guidelines outlined by the Department of Energy (DOE) through the DOE Order 413.2b. The projects described within the report align purposefully with SRNL’s strategic vision and provide great value to the DOE. The diversity exhibited in the research and development projects underscores the DOE Office of Environmental Management (DOE-EM) mission and enhances that mission by developing the technical capabilities and human capital necessary to support future DOE-EM national needs. As a multiprogram national laboratory, SRNL is applying those capabilities to achieve tangible results for the nation inmore » National Security, Environmental Stewardship, Clean Energy and Nuclear Materials Management.« less

  12. The effectiveness of environmental education programs from the perspectives of three stakeholders: Participants, sponsors, and professionals

    NASA Astrophysics Data System (ADS)

    Luera, Gail Rose

    As the field of environmental education has matured since its inception in 1970, so have the number and variety of environmental programs. Along with the increased number of programs has come a need for in-depth program evaluations. This is especially critical because of reductions in educational funding and competition for a place in an already crowded curriculum. Evaluation is essential to convince the educational community that environmental education can improve the curriculum, ensure cost effectiveness, and become more relevant to students. Drawing on program evaluation research, action research, and interpretive (qualitative) research to strengthen the research design and methodology, this dissertation explores how different stakeholders of two environmental education programs determine program effectiveness. Effectiveness was investigated primarily through the use of in-depth interviews of participants, program sponsors, and professionals. Program success at the professional field level was determined by criteria set by the North American Association for Environmental Education. Characteristics considered in the selection of programs for this study included: method of dissemination, sponsor, subject focus, the method of action which they encourage, and their vision for the future. Using the qualitative case study approach, the Orange County Outdoor Science School in California and Project WILD in Michigan were evaluated. The results show that all levels of stakeholders perceived the two programs to be effective. Areas of effectiveness varied with each program and by stakeholder level. Issues facing each program also differed. At the Orange County Outdoor Science School, program cost was named as the major issue. The most often cited issues for Project WILD was public awareness of the program and stabilizing long term financial support for the Michigan program. Interview data were analyzed at the question level in addition to the thematic level. Themes which emerged from the interview responses included cost of the program, respondent and program receptivity to change, reconciling program philosophy with personal philosophy (Orange County program), perception of environmental education, definition of the program's boundaries and barriers to implementation (Project WILD). The dissertation concludes with a presentation of a preliminary model for environmental education program evaluation and recommendations for future related research.

  13. New approaches in human health risk assessment.

    PubMed

    Abass, Khaled; Carlsen, Anders; Rautio, Arja

    2016-01-01

    Studies on the precise impact of environmental pollutants on human health are difficult to undertake and interpret, because many genetic and environmental factors influence health at the same time and to varying degrees. Our chapter in the AMAP report was based on new approaches to describe risks and future needs. In this paper, we will introduce the issues associated with risk assessment of single chemicals, and present suggestions for future studies as well as a summary of lessons learned during the health-related parts of the European Union-funded FP7 project ArcRisk (Arctic Health Risks: Impacts on health in the Arctic and Europe owing to climate-induced changes in contaminant cycling, 2009-2014; www.arcrisk.eu).

  14. Understanding Our Environment: People.

    ERIC Educational Resources Information Center

    Tweed, Ann

    Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, students work individually and in groups to plan a future community in order to gain an understanding of how greatly increased human populations impact resources,…

  15. Simulation of Wetland Nitrogen Removal at the Watershed Scale Using AnnAGNPS

    EPA Science Inventory

    The Future Midwest Landscape (FML) project is part of the U.S. Environmental Protection Agency’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes that include crop lands, conservation areas, wetlands, lakes and streams affect...

  16. EVALUATION OF THE EFFECTS ON BENTHIC ORGANISMS FROM CLAY FLOCCULATION OF RED TIDE ORGANISMS

    EPA Science Inventory

    Evaluating the feasibility of controlling red tide using clay flocculation is part of an ECOHAB-funded project. One aspect for the feasibility and future application of clays is the determination of potential negative environmental impacts. The removal of toxin-containing dinofl...

  17. Developing Scenarios: Linking Environmental Scanning and Strategic Planning.

    ERIC Educational Resources Information Center

    Whiteley, Meredith A.; And Others

    1990-01-01

    The multiple scenario analysis technique for organizational planning used by multinational corporations is adaptable for colleges and universities. Arizona State University launched a futures-based planning project using the Delphi technique and cross-impact analysis to produce three alternative scenarios (stable, turbulent, and chaotic) to expand…

  18. Effectiveness and Tradeoffs between Portfolios of Adaptation Strategies Addressing Future Climate and Socioeconomic Uncertainties in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Tansey, M. K.; Van Lienden, B.; Das, T.; Munevar, A.; Young, C. A.; Flores-Lopez, F.; Huntington, J. L.

    2013-12-01

    The Central Valley of California is one of the major agricultural areas in the United States. The Central Valley Project (CVP) is operated by the Bureau of Reclamation to serve multiple purposes including generating approximately 4.3 million gigawatt hours of hydropower and providing, on average, 5 million acre-feet of water per year to irrigate approximately 3 million acres of land in the Sacramento, San Joaquin, and Tulare Lake basins, 600,000 acre-feet per year of water for urban users, and 800,000 acre-feet of annual supplies for environmental purposes. The development of effective adaptation and mitigation strategies requires assessing multiple risks including potential climate changes as well as uncertainties in future socioeconomic conditions. In this study, a scenario-based analytical approach was employed by combining three potential 21st century socioeconomic futures with six representative climate and sea level change projections developed using a transient hybrid delta ensemble method from an archive of 112 bias corrected spatially downscaled CMIP3 global climate model simulations to form 18 future socioeconomic-climate scenarios. To better simulate the effects of climate changes on agricultural water demands, analyses of historical agricultural meteorological station records were employed to develop estimates of future changes in solar radiation and atmospheric humidity from the GCM simulated temperature and precipitation. Projected changes in atmospheric carbon dioxide were computed directly by weighting SRES emissions scenarios included in each representative climate projection. These results were used as inputs to a calibrated crop water use, growth and yield model to simulate the effects of climate changes on the evapotranspiration and yields of major crops grown in the Central Valley. Existing hydrologic, reservoir operations, water quality, hydropower, greenhouse gas (GHG) emissions and both urban and agricultural economic models were integrated into a suite of decision support tools to assess the impacts of future socioeconomic-climate uncertainties on key performance metrics for the CVP, State Water Project and other Central Valley water management systems under current regulatory requirements. Four thematic portfolios consisting of regional and local adaptation strategies including changes in reservoir operations, increased water conservation, storage and conveyance were developed and simulated to evaluate their potential effectiveness in meeting delivery reliability, water quality, environmental, hydropower, GHG, urban and agricultural economic performance criteria. The results indicate that the portfolios exhibit a considerable range of effectiveness depending on the socioeconomic-climate scenario. For most criteria, the portfolios were more sensitive to climate projections than socioeconomic assumptions. However, the results demonstrate that important tradeoffs occur between portfolios depending on the performance criteria considered.

  19. Investing American Recovery and Reinvestment Act Funds to Advance Capability, Reliability, and Performance in NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Sydnor, Goerge H.

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Aeronautics Test Program (ATP) is implementing five significant ground-based test facility projects across the nation with funding provided by the American Recovery and Reinvestment Act (ARRA). The projects were selected as the best candidates within the constraints of the ARRA and the strategic plan of ATP. They are a combination of much-needed large scale maintenance, reliability, and system upgrades plus creating new test beds for upcoming research programs. The projects are: 1.) Re-activation of a large compressor to provide a second source for compressed air and vacuum to the Unitary Plan Wind Tunnel at the Ames Research Center (ARC) 2.) Addition of high-altitude ice crystal generation at the Glenn Research Center Propulsion Systems Laboratory Test Cell 3, 3.) New refrigeration system and tunnel heat exchanger for the Icing Research Tunnel at the Glenn Research Center, 4.) Technical viability improvements for the National Transonic Facility at the Langley Research Center, and 5.) Modifications to conduct Environmentally Responsible Aviation and Rotorcraft research at the 14 x 22 Subsonic Tunnel at Langley Research Center. The selection rationale, problem statement, and technical solution summary for each project is given here. The benefits and challenges of the ARRA funded projects are discussed. Indirectly, this opportunity provides the advantages of developing experience in NASA's workforce in large projects and maintaining corporate knowledge in that very unique capability. It is envisioned that improved facilities will attract a larger user base and capabilities that are needed for current and future research efforts will offer revenue growth and future operations stability. Several of the chosen projects will maximize wind tunnel reliability and maintainability by using newer, proven technologies in place of older and obsolete equipment and processes. The projects will meet NASA's goal of integrating more efficient, environmentally safer, and less energy consuming hardware and processes into existing tunnel systems. These include Environmental Protection Agency-approved refrigerants, energy efficient motors, and faster, flexible tunnel data systems.

  20. Establishment of sustainable health science for future generations: from a hundred years ago to a hundred years in the future.

    PubMed

    Mori, Chisato; Todaka, Emiko

    2009-01-01

    Recently, we have investigated the relationship between environment and health from a scientific perspective and developed a new academic field, "Sustainable Health Science" that will contribute to creating a healthy environment for future generations. There are three key points in Sustainable Heath Science. The first key point is "focusing on future generations"-society should improve the environment and prevent possible adverse health effects on future generations (Environmental Preventive Medicine). The second key point is the "precautious principle". The third key point is "transdisciplinary science", which means that not only medical science but also other scientific fields, such as architectural and engineering science, should be involved. Here, we introduce our recent challenging project "Chemiless Town Project", in which a model town is under construction with fewer chemicals. In the project, a trial of an education program and a health-examination system of chemical exposure is going to be conducted. In the future, we are aiming to establish health examination of exposure to chemicals of women of reproductive age so that the risk of adverse health effects to future generations will decrease and they can enjoy a better quality of life. We hope that society will accept the importance of forming a sustainable society for future generations not only with regard to chemicals but also to the whole surrounding environment. As the proverb of American native people tells us, we should live considering the effects on seven generations in the future.

  1. Environmental Impact of Megacities - Results from CityZen

    NASA Astrophysics Data System (ADS)

    Gauss, M.

    2012-04-01

    Megacities have increasingly important impacts on air quality and climate change on different spatial scales, owing to their high population densities and concentrated emission sources. The EU FP7 project CityZen (Megacity - Zoom for the Environment) ended in 2011 and was, together with its sister project MEGAPOLI, part of a major research effort within FP7 on megacities in Europe and worldwide. The project mainly focused on air pollution trends in large cities and emission hotspots, climate-chemistry couplings, future projections, and emission mitigation options. Both observational and modeling tools have been extensively used. This paper reviews some of the main results from CityZen regarding present air pollution in and around megacities, future scenarios and mitigation options to reduce air pollution and/or climate change, and the main policy messages from the project. The different observed trends over European and Asian hotspots during the last 10 to 15 years are shown. Results of source attribution of pollutants, which have been measured and calculated in and around the different selected hot spots in CityZen will be discussed. Another important question to be addressed is the extent to which climate change will affect air quality and the effectiveness of air quality legislation. Although projected emission reductions are a major determinate influencing the predictions of future air pollution, model results suggest that climate change has to be taken into account when devising future air quality legislation. This paper will also summarize some important policy messages in terms of ozone, particles and the observational needs that have been put forward as conclusions from the project.

  2. FBI fingerprint identification automation study: AIDS 3 evaluation report. Volume 6: Environmental analysis

    NASA Technical Reports Server (NTRS)

    Mulhall, B. D. L.

    1980-01-01

    The results of the analysis of the external environment of the FBI Fingerprint Identification Division are presented. Possible trends in the future environment of the Division that may have an effect on the work load were projected to determine if future work load will lie within the capability range of the proposed new system, AIDS 3. Two working models of the environment were developed, the internal and external model, and from these scenarios the projection of possible future work load volume and mixture was developed. Possible drivers of work load change were identified and assessed for upper and lower bounds of effects. Data used for the study were derived from historical information, analysis of the current situation and from interviews with various agencies who are users of or stakeholders in the present system.

  3. Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts

    NASA Astrophysics Data System (ADS)

    Alcaraz-Segura, Domingo; Lomba, Angela; Sousa-Silva, Rita; Nieto-Lugilde, Diego; Alves, Paulo; Georges, Damien; Vicente, Joana R.; Honrado, João P.

    2017-05-01

    In a world facing rapid environmental changes, anticipating their impacts on biodiversity is of utmost relevance. Remotely-sensed Ecosystem Functional Attributes (EFAs) are promising predictors for Species Distribution Models (SDMs) by offering an early and integrative response of vegetation performance to environmental drivers. Species of high conservation concern would benefit the most from a better ability to anticipate changes in habitat suitability. Here we illustrate how yearly projections from SDMs based on EFAs could reveal short-term changes in potential habitat suitability, anticipating mid-term shifts predicted by climate-change-scenario models. We fitted two sets of SDMs for 41 plant species of conservation concern in the Iberian Peninsula: one calibrated with climate variables for baseline conditions and projected under two climate-change-scenarios (future conditions); and the other calibrated with EFAs for 2001 and projected annually from 2001 to 2013. Range shifts predicted by climate-based models for future conditions were compared to the 2001-2013 trends from EFAs-based models. Projections of EFAs-based models estimated changes (mostly contractions) in habitat suitability that anticipated, for the majority (up to 64%) of species, the mid-term shifts projected by traditional climate-change-scenario forecasting, and showed greater agreement with the business-as-usual scenario than with the sustainable-development one. This study shows how satellite-derived EFAs can be used as meaningful essential biodiversity variables in SDMs to provide early-warnings of range shifts and predictions of short-term fluctuations in suitable conditions for multiple species.

  4. EC FP6 Siberia-focused Enviro-RISKS Project and its Outcomes

    NASA Astrophysics Data System (ADS)

    Baklanov, A. A.; Gordov, E. P.

    2009-04-01

    The FP6 Project "Man-induced Environmental Risks: Monitoring, Management and Remediation of Man-made Changes in Siberia" (Enviro-RISKS) strategic objective is to facilitate elaboration of solid scientific background and understanding of man-made associated environmental risks, their influence on all aspects of regional environment and optimal ways for it remediation by means of coordinated initiatives of a range of relevant RTD projects as well as to achieve their improved integration thus giving the projects additional synergy in current activities and potential for practical applications. List of Partners includes 3 leading European research organizations, 6 leading Russian research organizations (5 - located in Siberia) and 1 organization from Kazakhstan. Additionally several Russian and European research organizations joined to the Project as Associated Partners. Scientific background and foundation for the project performance is formed by a number of different levels RTD projects carried out by Partners and devoted to near all aspects of the theme. The set comprise coordinated/performed by partners EC funded thematic international projects, Russian national projects and other projects performed by NIS partners. Project outcomes include, in particular, development and support of the bilingual Enviro-RISKS web portal (http://risks.scert.ru/) as the major tool for disseminations of environmental information and project results; achieved level of development of Siberia Integrated Regional Study (SIRS, http://sirs.scert.ru/), which is the Siberia-focused NEESPI Environmental Mega-Project ongoing under the auspices of the Siberian Branch of the Russian Academy of Sciences. The main Project outcome are Memorandum on the state of the art of environmental RTD activity in Siberia and Recommendations on future environmental RTD activity in Siberia elaborated by four Working Experts Groups working in most important for Siberia Thematic Focuses. Three Thematic Focuses/Groups consider major risks inherent to Siberia environment, while the forth Focus has a generic nature. These groups analyzed numerous RTD projects devoted Siberia environment and prepared Reports summarizing their findings. Focus groups Reports are published as a DMI Scientific Report: Atmospheric Pollution and Risks (www.dmi.dk/dmi/sr08-05-1.pdf), Climate/Global Change and Risks (www.dmi.dk/dmi/sr08-05-2.pdf), and Terrestrial Ecosystems and Hydrology and Risks (www.dmi.dk/dmi/sr08-05-3.pdf). Information Systems, Integration and Synthesis (www.dmi.dk/dmi/sr08-05-4.pdf). The results obtained form a solid basis for organization of a coordinated set of the new projects on Siberia environment.

  5. Who Really Wants an Ambitious Large-Scale Restoration of the Seine Estuary? A Strategic Analysis of a Science-Policy Interface Locked in a Stalemate.

    PubMed

    Coreau, Audrey; Narcy, Jean-Baptiste; Lumbroso, Sarah

    2018-05-01

    The development of ecosystem knowledge is an essential condition for effective environmental management but using available knowledge to solve environmental controversies is still difficult in "real" situations. This paper explores the conditions under which ecological knowledge could contribute to the environmental strategies and actions of stakeholders at science-policy interface. Ecological restoration of the Seine estuary is an example of an environmental issue whose overall management has run into difficulties despite the production of a large amount of knowledge by a dedicated organization, GIP Seine Aval. Thanks to an action-research project, based on a futures study, we analyze the reasons of these difficulties and help the GIP Seine Aval adopt a robust strategy to overcome them. According to our results, most local stakeholders involved in the large-scale restoration project emphasize the need for a clear divide between knowledge production and environmental action. This kind of divide may be strategic in a context where the robustness of environmental decisions is strongly depending on the mobilization of "neutral" scientific knowledge. But in our case study, this rather blocks action because some powerful stakeholders continuously ask for more knowledge before taking action. The construction and analysis of possible future scenarios has led to three alternative strategies being identified to counter this stalemate situation: (1) to circumvent difficulties by creating indirect links between knowledge and actions; (2) to use knowledge to sustain advocacy for the interests of each and every stakeholder; (3) to involve citizens in decisions about knowledge production and use, so that environmental issues weight more on the local political agenda.

  6. Spatial heterogeneity in the timing of birch budburst in response to future climate warming in Ireland

    NASA Astrophysics Data System (ADS)

    Caffarra, Amelia; Zottele, Fabio; Gleeson, Emily; Donnelly, Alison

    2014-05-01

    In order to predict the impact of future climate warming on trees it is important to quantify the effect climate has on their development. Our understanding of the phenological response to environmental drivers has given rise to various mathematical models of the annual growth cycle of plants. These models simulate the timing of phenophases by quantifying the relationship between development and its triggers, typically temperature. In addition, other environmental variables have an important role in determining the timing of budburst. For example, photoperiod has been shown to have a strong influence on phenological events of a number of tree species, including Betula pubescens (birch). A recently developed model for birch (DORMPHOT), which integrates the effects of temperature and photoperiod on budburst, was applied to future temperature projections from a 19-member ensemble of regional climate simulations (on a 25 km grid) generated as part of the ENSEMBLES project, to simulate the timing of birch budburst in Ireland each year up to the end of the present century. Gridded temperature time series data from the climate simulations were used as input to the DORMPHOT model to simulate future budburst timing. The results showed an advancing trend in the timing of birch budburst over most regions in Ireland up to 2100. Interestingly, this trend appeared greater in the northeast of the country than in the southwest, where budburst is currently relatively early. These results could have implications for future forest planning, species distribution modeling, and the birch allergy season.

  7. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collar, Craig W

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy's Wind and Hydropower Technologies Program's goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step towardmore » potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.« less

  8. Design and Implementation of Integrated Surveillance and Modeling Systems for Climate-Sensitive Diseases

    NASA Astrophysics Data System (ADS)

    Wimberly, M. C.; Merkord, C. L.; Davis, J. K.; Liu, Y.; Henebry, G. M.; Hildreth, M. B.

    2016-12-01

    Climatic variations have a multitude of effects on human health, ranging from the direct impacts of extreme heat events to indirect effects on the vectors and hosts that transmit infectious diseases. Disease surveillance has traditionally focused on monitoring human cases, and in some instances tracking populations sizes and infection rates of arthropod vectors and zoonotic hosts. For climate-sensitive diseases, there is a potential to strengthen surveillance and obtain early indicators of future outbreaks by monitoring environmental risk factors using broad-scale sensor networks that include earth-observing satellites as well as ground stations. We highlight the opportunities and challenges of this integration by presenting modeling results and discussing lessons learned from two projects focused on surveillance and forecasting of mosquito-borne diseases. The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessement (EPIDEMIA) project integrates malaria case surveillance with remotely-sensed environmental data for early detection of malaria epidemics in the Amhara region of Ethiopia and has been producing weekly forecast reports since 2015. The South Dakota Mosquito Information System (SDMIS) project similarly combines entomological surveillance with environmental monitoring to generate weekly maps for West Nile virus (WNV) in the north-central United States. We are currently implementing a new disease forecasting and risk reporting framework for the state of South Dakota during the 2016 WNV transmission season. Despite important differences in disease ecology and geographic setting, our experiences with these projects highlight several important lessons learned that can inform future efforts at disease early warning based on climatic predictors. These include the need to engage end users in system design from the outset, the critical role of automated workflows to facilitate the timely integration of multiple data streams, the importance of focused visualizations that synthesize modeling results, and the challenge of linking risk indicators and forecasts to specific public health responses.

  9. Evaluating success levels of mega-projects

    NASA Technical Reports Server (NTRS)

    Kumaraswamy, Mohan M.

    1994-01-01

    Today's mega-projects transcend the traditional trajectories traced within national and technological limitations. Powers unleashed by internationalization of initiatives, in for example space exploration and environmental protection, are arguably only temporarily suppressed by narrower national, economic, and professional disagreements as to how best they should be harnessed. While the world gets its act together there is time to develop the technologies of such supra-mega-project management that will synergize truly diverse resources and smoothly mesh their interfaces. Such mega-projects and their management need to be realistically evaluated, when implementing such improvements. This paper examines current approaches to evaluating mega-projects and questions the validity of extrapolations to the supra-mega-projects of the future. Alternatives to improve such evaluations are proposed and described.

  10. Evaluating Biodiversity Response toForecasted Land Use Change: A Case Study in the South Platte River Basin, Colorado

    EPA Science Inventory

    Effects of future land use change on watersheds have important management implications. Seamless, national-scale land-use-change scenarios for developed land were acquired from the U.S. Environmental Protection Agency Integrated Climate and Land Use Scenarios (lCLUS) project and...

  11. Linking highway improvements to changes in land use with quasi-experimental research design : a better forecasting tool for transportation decision-making.

    DOT National Transportation Integrated Search

    2009-10-01

    An important issue for future improvement and extensions of highways will be the ability of projects to sustain challenges to Environmental Impact Statements based upon forecasts of regional growth. A legal precedent for such challenges was establish...

  12. Environmental Scan: A Strategic Planning Document.

    ERIC Educational Resources Information Center

    Osborn, Frances

    Information, perceptions, and predictions from a variety of sources are brought together in this document to help guide planning and decision making at Monroe Community College (MCC). The first section examines national events and trends with implications for the future of MCC, including employment projections; educational norms; data on community…

  13. The Greening of a University: The St. John's Sustainability Initiative

    ERIC Educational Resources Information Center

    Pellow, James P.; Anand, Brij

    2009-01-01

    With "greening" projects dotting the landscape of higher education across the nation, it is encouraging to witness the commitment of many colleges and universities to helping secure the future environmental viability of the nation. The challenges that come with this commitment, however, are not insignificant. A comprehensive…

  14. Promoting Education for Sustainability in a Vaishnava (Hindu) Community

    ERIC Educational Resources Information Center

    Chauhan, Sheila; Rama das, Sita; Rita, Natalia; Haigh, Martin

    2009-01-01

    Education for a sustainable future aspires to increase pro-environmental behavior. This evaluates a project designed to help a British Vaishnava congregation reduce their ecological footprint by linking "Karma to Climate Change." It employs a tented educational experience fielded at major Hindu Festivals. Participants are guided through…

  15. Larose to Golden Meadow, Louisiana, Hurricane Protection Project. Draft Supplemental Environmental Impact Statement and Draft Mitigation Report. Technical Appendixes.

    DTIC Science & Technology

    1984-06-01

    Department of Culture, Recreation, and Tourism , Division of Outdoor Recreation, Office of Program Development, conducted a statewide recreational...33 17. Comparison of mon-day,"monetary values for future without- managen nt (CAOM) und ,futuro with-rranagenent ( EWOM ) habitat condition

  16. Peace Education: A Review and Projection. Peace Education Reports No. 17.

    ERIC Educational Resources Information Center

    Reardon, Betty A.

    This report presents reflections on the substance, evolution, and future of peace education. Within an area of common purposes, a broad range of varying approaches are noted. The report discusses, for example: conflict resolution training, disarmament education, education for the prevention of war, environmental education, global education, human…

  17. Supporting Current Energy Conversion Projects through Numerical Modeling

    NASA Astrophysics Data System (ADS)

    James, S. C.; Roberts, J.

    2016-02-01

    The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.

  18. The future of hydropower planning modeling

    NASA Astrophysics Data System (ADS)

    Haas, J.; Zuñiga, D.; Nowak, W.; Olivares, M. A.; Castelletti, A.; Thilmant, A.

    2017-12-01

    Planning the investment and operation of hydropower plants with optimization tools dates back to the 1970s. The focus used to be solely on the provision of energy. However, advances in computational capacity and solving algorithms, dynamic markets, expansion of renewable sources, and a better understanding of hydropower environmental impacts have recently led to the development of novel planning approaches. In this work, we provide a review, systematization, and trend analysis of these approaches. Further, through interviews with experts, we outline the future of hydropower planning modeling and identify the gaps towards it. We classified the found models along environmental, economic, multipurpose and technical criteria. Environmental interactions include hydropeaking mitigation, water quality protection and limiting greenhouse gas emissions from reservoirs. Economic and regulatory criteria consider uncertainties of fossil fuel prices and relicensing of water rights and power purchase agreements. Multipurpose considerations account for irrigation, tourism, flood protection and drinking water. Recently included technical details account for sedimentation in reservoirs and variable efficiencies of turbines. Additional operational considerations relate to hydrological aspects such as dynamic reservoir inflows, water losses, and climate change. Although many of the above criteria have been addressed in detail on a project-to-project basis, models remain overly simplistic for planning large power fleets. Future hydropower planning tools are expected to improve the representation of the water-energy nexus, including environmental and multipurpose criteria. Further, they will concentrate on identifying new sources of operational flexibility (e.g. through installing additional turbines and pumps) for integrating renewable energy. The operational detail will increase, potentially emphasizing variable efficiencies, storage capacity losses due to sedimentation, and the timing of inflows (which are becoming more variable under climate change). Finally, the relicensing of existing operations and planning new installations are subject to deep uncertainties that need to be captured.

  19. Engaging Communities in Research on Cumulative Risk and Social Stress-Environment Interactions: Lessons Learned from EPA's STAR Program.

    PubMed

    Payne-Sturges, Devon C; Korfmacher, Katrina Smith; Cory-Slechta, Deborah A; Jimenez, Maria; Symanski, Elaine; Carr Shmool, Jessie L; Dotson-Newman, Ogonnaya; Clougherty, Jane E; French, Robert; Levy, Jonathan I; Laumbach, Robert; Rodgers, Kathryn; Bongiovanni, Roseann; Scammell, Madeleine K

    2015-12-01

    Studies have documented cumulative health effects of chemical and nonchemical exposures, particularly chronic environmental and social stressors. Environmental justice groups have advocated for community participation in research that assesses how these interactions contribute to health disparities experienced by low-income and communities of color. In 2009, the U.S. Environmental Protection Agency issued a request for research applications (RFA), "Understanding the Role of Nonchemical Stressors and Developing Analytic Methods for Cumulative Risk Assessments." Seven research projects were funded to help address this knowledge gap. Each engaged with communities in different ways. We describe the community engagement approaches of the seven research projects, which ranged from outreach through shared leadership/participatory. We then assess the experiences of these programs with respect to the community engagement goals of the RFA. We present insights from these community engagement efforts, including how the grants helped to build or enhance the capacity of community organizations in addition to contributing to the research projects. Our analysis of project proposals, annual grantee reports, and participant observation of these seven projects suggests guidelines for the development of future funding mechanisms and for conducting community-engaged research on cumulative risk involving environmental and social stressors including: 1) providing for flexibility in the mode of community engagement; 2) addressing conflict between research timing and engagement needs, 3) developing approaches for communicating about the uniquely sensitive issues of nonchemical stressors and social risks; and 4) encouraging the evaluation of community engagement efforts.

  20. Initial review and analysis of the direct environmental impacts of CSP in the northern Cape, South Africa

    NASA Astrophysics Data System (ADS)

    Rudman, Justine; Gauché, Paul; Esler, Karen J.

    2016-05-01

    The Integrated Resource Plan (IRP) of 2010 and the IRP Update provide the most recent guidance to the electricity generation future of South Africa (SA) and both plans include an increased proportion of renewable energy generation capacity. Given that SA has abundant renewable energy resource potential, this inclusion is welcome. Only 600 MW of the capacity allocated to concentrating solar power (CSP) has been committed to projects in the Northern Cape and represents roughly a fifth of the capacity that has been included in the IRP. Although CSP is particularly new in the electricity generation system of the country, the abundant solar resources of the region with annual DNI values of above 2900 kWh/m2 across the arid Savannah and Nama-Karoo biomes offer a promising future for the development of CSP in South Africa. These areas have largely been left untouched by technological development activities and thus renewable energy projects present a variety of possible direct and indirect environmental, social and economic impacts. Environmental Impact Assessments do focus on local impacts, but given that ecological processes often extend to regional- and landscape scales, understanding this scaled context is important to the alignment of development- and conservation priorities. Given the capacities allocated to CSP for the future of SA's electricity generation system, impacts on land, air, water and biodiversity which are associated with CSP are expected to increase in distribution and the understanding thereof deems valuable already from this early point in CSP's future in SA. We provide a review of direct impacts of CSP on the natural environment and an overview of the anticipated specific significance thereof in the Northern Cape.

  1. Hydro-Quebec is at it again

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, G.

    1993-12-31

    When New York governor Mario Cuomo pulled the plug on a purchase of 1,000 megawatts of power from Hydro-Quebec last June, the provincial utility talked tough. The cancellation, a senior Hydro-Quebec official claimed, would not jeopardize the future of its controversial Great Whale hydro project in the North. Bu Hydro-Quebec has quietly shoved Great Whale onto the back burner while an environmental review is underway. In the meantime the utility is barreling ahead with another mega-dam. The Ste. Marquerite project planned for north-eastern Quebec is modest by Hydro-Quebec standards, generating less than a third the power of Great Whale. Still,more » with an 880-megawatt power station and 190 square miles of reservoirs, it is one of the largest hydro projects on any drawing board in North America. Environmentalists say it is being pushed ahead without a serious study of its impacts. This article details the environmental impacts of the project, and the extended impacts, not yet accounted for.« less

  2. Global environmental change effects on ecosystems: the importance of land-use legacies.

    PubMed

    Perring, Michael P; De Frenne, Pieter; Baeten, Lander; Maes, Sybryn L; Depauw, Leen; Blondeel, Haben; Carón, María M; Verheyen, Kris

    2016-04-01

    One of the major challenges in ecology is to predict how multiple global environmental changes will affect future ecosystem patterns (e.g. plant community composition) and processes (e.g. nutrient cycling). Here, we highlight arguments for the necessary inclusion of land-use legacies in this endeavour. Alterations in resources and conditions engendered by previous land use, together with influences on plant community processes such as dispersal, selection, drift and speciation, have steered communities and ecosystem functions onto trajectories of change. These trajectories may be modulated by contemporary environmental changes such as climate warming and nitrogen deposition. We performed a literature review which suggests that these potential interactions have rarely been investigated. This crucial oversight is potentially due to an assumption that knowledge of the contemporary state allows accurate projection into the future. Lessons from other complex dynamic systems, and the recent recognition of the importance of previous conditions in explaining contemporary and future ecosystem properties, demand the testing of this assumption. Vegetation resurvey databases across gradients of land use and environmental change, complemented by rigorous experiments, offer a means to test for interactions between land-use legacies and multiple environmental changes. Implementing these tests in the context of a trait-based framework will allow biologists to synthesize compositional and functional ecosystem responses. This will further our understanding of the importance of land-use legacies in determining future ecosystem properties, and soundly inform conservation and restoration management actions. © 2015 John Wiley & Sons Ltd.

  3. An assessment of people's satisfaction with the public hearing on the Yadana Natural Gas Pipeline project.

    PubMed

    Ogunlana, S; Yotsinsak, T; Yisa, S

    2001-11-01

    Many public and large-scale construction projects in Thailand have been faced with environmental and social conflict problems. The major cause is that project sponsors do not address concerns of the public in a proper manner during EIA study. The Yadana Natural Gas Pipeline (YNGP) project is an example of a project which suffered the effects of public demonstration. A public hearing, one technique of public participation, is a good mechanism to solve conflict problems in a non-violent way which the Thai Government usually adopts to settle conflict in construction projects. In the case of the YNGP, even after the conflict was 'resolved' hostility towards the project was not eliminated, as the opponents were not satisfied with the decision. Therefore, this article examines the hearing on the YNGP project. The study found that it was too late to make any significant changes to the project after the hearing was held, most respondents were not satisfied with the project. In other words, this hearing did not improve their perception of environmental soundness of the project. The study showed that the project's impact on the environment was not properly addressed. The project sponsors did not provide sufficient publicity for the meeting and the stage at which the hearing was conducted. Suggestions are made for improving participation in future hearings.

  4. Increasing Mississippi river discharge throughout the twenty-first century influenced by changes in climate, land use and atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W. J.; Lohrenz, S. E.

    2014-12-01

    Previous studies have demonstrated that changes in temperature and precipitation (hereafter climate change) would influence river discharge, but the relative importance of climate change, land use, and elevated atmospheric CO2 have not yet been fully investigated. Here we examined how river discharge in the Mississippi River basin in the 21st century might be influenced by these factors using the Dynamic Land Ecosystem Model driven by atmospheric CO2, downscaled GCMs climate and land use scenarios. Our results suggest that river discharge would be substantially enhanced (10.7-59.8%) by the 2090s compared to the recent decade (2000s), though large discrepancies exist among different climate, atmospheric CO2, and land use change scenarios. Our factorial analyses further indicate that the combined effects of land use change and human-induced atmospheric CO2 elevation on river discharge would outweigh climate change effect under the high emission scenario (A2) of Intergovernmental Panel for Climate Change. Our study offers the first attempt to project potential changes in river discharge in response to multiple future environmental changes. It demonstrates the importance of land use change and atmospheric CO2 concentrations in projecting future changes in hydrologic processes. The projected increase river discharge implies that riverine fluxes of carbon, nutrients and pesticide from the MRB to the coastal regions would increase in the future, and thus may influence the states of ocean acidification and hypoxia and deteriorate ocean water quality. Further efforts will also be needed to account for additional environmental factors (such as nitrogen deposition, tropospheric ozone pollution, dam construction, etc.) in projecting changes in the hydrological cycle.

  5. Why Study Paleoclimate?

    USGS Publications Warehouse

    Robinson, Marci; Dowsett, Harry

    2010-01-01

    U.S. Geological Survey (USGS) researchers are at the forefront of paleoclimate research, the study of past climates. With their unique skills and perspective, only geologists have the tools necessary to delve into the distant past (long before instrumental records were collected) in order to better understand global environmental conditions that were very different from today's conditions. Paleoclimatologists are geologists who study past climates to answer questions about what the Earth was like in the past and to enable projections, plans, and preparations for the future. The Intergovernmental Panel on Climate Change (IPCC) has projected a future warmer climate that has the potential to affect every person on Earth. Extreme weather events, rising sea level, and migrating ecosystems and resources could result in worldwide socio-economic stresses if not met with prudent and proactive action plans based on quality scientific research. Still, the most dangerous aspect of our changing climate is the uncertainty in the exact nature and rate of projected climate change. To reduce the uncertainties, USGS paleoclimatologists are studying a possible analog to a future warmer climate. The middle part of the Piacenzian Stage of the Pliocene Epoch, about 3.3 to 3.0 million years ago, is the most recent period in Earth's history in which global warmth reached and remained at temperatures similar to those projected for the end of this century, about 2 degrees C to 3 degrees C warmer on average than today over the entire globe. This past warmer time interval preceded the ice ages but was recent enough, geologically, to be very similar to today in terms of ocean circulation and the position of the continents. Also, the populations of plants and animals were much like those of today, and so geologists can use their fossils to estimate past environmental conditions such as temperature and sea level.

  6. Seemingly unrelated intervention time series models for effectiveness evaluation of large scale environmental remediation.

    PubMed

    Ip, Ryan H L; Li, W K; Leung, Kenneth M Y

    2013-09-15

    Large scale environmental remediation projects applied to sea water always involve large amount of capital investments. Rigorous effectiveness evaluations of such projects are, therefore, necessary and essential for policy review and future planning. This study aims at investigating effectiveness of environmental remediation using three different Seemingly Unrelated Regression (SUR) time series models with intervention effects, including Model (1) assuming no correlation within and across variables, Model (2) assuming no correlation across variable but allowing correlations within variable across different sites, and Model (3) allowing all possible correlations among variables (i.e., an unrestricted model). The results suggested that the unrestricted SUR model is the most reliable one, consistently having smallest variations of the estimated model parameters. We discussed our results with reference to marine water quality management in Hong Kong while bringing managerial issues into consideration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years

    PubMed Central

    Saupe, E. E.; Hendricks, J. R.; Portell, R. W.; Dowsett, H. J.; Haywood, A.; Hunter, S. J.; Lieberman, B. S.

    2014-01-01

    In order to predict the fate of biodiversity in a rapidly changing world, we must first understand how species adapt to new environmental conditions. The long-term evolutionary dynamics of species' physiological tolerances to differing climatic regimes remain obscure. Here, we unite palaeontological and neontological data to analyse whether species' environmental tolerances remain stable across 3 Myr of profound climatic changes using 10 phylogenetically, ecologically and developmentally diverse mollusc species from the Atlantic and Gulf Coastal Plains, USA. We additionally investigate whether these species' upper and lower thermal tolerances are constrained across this interval. We find that these species' environmental preferences are stable across the duration of their lifetimes, even when faced with significant environmental perturbations. The results suggest that species will respond to current and future warming either by altering distributions to track suitable habitat or, if the pace of change is too rapid, by going extinct. Our findings also support methods that project species' present-day environmental requirements to future climatic landscapes to assess conservation risks. PMID:25297868

  8. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years

    USGS Publications Warehouse

    Saupe, E.E.; Hendricks, J.R.; Portell, R.W.; Dowsett, Harry J.; Haywood, A. M.; Hunter, S.J.; Lieberman, B.S.

    2014-01-01

    In order to predict the fate of biodiversity in a rapidly changing world, we must first understand how species adapt to new environmental conditions. The long-term evolutionary dynamics of species' physiological tolerances to differing climatic regimes remain obscure. Here, we unite palaeontological and neontological data to analyse whether species' environmental tolerances remain stable across 3 Myr of profound climatic changes using 10 phylogenetically, ecologically and developmentally diverse mollusc species from the Atlantic and Gulf Coastal Plains, USA. We additionally investigate whether these species' upper and lower thermal tolerances are constrained across this interval. We find that these species' environmental preferences are stable across the duration of their lifetimes, even when faced with significant environmental perturbations. The results suggest that species will respond to current and future warming either by altering distributions to track suitable habitat or, if the pace of change is too rapid, by going extinct. Our findings also support methods that project species' present-day environmental requirements to future climatic landscapes to assess conservation risks.

  9. Environmentally-Preferable Launch Coatings

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA Kennedy Space Center (KSC), Florida, has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of NASA and the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion protecting coatings for launch facilities and ground support equipment (GSE). The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. The project compares coating performance of the selected alternatives to existing coating systems or standards.

  10. Citizen science participation in research in the environmental sciences: key factors related to projects' success and longevity.

    PubMed

    Cunha, Davi G F; Marques, Jonatas F; Resende, Juliana C DE; Falco, Patrícia B DE; Souza, Chrislaine M DE; Loiselle, Steven A

    2017-01-01

    The potential impacts of citizen science initiatives are increasing across the globe, albeit in an imbalanced manner. In general, there is a strong element of trial and error in most projects, and the comparison of best practices and project structure between different initiatives remains difficult. In Brazil, the participation of volunteers in environmental research is limited. Identifying the factors related to citizen science projects' success and longevity within a global perspective can contribute for consolidating such practices in the country. In this study, we explore past and present projects, including a case study in Brazil, to identify the spatial and temporal trends of citizen science programs as well as their best practices and challenges. We performed a bibliographic search using Google Scholar and considered results from 2005-2014. Although these results are subjective due to the Google Scholar's algorithm and ranking criteria, we highlighted factors to compare projects across geographical and disciplinary areas and identified key matches between project proponents and participants, project goals and local priorities, participant profiles and engagement, scientific methods and funding. This approach is a useful starting point for future citizen science projects, allowing for a systematic analysis of potential inconsistencies and shortcomings in this emerging field.

  11. NASA's NPOESS Preparatory Project Science Data Segment: A Framework for Measurement-based Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.; Schweiss, Robert J.

    2007-01-01

    The NPOESS Preparatory Project (NPP) Science Data Segment (SDS) provides a framework for the future of NASA s distributed Earth science data systems. The NPP SDS performs research and data product assessment while using a fully distributed architecture. The components of this architecture are organized around key environmental data disciplines: land, ocean, ozone, atmospheric sounding, and atmospheric composition. The SDS thus establishes a set of concepts and a working prototypes. This paper describes the framework used by the NPP Project as it enabled Measurement-Based Earth Science Data Systems for the assessment of NPP products.

  12. Systems Analysis Approach for the NASA Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Kimmel, William M.

    2011-01-01

    This conference paper describes the current systems analysis approach being implemented for the Environmentally Responsible Aviation Project within the Integrated Systems Research Program under the NASA Aeronautics Research Mission Directorate. The scope and purpose of these systems studies are introduced followed by a methodology overview. The approach involves both top-down and bottoms-up components to provide NASA s stakeholders with a rationale for the prioritization and tracking of a portfolio of technologies which enable the future fleet of aircraft to operate with a simultaneous reduction of aviation noise, emissions and fuel-burn impacts to our environment. Examples of key current results and relevant decision support conclusions are presented along with a forecast of the planned analyses to follow.

  13. The corporate impact of addressing social issues: a financial case study of a project in Peru.

    PubMed

    Dabbs, Alan; Bateson, Matthew

    2002-05-01

    Large, multinational resource development projects can affect many aspects, including social, economic and ecological realities, in the regions where they operate. Social and environmental issues that are usually ignored in such projects are increasingly affecting the financial future of multinational corporations in negative ways. In this article, we advance the argument that corporations can successfully manage these issues and that if they choose to view these management efforts as an investment rather than an expense, they may well acquire a competitive advantage over companies that do not. We describe as a case study the Camisea natural gas and condensates development project in Peru, operated by Shell Prospecting and Development Peru (SPDP). Camisea is one of the first projects anywhere in the world to conduct a detailed analysis of key industry-related social issues and the processes, required investment and financial impact of managing them. The Camisea example supports the argument that addressing social and environmental concerns makes financial sense. In present value terms, the benefit of managing these concerns was expected to surpass the cost investment by approximately US$50 million.

  14. Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on emission scenarios at ecoregional scales

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Sohl, Terry L.; Bouchard, Michelle A.; Reker, Ryan R.; Soulard, Christopher E.; Acevedo, William; Griffith, Glenn E.; Sleeter, Rachel R.; Auch, Roger F.; Sayler, Kristi L.; Prisley, Stephen; Zhu, Zhi-Liang

    2012-01-01

    Global environmental change scenarios have typically provided projections of land use and land cover for a relatively small number of regions or using a relatively coarse resolution spatial grid, and for only a few major sectors. The coarseness of global projections, in both spatial and thematic dimensions, often limits their direct utility at scales useful for environmental management. This paper describes methods to downscale projections of land-use and land-cover change from the Intergovernmental Panel on Climate Change's Special Report on Emission Scenarios to ecological regions of the conterminous United States, using an integrated assessment model, land-use histories, and expert knowledge. Downscaled projections span a wide range of future potential conditions across sixteen land use/land cover sectors and 84 ecological regions, and are logically consistent with both historical measurements and SRES characteristics. Results appear to provide a credible solution for connecting regionalized projections of land use and land cover with existing downscaled climate scenarios, under a common set of scenario-based socioeconomic assumptions.

  15. The age of citizen science: Stimulating future environmental research

    NASA Astrophysics Data System (ADS)

    Burgess, S. N.

    2010-12-01

    Public awareness of the state of the ocean is growing with issues such as climate change, over-harvesting, marine pollution, coral bleaching, ocean acidification and sea level rise appearing regularly in popular media outlets. Society is also placing greater value on the range of ecosystem services the ocean provides. This increased consciousness of environmental change due to a combination of anthropogenic activities and impacts from climate change offers scientists the opportunity of engaging citizens in environmental research. The term citizen science refers to scientific research carried out by citizens and led by professionals, which involves large scale data collection whilst simultaneously engaging and educating those who participate. Most projects that engage citizen scientists have been specifically designed to provide an educational benefit to the volunteer and benefit the scientific inquiry by collecting extensive data sets over large geographical areas. Engaging the public in environmental science is not a new concept and successful projects (such as the Audobon Christmas Bird Count and Earthwatch) have been running for several decades resulting in hundreds of thousands of people conducting long-term field research in partnership with scientists based at universities worldwide. The realm of citizen science projects is continually expanding, with public engagement options ranging from science online; to backyard afternoon studies; to fully immersive experiential learning projects running for weeks at a time. Some organisations, such as Earthwatch also work in partnership with private industry; giving scientists access to more funding opportunities than those avenues traditionally available. These scientist -industry partnerships provide mutual benefits as the results of research projects in environments such as coastal ecosystems feed directly back into business risk strategies; for example mitigating shoreline erosion, storm surges, over fishing and warming water temperatures. Citizen science projects fulfill the requirements of government granting institutions for outreach and scientific communication. This presentation will highlight marine research projects, which have not only engaged citizens in the scientific process but also discuss the impacts of associated outreach, capacity building and community environmental stewardship.

  16. Integrating geological archives and climate models for the mid-Pliocene warm period.

    PubMed

    Haywood, Alan M; Dowsett, Harry J; Dolan, Aisling M

    2016-02-16

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change.

  17. New approaches in human health risk assessment

    PubMed Central

    Abass, Khaled; Carlsen, Anders; Rautio, Arja

    2016-01-01

    Studies on the precise impact of environmental pollutants on human health are difficult to undertake and interpret, because many genetic and environmental factors influence health at the same time and to varying degrees. Our chapter in the AMAP report was based on new approaches to describe risks and future needs. In this paper, we will introduce the issues associated with risk assessment of single chemicals, and present suggestions for future studies as well as a summary of lessons learned during the health-related parts of the European Union-funded FP7 project ArcRisk (Arctic Health Risks: Impacts on health in the Arctic and Europe owing to climate-induced changes in contaminant cycling, 2009–2014; www.arcrisk.eu). PMID:27974141

  18. Integrating geological archives and climate models for the mid-Pliocene warm period

    PubMed Central

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.

    2016-01-01

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change. PMID:26879640

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zygarlicke, C J; Schmidt, D D; Olson, E S

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area ofmore » developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.« less

  20. Current status and future direction of NASA's Space Life Sciences Program

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.

  1. Interactive effects of environmental change and management strategies on regional forest carbon emissions.

    PubMed

    Hudiburg, Tara W; Luyssaert, Sebastiaan; Thornton, Peter E; Law, Beverly E

    2013-11-19

    Climate mitigation activities in forests need to be quantified in terms of the long-term effects on forest carbon stocks, accumulation, and emissions. The impacts of future environmental change and bioenergy harvests on regional forest carbon storage have not been quantified. We conducted a comprehensive modeling study and life-cycle assessment of the impacts of projected changes in climate, CO2 concentration, and N deposition, and region-wide forest management policies on regional forest carbon fluxes. By 2100, if current management strategies continue, then the warming and CO2 fertilization effect in the given projections result in a 32-68% increase in net carbon uptake, overshadowing increased carbon emissions from projected increases in fire activity and other forest disturbance factors. To test the response to new harvesting strategies, repeated thinnings were applied in areas susceptible to fire to reduce mortality, and two clear-cut rotations were applied in productive forests to provide biomass for wood products and bioenergy. The management strategies examined here lead to long-term increased carbon emissions over current harvesting practices, although semiarid regions contribute little to the increase. The harvest rates were unsustainable. This comprehensive approach could serve as a foundation for regional place-based assessments of management effects on future carbon sequestration by forests in other locations.

  2. Feasibility study for the construction of a new LNG receiving terminal. Turkey. Volume 1. Export trade information. [LNG (liquified natural gas)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    The report was prepared by The M. W. Kellogg Co. for BOTAS Petroleum Pipeline Corporation of Ankara, Turkey. The study was undertaken to evaluate the cost and economics of constructing a second liquified natural gas (LNG) terminal in Turkey to meet future requirements for natural gas. Volume 1 is divided into the following sections: (1) Introduction; (2) Summary and Conclusions; (3) Design Basis; (4) Site Evaluation; (5) LNG Terminal Design; (6) Major Equipment and Instrumentation; (7) Marine Operations; (8) Safety Considerations; (9) Environmental Review; (10) Preliminary Project Execution Strategy; (11) Cost Estimates; (12) Project Master Schedule; (13) Economic Analysis; (14)more » Financing; (15) Future Work.« less

  3. A top-down assessment of energy, water and land use in uranium mining, milling, and refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Schneider; B. Carlsen; E. Tavrides

    2013-11-01

    Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, watermore » and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle.« less

  4. Environmental Cost Analysis System (ECAS) Status and Compliance Requirements for EM Consolidated Business Center Contracts - 13204

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, P.C.; Moe, M.A.; Hombach, W.G.

    2013-07-01

    The Department of Energy (DOE) Office of Environmental Management (EM) has developed a web-accessible database to collect actual cost data from completed EM projects to support cost estimating and analysis. This Environmental Cost Analysis System (ECAS) database was initially deployed in early 2009 containing the cost and parametric data from 77 decommissioning, restoration, and waste management projects completed under the Rocky Flats Closure Project. In subsequent years we have added many more projects to ECAS and now have a total of 280 projects from 8 major DOE sites. This data is now accessible to DOE users through a web-based reportingmore » tool that allows users to tailor report outputs to meet their specific needs. We are using it as a principal resource supporting the EM Consolidated Business Center (EMCBC) and the EM Applied Cost Engineering (ACE) team cost estimating and analysis efforts across the country. The database has received Government Accountability Office review as supporting its recommended improvements in DOE's cost estimating process, as well as review from the DOE Office of Acquisition and Project Management (APM). Moving forward, the EMCBC has developed a Special Contract Requirement clause or 'H-Clause' to be included in all current and future EMCBC procurements identifying the process that contractors will follow to provide DOE their historical project data in a format compatible with ECAS. Changes to DOE O 413.3B implementation are also in progress to capture historical costs as part of the Critical Decision project closeout process. (authors)« less

  5. UCS-PROMOVE: The engineer of the future

    NASA Astrophysics Data System (ADS)

    Villas-Boas, V.

    2010-06-01

    The Universidade de Caxias do Sul (UCS) elaborated the cooperative project called 'The engineer of the future', with the objective of promoting science and engineering among high school teachers and students. This project aims to improve the quality of the teaching and to increase the interest of students in technological areas, leading to a future career in engineering. The activities of this project were planned to give meaning and foundation to the teaching-learning process of science and for the application of theory in the solution of real problems, while articulating scientific, economic, environmental, social and political aspects and also to reinforce the important role of engineering in society. Amongst the activities to be offered to high school teachers and students are a specialisation course for teachers based upon new educational methodologies, workshops in different areas of science and technology, a programme entitled 'Encouraging girls in technology, science and engineering', science fairs and visits to the industries of the region. Activities with the engineering instructors of UCS are also being developed in order to help them to incorporate in their classes more effective pedagogical strategies for educating the engineer-to-be.

  6. Inconvenient Truth or Convenient Fiction? Probable Maximum Precipitation and Nonstationarity

    NASA Astrophysics Data System (ADS)

    Nielsen-Gammon, J. W.

    2017-12-01

    According to the inconvenient truth that Probable Maximum Precipitation (PMP) represents a non-deterministic, statistically very rare event, future changes in PMP involve a complex interplay between future frequencies of storm type, storm morphology, and environmental characteristics, many of which are poorly constrained by global climate models. On the other hand, according to the convenient fiction that PMP represents an estimate of the maximum possible precipitation that can occur at a given location, as determined by storm maximization and transposition, the primary climatic driver of PMP change is simply a change in maximum moisture availability. Increases in boundary-layer and total-column moisture have been observed globally, are anticipated from basic physical principles, and are robustly projected to continue by global climate models. Thus, using the same techniques that are used within the PMP storm maximization process itself, future PMP values may be projected. The resulting PMP trend projections are qualitatively consistent with observed trends of extreme rainfall within Texas, suggesting that in this part of the world the inconvenient truth is congruent with the convenient fiction.

  7. Using the Citizen Science Picture Post Project as the Foundation for Campus Environmental Monitoring by Undergraduate Student Researchers

    NASA Astrophysics Data System (ADS)

    Bowen, K.; Guertin, L. A.

    2014-12-01

    Penn State Brandywine is utilizing the citizen science Picture Post network as a foundation for collecting campus environmental data and for undergraduate student research investigations. The Picture Post is an environmental monitoring project a part of Digital Earth Watch, a citizen science initiative funded by NASA. Picture Post creates opportunities for educators and community members to take digital photos from octagonal platforms on posts registered as part of the Picture Post national network and then share these photos online. Penn State Brandywine joined the Picture Post project May 27, 2014, to begin a long-term monitoring program, starting with an environmental baseline of the campus landscape. Four post locations were selected on campus based upon projected major construction projects. Photos at each post are being taken by students on a weekly basis and uploaded to the Picture Post website. The campus community and beyond are also being encouraged to take their own photos to upload to the website. Instructional signage has been placed on each post, and a Penn State Brandywine Picture Post website (http://sites.psu.edu/picturepost/) has been created to explain the project and campus objectives in more detail. This project was started by a student as part of her undergraduate summer research experience and will continue to be managed by students in future semesters. With just a half-year of Picture Post photos, it is evident that there are documented changes in the environment because of construction and expected seasonal variations. The Picture Post photos have provided enough data for an initial undergraduate research project with a student analyzing and comparing the variations in the greenness factor of the photos with supplemental temperature and precipitation data. This project will continue to provide opportunities for citizen contributions to the network as well as data for student investigations of the changing campus environment.

  8. Are We There Yet? Alternative Fuels for School Buses

    ERIC Educational Resources Information Center

    Lea, Dennis; Carter, Deborah

    2009-01-01

    America's annual oil consumption continues to increase and is projected to continue the upward spiral into the foreseeable future. Alternative-fuel options are available that are not only cheaper in some cases on an energy-equivalent basis but are also more environmentally friendly. Education leaders need to be concerned with both these facts.…

  9. A Study of Future Worlds.

    ERIC Educational Resources Information Center

    Falk, Richard A.

    The book suggests models of new world organizations that will be necessary to achieve the elimination of global poverty, injustice, war, and environmental imbalance by the end of the 20th century. The book was developed by the World Order Models Project (WOMP), an international group of researchers and scholars established in 1968 to explore…

  10. 76 FR 64943 - Proposed Cercla Administrative Cost Recovery Settlement; ACM Smelter and Refinery Site, Located...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... Settlement; ACM Smelter and Refinery Site, Located in Cascade County, MT AGENCY: Environmental Protection... projected future response costs concerning the ACM Smelter and Refinery NPL Site (Site), Operable Unit 1..., Helena, MT 59626. Mr. Sturn can be reached at (406) 457-5027. Comments should reference the ACM Smelter...

  11. Multi-Variable and Multi-Site Calibration and Validation of SWAT for Water Quality in the Kaskaskia River Watershed

    EPA Science Inventory

    The Future Midwest Landscape (FML) project is part of the U.S. Environmental Protection Agency’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes that include crop lands, conservation areas, wetlands, lakes and streams affect ...

  12. Analysis of Distribution System and Domestic Service Line Pipe Deposits to Understand Water Treatment/Metal Release Relationships

    EPA Science Inventory

    This project puts the U.S. Environmental Protection Agency (EPA) into a unique position of being able to bring analytical tools to bear to solve or anticipate future drinking water infrastructure water quality and metallic or cement material performance problems, for which little...

  13. Dynamic Evaluation of CMAQ Part II: Evaluation of relative response factor metrics for ozone attainment demonstrations

    EPA Science Inventory

    The U.S. Environmental Protection Agency provides guidelines on the use of air quality models for projecting whether an emission reduction strategy will lead to future pollutant levels that are at or below the National Ambient Air Quality Standards (NAAQS). The EPA's guidance doc...

  14. Looking Back to Move Ahead: How Students Learn Geologic Time by Predicting Future Environmental Impacts

    ERIC Educational Resources Information Center

    Zhu, Chen; Rehrey, George; Treadwell, Brooke; Johnson, Claudia C.

    2012-01-01

    This Scholarship of Teaching and Learning project discusses the effectiveness of using distance metaphor-building activities along with a case study exam to help undergraduate nonscience majors understand and apply geologic time. Using action research, we describe how a scholarly teacher integrated previously published and often-used teaching…

  15. Native Americans and their plants: Linking the past with the future

    Treesearch

    Tara Luna

    2002-01-01

    Seven nations of Native Americans in the US and Canada are using native plant species for restoration and to reintroduce populations of species of cultural significance due to habitat loss. The scope of their projects as well as the important environmental, cultural, and economic benefits resulting from their efforts are briefly described.

  16. Modelling regional cropping patterns under scenarios of climate and socio-economic change in Hungary.

    PubMed

    Li, Sen; Juhász-Horváth, Linda; Pintér, László; Rounsevell, Mark D A; Harrison, Paula A

    2018-05-01

    Impacts of socio-economic, political and climatic change on agricultural land systems are inherently uncertain. The role of regional and local-level actors is critical in developing effective policy responses that accommodate such uncertainty in a flexible and informed way across governance levels. This study identified potential regional challenges in arable land use systems, which may arise from climate and socio-economic change for two counties in western Hungary: Veszprém and Tolna. An empirically-grounded, agent-based model was developed from an extensive farmer household survey about local land use practices. The model was used to project future patterns of arable land use under four localised, stakeholder-driven scenarios of plausible future socio-economic and climate change. The results show strong differences in farmers' behaviour and current agricultural land use patterns between the two regions, highlighting the need to implement focused policy at the regional level. For instance, policy that encourages local food security may need to support improvements in the capacity of farmers to adapt to physical constraints in Veszprém and farmer access to social capital and environmental awareness in Tolna. It is further suggested that the two regions will experience different challenges to adaptation under possible future conditions (up to 2100). For example, Veszprém was projected to have increased fallow land under a scenario with high inequality, ineffective institutions and higher-end climate change, implying risks of land abandonment. By contrast, Tolna was projected to have a considerable decline in major cereals under a scenario assuming a de-globalising future with moderate climate change, inferring challenges to local food self-sufficiency. The study provides insight into how socio-economic and physical factors influence the selection of crop rotation plans by farmers in western Hungary and how farmer behaviour may affect future risks to agricultural land systems under environmental change. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in themore » final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.« less

  18. Fire and climate suitability for woody vegetation communities in the south central United States

    USGS Publications Warehouse

    Stroh, Esther; Struckhoff, Matthew; Stambaugh, Michael C.; Guyette, Richard P.

    2018-01-01

    using a physical chemistry fire frequency model. We then used the fire probability data with additional climate parameters to construct maximum entropy environmental suitability models for three south central US vegetation communities. The modeled communities included an oak type (dominated by post oak, Quercus stellata Wangenh., and blackjack oak, Q. marilandica Münchh.), a mesquite type (dominated by honey mesquite, Prosopis glandulosa Torr., and velvet mesquite, P. velutina Wooton), and a pinyon−juniper type (dominated by pinyon pine, Pinus edulis Engelm., and Utah juniper, Juniperus osteosperma [Torr.] Little). We mapped baseline and future mean fire-climate suitability using data from three global climate models for 2040 to 2069 and 2070 to 2099; we also mapped future locations of threshold conditions for which all three models agreed on suitability for each community. Future projections included northward, southward, and eastward shifts in suitable conditions for the oaks along a broad path of fire-climate stability; an overall reduction in suitable area for historic mesquite communities coupled with potential expansion to new areas; and constriction and isolation of suitable conditions for pinyon−juniper communities. The inclusion of fire probability adds an important driver of vegetation distribution to climate envelope modeling. The simple models showed good fit, but future projections failed to account for future management activities or land use changes. Results provided information on potential future de-coupling and spatial re-arrangement of environmental conditions under which these communities have historically persisted and been managed. In particular, consensus threshold maps can inform long-term planning for maintenance or restoration of these communities, and they can be used as a potential tool for other communities in fire-prone environments within the study area and beyond its borders.

  19. Predicting Plant Diversity Patterns in Madagascar: Understanding the Effects of Climate and Land Cover Change in a Biodiversity Hotspot

    PubMed Central

    Brown, Kerry A.; Parks, Katherine E.; Bethell, Colin A.; Johnson, Steig E.; Mulligan, Mark

    2015-01-01

    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar’s plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future. PMID:25856241

  20. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.

    PubMed

    Brown, Kerry A; Parks, Katherine E; Bethell, Colin A; Johnson, Steig E; Mulligan, Mark

    2015-01-01

    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.

  1. Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas–implications for environmental monitoring

    PubMed Central

    Vuorinen, Ilppo; Hänninen, Jari; Rajasilta, Marjut; Laine, Päivi; Eklund, Jan; Montesino-Pouzols, Federico; Corona, Francesco; Junker, Karin; Meier, H.E.Markus; Dippner, Joachim W.

    2015-01-01

    Substantial ecological changes occurred in the 1970s in the Northern Baltic during a temporary period of low salinity (S). This period was preceded by an episodic increase in the rainfall over the Baltic Sea watershed area. Several climate models, both global and regional, project an increase in the runoff of the Northern latitudes due to proceeding climate change. The aim of this study is to model, firstly, the effects on Baltic Sea salinity of increased runoff due to projected global change and, secondly, the effects of salinity change on the distribution of marine species. The results suggest a critical shift in the S range 5–7, which is a threshold for both freshwater and marine species distributions and diversity. We discuss several topics emphasizing future monitoring, modelling, and fisheries research. Environmental monitoring and modelling are investigated because the developing alternative ecosystems do not necessarily show the same relations to environment quality factors as the retiring ones. An important corollary is that the observed and modelled S changes considered together with species’ ranges indicate what may appear under a future climate. Consequences could include a shift in distribution areas of marine benthic foundation species and some 40–50 other species, affiliated to these. This change would extend over hundreds of kilometres, in the Baltic Sea and the adjacent North Sea areas. Potential cascading effects, in coastal ecology, fish ecology and fisheries would be extensive, and point out the necessity to develop further the “ecosystem approach in the environmental monitoring”. PMID:25737660

  2. Engaging Communities in Research on Cumulative Risk and Social Stress-Environment Interactions: Lessons Learned from EPA's STAR Program

    PubMed Central

    Korfmacher, Katrina Smith; Cory-Slechta, Deborah A.; Jimenez, Maria; Symanski, Elaine; Carr Shmool, Jessie L.; Dotson-Newman, Ogonnaya; Clougherty, Jane E.; French, Robert; Levy, Jonathan I.; Laumbach, Robert; Rodgers, Kathryn; Bongiovanni, Roseann; Scammell, Madeleine K.

    2015-01-01

    Abstract Studies have documented cumulative health effects of chemical and nonchemical exposures, particularly chronic environmental and social stressors. Environmental justice groups have advocated for community participation in research that assesses how these interactions contribute to health disparities experienced by low-income and communities of color. In 2009, the U.S. Environmental Protection Agency issued a request for research applications (RFA), “Understanding the Role of Nonchemical Stressors and Developing Analytic Methods for Cumulative Risk Assessments.” Seven research projects were funded to help address this knowledge gap. Each engaged with communities in different ways. We describe the community engagement approaches of the seven research projects, which ranged from outreach through shared leadership/participatory. We then assess the experiences of these programs with respect to the community engagement goals of the RFA. We present insights from these community engagement efforts, including how the grants helped to build or enhance the capacity of community organizations in addition to contributing to the research projects. Our analysis of project proposals, annual grantee reports, and participant observation of these seven projects suggests guidelines for the development of future funding mechanisms and for conducting community-engaged research on cumulative risk involving environmental and social stressors including: 1) providing for flexibility in the mode of community engagement; 2) addressing conflict between research timing and engagement needs, 3) developing approaches for communicating about the uniquely sensitive issues of nonchemical stressors and social risks; and 4) encouraging the evaluation of community engagement efforts. PMID:27688822

  3. Erosion risk analysis by GIS in environmental impact assessments: a case study--Seyhan Köprü Dam construction.

    PubMed

    Sahin, S; Kurum, E

    2002-11-01

    Environmental Impact Assessment (EIA) is a systematically constructed procedure whereby environmental impacts caused by proposed projects are examined. Geographical Information Systems (GIS) are crucially efficient tools for impact assessment and their use is likely to dramatically increase in the near future. GIS have been applied to a wide range of different impact assessment projects and dams among them have been taken as the case work in this article. EIA Regulation in force in Turkey requires the analysis of steering natural processes that can be adversely affected by the proposed project, particularly in the section of the analysis of the areas with higher landscape value. At this point, the true potential value of GIS lies in its ability to analyze spatial data with accuracy. This study is an attempt to analyze by GIS the areas with higher landscape value in the impact assessment of dam constructions in the case of Seyhan-Köprü Hydroelectric Dam project proposal. A method needs to be defined before the overlapping step by GIS to analyze the areas with higher landscape value. In the case of Seyhan-Köprü Hydroelectric Dam project proposal of the present work, considering the geological conditions and the steep slopes of the area and the type of the project, the most important natural process is erosion. Therefore, the areas of higher erosion risk were considered as the Areas with Higher Landscape Value from the conservation demands points of view.

  4. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    PubMed

    Freeman, Lauren A

    2015-01-01

    Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  5. Status of ERA Vehicle System Integration Technology Demonstrators

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Fernandez, Hamilton; Khorrami, Mehdi; James, Kevin D.; Thomas, Russell

    2015-01-01

    The Environmentally Responsible Aviation (ERA) Project within the Integrated Systems Research Program (ISRP) of the NASA Aeronautics Research Mission Directorate (ARMD) has the responsibility to explore and document the feasibility, benefits, and technical risk of air vehicle concepts and enabling technologies that will reduce the impact of aviation on the environment. The primary goal of the ERA Project is to select air vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions. In addition, the ERA Project will identify and mitigate technical risk and transfer knowledge to the aeronautics community at large so that new technologies and vehicle concepts can be incorporated into the future design of aircraft.

  6. A Synoptic Weather Typing Approach and Its application to Assess Climate Change Impacts on Extreme Weather Events at Local Scale in South-Central Canada

    NASA Astrophysics Data System (ADS)

    Shouquan Cheng, Chad; Li, Qian; Li, Guilong

    2010-05-01

    The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of the significant increases in frequency and intensity of future extreme weather events would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.

  7. Environmental projects, volume 11. Environmental assessment: Addition to operations building, Mars site

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An Environmental Assessment was performed of the proposed addition to building G-86 at the Mars Site, which will provide space for new electronic equipment to consolidate the Deep Space Network (DSN) support facilities from other Goldstone Deep Space Communication Complex (GDSCC) sites at the Mars Site, and will include a fifth telemetry and command group with its associated link monitor, control processor, and operator consoles. The addition of these facilities will increase the capability of the DSN to support future sophisticated NASA spacecraft missions such as the International Solar and Terrestrial Physics (ISTP) Program. The planned construction of this building addition requires an Environmental Assessment (EA) document that records the existing environmental conditions at the Mars Site, that analyzes the environmental effects that possibly could be expected from the construction and use of the new building addition, and that recommends measures to be taken to mitigate any possible deleterious environmental effects.

  8. Assessing participatory practices in community-based natural resource management: experiences in community engagement from southern Africa.

    PubMed

    Dyer, J; Stringer, L C; Dougill, A J; Leventon, J; Nshimbi, M; Chama, F; Kafwifwi, A; Muledi, J I; Kaumbu, J-M K; Falcao, M; Muhorro, S; Munyemba, F; Kalaba, G M; Syampungani, S

    2014-05-01

    The emphasis on participatory environmental management within international development has started to overcome critiques of traditional exclusionary environmental policy, aligning with shifts towards decentralisation and community empowerment. However, questions are raised regarding the extent to which participation in project design and implementation is meaningful and really engages communities in the process. Calls have been made for further local-level (project and community-scale) research to identify practices that can increase the likelihood of meaningful community engagement within externally initiated projects. This paper presents data from three community-based natural resource management (CBNRM) project case studies from southern Africa, which promote Joint Forest Management (JFM), tree planting for carbon and conservation agriculture. Data collection was carried out through semi-structured interviews with key stakeholders, community-level meetings, focus groups and interviews. We find that an important first step for a meaningful community engagement process is to define 'community' in an open and participatory manner. Two-way communication at all stages of the community engagement process is shown to be critical, and charismatic leadership based on mutual respect and clarity of roles and responsibilities is vital to improve the likelihood of participants developing understanding of project aims and philosophy. This can lead to successful project outcomes through community ownership of the project goals and empowerment in project implementation. Specific engagement methods are found to be less important than the contextual and environmental factors associated with each project, but consideration should be given to identifying appropriate methods to ensure community representation. Our findings extend current thinking on the evaluation of participation by making explicit links between the community engagement process and project outcomes, and by identifying further criteria that can be considered in process and outcome-based evaluations. We highlight good practices for future CBNRM projects which can be used by project designers and initiators to further the likelihood of successful project outcomes. Copyright © 2014. Published by Elsevier Ltd.

  9. Order & Diversity in the Living World: Teaching Taxonomy & Systematics in Schools.

    ERIC Educational Resources Information Center

    Crisci, Jorge V.; And Others

    The world faces two converging crises, a lack of biological literacy and a rapid increase in environmental degradation. In order to insure a secure and safe environment for future generations of organisms, all humans must be taught the basic biological and physical processes that sustain life. This project seeks to fill the chasm in the general…

  10. 78 FR 26004 - Notice of Availability; Draft Environmental Impact Statement for the FutureGen 2.0 Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... floodplain and wetland review requirements (10 CFR part 1022). DATES: DOE invites the public to comment on... commercial operations after this date. The oxy-combustion plant would be built on a 263-acre existing power... would be used for the injection facilities, associated infrastructure and buildings, and access roads...

  11. Projecting carbon footprint of Canadian dairy farms under future climate conditions with the integrated farm system model

    USDA-ARS?s Scientific Manuscript database

    Dairy farms are an important sector of Canadian agriculture, and there is an on-going effort to assess their environmental impact. In Canada, like many northern areas of the world, climate change is expected to increase agricultural productivity. This will likely come along with changes in environme...

  12. Exploring environmental and economic trade-offs associated with aggregate recycling from decommissioned forest roads

    Treesearch

    Matthew P. Thompson; John Sessions

    2010-01-01

    Forest road decommissioning is a pro-active mechanism for preventing future habitat degradation and for increasing the likelihood of endangered salmonid survival in the western U.S. High implementation costs however preclude many desirable projects from being undertaken, especially on federally owned land. Previous research and real-world applications have demonstrated...

  13. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa.

    PubMed

    Moncrieff, Glenn R; Scheiter, Simon; Bond, William J; Higgins, Steven I

    2014-02-01

    The dominant vegetation over much of the global land surface is not predetermined by contemporary climate, but also influenced by past environmental conditions. This confounds attempts to predict current and future biome distributions, because even a perfect model would project multiple possible biomes without knowledge of the historical vegetation state. Here we compare the distribution of tree- and grass-dominated biomes across Africa simulated using a dynamic global vegetation model (DGVM). We explicitly evaluate where and under what conditions multiple stable biome states are possible for current and projected future climates. Our simulation results show that multiple stable biomes states are possible for vast areas of tropical and subtropical Africa under current conditions. Widespread loss of the potential for multiple stable biomes states is projected in the 21st Century, driven by increasing atmospheric CO2 . Many sites where currently both tree-dominated and grass-dominated biomes are possible become deterministically tree-dominated. Regions with multiple stable biome states are widespread and require consideration when attempting to predict future vegetation changes. Testing for behaviour characteristic of systems with multiple stable equilibria, such as hysteresis and dependence on historical conditions, and the resulting uncertainty in simulated vegetation, will lead to improved projections of global change impacts. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. Do we care about sustainability? An analysis of time sensitivity of social preferences under environmental time-persistent effects.

    PubMed

    Faccioli, Michela; Hanley, Nick; Torres, Cati; Font, Antoni Riera

    2016-07-15

    Environmental cost-benefit analysis has traditionally assumed that the value of benefits is sensitive to their timing and that outcomes are valued higher, the sooner in time they occur following implementation of a project or policy. Though, this assumption might have important implications especially for the social desirability of interventions aiming at counteracting time-persistent environmental problems, whose impacts occur in the long- and very long-term, respectively involving the present and future generations. This study analyzes the time sensitivity of social preferences for preservation policies of adaptation to climate change stresses. Results show that stated preferences are time insensitive, due to sustainability issues: individuals show insignificant differences in benefits they can experience within their own lifetimes compared to those which occur in the longer term, and which will instead be enjoyed by future generations. Whilst these results may be specific to the experimental design employed here, they do raise interesting questions regarding choices over time-persistent environmental problems, particularly in terms of the desirability of interventions which produce longer-term benefits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Final Environmental Assessment for Proposed Colorado Springs Airport/El Paso County School District 11 Property Acquisition and Future Development at Peterson Air Foce Base, Colorado

    DTIC Science & Technology

    2011-02-01

    PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AMEC Earth and Environmental, Inc,104 W Anapamu...St Ste 204a,San Barbara,CA,93101 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...National Ambient Air Quality Standards [NAAQS]). The USEPA require the proponent of a proposed action to perform an analysis to determine if its

  16. Innovations in projecting emissions for air quality modeling ...

    EPA Pesticide Factsheets

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality management strategy has climate change implications is encouraging longer modeling time horizons. However, for multi-decadal time horizons, many questions about future conditions arise. For example, will current population, economic, and land use trends continue, or will we see shifts that may alter the spatial and temporal pattern of emissions? Similarly, will technologies such as building-integrated solar photovoltaics, battery storage, electric vehicles, and CO2 capture emerge as disruptive technologies - shifting how we produce and use energy - or will these technologies achieve only niche markets and have little impact? These are some of the questions that are being evaluated by researchers within the U.S. EPA’s Office of Research and Development. In this presentation, Dr. Loughlin will describe a range of analytical approaches that are being explored. These include: (i) the development of alternative scenarios of the future that can be used to evaluate candidate management strategies over wide-ranging conditions, (ii) the application of energy system models to project emissions decades into the future and to assess the environmental implications of new technologies, (iii) and methodo

  17. Projected increase in El Niño-driven tropical cyclone frequency in the Pacific

    NASA Astrophysics Data System (ADS)

    Chand, Savin S.; Tory, Kevin J.; Ye, Hua; Walsh, Kevin J. E.

    2017-02-01

    The El Niño/Southern Oscillation (ENSO) drives substantial variability in tropical cyclone (TC) activity around the world. However, it remains uncertain how the projected future changes in ENSO under greenhouse warming will affect TC activity, apart from an expectation that the overall frequency of TCs is likely to decrease for most ocean basins. Here we show robust changes in ENSO-driven variability in TC occurrence by the late twenty-first century. In particular, we show that TCs become more frequent (~20-40%) during future-climate El Niño events compared with present-climate El Niño events--and less frequent during future-climate La Niña events--around a group of small island nations (for example, Fiji, Vanuatu, Marshall Islands and Hawaii) in the Pacific. We examine TCs across 20 models from the Coupled Model Intercomparison Project phase 5 database, forced under historical and greenhouse warming conditions. The 12 most realistic models identified show a strong consensus on El Niño-driven changes in future-climate large-scale environmental conditions that modulate development of TCs over the off-equatorial western Pacific and the central North Pacific regions. These results have important implications for climate change and adaptation pathways for the vulnerable Pacific island nations.

  18. Wildlife Densities and Habitat Use Across Temporal and Spatial Scales on the Mid-Atlantic Outer Continental Shelf. Final Report to the Department of Energy EERE Wind & Water Power Technologies Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kathryn A.; Stenhouse, Iain J.; Johnson, Sarah M.

    The Mid-Atlantic Baseline Studies Project helped address environmental barriers to offshore wind energy development in the mid-Atlantic region by providing regulators, developers, and other stakeholders with comprehensive baseline ecological data and analyses. Project funders and collaborators from a range of academic institutions, non-governmental organizations, federal agencies, foundations, and private companies came together to study bird, sea turtle, and marine mammal distributions, densities, and movements on the mid-Atlantic Outer Continental Shelf between 2012 and 2014. Specific project activities and goals included the following: (1) Conduct standardized surveys to quantify bird, sea turtle, and marine mammal densities seasonally and annually throughout themore » study region and identify important habitat use or aggregation areas. (2) Develop statistical models to help understand the drivers of wildlife distribution and abundance patterns. (3) Use individual tracking data for several focal bird species to provide information on population connectivity and individual movements that is complementary to survey data. (4) Identify species that are likely to be exposed to offshore wind energy development activities in the mid-Atlantic study area. (5) Develop U.S.-based technological resources and assessment methods for future monitoring efforts, including a comparison of high resolution digital video aerial surveys to boat-based surveys. (6) Help meet data needs associated with National Environmental Policy Act (NEPA), Marine Mammal Protection Act, and Endangered Species Act requirements, by contributing several years of data and analysis towards future Environmental Impact Statements. This report consists of six parts: Project overview (executive summary and Chapters 1-2); Examining wildlife distributions and relative abundance from a digital video aerial survey platform (Chapters 3-6); Examining wildlife distributions and abundance using boat-based surveys (Chapters 7-12); Integrating data across survey platforms (Chapters 13-19); Individual movements and habitat use for focal bird species (Chapters 20-25); and Nocturnal avian migration monitoring (Chapters 26-27). Boat-based and digital video aerial surveys each had specific advantages and disadvantages, but were largely complementary (Chapters 1, 5, 13-14). Digital aerial surveys were particularly useful for covering offshore areas at broad scales, where general distributions of taxonomic groups were a priority; boat surveys could provide more detailed data on species identities and behaviors, but were more limited in geographic scope due to their slower survey pace. The mid-Atlantic study area was important for wintering and breeding taxa, and its location also made it a key migratory corridor. There was considerable variation in species composition and spatial patterns by season, largely driven by dynamic environmental conditions (Chapters 12, 15, and 20-22). Habitat gradients in nearshore waters, however, were reliable influences on productivity and patterns of species distributions and abundance. Areas within about 30-40 km of the coast offshore of the mouths of Chesapeake and Delaware Bays, as well as to the south of Delaware Bay along the coast, were consistent hotspots of abundance and species diversity, regardless of survey methodology or analytical approach (Chapters 2, 12, 17). Inter-annual variation was substantial, and the importance of certain environmental variables in predicting animal distributions indicates that these species may well respond to future environmental shifts brought about by anthropogenic effects and climatic change. This study is an important first step, however, towards understanding how bird, marine mammal, and sea turtle populations in the mid-Atlantic may be exposed to offshore wind energy development and other anthropogenic activities. The results of this study provide insight to help address environmental permitting requirements for current and future offshore development projects, and serve as a starting point for more site-specific studies, risk analyses, and evaluation of potential measures to avoid and minimize those risks.« less

  19. NSTAR Ion Thrusters and Power Processors

    NASA Technical Reports Server (NTRS)

    Bond, T. A.; Christensen, J. A.

    1999-01-01

    The purpose of the NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) project is to validate ion propulsion technology for use on future NASA deep space missions. This program, which was initiated in September 1995, focused on the development of two sets of flight quality ion thrusters, power processors, and controllers that provided the same performance as engineering model hardware and also met the dynamic and environmental requirements of the Deep Space 1 Project. One of the flight sets was used for primary propulsion for the Deep Space 1 spacecraft which was launched in October 1998.

  20. Renewable Energy Feasibility Study Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooney, Tim

    2013-10-30

    The Gila River Indian Community (GRIC or the Community) contracted the ANTARES Group, Inc. (“ANTARES”) to assess the feasibility of solar photovoltaic (PV) installations. A solar energy project could provide a number of benefits to the Community in terms of potential future energy savings, increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a solar project’s overall feasibility, including: Technical appropriateness; Solar resource characteristics and expected system performance; Levelized cost of electricity (LCOE) economic assessment. The Gila River Indian Community (GRIC or the Community) contracted the ANTARESmore » Group, Inc. (“ANTARES”) to prepare a biomass resource assessment study and evaluate the feasibility of a bioenergy project on Community land. A biomass project could provide a number of benefits to the Community in terms of increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a biomass project’s overall feasibility, including: Resource analysis and costs; Identification of potential bioenergy projects; Technical and economic (levelized cost of energy) modeling for selected project configuration.« less

  1. Assessment of treatment systems for highway runoff pollution control in Portugal.

    PubMed

    Barbosa, A E; Fernandes, J N

    2009-01-01

    Treatment systems for highway runoff pollution control are now common structures for environmental impacts reduction in Portugal. Such systems must be monitored and its performance periodically assessed, in order to understand if they are accomplishing the targets for environmental protection. Wise management decisions must incorporate the soundness of the project, the construction and maintenance costs, and the ability of the system to reduce the pollution to the level required for environmental protection. To gather, organize and analyse all the existing information concerning the constructed treatment systems, their operation, maintenance and efficiency were understood as a priority by the Portuguese Roads' Institute. The authors of this article were responsible for this 3 years study that finished in May 2008. A total of 27 different systems, corresponding to 13 different project types, located in different places in Portugal have been characterized and evaluated. Several conclusions could be drawn from the evaluation and recommendations were produced concerning the project, the construction and operation phases and the monitoring activities. The recommendations concern tasks to be performed and information that should be gathered and presented to the Portuguese Road's Institute. It is expected that these indications will contribute to improve the future practice in Portugal.

  2. Seasonal variability in the surface sediments of Mobile Bay, Alabama, recorded by geochemistry and foraminifera, 2009–2010

    USGS Publications Warehouse

    Umberger, D.K.; Osterman, L.E.; Smith, C.G.; Frazier, J.; Richwine, K.A.

    2012-01-01

    A study was undertaken in order to document and quantify recent environmental change in Mobile Bay, Alabama. The study was part of the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project, a regional project funded by the Coastal and Marine Geology Program to understand how natural forcings and anthropogenic modifications influence coastal ecosystems and their susceptibility to coastal hazards. Mobile Bay is a large drowned-river estuary that has been modified significantly by humans to accommodate the Port of Mobile. Examples include repeated dredging of a large shipping channel down the central axis of the bay and construction of a causeway across the head of the bay and at the foot of the bayhead delta. In addition to modifications, the bay is also known to have episodic periods of low oxygen (hypoxia) that result in significant mortality to fish and benthic organisms (May, 1973). For this study a series of surface sediment samples were collected. Surface benthic foraminiferal and bulk geochemical data provide the modern baseline conditions of the bay and can be used as a reference to changing environmental parameters in the past (Osterman and Smith, in press) and into the future. This report archives data collected as part of the Mobile Bay Study that may be used in future environmental change studies.

  3. Development of an Online Climate and Fisheries Data Dashboard for Stakeholders in the Northeast Shelf Large Marine Ecosystem

    NASA Astrophysics Data System (ADS)

    Young Morse, R.

    2016-12-01

    Fisheries managers make decisions that shape the future of ecosystems and the communities that depend on them. These decisions are often made without reference to environmental conditions, or are made assuming that past conditions (physical conditions, productivity, and species distributions) will persist. The rapid changes experienced in the Northeast Shelf Large Marine Ecosystem (NES LME), as well as the high degree of natural variability in this system, are prompting new discussions about how to incorporate environmental information into fisheries policy and management and into the industry. Through this project, we are facilitating access to fisheries and climate data for fisheries stakeholders in the Northeast through the creation of an online dynamic data dashboard. The primary goal is to make complex climate-relevant data accessible and easy to understand. Information on past, present, and future environmental conditions in the NES LME are presented in the context of fisheries dependent data. Working with marine fisheries stakeholders, including fisheries management council members, industry leaders and non-profits, we have developed a suite of open source processes and tools to acquire and subset climate relevant data from a variety of sources (satellites, sensors, models), develop long range climatologies, and display through dynamically updated interactive data visualizations. The resulting dashboard allows users to quickly assess conditions in the ocean and evaluate them in the context of past and projected change.

  4. The DEVELOP National Program's Strategy for Communicating Applied Science Outcomes

    NASA Astrophysics Data System (ADS)

    Childs-Gleason, L. M.; Ross, K. W.; Crepps, G.; Favors, J.; Kelley, C.; Miller, T. N.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.

    2016-12-01

    NASA's DEVELOP National Program conducts rapid feasibility projects that enable the future workforce and current decision makers to collaborate and build capacity to use Earth science data to enhance environmental management and policy. The program communicates its results and applications to a broad spectrum of audiences through a variety of methods: "virtual poster sessions" that engage the general public through short project videos and interactive dialogue periods, a "Campus Ambassador Corps" that communicates about the program and its projects to academia, scientific and policy conference presentations, community engagement activities and end-of-project presentations, project "hand-offs" providing results and tools to project partners, traditional publications (both gray literature and peer-reviewed), an interactive website project gallery, targeted brochures, and through multiple social media venues and campaigns. This presentation will describe the various methods employed by DEVELOP to communicate the program's scientific outputs, target audiences, general statistics, community response and best practices.

  5. NGNP Project 2011 Status and Path Forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.E. Demick

    2011-12-01

    High Temperature Gas Reactor (HTGR) technology can play an important role in the United States’ energy future by extending the use of nuclear energy for non-electricity energy production missions as well as continuing to provide a considerable base load electric power generation capability. Extending nuclear energy into the industrial and transportation sectors through the co-production of process heat and electricity provides safe and reliable energy for these sectors in an environmentally responsible manner. The safety case for the modular HTGR provides a substantial improvement in nuclear plant safety for the protection of the public and the environment, and supports collocationmore » of the HTGR with major industrial facilities. The NGNP Project at the Idaho National Laboratory has been working toward an objective of commercializing the HTGR technology under DOE direction since 2006. The Project is undergoing a quantum shift in direction and scope as a result of recent DOE decisions. This paper summarizes where the Project has been, where it is at the time of this writing and what is needed in future activities to commercialize HTGR technology.« less

  6. Scientific, Social, and Institutional Constraints Facing Coastal Restoration in Louisiana

    NASA Astrophysics Data System (ADS)

    Kleiss, B.; Shabman, L. A.; Brown, G.

    2017-12-01

    Due to multiple stressors, including subsidence, accelerated sea level rise, canal construction, tropical storm damages, and basin-wide river management decisions, southern Louisiana is experiencing some of the world's highest rates of coastal land loss. Although ideas abound, the solutions proposed to mitigate for land loss are often uncertain, complex, expensive, and difficult. There are significant scientific uncertainties associated with fundamental processes including the spatial distribution of rates of subsidence, the anticipated impacts of increased inundation on marsh plant species and questions about the resilience of engineered solutions. Socially and politically, there is the need to balance navigation, flood risk management and environmental restoration with the fact that the land involved is largely privately owned and includes many communities and towns. And layered within this, there are federal and state regulatory constraints which seek to follow a myriad of existing State and Federal laws, protect the benefits realized from previous federal investments, and balance the conflicting interests of a large number of stakeholders. Additionally, current practice when implementing some environmental regulations is to assess impacts against the baseline of current conditions, not projected future, non-project conditions, making it difficult to receive a permit for projects which may have a short-term detriment, but hope for a long-term benefit. The resolution (or lack thereof) of these issues will serve to inform similar future struggles in other low lying coastal areas around the globe.

  7. Can We Make Green Bonds An Effective Tool For Urban Carbon Management?

    NASA Astrophysics Data System (ADS)

    Yamagata, Y.; Murakami, D.

    2016-12-01

    The "Paris Agreement" requires major carbon emitting countries to conduct massive reduction efforts during the 21st century. At the same time, new carbon financing mechanisms are emerging. Among others, Green Bonds (GBs) is rapidly developing. In this paper, we discuss about the potential use of GBs for financing city level carbon management. In order to make the application effective, there are several issues to be studied with financial and environmental researchers together. Especially at city level, it is necessary to develop new GBs assessment methods to check the comprehensive environmental implications of the GBs projects. For this purpose, we discuss about the enhancement of currently developing district level Green Building standards and certification systems (LEED-ND). We also report about our new research results regarding city scale monitoring system (CO2, energy, transport, ecosystem etc.) for the reporting. *This paper is related to a Future Earth (Global Carbon Project) project proposal. It is also linked with development regarding the Knowledge Action Networks.

  8. A retrospective view of the quality of the fauna component of the Olympic Dam Project Environmental Impact Statement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, J.L.

    1994-06-01

    The merits of the fauna section of the Olympic Dam Project Environmental Impact Statement (EIS) are discussed. The values of different survey methods and monitoring organisms used in this document are evaluated following 10 years of fauna monitoring and research subsequent to the preparation of the EIS. The pilot fauna reconnaissance was found to be of little value, although the associated literature review formed an integral part of the EIS. Over 95% of all amphibian, reptile and bird species recorded at Olympic Dam were confirmed or predicted to occur in the EIS. Mammal predictions were less accurate because of themore » sparse populations and irruptive nature of several arid-zone species. Prediction and monitoring of rare species were demonstrably difficult. The Olympic Dam Project EIS was found in general to be an accurate and useful document. However, it is suggested that more emphasis be placed on establishing monitoring programmes for future EISs, particularly for invertebrates. 35 refs., 1 fig., 3 tabs.« less

  9. JPL Test Effectiveness Analysis

    NASA Technical Reports Server (NTRS)

    Shreck, Stephanie; Sharratt, Stephen; Smith, Joseph F.; Strong, Edward

    2008-01-01

    1) The pilot study provided meaningful conclusions that are generally consistent with the earlier Test Effectiveness work done between 1992 and 1994: a) Analysis of pre-launch problem/failure reports is consistent with earlier work. b) Analysis of post-launch early mission anomaly reports indicates that there are more software issues in newer missions, and the no-test category for identification of post-launch failures is more significant than in the earlier analysis. 2) Future work includes understanding how differences in Missions effect these analyses: a) There are large variations in the number of problem reports and issues that are documented by the different Projects/Missions. b) Some missions do not have any reported environmental test anomalies, even though environmental tests were performed. 3) Each project/mission has different standards and conventions for filling out the PFR forms, the industry may wish to address this issue: a) Existing problem reporting forms are to document and track problems, failures, and issues (etc.) for the projects, to ensure high quality. b) Existing problem reporting forms are not intended for data mining.

  10. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: A comparison of two fire-vegetation models

    NASA Astrophysics Data System (ADS)

    Wu, Minchao; Knorr, Wolfgang; Thonicke, Kirsten; Schurgers, Guy; Camia, Andrea; Arneth, Almut

    2015-11-01

    Global environmental changes and human activity influence wildland fires worldwide, but the relative importance of the individual factors varies regionally and their interplay can be difficult to disentangle. Here we evaluate projected future changes in burned area at the European and sub-European scale, and we investigate uncertainties in the relative importance of the determining factors. We simulated future burned area with LPJ-GUESS-SIMFIRE, a patch-dynamic global vegetation model with a semiempirical fire model, and LPJmL-SPITFIRE, a dynamic global vegetation model with a process-based fire model. Applying a range of future projections that combine different scenarios for climate changes, enhanced CO2 concentrations, and population growth, we investigated the individual and combined effects of these drivers on the total area and regions affected by fire in the 21st century. The two models differed notably with respect to the dominating drivers and underlying processes. Fire-vegetation interactions and socioeconomic effects emerged as important uncertainties for future burned area in some European regions. Burned area of eastern Europe increased in both models, pointing at an emerging new fire-prone region that should gain further attention for future fire management.

  11. Integrating Environmental and Information Systems Management: An Enterprise Architecture Approach

    NASA Astrophysics Data System (ADS)

    Noran, Ovidiu

    Environmental responsibility is fast becoming an important aspect of strategic management as the reality of climate change settles in and relevant regulations are expected to tighten significantly in the near future. Many businesses react to this challenge by implementing environmental reporting and management systems. However, the environmental initiative is often not properly integrated in the overall business strategy and its information system (IS) and as a result the management does not have timely access to (appropriately aggregated) environmental information. This chapter argues for the benefit of integrating the environmental management (EM) project into the ongoing enterprise architecture (EA) initiative present in all successful companies. This is done by demonstrating how a reference architecture framework and a meta-methodology using EA artefacts can be used to co-design the EM system, the organisation and its IS in order to achieve a much needed synergy.

  12. Evolution of environmental impact assessment as applied to watershed modification projects in Canada

    NASA Astrophysics Data System (ADS)

    Dirschl, Herman J.; Novakowski, Nicholas S.; Sadar, M. Husain

    1993-07-01

    This article reviews the application of environmental impact assessment (EIA) procedures and practices to three watershed modification projects situaled in western Canada. These ventures were justified for accelerating regional economic development, and cover the period during which public concerns for protecting the environment rapidly made their way into the national political agenda. An historical account and analysis of the situation, therefore, seems desirable in order to understand the development of EIA processes, practices, and methodologies since the start of construction of the first project in 1961. This study concludes that there has been good progress in predicting and evaluating environmental and related social impacts of watershed modification proposals. However, a number of obstacles need to be overcome before EIA can firmly establish itself as an effective planning tool. These difficulties include jurisdictional confusions and conflicts, division of authority and responsibility in designing and implementing appropriate mitigative and monitoring measures, lack of tested EIA methodologies, and limited availability of qualified human resources. A number of conclusions and suggestions are offered so that future watershed modification proposals may be planned and implemented in a more environmentally sustainable fashion. These include: (1) EIA processes must be completed before irrevocable decisions are made. (2) Any major intrusion into a watershed is likely to impact on some major components of the ecosystem(s). (3) Mitigation costs must form part of the benefit-cost analysis of any project proposal. (4) Interjurisdictional cooperation is imperative where watersheds cross political boundaries. (5) The EIA process is a public process, hence public concerns must be dealt with fairly. (6) The role of science in the EIA process must be at arms length from project proponents and regulators, and allowed to function in the interest of the protection of the environment and public health and safety.

  13. Warm climates of the past—a lesson for the future?

    PubMed Central

    Lunt, D. J.; Elderfield, H.; Pancost, R.; Ridgwell, A.; Foster, G. L.; Haywood, A.; Kiehl, J.; Sagoo, N.; Shields, C.; Stone, E. J.; Valdes, P.

    2013-01-01

    This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10–11 October 2011. The Discussion Meeting, entitled ‘Warm climates of the past: a lesson for the future?’, brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change. PMID:24043873

  14. Warm climates of the past--a lesson for the future?

    PubMed

    Lunt, D J; Elderfield, H; Pancost, R; Ridgwell, A; Foster, G L; Haywood, A; Kiehl, J; Sagoo, N; Shields, C; Stone, E J; Valdes, P

    2013-10-28

    This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10-11 October 2011. The Discussion Meeting, entitled 'Warm climates of the past: a lesson for the future?', brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change.

  15. Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models.

    PubMed

    Oke, Tobi A; Hager, Heather A

    2017-01-01

    The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity.

  16. Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models

    PubMed Central

    Oke, Tobi A.; Hager, Heather A.

    2017-01-01

    The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity. PMID:28426754

  17. Planning for the Future on Spaceship Earth. Environmental Ecological Education Project. Revised.

    ERIC Educational Resources Information Center

    Parkway School District, Chesterfield, MO.

    This unit, designed for upper elementary school students, examines the role of the individual in society in determining the status of the environment. Viewing the earth as an ecosystem, it looks at past and present human events that have influenced the quality of the environment and attempts to provide students with an awareness of the knowledge…

  18. International Collaboration on Offshore Wind Energy Under IEA Annex XXIII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, W.; Butterfield, S.; Lemming, J.

    This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.

  19. High resolution global climate modelling; the UPSCALE project, a large simulation campaign

    NASA Astrophysics Data System (ADS)

    Mizielinski, M. S.; Roberts, M. J.; Vidale, P. L.; Schiemann, R.; Demory, M.-E.; Strachan, J.; Edwards, T.; Stephens, A.; Lawrence, B. N.; Pritchard, M.; Chiu, P.; Iwi, A.; Churchill, J.; del Cano Novales, C.; Kettleborough, J.; Roseblade, W.; Selwood, P.; Foster, M.; Glover, M.; Malcolm, A.

    2014-01-01

    The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley centre Global Environment Model 3) atmosphere-only global climate simulations over the period 1985-2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environmental Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the high performance computing center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE dataset. This dataset is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

  20. Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin

    USGS Publications Warehouse

    Reynolds, Lindsay V.; Shafroth, Patrick B.

    2016-01-20

    Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.

  1. An assessment of global meteorological droughts based on HAPPI experiments

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Sun, Fubao; Lim, Wee Ho; Zhang, Jie

    2017-04-01

    Droughts caused water shortages could lead to serious consequences on the socioeconomic and environmental well-being. In the context of changing climate, droughts monitoring, attributions and impact assessments have been performed using observations (e.g., Sun et al., 2012; Zhang et al., 2016) and climate model projections (e.g., Liu et al., 2016, 2017); with expectation that such scientific knowledge would feed into long-term adaptation and mitigation plans to tackle potentially unfavorable future drought impacts in a warming world. Inspired by the 2015 Paris Agreement, the HAPPI (Half a degree Additional warming, Projections, Prognosis and Impacts) experiments were set up to better inform international policymakers about the socioeconomic and environmental impacts under less severe global warming conditions. This study aims to understand the potential shift in meteorological droughts from the past into the future on a global scale. Based on the HAPPI data, we evaluate the change in drought related indices (i.e., PET/P, PDSI) from the past to the future scenarios (1.5 and 2 degrees Celsius warming). Here we present some early results (MIROC5 as demonstration) on identified hotspots and discuss the differences in severity of droughts between these warming worlds and associated consequences. References: Liu W, and Sun F, 2017. Projecting and attributing future changes of evaporative demand over China in CMIP5 climate models, Journal of Hydrometeorology, doi: 10.1175/JHM-D-16-0204.1 Liu W, and Sun F, 2016. Assessing estimates of evaporative demand in climate models using observed pan evaporation over China. Journal of Geophysical Research-Atmosphere 121, 8329-8349 Zhang J, Sun F, Xu J, Chen Y, Sang Y, -F, and Liu C, 2016. Dependence of trends in and sensitivity of drought over China (1961-2013) on potential evaporation model. Geophysical Research Letters 43, 206-213 Sun F, Roderick M, Farquhar G, 2012. Changes in the variability of global land precipitation. Geophysical Research Letters 39, L19402

  2. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification

    PubMed Central

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-01-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40–70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered ‘marginal’ for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral reef ecosystems is essential to their conservation and management under a changing climate. PMID:23893550

  3. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification.

    PubMed

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-12-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40-70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered 'marginal' for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral reef ecosystems is essential to their conservation and management under a changing climate. © 2013 John Wiley & Sons Ltd.

  4. Eating beyond metabolic need: how environmental cues influence feeding behavior.

    PubMed

    Johnson, Alexander W

    2013-02-01

    Animals use current, past, and projected future states of the organism and the world in a finely tuned system to control ingestion. They must not only deal effectively with current nutrient deficiencies, but also manage energy resources to meet future needs, all within the constraints of the mechanisms of metabolism. Many recent approaches to understanding the control of ingestive behavior distinguish between homeostatic mechanisms concerned with energy balance, and hedonic and incentive processes based on palatability and reward characteristics of food. In this review, I consider how learning about environmental cues influences homeostatic and hedonic brain signals, which may lead to increases in the affective taste properties of food and desire to over consume. Understanding these mechanisms may be critical for elucidating the etiology of the obesity epidemic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Integrated environmental impact assessment: a Canadian example.

    PubMed Central

    Kwiatkowski, Roy E.; Ooi, Maria

    2003-01-01

    The Canadian federal process for environmental impact assessment (EIA) integrates health, social, and environmental aspects into either a screening, comprehensive study, or a review by a public panel, depending on the expected severity of potential adverse environmental effects. In this example, a Public Review Panel considered a proposed diamond mining project in Canada's northern territories, where 50% of the population are Aboriginals. The Panel specifically instructed the project proposer to determine how to incorporate traditional knowledge into the gathering of baseline information, preparing impact prediction, and planning mitigation and monitoring. Traditional knowledge is defined as the knowledge, innovations and practices of indigenous and/or local communities developed from experience gained over the centuries and adapted to local culture and environment. The mining company was asked to consider in its EIA: health, demographics, social and cultural patterns; services and infrastructure; local, regional and territorial economy; land and resource use; employment, education and training; government; and other matters. Cooperative efforts between government, industry and the community led to a project that coordinated the concerns of all interested stakeholders and the needs of present and future generations, thereby meeting the goals of sustainable development. The mitigation measures that were implemented take into account: income and social status, social support networks, education, employment and working conditions, physical environments, personal health practices and coping skills, and health services. PMID:12894328

  6. Environmental Control and Life Support System Reliability for Long-Duration Missions Beyond Lower Earth Orbit

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.; Nelson, Jason R.

    2014-01-01

    NASA has highlighted reliability as critical to future human space exploration, particularly in the area of environmental controls and life support systems. The Advanced Exploration Systems (AES) projects have been encouraged to pursue higher reliability components and systems as part of technology development plans. However, no consensus has been reached on what is meant by improving on reliability, or on how to assess reliability within the AES projects. This became apparent when trying to assess reliability as one of several figures of merit for a regenerable water architecture trade study. In the spring of 2013, the AES Water Recovery Project hosted a series of events at Johnson Space Center with the intended goal of establishing a common language and understanding of NASA's reliability goals, and equipping the projects with acceptable means of assessing the respective systems. This campaign included an educational series in which experts from across the agency and academia provided information on terminology, tools, and techniques associated with evaluating and designing for system reliability. The campaign culminated in a workshop that included members of the Environmental Control and Life Support System and AES communities. The goal of this workshop was to develop a consensus on what reliability means to AES and identify methods for assessing low- to mid-technology readiness level technologies for reliability. This paper details the results of that workshop.

  7. Assessing Hydrologic Impacts of Future Land Cover Change ...

    EPA Pesticide Factsheets

    Long‐term land‐use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed on the San Pedro River Basin to characterize hydrologic impacts from future urban growth through time. This methodology was then expanded and utilized to characterize the changing hydrology on the South Platte River Basin. Future urban growth is represented by housingdensity maps generated in decadal intervals from 2010 to 2100, produced by the U.S. Environmental Protection Agency (EPA) Integrated Climate and Land‐Use Scenarios (ICLUS) project. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize hydrologic impacts from future growth, the housing density maps were reclassified to National Land Cover Database (NLCD) 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The objectives of this project were to 1) develop and describe a methodology for adapting the ICLUS data for use in AGWA as anapproach to evaluate basin‐wide impacts of development on water‐quantity and ‐quality, 2) present initial results from the application of the methodology to

  8. Social Science Collaboration with Environmental Health.

    PubMed

    Hoover, Elizabeth; Renauld, Mia; Edelstein, Michael R; Brown, Phil

    2015-11-01

    Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice. We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS). We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science. Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science-environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications. A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure. Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social science collaboration with environmental health. Environ Health Perspect 123:1100-1106; http://dx.doi.org/10.1289/ehp.1409283.

  9. Social Science Collaboration with Environmental Health

    PubMed Central

    Hoover, Elizabeth; Renauld, Mia; Edelstein, Michael R.

    2015-01-01

    Background Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice. Objective We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS). Methods We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science. Results Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science–environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications. Conclusions A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure. Citation Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social science collaboration with environmental health. Environ Health Perspect 123:1100–1106; http://dx.doi.org/10.1289/ehp.1409283 PMID:25966491

  10. Sea Changes - ACT : Artists and Scientists collaborating to promote ocean activism and conservation. (www.seachanges.org)

    NASA Astrophysics Data System (ADS)

    Lueker, T.

    2012-12-01

    We are a group of ocean scientists, artists, and educators working to publicize the urgent environmental problems facing our ocean environs, including overfishing, climate change and ocean acidification, and environmental degradation due to plastic and other forms of pollution. Our team leader, Kira Carrillo Corser, is an artist and educator known nationally for affecting policy and social change. Our collaboration results from the DNA of Creativity Project - the brainchild of Patricia Frischer, co-ordinator for the San Diego Visual Arts Network (http://dnaofc.weebly.com). The DNA of Creativity funded teams composed of artists and scientists with the goal of fusing the creative energies of both into projects that will enhance the public's perception of creativity, and make the complexities of art and science collaborations accessible to a new and larger audience. Sea Changes - ACT was funded initially by the DNA of Creativity Project. Our project goals are : 1) To entice people to participate in the joys of discovery of art AND science and 2) To motivate the public to work for real, committed and innovative change to protect our oceans. Part of our strategy for achieving our goals is to create a traveling art installation to illustrate the beauty of the oceans and to instill in our viewers the joys of discovery and creativity that we as scientists and artists pursue. And following this, to make the destructive changes occurring in the ocean and the future consequences more visible and understandable. We will develop lesson plans to integrate our ideas into the educational system and we are documenting our collaborative and creative process to inform future art-science collaborations. Finally, after emotionally connecting with our viewers to provide a means to ACT to make real and positive CHANGES for the future. Our project aims to build commitment and action for environmental conservation and stewardship as we combine scientific research with ways to take action, Our viewers, given a list of potential actions, internet connected computers and interactive websites can contact politicians and community leaders, as we document actions taken. In this presentation I will introduce the members of our team and provide examples of the type of synergistic ideas the combination of artist and scientist can provide. I will describe our goals and how we have, or plan to achieve them. And I will detail the process whereby we as artists and scientists working together we can improve on delivering important messages to members of the public and build a community of understanding.

  11. Future of the geoscience profession

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carleton, A.T.

    1995-05-01

    I want to discuss the future of the energy industry and the geoscience profession. That`s you and me. Is there a future for us? Will there be a need for petroleum? What will we use for energy in the future? Over the past several years, those of us in the energy business have witnessed remarkable changes in our industry and our profession. We must be able to change with the conditions if we are to survive them. To do so, some idea of what the future holds is essential. I will discuss what that future may be and will covermore » these topics: world population and energy demand, exploration and production outlook, environmental considerations, geoscience demographics, education, technology, and government. Much of the statistical data and some of the projections I will discuss have been taken from the report of AAPG`s 21st Century Committee, of which I was a member.« less

  12. Pathogen-Host Associations and Predicted Range Shifts of Human Monkeypox in Response to Climate Change in Central Africa

    PubMed Central

    Thomassen, Henri A.; Fuller, Trevon; Asefi-Najafabady, Salvi; Shiplacoff, Julia A. G.; Mulembakani, Prime M.; Blumberg, Seth; Johnston, Sara C.; Kisalu, Neville K.; Kinkela, Timothée L.; Fair, Joseph N.; Wolfe, Nathan D.; Shongo, Robert L.; LeBreton, Matthew; Meyer, Hermann; Wright, Linda L.; Muyembe, Jean-Jacques; Buermann, Wolfgang; Okitolonda, Emile; Hensley, Lisa E.; Lloyd-Smith, James O.; Smith, Thomas B.; Rimoin, Anne W.

    2013-01-01

    Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts. PMID:23935820

  13. Abundance of adverse environmental conditions during critical stages of crop production in Northern Germany.

    PubMed

    Strer, Maximilian; Svoboda, Nikolai; Herrmann, Antje

    2018-01-01

    Understanding the abundance of adverse environmental conditions e.g. frost, drought, and heat during critical crop growth stages, which are assumed to be altered by climate change, is crucial for an accurate risk assessment for cropping systems. While a lengthening of the vegetation period may be beneficial, higher frequencies of heat or frost events and drought spells are generally regarded as harmful. The objective of the present study was to quantify shifts in maize and wheat phenology and the occurrence of adverse environmental conditions during critical growth stages for four regions located in the North German Plain. First, a statistical analysis of phenological development was conducted based on recent data (1981-2010). Next, these data were used to calibrate the DSSAT-CERES wheat and maize models, which were then used to run three climate projections representing the maximum, intermediate and minimum courses of climate development within the RCP 8.5 continuum during the years 2021-2050. By means of model simulation runs and statistical analysis, the climate data were evaluated for the abundance of adverse environmental conditions during critical development stages, i.e. the stages of early crop development, anthesis, sowing and harvest. Proxies for adverse environmental conditions included thresholds of low and high temperatures as well as soil moisture. The comparison of the baseline climate and future climate projections showed a significant increase in the abundance of adverse environmental conditions during critical growth stages in the future. The lengthening of the vegetation period in spring did not compensate for the increased abundance of high temperatures, e.g. during anthesis. The results of this study indicate the need to develop adaptation strategies, such as implementing changes in cropping calendars. An increase in frost risk during early development, however, reveals the limited feasibility of early sowing as a mitigation strategy. In addition, the abundance of low soil water contents that hamper important production processes such as sowing and harvest were found to increase locally.

  14. Projecting temperature-related years of life lost under different climate change scenarios in one temperate megacity, China.

    PubMed

    Li, Yixue; Li, Guoxing; Zeng, Qiang; Liang, Fengchao; Pan, Xiaochuan

    2018-02-01

    Temperature has been associated with population health, but few studies have projected the future temperature-related years of life lost attributable to climate change. To project future temperature-related disease burden in Tianjin, we selected years of life lost (YLL) as the dependent variable to explore YLL attributable to climate change. A generalized linear model (GLM) and distributed lag non-linear model were combined to assess the non-linear and delayed effects of temperature on the YLL of non-accidental mortality. Then, we calculated the YLL changes attributable to future climate scenarios in 2055 and 2090. The relationships of daily mean temperature with the YLL of non-accident mortality were basically U-shaped. Both the daily mean temperature increase on high-temperature days and its drop on low-temperature days caused an increase of YLL and non-accidental deaths. The temperature-related YLL will worsen if future climate change exceeds 2 °C. In addition, the adverse effects of extreme temperature on YLL occurred more quickly than that of the overall temperature. The impact of low temperature was greater than that of high temperature. Men were vulnerable to high temperature compared with women. This analysis highlights that the government should formulate environmental policies to reach the Paris Agreement goal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Latest developments for low-power infrared laser-based trace gas sensors for sensor networks

    NASA Astrophysics Data System (ADS)

    So, Stephen; Thomazy, David; Wang, Wen; Marchat, Oscar; Wysocki, Gerard

    2011-09-01

    Academic and industrial researchers require ultra-low power, compact laser based trace-gas sensor systems for the most demanding environmental and space-borne applications. Here the latest results from research projects addressing these applications will be discussed: 1) an ultra-compact CO2 sensor based on a continuous wave quantum cascade laser, 2) an ultra-sensitive Faraday rotation spectrometer for O2 detection, 3) a fully ruggedized compact and low-power laser spectrometer, and 4) a novel non-paraxial nonthin multipass cell. Preliminary tests and projection for performance of future sensors based on this technology is presented.

  16. GPS survey of the western Tien Shan

    NASA Technical Reports Server (NTRS)

    Molnar, Peter H.

    1994-01-01

    This report summarizes the background, field work, data collection and analysis, and future plans associated with a collaborative GPS experiment in the Tien Shan of the former Soviet Union. This project involves the amalgamation of two, separately funded projects, which were proposed separately by PIs Hamburger and Reilinger (NSF number EAR-9115159 and NASA number NAG5-1941) and Molnar and Hager (NSF number EAR9117889 and NASA number NAG5-1947). In addition, the work is being conducted under the auspices of the US-USSR Agreement on Cooperation in the Field of Environmental Protection, with support from the United States Geological Survey.

  17. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.

    1995-03-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated.more » The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.« less

  18. [The inclusion of health in environmental impact studies: case report of a coal-fired power plant in Ceará State].

    PubMed

    Rigotto, Raquel Maria

    2009-01-01

    The study discusses the inclusion of health in the evaluation of environmental impacts to allow actors potentially involved in decision-making to determine the need and technological and geographic adequacy of projects ahead of implementation. The point of departure was a request from the Public Attorney to the Federal University of Ceará to analyze the project of a coal-fired power plant to be built within the Port of Pecém Industrial Compound in Ceará State, Brazil. The methodology included a description of the social and historical context of the area, a bibliographical study of health and environmental impacts and dialogues with affected communities, followed by an analysis of state environmental guidelines for this type of enterprise. The results shows the main categories of analysis identified and proposed additions to current regulations intended to anticipate relations between production processes, the environment and an uneven distribution of health impacts. Besides, it also assesses the need to advance the development of the approach in order to subsidize and democratize decision-making processes closer to actual circumstances in the present and near future.

  19. Testing the robustness of management decisions to uncertainty: Everglades restoration scenarios.

    PubMed

    Fuller, Michael M; Gross, Louis J; Duke-Sylvester, Scott M; Palmer, Mark

    2008-04-01

    To effectively manage large natural reserves, resource managers must prepare for future contingencies while balancing the often conflicting priorities of different stakeholders. To deal with these issues, managers routinely employ models to project the response of ecosystems to different scenarios that represent alternative management plans or environmental forecasts. Scenario analysis is often used to rank such alternatives to aid the decision making process. However, model projections are subject to uncertainty in assumptions about model structure, parameter values, environmental inputs, and subcomponent interactions. We introduce an approach for testing the robustness of model-based management decisions to the uncertainty inherent in complex ecological models and their inputs. We use relative assessment to quantify the relative impacts of uncertainty on scenario ranking. To illustrate our approach we consider uncertainty in parameter values and uncertainty in input data, with specific examples drawn from the Florida Everglades restoration project. Our examples focus on two alternative 30-year hydrologic management plans that were ranked according to their overall impacts on wildlife habitat potential. We tested the assumption that varying the parameter settings and inputs of habitat index models does not change the rank order of the hydrologic plans. We compared the average projected index of habitat potential for four endemic species and two wading-bird guilds to rank the plans, accounting for variations in parameter settings and water level inputs associated with hypothetical future climates. Indices of habitat potential were based on projections from spatially explicit models that are closely tied to hydrology. For the American alligator, the rank order of the hydrologic plans was unaffected by substantial variation in model parameters. By contrast, simulated major shifts in water levels led to reversals in the ranks of the hydrologic plans in 24.1-30.6% of the projections for the wading bird guilds and several individual species. By exposing the differential effects of uncertainty, relative assessment can help resource managers assess the robustness of scenario choice in model-based policy decisions.

  20. Geosphere-biosphere interactions in European Protected Areas: a view from the H2020 ECOPOTENTIAL Project

    NASA Astrophysics Data System (ADS)

    Provenzale, Antonello; Beierkuhnlein, Carl; Karnieli, Arnon; Marangi, Carmela; Giamberini, Mariasilvia; Imperio, Simona

    2017-04-01

    The large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, contributing to GEO and GEOSS - http://www.ecopotential-project.eu/) is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, adopting the view of ecosystems as one physical system with their environment, focusing on geosphere-biosphere interactions, Earth Critical Zone dynamics, Macrosystem Ecology and cross-scale interactions, the effect of extreme events and using Essential (Climate, Biodiversity and Ocean) Variables as descriptors of change. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems. The project focuses on a network of Protected Areas of international relevance, that is representative of the range of environmental and biogeographical conditions characterizing Europe. Some of the activities of the project are devoted to detect and quantify the changes taking place in the Protected Areas, through the analysis of remote sensing observations, in-situ data and gridded climatic datasets. Likewise, the project aims at providing estimates of the future ecosystem conditions in different climate and environmental change scenarios. In all such endeavours, one is faced with cross-scale issues: downscaling of climate information to drive ecosystem response, and upscaling of local ecosystem changes to larger scales. So far, the analysis has been conducted mainly by using traditional methods, but there is wide room for improvement by using more refined approaches. In particular, a crucial question is how to upscale the information gained at single-site scale to larger, regional or continental scale, an issue that could benefit from using, for example, complex network analysis.

  1. Final Environmental Impact Statement. Disposal and Reuse of Norton Air Force Base, California

    DTIC Science & Technology

    1993-06-01

    transportation, utilities, hazardous materials/wastes, soils and geology, water resources, air quality, noise, biological resources, and cultural resources...as project-related influencing factors. Issues related to current and future management of hazardous materials and wastes are also discussed...34 Hazardous Materials/ Hazardous Waste Management (Sections 3.3 and 4.3) includes expanded discussions on the following: - FFA schedule moved from

  2. Pathogenesis and Prediction of Future Rheumatoid Arthritis

    DTIC Science & Technology

    2014-10-01

    characterized by abnormalities of the immune system prior to the onset of the clinically apparent inflammatory joint disease that currently defines RA. The...the clinically apparent inflammatory joint disease that currently defines RA. The primary goal of this project is to investigate this preclinical...environmental exposures such as smoking, periodontal disease were ascertained. Goal 2. Local and governmental IRB approvals, and HRPO approval, were obtained

  3. Projected changes to short- and long-duration precipitation extremes over the Canadian Prairie Provinces

    NASA Astrophysics Data System (ADS)

    Masud, M. B.; Khaliq, M. N.; Wheater, H. S.

    2017-09-01

    The effects of climate change on April-October short- and long-duration precipitation extremes over the Canadian Prairie Provinces were evaluated using a multi-Regional Climate Model (RCM) ensemble available through the North American Regional Climate Change Assessment Program. Simulations considered include those performed with six RCMs driven by the National Centre for Environmental Prediction (NCEP) reanalysis II product for the 1981-2000 period and those driven by four Atmosphere-Ocean General Circulation Models (AOGCMs) for the current 1971-2000 and future 2041-2070 periods (i.e. a total of 11 current-to-future period simulation pairs). A regional frequency analysis approach was used to develop 2-, 5-, 10-, 25-, and 50-year return values of precipitation extremes from NCEP and AOGCM-driven current and future period simulations that respectively were used to study the performance of RCMs and projected changes for selected return values at regional, grid-cell and local scales. Performance errors due to internal dynamics and physics of RCMs studied for the 1981-2000 period reveal considerable variation in the performance of the RCMs. However, the performance errors were found to be much smaller for RCM ensemble averages than for individual RCMs. Projected changes in future climate to selected regional return values of short-duration (e.g. 15- and 30-min) precipitation extremes and for longer return periods (e.g. 50-year) were found to be mostly larger than those to the longer duration (e.g. 24- and 48-h) extremes and short return periods (e.g. 2-year). Overall, projected changes in precipitation extremes were larger for southeastern regions followed by southern and northern regions and smaller for southwestern and western regions of the study area. The changes to return values were also found to be statistically significant for the majority of the RCM-AOGCM simulation pairs. These projections might be useful as a key input for the future planning of urban drainage infrastructure and development of strategic climate change adaptation measures.

  4. An ecosystem services framework to support both practical conservation and economic development.

    PubMed

    Tallis, Heather; Kareiva, Peter; Marvier, Michelle; Chang, Amy

    2008-07-15

    The core idea of the Millennium Ecosystem Assessment is that the human condition is tightly linked to environmental condition. This assertion suggests that conservation and development projects should be able to achieve both ecological and social progress without detracting from their primary objectives. Whereas "win-win" projects that achieve both conservation and economic gains are a commendable goal, they are not easy to attain. An analysis of World Bank projects with objectives of alleviating poverty and protecting biodiversity revealed that only 16% made major progress on both objectives. Here, we provide a framework for anticipating win-win, lose-lose, and win-lose outcomes as a result of how people manage their ecosystem services. This framework emerges from detailed explorations of several case studies in which biodiversity conservation and economic development coincide and cases in which there is joint failure. We emphasize that scientific advances around ecosystem service production functions, tradeoffs among multiple ecosystem services, and the design of appropriate monitoring programs are necessary for the implementation of conservation and development projects that will successfully advance both environmental and social goals. The potentially bright future of jointly advancing ecosystem services, conservation, and human well-being will be jeopardized unless a global monitoring effort is launched that uses the many ongoing projects as a grand experiment.

  5. An ecosystem services framework to support both practical conservation and economic development

    PubMed Central

    Tallis, Heather; Kareiva, Peter; Marvier, Michelle; Chang, Amy

    2008-01-01

    The core idea of the Millennium Ecosystem Assessment is that the human condition is tightly linked to environmental condition. This assertion suggests that conservation and development projects should be able to achieve both ecological and social progress without detracting from their primary objectives. Whereas “win–win” projects that achieve both conservation and economic gains are a commendable goal, they are not easy to attain. An analysis of World Bank projects with objectives of alleviating poverty and protecting biodiversity revealed that only 16% made major progress on both objectives. Here, we provide a framework for anticipating win–win, lose–lose, and win–lose outcomes as a result of how people manage their ecosystem services. This framework emerges from detailed explorations of several case studies in which biodiversity conservation and economic development coincide and cases in which there is joint failure. We emphasize that scientific advances around ecosystem service production functions, tradeoffs among multiple ecosystem services, and the design of appropriate monitoring programs are necessary for the implementation of conservation and development projects that will successfully advance both environmental and social goals. The potentially bright future of jointly advancing ecosystem services, conservation, and human well-being will be jeopardized unless a global monitoring effort is launched that uses the many ongoing projects as a grand experiment. PMID:18621702

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none, none; Tuchman, Nancy

    The U.S. Department of Energy awarded Loyola University Chicago and the Institute of Environmental Sustainability (IES) $486,000.00 for the proposal entitled “Chicago clean air, clean water project: Environmental monitoring for a healthy, sustainable urban future.” The project supported the purchase of analytical instruments for the development of an environmental analytical laboratory. The analytical laboratory is designed to support the testing of field water and soil samples for nutrients, industrial pollutants, heavy metals, and agricultural toxins, with special emphasis on testing Chicago regional soils and water affected by coal-based industry. Since the award was made in 2010, the IES has beenmore » launched (fall 2013), and the IES acquired a new state-of-the-art research and education facility on Loyola University Chicago’s Lakeshore campus. Two labs were included in the research and education facility. The second floor lab is the Ecology Laboratory where lab experiments and analyses are conducted on soil, plant, and water samples. The third floor lab is the Environmental Toxicology Lab where lab experiments on environmental toxins are conducted, as well as analytical tests conducted on water, soil, and plants. On the south end of the Environmental Toxicology Lab is the analytical instrumentation collection purchased from the present DOE grant, which is overseen by a full time Analytical Chemist (hired January 2016), who maintains the instruments, conducts analyses on samples, and helps to train faculty and undergraduate and graduate student researchers.« less

  7. Environmental Resources of Selected Areas of Hawaii: Socioeconomics (DRAFT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saulsbury, J.W.; Sorensen, B.M.; Schexnayder, S.M.

    1994-06-01

    This report has been prepared to make available and archive the background information on socioeconomic resources collected during the preparation of the Environmental Impact Statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed. Regis. 5925638), withdrawing its Notice of Intent (Fed Regis. 57:5433), of February 14, 1992, to prepare the HGPEIS. Since the state of Hawaii is no longer pursuing or planning to pursuemore » the HGP, DOE considers the project to be terminated. This document provides background information on socioeconomic resources in Hawaii County, with particular emphasis on the Puna District (Fig. 1). Information is being made available for use by others in conducting future socioeconomic impact assessments in this area. This report describes existing socioeconomic resources in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts. The socioeconomic resources described are primarily those that would be affected by employment and population growth associated with any future large-scale development. These resource categories are (1) population, (2) housing, (3) land use, (4) economic structure (primarily employment and income), (5) infrastructure and public services (education, ground transportation, police and fire protection, water, wastewater, solid waste disposal, electricity, and emergency planning), (6) local government revenues and expenditures, and (7) tourism and recreation.« less

  8. FutureCoast: "Listen to your futures"

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Eklund, K.; Thacher, S.; Orlove, B. S.; Diane Stovall-Soto, G.; Brunacini, J.; Hernandez, T.

    2014-12-01

    Two science-arts approaches are emerging as effective means to convey "futurethinking" to learners: systems gaming and experiential futures. FutureCoast exemplifies the latter: by engaging participants with voicemails supposedly leaking from the cloud of possible futures, the storymaking game frames the complexities of climate science in relatable contexts. Because participants make the voicemails themselves, FutureCoast opens up creative ways for people to think about possibly climate-changed futures and personal ways to talk about them. FutureCoast is a project of the PoLAR Partnership with a target audience of informal adult learners primarily reached via mobile devices and online platforms. Scientists increasingly use scenarios and storylines as ways to explore the implications of environmental change and societal choices. Stories help people make connections across experiences and disciplines and link large-scale events to personal consequences. By making the future seem real today, FutureCoast's framework helps people visualize and plan for future climate changes. The voicemails contributed to FutureCoast are spread through the game's intended timeframe (2020 through 2065). Based on initial content analysis of voicemail text, common themes include ecosystems and landscapes, weather, technology, societal issues, governance and policy. Other issues somewhat less frequently discussed include security, food, industry and business, health, energy, infrastructure, water, economy, and migration. Further voicemail analysis is examining: temporal dimensions (salient time frames, short vs. long term issues, intergenerational, etc.), content (adaptation vs. mitigation, challenges vs. opportunities, etc.), and emotion (hopeful, resigned, etc. and overall emotional context). FutureCoast also engaged audiences through facilitated in-person experiences, geocaching events, and social media (Tumblr, Twitter, Facebook, YouTube). Analysis of the project suggests story-based games such as FutureCoast can serve as effective, accessible tools for engaging diverse audiences in thinking and talking about future "what if?" scenarios related to climate change and its impacts.

  9. A web-based spatial decision support system for spatial planning and governance in the Guangdong Province

    NASA Astrophysics Data System (ADS)

    Wu, Qitao; Zhang, Hong-ou; Chen, Fengui; Dou, Jie

    2008-10-01

    After three decades' rapid economic development, Guangdong province faces to thorny problems related to pollution, resource shortage and environmental deterioration. What is worse, the future accelerated development, urbanization and industrialization also comes at the cost of regional imbalance with economic gaps growing and the quality of life in different regions degrading. Development and Reform Commission of Guangdong Province (GDDRC) started a spatial planning project under the national frame in 2007. The prospective project is expected to enhance the equality of different regions and balance the economic development with environmental protection and improved sustainability. This manuscript presents the results of scientific research aiming to develop a Spatial Decision Support System (SDSS) for this spatial planning project. The system composes four modules include the User interface module (UIM), Spatial Analyze module (SAM), Database management module (DMM) and Help module (HM) base on ArcInfo, JSP/Servlet, JavaScript, MapServer, Visual C++ and Visual Basic technologies. The web-based SDSS provides a user-friendly tool for local decision makers, regional planners and other stakeholders in understanding and visualizing the different territorial dimensions of economic development against sustainable environmental and exhausted resources, and in defining, comparing and prioritizing specific territorially-based actions in order to prevent non-sustainable development and implement relevant politics.

  10. A computational framework for supporting environmental ...

    EPA Pesticide Factsheets

    GLIMPSE is a effort in which the U.S. EPA Office of Research and Development is developing tools to support long-term, coordinated environmental, climate, and energy planning. The purpose of this presentation is to discuss the underlying science questions; provide an overview of current and future GLIMPSE capabilities; introduce GCAM, the computational engine behind GLIMPSE; and, highlight relevant activities in China, including the ABaCAS framework and GCAM-China. A group of Chinese visitors will be on the EPA RTP campus July 28, 9-noon. The visitors are from the PowerChina Huadong Engineering Corporation (weblink is here: http://www.ecidi.com/en/introduction.aspx) and are in US for a training program at Duke. The group is interested in broad management topics such as international business development and managing environmental projects as well as interacting with practitioners to understand “real world” case studies and issues. Their background is primarily related to hydro power but their corporate mission is “Providing engineering services and promoting harmonious development between Man and Nature,” implying a broad interest in the environment. Several researchers with projects with connections to China have been asked to provide an overview of their research to the visitors. I will be talking about the GLIMPSE air-climate-energy decision support project.

  11. An Overview of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Ultra High Bypass Partnership Research Goals

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2009-01-01

    An overview of the NASA Fundamental Aeronautics Program (FAP) mission and goals is presented. One of the subprograms under the FAP, the Subsonic Fixed Wing Project (SFW), is the focus of the presentation. The SFW system environmental metrics are discussed, along with highlights of planned, systematic approach to research to reduce the environmental impact of commercial aircraft in the areas of acoustics, fuel burn and emissions. The presentation then focuses on collaborative research being conducted with U.S. Industry on the Ultra High Bypass (UHB) engine cycle, the propulsion cycle selected by the SFW to meet the system goals. The partnerships with General Electric Aviation to investigate Open Rotor propulsion concepts and with Pratt & Whitney to investigate the Geared Turbofan UHB engine are highlighted, including current and planned future collaborative research activities with NASA and each organization.

  12. Unravelling the structure of species extinction risk for predictive conservation science.

    PubMed

    Lee, Tien Ming; Jetz, Walter

    2011-05-07

    Extinction risk varies across species and space owing to the combined and interactive effects of ecology/life history and geography. For predictive conservation science to be effective, large datasets and integrative models that quantify the relative importance of potential factors and separate rapidly changing from relatively static threat drivers are urgently required. Here, we integrate and map in space the relative and joint effects of key correlates of The International Union for Conservation of Nature-assessed extinction risk for 8700 living birds. Extinction risk varies significantly with species' broad-scale environmental niche, geographical range size, and life-history and ecological traits such as body size, developmental mode, primary diet and foraging height. Even at this broad scale, simple quantifications of past human encroachment across species' ranges emerge as key in predicting extinction risk, supporting the use of land-cover change projections for estimating future threat in an integrative setting. A final joint model explains much of the interspecific variation in extinction risk and provides a remarkably strong prediction of its observed global geography. Our approach unravels the species-level structure underlying geographical gradients in extinction risk and offers a means of disentangling static from changing components of current and future threat. This reconciliation of intrinsic and extrinsic, and of past and future extinction risk factors may offer a critical step towards a more continuous, forward-looking assessment of species' threat status based on geographically explicit environmental change projections, potentially advancing global predictive conservation science.

  13. Indicator-based approach to assess sustainability of current and projected water use in Korea

    NASA Astrophysics Data System (ADS)

    Kong, I.; Kim, I., Sr.

    2016-12-01

    Recently occurred failures in water supply system derived from lacking rainfall in Korea has raised severe concerns about limited water resources exacerbated by anthropogenic drivers as well as climatic changes. Since Korea is under unprecedented changes in both social and environmental aspects, it is required to integrate social and environmental changes as well as climate factors in order to consider underlying problems and their upcoming impacts on sustainable water use. In this study, we proposed a framework to assess multilateral aspects in sustainable water use in support of performance-based monitoring. The framework is consisted of four thematic indices (climate, infrastructure, pollution, and management capacity) and subordinate indicators. Second, in order to project future circumstances, climate variability, demographic, and land cover scenarios to 2050 were applied after conducting statistical analysis identifying correlations between indicators within the framework since water crisis are caused by numerous interrelated factors. Assessment was conducted throughout 161 administrative boundaries in Korea at the time of 2010, 2030, and 2050. Third, current and future status in water use were illustrated using GIS-based methodology and statistical clustering (K-means and HCA) to elucidate spatially explicit maps and to categorize administrative regions showing similar phenomenon in the future. Based on conspicuous results shown in spatial analysis and clustering method, we suggested policy implementations to navigate local communities to decide which countermeasures should be supplemented or adopted to increase resiliency to upcoming changes in water use environments.

  14. Development of a strategic plan for food security and safety in the Inuvialuit Settlement Region, Canada.

    PubMed

    Fillion, Myriam; Laird, Brian; Douglas, Vasiliki; Van Pelt, Linda; Archie, Diane; Chan, Hing Man

    2014-01-01

    Current social and environmental changes in the Arctic challenge the health and well-being of its residents. Developing evidence-informed adaptive measures in response to these changes is a priority for communities, governments and researchers. To develop strategic planning to promote food security and food safety in the Inuvialuit Settlement Region (ISR), Northwest Territories (NWT), Canada. A qualitative study using group discussions during a workshop. A regional workshop gathered Inuit organizations and community representatives, university-based researchers from the Inuit Health Survey (IHS) and NWT governmental organizations. Discussions were structured around the findings from the IHS. For each key area, programs and activities were identified and prioritized by group discussion and voting. The working group developed a vision for future research and intervention, which is to empower communities to promote health, well-being and environmental sustainability in the ISR. The group elaborated missions for the region that address the following issues: (a) capacity building within communities; (b) promotion of the use of traditional foods to address food security; (c) research to better understand the linkages between diseases and contaminants in traditional foods, market foods and lifestyle choices; (d) and promotion of affordable housing. Five programs to address each key area were developed as follows: harvest support and traditional food sharing; education and promotion; governance and policy; research; and housing. Concrete activities were identified to guide future research and intervention projects. The results of the planning workshop provide a blueprint for future research and intervention projects.

  15. Building Opportunities for Environmental Education Through Student Development of Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.; Boyer, D. M.; Mobley, C.; Byrd, V. L.

    2014-12-01

    It is increasingly common to utilize simulations and games in the classroom, but learning opportunities can also be created by having students construct these cyberinfrastructure resources themselves. We outline two examples of such projects completed during the summer of 2014 within the NSF ACI sponsored REU Site: Research Experiences for Undergraduates in Collaborative Data Visualization Applications at Clemson University (Award 1359223). The first project focuses on the development of immersive virtual reality field trips of geologic sites using the Oculus Rift headset. This project developed a platform which will allow users to navigate virtual terrains derived from real-world data obtained from the US Geological Survey and Google Earth. The system provides users with the ability to partake in an interactive first-person exploration of a region, such as the Grand Canyon, and thus makes an important educational contribution for students without access to these environmental assets in the real world. The second project focused on providing players visual feedback about the sustainability of their practices within the web-based, multiplayer watershed management game Naranpur Online. Identifying sustainability indicators that communicate meaningful information to players and finding an effective way to visualize these data were a primary challenge faced by the student researcher working on this project. To solve this problem the student translated findings from the literature to the context of the game to develop a hierarchical set of relative sustainability criteria to be accessed by players within a sustainability dashboard. Though the REU focused on visualization, both projects forced the students to transform their thinking to address higher-level questions regarding the utilization and communication of environmental data or concepts, thus enhancing the educational experience for themselves and future students.

  16. Building Capacity to Use Earth Observations in Decision Making: A Case Study of NASA's DEVELOP National Program Methods and Best Practices

    NASA Astrophysics Data System (ADS)

    Childs-Gleason, L. M.; Ross, K. W.; Crepps, G.; Miller, T. N.; Favors, J. E.; Rogers, L.; Allsbrook, K. N.; Bender, M. R.; Ruiz, M. L.

    2015-12-01

    NASA's DEVELOP National Program fosters an immersive research environment for dual capacity building. Through rapid feasibility Earth science projects, the future workforce and current decision makers are engaged in research projects to build skills and capabilities to use Earth observation in environmental management and policy making. DEVELOP conducts over 80 projects annually, successfully building skills through partnerships with over 150 organizations and providing over 350 opportunities for project participants each year. Filling a void between short-term training courses and long-term research projects, the DEVELOP model has been successful in supporting state, local, federal and international government organizations to adopt methodologies and enhance decision making processes. This presentation will highlight programmatic best practices, feedback from participants and partner organizations, and three sample case studies of successful adoption of methods in the decision making process.

  17. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  18. The NASA CSTI high capacity power project

    NASA Astrophysics Data System (ADS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-08-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  19. Bit of History and Some Lessons Learned in Using NASA Remote Sensing Data in Public Health Applications

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Sue

    2011-01-01

    The NASA Applied Sciences Program's public health initiative began in 2004 to illustratethe potential benefits for using remote sensing in public health applications. Objectives/Purpose: The CDC initiated a st udy with NASA through the National Center for Environmental Health (NCEH) to establish a pilot effort to use remote sensing data as part of its Environmental Public Health Tracking Network (EPHTN). As a consequence, the NCEH and NASA developed a project called HELIX-Atlanta (Health and Environment Linkage for Information Exchange) to demonstrate a process for developing a local environmental public health tracking and surveillance network that integrates non-infectious health and environment systems for the Atlanta metropolitan area. Methods: As an ongo ing, systematic integration, analysis and interpretation of data, an EPHTN focuses on: 1 -- environmental hazards; 2 -- human exposure to environmental hazards; and 3 -- health effects potentially related to exposure to environmental hazards. To satisfy the definition of a surveillance system the data must be disseminated to plan, implement, and evaluate environmental public health action. Results: A close working r elationship developed with NCEH where information was exchanged to assist in the development of an EPHTN that incorporated NASA remote sensing data into a surveillance network for disseminating public health tracking information to users. This project?s success provided NASA with the opportunity to work with other public health entities such as the University of Mississippi Medical Center, the University of New Mexico and the University of Arizona. Conclusions: HELIX-Atlanta became a functioning part of the national EPHTN for tracking environmental hazards and exposure, particularly as related to air quality over Atlanta. Learning Objectives: 1 -- remote sensing data can be integral to an EPHTN; 2 -- public tracking objectives can be enhanced through remote sensing data; 3 -- NASA's involvement in public health applications can have wider benefits in the future.

  20. Environmental Development Plan (EDP). Enhanced gas recovery, FY 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-03-01

    This Enhanced Gcs Recovery EDP addresses the environmental impacts of enhanced gas recovery processes in shale and sandstone, methane drainage from coalbeds, and methane recovery from geopressured aquifers. The EDP addresses planning in two basic areas: environmental research and environmental assessment. Environmental research can be categorized as follows: characterization of pollutants from EGR processes; selective application of monitoring and measuring techniques; evaluation of control/mitigation techniques; and evaluation of the synergistic impacts of the development of EGR techniques. Environmental assessment activities scheduled by EDP include: assessment of ecological impacts; assessment of socioeconomic effects; EIA/EIS preparation; evaluation of control technology needs; andmore » analysis of applicable and proposed emission, effluent, and health and safety standards. The EGR EDP includes an EGR technology overview (Section 2), a discussion of EGR environmental issues and requirements (Section 3), an environmental action plan (Section 4), an environmental management strategy for the EGR program (Section 5), and supporting appendices which present information on Federal legislation applicable to EGR technology, a summary of ongoing and completed research, and future research and assessment projects.« less

  1. Emergy Analysis of Biogas Systems Based on Different Raw Materials

    PubMed Central

    Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan

    2013-01-01

    Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials. PMID:23476134

  2. Emergy analysis of biogas systems based on different raw materials.

    PubMed

    Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan

    2013-01-01

    Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials.

  3. Tulane/Xavier Center for Bioenvironmental Research; project: hazardous materials in aquatic environments; subproject: biomarkers and risk assessment in Bayou Trepagnier, LA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ide, C.

    1996-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established in 1989 as the umbrella organization to coordinate environmental research at both universities. CBR projects funded by the DOE under the Hazardous Materials in Aquatic Environments grant are defining the following: (1) the complex interactions that occur during the transport of contaminants through wetlands environments, (2) the actual and potential impact of contaminants on ecological systems and health, (3) the mechanisms and new technologies through whichmore » these impacts might be remediated, and (4) new programs aimed at educating and training environmental workers of the future. The subproject described in this report, `Biomarkers and Risk Assessment in Bayou Trepagnier, LN`, is particularly relevant to the US Department of Energy`s Environmental Restoration and Waste Management program aimed at solving problems related to hazard monitoring and clean-up prioritization at sites with aquatic pollution problems in the DOE complex.« less

  4. Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble

    PubMed Central

    Jiang, Mingkai; Felzer, Benjamin S.; Sahagian, Dork

    2016-01-01

    Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation predictability in the United States under various climate scenarios. Over the historic period (1950–2005), the recurrent pattern of precipitation is highly predictable in the East and along the coastal Northwest, and is less so in the arid Southwest. Comparing the future (2040–2095) to the historic period, larger changes in precipitation predictability are observed under Representative Concentration Pathways (RCP) 8.5 than those under RCP 4.5. Finally, there are region-specific hotspots of future changes in precipitation predictability, and these hotspots often coincide with regions of little projected change in total precipitation, with exceptions along the wetter East and parts of the drier central West. Therefore, decision-makers are advised to not rely on future total precipitation as an indicator of water resources. Changes in precipitation predictability and the subsequent changes on seasonality and variability are equally, if not more, important factors to be included in future regional environmental assessment. PMID:27425819

  5. Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble.

    PubMed

    Jiang, Mingkai; Felzer, Benjamin S; Sahagian, Dork

    2016-07-18

    Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation predictability in the United States under various climate scenarios. Over the historic period (1950-2005), the recurrent pattern of precipitation is highly predictable in the East and along the coastal Northwest, and is less so in the arid Southwest. Comparing the future (2040-2095) to the historic period, larger changes in precipitation predictability are observed under Representative Concentration Pathways (RCP) 8.5 than those under RCP 4.5. Finally, there are region-specific hotspots of future changes in precipitation predictability, and these hotspots often coincide with regions of little projected change in total precipitation, with exceptions along the wetter East and parts of the drier central West. Therefore, decision-makers are advised to not rely on future total precipitation as an indicator of water resources. Changes in precipitation predictability and the subsequent changes on seasonality and variability are equally, if not more, important factors to be included in future regional environmental assessment.

  6. New Efforts of The Cergop Data-bank At Graz For Cergop-2

    NASA Astrophysics Data System (ADS)

    Pesec, P.; Stangl, G.

    Starting with 1994 Graz/Austria took over the task of providing a data-bank for storing and re-distributing Rinex data measured at all CEGRN stations. In view of the future project CERGOP-2/Environment submitted to EU (5. FP)several modifications are required in order to take into account near real-time data dissemi- nation and to consider a near real-time publication of certified CERGOP-2 products for scientific and public access via Internet, and for political decision making in case of eventual hazard prediction. Due to the interdisciplinarity of environmental research the contents of different other data-banks should be included. We will present an approach which should result in a seamless data-bank updated in near real-time and placing at disposal methodology, data, results as well as current informations on the ongoing projects and future developments.

  7. Decision Making For Sustainable Futures In A Rapidly Changing Arctic

    NASA Astrophysics Data System (ADS)

    Chabay, I.

    2016-12-01

    Observing, understanding, and predicting effects of rapid climate change in the Arctic are crucial as the circumpolar region becomes more accessible and demand grows for commercial development and resource extraction. Climate change effects - including changes in ocean ice coverage, Arctic weather patterns, permafrost conditions, and coastal erosion - are a consequence of fossil fuel use outside the Arctic, while at the same time the changes open greater access to the Arctic's rich resources, including oil and gas. This offers new opportunities for livelihoods and development of Arctic communities, but inevitably also introduces substantially increased environmental, social, and economic risks. I will outline the rationale for and the process of our transdisciplinary project in engaging with a wide range of actors in the Arctic and beyond. The purpose of the project is to support informed and effective decision making for sustainable futures that is contextually appropriate through co-design and co-production of knowledge with rights-holders and stakeholders.

  8. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  9. Assessing corporate project impacts in changeable contexts: A human rights perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salcito, Kendyl, E-mail: kendyl.salcito@unibas.ch; University of Basel, P.O. Box, CH-4003 Basel; NomoGaia, 1900 Wazee Street, Suite 303, Denver, CO 80202

    Project-level impact assessment was originally conceived as a snapshot taken in advance of project implementation, contrasting current conditions with a likely future scenario involving a variety of predicted impacts. Current best practice guidance has encouraged a shift towards longitudinal assessments from the pre-project stage through the implementation and operating phases. Experience and study show, however, that assessment of infrastructure-intensive projects rarely endures past the project's construction phase. Negative consequences for environmental, social and health outcomes have been documented. Such consequences clarify the pressing need for longitudinal assessment in each of these domains, with human rights impact assessment (HRIA) as anmore » umbrella over, and critical augmentation of, environmental, social and health assessments. Project impacts on human rights are more closely linked to political, economic and other factors beyond immediate effects of a company's policy and action throughout the project lifecycle. Delineating these processes requires an adequate framework, with strategies for collecting longitudinal data, protocols that provide core information for impact assessment and guidance for adaptive mitigation strategies as project-related effects change over time. This article presents general principles for the design and implementation of sustained, longitudinal HRIA, based on experience assessing and responding to human rights impact in a uranium mining project in Malawi. The case study demonstrates the value of longitudinal assessment both for limiting corporate risk and improving human welfare. - Graphical abstract: Assessing changes in human rights condition as affected by both project and context, over time. - Highlights: • Corporate capital projects affect human rights in myriad ways. • Ongoing, longitudinal impact assessment techniques are needed. • We present an approach for conducting longitudinal human rights impact assessment. • Our methodology allows distinguishing corporate impacts from contextual changes. • Promptly observing context changes and impacts enables companies to react nimbly.« less

  10. How can "Super Corals" facilitate global coral reef survival under rapid environmental and climatic change?

    PubMed

    Camp, Emma F; Schoepf, Verena; Suggett, David J

    2018-03-26

    Coral reefs are in a state of rapid global decline via environmental and climate change, and efforts have intensified to identify or engineer coral populations with increased resilience. Concurrent with these efforts has been increasing use of the popularized term "Super Coral" in both popular media and scientific literature without a unifying definition. However, how this subjective term is currently applied has the potential to mislead inference over factors contributing to coral survivorship, and the future trajectory of coral reef form and functioning. Here, we discuss that the information required to support a single definition does not exist, and in fact may never be appropriate, i.e. "How Super is Super"? Instead, we advocate caution of this term, and suggest a workflow that enables contextualization and clarification of superiority to ensure that inferred or asserted survivorship is appropriate into future reef projections. This is crucial to robustly unlock how "Super Corals" can be integrated into the suite of management options required to facilitate coral survival under rapid environmental and climate change. © 2018 John Wiley & Sons Ltd.

  11. Economic aspects of the rehabilitation of the Hiriya landfill.

    PubMed

    Ayalon, O; Becker, N; Shani, E

    2006-01-01

    The Hiriya landfill, Israel's largest, operated from 1952 to 1998. The landfill, located in the heart of the Dan Region, developed over the years into a major landscape nuisance and environmental hazard. In 1998, the Israeli government decided to close the landfill, and in 2001 rehabilitation activities began at the site, including site investigations, engineering and scientific evaluations, and end-use planning. The purpose of the present research is to perform a cost-benefit analysis of engineering and architectural-landscape rehabilitation projects considered for the site. An engineering rehabilitation project is required for the reduction of environmental impacts such as greenhouse gas emissions, slope instability and leachate formation. An architectural-landscape rehabilitation project would consider improvements to the site to make it suitable for future end uses such as a public park. The findings reveal that reclamation is worthwhile only in the case of architectural-landscape rehabilitation of the landfill, converting it into a public park. Engineering rehabilitation alone was found to be unjustified, but is essential to enable the development of a public park.

  12. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change.

    PubMed

    Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S

    2018-09-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Uncertainty in Bioenergy Scenarios for California: Lessons Learned in Communicating with Different Stakeholder Groups

    NASA Astrophysics Data System (ADS)

    Youngs, H.

    2013-12-01

    Projecting future bioenergy use involves incorporating several critical inter-related parameters with high uncertainty. Among these are: technology adoption, infrastructure and capacity building, investment, political will, and public acceptance. How, when, where, and to what extent the various bioenergy options are implemented has profound effects on the environmental impacts incurred. California serves as an interesting case study for bioenergy implementation because it has very strong competing forces that can influence these critical factors. The state has aggressive greenhouse gas reduction goals, which will require some biofuels, and has invested accordingly on new technology. At the same time, political will and public acceptance of bioenergy has wavered, seriously stalling bioenergy expansion efforts. We have constructed scenarios for bioenergy implementation in California to 2050, in conjunction with efforts to reach AB32 GHG reduction goals of 80% below 1990 emissions. The state has the potential to produce 3 to 10 TJ of biofuels and electricity; however, this potential will be severely limited in some scenarios. This work examines sources of uncertainty in bioenergy implementation, how uncertainty is or is not incorporated into future bioenergy scenarios, and what this means for assessing environmental impacts. How uncertainty is communicated and perceived also affects future scenarios. Often, there is a disconnect between scenarios for widespread implementation and the actual development of individual projects, resulting in "artificial uncertainty" with very real impacts. Bringing stakeholders to the table is only the first step. Strategies to tailor and stage discussions of uncertainty to stakeholder groups is equally important. Lessons learned in the process of communicating the Calfornia's Energy Future biofuels assessment will be discussed.

  14. Nitrogen-Use Efficiency, Nitrous Oxide Emissions, and Cereal Production in Brazil: Current Trends and Forecasts.

    PubMed

    Pires, Marcel Viana; da Cunha, Dênis Antônio; de Matos Carlos, Sabrina; Costa, Marcos Heil

    2015-01-01

    The agriculture sector has historically been a major source of greenhouse gas (GHG) emissions into the atmosphere. Although the use of synthetic fertilizers is one of the most common widespread agricultural practices, over-fertilization can lead to negative economic and environmental consequences, such as high production costs, depletion of energy resources, and increased GHG emissions. Here, we provide an analysis to understand the evolution of cereal production and consumption of nitrogen (N) fertilizers in Brazil and to correlate N use efficiency (NUE) with economic and environmental losses as N2O emissions. Our results show that the increased consumption of N fertilizers is associated with a large decrease in NUE in recent years. The CO2 eq. of N2O emissions originating from N fertilization for cereal production were approximately 12 times higher in 2011 than in 1970, indicating that the inefficient use of N fertilizers is directly related to environmental losses. The projected N fertilizer forecasts are 2.09 and 2.37 million ton for 2015 and 2023, respectively. An increase of 0.02% per year in the projected NUE was predicted for the same time period. However, decreases in the projected CO2 eq. emissions for future years were not predicted. In a hypothetical scenario, a 2.39% increase in cereal NUE would lead to $ 21 million savings in N fertilizer costs. Thus, increases in NUE rates would lead not only to agronomic and environmental benefits but also to economic improvement.

  15. Nitrogen-Use Efficiency, Nitrous Oxide Emissions, and Cereal Production in Brazil: Current Trends and Forecasts

    PubMed Central

    Pires, Marcel Viana; da Cunha, Dênis Antônio; de Matos Carlos, Sabrina; Costa, Marcos Heil

    2015-01-01

    The agriculture sector has historically been a major source of greenhouse gas (GHG) emissions into the atmosphere. Although the use of synthetic fertilizers is one of the most common widespread agricultural practices, over-fertilization can lead to negative economic and environmental consequences, such as high production costs, depletion of energy resources, and increased GHG emissions. Here, we provide an analysis to understand the evolution of cereal production and consumption of nitrogen (N) fertilizers in Brazil and to correlate N use efficiency (NUE) with economic and environmental losses as N2O emissions. Our results show that the increased consumption of N fertilizers is associated with a large decrease in NUE in recent years. The CO2 eq. of N2O emissions originating from N fertilization for cereal production were approximately 12 times higher in 2011 than in 1970, indicating that the inefficient use of N fertilizers is directly related to environmental losses. The projected N fertilizer forecasts are 2.09 and 2.37 million ton for 2015 and 2023, respectively. An increase of 0.02% per year in the projected NUE was predicted for the same time period. However, decreases in the projected CO2 eq. emissions for future years were not predicted. In a hypothetical scenario, a 2.39% increase in cereal NUE would lead to $ 21 million savings in N fertilizer costs. Thus, increases in NUE rates would lead not only to agronomic and environmental benefits but also to economic improvement. PMID:26252377

  16. Environmental impact assessment system in Thailand and its comparison with those in China and Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suwanteep, Kultip, E-mail: suwanteep.k.aa@m.titech.ac.jp; Murayama, Takehiko; Nishikizawa, Shigeo

    This paper aims to find ways to streamline the Environmental Impact Assessment (EIA) system in Thailand to increase its effectiveness by comparative analysis with China and Japan. This study is mainly focused on review, update and comparison of EIA systems between these three countries. It is intended to clarify fundamental information of the EIA systems and characteristics of the key elements of EIA processes (screening, consideration of alternatives, prediction or evaluation of impact, and public participation). Moreover, the number of the EIA projects that have been implemented in all the provinces in Thailand are presented. The results identified the similaritiesmore » and differences of the EIA processes among the three aforementioned countries. The type of EIA report used in Thailand, unlike those in China and Japan, is an Environmental and Health Impact Assessment (EHIA), which is concerned with the health and environmental impacts that could occur from the project. In addition, EIA reports in Thailand are made available to the public online and the shortcomings of the process have details of barriers resulting from the projects to help future projects with reconsideration and improvements. In this study, it is pointed out that Thai's EIA system still lacks local EIA authority which needs to be empowered by implementing a set of laws or ordinance. - Highlights: • Reviewed current EIA procedures in Thailand, Japan and China • The EIA database is getting improved so as to generate profile of EIAs in the past. • Thailand needs to empower the local EIA authority within the EIA system. • The potential impacts should be more concerned than their scale in Japanese EIA. • Time limits and transparency should be reconsidered in China's EIA system.« less

  17. Issues in Design and Implementation in an Urban Birth Cohort Study: The Syracuse AUDIT Project

    PubMed Central

    Crawford, Judith A.; Hargrave, Teresa M.; Hunt, Andrew; Liu, Chien-Chih; Anbar, Ran D.; Hall, Geralyn E.; Naishadham, Deepa; Czerwinski, Maria H.; Webster, Noah; Lane, Sandra D.

    2006-01-01

    The Syracuse AUDIT (Assessment of Urban Dwellings for Indoor Toxics) project is a birth cohort study of wheezing in the first year of life in a low-income urban setting. Such studies are important because of the documented serious risks to children's health and the lack of attention and published work on asthma development and intervention in communities of this size. We studied 103 infants of mothers with asthma, living predominantly in inner-city households. Our study combines measurements of a large panel of indoor environmental agents, in-home infant assessments, and review of all prenatal and postnatal medical records through the first year of life. We found multiple environmental pollution sources and potential health risks in study homes including high infant exposure to tobacco smoke. The prevalence of maternal smoking during pregnancy was 54%; postnatal environmental tobacco smoke (ETS) exposure was nearly 90%. The majority (73%) of homes showed signs of dampness. Participants' lives were complicated by poverty, unemployment and single-parenthood. Thirty-three percent of fathers were not involved with their children, and 62% of subjects moved at least once during the study period. These socioeconomic issues had an impact on project implementation and led to modification of study eligibility criteria. Extensive outreach, follow up, and relationship-building were required in order to recruit and retain families and resulted in considerable work overload for study staff. Our experiences implementing the project will inform further studies on this and other similar populations. Future reports on this cohort will address the role of multiple environmental variables and their effects on wheezing outcome during the first year of life. PMID:16845500

  18. Assessing Potential Implications of Climate Change for Long-Term Water Resources Planning in the Colorado River Basin, Texas

    NASA Astrophysics Data System (ADS)

    Munevar, A.; Butler, S.; Anderson, R.; Rippole, J.

    2008-12-01

    While much of the focus on climate change impacts to water resources in the western United States has been related to snow-dominated watersheds, lower elevation basins such as the Colorado River Basin in Texas are dependent on rainfall as the predominant form of precipitation and source of supply. Water management in these basins has evolved to adapt to extreme climatic and hydrologic variability, but the impact of climate change is potentially more acute due to rapid runoff response and subsequent greater soil moisture depletion during the dry seasons. The Lower Colorado River Authority (LCRA) - San Antonio Water System (SAWS) Water Project is being studied to conserve water, develop conjunctive groundwater supplies, and capture excess and unused river flows to meet future water needs for two neighboring regions in Texas. Agricultural and other rural water needs would be met on a more reliable basis in the lower Colorado River Basin through water conservation, surface water development and limited groundwater production. Surface water would be transferred to the San Antonio area to meet municipal needs in quantities still being evaluated. Detailed studies are addressing environmental, agricultural, socioeconomic, and engineering aspects of the project. Key planning activities include evaluating instream flow criteria, water quality, bay freshwater inflow criteria, surface water availability and operating approaches, agricultural conservation measures, groundwater availability, and economics. Models used to estimate future water availability and environmental flow requirements have been developed largely based on historical observed hydrologic data. This is a common approach used by water planners as well as by many regulatory agencies for permit review. In view of the project's 80-yr planning horizon, contractual obligations, comments from the Science Review Panel, and increased public and regulatory awareness of climate change issues, the project team is exploring climate change projections and methods to assess potential impacts over the project's expected life. Following an initial qualitative risk assessment, quantitative climate scenarios were developed based on multiple coupled atmosphere-ocean general circulation model (AOGCM) simulations under a range of global emission scenarios. Projected temperature and precipitation changes were evaluated from 112 downscaled AOGCM projections. A Four scenarios were selected for detailed hydrologic evaluations using the Variable Infiltration Capacity (VIC) macroscale model. A quantile mapping procedure was applied to map future climatological period change statistics onto the long-term natural climate variability in the observed record. Simulated changes in runoff, river flow, evaporation, and evapotranspiration are used to generate adjustments to historical hydrology for assessment of potential changes to surface water availability, river water quality, riverine habitat, and Bay health. Projected temperature, precipitation, and atmospheric CO2 concentrations are used to estimate changes in agricultural demand. Sea level rise scenarios that include trends in Gulf Coast shelf subsidence are combined with changes in inflows to evaluate increased coastal erosion, upland migration of the estuary, and changes to the salinity regime. Results of the scenario-based analyses are being considered in the development of adaptive management strategies for future operations of the system and the proposed project.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program that has been in effect since 1978. The significant environmental projects and issues Western was involved with in 1995 are discussed in this annual site environmental report. It is written to show the nature and effectiveness of the environmental protection program. Western operates and maintains nearly 17,000 miles of transmission lines, 257 substations, and various appurtenant power facilities in fifteen central and western states. Western is also responsible for planning, construction, and operation and maintenance of additional federal transmission facilities that may bemore » authorized in the future. There is a combined total of 55 hydroelectric power generating plants in the service area. Additionally, Western markets the US entitlement from the Navajo coal-fired plant near Page, Arizona. The Department of Energy requires the preparation of an annual site environmental report. Because Western has over 400 facilities located in these states, this report addresses the environmental activities in all the facilities as one site.« less

  20. College and university environmental programs as a policy problem (Part 1): Integrating Knowledge, education, and action for a better world?

    USGS Publications Warehouse

    Clark, S.G.; Rutherford, M.B.; Auer, M.R.; Cherney, D.N.; Wallace, R.L.; Mattson, D.J.; Clark, D.A.; Foote, L.; Krogman, N.; Wilshusen, P.; Steelman, T.

    2011-01-01

    The environmental sciences/studies movement, with more than 1000 programs at colleges and universities in the United States and Canada, is unified by a common interest-ameliorating environmental problems through empirical enquiry and analytic judgment. Unfortunately, environmental programs have struggled in their efforts to integrate knowledge across disciplines and educate students to become sound problem solvers and leaders. We examine the environmental program movement as a policy problem, looking at overall goals, mapping trends in relation to those goals, identifying the underlying factors contributing to trends, and projecting the future. We argue that despite its shared common interest, the environmental program movement is disparate and fragmented by goal ambiguity, positivistic disciplinary approaches, and poorly rationalized curricula, pedagogies, and educational philosophies. We discuss these challenges and the nature of the changes that are needed in order to overcome them. In a subsequent article (Part 2) we propose specific strategies for improvement. ?? 2011 Springer Science+Business Media, LLC.

  1. Regional climate projection of the Maritime Continent using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    IM, E. S.; Eltahir, E. A. B.

    2014-12-01

    Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  2. Project Ci-Nergy Towards AN Integrated Energy Urban Planning System from a Data Modelling and System Architecture Perspective

    NASA Astrophysics Data System (ADS)

    Agugiaro, G.; Robineau, J.-L.; Rodrigues, P.

    2017-09-01

    Growing urbanisation, its related environmental impacts, and social inequalities in cities are challenges requiring a holistic urban planning perspective that takes into account the different aspects of sustainable development. One crucial point is to reconcile urban planning with environmental targets, which include decreasing energy demand and CO2 emissions, and increasing the share of renewable energy. Within this context, the project CI-NERGY aims to develop urban energy modelling, simulation and optimisation methods and tools to support decision making in urban planning. However, there are several barriers to the implementation of such tools, such as: fragmentation of involved disciplines, different stakeholders, multiplicity of scales in a city and extreme heterogeneity of data regarding all the processes to be addressed. Project CI-NERGY aims, among other goals, at overcoming these barriers, and focuses on two case study cities, Geneva in Switzerland and Vienna in Austria. In particular, project CI-NERGY faces several challenges starting with different cities, heterogeneous data sources and simulation tools, diverse user groups and their individual needs. This paper describes the experiences gathered during the project. After giving a brief overview of the project, the two case study cities, Geneva and Vienna, are briefly presented, and the focus shifts then on overall system architecture of the project, ranging from urban data modelling topics to the implementation of a Service-Oriented Architecture. Some of the challenges faced, the solutions found, as well some plans for future improvements are described and commented.

  3. Joint Probabilistic Projection of Female and Male Life Expectancy

    PubMed Central

    Raftery, Adrian E.; Lalic, Nevena; Gerland, Patrick

    2014-01-01

    BACKGROUND The United Nations (UN) produces population projections for all countries every two years. These are used by international organizations, governments, the private sector and researchers for policy planning, for monitoring development goals, as inputs to economic and environmental models, and for social and health research. The UN is considering producing fully probabilistic population projections, for which joint probabilistic projections of future female and male life expectancy at birth are needed. OBJECTIVE We propose a methodology for obtaining joint probabilistic projections of female and male life expectancy at birth. METHODS We first project female life expectancy using a one-sex method for probabilistic projection of life expectancy. We then project the gap between female and male life expectancy. We propose an autoregressive model for the gap in a future time period for a particular country, which is a function of female life expectancy and a t-distributed random perturbation. This method takes into account mortality data limitations, is comparable across countries, and accounts for shocks. We estimate all parameters based on life expectancy estimates for 1950–2010. The methods are implemented in the bayesLife and bayesPop R packages. RESULTS We evaluated our model using out-of-sample projections for the period 1995–2010, and found that our method performed better than several possible alternatives. CONCLUSIONS We find that the average gap between female and male life expectancy has been increasing for female life expectancy below 75, and decreasing for female life expectancy above 75. Our projections of the gap are lower than the UN’s 2008 projections for most countries and so lead to higher projections of male life expectancy. PMID:25580082

  4. Development of an Integrated Agricultural Planning Model Considering Climate Change

    NASA Astrophysics Data System (ADS)

    Santikayasa, I. P.

    2016-01-01

    The goal of this study is to develop an agriculture planning model in order to sustain the future water use under the estimation of crop water requirement, water availability and future climate projection. For this purpose, the Citarum river basin which is located in West Java - Indonesia is selected as the study area. Two emission scenarios A2 and B2 were selected. For the crop water requirement estimation, the output of HadCM3 AOGCM is statistically downscale using SDSM and used as the input for WEAP model developed by SEI (Stockholm Environmental Institute). The reliability of water uses is assessed by comparing the irrigation water demand and the water allocation for the irrigation area. The water supply resources are assessed using the water planning tool. This study shows that temperature and precipitation over the study area are projected to increase in the future. The water availability was projected to increase under both A2 and B2 emission scenarios in the future. The irrigation water requirement is expected to decrease in the future under A2 and B2 scenarios. By comparing the irrigation water demand and water allocation for irrigation, the reliability of agriculture water use is expected to change in the period of 2050s and 2080s while the reliability will not change in 2020s. The reliability under A2 scenario is expected to be higher than B2 scenario. The combination of WEAP and SDSM is significance to use in assessing and allocating the water resources in the region.

  5. Land use planning

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The organization, objectives, and accomplishments of the panel on Land Use Planning are reported. Technology developments, and projected developments are discussed along with anticipated information requirements. The issues for users, recommended remote sensing programs, and space systems are presented. It was found that remote sensing systems are useful in future land use planning. It is recommended that a change detection system for monitoring land use and critical environmental areas be developed by 1979.

  6. The Value of Wind Technology Innovation: Implications for the U.S. Power System, Wind Industry, Electricity Consumers, and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu T; Lantz, Eric J; Mowers, Matthew

    Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative.more » In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.« less

  7. Geographical Overview of the Three Gorges Dam and Reservoir, China - Geologic Hazards and Environmental Impacts

    USGS Publications Warehouse

    Highland, Lynn M.

    2008-01-01

    The Three Gorges Dam and Reservoir on the Yangtze River, China, has been an ambitious and controversial project. The dam, the largest in the world as of 2008, will provide hydropower, help to manage flood conditions, and increase the navigability of the Yangtze River. However, this massive project has displaced human and animal populations and altered the stability of the banks of the Yangtze, and it may intensify the seismic hazard of the area. It has also hindered archeological investigations in the reservoir and dam area. This report, originally in the form of a Microsoft PowerPoint presentation, gives a short history and overview of the dam construction and subsequent consequences, especially geologic hazards already noted or possible in the future. The report provides photographs, diagrams, and references for the reader's further research - a necessity, because this great undertaking is dynamic, and both its problems and successes continue to evolve. The challenges and consequences of Three Gorges Dam will be closely watched and documented as lessons learned and applied to future projects in China and elsewhere.

  8. Spatial Modelling Tools to Integrate Public Health and Environmental Science, Illustrated with Infectious Cryptosporidiosis

    PubMed Central

    Lal, Aparna

    2016-01-01

    Contemporary spatial modelling tools can help examine how environmental exposures such as climate and land use together with socio-economic factors sustain infectious disease transmission in humans. Spatial methods can account for interactions across global and local scales, geographic clustering and continuity of the exposure surface, key characteristics of many environmental influences. Using cryptosporidiosis as an example, this review illustrates how, in resource rich settings, spatial tools have been used to inform targeted intervention strategies and forecast future disease risk with scenarios of environmental change. When used in conjunction with molecular studies, they have helped determine location-specific infection sources and environmental transmission pathways. There is considerable scope for such methods to be used to identify data/infrastructure gaps and establish a baseline of disease burden in resource-limited settings. Spatial methods can help integrate public health and environmental science by identifying the linkages between the physical and socio-economic environment and health outcomes. Understanding the environmental and social context for disease spread is important for assessing the public health implications of projected environmental change. PMID:26848669

  9. Spatial Modelling Tools to Integrate Public Health and Environmental Science, Illustrated with Infectious Cryptosporidiosis.

    PubMed

    Lal, Aparna

    2016-02-02

    Contemporary spatial modelling tools can help examine how environmental exposures such as climate and land use together with socio-economic factors sustain infectious disease transmission in humans. Spatial methods can account for interactions across global and local scales, geographic clustering and continuity of the exposure surface, key characteristics of many environmental influences. Using cryptosporidiosis as an example, this review illustrates how, in resource rich settings, spatial tools have been used to inform targeted intervention strategies and forecast future disease risk with scenarios of environmental change. When used in conjunction with molecular studies, they have helped determine location-specific infection sources and environmental transmission pathways. There is considerable scope for such methods to be used to identify data/infrastructure gaps and establish a baseline of disease burden in resource-limited settings. Spatial methods can help integrate public health and environmental science by identifying the linkages between the physical and socio-economic environment and health outcomes. Understanding the environmental and social context for disease spread is important for assessing the public health implications of projected environmental change.

  10. China's emergence and the prospects for global sustainability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grumbine, R.E.

    2007-03-15

    China's rapid development is influencing global patterns of resource use and their associated environmental and geopolitical impacts. Trend projections suggest that China's rise will have unprecedented impacts on the rest of the world. I examine three key drivers affecting China's emergence (scale of development, government policy decisions, and globalization), along with four factors that may constrain development (environmental degradation, political instability, coal and oil consumption, and carbon dioxide emissions). China's rise represents a tipping point between fossil fuel-based economies and still emergent sustainable alternatives. Policy precedents between the United States and China over the next decade may well determine themore » future course of global sustainability.« less

  11. Performance verification and environmental testing of a unimorph deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2017-11-01

    Concepts for future large space telescopes require an active optics system to mitigate aberrations caused by thermal deformation and gravitational release. Such a system would allow on-site correction of wave-front errors and ease the requirements for thermal and gravitational stability of the optical train. In the course of the ESA project "Development of Adaptive Deformable Mirrors for Space Instruments" we have developed a unimorph deformable mirror designed to correct for low-order aberrations and dedicated to be used in space environment. We briefly report on design and manufacturing of the deformable mirror and present results from performance verifications and environmental testing.

  12. Bridging Scales: Developing a Framework to Build a City-Scale Environmental Scenario for Japanese Municipalities

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Fujita, T.; Nakayama, T.; Xu, K.

    2007-12-01

    There is an ongoing project on establishing environmental scenarios in Japan to evaluate middle to long-term environmental policy and technology options toward low carbon society. In this project, the time horizon of the scenarios is set for 2050 on the ground that a large part of social infrastructure in Japan is likely to be renovated by that time, and cities are supposed to play important roles in building low carbon society in Japan. This belief is held because cities or local governments could implement various policies and programs, such as land use planning and promotion of new technologies with low GHG emissions, which produce an effect in an ununiform manner, taking local socio-economic conditions into account, while higher governments, either national or prefectural, could impose environmental tax on electricity and gas to alleviate ongoing GHG emissions, which uniformly covers their jurisdictions. In order for local governments to devise and implement concrete administrative actions equipped with rational policies and technologies, referring the environmental scenarios developed for the entire nation, we need to localize the national scenarios, both in terms of spatial and temporal extent, so that they could better reflect local socio-economic and institutional conditions. In localizing the national scenarios, the participation of stakeholders is significant because they play major roles in shaping future society. Stakeholder participation in the localization process would bring both creative and realistic inputs on how future unfolds on a city scale. In this research, 1) we reviewed recent efforts on international and domestic scenario development to set a practical time horizon for a city-scale environmental scenario, which would lead to concrete environmental policies and programs, 2) designed a participatory scenario development/localization process, drawing on the framework of the 'Story-and-Simulation' or SAS approach, which Alcamo(2001) proposed, and 3) started implementing it to the city of Kawasaki, Kanagawa, Japan, in cooperation with municipal officials and stakeholders. The participatory process is to develop city-scale environmental scenarios toward low carbon society, referring international and domestic environmental scenarios. Though the scenario development is still in process, it has already brought practical knowledge about and experience on how to bridge scenarios developed for different temporal and spatial scales.

  13. Structured Multi-level Data Fusion and Modelling of Heterogeneous Environmental Data for Future Internet Applications

    NASA Astrophysics Data System (ADS)

    Sabeur, Zoheir; Chakravarthy, Ajay; Bashevoy, Maxim; Modafferi, Stefano

    2013-04-01

    The rapid increase in environmental observations which are conducted by Small to Medium Enterprise communities and volunteers using affordable in situ sensors at various scales, in addition to the more established observatories set up by environmental and space agencies using airborne and space-borne sensing technologies is generating serious amounts of BIG data at ever increasing speeds. Furthermore, the emergence of Future Internet technologies and the urgent requirements for the deployment of specific enablers for the delivery of processed environmental knowledge in real-time with advanced situation awareness to citizens has reached paramount importance. Specifically, it has become highly critical now to build and provide services which automate the aggregation of data from various sources, while surmounting the semantic gaps, conflicts and heterogeneity in data sources. The early stage aggregation of data will enable the pre-processing of data from multiple sources while reconciling the temporal gaps in measurement time series, and aligning their respective a-synchronicities. This low level type of data fusion process needs to be automated and chained to more advanced level of data fusion services specialising in observation forecasts at spaces where sensing is not deployed; or at time slices where sensing has not taken place yet. As a result, multi-level fusion services are required among the families of specific enablers for monitoring environments and spaces in the Future Internet. These have been intially deployed and piloted in the ongoing ENVIROFI project of the FI-PPP programme [1]. Automated fusion and modelling of in situ and remote sensing data has been set up and the experimentation successfully conducted using RBF networks for the spatial fusion of water quality parameters measurements from satellite and stationary buoys in the Irish Sea. The RBF networks method scales for the spatial data fusion of multiple types of observation sources. This important approach provides a strong basis for the delivery of environmental observations at desired spatial and temporal scales to multiple users with various needs of spatial and temporal resolutions. It has also led to building robust future internet specific enablers on data fusion, which can indeed be used for multiple usage areas above and beyond the environmental domains of the Future Internet. In this paper, data and processing workflow scenarios shall be described. The fucntionalities of the multi-level fusion services shall be demonstrated and made accessible to the wider communities of the Fututre Internet. [1] The Environmental Observation Web and its Service Applications within the Future Internet. ENVIROFI IP. FP7-2011-ICT-IF Pr.No: 284898 http://www.envirofi.eu/

  14. The Hunters Point cogeneration project: Environmental justice in power plant siting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosloff, L.H.; Varanini, E.E. III

    1997-12-31

    The recent Hunters Point, San Francisco power plant siting process in California represents the first time that environmental justice has arisen as a major power plant siting issue. Intervenors argued that the siting process was racially and economically biased and were supported by leading environmental justice activists at the Golden Gate Law School`s Environmental Justice Clinic, a leading thinker in this field. The applicant argued that environmental justice charges cannot realistically be made against a modern natural-gas energy facility with state-of-the-art environmental controls. The applicant also argued that environmental justice concerns were fully addressed through the extensive environmental and socioeconomicmore » review carried out by California Energy Commission staff. After extensive testimony and cross-examination, the Commission agreed with the applicant. This case has important lessons for companies that could be charged with environmental justice violations and environmental justice activists who must decide where to most effectively target their efforts. This paper reviews the proceeding and its lessons and makes recommendations regarding future applicability of environmental justice issues to the power generation sector. The authors represented the applicant in the facility siting proceeding.« less

  15. Environmental change and Rift Valley fever in eastern Africa: projecting beyond HEALTHY FUTURES.

    PubMed

    Taylor, David; Hagenlocher, Michael; Jones, Anne E; Kienberger, Stefan; Leedale, Joseph; Morse, Andrew P

    2016-03-31

    Outbreaks of Rift Valley fever (RVF), a relatively recently emerged zoonosis endemic to large parts of sub-Saharan Africa that has the potential to spread beyond the continent, have profound health and socio-economic impacts, particularly in communities where resilience is already low. Here output from a new, dynamic disease model [the Liverpool RVF (LRVF) model], driven by downscaled, bias-corrected climate change data from an ensemble of global circulation models from the Inter-Sectoral Impact Model Intercomparison Project run according to two radiative forcing scenarios [representative concentration pathway (RCP)4.5 and RCP8.5], is combined with results of a spatial assessment of social vulnerability to the disease in eastern Africa. The combined approach allowed for analyses of spatial and temporal variations in the risk of RVF to the end of the current century. Results for both scenarios highlight the high-risk of future RVF outbreaks, including in parts of eastern Africa to date unaffected by the disease. The results also highlight the risk of spread from/to countries adjacent to the study area, and possibly farther afield, and the value of considering the geography of future projections of disease risk. Based on the results, there is a clear need to remain vigilant and to invest not only in surveillance and early warning systems, but also in addressing the socio-economic factors that underpin social vulnerability in order to mitigate, effectively, future impacts.

  16. Sorghum production under future climate in the Southwestern USA: model projections of yield, greenhouse gas emissions and soil C fluxes

    NASA Astrophysics Data System (ADS)

    Duval, B.; Ghimire, R.; Hartman, M. D.; Marsalis, M.

    2016-12-01

    Large tracts of semi-arid land in the Southwestern USA are relatively less important for food production than the US Corn Belt, and represent a promising area for expansion of biofuel/bioproduct crops. However, high temperatures, low available water and high solar radiation in the SW represent a challenge to suitable feedstock development, and future climate change scenarios predict that portions of the SW will experience increased temperature and temporal shifts in precipitation distribution. Sorghum (Sorghum bicolor) is a valuable forage crop with promise as a biofuel feedstock, given its high biomass under semi-arid conditions, relatively lower N fertilizer requirements compared to corn, and salinity tolerance. To evaluate the environmental impact of expanded sorghum cultivation under future climate in the SW USA, we used the DayCent model in concert with a suite of downscaled future weather projections to predict biogeochemical consequences (greenhouse gas flux and impacts on soil carbon) of sorghum cultivation in New Mexico. The model showed good correspondence with yield data from field trials including both dryland and irrigated sorghum (measured vs. modeled; r2 = 0.75). Simulation experiments tested the effect of dryland production versus irrigation, low N versus high N inputs and delayed fertilizer application. Nitrogen application timing and irrigation impacted yield and N2O emissions less than N rate and climate. Across N and irrigation treatments, future climate simulations resulted in 6% increased yield and 20% lower N2O emissions compared to current climate. Soil C pools declined under future climate. The greatest declines in soil C were from low N input sorghum simulations, regardless of irrigation (>20% declines in SOM in both cases), and requires further evaluation to determine if changing future climate is driving these declines, or if they are a function of prolonged sorghum-fallow rotations in the model. The relatively small gain in yield for irrigated sorghum, and strong control of N rate on N2O emissions suggests that a dryland sorghum bioproduct system could be environmentally sustainable in the Southwestern US with effective N management, and warrants further investigation in field trials.

  17. Framework for Probabilistic Projections of Energy-Relevant Streamflow Indicators under Climate Change Scenarios for the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagener, Thorsten; Mann, Michael; Crane, Robert

    2014-04-29

    This project focuses on uncertainty in streamflow forecasting under climate change conditions. The objective is to develop easy to use methodologies that can be applied across a range of river basins to estimate changes in water availability for realistic projections of climate change. There are three major components to the project: Empirical downscaling of regional climate change projections from a range of Global Climate Models; Developing a methodology to use present day information on the climate controls on the parameterizations in streamflow models to adjust the parameterizations under future climate conditions (a trading-space-for-time approach); and Demonstrating a bottom-up approach tomore » establishing streamflow vulnerabilities to climate change. The results reinforce the need for downscaling of climate data for regional applications, and further demonstrates the challenges of using raw GCM data to make local projections. In addition, it reinforces the need to make projections across a range of global climate models. The project demonstrates the potential for improving streamflow forecasts by using model parameters that are adjusted for future climate conditions, but suggests that even with improved streamflow models and reduced climate uncertainty through the use of downscaled data, there is still large uncertainty is the streamflow projections. The most useful output from the project is the bottom-up vulnerability driven approach to examining possible climate and land use change impacts on streamflow. Here, we demonstrate an inexpensive and easy to apply methodology that uses Classification and Regression Trees (CART) to define the climate and environmental parameters space that can produce vulnerabilities in the system, and then feeds in the downscaled projections to determine the probability top transitioning to a vulnerable sate. Vulnerabilities, in this case, are defined by the end user.« less

  18. Assessing Hydrologic Impacts of Future Land Cover Change Scenarios in the South Platte River Basin (CO, WY, & NE) and the San Pedro River Basin (U.S./Mexico).

    NASA Astrophysics Data System (ADS)

    Barlow, J. E.; Burns, I. S.; Guertin, D. P.; Kepner, W. G.; Goodrich, D. C.

    2016-12-01

    Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology to characterize hydrologic impacts from future urban growth through time that was developed and applied on the San Pedro River Basin was expanded and utilized on the South Platte River Basin as well. Future urban growth is represented by housing density maps generated in decadal intervals from 2010 to 2100, produced by the U.S. Environmental Protection Agency (EPA) Integrated Climate and Land-Use Scenarios (ICLUS) project. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize hydrologic impacts from future growth, the housing density maps were reclassified to National Land Cover Database (NLCD) 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The objectives of this project were to 1) develop and implement a methodology for adapting the ICLUS data for use in AGWA as an approach to evaluate impacts of development on water-quantity and -quality, 2) present, evaluate, and compare results from scenarios for watersheds in two different geographic and climatic regions, 3) determine watershed specific implications of this type of future land cover change analysis.

  19. Chernobyl Studies Project: Working group 7.0, Environmental transport and health effects. Progress report, March--September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anspaugh, L.R.; Hendrickson, S.M.

    1994-12-01

    In April 1988, the US and the former-USSR signed a Memorandum of Cooperation (MOC) for Civilian Nuclear Reactor Safety; this MOC was a direct result of the accident at the Chernobyl Nuclear Power Plant Unit 4 and the following efforts by the two countries to implement a joint program to improve the safety of nuclear power plants and to understand the implications of environmental releases. A Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS) was formed to implement the MOC. The JCCCNRS established many working groups; most of these were the responsibility of the Nuclear Regulatory Commission, as farmore » as the US participation was concerned. The lone exception was Working Group 7 on Environmental Transport and Health Effects, for which the US participation was the responsibility of the US Department of Energy (DOE). The purpose of Working Group 7 was succintly stated to be, ``To develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` To implement the work DOE then formed two subworking groups: 7.1 to address Environmental Transport and 7.2 to address Health Effects. Thus, the DOE-funded Chernobyl Studies Project began. The majority of the initial tasks for this project are completed or near completion. The focus is now turned to the issue of health effects from the Chernobyl accident. Currently, we are involved in and making progress on the case-control and co-hort studies of thyroid diseases among Belarussian children. Dosimetric aspects are a fundamental part of these studies. We are currently working to implement similar studies in Ukraine. A major part of the effort of these projects is supporting these studies, both by providing methods and applications of dose reconstruction and by providing support and equipment for the medical teams.« less

  20. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes.

    PubMed

    Roberts, David R; Nielsen, Scott E; Stenhouse, Gordon B

    2014-07-01

    Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability for Ursus arctos (grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence-absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These included Hedysarum alpinum (alpine sweet vetch), a critical spring and autumn root-digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears: Empetrum nigrum (crowberry), Vaccinium scoparium (grouseberry), and Fragaria virginiana (strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human-bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.

  1. Intraspecific variation buffers projected climate change impacts on Pinus contorta

    PubMed Central

    Oney, Brian; Reineking, Björn; O'Neill, Gregory; Kreyling, Juergen

    2013-01-01

    Species distribution modeling (SDM) is an important tool to assess the impact of global environmental change. Many species exhibit ecologically relevant intraspecific variation, and few studies have analyzed its relevance for SDM. Here, we compared three SDM techniques for the highly variable species Pinus contorta. First, applying a conventional SDM approach, we used MaxEnt to model the subject as a single species (species model), based on presence–absence observations. Second, we used MaxEnt to model each of the three most prevalent subspecies independently and combined their projected distributions (subspecies model). Finally, we used a universal growth transfer function (UTF), an approach to incorporate intraspecific variation utilizing provenance trial tree growth data. Different model approaches performed similarly when predicting current distributions. MaxEnt model discrimination was greater (AUC – species model: 0.94, subspecies model: 0.95, UTF: 0.89), but the UTF was better calibrated (slope and bias – species model: 1.31 and −0.58, subspecies model: 1.44 and −0.43, UTF: 1.01 and 0.04, respectively). Contrastingly, for future climatic conditions, projections of lodgepole pine habitat suitability diverged. In particular, when the species' intraspecific variability was acknowledged, the species was projected to better tolerate climatic change as related to suitable habitat without migration (subspecies model: 26% habitat loss or UTF: 24% habitat loss vs. species model: 60% habitat loss), and given unlimited migration may increase amount of suitable habitat (subspecies model: 8% habitat gain or UTF: 12% habitat gain vs. species model: 51% habitat loss) in the climatic period 2070–2100 (SRES A2 scenario, HADCM3). We conclude that models derived from within-species data produce different and better projections, and coincide with ecological theory. Furthermore, we conclude that intraspecific variation may buffer against adverse effects of climate change. A key future research challenge lies in assessing the extent to which species can utilize intraspecific variation under rapid environmental change. PMID:23467191

  2. Early Assessment of VIIRS On-Orbit Calibration and Support Activities

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chiang, Kwofu; McIntire, Jeffrey; Oudrari, Hassan; Wu, Aisheng; Schwaller, Mathew; Butler, James

    2012-01-01

    The Suomi National Polar-orbiting Partnership (S-NPP) satellite, formally the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), provides a bridge between current and future low-Earth orbiting weather and environmental observation satellite systems. The NASA s NPP VIIRS Characterization Support Team (VCST) is designed to assess the long term geometric and radiometric performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the S-NPP spacecraft and to support NPP Science Team Principal Investigators (PI) for their independent evaluation of VIIRS Environmental Data Records (EDRs). This paper provides an overview of Suomi NPP VIIRS on-orbit calibration activities and examples of sensor initial on-orbit performance. It focuses on the radiometric calibration support activities and capabilities provided by the NASA VCST.

  3. Field Testing of Environmentally Friendly Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Burnett

    2009-05-31

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of themore » environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.« less

  4. Environmental impacts of Brazil's Tucuruí Dam: unlearned lessons for hydroelectric development in Amazonia.

    PubMed

    Fearnside, P M

    2001-03-01

    Brazil's Tucuruí Dam provides valuable lessons for improving decision-making on major public works in Amazonia and elsewhere. Together with social impacts, which were reviewed in a companion paper, the project's environmental costs are substantial. Monetary costs include costs of construction and maintenance and opportunity costs of natural resources (such as timber) and of the money invested by the Brazilian government. Environmental costs include forest loss, leading to both loss of natural ecosystems and to greenhouse gas emissions. Aquatic ecosystems are heavily affected by the blockage of fish migration and by creation of anoxic environments. Decay of vegetation left in the reservoir creates anoxic water that can corrode turbines, as well as producing methane and providing conditions for methylation of mercury. Defoliants were considered for removing forest in the submergence area but plans were aborted amid a public controversy. Another controversy surrounded impacts of defoliants used to prevent regrowth along the transmission line. Mitigation measures included archaeological and faunal salvage and creation of a "gene bank" on an island in the reservoir. Decision-making in the case of Tucuruí was virtually uninfluenced by environmental studies, which were done concurrently with construction. The dam predates Brazil's 1986 requirement of an Environmental Impact Assessment. Despite limitations, research results provide valuable information for future dams. Extensive public-relations use of the research effort and of mitigation measures such as faunal salvage were evident. Decision-making was closely linked to the influence of construction firms, the military, and foreign financial interests in both the construction project and the use of the resulting electrical power (most of which is used for aluminum smelting). Social and environmental costs received virtually no consideration when decisions were made, an outcome facilitated by a curtain of secrecy surrounding many aspects of the project. Despite improvements in Brazil's system of environmental impact assessment since the Tucuruí reservoir was filled in 1984, many essential features of the decision-making system remain unchanged.

  5. Collaborative Preservation of At-Risk Data at NOAA's National Centers for Environmental Information

    NASA Astrophysics Data System (ADS)

    Casey, K. S.; Collins, D.; Cooper, J. M.; Ritchey, N. A.

    2017-12-01

    The National Centers for Environmental Information (NCEI) serves as the official long term archive of NOAA's environmental data. Adhering to the principles and responsibilities of the Open Archival Information System (OAIS, ISO 14721), and backed by both agency policies and formal legislation, NCEI ensures that these irreplaceable environmental data are preserved and made available for current users and future generations. These goals are achieved through regional, national, and international collaborative efforts like the ICSU World Data System, the Intergovernmental Oceanographic Commission's International Oceanographic Data and Information Exchange (IODE) program, NSF's DataOne, and through specific data preservation projects with partners such as the NOAA Cooperative Institutes, ESIP, and even retired federal employees. Through efforts like these, at-risk data with poor documentation, on aging media, and of unknown format and content are being rescued and made available to the public for widespread reuse.

  6. The Application of NASA Technology to Public Health

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.; Watts, C.

    2007-01-01

    NASA scientists have a history of applying technologies created to handle satellite data to human health at various spatial scales. Scientists are now engaged in multiple public health application projects that integrate NASA satellite data with measures of public health. Such integration requires overcoming disparities between the environmental and the health data. Ground based sensors, satellite imagery, model outputs and other environmental sources have inconsistent spatial and temporal distributions. The MSFC team has recognized the approach used by environmental scientists to fill in the empty places can also be applied to outcomes, exposures and similar data. A revisit to the classic epidemiology study of 1854 using modern day surface modeling and GIS technology, demonstrates how spatial technology can enhance and change the future of environmental epidemiology. Thus, NASA brings to public health, not just a set of data, but an innovative way of thinking about the data.

  7. Exploring the Potential for Sustainable Future Bioenergy Production in the Arkansas-White-Red River Basin

    NASA Astrophysics Data System (ADS)

    Baskaran, L.; Jager, H.; Kreig, J.

    2016-12-01

    Bioenergy production in the US has been projected to increase in the next few years and this has raised concerns over environmentally sustainable production. Specifically, there are concerns that managing lands to produce bioenergy feedstocks in the Mississippi-Atchafalaya River Basin (MARB) may have impacts over the water quality in the streams draining these lands and hamper with efforts to reduce the size of the Gulf of Mexico's "Dead Zone" (hypoxic waters). However, with appropriate choice of feedstocks and good conservation practices, bioenergy production systems can be environmentally and economically sustainable. We evaluated opportunities for producing 2nd generation cellulosic feedstocks that are economically sustainable and improve water quality in the Arkansas-White-Red (AWR) river basin, which is major part of the MARB. We generated a future bioenergy landscape by downscaling county-scale projections of bioenergy crop production produced by an economic model, POLYSYS, at a market price of $60 per dry ton and a 1% annual yield increase. Our future bioenergy landscape includes perennial grasses (switchgrass and miscanthus), short-rotated woody crops (poplar and willow) and annual crops (high yield sorghum, sorghum stubble, corn stover and wheat straw). Using the Soil and Water Assessment Tool (SWAT) we analyzed changes in water quality and quantity by simulating a baseline scenario with the current landscape (2014 land cover) and a future scenario with the bioenergy landscape. Our results over the AWR indicate decreases in median nutrient and sediment loadings from the baseline scenario. We also explored methods to evaluate if conservation practices (such as reducing fertilizer applications, incorporating filter strips, planting cover crops and moving to a no-till system) can improve water quality, while maintaining biomass yield. We created a series of SWAT simulations with varying levels of conservation practices by crop and present our methods towards identifying future scenarios that may minimize water quality and maximize biomass yields.

  8. LA SAFE and Isle de Jean Charles: Regional Adaptation and Community Resettlement Planning

    NASA Astrophysics Data System (ADS)

    Sanders, M.

    2017-12-01

    LA SAFE, or Louisiana's Strategic Adaptations for Future Environments, is a strategic framework for community development utilizing future projections of coastal land loss and flood risk as a determining factor in regional growth management and local planning initiatives along a 10, 25, and 50 year timeline. LA SAFE utilizes the input of passionate local citizen leaders and organizations committed to enabling community members to take proactive steps towards mitigating risk and increasing resilience against coastal issues. The project aims to acknowledge that adaptation and restoration must go hand-in-hand with addressing community growth and contraction, as well as realizing Louisiana's most vulnerable coastal communities will need to contemplate resettlement over the next 50 years. The project's outlook is to become a global leader for adaptation and cultural design and restoration. Connecting a global interest with the project and offering extensive ways for people to learn about the issues and get involved will provide an immense amount of support necessary for future coastal environments around the world. This presentation will focus on the output of a year-long planning effort across a six-parish target area encompassing several vulnerable coastal Louisiana locales. The Resettlement of Isle de Jean Charles is a federally-funded and first-of-its kind initiative marking Louisiana's first attempt to relocate a vulnerable coastal community at-scale and as a group. Due to a myriad of environmental factors, the Island has experienced 98 percent land loss since 1955, leading to many of the Island's historical inhabitants to retreat to higher, drier landscapes. In moving the community at-scale, the project seeks to inject new life into the community and its residents in relocating the community to higher, safer ground, while also developing the new community in such a way that it maximizes economic development, job training, and educational opportunities and can be a locale that is not only a model for future resettlement projects, but also attracts new and former residents of the Isle de Jean Charles community. This presentation will recap planning work completed to date, as well as provide a highlight of how the project is developing as a scalable, replicable model.

  9. Effects of Climate Change and Deforestation on the Amazon's Hydrological Cycle Will Require Interventions to Hydropower Planning in Brazil

    NASA Astrophysics Data System (ADS)

    Arias, M. E.; Farinosi, F.; Lee, E.; Livino, A.; Moorcroft, P. R.

    2016-12-01

    Brazil is the 2nd largest hydropower producer in the world, and this energy source will continue to be a priority in the country for the foreseeable decades. Yet, climate change is expected to alter the country's hydrological regime, in particular in the Amazon where most new hydropower development is occurring. In order to better assess the potential of hydropower projects in decades to come, it is important to evaluate how future hydrological regimes will affect their performance and suitability. This study quantifies the impacts of climate change and land use conversion on hydropower generation, and identifies mechanisms that could help energy planners to account for future changes. Using the largest network of dams in Brazil's national portfolio within a single watershed, the Tapaj's River, this study connects global and regional future environmental projections to daily river flows and operations of 37 dams with an overall potential capacity of 29.4 GW. We found that climate change could decrease hydropower potential by 477-665 MW (-6 to -8% from historical conditions) during the dry season, a critical loss since dams are expected to operate at only one third of capacity during this perioddue to the limited reservoir volume of most projects in the Amazon lowlands. Furthermore, deforestation is expected to increase the inter-annual variability in hydropower potential from 2,798 for baseline conditions to 3,764-3,899 (+967-1102) MW under future scenarios for the 2040s. Consideration of future hydrological conditions on individual dams showed that the magnitude and uncertainty of losses could be greater than 30 MW -equivalent to the total potential of some dams in the inventory- in 11 of the projects studied. Future hydrological conditions could also delay the period when maximum daily generation occurs by 22-29 days, which could have important implications to energy planning in Brazil because these run-of-river dams would no longer be able to meet the country's seasonal peak demand. This information on future changes to individual dams' performance could feed directly into the project selection process in order to adapt designs and operations to ensure the greatest benefits and least impacts from hydropower in the long term.

  10. Teaching Environmental Health Science for Informed Citizenship in the Science Classroom and Afterschool Clubs.

    PubMed

    Keselman, Alla; Levin, Daniel M; Hundal, Savreen; Kramer, Judy F; Matzkin, Karen; Dutcher, Gale

    2012-08-01

    In the era of growing concerns about human-induced climate change and sustainable development, it is important for the schools to prepare students for meaningful engagement with environmental policies that will determine the future of our society. To do this, educators need to face a number of challenges. These include deciding on the science knowledge and skills needed for informed citizenship, identifying teaching practices for fostering such knowledge and skills, and finding ways to implement new practices into the tightly packed existing curriculum. This paper describes two collaborative efforts between the U.S. National Library of Medicine (NLM) and University of Maryland College of Education that attempt to meet these challenges. The focus of both projects is on helping students develop information seeking and evaluation and argumentation skills, and applying them to complex socio-scientific issues that have bearing on students' daily lives. The first effort involves co-designing an afterschool environmental health club curriculum with an interdisciplinary team of middle school teachers. The second effort is the development and implementation of a week-long school drinking water quality debate activity in a high school environmental science classroom. Both projects center on Tox Town, an NLM web resource that introduces students to environmental health issues in everyday environments. The paper describes successes and challenges of environmental health curriculum development, including teachers' and researchers' perception of contextual constraints in the club and classroom setting, tensions inherent in co-design, and students' experience with socio-scientific argumentation.

  11. Teaching Environmental Health Science for Informed Citizenship in the Science Classroom and Afterschool Clubs

    PubMed Central

    Keselman, Alla; Levin, Daniel M.; Hundal, Savreen; Kramer, Judy F.; Matzkin, Karen; Dutcher, Gale

    2013-01-01

    In the era of growing concerns about human-induced climate change and sustainable development, it is important for the schools to prepare students for meaningful engagement with environmental policies that will determine the future of our society. To do this, educators need to face a number of challenges. These include deciding on the science knowledge and skills needed for informed citizenship, identifying teaching practices for fostering such knowledge and skills, and finding ways to implement new practices into the tightly packed existing curriculum. This paper describes two collaborative efforts between the U.S. National Library of Medicine (NLM) and University of Maryland College of Education that attempt to meet these challenges. The focus of both projects is on helping students develop information seeking and evaluation and argumentation skills, and applying them to complex socio-scientific issues that have bearing on students’ daily lives. The first effort involves co-designing an afterschool environmental health club curriculum with an interdisciplinary team of middle school teachers. The second effort is the development and implementation of a week-long school drinking water quality debate activity in a high school environmental science classroom. Both projects center on Tox Town, an NLM web resource that introduces students to environmental health issues in everyday environments. The paper describes successes and challenges of environmental health curriculum development, including teachers’ and researchers’ perception of contextual constraints in the club and classroom setting, tensions inherent in co-design, and students’ experience with socio-scientific argumentation. PMID:24382985

  12. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions

    DOE PAGES

    Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.; ...

    2017-07-06

    Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative landmore » uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less

  13. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.

    2017-07-06

    Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO2 which shows almost twice the variability in cumulative land uptake sincemore » 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less

  14. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.

    Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative landmore » uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less

  15. Developing a novel UAV (Unmanned Aerial Vehicle) helicopter platform for very high resolution environmental monitoring of catchment processes

    NASA Astrophysics Data System (ADS)

    Freer, J. E.; Richardson, T.; Yang, Z.

    2012-12-01

    Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to present this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data.We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.

  16. Developing a novel UAV (Unmanned Aerial Vehicle) helicopter platform for very high resolution environmental monitoring of catchment processes

    NASA Astrophysics Data System (ADS)

    Freer, J.; Richardson, T. S.

    2012-04-01

    Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to display this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data. We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.

  17. Thin-film photovoltaic power generation offers decreasing greenhouse gas emissions and increasing environmental co-benefits in the long term.

    PubMed

    Bergesen, Joseph D; Heath, Garvin A; Gibon, Thomas; Suh, Sangwon

    2014-08-19

    Thin-film photovoltaic (PV) technologies have improved significantly recently, and similar improvements are projected into the future, warranting reevaluation of the environmental implications of PV to update and inform policy decisions. By conducting a hybrid life cycle assessment using the most recent manufacturing data and technology roadmaps, we compare present and projected environmental, human health, and natural resource implications of electricity generated from two common thin-film PV technologies-copper indium gallium selenide (CIGS) and cadmium telluride (CdTe)-in the United States (U.S.) to those of the current U.S. electricity mix. We evaluate how the impacts of thin films can be reduced by likely cost-reducing technological changes: (1) module efficiency increases, (2) module dematerialization, (3) changes in upstream energy and materials production, and (4) end-of-life recycling of balance of system (BOS). Results show comparable environmental and resource impacts for CdTe and CIGS. Compared to the U.S. electricity mix in 2010, both perform at least 90% better in 7 of 12 and at least 50% better in 3 of 12 impact categories, with comparable land use, and increased metal depletion unless BOS recycling is ensured. Technological changes, particularly efficiency increases, contribute to 35-80% reductions in all impacts by 2030.

  18. Integrated Modeling and Participatory Scenario Planning for Climate Adaptation: the Maui Groundwater Project

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Finucane, M.; Brewington, L.

    2014-12-01

    For the last century, the island of Maui, Hawaii, has been the center of environmental, agricultural, and legal conflict with respect to surface and groundwater allocation. Planning for adequate future freshwater resources requires flexible and adaptive policies that emphasize partnerships and knowledge transfer between scientists and non-scientists. In 2012 the Hawai'i state legislature passed the Climate Change Adaptation Priority Guidelines (Act 286) law requiring county and state policy makers to include island-wide climate change scenarios in their planning processes. This research details the ongoing work by researchers in the NOAA funded Pacific RISA to support the development of Hawaii's first island-wide water use plan under the new climate adaptation directive. This integrated project combines several models with participatory future scenario planning. The dynamically downscaled triply nested Hawaii Regional Climate Model (HRCM) was modified from the WRF community model and calibrated to simulate the many microclimates on the Hawaiian archipelago. For the island of Maui, the HRCM was validated using 20 years of hindcast data, and daily projections were created at a 1 km scale to capture the steep topography and diverse rainfall regimes. Downscaled climate data are input into a USGS hydrological model to quantify groundwater recharge. This model was previously used for groundwater management, and is being expanded utilizing future climate projections, current land use maps and future scenario maps informed by stakeholder input. Participatory scenario planning began in 2012 to bring together a diverse group of over 50 decision-makers in government, conservation, and agriculture to 1) determine the type of information they would find helpful in planning for climate change, and 2) develop a set of scenarios that represent alternative climate/management futures. This is an iterative process, resulting in flexible and transparent narratives at multiple scales. The resulting climate, land use, and groundwater recharge maps give stakeholders a common set of future scenarios that they understand through the participatory scenario process, and identify the vulnerabilities, trade-offs, and adaptive priorities for different groundwater management and land uses in an uncertain future.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, B; Dawn S. Kaback, D; Eugene L. LeBoeuf, E

    Beginning in 2006, the US Department of Energy (DOE) supported nine applied research projects to improve the protection of the Columbia River and mitigate the impacts of Hanford Site groundwater. These projects were funded through a supplemental Congressional budget allocation, and are now in various stages of completion in accordance with the research plans. The DOE Office of Environmental Management Groundwater and Soil Cleanup Technologies (EM-22) sponsored a technical peer review meeting for these projects in Richland WA, July 28-31, 2008. The overall objective of the peer review is to provide information to support DOE decisions about the status andmore » potential future application of the various technologies. The charge for the peer review panel was to develop recommendations for each of the nine 'technologies'. Team members for the July 2008 review were Brian Looney, Gene LeBoeuf, Dawn Kaback, Karen Skubal, Joe Rossabi, Paul Deutsch, and David Cocke. Previous project reviews were held in May 2007 and March-May of 2006. The team used the following four rating categories for projects: (a) Incorporate the technology/strategy in ongoing and future EM activities; (b) Finish existing scope of applied research and determine potential for EM activities when research program is finished; (c) Discontinue current development activities and do not incorporate technology/strategy into ongoing and future EM activities unless a significant and compelling change in potential viability is documented; and (d) Supplement original funded work to obtain the data needed to support a DOE decision to incorporate the technology into ongoing and future EM activities. The supplemental funding portfolio included two projects that addressed strontium, five projects that addressed chromium, one project that addressed uranium and one project that addressed carbon tetrachloride. The projects ranged from in situ treatment methods for immobilizing contaminants using chemical-based methods such as phosphate addition, to innovative surface treatment technologies such as electrocoagulation. Total funding for the nine projects was $9,900,000 in fiscal year (FY) 2006 and $2,000,000 in FY 2007. At the Richland meeting, the peer reviewers provided a generally neutral assessment of the projects and overall progress, and a generally positive assessment with regard to the principal investigators meeting their stated research objectives and performing the planned laboratory research and limited field work. Only one project, the Electrocoagulation Treatability Test, received a rating of 'discontinue' from the team because the project goals had not been met. Because this particular project has already ended, no action with respect to funding withdrawal is necessary. All other projects were recommended to be finished and/or incorporated into field efforts at Hanford. Specific technical comments and recommendations were provided by the team for each project.« less

  20. The fast debris evolution model

    NASA Astrophysics Data System (ADS)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FADE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly, its speed and flexibility allows the user to explore and understand the evolution of the space debris environment.

  1. Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L.

    USGS Publications Warehouse

    Meier, E.S.; Edwards, T.C.; Kienast, Felix; Dobbertin, M.; Zimmermann, N.E.

    2011-01-01

    Aim During recent and future climate change, shifts in large-scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress-gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad-scale environmental data. We evaluated the variation of species co-occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates.Location Europe.Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co-occurrence patterns.Results Correlation analyses supported the stress-gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co-occurrence patterns may play a major role.Main conclusions Our results demonstrate the importance of species co-occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate-induced spatial segregation of the major tree species could have ecological and economic consequences. ?? 2010 Blackwell Publishing Ltd.

  2. Environmental care in agricultural catchments: Toward the communicative catchment

    NASA Astrophysics Data System (ADS)

    Martin, Peter

    1991-11-01

    Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.

  3. Climate change and landscape development in post-closure safety assessment of solid radioactive waste disposal: Results of an initiative of the IAEA.

    PubMed

    Lindborg, T; Thorne, M; Andersson, E; Becker, J; Brandefelt, J; Cabianca, T; Gunia, M; Ikonen, A T K; Johansson, E; Kangasniemi, V; Kautsky, U; Kirchner, G; Klos, R; Kowe, R; Kontula, A; Kupiainen, P; Lahdenperä, A-M; Lord, N S; Lunt, D J; Näslund, J-O; Nordén, M; Norris, S; Pérez-Sánchez, D; Proverbio, A; Riekki, K; Rübel, A; Sweeck, L; Walke, R; Xu, S; Smith, G; Pröhl, G

    2018-03-01

    The International Atomic Energy Agency has coordinated an international project addressing climate change and landscape development in post-closure safety assessments of solid radioactive waste disposal. The work has been supported by results of parallel on-going research that has been published in a variety of reports and peer reviewed journal articles. The project is due to be described in detail in a forthcoming IAEA report. Noting the multi-disciplinary nature of post-closure safety assessments, here, an overview of the work is given to provide researchers in the broader fields of radioecology and radiological safety assessment with a review of the work that has been undertaken. It is hoped that such dissemination will support and promote integrated understanding and coherent treatment of climate change and landscape development within an overall assessment process. The key activities undertaken in the project were: identification of the key processes that drive environmental change (mainly those associated with climate and climate change), and description of how a relevant future may develop on a global scale; development of a methodology for characterising environmental change that is valid on a global scale, showing how modelled global changes in climate can be downscaled to provide information that may be needed for characterising environmental change in site-specific assessments, and illustrating different aspects of the methodology in a number of case studies that show the evolution of site characteristics and the implications for the dose assessment models. Overall, the study has shown that quantitative climate and landscape modelling has now developed to the stage that it can be used to define an envelope of climate and landscape change scenarios at specific sites and under specific greenhouse-gas emissions assumptions that is suitable for use in quantitative post-closure performance assessments. These scenarios are not predictions of the future, but are projections based on a well-established understanding of the important processes involved and their impacts on different types of landscape. Such projections support the understanding of, and selection of, plausible ranges of scenarios for use in post-closure safety assessments. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Environmental assessments in the built environment: crucial yet underdeveloped

    NASA Astrophysics Data System (ADS)

    Heinonen, Jukka; Horvath, Arpad; Junnila, Seppo

    2015-03-01

    Environmental assessments have been developed with increasing emphasis since the wide-scale emergence of environmental concerns in the 1970s. However, after decades there is still plenty of room left for development. These assessments are also rapidly becoming more and more crucial as we seem to be reaching the boundaries of the carrying capacity of our planet. Assessments of the emissions from the built environment and especially of the interactions between human communities and emissions are in a very central role in the quest to solve the great problem of sustainable living. Policy- makers and professionals in various fields urgently need reliable data on the current conditions and realistic future projections, as well as robust and scientifically defensible models for decision making. This recognition was the main motivation to call for this Focus Issue, and the published contributions truly highlight the same point. This editorial provides brief summaries and discussions on the 16 articles of the Focus Issue, depicting the several interesting perspectives they offer to advance the state of the art. Now we encourage academics, practitioners, government, industry, individual consumers, and other decision makers to utilize the available findings and develop the domain of environmental assessment of the built environment further. Indeed, we hope that this Focus Issue is merely a kernel of a significantly large future body of literature.

  5. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    NASA Technical Reports Server (NTRS)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  6. An adaptive environmental effects monitoring framework for assessing the influences of liquid effluents on benthos, water and sediments in aquatic receiving environments.

    PubMed

    Somers, Keith M; Kilgour, Bruce W; Munkittrick, Kelly R; Arciszewski, Tim J

    2018-05-16

    Environmental effects monitoring (EEM) has been traditionally used to evaluate the effects of existing facilities discharging liquid effluents into natural receiving waters in Canada. EEM also has the potential to provide feedback to an ongoing project in an adaptive management context, and can inform the design of future projects. EEM, consequently, can and should also be used to test the predictions of effects related to new projects. Despite EEM's potential for widespread applicability, challenges related to the effective implementation of EEM include the use of appropriate study designs, as well as to the adoption of tiers for increasing or decreasing monitoring intensity. Herein we describe a template for designing and implementing a six-tiered EEM program that utilizes information from the project-planning and pre-development baseline data collection stages to build on forecasts from the initial environmental impact assessment project-design stage, and feeds into an adaptive management process. Movement between the six EEM tiers is based on the exceedance of Baseline Monitoring Triggers, Forecast Triggers and Management Triggers at various stages in the EEM process. To distinguish these types of triggers, we review the historical development of numeric and narrative triggers as applied to chemical (water and sediment) and biological (plankton, benthos, fish) endpoints. We also provide an overview of historical study design issues and discuss how the six EEM tiers and associated triggers influence the temporal-spatial experimental design options and how the information gained through EEM could be used in an adaptive management context. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Forecasting consequences of changing sea ice availability for Pacific walruses

    USGS Publications Warehouse

    Udevitz, Mark S.; Jay, Chadwick V.; Taylor, Rebecca; Fischbach, Anthony S.; Beatty, William S.; Noren, Shawn R.

    2017-01-01

    The accelerating rate of anthropogenic alteration and disturbance of environments has increased the need for forecasting effects of environmental change on fish and wildlife populations. Models linking projections of environmental change with behavioral responses and bioenergetic effects can provide a basis for these forecasts. There is particular interest in forecasting effects of projected reductions in sea ice availability on Pacific walruses (Odobenus rosmarus divergens). Declining extent of summer sea ice in the Chukchi Sea has caused Pacific walruses to increase use of coastal haulouts and decrease use of more productive offshore feeding areas. Such climate-induced changes in distribution and behavior could ultimately affect the status of the population. We developed behavioral models to relate changes in sea ice availability to adult female walrus movements and activity levels, and adapted previously developed bioenergetics models to relate those activity levels to energy requirements and the ability to meet those requirements. We then linked these models to general circulation model projections of future ice availability to forecast autumn body condition for female walruses during mid- and late-century time periods. Our results suggest that as sea ice becomes less available in the Chukchi Sea, female walruses will spend more time in the southwestern region of that sea, less time resting, and less time foraging. Median forecasted autumn body masses were 7–12% lower in future scenarios than during recent times, but posterior distributions broadly overlapped and median forecasted seasonal mass losses (15–34%) were comparable to seasonal mass losses routinely experienced by other pinnipeds. These seasonal reductions in body condition would be unlikely to result in demographic effects, but if walruses were unable to rebuild endogenous reserves while wintering in the Bering Sea, cumulative effects could have implications for reproduction and survival, ultimately affecting the status of the Pacific walrus population. Our approach provides a general framework for forecasting consequences of the broad range of environmental changes and anthropogenic disturbances that may affect bioenergetics through behavioral responses or changes in prey availability.

  8. A Project-Based Model for Professional Environmental Experience

    ERIC Educational Resources Information Center

    Meehan, Barry; Thomas, Ian

    2006-01-01

    The projects described in this article were designed to provide a real world situation akin to the work of environmental professionals. The projects were conducted with Australian students working on environmental issues in Vietnam. The projects demonstrated that multi-disciplinary teamwork fits well into environmental projects, and importantly…

  9. Impacts of Present and Future Climate Variability on Forest Ecosystem in Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Ozcan, O.; Musaoglu, N.; Türkeş, M.

    2017-12-01

    The concept of `climate change vulnerability' helps us to better comprehend the cause/effect relationships behind climate change and its impact on human societies, socioeconomic sectors, physiographical and ecological systems. Herein, multifactorial spatial modeling was applied to evaluate the vulnerability of a Mediterranean forest ecosystem to climate change. Thus, the geographical distribution of the final Environmental Vulnerability Areas (EVAs) of the forest ecosystem are based on the estimated final Environmental Vulnerability Index (EVI) values. This revealed that at current levels of environmental degradation, physical, geographical, policy enforcement and socioeconomic conditions, the area with a "very low" vulnerability degree covered mainly the town, its surrounding settlements and the agricultural lands found mainly over the low and flat travertine plateau and the plains at the east and southeast of the district. The spatial magnitude of the EVAs over the forest ecosystem under the current environmental degradation was also determined. This revealed that the EVAs classed as "very low" account for 21% of the total area of the forest ecosystem, those classed as "low" account for 36%, those classed as "medium" account for 20%, and those classed as "high" account for 24%. Based on regionally averaged future climate assessments and projected future climate indicators, both the study site and the western Mediterranean sub-region of Turkey will probably become associated with a drier, hotter, more continental and more water-deficient climate. This analysis holds true for all future scenarios, with the exception of RCP4.5 for the period from 2015 to 2030. However, the present dry-sub humid climate dominating this sub-region and the study area shows a potential for change towards more dry climatology and for it to become a semiarid climate in the period between 2031 and 2050 according to the RCP8.5 high emission scenario. All the observed and estimated results show clearly that the densest forest ecosystem in the southern part of the study site, which is characterized by mainly Mediterranean coniferous and some mixed forest and the maquis vegetation, will very likely be influenced by medium and high degrees of vulnerability to future environmental degradation, climate change and variability.

  10. New land use scenarios for the Brazilian Amazonia: how to reach a sustainable future?

    NASA Astrophysics Data System (ADS)

    Aguiar, A. P. D.; Vieira, I.; Toledo, P.; Araujo, R.; Coelho, A.; Pinho, P.; Assis, T.; Dalla-Nora, E. L.; Kawakami Savaget, E.; Batistella, M.

    2014-12-01

    Following an intense deforestation process initiated in the 1960s, clear-cut deforestation rates in the Brazilian Amazon have decreased significantly since 2004. A convergence of conditions contributed to this, including the creation of protected areas, the use of effective monitoring and control systems, and credit restriction mechanisms. Although regional social indicators have also slightly improved, society remains unequal and violent, both in urban and rural areas. Furthermore, the combined results of the fall of deforestation and the increased economic importance of the agribusiness sector have led to the political weakening of the so-called socio-environmental model. Thus, the current situation indicates a future of low (clear-cut) carbon emissions and low social conditions. On the other hand, other threats remain, including forest degradation derived from illegal logging and forest fires. There is also considerable uncertainty about the fate of the remaining forest areas as multiple forces can contribute to the return of high deforestation, including the rapidly expanding global markets for agricultural commodities, large-scale transportation and energy infrastructure projects, and weak institutions. We present the results of a participatory scenario process, in which we discussed the future of the region until 2050 combining normative and exploratory approaches. We include an ideal "Sustainability" scenario (Scenario A) in which we envision major socioeconomic, institutional and environmental achievements. Scenario B stays in the "Middle of the road", in which the society maintains some of the positive environmental trends of the last decade, but not reversing the structural situation of social inequities. Scenario C is a pessimistic vision, named "Fragmentation" with high deforestation rates and low social development. The goal of the work was twofold: (a) to propose a method to enrich the discussion among different private and governmental stakeholders on how to build a trajectory towards sustainability; (b) to support the parameterization of spatially-explicit LUCC models in the scope of the AMAZALERT project.

  11. Sulimar Queen environmental restoration project closure package Sandia environmental stewardship exemplar.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tillman, Jack B.

    In March 2008, Sandia National Laboratories (Sandia), in partnership with the Bureau of Land Management, Roswell Field Office, completed its responsibilities to plug and abandon wells and restore the surface conditions for the Sulimar Queens Unit, a 2,500 acre oil field, in Chaves County, Southeast New Mexico. Sandia assumed this liability in an agreement to obtain property to create a field laboratory to perform extensive testing and experimentation on enhanced oil recovery techniques for shallow oil fields. In addition to plugging and abandoning 28 wells, the project included the removal of surface structures and surface reclamation of disturbed lands associatedmore » with all plugged and abandoned wells, access roads, and other auxiliary facilities within unit boundaries. A contracting strategy was implemented to mitigate risk and reduce cost. As the unit is an important wildlife habitat for prairie chickens, sand dune lizards, and mule deer, the criteria for the restoration and construction process were designed to protect and enhance the wildlife habitat. Lessons learned from this project include: (1) extreme caution should be exercised when entering agreements that include future liabilities, (2) partnering with the regulator has huge benefits, and (3) working with industry experts, who were familiar with the work, and subcontractors, who provided the network to complete the project cost effectively.« less

  12. Regional Issue Identification and Assessment program (RIIA). Environmental impacts and issues of the EIA MID-MID scenario: Federal Region I (New England)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, J.; Munson, J.S.

    1979-04-15

    The impacts described here for 1985 and 1990 are based on a national energy projection which assumes medium energy demand and fuel supply through 1990 but does not incorporate the policies of the National Energy Act (NEA). This scenario, referred to as the Projection Series C or the TRENDLONG MID-MID scenario, is one of six possible energy futures developed by the DOE Energy Information Administration for the Department's 1977 Annual Report to Congress. It was chosen as representative of the official DOE national energy projections when this project was initiated, prior to the passage of the National Energy Act. Sincemore » the RIIA program is part of an ongoing review of the regional impact of energy policies, the next phase will examine the National Energy Act (NEA) and initiatives suggested by the President's second National Energy Plan. However, since coal utilization increases under the NEA, in general, impacts identified in the TRENDLONG Series C Scenario should provide a framework for the discussion of impacts by NEA. The environmental impacts discussed in this volume are for Federal Region I (Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, and Connecticut). However, there are nine companion volumes, one for each of the other Federal Regions.« less

  13. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  14. The Low-Level Radioactive Waste Management Office: Thirty Years of Experience in Canada - 13308

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitez, Liliana; Gardiner, Mark J.; Zelmer, Robert L.

    2013-07-01

    This paper reviews thirty years of progress by the Low-Level Radioactive Waste Management Office (LLRWMO) in developing and implementing low-level radioactive waste (LLRW) remediation projects and environmentally safe co-existence strategies. It reports on the present status and the future of the national historic waste program in Canada. There are over two million cubic metres of historic LLRW in Canada. Historic LLRW is broadly defined as LLRW that was managed in the past in a manner that is no longer considered acceptable and for which the original owner cannot reasonably be held accountable. In many cases, the original owner can notmore » be identified or no longer exists. The LLRWMO was established in 1982 as Canada's agent to carry out the responsibilities of the federal government for the management of historic LLRW. The LLRWMO is operated by Atomic Energy of Canada Limited (AECL) through a cost-recovery agreement with Natural Resources Canada (NRCan), the federal department that provides the funding and establishes national policy for radioactive waste management in Canada. The LLRWMO expertise includes project managers, environmental remediation specialists, radiation surveyors, communications staff and administrative support staff. The LLRWMO in providing all aspects of project oversight and implementation contracts additional resources supplementing core staff capacity as project/program demands require. (authors)« less

  15. Ships as future floating farm systems?

    PubMed

    Moustafa, Khaled

    2018-04-03

    Environmental and agriculture challenges such as severe drought, desertification, sprawling cities and shrinking arable lands in large regions in the world compel us to think about alternative and sustainable farming systems. Ongoing projects to build floating cities in the sea suggest that building specific ships for farming purposes (as farming ships or farming boats) would also be attainable to introduce new farming surfaces and boost food production worldwide to cope with food insecurity issues.

  16. Aquifer thermal energy storage. International symposium: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste ormore » by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.« less

  17. Urban-Climate Adaptation Tool: Optimizing Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Fellows, J. D.; Bhaduri, B. L.

    2016-12-01

    Cities have an opportunity to become more resilient to future climate change and green through investments made in urban infrastructure today. However, most cities lack access to credible high-resolution climate change projection and other environmental information needed to assess and address potential vulnerabilities from future climate variability. Therefore, we present an integrated framework for developing an urban climate adaptation tool (Urban-CAT). The initial focus of Urban-CAT is to optimize the placement of green infrastructure (e.g., green roofs, porous pavements, retention basins, etc.) to be better control stormwater runoff and lower the ambient urban temperature. Urban-CAT consists of four modules. Firstly, it provides climate projections at different spatial resolutions for quantifying urban landscape. Secondly, this projected data is combined with socio-economic and other environmental data using leading and lagging indicators for assessing landscape vulnerability to climate extremes (e.g., urban flooding). Thirdly, a neighborhood scale modeling approach is presented for identifying candidate areas for adaptation strategies (e.g., green infrastructure as an adaptation strategy for urban flooding). Finally, all these capabilities are made available as a web-based tool to support decision-making and communication at the neighborhood and city levels. This presentation will highlight the methods that drive each of the modules, demo some of the capabilities using Knoxville Tennessee as a case study, and discuss the challenges of working with communities to incorporate climate change into their planning. Next steps on Urban-CAT is to additional capabilities to create a comprehensive climate adaptation tool, including energy, transportation, health, and other key urban services.

  18. Susitna Hydroelectric Project: terrestrial environmental workshop and preliminary simulation model

    USGS Publications Warehouse

    Everitt, Robert R.; Sonntag, Nicholas C.; Auble, Gregory T.; Roelle, James E.; Gazey, William

    1982-01-01

    The technical feasibility, economic viability, and environmental impacts of a hydroelectric development project in the Susitna River Basin are being studied by Acres American, Inc. on behalf of the Alaska Power Authority. As part of these studies, Acres American recently contracted LGL Alaska Research Associates, Inc. to coordinate the terrestrial environmental studies being performed by the Alaska Department of Fish and Game and, as subcontractors to LGL, several University of Alaska research groups. LGL is responsible for further quantifying the potential impacts of the project on terrestrial wildlife and vegetation, and for developing a plan to mitigate adverse impacts on the terrestrial environment. The impact assessment and mitigation plan will be included as part of a license application to the Federal Energy Regulatory Commission (FERC) scheduled for the first quarter of 1983. The quantification of impacts, mitigation planning, and design of future research is being organized using a computer simulation modelling approach. Through a series of workshops attended by researchers, resource managers, and policy-makers, a computer model is being developed and refined for use in the quantification of impacts on terrestrial wildlife and vegetation, and for evaluating different mitigation measures such as habitat enhancement and the designation of replacement lands to be managed by wildlife habitat. This report describes the preliminary model developed at the first workshop held August 23 -27, 1982 in Anchorage.

  19. Simulated hydrologic response to climate change during the 21st century in New Hampshire

    USGS Publications Warehouse

    Bjerklie, David M.; Sturtevant, Luke P.

    2018-01-24

    The U.S. Geological Survey, in cooperation with the New Hampshire Department of Environmental Services and the Department of Health and Human Services, has developed a hydrologic model to assess the effects of short- and long-term climate change on hydrology in New Hampshire. This report documents the model and datasets developed by using the model to predict how climate change will affect the hydrologic cycle and provide data that can be used by State and local agencies to identify locations that are vulnerable to the effects of climate change in areas across New Hampshire. Future hydrologic projections were developed from the output of five general circulation models for two future climate scenarios. The scenarios are based on projected future greenhouse gas emissions and estimates of land-use and land-cover change within a projected global economic framework. An evaluation of the possible effect of projected future temperature on modeling of evapotranspiration is summarized to address concerns regarding the implications of the future climate on model parameters that are based on climate variables. The results of the model simulations are hydrologic projections indicating increasing streamflow across the State with large increases in streamflow during winter and early spring and general decreases during late spring and summer. Wide spatial variability in changes to groundwater recharge is projected, with general decreases in the Connecticut River Valley and at high elevations in the northern part of the State and general increases in coastal and lowland areas of the State. In general, total winter snowfall is projected to decrease across the State, but there is a possibility of increasing snow in some locations, particularly during November, February, and March. The simulated future changes in recharge and snowfall vary by watershed across the State. This means that each area of the State could experience very different changes, depending on topography or other factors. Therefore, planning for infrastructure and public safety needs to be flexible in order to address the range of possible outcomes indicated by the various model simulations. The absolute magnitude and timing of the daily streamflows, especially the larger floods, are not considered to be reliably simulated compared to changes in frequency and duration of daily streamflows and changes in accumulated monthly and seasonal streamflow volumes. Simulated current and future streamflow, groundwater recharge, and snowfall datasets include simulated data derived from the five general circulation models used in this study for a current reference time period and two future time periods. Average monthly streamflow time series datasets are provided for 27 streamgages in New Hampshire. Fourteen of the 27 streamgages associated with daily streamflow time series showed a good calibration. Average monthly groundwater recharge and snowfall time series for the same reference time period and two future time periods are also provided for each of the 467 hydrologic response units that compose the model.

  20. An Innovative Speech-Based User Interface for Smarthomes and IoT Solutions to Help People with Speech and Motor Disabilities.

    PubMed

    Malavasi, Massimiliano; Turri, Enrico; Atria, Jose Joaquin; Christensen, Heidi; Marxer, Ricard; Desideri, Lorenzo; Coy, Andre; Tamburini, Fabio; Green, Phil

    2017-01-01

    A better use of the increasing functional capabilities of home automation systems and Internet of Things (IoT) devices to support the needs of users with disability, is the subject of a research project currently conducted by Area Ausili (Assistive Technology Area), a department of Polo Tecnologico Regionale Corte Roncati of the Local Health Trust of Bologna (Italy), in collaboration with AIAS Ausilioteca Assistive Technology (AT) Team. The main aim of the project is to develop experimental low cost systems for environmental control through simplified and accessible user interfaces. Many of the activities are focused on automatic speech recognition and are developed in the framework of the CloudCAST project. In this paper we report on the first technical achievements of the project and discuss future possible developments and applications within and outside CloudCAST.

  1. Methane for Power Generation in Muaro Jambi: A Green Prosperity Model Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, K.; Elchinger, M.; Hill, G.

    2014-07-01

    NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates electricity generation from the organic content of wastewater at a palm oil mill in Muaro Jambi, Sumatra. Palm mills use vast amounts of water in the production process resulting in problematic waste water called palm oil mill effluent (POME). The POME releases methane to the atmosphere in open ponds which could be covered tomore » capture the methane to produce renewable electricity for rural villages. The study uses average Indonesia data to determine the economic viability of methane capture at a palm oil mill and also evaluates technology as well as social and environmental impacts of the project.« less

  2. Communities ready for takeoffIntegrating social assets for biofuel site-selection modeling.

    PubMed

    Rijkhoff, Sanne A M; Hoard, Season A; Gaffney, Michael J; Smith, Paul M

    2017-01-01

    Although much of the social science literature supports the importance of community assets for success in many policy areas, these assets are often overlooked when selecting communities for new infrastructure facilities. Extensive collaboration is crucial for the success of environmental and economic projects, yet it often is not adequately addressed when making siting decisions for new projects. This article develops a social asset framework that includes social, creative, and human capital to inform site-selection decisions. This framework is applied to the Northwest Advanced Renewables Alliance project to assess community suitability for biofuel-related developments. This framework is the first to take all necessary community assets into account, providing insight into successful site selection beyond current models. The framework not only serves as a model for future biorefinery projects but also guides tasks that depend on informed location selection for success.

  3. Requirements, techniques, and costs for contaminant removal from landfill gas.

    PubMed

    Kuhn, John N; Elwell, Anthony C; Elsayed, Nada H; Joseph, Babu

    2017-05-01

    Waste-to-energy projects are an increasingly prominent component of future energy portfolios. Landfill gas (LFG)-to-energy (LFGTE) projects are particularly important as they address greenhouse gas emissions. Contaminants in LFG may hamper these projects both from environmental and economic standpoints. The purpose of this review is to highlight key aspects (LFG composition ranges, LFG flowrates, and allowable tolerances for LFGTE technologies, performance and costs for contaminant removal by adsorption). Removal of key contaminants, H 2 S and siloxanes, by adsorption are surveyed in terms of adsorption capacities and regeneration abilities. Based on the open literature, costing analyses are tabulated and discussed. The findings indicate economics of contaminant removal depend heavily on the feed concentrations of contaminants, allowable tolerances for the LFGTE technology, and the current market for the product. Key trends, identification of challenges, and general purification guidelines for purifying LFG for energy projects are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Brownfield to Brightfield Initiative in Oak Ridge, TN - 12346

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hough, Gil; Fairless, Chad

    Experience characterizing, permitting, and restoring 'Brownfield' sites-government or industrial sites with restricted future use due to the presence or potential presence of hazardous substances, pollutants, or contaminants-is being leveraged to identify opportunities for redevelopment into solar power generating facilities which, in this context, are called 'Brightfields'. Brownfield sites offer the expansive land necessary for large photovoltaic (PV) solar farms, but require an in-depth working knowledge of complicated regulatory restrictions and environmental constraints to develop them. As a part of the effort to identify opportunities for redevelopment of Brownfield sites for solar applications, a technical guide, was composed specifically for themore » development of solar generation on restricted use sites. The basis of the technical guide gives specific consideration to environmental requirements and installation methods breaking that into three areas for assessing: 1) levels of contamination, 2) ground penetration requirements, and 3) the requirements for aesthetics and maintenance. Brightfield projects are underway to support the technical guide and expand re-industrialization efforts for the former DOE Gaseous Diffusion Plant in Oak Ridge, TN. There are exciting opportunities to turn Brownfields into Brightfield solar energy solutions for meeting the future renewable energy needs of our country. Brownfields that offer the large surface area required for solar PV farms coupled with the technical guide for the installation of solar farms on restricted use sites supports efforts to develop the solar capacities and expertise to tap this future market. The initial projects designed following the technical guide will provide verification of the installation requirements and beneficial reuse of restricted use sites. (authors)« less

  5. Development of a strategic plan for food security and safety in the Inuvialuit Settlement Region, Canada

    PubMed Central

    Fillion, Myriam; Laird, Brian; Douglas, Vasiliki; Van Pelt, Linda; Archie, Diane; Chan, Hing Man

    2014-01-01

    Background Current social and environmental changes in the Arctic challenge the health and well-being of its residents. Developing evidence-informed adaptive measures in response to these changes is a priority for communities, governments and researchers. Objectives To develop strategic planning to promote food security and food safety in the Inuvialuit Settlement Region (ISR), Northwest Territories (NWT), Canada. Design A qualitative study using group discussions during a workshop. Methods A regional workshop gathered Inuit organizations and community representatives, university-based researchers from the Inuit Health Survey (IHS) and NWT governmental organizations. Discussions were structured around the findings from the IHS. For each key area, programs and activities were identified and prioritized by group discussion and voting. Results The working group developed a vision for future research and intervention, which is to empower communities to promote health, well-being and environmental sustainability in the ISR. The group elaborated missions for the region that address the following issues: (a) capacity building within communities; (b) promotion of the use of traditional foods to address food security; (c) research to better understand the linkages between diseases and contaminants in traditional foods, market foods and lifestyle choices; (d) and promotion of affordable housing. Five programs to address each key area were developed as follows: harvest support and traditional food sharing; education and promotion; governance and policy; research; and housing. Concrete activities were identified to guide future research and intervention projects. Conclusions The results of the planning workshop provide a blueprint for future research and intervention projects. PMID:25147772

  6. Future use of digital remote sensing data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.; Jones, N. L.

    1978-01-01

    Users of remote sensing data are increasingly turning to digital processing techniques for the extraction of land resource, environmental, and natural resource information. This paper presents the results of recent and ongoing research efforts sponsored, in part, by NASA/Marshall Space Flight Center on the current uses of and future needs for digital remote sensing data. An ongoing investigation involves a comprehensive survey of capabilities for digital Landsat data use in the Southeastern U.S. Another effort consists of an evaluation of future needs for digital remote sensing data by federal, state, and local governments and the private sector. These needs are projected into the 1980-1985 time frame. Furthermore, the accelerating use of digital remote sensing data is not limited to the U.S. or even to the developed countries of the world.

  7. Buildings of the Future Scoping Study: A Framework for Vision Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Goins, John D.

    2015-02-01

    The Buildings of the Future Scoping Study, funded by the U.S. Department of Energy (DOE) Building Technologies Office, seeks to develop a vision for what U.S. mainstream commercial and residential buildings could become in 100 years. This effort is not intended to predict the future or develop a specific building design solution. Rather, it will explore future building attributes and offer possible pathways of future development. Whether we achieve a more sustainable built environment depends not just on technologies themselves, but on how effectively we envision the future and integrate these technologies in a balanced way that generates economic, social,more » and environmental value. A clear, compelling vision of future buildings will attract the right strategies, inspire innovation, and motivate action. This project will create a cross-disciplinary forum of thought leaders to share their views. The collective views will be integrated into a future building vision and published in September 2015. This report presents a research framework for the vision development effort based on a literature survey and gap analysis. This document has four objectives. First, it defines the project scope. Next, it identifies gaps in the existing visions and goals for buildings and discusses the possible reasons why some visions did not work out as hoped. Third, it proposes a framework to address those gaps in the vision development. Finally, it presents a plan for a series of panel discussions and interviews to explore a vision that mitigates problems with past building paradigms while addressing key areas that will affect buildings going forward.« less

  8. Formative evaluation of AARP's Active for Life campaign to improve walking and bicycling environments in two cities.

    PubMed

    Emery, James; Crump, Carolyn; Hawkins, Margaret

    2007-10-01

    AARP conducted a 2.5-year social-marketing campaign to improve physical activity levels among older adults in Richmond, Virginia and Madison, Wisconsin. This article presents formative evaluation findings from the campaign's policy/environmental change component. Evaluation data were abstracted from technical-assistance documentation and telephone interviews. Results include 11 policy and 14 environmental changes attained or in-process by campaign closure. Differences between the cities' results are explained through differences in program implementation (e.g., types of changes planned, formalization of partnerships). Project teams took less time deciding to pursue policy change than environmental change; however, planning the policy activities took longer than planning environmental-change activities. Recommendations for future policy/environmental change interventions focus on the selection of strategies; planning for administrative resources; formalizing partnerships to ensure sustainability of impact; ensuring training and technical assistance; and documenting progress. Similar intervention results may be attainable with a multi-year timeframe, adequate part-time coordination, and committed volunteers.

  9. Environmental Management

    ScienceCinema

    None

    2018-01-16

    Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.

  10. Biofuel Feedstock Assessment For Selected Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 andmore » 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.« less

  11. Biofuel Feedstock Assessment for Selected Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 andmore » 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.« less

  12. Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota

    NASA Astrophysics Data System (ADS)

    Woznicki, S. A.; Wickham, J.

    2017-12-01

    Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influence future treatment processes is lacking. The drinking water treatment plant in Minneapolis, MN has recognized that land cover change threatens water quality in their source watershed, the Upper Mississippi River Basin (UMRB). Over 1,000 km2 of forests, wetlands, and grasslands in the UMRB were lost to agriculture from 2008-2013. This trend, coupled with a projected population increase of one million people in Minnesota by 2030, concerns drinking water treatment plant operators in Minneapolis with respect to meeting future demand for clean water in the UMRB. The objective of this study is to relate land cover change (forest and wetland loss, agricultural expansion, urbanization) to changes in treatment costs for the Minneapolis, MN drinking water utility. To do this, we first developed a framework to determine the relationship between land cover change and water quality in the context of recent historical changes and projected future changes in land cover. Next we coupled a watershed model, the Soil and Water Assessment Tool (SWAT) to projections of land cover change from the FOREcasting SCEnarios of Land-use Change (FORE-SCE) model for the mid-21st century. Using historical Minneapolis drinking water treatment data (chemical usage and costs), source water quality in the UMRB was linked to changes in treatment requirements as a function of projected future land cover change. These analyses will quantify the value of natural landscapes in protecting drinking water quality and future treatment processes requirements. In addition, our study provides the Minneapolis drinking water utility with information critical to their planning and capital improvement process.

  13. The diversity and evolution of ecological and environmental citizen science.

    PubMed

    Pocock, Michael J O; Tweddle, John C; Savage, Joanna; Robinson, Lucy D; Roy, Helen E

    2017-01-01

    Citizen science-the involvement of volunteers in data collection, analysis and interpretation-simultaneously supports research and public engagement with science, and its profile is rapidly rising. Citizen science represents a diverse range of approaches, but until now this diversity has not been quantitatively explored. We conducted a systematic internet search and discovered 509 environmental and ecological citizen science projects. We scored each project for 32 attributes based on publicly obtainable information and used multiple factor analysis to summarise this variation to assess citizen science approaches. We found that projects varied according to their methodological approach from 'mass participation' (e.g. easy participation by anyone anywhere) to 'systematic monitoring' (e.g. trained volunteers repeatedly sampling at specific locations). They also varied in complexity from approaches that are 'simple' to those that are 'elaborate' (e.g. provide lots of support to gather rich, detailed datasets). There was a separate cluster of entirely computer-based projects but, in general, we found that the range of citizen science projects in ecology and the environment showed continuous variation and cannot be neatly categorised into distinct types of activity. While the diversity of projects begun in each time period (pre 1990, 1990-99, 2000-09 and 2010-13) has not increased, we found that projects tended to have become increasingly different from each other as time progressed (possibly due to changing opportunities, including technological innovation). Most projects were still active so consequently we found that the overall diversity of active projects (available for participation) increased as time progressed. Overall, understanding the landscape of citizen science in ecology and the environment (and its change over time) is valuable because it informs the comparative evaluation of the 'success' of different citizen science approaches. Comparative evaluation provides an evidence-base to inform the future development of citizen science activities.

  14. Role of local government in responding to environmental health challenges: a case study of Chungnam.

    PubMed

    Myung, Hyung-Nam; Lee, Hoo-Young

    2017-01-01

    The purpose of this study is to introduce the establishment process, policy target, and projects for "Chungnam's master plan on environmental health policy (2017-2020)" as the local government's role in addressing local environmental health challenges. We first analyzed existing studies and social issues on the media related to "Chungnam's master plan" to understand Chungnam's environmental health status and discussed domestic and international policy trends and related plans. An environmental health perception questionnaire survey and a Delphi expert questionnaire survey were conducted among provincial residents to collect various actors' opinions on Chungnam's environmental health issues and policy. An expert advisory panel was launched, and a residents' voice workshop and cities-and-guns-policy-suggestion workshop were held. The vision of Chungnam's environmental health policy is minimizing environmental hazards. We finally selected "Pleasant environment, healthy people, happy Chungnam" to represent the will to shape a pleasant environment and prevent and manage health damages for a happy Chungnam. We selected five strategies based on status analysis and a review of domestic and international policy trends and related plans and identified 2 targets (policy objectives) to accomplish the strategies. The strategies to achieve the first target, "Leader in environmental health policy: Chungnam," include 'Empowering active provincial capabilities,' 'Setting up province-specific systems for environmental health surveys and research,' and 'Preventing and managing newly emerging pollutants.' The strategies for the second target, "Everyone is healthy: Chungnam," include 'Relieving health inequalities among vulnerable regions and residents' and 'Enlarging the resident-friendly environmental health policy.' We developed 29 projects in total, according to these strategies. The establishment of "Chungnam's master plan" is highly valuable; we developed it through discussion involving diverse actors to address environmental health challenges together. It is necessary to continue to strengthen participation, communication, and cooperation among actors to develop an environmental health policy model for the future.

  15. Characterization and design of the FutureGen 2.0 carbon storage site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Tyler; Bonneville, Alain; Sullivan, Charlotte

    2016-10-01

    The objective of the FutureGen 2.0 Project was to demonstrate, at the commercial scale, the technical feasibility of implementing carbon capture and storage (CCS) in a deep saline formation in Illinois, USA. Over approximately 5 years, the FutureGen Alliance conducted a detailed site-selection process and identified a site for carbon sequestration storage in Morgan County, Illinois. The storage site was fully characterized, including the collection of seismic data and the drilling and characterization of a stratigraphic borehole. The characterization data provided critical input for developing a site-specific conceptual model and subsequent numerical modeling simulations. The modeling simulations, coupled with themore » upstream designs of the pipeline and power plant supported the development of a detailed 90 percent design that included the injection wells and associated control and monitoring infrastructure. Collectively, all these data were used by the FutureGen Alliance to develop the required documentation to support the applications for four underground injection control (UIC) permits (one for each proposed well). In August 2014, the U.S. Environmental Protection Agency issued four, first-of-their-kind, Class VI UIC permits for carbon sequestration in the United States to the FutureGen Alliance. The information and data generated under this project have been made publically available through reports and publications, including this journal and others.« less

  16. The impact of future climate on historic interiors.

    PubMed

    Lankester, Paul; Brimblecombe, Peter

    2012-02-15

    The socio-economic significance of climate change is widely recognised. However, its potential to affect our cultural heritage has not been discussed in detail (i.e. not explicit in IPCC 4) even though the cultural impacts of future outdoor climate have been the focus of some European Commission projects (e.g. NOAH'S ARK) and World Heritage Centre reports. Recently there have been a few projects that have examined the changing environmental threats to tangible heritage indoors (e.g. Preparing Historic Collections for Climate Change and Climate for Culture). Here we predict future indoor temperature and humidity, and damage arising from changes to climate in historic rooms in Southern England with little climate control, using simple building simulations coupled with high resolution (~5 km) climate predictions. The calculations suggest an increase in indoor temperature over the next century that is slightly less than that outdoors. Annual relative humidity shows little change, but the seasonal cycles suggest drier summers and slightly damper winters indoors. Damage from mould growth and pests is likely to increase in the future, while humidity driven dimensional change to materials (e.g. wood) should decrease somewhat. The results allow collection managers to prepare for the impact of long-term climate change, putting strategic measures in place to prevent increased damage, and thus preserve our heritage for future generations. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Observed and Projected Droughts Conditioned on Temperature Change

    NASA Astrophysics Data System (ADS)

    Chiang, F.; AghaKouchak, A.; Mazdiyasni, O.

    2016-12-01

    Droughts have had severe urban, agricultural and wildlife impacts in historical and recent years. In addition, during times of water scarcity, heat stress has been shown to produce compounding climatic and environmental effects. Understanding the overall conditions associated with drought intensities is important for mapping the anatomy of the climate in the changing world. For the study, we evaluated the relationship drought severity has exhibited with temperature shifts between observed periods and also between an ensemble of BCSD downscaled CMIP5 projected and historically modeled datasets. We compared temperatures during different categories of drought severity on a monthly scale, and mapped areas displaying an escalation of temperature with stricter definitions of drought. A historical shift of warmer temperatures in more severe droughts was observed most consistently in Southwestern and Eastern states between the later half of the 20th century and a reference period of the early half of the 20th century. Future projections from an ensemble of CMIP5 models also showed a shift to warmer temperatures during more intense drought events in similar states. Preliminary statistics show that in many areas future droughts will be warmer that the average projected climate. These observed and forecasted shifts in the heating intensity of severe drought events underscore the need to further research these patterns and relationships both spatially and temporally.

  18. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE PAGES

    Harp, Dylan R.; Atchley, Adam L.; Painter, Scott L.; ...

    2016-02-11

    Here, the effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21more » $$^{st}$$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.« less

  19. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE PAGES

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; ...

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows formore » the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. As a result, by comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.« less

  20. Distant Operational Care Centre: Design Project Report

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The goal of this project is to outline the design of the Distant Operational Care Centre (DOCC), a modular medical facility to maintain human health and performance in space, that is adaptable to a range of remote human habitats. The purpose of this project is to outline a design, not to go into a complete technical specification of a medical facility for space. This project involves a process to produce a concise set of requirements, addressing the fundamental problems and issues regarding all aspects of a space medical facility for the future. The ideas presented here are at a high level, based on existing, researched, and hypothetical technologies. Given the long development times for space exploration, the outlined concepts from this project embodies a collection of identified problems, and corresponding proposed solutions and ideas, ready to contribute to future space exploration efforts. In order to provide a solid extrapolation and speculation in the context of the future of space medicine, the extent of this project's vision is roughly within the next two decades. The Distant Operational Care Centre (DOCC) is a modular medical facility for space. That is, its function is to maintain human health and performance in space environments, through prevention, diagnosis, and treatment. Furthermore, the DOCC must be adaptable to meet the environmental requirements of different remote human habitats, and support a high quality of human performance. To meet a diverse range of remote human habitats, the DOCC concentrates on a core medical capability that can then be adapted. Adaptation would make use of the DOCC's functional modularity, providing the ability to replace, add, and modify core functions of the DOCC by updating hardware, operations, and procedures. Some of the challenges to be addressed by this project include what constitutes the core medical capability in terms of hardware, operations, and procedures, and how DOCC can be adapted to different remote habitats.

  1. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-01

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.

  2. Projection of future temperature-related mortality due to climate and demographic changes.

    PubMed

    Lee, Jae Young; Kim, Ho

    2016-09-01

    Understanding the effects of global climate change from both environmental and human health perspectives has gained great importance. Particularly, studies on the direct effect of temperature increase on future mortality have been conducted. However, few of those studies considered population changes, and although the world population is rapidly aging, no previous study considered the effect of society aging. Here we present a projection of future temperature-related mortality due to both climate and demographic changes in seven major cities of South Korea, a fast aging country, until 2100; we used the HadGEM3-RA model under four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) and the United Nations world population prospects under three fertility scenarios (high, medium, and low). The results showed markedly increased mortality in the elderly group, significantly increasing the overall future mortality. In 2090s, South Korea could experience a four- to six-time increase in temperature-related mortality compared to that during 1992-2010 under four different RCP scenarios and three different fertility variants, while the mortality is estimated to increase only by 0.5 to 1.5 times assuming no population aging. Therefore, not considering population aging may significantly underestimate temperature risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Demographic controls of future global fire risk

    NASA Astrophysics Data System (ADS)

    Knorr, W.; Arneth, A.; Jiang, L.

    2016-08-01

    Wildfires are an important component of terrestrial ecosystem ecology but also a major natural hazard to societies, and their frequency and spatial distribution must be better understood. At a given location, risk from wildfire is associated with the annual fraction of burned area, which is expected to increase in response to climate warming. Until recently, however, only a few global studies of future fire have considered the effects of other important global environmental change factors such as atmospheric CO2 levels and human activities, and how these influence fires in different regions. Here, we contrast the impact of climate change and increasing atmospheric CO2 content on burned area with that of demographic dynamics, using ensembles of climate simulations combined with historical and projected population changes under different socio-economic development pathways for 1901-2100. Historically, humans notably suppressed wildfires. For future scenarios, global burned area will continue to decline under a moderate emissions scenario, except for low population growth and fast urbanization, but start to increase again from around mid-century under high greenhouse gas emissions. Contrary to common perception, we find that human exposure to wildfires increases in the future mainly owing to projected population growth in areas with frequent wildfires, rather than by a general increase in burned area.

  4. Construction of shipping channels in the Detroit River—History and environmental consequences

    USGS Publications Warehouse

    Bennion, David H.; Manny, Bruce A.

    2011-01-01

    The Detroit River is one of the most biologically diverse areas in the Great Lakes basin. It has been an important international shipping route since the 1820s and is one of the busiest navigation centers in the United States. Historically, it supported one of the most profitable Lake Whitefish (Coregonus clupeaformis) commercial fisheries in the Great Lakes. Since 1874, the lower Detroit River has been systematically and extensively modified, by construction of deepwater channels, to facilitate commercial shipping. Large-scale dredging, disposal of dredge spoils, and construction of water-level compensating works has greatly altered channel morphology and flow dynamics of the river, disrupting ecological function and fishery productivity of the river and influencing Great Lakes water levels. From 1874 to 1968, major construction projects created 96.5 kilometers (60 miles) of shipping channels, removed over 46,200,000 m3 of material, covered 4,050 hectares (40.5 square kilometers) of river bottom with dredge spoils, and built 85 hectares of above-waterline compensating works at a total cost of US$283 million. Interest by industries and government agencies to develop the river further for shipping is high and increasing. Historically, as environmental protection agencies were created, construction impacts on natural resources were increasingly addressed during the planning process and, in some cases, assessments of these impacts greatly altered or halted proposed construction projects. Careful planning of future shipping-channel construction and maintenance projects, including a thorough analysis of the expected environmental impacts, could greatly reduce financial costs and ecological damages as compared to past shipping-channel construction projects.

  5. Ocean Warming Enhances Malformations, Premature Hatching, Metabolic Suppression and Oxidative Stress in the Early Life Stages of a Keystone Squid

    PubMed Central

    Rosa, Rui; Pimentel, Marta S.; Boavida-Portugal, Joana; Teixeira, Tatiana; Trübenbach, Katja; Diniz, Mário

    2012-01-01

    Background The knowledge about the capacity of organisms’ early life stages to adapt to elevated temperatures is very limited but crucial to understand how marine biota will respond to global warming. Here we provide a comprehensive and integrated view of biological responses to future warming during the early ontogeny of a keystone invertebrate, the squid Loligo vulgaris. Methodology/Principal Findings Recently-spawned egg masses were collected and reared until hatching at present day and projected near future (+2°C) temperatures, to investigate the ability of early stages to undergo thermal acclimation, namely phenotypic altering of morphological, behavioural, biochemical and physiological features. Our findings showed that under the projected near-future warming, the abiotic conditions inside the eggs promoted metabolic suppression, which was followed by premature hatching. Concomitantly, the less developed newborns showed greater incidence of malformations. After hatching, the metabolic burst associated with the transition from an encapsulated embryo to a planktonic stage increased linearly with temperature. However, the greater exposure to environmental stress by the hatchlings seemed to be compensated by physiological mechanisms that reduce the negative effects on fitness. Heat shock proteins (HSP70/HSC70) and antioxidant enzymes activities constituted an integrated stress response to ocean warming in hatchlings (but not in embryos). Conclusions/Significance The stressful abiotic conditions inside eggs are expected to be aggravated under the projected near-future ocean warming, with deleterious effects on embryo survival and growth. Greater feeding challenges and the lower thermal tolerance limits of the hatchlings are strictly connected to high metabolic demands associated with the planktonic life strategy. Yet, we found some evidence that, in the future, the early stages might support higher energy demands by adjusting some cellular functional properties to increase their thermal tolerance windows. PMID:22701620

  6. Wintertime urban heat island modified by global climate change over Japan

    NASA Astrophysics Data System (ADS)

    Hara, M.

    2015-12-01

    Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.

  7. Non-aqueous cleaning solvent substitution

    NASA Technical Reports Server (NTRS)

    Meier, Gerald J.

    1994-01-01

    A variety of environmental, safety, and health concerns exist over use of chlorinated and fluorinated cleaning solvents. Sandia National Laboratories, Lawrence Livermore National Laboratories, and the Kansas City Division of AlliedSignal have combined efforts to focus on finding alternative cleaning solvents and processes which are effective, environmentally safe, and compliant with local, state, and federal regulations. An alternative solvent has been identified, qualified, and implemented into production of complex electronic assemblies, where aqueous and semi-aqueous cleaning processes are not allowed. Extensive compatibility studies were performed with components, piece-parts, and materials. Electrical testing and accelerated aging were used to screen for detrimental, long-term effects. A terpene, d-limonene, was selected as the solvent of choice, and it was found to be compatible with the components and materials tested. A brief history of the overall project will be presented, along with representative cleaning efficiency results, compatibility results, and residual solvent data. The electronics industry is constantly searching for proven methods and environmentally-safe materials to use in manufacturing processes. The information in this presentation will provide another option to consider on future projects for applications requiring high levels of quality, reliability, and cleanliness from non-aqueous cleaning processes.

  8. Studying the Impacts of Environmental Factors and Agricultural Management on Methane Emissions from Rice Paddies Using a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Lin, T. S.; Gahlot, S.; Shu, S.; Jain, A. K.; Kheshgi, H. S.

    2017-12-01

    Continued growth in population is projected to drive increased future demand for rice and the methane emissions associated with its production. However, observational studies of methane emissions from rice have reported seemingly conflicting results and do not all support this projection. In this study we couple an ecophysiological process-based rice paddy module and a methane emission module with a land surface model, Integrated Science Assessment Model (ISAM), to study the impacts of various environmental factors and agricultural management practices on rice production and methane emissions from rice fields. This coupled modeling framework accounts for dynamic rice growth processes with adaptation of photosynthesis, rice-specific phenology, biomass accumulation, leaf area development and structures responses to water, temperature, light and nutrient stresses. The coupled model is calibrated and validated with observations from various rice cultivation fields. We find that the differing results of observational studies can be caused by the interactions of environmental factors, including climate, atmospheric CO2 concentration, and N deposition, and agricultural management practices, such as irrigation and N fertilizer applications, with rice production at spatial and temporal scales.

  9. Challenges and opportunities in land surface modelling of savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Whitley, Rhys; Beringer, Jason; Hutley, Lindsay B.; Abramowitz, Gabriel; De Kauwe, Martin G.; Evans, Bradley; Haverd, Vanessa; Li, Longhui; Moore, Caitlin; Ryu, Youngryel; Scheiter, Simon; Schymanski, Stanislaus J.; Smith, Benjamin; Wang, Ying-Ping; Williams, Mathew; Yu, Qiang

    2017-10-01

    The savanna complex is a highly diverse global biome that occurs within the seasonally dry tropical to sub-tropical equatorial latitudes and are structurally and functionally distinct from grasslands and forests. Savannas are open-canopy environments that encompass a broad demographic continuum, often characterised by a changing dominance between C3-tree and C4-grass vegetation, where frequent environmental disturbances such as fire modulates the balance between ephemeral and perennial life forms. Climate change is projected to result in significant changes to the savanna floristic structure, with increases to woody biomass expected through CO2 fertilisation in mesic savannas and increased tree mortality expected through increased rainfall interannual variability in xeric savannas. The complex interaction between vegetation and climate that occurs in savannas has traditionally challenged terrestrial biosphere models (TBMs), which aim to simulate the interaction between the atmosphere and the land surface to predict responses of vegetation to changing in environmental forcing. In this review, we examine whether TBMs are able to adequately represent savanna fluxes and what implications potential deficiencies may have for climate change projection scenarios that rely on these models. We start by highlighting the defining characteristic traits and behaviours of savannas, how these differ across continents and how this information is (or is not) represented in the structural framework of many TBMs. We highlight three dynamic processes that we believe directly affect the water use and productivity of the savanna system: phenology, root-water access and fire dynamics. Following this, we discuss how these processes are represented in many current-generation TBMs and whether they are suitable for simulating savanna fluxes.Finally, we give an overview of how eddy-covariance observations in combination with other data sources can be used in model benchmarking and intercomparison frameworks to diagnose the performance of TBMs in this environment and formulate road maps for future development. Our investigation reveals that many TBMs systematically misrepresent phenology, the effects of fire and root-water access (if they are considered at all) and that these should be critical areas for future development. Furthermore, such processes must not be static (i.e. prescribed behaviour) but be capable of responding to the changing environmental conditions in order to emulate the dynamic behaviour of savannas. Without such developments, however, TBMs will have limited predictive capability in making the critical projections needed to understand how savannas will respond to future global change.

  10. What current literature tells us about sustainable diets: emerging research linking dietary patterns, environmental sustainability, and economics.

    PubMed

    Auestad, Nancy; Fulgoni, Victor L

    2015-01-01

    The concept of sustainable diets, although not new, is gaining increased attention across the globe, especially in relation to projected population growth and growing concerns about climate change. As defined by the FAO (Proceedings of the International Scientific Symposium, Biodiversity and Sustainable Diets 2010; FAO 2012), "Sustainable diets are those diets with low environmental impacts which contribute to food and nutrition security and to healthy life for present and future generations." Consistent and credible science that brings together agriculture, food systems, nutrition, public health, environment, economics, culture, and trade is needed to identify synergies and trade-offs and to inform guidance on vital elements of healthy, sustainable diets. The aim of this article is to review the emerging research on environmental and related economic impacts of dietary patterns, including habitual eating patterns, nutritionally balanced diets, and a variety of different dietary scenarios. Approaches to research designs, methodologies, and data sources are compared and contrasted to identify research gaps and future research needs. To date, it is difficult to assimilate all of the disparate approaches, and more concerted efforts for multidisciplinary studies are needed. © 2015 American Society for Nutrition.

  11. Energy and environmental policy in a period of transition. Proceedings of the twenty-third annual Illinois energy conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    The Twenty-Third Annual Illinois Energy Conference entitled, ``Energy and Environmental Policy in a Period of Transition`` was held in Chicago, Illinois on November 20--21, 1995. The conference program explored how federal policy in energy and environment is changing and how these shifts will impact the economy of the Midwest. The conference was divided in four plenary sessions. Session 1 focused on the national policy scene where speakers discussed proposed legislation to change federal energy and environmental policy. Session 2 looked at the future structure of the energy industry, projecting the roles of natural gas, the electric utility industry, and independentmore » power producers in the overall energy system of the 21st century. Session 3 examined current federal policy in research and development as a baseline for discussing the future role of government and industry in supporting research and development. In particular, it looked at the relationship between energy research and development and global competitiveness. Finally, Session 4 attempted to tie these issues together and consider the impact of national policy change on Illinois and the Midwest.« less

  12. What Current Literature Tells Us about Sustainable Diets: Emerging Research Linking Dietary Patterns, Environmental Sustainability, and Economics12

    PubMed Central

    Auestad, Nancy; Fulgoni, Victor L

    2015-01-01

    The concept of sustainable diets, although not new, is gaining increased attention across the globe, especially in relation to projected population growth and growing concerns about climate change. As defined by the FAO (Proceedings of the International Scientific Symposium, Biodiversity and Sustainable Diets 2010; FAO 2012), “Sustainable diets are those diets with low environmental impacts which contribute to food and nutrition security and to healthy life for present and future generations.” Consistent and credible science that brings together agriculture, food systems, nutrition, public health, environment, economics, culture, and trade is needed to identify synergies and trade-offs and to inform guidance on vital elements of healthy, sustainable diets. The aim of this article is to review the emerging research on environmental and related economic impacts of dietary patterns, including habitual eating patterns, nutritionally balanced diets, and a variety of different dietary scenarios. Approaches to research designs, methodologies, and data sources are compared and contrasted to identify research gaps and future research needs. To date, it is difficult to assimilate all of the disparate approaches, and more concerted efforts for multidisciplinary studies are needed. PMID:25593141

  13. Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections.

    PubMed

    Tamelander, Tobias; Spilling, Kristian; Winder, Monica

    2017-12-01

    The impact of environmental change and anthropogenic stressors on coastal marine systems will strongly depend on changes in the magnitude and composition of organic matter exported from the water column to the seafloor. Knowledge of vertical export in the Baltic Sea is synthesised to illustrate how organic matter deposition will respond to climate warming, climate-related changes in freshwater runoff, and ocean acidification. Pelagic heterotrophic processes are suggested to become more important in a future warmer climate, with negative feedbacks to organic matter deposition to the seafloor. This is an important step towards improved oxygen conditions in the near-bottom layer that will reduce the release of inorganic nutrients from the sediment and hence counteract further eutrophication. The evaluation of these processes in ecosystem models, validated by field observations, will significantly advance the understanding of the system's response to environmental change and will improve the use of such models in management of coastal areas.

  14. Multiple stressors threatening the future of the Baltic Sea-Kattegat marine ecosystem: implications for policy and management actions.

    PubMed

    Jutterström, S; Andersson, H C; Omstedt, A; Malmaeus, J M

    2014-09-15

    The paper discusses the combined effects of ocean acidification, eutrophication and climate change on the Baltic Sea and the implications for current management strategies. The scientific basis is built on results gathered in the BONUS+ projects Baltic-C and ECOSUPPORT. Model results indicate that the Baltic Sea is likely to be warmer, more hypoxic and more acidic in the future. At present management strategies are not taking into account temporal trends and potential ecosystem change due to warming and/or acidification, and therefore fulfilling the obligations specified within the Marine Strategy Framework Directive, OSPAR and HELCOM conventions and national environmental objectives may become significantly more difficult. The paper aims to provide a basis for a discussion on the effectiveness of current policy instruments and possible strategies for setting practical environmental objectives in a changing climate and with multiple stressors. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Environmentally Preferable Coatings for Structural Steel Project

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Editor)

    2014-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described a the "launch support and infrastructure modernization program" in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion resistant coatings for launch facilities and ground support equipment. The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. Number of facilities/structures with metallic structural and non-structural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the application of corrosion protective coating system.

  16. A Regional-Scale Evaluation on Environmental Stability Conditions for Convective Rain under Climate Change from Super-High-Resolution GCM Simulations

    NASA Astrophysics Data System (ADS)

    Takemi, T.; Nomura, S.; Oku, Y.; Ishikawa, H.

    2011-12-01

    Understanding and forecasting of convective rain due to intense thunderstorms, which develop under conditions both with and without significant synoptic-scale and/or mesoscale forcings, are critical in dealing with disaster prevention/mitigation and developing urban planning appropriate for disaster management. Thunderstorms rapidly develop even during the daytimes of fair weather conditions without any external forcings, and sometimes become strong enough to induce local-scale meteorological disasters such as torrential rain, flush flooding, high winds, and tornadoes/gusts. With the growing interests in climate change, future changes in the behavior of such convectively generated extreme events have gained scientific and societal interests. This study conducted the regional-scale evaluations on the environmental stability conditions for convective rain that develops under synoptically undisturbed, summertime conditions by using the outputs of super-high-resolution AGCM simulations, at a 20-km resolution, for the present, the near-future, and the future climates under global warming with IPCC A1B emission scenario. The GCM, MRI-AGCM3.2S, was developed by Meteorological Research Institute of Japan Meteorological Agency under the KAKUSHIN program funded by the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The climate simulation outputs that were used in this study corresponded to three 25-year periods: 1980-2004 for the present climate; 2020-2044 for the near-future climate; and 2075-2099 for the future climate. The Kanto Plain that includes the Tokyo metropolitan area was chosen as the study area, since the Tokyo metropolitan area is one of the largest metropolises in the world and is vulnerable to extreme weather events. Therefore, one of the purposes of this study was to examine how regional-scale evaluations are performed from the super-high-resolution GCM outputs. After verifying the usefulness of the GCM present-climate outputs with observations and operational mesoscale analyses, we examined, as another purpose of this study, the future changes in the environmental stability for convective rain. To diagnose the environmental conditions, some of the commonly used stability parameters and indices were examined. In the future climates, temperature lapse rate decreased in the lower troposphere, while water vapor mixing ratio increased throughout the deep troposphere. The changes in the temperature and moisture profiles resulted in the increase in both precipitable water vapor and convective available potential energy. These projected changes will be enhanced with the future period. Furthermore, the statistical analyses for the differences of the stability parameters between no-rain and rain days under the synoptically undisturbed condition in each simulated climate period indicated that the environmental conditions in terms of the stability parameters that distinguish no-rain and rain events are basically unchanged between the present and the future climates. This result suggests that the environmental characteristics favorable for afternoon rain events in the synoptically undisturbed environments will not change under global warming.

  17. The Transforming Earth System Science Education (TESSE) program

    NASA Astrophysics Data System (ADS)

    Graham, K. J.; Bryce, J. G.; Brown, D.; Darwish, A.; Finkel, L.; Froburg, E.; Furman, T.; Guertin, L.; Hale, S. R.; Johnson, J.; Porter, W.; Smith, M.; Varner, R.; von Damm, K.

    2007-12-01

    A partnership between the University of New Hampshire (UNH), Dillard University, Elizabeth City State University, and Pennsylvania State University has been established to prepare middle and high school teachers to teach Earth and environmental sciences from a processes and systems approach. Specific project goals include: providing Earth system science content instruction; assisting teachers in implementing Earth system science in their own classrooms; and creating opportunities for pre-service teachers to experience authentic research with Earth scientists. TESSE programmatic components comprise (1) a two-week intensive summer institutes for current and future teachers; (2) eight-week research immersion experiences that match preservice teachers with Earth science faculty mentors; and (3) a science liaison program involving the pairing of inservice teachers with graduate students or future teachers. The first year of the program supported a total of 49 participants (42 inservice and preservice teachers, as well as 7 graduate fellows). All participants in the program attended an intensive two-week summer workshop at UNH, and the academic-year science liaison program is underway. In future summers, all partnering institutions will hold similar two-week summer institutes. UNH will offer a more advanced course geared towards "hot topics" and research techniques in the Earth and environmental sciences.

  18. CSTI high capacity power. [Civil Space Technology Initiative

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1989-01-01

    In FY-88, the Advanced Technology Program was incorporated into NASA's Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Converrsion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems.

  19. Critical Surface Cleaning and Verification Alternatives

    NASA Technical Reports Server (NTRS)

    Melton, Donald M.; McCool, A. (Technical Monitor)

    2000-01-01

    As a result of federal and state requirements, historical critical cleaning and verification solvents such as Freon 113, Freon TMC, and Trichloroethylene (TCE) are either highly regulated or no longer 0 C available. Interim replacements such as HCFC 225 have been qualified, however toxicity and future phase-out regulations necessitate long term solutions. The scope of this project was to qualify a safe and environmentally compliant LOX surface verification alternative to Freon 113, TCE and HCFC 225. The main effort was focused on initiating the evaluation and qualification of HCFC 225G as an alternate LOX verification solvent. The project was scoped in FY 99/00 to perform LOX compatibility, cleaning efficiency and qualification on flight hardware.

  20. Private land manager capacity to conserve threatened communities under climate change.

    PubMed

    Raymond, C M; Lechner, A M; Lockwood, M; Carter, O; Harris, R M B; Gilfedder, L

    2015-08-15

    Major global changes in vegetation community distributions and ecosystem processes are expected as a result of climate change. In agricultural regions with a predominance of private land, biodiversity outcomes will depend on the adaptive capacity of individual land managers, as well as their willingness to engage with conservation programs and actions. Understanding adaptive capacity of landholders is critical for assessing future prospects for biodiversity conservation in privately owned agricultural landscapes globally, given projected climate change. This paper is the first to develop and apply a set of statistical methods (correlation and bionomial regression analyses) for combining social data on land manager adaptive capacity and factors associated with conservation program participation with biophysical data describing the current and projected-future distribution of climate suitable for vegetation communities. We apply these methods to the Tasmanian Midlands region of Tasmania, Australia and discuss the implications of the modelled results on conservation program strategy design in other contexts. We find that the integrated results can be used by environmental management organisations to design community engagement programs, and to tailor their messages to land managers with different capacity types and information behaviours. We encourage environmental agencies to target high capacity land managers by diffusing climate change and grassland management information through well respected conservation NGOs and farm system groups, and engage low capacity land managers via formalized mentoring programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations.

    PubMed

    Lichtenberg, Nina T; Pennington, Zachary T; Holley, Sandra M; Greenfield, Venuz Y; Cepeda, Carlos; Levine, Michael S; Wassum, Kate M

    2017-08-30

    To make an appropriate decision, one must anticipate potential future rewarding events, even when they are not readily observable. These expectations are generated by using observable information (e.g., stimuli or available actions) to retrieve often quite detailed memories of available rewards. The basolateral amygdala (BLA) and orbitofrontal cortex (OFC) are two reciprocally connected key nodes in the circuitry supporting such outcome-guided behaviors. But there is much unknown about the contribution of this circuit to decision making, and almost nothing known about the whether any contribution is via direct, monosynaptic projections, or the direction of information transfer. Therefore, here we used designer receptor-mediated inactivation of OFC→BLA or BLA→OFC projections to evaluate their respective contributions to outcome-guided behaviors in rats. Inactivation of BLA terminals in the OFC, but not OFC terminals in the BLA, disrupted the selective motivating influence of cue-triggered reward representations over reward-seeking decisions as assayed by Pavlovian-to-instrumental transfer. BLA→OFC projections were also required when a cued reward representation was used to modify Pavlovian conditional goal-approach responses according to the reward's current value. These projections were not necessary when actions were guided by reward expectations generated based on learned action-reward contingencies, or when rewards themselves, rather than stored memories, directed action. These data demonstrate that BLA→OFC projections enable the cue-triggered reward expectations that can motivate the execution of specific action plans and allow adaptive conditional responding. SIGNIFICANCE STATEMENT Deficits anticipating potential future rewarding events are associated with many psychiatric diseases. Presently, we know little about the neural circuits supporting such reward expectation. Here we show that basolateral amygdala to orbitofrontal cortex projections are required for expectations of specific available rewards to influence reward seeking and decision making. The necessity of these projections was limited to situations in which expectations were elicited by reward-predictive cues. These projections therefore facilitate adaptive behavior by enabling the orbitofrontal cortex to use environmental stimuli to generate expectations of potential future rewarding events. Copyright © 2017 the authors 0270-6474/17/378374-11$15.00/0.

  2. Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations

    PubMed Central

    Lichtenberg, Nina T.; Pennington, Zachary T.; Holley, Sandra M.; Greenfield, Venuz Y.; Levine, Michael S.

    2017-01-01

    To make an appropriate decision, one must anticipate potential future rewarding events, even when they are not readily observable. These expectations are generated by using observable information (e.g., stimuli or available actions) to retrieve often quite detailed memories of available rewards. The basolateral amygdala (BLA) and orbitofrontal cortex (OFC) are two reciprocally connected key nodes in the circuitry supporting such outcome-guided behaviors. But there is much unknown about the contribution of this circuit to decision making, and almost nothing known about the whether any contribution is via direct, monosynaptic projections, or the direction of information transfer. Therefore, here we used designer receptor-mediated inactivation of OFC→BLA or BLA→OFC projections to evaluate their respective contributions to outcome-guided behaviors in rats. Inactivation of BLA terminals in the OFC, but not OFC terminals in the BLA, disrupted the selective motivating influence of cue-triggered reward representations over reward-seeking decisions as assayed by Pavlovian-to-instrumental transfer. BLA→OFC projections were also required when a cued reward representation was used to modify Pavlovian conditional goal-approach responses according to the reward's current value. These projections were not necessary when actions were guided by reward expectations generated based on learned action-reward contingencies, or when rewards themselves, rather than stored memories, directed action. These data demonstrate that BLA→OFC projections enable the cue-triggered reward expectations that can motivate the execution of specific action plans and allow adaptive conditional responding. SIGNIFICANCE STATEMENT Deficits anticipating potential future rewarding events are associated with many psychiatric diseases. Presently, we know little about the neural circuits supporting such reward expectation. Here we show that basolateral amygdala to orbitofrontal cortex projections are required for expectations of specific available rewards to influence reward seeking and decision making. The necessity of these projections was limited to situations in which expectations were elicited by reward-predictive cues. These projections therefore facilitate adaptive behavior by enabling the orbitofrontal cortex to use environmental stimuli to generate expectations of potential future rewarding events. PMID:28743727

  3. Status of geothermal direct use in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bujakowski, W.

    1997-12-31

    Geothermal Energy uses the natural heat of the Earth. It is a local energy source, competitive, renewable and acceptable from the ecological and social points of view, which is used either for the electricity production, or for direct application such as a district heating. A great number of operating geothermal installations are found in Europe. European Community energy programs foresee in the coming years a great reduction of conventional fuel consumption, due to the risks that dependency on imported fuels implies and to the future environmental problems, which a mass exploitation of these fuels can lead to. Thus, EC energymore » policy is aimed at a drastic reduction of oil consumption and at diversification of primary energy sources. This paper will present the results from the exploration and evaluation of geothermal water resources in Poland. Herewith, a short description of performed projects, examples of designed geothermal water utilization, some economical, sociological, ecological and political aspects of present out and future projects will be presented.« less

  4. Geostationary Operational Environmental Satellites (GOES): R series hyperspectral environmental suite (HES) overview

    NASA Astrophysics Data System (ADS)

    Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.

    2004-11-01

    The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during the Implementation Phase scheduled to begin FY05 for a resultant FY12 launch. The magnitude of complexity of the HES development requires an appreciation of the technologies required to achieve the functional objectives. To this end, the GOES-R project team is making available all NASA developed technologies to potential HES vendors, including, the NASA New Millennium Program"s (NMP) Earth Observing-3, Geostationary Imaging Fourier Transform Spectrometer (GIFTS) instrument developed technologies, as applicable. It is anticipated that the instrument(s) meeting the HES requirements will be either a dispersive spectrometer or an interferometric spectrometer or perhaps a combination. No instrument configuration is preferred or favored by the Government. This paper outlines the HES development plan; including an overview of current requirements, existing partnerships and the GOES-R project methodologies to achieve the advanced functional objectives of the GOES Program partnership.

  5. 78 FR 13082 - Draft Environmental Impact Report/Environmental Impact Statement/Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... Impact Statement/ Environmental Impact Statement, Upper Truckee River and Marsh Restoration Project, El... Statement (EIR/EIS/EIS) for the Upper Truckee River Restoration and Marsh Restoration Project (Project). The... prepare email comments for the Project. The public hearings will be held at 128 Market Street, Stateline...

  6. Extreme Temperature Exceedances Change more Rapidly Under Future Warming in Regions of non-Gaussian Short Temperature Distribution Tails

    NASA Astrophysics Data System (ADS)

    Loikith, P. C.; Neelin, J. D.; Meyerson, J.

    2017-12-01

    Regions of shorter-than-Gaussian warm and cold side temperature distribution tails are shown to occur in spatially coherent patterns in the current climate. Under such conditions, warming may be manifested in more complex ways than if the underlying distribution were close to Gaussian. For example, under a uniform warm shift, the simplest prototype for future warming, a location with a short warm side tail would experience a greater increase in extreme warm exceedances compared to if the distribution were Gaussian. Similarly, for a location with a short cold side tail, a uniform warm shift would result in a rapid decrease in extreme cold exceedances. Both scenarios carry major societal and environmental implications including but not limited to negative impacts on human and ecosystem health, agriculture, and the economy. It is therefore important for climate models to be able to realistically reproduce short tails in simulations of historical climate in order to boost confidence in projections of future temperature extremes. Overall, climate models contributing to the fifth phase of the Coupled Model Intercomparison Project capture many of the principal observed regions of short tails. This suggests the underlying dynamics and physics occur on scales resolved by the models, and helps build confidence in model projections of extremes. Furthermore, most GCMs show more rapid changes in exceedances of extreme temperature thresholds in regions of short tails. Results therefore suggest that the shape of the tails of the underlying temperature distribution is an indicator of how rapidly a location will experience changes to extreme temperature occurrence under future warming.

  7. How Sustainable is Groundwater Abstraction? A Global Assessment.

    NASA Astrophysics Data System (ADS)

    de Graaf, I.; Van Beek, R.; Gleeson, T. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2016-12-01

    Groundwater is the world's largest accessible freshwater resource and is of critical importance for irrigation, and thus for global food security. For regions with high demands, groundwater abstractions often exceed recharge and persistent groundwater depletion occurs. The direct effects of depletion are falling groundwater levels, increased pumping costs, land subsidence, and reduced baseflows to rivers. Water demands are expected to increase further due to growing population, economic development, and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable economic and environmental limits. In this study we estimated trends over 1960-2100 in groundwater levels, resulting from changes in demand and climate. We explored the limits of groundwater abstraction by predicting where and when groundwater levels drop that deep that groundwater gets unattainable for abstraction (economic limit) or, that groundwater baseflows to rivers drop below environmental requirements (environmental limit). We used a global hydrological model coupled to a groundwater model, meaning lateral groundwater flows, river infiltration and drainage, and infiltration and capillary-rise are simulated dynamically. Historical data and projections are used to prescribe water demands and climate forcing to the model. For the near future we used RCP8.5 and applied globally driest, average, and wettest GCM to test climate sensitivity. Results show that in general environmental limits are reached before economic limits, for example starting as early as the 1970s compared to the 1980s for economic limits in the upper Ganges basin. Economic limits are mostly related to regions with depletion, while environmental limits are reached also in regions were groundwater and surface water withdrawals are significant but depletion is not taking place (yet), for example in Spain and Portugal. In the near future, more regions will reach their limits, current depletion regions will expand and new regions experiencing depletion will develop. Regionally the increasing level of groundwater stress, economically and environmentally, will be an important factor in future economic development and could lead to socio-economic tension.

  8. How Sustainable is Groundwater Abstraction? A Global Assessment.

    NASA Astrophysics Data System (ADS)

    de Graaf, I.; Van Beek, R.; Gleeson, T. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2017-12-01

    Groundwater is the world's largest accessible freshwater resource and is of critical importance for irrigation, and thus for global food security. For regions with high demands, groundwater abstractions often exceed recharge and persistent groundwater depletion occurs. The direct effects of depletion are falling groundwater levels, increased pumping costs, land subsidence, and reduced baseflows to rivers. Water demands are expected to increase further due to growing population, economic development, and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable economic and environmental limits. In this study we estimated trends over 1960-2100 in groundwater levels, resulting from changes in demand and climate. We explored the limits of groundwater abstraction by predicting where and when groundwater levels drop that deep that groundwater gets unattainable for abstraction (economic limit) or, that groundwater baseflows to rivers drop below environmental requirements (environmental limit). We used a global hydrological model coupled to a groundwater model, meaning lateral groundwater flows, river infiltration and drainage, and infiltration and capillary-rise are simulated dynamically. Historical data and projections are used to prescribe water demands and climate forcing to the model. For the near future we used RCP8.5 and applied globally driest, average, and wettest GCM to test climate sensitivity. Results show that in general environmental limits are reached before economic limits, for example starting as early as the 1970s compared to the 1980s for economic limits in the upper Ganges basin. Economic limits are mostly related to regions with depletion, while environmental limits are reached also in regions were groundwater and surface water withdrawals are significant but depletion is not taking place (yet), for example in Spain and Portugal. In the near future, more regions will reach their limits, current depletion regions will expand and new regions experiencing depletion will develop. Regionally the increasing level of groundwater stress, economically and environmentally, will be an important factor in future economic development and could lead to socio-economic tension.

  9. Microgravity Fluid Management Symposium

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The NASA Microgravity Fluid Management Symposium, held at the NASA Lewis Research Center, September 9 to 10, 1986, focused on future research in the microgravity fluid management field. The symposium allowed researchers and managers to review space applications that require fluid management technology, to present the current status of technology development, and to identify the technology developments required for future missions. The 19 papers covered three major categories: (1) fluid storage, acquisition, and transfer; (2) fluid management applications, i.e., space power and thermal management systems, and environmental control and life support systems; (3) project activities and insights including two descriptions of previous flight experiments and a summary of typical activities required during development of a shuttle flight experiment.

  10. Project plan hydrogen energy systems technology. Phase 1: Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An overview of the potential need for hydrogen as a source of energy in the future was presented in order to identify and define the technology requirements for the most promising approaches to meet that need. The following study objectives were discussed: (1) determination of the future demand for hydrogen, based on current trends and anticipated new uses, (2) identification of the critical research and technology advances required to meet this need considering, to the extent possible, raw material limitations, economics, and environmental effects, and (3) definition and recommendation of the scope and space of a National Hydrogen Energy Systems Technology Program and outline of a Program Development Plan.

  11. In-country and lending institution environmental requirements for thermal power plants in the Philippines and India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, A.T.; Khanna, R.

    1996-11-01

    Diverse environmental reviews and approvals are required by both Government and non-government organizations (NGOs) for licensing or permitting of major thermal power plants in Asia; specifically, India and Philippines. The number and type of approvals required for a specific project vary depending on site characteristics, fuel source, project-specific design and operating parameters as well as type of project financing. A model 400 MW coal-fired project located in Asia is presented to illustrate the various lender and host country environmental guidelines. A case study of the environmental reviews and approvals for Ogden Quezon Power, Inc. Project (Quezon Province, Republic of themore » Philippines) is also included. A list of acronyms is provided at the paper`s end. As independent power project (IPP) developers seek financing for these capital-intensive infrastructure projects, a number of international finance/lending institutions are likely to become involved. Each lender considers different environmental aspects of a project. This paper compares relevant environmental requirements of various lenders which finance IPPs and their interest in a project`s environmental review. Finally, the authors of this paper believe that the environmental review process can bring together many parties involved with IPP development, including local and central governments, non government organizations, various lenders (such as multilateral and export credit agencies) as well as project proponents. Environmental review provides input opportunity for interested and affected parties. Airing environmental issues in open forums such as public hearings or meetings helps ensure projects are not evaluated without public input.« less

  12. Forecasting the effects of coastal protection and restoration projects on wetland morphology in coastal Louisiana under multiple environmental uncertainty scenarios

    USGS Publications Warehouse

    Couvillion, Brady R.; Steyer, Gregory D.; Wang, Hongqing; Beck, Holly J.; Rybczyk, John M.

    2013-01-01

    Few landscape scale models have assessed the effects of coastal protection and restoration projects on wetland morphology while taking into account important uncertainties in environmental factors such as sea-level rise (SLR) and subsidence. In support of Louisiana's 2012 Coastal Master Plan, we developed a spatially explicit wetland morphology model and coupled it with other predictive models. The model is capable of predicting effects of protection and restoration projects on wetland area, landscape configuration, surface elevation, and soil organic carbon (SOC) storage under multiple environmental uncertainty scenarios. These uncertainty scenarios included variability in parameters such as eustatic SLR (ESLR), subsidence rate, and Mississippi River discharge. Models were run for a 2010–2060 simulation period. Model results suggest that under a “future-without-action” condition (FWOA), coastal Louisiana is at risk of losing between 2118 and 4677 km2 of land over the next 50 years, but with protection and restoration projects proposed in the Master Plan, between 40% and 75% of that loss could be mitigated. Moreover, model results indicate that under a FWOA condition, SOC storage (to a depth of 1 m) could decrease by between 108 and 250 million metric tons, a loss of 12% to 30% of the total coastwide SOC, but with the Master Plan implemented, between 35% and 74% of the SOC loss could be offset. Long-term maintenance of project effects was best attained in areas of low SLR and subsidence, with a sediment source to support marsh accretion. Our findings suggest that despite the efficacy of restoration projects in mitigating losses in certain areas, net loss of wetlands in coastal Louisiana is likely to continue. Model results suggest certain areas may eventually be lost regardless of proposed restoration investment, and, as such, other techniques and strategies of adaptation may have to be utilized in these areas.

  13. The Blue Öresund Bridge of Knowledge

    NASA Astrophysics Data System (ADS)

    Hellström, Åsa; Palmgren, Michael

    2017-04-01

    The Blue Öresund Bridge of Knowledge (BÖBK) is a unique project between Malmö, Sweden and Copenhagen, Denmark around The Sound. BÖBK aims to educate the next generation to become active citizens who take part in creating a sustainable marine future. It is important that future generations are capable of responding to challenges generated in society. Through practical, creative and innovative learning programs we are working on giving the school children, and their teachers, the insight, skills and commitment needed to take on the fight for a clean environment, bright future and blue waters. Thirty years ago, the Sound was a dead, eutrophic and polluted sea. With joint efforts for those environmental issues and with greater understanding of our sea, from both countries, the water in The Sound has improved, fish stocks increased, and the seabed is healthy. Despite one of Europe's largest constructions works, The Öresund Bridge. The Sound is a unique ocean with strong currents and with varying salinity. Which means a rich, varied biological life. In BÖBK, which is a unique three-year project between the two municipalities, Malmö and Copenhagen and actors like Malmö Museum, Malmö Aquarium, SEA-U Marine Science Center in Sweden and The Blue Planet, Öresund Environmental School in Denmark, we work hands-on with students and teachers from the two schools, in Malmö and Copenhagen. The aim of the project is that the students, who are 13-15 years old, get a deeper understanding of our marine environment, The Sound, through its ecosystem services, and what human influence can do. Students also practice their action competence regarding own actions and lifestyle choices based on this knowledge. Students learn more about history, marine science and the biodiversity of The Sound. But also, how important fisheries have been in the region since the Middle Ages. Marine food has a prominent position in the project where students are taught to fish their own fish in a sustainable way, cook the catch of fish and algae and then the students together eating the food. Students will also examine how blue biomass from the sea (mussels and algae) can be used to produce biogas fuel for the city buses. In parallel with the curriculum, the project also has elements of language development, both in Swedish and Danish. Together we also work for The Sound to become a biosphere area within the UNESCO's Man and the Biosphere Programme and with the support of the new marine science center, which will open later this fall, we build greater knowledge and skills of citizens around the Sound. BÖBK is build on the Öresund region's thoughts of becoming a metropolitan region in the future. Keywords: biodiversity, ecosystem services. education, involvement, sustainable future, youth, citizenship, collaboration, language development, ocean literacy, outdoor learning/education, place based learning, challenge based learning.

  14. Malaria vectors in South America: current and future scenarios.

    PubMed

    Laporta, Gabriel Zorello; Linton, Yvonne-Marie; Wilkerson, Richard C; Bergo, Eduardo Sterlino; Nagaki, Sandra Sayuri; Sant'Ana, Denise Cristina; Sallum, Maria Anice Mureb

    2015-08-19

    Malaria remains a significant public health issue in South America. Future climate change may influence the distribution of the disease, which is dependent on the distribution of those Anopheles mosquitoes competent to transmit Plasmodium falciparum. Herein, predictive niche models of the habitat suitability for P. falciparum, the current primary vector Anopheles darlingi and nine other known and/or potential vector species of the Neotropical Albitarsis Complex, were used to document the current situation and project future scenarios under climate changes in South America in 2070. To build each ecological niche model, we employed topography, climate and biome, and the currently defined distribution of P. falciparum, An. darlingi and nine species comprising the Albitarsis Complex in South America. Current and future (i.e., 2070) distributions were forecast by projecting the fitted ecological niche model onto the current environmental situation and two scenarios of simulated climate change. Statistical analyses were performed between the parasite and each vector in both the present and future scenarios to address potential vector roles in the dynamics of malaria transmission. Current distributions of malaria vector species were associated with that of P. falciparum, confirming their role in transmission, especially An. darlingi, An. marajoara and An. deaneorum. Projected climate changes included higher temperatures, lower water availability and biome modifications. Regardless of future scenarios considered, the geographic distribution of P. falciparum was exacerbated in 2070 South America, with the distribution of the pathogen covering 35-46% of the continent. As the current primary vector An. darlingi showed low tolerance for drier environments, the projected climate change would significantly reduce suitable habitat, impacting both its distribution and abundance. Conversely, climate generalist members of the Albitarsis Complex showed significant spatial and temporal expansion potential in 2070, and we conclude these species will become more important in the dynamics of malaria transmission in South America. Our data suggest that climate and landscape effects will elevate the importance of members of the Albitarsis Complex in malaria transmission in South America in 2070, highlighting the need for further studies addressing the bionomics, ecology and behaviours of the species comprising the Albitarsis Complex.

  15. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, C. D.; Brown, A.; Dunphy, R. T.

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density,more » diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  16. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, C. D.; Brown, A.; Dunphy, R. T.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density,more » diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  17. Modelling ecological systems in a changing world

    PubMed Central

    Evans, Matthew R.

    2012-01-01

    The world is changing at an unprecedented rate. In such a situation, we need to understand the nature of the change and to make predictions about the way in which it might affect systems of interest; often we may also wish to understand what might be done to mitigate the predicted effects. In ecology, we usually make such predictions (or forecasts) by making use of mathematical models that describe the system and projecting them into the future, under changed conditions. Approaches emphasizing the desirability of simple models with analytical tractability and those that use assumed causal relationships derived statistically from data currently dominate ecological modelling. Although such models are excellent at describing the way in which a system has behaved, they are poor at predicting its future state, especially in novel conditions. In order to address questions about the impact of environmental change, and to understand what, if any, action might be taken to ameliorate it, ecologists need to develop the ability to project models into novel, future conditions. This will require the development of models based on understanding the processes that result in a system behaving the way it does, rather than relying on a description of the system, as a whole, remaining valid indefinitely. PMID:22144381

  18. Messages, limitations and future needs of research into environmental impacts and mitigating and remediation measures of oil palm and forest land-use and land management in SE Asia

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Bidin, Kawi; Nurhidayu, Siti; Nainar, Anand; Annammala, Kogilavani; Blake, William; Higton, Sam; Wall, Katy; Darling, Isabella

    2017-04-01

    Oil palm and forest logging land-uses have expanded immensely in recent decades in SE Asia and other parts of the humid tropics - and increasingly into steeplands where adverse biophysical in situ and downstream impacts are particularly severe. With a focus on recent and current projects in Sabah (Malaysian Borneo) and Peninsular Malaysia, this paper examines the changing nature of research foci and approaches of research projects to assess impacts and develop and test mitigation strategies. Early projects focussed on comparing slope- and catchment-scale hydrology and erosion of selectively logged forest and primary forest and on ways of reducing logging impacts. The second phase of research focussed increasingly on (1) longer-term recovery from logging and (2) the likely impacts of climate change. With repeat logging and conversion of areas of forest to oil palm (and conservation of remaining primary forest was secured), the focus of attention has moved to (1) assessing impacts of oil palm conversion and land management practices, (2) testing existing (and potentially more effective) Roundtable for Sustainable Palm Oil (RSPO) guidelines and Government Regulations aimed at reducing impacts and (3) developing and testing ways of restoring and rehabilitating forest within both badly degraded logged forest areas and largely oil palm landscapes - with attention focussed on the landscape scale, the long-term, downstream as well as in situ impacts and the more vulnerable steepland areas. Two multidisciplinary umbrella projects - the SAFE (Stability of Altered Forest Ecosystems) Project and the SEnSOR Programme - have formed the backbone of this latest phase. The SAFE Project is a ten-year programme assessing the effectiveness of retention of differing widths of riparian forest buffers and different- sized forest 'islands' within converted oil palm landscapes in reducing their adverse ecological, emissions, hydrological, erosional and water pollution impacts. The SEnSOR Programme is specifically testing the effectiveness of RSPO guidelines and possible improved land management measures. After a brief overview of some of the approaches and key findings of these studies, the paper focuses on some of the advantages, limitations and future needs of these studies. Important features of the projects are (1) the involvement of industry, Government and local people from the start in the projects, (2) the focus on the landscape scale and long-term (for example with use of current monitoring as well as a historical approach involving sediment dating and fingerprinting), (3) simultaneous consideration of impacts on a wide variety of environmental impacts, as impacts of land management practices can be beneficial to some but adverse to others. Key limitations and needs are then identified and discussed. The most important of these include how to reconcile the sometimes conflicting impacts of land management practices (and remedial measures) on different environmental parameters and concerns - what is good for Peter is sometimes very bad for Paul. A key need identified, therefore, is for methodologies to evaluate comparative environmental and socioeconomic benefits and costs of sometimes conflicting or alternative land management practices and options that emerge from usually separate scientific investigations of how to reduce impacts of, for example, soil erosion, landslide risk, streamwater pollution, atmospheric emissions, river ecology and landscape biodiversity (and its components). There is also a key need for involvement of social scientists in projects.

  19. Hydropower Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government inmore » planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.« less

  20. The Future of the Oceans Past: Towards a Global Marine Historical Research Initiative

    PubMed Central

    Schwerdtner Máñez, Kathleen; Holm, Poul; Blight, Louise; Coll, Marta; MacDiarmid, Alison; Ojaveer, Henn; Poulsen, Bo; Tull, Malcolm

    2014-01-01

    Historical research is playing an increasingly important role in marine sciences. Historical data are also used in policy making and marine resource management, and have helped to address the issue of shifting baselines for numerous species and ecosystems. Although many important research questions still remain unanswered, tremendous developments in conceptual and methodological approaches are expected to contribute to a comprehensive understanding of the global history of human interactions with life in the seas. Based on our experiences and knowledge from the “History of Marine Animal Populations” project, this paper identifies the emerging research topics for future historical marine research. It elaborates on concepts and tools which are expected to play a major role in answering these questions, and identifies geographical regions which deserve future attention from marine environmental historians and historical ecologists. PMID:24988080

  1. The future of the oceans past: towards a global marine historical research initiative.

    PubMed

    Schwerdtner Máñez, Kathleen; Holm, Poul; Blight, Louise; Coll, Marta; MacDiarmid, Alison; Ojaveer, Henn; Poulsen, Bo; Tull, Malcolm

    2014-01-01

    Historical research is playing an increasingly important role in marine sciences. Historical data are also used in policy making and marine resource management, and have helped to address the issue of shifting baselines for numerous species and ecosystems. Although many important research questions still remain unanswered, tremendous developments in conceptual and methodological approaches are expected to contribute to a comprehensive understanding of the global history of human interactions with life in the seas. Based on our experiences and knowledge from the "History of Marine Animal Populations" project, this paper identifies the emerging research topics for future historical marine research. It elaborates on concepts and tools which are expected to play a major role in answering these questions, and identifies geographical regions which deserve future attention from marine environmental historians and historical ecologists.

  2. Impact of environmental factors on neglected emerging arboviral diseases

    PubMed Central

    Azevedo, Thiago S.; Virginio, Flávia; Aguiar, Breno S.

    2017-01-01

    Background Brazil is a tropical country that is largely covered by rainforests and other natural ecosystems, which provide ideal conditions for the existence of many arboviruses. However, few analyses have examined the associations between environmental factors and arboviral diseases. Thus, based on the hypothesis of correlation between environment and epidemiology, the proposals of this study were (1) to obtain the probability of occurrence of Oropouche, Mayaro, Saint Louis and Rocio fevers in Brazil based on environmental conditions corresponding to the periods of occurrence of the outbreaks; (2) to describe the macroclimatic scenario in Brazil in the last 50 years, evaluating if there was any detectable tendency to increase temperatures and (3) to model future expansion of those arboviruses in Brazil based on future temperature projections. Methodology/Principal findings Our model assessed seven environmental factors (annual rainfall, annual temperature, elevation, seasonality of temperature, seasonality of precipitation, thermal amplitude, and daytime temperature variation) for their association with the occurrence of outbreaks in the last 50 years. Our results suggest that various environmental factors distinctly influence the distribution of each arbovirus, with temperature being the central determinant of disease distribution in all high-risk areas. These areas are subject to change, since the average temperature of some areas has increased significantly over the time. Conclusions/Significance This is the first spatio-temporal study of the Oropouche, Mayaro, Saint Louis, and Rocio arboviruses, and our results indicate that they may become increasingly important public health problems in Brazil. Thus, next studies and control programs should include these diseases and also take into consideration key environmental elements. PMID:28953892

  3. The MY NASA DATA Project: Preparing Future Earth and Environmental Scientists, and Future Citizens

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Phelps, C. S.; Phipps, M.; Holzer, M.; Daugherty, P.; Poling, E.; Vanderlaan, S.; Oots, P. C.; Moore, S. W.; Diones, D. D.

    2008-12-01

    For the past 5 years, the MY NASA DATA (MND) project at NASA Langley has developed and adapted tools and materials aimed at enabling student access to real NASA Earth science satellite data. These include web visualization tools including Google Earth capabilities, but also GPS and graphing calculator exercises, Excel spreadsheet analyses, and more. The project team, NASA scientists, and over 80 classroom science teachers from around the country, have created over 85 lesson plans and science fair project ideas that demonstrate NASA satellite data use in the classroom. With over 150 Earth science parameters to choose from, the MND Live Access Server enables scientific inquiry on numerous interconnected Earth and environmental science topics about the Earth system. Teachers involved in the project report a number of benefits, including networking with other teachers nationwide who emphasize data collection and analysis in the classroom, as well as learning about other NASA resources and programs for educators. They also indicate that the MND website enhances the inquiry process and facilitates the formation of testable questions by students (a task that is typically difficult for students to do). MND makes science come alive for students because it allows them to develop their own questions using the same data scientists use. MND also provides educators with a rich venue for science practice skills, which are often overlooked in traditional curricula as teachers concentrate on state and national standards. A teacher in a disadvantaged school reports that her students are not exposed to many educational experiences outside the classroom. MND allows inner city students to be a part of NASA directly. They are able to use the same information that scientists are using and this gives them inspiration. In all classrooms, the MND microsets move students out of their local area to explore global data and then zoom back into their homes realizing that they are a part of the global Earth System. These armchair explorers learn to unite datasets in a region to learn about places like and unlike where they live. In a world that's becoming smaller and smaller with the aid of technology, projects like MND prepare our students for their global future. A teacher located in an area of California strongly impacted by pollution and potential climate changes noted that this project makes available data that are very relevant to issues that will affect her students' lives. She points out that not all scientific information they currently see is in a form that is understandable to an educated citizen, and that the experience with MND will enable her students to have better than average skills not only for deciphering scientific maps and graphs; but also for creating maps and graphics that successfully convey information to others.

  4. NASA Applied Sciences' DEVELOP National Program: a unique model cultivating capacity in the geosciences

    NASA Astrophysics Data System (ADS)

    Ross, K. W.; Favors, J. E.; Childs-Gleason, L. M.; Ruiz, M. L.; Rogers, L.; Allsbrook, K. N.

    2013-12-01

    The NASA DEVELOP National Program takes a unique approach to cultivating the next generation of geoscientists through interdisciplinary research projects that address environmental and public policy issues through the application of NASA Earth observations. Competitively selected teams of students, recent graduates, and early career professionals take ownership of project proposals outlining basic application concepts and have ten weeks to research core scientific challenges, engage partners and end-users, demonstrate prototypical solutions, and finalize and document their results and outcomes. In this high pressure, results-driven environment emerging geoscience professionals build strong networks, hone effective communication skills, and learn how to call on the varied strengths of a multidisciplinary team to achieve difficult objectives. The DEVELOP approach to workforce development has a variety of advantages over classic apprenticeship-style internship systems. Foremost is the experiential learning of grappling with real-world applied science challenges as a primary actor instead of as an observer or minor player. DEVELOP participants gain experience that fosters personal strengths and service to others, promoting a balance of leadership and teamwork in order to successfully address community needs. The program also advances understanding of Earth science data and technology amongst participants and partner organizations to cultivate skills in managing schedules, risks and resources to best optimize outcomes. Individuals who come through the program gain experience and networking opportunities working within NASA and partner organizations that other internship and academic activities cannot replicate providing not only skill development but an introduction to future STEM-related career paths. With the competitive nature and growing societal role of science and technology in today's global community, DEVELOP fosters collaboration and advances environmental understanding by promoting and improving the ability of the future geoscience workforce to recognize, understand, and address environmental issues facing the Earth.

  5. Public Talks and Science Listens: A Community-Based Participatory Approach to Characterizing Environmental Health Risk Perceptions and Assessing Recovery Needs in the Wake of Hurricanes Katrina and Rita

    PubMed Central

    Sullivan, J.; Parras, B.; St. Marie, R.; Subra, W.; Petronella, S.; Gorenstein, J.; Fuchs-Young, R.; Santa, R.K.; Chavarria, A.; Ward, J.; Diamond, P.

    2009-01-01

    In response to the human health threats stemming from Hurricanes Katrina and Rita, inter-disciplinary working groups representing P30-funded Centers of the National Institute Environmental Health Sciences were created to assess threats posed by mold, harmful alga blooms, chemical toxicants, and various infectious agents at selected sites throughout the hurricane impact zone. Because of proximity to impacted areas, UTMB NIEHS Center in Environmental Toxicology was charged with coordinating direct community outreach efforts, primarily in south Louisiana. In early October 2005, UTMB/NIEHS Center Community Outreach and Education Core, in collaboration with outreach counterparts at The University of Texas MD Anderson Cancer Center @ Smithville TX/Center for Research in Environmental Disease sent two groups into southern Louisiana. One group used Lafourche Parish as a base to deliver humanitarian aid and assess local needs for additional supplies during local recovery/reclamation. A second group, ranging through New Iberia, New Orleans, Chalmette, rural Terrebonne, Lafourche and Jefferson Parishes and Baton Rouge met with community environmental leaders, emergency personnel and local citizens to 1) sample public risk perceptions, 2) evaluate the scope and reach of ongoing risk communication efforts, and 3) determine how the NIEHS could best collaborate with local groups in environmental health research and local capacity building efforts. This scoping survey identified specific information gaps limiting efficacy of risk communication, produced a community “wish list” of potential collaborative research projects. The project provided useful heuristics for disaster response and management planning and a platform for future collaborative efforts in environmental health assessment and risk communication with local advocacy groups in south Terrebonne-Lafourche parishes. PMID:20508756

  6. Debt-for-nature swaps: A new strategy for protecting environmental interests in developing nations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlin, T.B.

    1989-01-01

    Nature swaps are a generally well-conceived approach to mitigating the destruction of environmentally sensitive areas in developing nations while remaining sensitive to the economic needs of developing countries. They allow developing countries to dedicate some of their debt repayment to local projects, thus benefiting both their economies and the environment. Swaps also help them obtain assistance from environmental organizations in developed nations to manage their own natural resources. Environmentalists, through the purchase of steeply discounted debt, maximize their investment in tropical forest preservation. In addition they can strengthen environmental organizations in developing nations by including local environmentalists in both policymore » decisionmaking and the implementation of conservation projects. Debt-for-nature swaps also keep the subject of tropical deforestation on the agenda of the international community and offer small international lending institutions a socially redeeming means of removing bad loans from their ledgers. Finally, each government's authority to choose its own development objectives is only slightly encumbered by sharing decisionmaking authority with the environmentalists. Essentially, the swapping governments have agreed to cooperate. consequently, tropical forests only have as much protection as the tropical states desire. This does not mean that swaps are of little moment. Hopefully, collaboration between conservationists in the developed world and leaders of the developing nations will contribute to a constructive framework for future efforts to preserve the earth's tropical forests.« less

  7. Lessons Learned from Applications of a Climate Change Decision Tree toWater System Projects in Kenya and Nepal

    NASA Astrophysics Data System (ADS)

    Ray, P. A.; Bonzanigo, L.; Taner, M. U.; Wi, S.; Yang, Y. C. E.; Brown, C.

    2015-12-01

    The Decision Tree Framework developed for the World Bank's Water Partnership Program provides resource-limited project planners and program managers with a cost-effective and effort-efficient, scientifically defensible, repeatable, and clear method for demonstrating the robustness of a project to climate change. At the conclusion of this process, the project planner is empowered to confidently communicate the method by which the vulnerabilities of the project have been assessed, and how the adjustments that were made (if any were necessary) improved the project's feasibility and profitability. The framework adopts a "bottom-up" approach to risk assessment that aims at a thorough understanding of a project's vulnerabilities to climate change in the context of other nonclimate uncertainties (e.g., economic, environmental, demographic, political). It helps identify projects that perform well across a wide range of potential future climate conditions, as opposed to seeking solutions that are optimal in expected conditions but fragile to conditions deviating from the expected. Lessons learned through application of the Decision Tree to case studies in Kenya and Nepal will be presented, and aspects of the framework requiring further refinement will be described.

  8. A probabilistic approach to emissions from transportation sector in the coming decades

    NASA Astrophysics Data System (ADS)

    Yan, F.; Winijkul, E.; Bond, T. C.; Streets, D. G.

    2010-12-01

    Future emission estimates are necessary for understanding climate change, designing national and international strategies for air quality control and evaluating mitigation policies. Emission inventories are uncertain and future projections even more so. Most current emission projection models are deterministic; in other words, there is only single answer for each scenario. As a result, uncertainties have not been included in the estimation of climate forcing or other environmental effects, but it is important to quantify the uncertainty inherent in emission projections. We explore uncertainties of emission projections from transportation sector in the coming decades by sensitivity analysis and Monte Carlo simulations. These projections are based on a technology driven model: the Speciated Pollutants Emission Wizard (SPEW)-Trend, which responds to socioeconomic conditions in different economic and mitigation scenarios. The model contains detail about technology stock, including consumption growth rates, retirement rates, timing of emission standards, deterioration rates and transition rates from normal vehicles to vehicles with extremely high emission factors (termed “superemitters”). However, understanding of these parameters, as well as relationships with socioeconomic conditions, is uncertain. We project emissions from transportation sectors under four different IPCC scenarios (A1B, A2, B1, and B2). Due to the later implementation of advanced emission standards, Africa has the highest annual growth rate (1.2-3.1%) from 2010 to 2050. Superemitters begin producing more than 50% of global emissions around year 2020. We estimate uncertainties from the relationships between technological change and socioeconomic conditions and examine their impact on future emissions. Sensitivities to parameters governing retirement rates are highest, causing changes in global emissions from-26% to +55% on average from 2010 to 2050. We perform Monte Carlo simulations to examine how these uncertainties will affect total emissions if any input parameter that has inherent the uncertainties is substituted by a range of values-probability distribution and varies at the same time; the 95% confidence interval of global emission annual growth rate is -1.9% to +0.2% per year.

  9. The impacts of climate and land-use change scenarios on river ecology: the case of Margaritifera margaritifera

    NASA Astrophysics Data System (ADS)

    Santos, Regina; Fernandes, Luís; Varandas, Simone; Pereira, Mário; Sousa, Ronaldo; Teixeira, Amilcar; Lopes-Lima, Manuel; Cortes, Rui; Pacheco, Fernando

    2015-04-01

    Climate change is one of the most important causes of biodiversity loss in freshwater ecosystems and it is expected to cause extinctions in many species in the future. Freshwater ecosystems are also highly affected by anthropogenic pressures such as land use/land cover changes, water abstractions and impoundments. The aim of this study is to assess the impacts of future climate and land-use in the Beça River (northern Portugal) namely on the conservation status of the endangered pearl mussel Margaritifera margaritifera (Linnaeus, 1758). This is an environmental indicator and endangered species currently present in several stretches of the Beça River that still hold adequate ecological conditions. However, the species is threatened by the precipitation decrease projected for the 21st century and the deviation of a significant portion of the river water to an adjacent watershed (since 1998). This decrease in river water can be especially acute during the summer months, forming small pools dispersed along the water course where M. margaritifera, and its host (Salmo trutta), barely find biological conditions for survival. The materials and methods used in this study include; (i) the assessment of water quality based on minimum, maximum and average values of relevant physicochemical parameters within the period 2000-2009; (ii) assessment of future climate change settings based on air temperature and precipitation projected by Regional and Global Circulation Models for recent past (1961 - 1990) and future climate scenarios (2071 - 2099); (iii) data processing to remove the model biases; and, (iv) integrated watershed modelling with river-planning (Mike Basin) and broad GIS (ArcMap) computer packages. Our findings comprise: (i); a good relationship between current wildfire incidence and river water quality; (ii) an increase in the future air temperature throughout the year; (iii) increases in future precipitations during winter and decreases during the other seasons; (iv) major runoff decrease more likely to occur between April and June and in October (<-30% in both future scenarios) which may reach -50%; (v) a decrease in the simulated average water depth in most river sections leading to habitat fragmentation by loss of connectivity during the summer season (water depth < 10 cm) with reverberating effects on the mobility of Salmo trutta, which may impair the reproduction and recruitment of pearl mussels. In addition, human-related threats mostly associated with the presence of dams and wildfires are expected to increase in the future. The presence of dams contribute to an additional decrease in the connectivity and river flow while the forest fires are a major threat, related to the wash out of burned areas during storms, eventually causing the disappearance of the mussels, especially the juveniles. In view of future climate and land-use change scenarios, conservation strategies are proposed to maintain good status and enable recovery, including the negotiation of ecological flows with the river board authorities, the replanting of riparian vegetation along the water course and the reintroduction of native tree species throughout the catchment. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by the project SUSTAINSYS: Environmental Sustainable Agro-Forestry Systems (NORTE-07-0124-FEDER-000044), financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), as well as by National Funds (PIDDAC) through the Portuguese Foundation for Science and Technology (FCT/MEC).

  10. Next Generation Scientists, Next Opportunities: EPA's Science To Achieve Results (STAR) Program

    NASA Astrophysics Data System (ADS)

    Jones, M.

    2004-12-01

    Scientific research is one of the most powerful tools we have for understanding and protecting our environment. It provides the foundation for what we know about our planet, how it has changed, and how it could be altered in the future. The National Center for Environmental Research (NCER) in the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) supports high-quality, extramural research by the nation's leading scientists and engineers to strengthen the basis for decisions about local and national environmental issues. NCER works with academia, state and local governments, other federal agencies, and scientists in EPA to increase human knowledge of how to protect our health and natural resources through its three major programs: · Science to Achieve Results (STAR) Grants · Small Business Innovative Research (SBIR) · Science to Achieve Results (STAR) Fellowships STAR, NCER's primary program, funds research grants and graduate fellowships in environmental science and engineering. Developing the next generation of environmental scientists and engineers is one of NCER's most important objectives. Each year, NCER helps between 80 and 160 students achieve Master's or Ph.D. degrees in environmental science and engineering through its STAR and Greater Research Opportunities (GRO) fellowships. Some of these students have moved on to careers in government while others are now full-time professors and researchers. Still others are working for state environmental agencies or furthering their studies through postdoctoral positions at universities. Since the inception of the NCER program, STAR fellowships (along with grants and SBIR projects) have been awarded in every state in the country. With the help of STAR, current and future scientists and engineers have been able to explore ways to preserve and protect human health and our precious resources.

  11. A global map of suitability for coastal Vibrio cholerae under current and future climate conditions.

    PubMed

    Escobar, Luis E; Ryan, Sadie J; Stewart-Ibarra, Anna M; Finkelstein, Julia L; King, Christine A; Qiao, Huijie; Polhemus, Mark E

    2015-09-01

    Vibrio cholerae is a globally distributed water-borne pathogen that causes severe diarrheal disease and mortality, with current outbreaks as part of the seventh pandemic. Further understanding of the role of environmental factors in potential pathogen distribution and corresponding V. cholerae disease transmission over time and space is urgently needed to target surveillance of cholera and other climate and water-sensitive diseases. We used an ecological niche model (ENM) to identify environmental variables associated with V. cholerae presence in marine environments, to project a global model of V. cholerae distribution in ocean waters under current and future climate scenarios. We generated an ENM using published reports of V. cholerae in seawater and freely available remotely sensed imagery. Models indicated that factors associated with V. cholerae presence included chlorophyll-a, pH, and sea surface temperature (SST), with chlorophyll-a demonstrating the greatest explanatory power from variables selected for model calibration. We identified specific geographic areas for potential V. cholerae distribution. Coastal Bangladesh, where cholera is endemic, was found to be environmentally similar to coastal areas in Latin America. In a conservative climate change scenario, we observed a predicted increase in areas with environmental conditions suitable for V. cholerae. Findings highlight the potential for vulnerability maps to inform cholera surveillance, early warning systems, and disease prevention and control. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Soil Carbon Residence Time in the Arctic - Potential Drivers of Past and Future Change

    NASA Astrophysics Data System (ADS)

    Huntzinger, D. N.; Fisher, J.; Schwalm, C. R.; Hayes, D. J.; Stofferahn, E.; Hantson, W.; Schaefer, K. M.; Fang, Y.; Michalak, A. M.; Wei, Y.

    2017-12-01

    Carbon residence time is one of the most important factors controlling carbon cycling in ecosystems. Residence time depends on carbon allocation and conversion among various carbon pools and the rate of organic matter decomposition; all of which rely on environmental conditions, primarily temperature and soil moisture. As a result, residence time is an emergent property of models and a strong determinant of terrestrial carbon storage capacity. However, residence time is poorly constrained in process-based models due, in part, to the lack of data with which to benchmark global-scale models in order to guide model improvements and, ultimately, reduce uncertainty in model projections. Here we focus on improving the understanding of the drivers to observed and simulated carbon residence time in the Arctic-Boreal region (ABR). Carbon-cycling in the ABR represents one of the largest sources of uncertainty in historical and future projections of land-atmosphere carbon dynamics. This uncertainty is depicted in the large spread of terrestrial biospheric model (TBM) estimates of carbon flux and ecosystem carbon pool size in this region. Recent efforts, such as the Arctic-Boreal Vulnerability Experiment (ABoVE), have increased the availability of spatially explicit in-situ and remotely sensed carbon and ecosystem focused data products in the ABR. Together with simulations from Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we use these observations to evaluate the ability of models to capture soil carbon stocks and changes in the ABR. Specifically, we compare simulated versus observed soil carbon residence times in order to evaluate the functional response and sensitivity of modeled soil carbon stocks to changes in key environmental drivers. Understanding how simulated carbon residence time compares with observations and what drives these differences is critical for improving projections of changing carbon dynamics in the ABR and globally.

  13. Heat and health in Antwerp under climate change: Projected impacts and implications for prevention.

    PubMed

    Martinez, Gerardo Sanchez; Diaz, Julio; Hooyberghs, Hans; Lauwaet, Dirk; De Ridder, Koen; Linares, Cristina; Carmona, Rocio; Ortiz, Cristina; Kendrovski, Vladimir; Aerts, Raf; Van Nieuwenhuyse, An; Dunbar, Maria Bekker-Nielsen

    2018-02-01

    Excessive summer heat is a serious environmental health problem in several European cities. Heat-related mortality and morbidity is likely to increase under climate change scenarios without adequate prevention based on locally relevant evidence. We modelled the urban climate of Antwerp for the summer season during the period 1986-2015, and projected summer daily temperatures for two periods, one in the near (2026-2045) and one in the far future (2081-2100), under the Representative Concentration Pathway (RCP) 8.5. We then analysed the relationship between temperature and mortality, as well as with hospital admissions for the period 2009-2013, and estimated the projected mortality in the near future and far future periods under changing climate and population, assuming alternatively no acclimatization and acclimatization based on a constant threshold percentile temperature. During the sample period 2009-2013 we observed an increase in daily mortality from a maximum daily temperature of 26°C, or the 89th percentile of the maximum daily temperature series. The annual average heat-related mortality in this period was 13.4 persons (95% CI: 3.8-23.4). No effect of heat was observed in the case of hospital admissions due to cardiorespiratory causes. Under a no acclimatization scenario, annual average heat-related mortality is multiplied by a factor of 1.7 in the near future (24.1deaths/year CI 95%: 6.78-41.94) and by a factor of 4.5 in the far future (60.38deaths/year CI 95%: 17.00-105.11). Under a heat acclimatization scenario, mortality does not increase significantly in the near or in the far future. These results highlight the importance of a long-term perspective in the public health prevention of heat exposure, particularly in the context of a changing climate, and the calibration of existing prevention activities in light of locally relevant evidence. Copyright © 2017. Published by Elsevier Ltd.

  14. OLIVERO: the project analysing the future of olive production systems on sloping land in the Mediterranean basin.

    PubMed

    Stroosnijder, Leo; Mansinho, Maria Inês; Palese, Assunta Maria

    2008-11-01

    From 2003 to 2006, a consortium of six European partners analysed the future of olive production systems on sloping land in the Mediterranean basin. Olive production on such land dates back to pre-Roman times, but the production systems (known by the acronym SMOPS, for "Sloping and Mountainous Olive Production Systems"), are under threat. Many are unsustainable environmentally (erosion hazard), socially (exodus of young people) or economically (high labour costs). The OLIVERO research project was possible thanks to a grant of euro1.5 million from the European Union, which gives out euro2.5 billion in subsidies annually for olive production. An extended survey conducted by the project in five sites in Portugal, Spain, Italy and Greece revealed the diversity and multifunctionality of SMOPS. Four main systems were identified as important for the future: traditional, organic, semi-intensive and intensive. The conceptual framework of OLIVERO involved six phases, ranging from the initial survey up to policy recommendations. In all phases there was intensive contact with stakeholders and institutions. End-users were identified at three levels: local, intermediate and regional, and national/international. This paper presents the highlights of the physical analysis of land and water resources, crop and land management, and economics and policies. Scenario studies gave insight into the possible future: some SMOPS will be gradually abandoned or transformed into nature conservation areas, others will exploit drip irrigation and follow the intensification patterns of agriculture in the valleys, and a third group will continue to be managed more extensively, perhaps augmenting their income with other activities (possibly off-farm) or turning to organic production systems. At the five international OLIVERO meetings held from 2003 to 2006, knowledge, experience and ideas on the future of olive production systems were intensively exchanged. A network was established for ongoing and future cooperation. Two end-user seminars were held in Matera (Italy) and Lisbon. Over 70 scientific papers have been published.

  15. Using Species Distribution Models to Predict Potential Landscape Restoration Effects on Puma Conservation.

    PubMed

    Angelieri, Cintia Camila Silva; Adams-Hosking, Christine; Ferraz, Katia Maria Paschoaletto Micchi de Barros; de Souza, Marcelo Pereira; McAlpine, Clive Alexander

    2016-01-01

    A mosaic of intact native and human-modified vegetation use can provide important habitat for top predators such as the puma (Puma concolor), avoiding negative effects on other species and ecological processes due to cascade trophic interactions. This study investigates the effects of restoration scenarios on the puma's habitat suitability in the most developed Brazilian region (São Paulo State). Species Distribution Models incorporating restoration scenarios were developed using the species' occurrence information to (1) map habitat suitability of pumas in São Paulo State, Southeast, Brazil; (2) test the relative contribution of environmental variables ecologically relevant to the species habitat suitability and (3) project the predicted habitat suitability to future native vegetation restoration scenarios. The Maximum Entropy algorithm was used (Test AUC of 0.84 ± 0.0228) based on seven environmental non-correlated variables and non-autocorrelated presence-only records (n = 342). The percentage of native vegetation (positive influence), elevation (positive influence) and density of roads (negative influence) were considered the most important environmental variables to the model. Model projections to restoration scenarios reflected the high positive relationship between pumas and native vegetation. These projections identified new high suitability areas for pumas (probability of presence >0.5) in highly deforested regions. High suitability areas were increased from 5.3% to 8.5% of the total State extension when the landscapes were restored for ≥ the minimum native vegetation cover rule (20%) established by the Brazilian Forest Code in private lands. This study highlights the importance of a landscape planning approach to improve the conservation outlook for pumas and other species, including not only the establishment and management of protected areas, but also the habitat restoration on private lands. Importantly, the results may inform environmental policies and land use planning in São Paulo State, Brazil.

  16. Envisioning Preferred Environmental Futures: Exploring Relationships between Future-Related Views and Environmental Attitudes

    ERIC Educational Resources Information Center

    Liu, Shu-Chiu; Lin, Huann-shyang

    2018-01-01

    The purpose of the study was to explore undergraduate students' views about environmental futures that are preferred or desirable for them, and to further examine relationships between specific future-related views and general environmental attitudes. 96 students from one reputable public university in Taiwan participated in a survey that included…

  17. A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears

    NASA Astrophysics Data System (ADS)

    Amstrup, Steven C.; Marcot, Bruce G.; Douglas, David C.

    To inform the U.S. Fish and Wildlife Service decision, whether or not to list polar bears as threatened under the Endangered Species Act (ESA), we projected the status of the world's polar bears (Ursus maritimus) for decades centered on future years 2025, 2050, 2075, and 2095. We defined four ecoregions based on current and projected sea ice conditions: seasonal ice, Canadian Archipelago, polar basin divergent, and polar basin convergent ecoregions. We incorporated general circulation model projections of future sea ice into a Bayesian network (BN) model structured around the factors considered in ESA decisions. This first-generation BN model combined empirical data, interpretations of data, and professional judgments of one polar bear expert into a probabilistic framework that identifies causal links between environmental stressors and polar bear responses. We provide guidance regarding steps necessary to refine the model, including adding inputs from other experts. The BN model projected extirpation of polar bears from the seasonal ice and polar basin divergent ecoregions, where ≈2/3 of the world's polar bears currently occur, by mid century. Projections were less dire in other ecoregions. Decline in ice habitat was the overriding factor driving the model outcomes. Although this is a first-generation model, the dependence of polar bears on sea ice is universally accepted, and the observed sea ice decline is faster than models suggest. Therefore, incorporating judgments of multiple experts in a final model is not expected to fundamentally alter the outlook for polar bears described here.

  18. The Geographic Climate Information System Project (GEOCLIMA): Overview and preliminary results

    NASA Astrophysics Data System (ADS)

    Feidas, H.; Zanis, P.; Melas, D.; Vaitis, M.; Anadranistakis, E.; Symeonidis, P.; Pantelopoulos, S.

    2012-04-01

    The project GEOCLIMA aims at developing an integrated Geographic Information System (GIS) allowing the user to manage, analyze and visualize the information which is directly or indirectly related to climate and its future projections in Greece. The main components of the project are: a) collection and homogenization of climate and environmental related information, b) estimation of future climate change based on existing regional climate model (RCM) simulations as well as a supplementary high resolution (10 km x 10 km) simulation over the period 1961-2100 using RegCM3, c) compilation of an integrated uniform geographic database, and d) mapping of climate data, creation of digital thematic maps, and development of the integrated web GIS application. This paper provides an overview of the ongoing research efforts and preliminary results of the project. First, the trends in the annual and seasonal time series of precipitation and air temperature observations for all available stations in Greece are assessed. Then the set-up of the high resolution RCM simulation (10 km x 10 km) is discussed with respect to the selected convective scheme. Finally, the relationship of climatic variables with geophysical features over Greece such as altitude, location, distance from the sea, slope, aspect, distance from climatic barriers, land cover etc) is investigated, to support climate mapping. The research has been co-financed by the European Union (European Regional Development Fund) and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the National Strategic Reference Framework (NSRF) - Research Funding Program COOPERATION 2009.

  19. The Process of Change: The British Armored Division; Its Development and Employment in North Africa during World War II.

    DTIC Science & Technology

    1985-01-01

    concensus about futrue war because of the nature of the Army’s external and internal environment . The armored force missions which resulted from the several...at the key environmental factors, both external and internal which helped to shape the armored division in the formative years from 1926-1938. An...difficult to understand, particularly during peacetime. The army must correctly project the future nature of war. Since there is no model for this

  20. Final Jurisdictional Environmental Planning Technical Report. Peacekeeper in Minuteman Silos, 90th Strategic Missile Wing, F. E. Warren Air Force Base. Volume 3. Appendices A through C.

    DTIC Science & Technology

    1984-01-01

    can be determined. The demand for labor is met by inmigration which in general will exceed the excess demand by a factor referred to as labor market ...described above, several assumptions are made regarding future economic behavior, labor market behavior, expenditure patterns, and commuter...labor market frictional parameter leads to greater inmigration per each direct project worker. As more people move into the area seeking direct

  1. Management Plan Report. Unconfined Open-Water Disposal of Dredged Material. Phase 2. (North and South Puget Sound)

    DTIC Science & Technology

    1989-09-01

    depth of 442’ at the center of the disposal zone. The area is subject to weak currents. In general, commercially important marine invertebrate ...Fish and Wildlife Service " Charles Dunn U.S. Fish and Wildlife Service * Rob Jones National Marine Fisheries Service * Dr. Herb Curl National Oceanic...environmental impacts. In the future, for many projects, disposal in deep and relatively deep marine waters is expected to be a preferred option for envirc

  2. Conservation economics. Comment on "Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot".

    PubMed

    Finney, Christopher

    2015-02-13

    Banks-Leite et al. (Reports, 29 August 2014, p. 1041) conclude that a large-scale program to restore the Brazilian Atlantic Forest using payments for environmental services (PES) is economically feasible. They do not analyze transaction costs, which are quantified infrequently and incompletely in the literature. Transaction costs can exceed 20% of total project costs and should be included in future research. Copyright © 2015, American Association for the Advancement of Science.

  3. Environmental Assessment Lake Traverse Master Plan for Public-Use Development and Resource Management Lake Traverse Minnesota - South Dakota.

    DTIC Science & Technology

    1978-09-01

    classified as wet meadow. k. Tame Grassland Community (limited) - This community is of minor extent and importance in the vicinity of Lake Traverse...purposes of flood control and water conservation, the Lake Traverse-lois de Sioux flood control project began operation in 1941. It con- sists of two...reservoir pools--Lake Traverse and Mud Lake--plus 24 miles of channel improvement. Several consepts are recoiended for future development of the

  4. Environmental Impact Statements: A Handbook for Writers and Reviewers

    DTIC Science & Technology

    1973-08-01

    expand the flood to include 16 additional injection wells in 1972, for a total of 46. Production at Red Wash began in 1951." "The Uinta Basin ...improvement of the entire river basin area--an area of some 2,400 square miles. The committee responsible for the plan was chaired by the U.S. Army Corps of...statements. Thus it mentions "future development planned both in the’ vicinity of the proposed I,, project and within the Uintah Basin " without stipulating

  5. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    NASA Astrophysics Data System (ADS)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  6. Identifying causal linkages between environmental variables and African conflicts

    NASA Astrophysics Data System (ADS)

    Nguy-Robertson, A. L.; Dartevelle, S.

    2017-12-01

    Environmental variables that contribute to droughts, flooding, and other natural hazards are often identified as factors contributing to conflict; however, few studies attempt to quantify these causal linkages. Recent research has demonstrated that the environment operates within a dynamical system framework and the influence of variables can be identified from convergent cross mapping (CCM) between shadow manifolds. We propose to use CCM to identify causal linkages between environmental variables and incidences of conflict. This study utilizes time series data from Climate Forecast System ver. 2 and MODIS satellite sensors processed using Google Earth Engine to aggregate country and regional trends. These variables are then compared to Armed Conflict Location & Event Data Project observations at similar scales. Results provide relative rankings of variables and their linkage to conflict. Being able to identify which factors contributed more strongly to a conflict can allow policy makers to prepare solutions to mitigate future crises. Knowledge of the primary environmental factors can lead to the identification of other variables to examine in the causal network influencing conflict.

  7. 76 FR 50323 - Notice of Availability of a Draft Environmental Impact Report/Environmental Impact Statement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... Environmental Impact Report/ Environmental Impact Statement for the California High-Speed Train Project Fresno...-Speed Train (HST) Project Fresno to Bakersfield Section (Project). FRA is the lead Federal agency and the California High-Speed Rail Authority (Authority) is the lead state agency for the environmental...

  8. ECOLES: a Citizen Observers network engaging communities to map climate change at the local level

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Walker, Nicholas; Sandholt, Inge; Brown, Ian; Solberg, Rune; Suwala, Jason; Kelly, Richard; Tangen, Helge; Berglund, Robin; Dean, Andy; Engset, Rune; Siewertsen, Bjarne

    2016-04-01

    Engaging people in environmental studies is an important way to bring across awareness of expected future climate changes, and also a way to measure environmental change in ways that are better or complementary to remote sensing methods. With a hands-on approach, people are more likely to embrace the idea that climate change is occurring, and with modern technologies it is possible to collect quite stunning amounts of relevant data. We suggest several national activities tailored to conditions in each of the participating countries and also to existing national CO-projects. The project focuses on gathering data on biological changes, on weather, and on snow-pack information in Nordic countries as well as Greenland and Canada. Data will be gathered with existing equipment (mobile phones and internet-connected weather stations) and the project provides the means for collation of data into a database for dissemination and quality control. Numerical data collected by small non-professional weather stations or mobile phones with sensors are not directly useful quantitatively for e.g. numerical weather prediction without validation of data quality, but with validation there is a huge untapped potential due to the number of observers. Students are a central part of the project, which also seeks to engage people out and about in nature, and people with their own weather stations or other environmental data-collection activities, as well as passive data collection from mobile phone data sensors in people's bags and pockets. Appropriate software, educational and training materials will be designed with end-users in mind; school-age materials will be produced in the appropriate languages (e.g. Kalaallisut for COs of school age in Greenland).

  9. An anticipatory integrated assessment of regional acidification: The RAINS-Asia model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amann, M.; Carmichael, G.R.; Foell, W.

    1996-12-31

    Across large parts of Asia, air pollution problems are becoming more and more evident. Rainfall in some areas, including China, Japan, and Thailand, has been measured to be 10 times more acidic than unpolluted rain. Increasing evidence of acidification damage to ecosystems such as surface waters, soils, and economically important crops, is beginning to appear. In addition, urban air quality in many areas of the region continues to decrease. Current economic forecasts predict continued rapid economic growth in the region, which will bring with it increasing emissions of air pollutants, especially sulfur. The total primary energy demand in Asia currentlymore » doubles every twelve years (as compared to a world average of every 28 years). Coal is expected to continue to be the dominant energy source, with coal demand projected to increase by 65 percent per year, a rate that outpaces regional economic growth. If current trends in economic development and energy use in Asia continue, emissions of sulfur dioxide, one of the key components in acid rain, will more than triple within the next 30 years. Many ecosystems will be unable to continue to absorb these increased levels of pollution without harmful effects, thus creating a potential danger for irreversible environmental damage in many areas. In view of the potential environmental consequences of projected growth in Asian energy consumption, emissions, and air pollution, the World Bank, together with the Asian Development Bank, have funded a project to develop and implement an integrated assessment model for the acid deposition phenomenon in Asia. The Regional Air Pollution INformation and Simulation model for Asia (RAINS-Asia) is a software tool to help decision makers assess and project future trends in emissions, transport, and deposition of air pollutants, and their potential environmental effects.« less

  10. Problems with the application of hydrogeological science to regulation of Australian mining projects: Carmichael Mine and Doongmabulla Springs

    NASA Astrophysics Data System (ADS)

    Currell, Matthew J.; Werner, Adrian D.; McGrath, Chris; Webb, John A.; Berkman, Michael

    2017-05-01

    Understanding and managing impacts from mining on groundwater-dependent ecosystems (GDEs) and other groundwater users requires development of defensible science supported by adequate field data. This usually leads to the creation of predictive models and analysis of the likely impacts of mining and their accompanying uncertainties. The identification, monitoring and management of impacts on GDEs are often a key component of mine approvals, which need to consider and attempt to minimise the risks that negative impacts may arise. Here we examine a case study where approval for a large mining project in Australia (Carmichael Coal Mine) was challenged in court on the basis that it may result in more extensive impacts on a GDE (Doongmabulla Springs) of high ecological and cultural significance than predicted by the proponent. We show that throughout the environmental assessment and approval process, significant data gaps and scientific uncertainties remained unresolved. Evidence shows that the assumed conceptual hydrogeological model for the springs could be incorrect, and that at least one alternative conceptualisation (that the springs are dependent on a deep fault) is consistent with the available field data. Assumptions made about changes to spring flow as a consequence of mine-induced drawdown also appear problematic, with significant implications for the spring-fed wetlands. Despite the large scale of the project, it appears that critical scientific data required to resolve uncertainties and construct robust models of the springs' relationship to the groundwater system were lacking at the time of approval, contributing to uncertainty and conflict. For this reason, we recommend changes to the approval process that would require a higher standard of scientific information to be collected and reviewed, particularly in relation to key environmental assets during the environmental impact assessment process in future projects.

  11. Future Climate Change in the Baltic Sea Area

    NASA Astrophysics Data System (ADS)

    Bøssing Christensen, Ole; Kjellström, Erik; Zorita, Eduardo; Sonnenborg, Torben; Meier, Markus; Grinsted, Aslak

    2015-04-01

    Regional climate models have been used extensively since the first assessment of climate change in the Baltic Sea region published in 2008, not the least for studies of Europe (and including the Baltic Sea catchment area). Therefore, conclusions regarding climate model results have a better foundation than was the case for the first BACC report of 2008. This presentation will report model results regarding future climate. What is the state of understanding about future human-driven climate change? We will cover regional models, statistical downscaling, hydrological modelling, ocean modelling and sea-level change as it is projected for the Baltic Sea region. Collections of regional model simulations from the ENSEMBLES project for example, financed through the European 5th Framework Programme and the World Climate Research Programme Coordinated Regional Climate Downscaling Experiment, have made it possible to obtain an increasingly robust estimation of model uncertainty. While the first Baltic Sea assessment mainly used four simulations from the European 5th Framework Programme PRUDENCE project, an ensemble of 13 transient regional simulations with twice the horizontal resolution reaching the end of the 21st century has been available from the ENSEMBLES project; therefore it has been possible to obtain more quantitative assessments of model uncertainty. The literature about future climate change in the Baltic Sea region is largely built upon the ENSEMBLES project. Also within statistical downscaling, a considerable number of papers have been published, encompassing now the application of non-linear statistical models, projected changes in extremes and correction of climate model biases. The uncertainty of hydrological change has received increasing attention since the previous Baltic Sea assessment. Several studies on the propagation of uncertainties originating in GCMs, RCMs, and emission scenarios are presented. The number of studies on uncertainties related to downscaling and impact models is relatively small, but more are emerging. A large number of coupled climate-environmental scenario simulations for the Baltic Sea have been performed within the BONUS+ projects (ECOSUPPORT, INFLOW, AMBER and Baltic-C (2009-2011)), using various combinations of output from GCMs, RCMs, hydrological models and scenarios for load and emission of nutrients as forcing for Baltic Sea models. Such a large ensemble of scenario simulations for the Baltic Sea has never before been produced and enables for the first time an estimation of uncertainties.

  12. Statistical downscaling and future scenario generation of temperatures for Pakistan Region

    NASA Astrophysics Data System (ADS)

    Kazmi, Dildar Hussain; Li, Jianping; Rasul, Ghulam; Tong, Jiang; Ali, Gohar; Cheema, Sohail Babar; Liu, Luliu; Gemmer, Marco; Fischer, Thomas

    2015-04-01

    Finer climate change information on spatial scale is required for impact studies than that presently provided by global or regional climate models. It is especially true for regions like South Asia with complex topography, coastal or island locations, and the areas of highly heterogeneous land-cover. To deal with the situation, an inexpensive method (statistical downscaling) has been adopted. Statistical DownScaling Model (SDSM) employed for downscaling of daily minimum and maximum temperature data of 44 national stations for base time (1961-1990) and then the future scenarios generated up to 2099. Observed as well as Predictors (product of National Oceanic and Atmospheric Administration) data were calibrated and tested on individual/multiple basis through linear regression. Future scenario was generated based on HadCM3 daily data for A2 and B2 story lines. The downscaled data has been tested, and it has shown a relatively strong relationship with the observed in comparison to ECHAM5 data. Generally, the southern half of the country is considered vulnerable in terms of increasing temperatures, but the results of this study projects that in future, the northern belt in particular would have a possible threat of increasing tendency in air temperature. Especially, the northern areas (hosting the third largest ice reserves after the Polar Regions), an important feeding source for Indus River, are projected to be vulnerable in terms of increasing temperatures. Consequently, not only the hydro-agricultural sector but also the environmental conditions in the area may be at risk, in future.

  13. Community-based participatory research projects and policy engagement to protect environmental health on St Lawrence Island, Alaska.

    PubMed

    Miller, Pamela K; Waghiyi, Viola; Welfinger-Smith, Gretchen; Byrne, Samuel Carter; Kava, Jane; Gologergen, Jesse; Eckstein, Lorraine; Scrudato, Ronald; Chiarenzelli, Jeff; Carpenter, David O; Seguinot-Medina, Samarys

    2013-01-01

    This article synthesizes discussion of collaborative research results, interventions and policy engagement for St Lawrence Island (SLI), Alaska, during the years 2000-2012. As part of on-going community-based participatory research (CBPR) studies on SLI, 5 discrete exposure-assessment projects were conducted: (a) a biomonitoring study of human blood serum; (b-d) 3 investigations of levels of contaminants in environmental media at an abandoned military site at Northeast Cape--using sediment cores and plants, semi-permeable membrane devices and blackfish, respectively; and (e) a study of traditional foods. Blood serum in residents of SLI showed elevated levels of polychlorinated biphenyls (PCBs) with higher levels among those exposed to the military site at Northeast Cape, an important traditional subsistence-use area. Environmental studies at the military site demonstrated that the site is a continuing source of PCBs to a major watershed, and that clean-up operations at the military site generated PCB-contaminated dust on plants in the region. Important traditional foods eaten by the people of SLI showed elevated concentrations of PCBs, which are primarily derived from the long-range transport of persistent pollutants that are transported by atmospheric and marine currents from more southerly latitudes to the north. An important task for all CBPR projects is to conduct intervention strategies as needed in response to research results. Because of the findings of the CBPR projects on SLI, the CBPR team and the people of the Island are actively engaging in interventions to ensure cleanup of the formerly used military sites; reform chemicals policy on a national level; and eliminate persistent pollutants internationally. The goal is to make the Island and other northern/Arctic communities safe for themselves and future generations. As part of the CBPR projects conducted from 2000 to 2012, a series of exposure assessments demonstrate that the leaders of SLI have reason to be concerned about the health of people due to the presence of carcinogenic chemicals as measured in biomonitoring and environmental samples and important traditional foods.

  14. Community-based participatory research projects and policy engagement to protect environmental health on St Lawrence Island, Alaska

    PubMed Central

    Miller, Pamela K.; Waghiyi, Viola; Welfinger-Smith, Gretchen; Byrne, Samuel Carter; Kava, Jane; Gologergen, Jesse; Eckstein, Lorraine; Scrudato, Ronald; Chiarenzelli, Jeff; Carpenter, David O.; Seguinot-Medina, Samarys

    2013-01-01

    Objectives This article synthesizes discussion of collaborative research results, interventions and policy engagement for St Lawrence Island (SLI), Alaska, during the years 2000–2012. Methods As part of on-going community-based participatory research (CBPR) studies on SLI, 5 discrete exposure-assessment projects were conducted: (a) a biomonitoring study of human blood serum; (b–d) 3 investigations of levels of contaminants in environmental media at an abandoned military site at Northeast Cape – using sediment cores and plants, semi-permeable membrane devices and blackfish, respectively; and (e) a study of traditional foods. Results Blood serum in residents of SLI showed elevated levels of polychlorinated biphenyls (PCBs) with higher levels among those exposed to the military site at Northeast Cape, an important traditional subsistence-use area. Environmental studies at the military site demonstrated that the site is a continuing source of PCBs to a major watershed, and that clean-up operations at the military site generated PCB-contaminated dust on plants in the region. Important traditional foods eaten by the people of SLI showed elevated concentrations of PCBs, which are primarily derived from the long-range transport of persistent pollutants that are transported by atmospheric and marine currents from more southerly latitudes to the north. Interventions An important task for all CBPR projects is to conduct intervention strategies as needed in response to research results. Because of the findings of the CBPR projects on SLI, the CBPR team and the people of the Island are actively engaging in interventions to ensure cleanup of the formerly used military sites; reform chemicals policy on a national level; and eliminate persistent pollutants internationally. The goal is to make the Island and other northern/Arctic communities safe for themselves and future generations. Conclusions As part of the CBPR projects conducted from 2000 to 2012, a series of exposure assessments demonstrate that the leaders of SLI have reason to be concerned about the health of people due to the presence of carcinogenic chemicals as measured in biomonitoring and environmental samples and important traditional foods. PMID:23977641

  15. Calyx{trademark} EA implementation at AECB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    This report describes a project to examine the applicability of a knowledge-based decision support software for environmental assessment (Calyx) to assist the Atomic Energy Control Board in environmental screenings, assessment, management, and database searches. The report begins with background on the Calyx software and then reviews activities with regard to modification of the Calyx knowledge base for application to the nuclear sector. This is followed by lists of standard activities handled by the software and activities specific to the Board; the hierarchy of environmental components developed for the Board; details of impact rules that describe the conditions under which environmentalmore » impacts will occur (the bulk of the report); information on mitigation and monitoring rules and on instance data; and considerations for future work on implementing Calyx at the Board. Appendices include an introduction to expert systems and an overview of the Calyx knowledge base structure.« less

  16. UTILIZATION OF GEOGRAPHIC INFORMATION SYSTEMS TECHNOLOGY IN THE ASSESSMENT OF REGIONAL GROUND-WATER QUALITY.

    USGS Publications Warehouse

    Nebert, Douglas; Anderson, Dean

    1987-01-01

    The U. S. Geological Survey (USGS) in cooperation with the U. S. Environmental Protection Agency Office of Pesticide Programs and several State agencies in Oregon has prepared a digital spatial database at 1:500,000 scale to be used as a basis for evaluating the potential for ground-water contamination by pesticides and other agricultural chemicals. Geographic information system (GIS) software was used to assemble, analyze, and manage spatial and tabular environmental data in support of this project. Physical processes were interpreted relative to published spatial data and an integrated database to support the appraisal of regional ground-water contamination was constructed. Ground-water sampling results were reviewed relative to the environmental factors present in several agricultural areas to develop an empirical knowledge base which could be used to assist in the selection of future sampling or study areas.

  17. Environmental consequences of oil production from oil sands

    NASA Astrophysics Data System (ADS)

    Rosa, Lorenzo; Davis, Kyle F.; Rulli, Maria C.; D'Odorico, Paolo

    2017-02-01

    Crude oil from oil sands will constitute a substantial share of future global oil demand. Oil sands deposits account for a third of globally proven oil reserves, underlie large natural forested areas, and have extraction methods requiring large volumes of freshwater. Yet little work has been done to quantify some of the main environmental impacts of oil sands operations. Here we examine forest loss and water use for the world's major oil sands deposits. We calculate actual and potential rates of water use and forest loss both in Canadian deposits, where oil sands extraction is already taking place, and in other major deposits worldwide. We estimated that their exploitation, given projected production trends, could result in 1.31 km3 yr-1 of freshwater demand and 8700 km2 of forest loss. The expected escalation in oil sands extraction thus portends extensive environmental impacts.

  18. Oman's coral reefs: A unique ecosystem challenged by natural and man-related stresses and in need of conservation.

    PubMed

    Burt, J A; Coles, S; van Lavieren, H; Taylor, O; Looker, E; Samimi-Namin, K

    2016-04-30

    Oman contains diverse and abundant reef coral communities that extend along a coast that borders three environmentally distinct water bodies, with corals existing under unique and often stressful environmental conditions. In recent years Oman's reefs have undergone considerable change due to recurrent predatory starfish outbreaks, cyclone damage, harmful algal blooms, and other stressors. In this review we summarize current knowledge of the biology and status of corals in Oman, particularly in light of recent stressors and projected future threats, and examine current reef management practices. Oman's coral communities occur in marginal environmental conditions for reefs, and hence are quite vulnerable to anthropogenic effects. We recommend a focus on developing conservation-oriented coral research to guide proactive management and expansion of the number and size of designated protected areas in Oman, particularly those associated with critical coral habitat. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Water2Invest: Global facility for calculating investments needed to bridge the climate-induced water gap

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Droogers, Peter; Brandsma, Jairus; Buytaert, Wouter; Karssenberg, Derek; Meijer, Karen; van Aalst, Maaike; van Beek, Rens; Wada, Yoshihide; Bierkens, Marc

    2013-04-01

    Decision makers responsible for climate change adaptation investments are confronted with large uncertainties regarding future water availability and water demand, as well as the investment cost required to reduce the water gap. Moreover, scientists have worked hard to increase fundamental knowledge on climate change and its impacts (climate services), while practical use of this knowledge is limited due to a lack of tools for decision support under uncertain long term future scenarios (decision services). The Water2Invest project aims are to (i) assess the joint impact of climate change and socioeconomic change on water scarcity, (ii) integrate impact and potential adaptation in one flow, (iii) prioritize adaptation options to counteract water scarcity on their financial, regional socio-economic and environmental implications, and (iv) deliver all this information in an integrated user-friendly web-based service. Global water availability is computed between 2006 and 2100 using the PCR-GLOBWB water resources model at a 6 minute spatial resolution. Climate change scenarios are based on the fifth Assessment Report (AR5) of the IPCC Coupled Model Intercomparison Project (CMIP5) that defines four CO2 emission scenarios as representative concentration pathways. Water demand is computed for agriculture, industry, domestic, and environmental requirements based on socio-economic scenarios of increase in population and gross domestic product. Using a linear programming algorithm, water is allocated on a monthly basis over the four sectors. Based on these assessments, the user can evaluate various technological and infrastructural adaptation measures to assess the investments needed to bridge the future water gap. Regional environmental and socioeconomic effects of these investments are evaluated, such as environmental flows or downstream effects. A scheme is developed to evaluate the strategies on robustness and flexibility under climate change and scenario uncertainty, and each measure is linked to possibilities for investment and financing mechanisms. The tool can be used by consultants, water authorities, non-governmental and commercial investors alike to test investment strategies, but could also be used by companies as a vehicle for advertisement water saving or crop water productivity technologies that can be evaluated on their effectiveness on the spot. We show initial results based on a preliminary study on the Middle East and North African region.

  20. Multi-model Ensemble Regional Climate Projection of the Maritime Continent using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Kang, S.; IM, E. S.; Eltahir, E. A. B.

    2016-12-01

    In this study, the future change in precipitation due to global warming is investigated over the Maritime Continent using the MIT Regional Climate Model (MRCM). A total of nine 30-year projections under multi-GCMs (CCSM, MPI, ACCESS) and multi-scenarios of emissions (Control, RCP4.5, RCP8.5) are dynamically downscaled using the MRCM with 12km horizontal resolution. Since downscaled results tend to systematically overestimate the precipitation regardless of GCM used as lateral boundary conditions, the Parametric Quantile Mapping (PQM) is applied to reduce this wet bias. The cross validation for the control simulation shows that the PQM method seems to retain the spatial pattern and temporal variability of raw simulation, however it effectively reduce the wet bias. Based on ensemble projections produced by dynamical downscaling and statistical bias correction, a reduction of future precipitation is discernible, in particular during dry season (June-July-August). For example, intense precipitation in Singapore is expected to be reduced in RCP8.5 projection compared to control simulation. However, the geographical patterns and magnitude of changes still remain uncertain, suffering from statistical insignificance and a lack of model agreement. Acknowledgements This research is supported by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise programme. The Center for Environmental Sensing and Modeling is an interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology

  1. Energy: options for the future. Curriculum development project for high school teachers. Final report. [Packet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, T.O.

    Recent state and regional energy crises demonstrate the delicate balance between energy systems, the environment, and the economy. Indeed, the interaction between these three elements of society is very complex. This project develops curriculum materials that would better provide students with an understanding and awareness of fundamental principles of energy supply, conversion processes, and utilization now and in the future. The project had two specific objectives: to transfer knowledge of energy systems, analysis techniques, and advanced technologies from the energy analyst community to the teacher participants; and to involve teachers in the preparation of modular case studies on energy issuesmore » for use within the classroom. These curriculum modules are intended to enhance the teacher's ability to provide energy-related education to students within his or her own academic setting. The project is organized as a three-week summer program, as noted in the flyer (Appendix A). Mornings are spent in seminars with energy and environmental specialists (their handout lecture notes are included as Appendix B); afternoons are devoted to high school curriculum development based on the seminar discussions. The curriculum development is limited to five areas: conservation, electricity demand scheduling, energy in the food system, new technologies (solar, wind, biomass), and environment. Appendix C consists of one-day lession plans in these areas.« less

  2. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  3. Ten years of the Three Gorges Dam: a call for policy overhaul

    NASA Astrophysics Data System (ADS)

    Yang, Xiankun; Lu, X. X.

    2013-12-01

    The Three Gorges Dam (TGD), the world’s largest source of ‘clean’ hydroelectric power (Shen and Xie 2004), has entered its tenth year after the first turbine went into operation in June 2003. The dam, with a generating capacity 20 times that of the United States’ Hoover Dam, has been hailed as a crucial part of a solution to China’s energy crisis. Despite great benefits, however, major concerns have been voiced over the disastrous environmental and social consequences of this massive engineering project (Stone 2011). In this paper, we review the benefits and impacts learned from the controversial megadam over the past decade and discuss perspective quests on policy overhaul for future environmental protection.

  4. Global Pyrogeography: the Current and Future Distribution of Wildfire

    PubMed Central

    Krawchuk, Meg A.; Moritz, Max A.; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine

    2009-01-01

    Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning. PMID:19352494

  5. The enhancement of environmental literacy of High School students within the Sparkling Science project "Traisen w3"

    NASA Astrophysics Data System (ADS)

    Poppe, Michaela; Zitek, Andreas; Böck, Kerstin; Scheikl, Sigrid; Heidenreich, Andrea; Kurz-Aigner, Roman; Schrittwieser, Martin; Muhar, Susanne

    2015-04-01

    Environmental literacy is the knowledge necessary to understand the environment as an ecological system. It comprises the insight in the impact of human behaviour on the natural world and the disposition and motivation to apply ones knowledge, skills and insight in order to make environmentally beneficial decisions as rational citizen. The United Nations Environmental Programme states that young people will face major challenges in providing sufficient water and food, generating energy and adapting to climate change in future. Dealing with these challenges will require a major contribution from science and technology. But even more important, it is an issue of education to transfer the required system understanding as a basis to take informed decisions. In this way an education towards environmental literacy contributes significantly to the personal, social, and professional lives of young people, plays therefore a central role in young person`s "preparedness for life", and is a major prerequisite for sustainable development. For the purpose of developing new and engaging forms of learning, "Sparkling Science" projects are funded by the Federal Ministry of Science, Research and Economy in Austria. These projects target at integrating science with school learning by involving young people into scientific research. Within the Sparkling Science Projects "FlussAu:WOW" and" "Traisen.w3" scientists work together with 15-18-year-old students of an Austrian High School over four years. The projects aim to assess and evaluate crucial functions and processes of riverine landscapes particularly considering the floodplain area in near natural and anthropogenically changed landscapes. Within the first project "FlussAu:WOW" (2012-2014), students and scientists elaborated on indicators for assessing and evaluating the ecological functionality of floodplains and rivers. In a case study in the "Traisen.w3" project (2014-2016), scientists and students will focus at the catchment level of the river Traisen in Lower Austria and investigate ecological and cultural ecosystem services in these river landscapes. From the second year on (2014), students are going to develop qualitative causal models on processes in river floodplain systems by means of the learning software "DynaLearn". It is an engaging, interactive, hierarchically structured learning environment that was developed within the EU-FP7 project "DynaLearn" (http://www.dynalearn.eu) to capture and simulate cause-effect relationships across disciplines and scales. Students work in small groups and are forced to think about processes and interactions of hydrological, biological, ecological, spatial and societal elements. Within this setting the collaborative problem solving competency is necessary to develop by sharing knowledge, understanding and different perspectives. The students start with building their own causal models, perform simulations and develop scenarios for the development of the catchment. Thus the students' understanding of environmental processes in river landscapes is advanced. As an important benefit, scientists learn about viewpoints and conceptions young people have on their environment. Formative evaluations of the effectiveness of different methods of collaboration between scientists and students will be conducted during the whole project. The results of the motivation questionnaires and pre- and mid-tests clearly highlighted the potential of the multi-modal collaboration approach to be used to communicate essential knowledge and skills in environmental understanding.

  6. Modeling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using ecological niche models.

    PubMed

    Sen, Sandeep; Gode, Ameya; Ramanujam, Srirama; Ravikanth, G; Aravind, N A

    2016-11-01

    The center of diversity of Piper nigrum L. (Black Pepper), one of the highly valued spice crops is reported to be from India. Black pepper is naturally distributed in India in the Western Ghats biodiversity hotspot and is the only known existing source of its wild germplasm in the world. We used ecological niche models to predict the potential distribution of wild P. nigrum in the present and two future climate change scenarios viz (A1B) and (A2A) for the year 2080. Three topographic and nine uncorrelated bioclim variables were used to develop the niche models. The environmental variables influencing the distribution of wild P. nigrum across different climate change scenarios were identified. We also assessed the direction and magnitude of the niche centroid shift and the change in niche breadth to estimate the impact of projected climate change on the distribution of P. nigrum. The study shows a niche centroid shift in the future climate scenarios. Both the projected future climate scenarios predicted a reduction in the habitat of P. nigrum in Southern Western Ghats, which harbors many wild accessions of P. nigrum. Our results highlight the impact of future climate change on P. nigrum and provide useful information for designing sound germplasm conservation strategies for P. nigrum.

  7. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus

    PubMed Central

    Flombaum, Pedro; Gallegos, José L.; Gordillo, Rodolfo A.; Rincón, José; Zabala, Lina L.; Jiao, Nianzhi; Karl, David M.; Li, William K. W.; Lomas, Michael W.; Veneziano, Daniele; Vera, Carolina S.; Vrugt, Jasper A.; Martiny, Adam C.

    2013-01-01

    The Cyanobacteria Prochlorococcus and Synechococcus account for a substantial fraction of marine primary production. Here, we present quantitative niche models for these lineages that assess present and future global abundances and distributions. These niche models are the result of neural network, nonparametric, and parametric analyses, and they rely on >35,000 discrete observations from all major ocean regions. The models assess cell abundance based on temperature and photosynthetically active radiation, but the individual responses to these environmental variables differ for each lineage. The models estimate global biogeographic patterns and seasonal variability of cell abundance, with maxima in the warm oligotrophic gyres of the Indian and the western Pacific Oceans and minima at higher latitudes. The annual mean global abundances of Prochlorococcus and Synechococcus are 2.9 ± 0.1 × 1027 and 7.0 ± 0.3 × 1026 cells, respectively. Using projections of sea surface temperature as a result of increased concentration of greenhouse gases at the end of the 21st century, our niche models projected increases in cell numbers of 29% and 14% for Prochlorococcus and Synechococcus, respectively. The changes are geographically uneven but include an increase in area. Thus, our global niche models suggest that oceanic microbial communities will experience complex changes as a result of projected future climate conditions. Because of the high abundances and contributions to primary production of Prochlorococcus and Synechococcus, these changes may have large impacts on ocean ecosystems and biogeochemical cycles. PMID:23703908

  8. Cultivating Environmental Citizenship in Teacher Education

    ERIC Educational Resources Information Center

    Green, Carie; Medina-Jerez, William; Bryant, Carol

    2016-01-01

    Research on environmental action projects in teacher education is limited. Furthermore, projects that emphasize the role of citizens and governments in environmental problem-solving are scarce. The purpose of this study was to explore how participating in a political environmental action project influenced pre-service teachers' environmental…

  9. 36 CFR 297.6 - Environmental analysis requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WILD AND SCENIC RIVERS Water Resources Projects § 297.6 Environmental analysis requirements. (a) The determination of the effects of a proposed water resources project shall be made in compliance with the National... environmental studies, assessments, or environmental impact statements prepared for a water resources project...

  10. 36 CFR 297.6 - Environmental analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WILD AND SCENIC RIVERS Water Resources Projects § 297.6 Environmental analysis requirements. (a) The determination of the effects of a proposed water resources project shall be made in compliance with the National... environmental studies, assessments, or environmental impact statements prepared for a water resources project...

  11. 36 CFR 297.6 - Environmental analysis requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WILD AND SCENIC RIVERS Water Resources Projects § 297.6 Environmental analysis requirements. (a) The determination of the effects of a proposed water resources project shall be made in compliance with the National... environmental studies, assessments, or environmental impact statements prepared for a water resources project...

  12. 36 CFR 297.6 - Environmental analysis requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WILD AND SCENIC RIVERS Water Resources Projects § 297.6 Environmental analysis requirements. (a) The determination of the effects of a proposed water resources project shall be made in compliance with the National... environmental studies, assessments, or environmental impact statements prepared for a water resources project...

  13. 36 CFR 297.6 - Environmental analysis requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WILD AND SCENIC RIVERS Water Resources Projects § 297.6 Environmental analysis requirements. (a) The determination of the effects of a proposed water resources project shall be made in compliance with the National... environmental studies, assessments, or environmental impact statements prepared for a water resources project...

  14. Building Interdisciplinary Research and Communication Skills in the Agricultural and Climate Sciences

    NASA Astrophysics Data System (ADS)

    Johnson-Maynard, J.; Borrelli, K.; Wolf, K.; Bernacchi, L.; Eigenbrode, S.; Daley Laursen, D.

    2015-12-01

    Preparing scientists and educators to create and promote practical science-based agricultural approaches to climate change adaptation and mitigation is a main focus of the Regional Approaches to Climate Change (REACCH) project. Social, political and environmental complexities and interactions require that future scientists work across disciplines rather than having isolated knowledge of one specific subject area. Additionally, it is important for graduate students earning M.S. or Ph.D. degrees in agriculture and climate sciences to be able to communicate scientific findings effectively to non-scientific audiences. Unfortunately, university graduate curricula rarely adequately prepare students with these important skills. REACCH recognizes the need for graduate students to have thorough exposure to other disciplines and to be able to communicate information for outreach and education purposes. These priorities have been incorporated into graduate training within the REACCH project. The interdisciplinary nature of the project and its sophisticated digital infrastructure provide graduate students multiple opportunities to gain these experiences. The project includes over 30 graduate students from 20 different disciplines and research foci including agronomy, biogeochemistry, soil quality, conservation tillage, hydrology, pest and beneficial organisms, economics, modeling, remote sensing, science education and climate science. Professional develop workshops were developed and held during annual project meetings to enhance student training. The "Toolbox" survey (http://www.cals.uidaho.edu/toolbox/) was used to achieve effective interdisciplinary communication. Interdisciplinary extension and education projects were required to allow students to gain experience with collaboration and working with stakeholder groups. Results of student surveys and rubrics developed to gauge success in interdisciplinary research and communication may provide a helpful starting point for future projects involving graduate student training.

  15. The SOLUTIONS project: challenges and responses for present and future emerging pollutants in land and water resources management.

    PubMed

    Brack, Werner; Altenburger, Rolf; Schüürmann, Gerrit; Krauss, Martin; López Herráez, David; van Gils, Jos; Slobodnik, Jaroslav; Munthe, John; Gawlik, Bernd Manfred; van Wezel, Annemarie; Schriks, Merijn; Hollender, Juliane; Tollefsen, Knut Erik; Mekenyan, Ovanes; Dimitrov, Saby; Bunke, Dirk; Cousins, Ian; Posthuma, Leo; van den Brink, Paul J; López de Alda, Miren; Barceló, Damià; Faust, Michael; Kortenkamp, Andreas; Scrimshaw, Mark; Ignatova, Svetlana; Engelen, Guy; Massmann, Gudrun; Lemkine, Gregory; Teodorovic, Ivana; Walz, Karl-Heinz; Dulio, Valeria; Jonker, Michiel T O; Jäger, Felix; Chipman, Kevin; Falciani, Francesco; Liska, Igor; Rooke, David; Zhang, Xiaowei; Hollert, Henner; Vrana, Branislav; Hilscherova, Klara; Kramer, Kees; Neumann, Steffen; Hammerbacher, Ruth; Backhaus, Thomas; Mack, Juliane; Segner, Helmut; Escher, Beate; de Aragão Umbuzeiro, Gisela

    2015-01-15

    SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  17. Dendroclimatology of the Slave River Delta, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Jarvis, S.; Buhay, W. M.; Blair, D.; Tardif, J.; Bailey, D.

    2004-05-01

    It is well documented that changing hydrological conditions impact delta ecosystems. Such changes can also affect local inhabitants who have historical connections to the area and its resources. During the summer of 2003 a multifaceted paleo-environmental project was initiated to reconstruct the frequencies of floods and droughts in the Slave River Delta (SRD), Northwest Territories, Canada. The project goal is to forecast future hydrological and ecological conditions in the SRD in light of anticipated climate change and increasing demand on water resources. With the intent of expanding the climate history of the SRD, this particular aspect of the project will employ white spruce tree-ring chronologies constructed from six sites visited within the delta. Work is currently in progress to build a master chronology estimated to span over 300 years. In addition, a climate model for the SRD is also being developed and will be highlighted.

  18. Biological Assessment of the Continued Operation of Los Alamos National Laboratory on Federally Listed Threatened and Endangered Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Leslie A.

    2006-09-19

    This biological assessment considers the effects of continuing to operate Los Alamos National Laboratory on Federally listed threatened or endangered species, based on current and future operations identified in the 2006 Site-wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (SWEIS; DOE In Prep.). We reviewed 40 projects analyzed in the SWEIS as well as two aspects on ongoing operations to determine if these actions had the potential to affect Federally listed species. Eighteen projects that had not already received U.S. Fish and Wildlife Service (USFWS) consultation and concurrence, as well as the two aspects ofmore » ongoing operations, ecological risk from legacy contaminants and the Outfall Reduction Project, were determined to have the potential to affect threatened or endangered species. Cumulative impacts were also analyzed.« less

  19. Reducing Vulnerability of Coastal Communities to Coastal Hazards through Building Community Resilience

    NASA Astrophysics Data System (ADS)

    Bhj, Premathilake

    2010-05-01

    Reducing Vulnerability of Coastal Communities to Coastal Hazards through Building Community Resilience B H J Premathilake Coast Conservation Department Sri Lanka Email: bhjprem@yahoo.com This paper contains two parts; Part one describes the comprehensive approach adopted by our project to build social, economical, institutional and environmental resilience of the tsunami affected communities in Sri Lanka to cope with future natural disasters. Community development, Coastal resource management and Disaster management are the three pillars of this model and these were built simultaneously to bring the community into a higher level of resilience to coastal hazards. Second part describes the application of Coastal Community Resilience (CCR) Assessment framework to evaluate the progress achieved by the project in building overall resilience of the communities during its period. It further describes how to estimate the contribution of this specific project for the improved resilience status of the selected communities in a multi stakeholder environment.

  20. The Environmental Education through Filmmaking Project

    ERIC Educational Resources Information Center

    Harness, Hallie; Drossman, Howard

    2011-01-01

    The environmental education through filmmaking project, a case study at an alternative US public high school, investigates environmental literacies of "at-risk" students who produced two short documentary films, one on recycling and one on water conservation. The filmmaking project sought to promote students' awareness of environmental issues and…

  1. 40 CFR 47.125 - Eligible and priority projects and activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... environmental pollution problems; (3) Projects to understand and assess a specific environmental issue or a... activities. 47.125 Section 47.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE NATIONAL ENVIRONMENTAL EDUCATION ACT GRANTS § 47.125 Eligible and priority projects and...

  2. 40 CFR 47.125 - Eligible and priority projects and activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... environmental pollution problems; (3) Projects to understand and assess a specific environmental issue or a... activities. 47.125 Section 47.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE NATIONAL ENVIRONMENTAL EDUCATION ACT GRANTS § 47.125 Eligible and priority projects and...

  3. 40 CFR 47.125 - Eligible and priority projects and activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... environmental pollution problems; (3) Projects to understand and assess a specific environmental issue or a... activities. 47.125 Section 47.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE NATIONAL ENVIRONMENTAL EDUCATION ACT GRANTS § 47.125 Eligible and priority projects and...

  4. 40 CFR 47.125 - Eligible and priority projects and activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... environmental pollution problems; (3) Projects to understand and assess a specific environmental issue or a... activities. 47.125 Section 47.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE NATIONAL ENVIRONMENTAL EDUCATION ACT GRANTS § 47.125 Eligible and priority projects and...

  5. 40 CFR 47.125 - Eligible and priority projects and activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... environmental pollution problems; (3) Projects to understand and assess a specific environmental issue or a... activities. 47.125 Section 47.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE NATIONAL ENVIRONMENTAL EDUCATION ACT GRANTS § 47.125 Eligible and priority projects and...

  6. Environmental baseline monitoring in the area of general crude oil - Department of Energy Pleasant Bayou Number 1 - a geopressured-geothermal test well, 1978. Volume II. Appendix I. Microseismic monitoring, Teledyne Geotech, Garland, Texas. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavson, T.C.

    1979-01-01

    This is an interim report on a project to monitor microseismic activity in the vicinity of a future geopressured well test site in Brazoria County, Texas. The data collected to date indicate that numerous weak seismic sources are intermittently active in the vicinity of the test site. However, all of these sources appear to be related to cultural or industrial activity of undetermined origin. At the present time there is no evidence for naturally occurring seismic acitivty within 4 kilometers of the future test site with local magnitudes in excess of 0.25.

  7. The geological record of ocean acidification.

    PubMed

    Hönisch, Bärbel; Ridgwell, Andy; Schmidt, Daniela N; Thomas, Ellen; Gibbs, Samantha J; Sluijs, Appy; Zeebe, Richard; Kump, Lee; Martindale, Rowan C; Greene, Sarah E; Kiessling, Wolfgang; Ries, Justin; Zachos, James C; Royer, Dana L; Barker, Stephen; Marchitto, Thomas M; Moyer, Ryan; Pelejero, Carles; Ziveri, Patrizia; Foster, Gavin L; Williams, Branwen

    2012-03-02

    Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry-a consequence of the unprecedented rapidity of CO(2) release currently taking place.

  8. Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf

    PubMed Central

    Lam, Vicky W. Y.; Reygondeau, Gabriel; Teh, Lydia C. L.; Al-Abdulrazzak, Dalal; Khalfallah, Myriam; Pauly, Daniel; Palomares, Maria L. Deng; Zeller, Dirk; Cheung, William W. L.

    2018-01-01

    Climate change–reflected in significant environmental changes such as warming, sea level rise, shifts in salinity, oxygen and other ocean conditions–is expected to impact marine organisms and associated fisheries. This study provides an assessment of the potential impacts on, and the vulnerability of, marine biodiversity and fisheries catches in the Arabian Gulf under climate change. To this end, using three separate niche modelling approaches under a ‘business-as-usual’ climate change scenario, we projected the future habitat suitability of the Arabian Gulf (also known as the Persian Gulf) for 55 expert-identified priority species, including charismatic and non-fish species. Second, we conducted a vulnerability assessment of national economies to climate change impacts on fisheries. The modelling outputs suggested a high rate of local extinction (up to 35% of initial species richness) by 2090 relative to 2010. Spatially, projected local extinctions are highest in the southwestern part of the Gulf, off the coast of Saudi Arabia, Qatar and the United Arab Emirates (UAE). While the projected patterns provided useful indicators of potential climate change impacts on the region’s diversity, the magnitude of changes in habitat suitability are more uncertain. Fisheries-specific results suggested reduced future catch potential for several countries on the western side of the Gulf, with projections differing only slightly among models. Qatar and the UAE were particularly affected, with more than a 26% drop in future fish catch potential. Integrating changes in catch potential with socio-economic indicators suggested the fisheries of Bahrain and Iran may be most vulnerable to climate change. We discuss limitations of the indicators and the methods used, as well as the implications of our overall findings for conservation and fisheries management policies in the region. PMID:29718919

  9. Future changes to drought characteristics over the Canadian Prairie Provinces based on NARCCAP multi-RCM ensemble

    NASA Astrophysics Data System (ADS)

    Masud, M. B.; Khaliq, M. N.; Wheater, H. S.

    2017-04-01

    This study assesses projected changes to drought characteristics in Alberta, Saskatchewan and Manitoba, the prairie provinces of Canada, using a multi-regional climate model (RCM) ensemble available through the North American Regional Climate Change Assessment Program. Simulations considered include those performed with six RCMs driven by National Center for Environmental Prediction reanalysis II for the 1981-2003 period and those driven by four Atmosphere-Ocean General Circulation Models for the 1970-1999 and 2041-2070 periods (i.e. eleven current and the same number of corresponding future period simulations). Drought characteristics are extracted using two drought indices, namely the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). Regional frequency analysis is used to project changes to selected 20- and 50-year regional return levels of drought characteristics for fifteen homogeneous regions, covering the study area. In addition, multivariate analyses of drought characteristics, derived on the basis of 6-month SPI and SPEI values, are developed using the copula approach for each region. Analysis of multi-RCM ensemble-averaged projected changes to mean and selected return levels of drought characteristics show increases over the southern and south-western parts of the study area. Based on bi- and trivariate joint occurrence probabilities of drought characteristics, the southern regions along with the central regions are found highly drought vulnerable, followed by the southwestern and southeastern regions. Compared to the SPI-based analysis, the results based on SPEI suggest drier conditions over many regions in the future, indicating potential effects of rising temperatures on drought risks. These projections will be useful in the development of appropriate adaptation strategies for the water and agricultural sectors, which play an important role in the economy of the study area.

  10. A 1,000 GtC Coal Question for Future Energy Scenarios: How Much Coal Will Renewables Need to Displace?

    NASA Astrophysics Data System (ADS)

    Ritchie, W. J.; Dowlatabadi, H.

    2016-12-01

    Twenty years ago, global coal assessments indicated reserve-to-production (R-P) ratios of more than 300 years. Consequently, most studies of energy futures established coal as a virtually unlimited backstop to meet the world's projected energy needs. Coal was modeled to offset oil and gas production declines and provide a source of energy which renewables and lower carbon supply strategies needed to outcompete. Over the past two decades, increasingly consistent methodologies have been applied globally to assess recoverable coal. Coal production has also witnessed significant mechanization to meet higher demand. Each of these has led to a significant reduction in estimates of economically recoverable coal reserves despite a doubling of market prices over this period. The current reserve to production ratio for coal is now around 100 years. It is time to reconsider coal as the inexhaustible energy backstop The energy models which develop long-term estimates of renewable energy needs and projections of greenhouse gas (GHG) emissions still adopt the characteristics of vintage coal assessments. By convention, baseline GHG emissions used by the IPCC and others, project combustion of most known coal reserves before the year 2100. When vintage assessments are used, this involves extraction of all currently known coal reserves plus twice again from resources invalidated as recoverable for geologic, environmental, social, legal, technical or economic reasons. We provide evidence for rejecting these projections of unbounded growth in coal consumption. Legacy pathways of implausibly high coal use upwardly bias long-term scenarios for total cumulative GHG emissions and subsequent research on climate change. This bias has precluded consideration of much more ambitious climate mitigation targets without significant socio-economic dislocation and unnecessarily diminishes possible future contributions from renewables.

  11. The Contribution of Vegetation and Landscape Configuration for Predicting Environmental Change Impacts on Iberian Birds

    PubMed Central

    Triviño, Maria; Thuiller, Wilfried; Cabeza, Mar; Hickler, Thomas; Araújo, Miguel B.

    2011-01-01

    Although climate is known to be one of the key factors determining animal species distributions amongst others, projections of global change impacts on their distributions often rely on bioclimatic envelope models. Vegetation structure and landscape configuration are also key determinants of distributions, but they are rarely considered in such assessments. We explore the consequences of using simulated vegetation structure and composition as well as its associated landscape configuration in models projecting global change effects on Iberian bird species distributions. Both present-day and future distributions were modelled for 168 bird species using two ensemble forecasting methods: Random Forests (RF) and Boosted Regression Trees (BRT). For each species, several models were created, differing in the predictor variables used (climate, vegetation, and landscape configuration). Discrimination ability of each model in the present-day was then tested with four commonly used evaluation methods (AUC, TSS, specificity and sensitivity). The different sets of predictor variables yielded similar spatial patterns for well-modelled species, but the future projections diverged for poorly-modelled species. Models using all predictor variables were not significantly better than models fitted with climate variables alone for ca. 50% of the cases. Moreover, models fitted with climate data were always better than models fitted with landscape configuration variables, and vegetation variables were found to correlate with bird species distributions in 26–40% of the cases with BRT, and in 1–18% of the cases with RF. We conclude that improvements from including vegetation and its landscape configuration variables in comparison with climate only variables might not always be as great as expected for future projections of Iberian bird species. PMID:22216263

  12. Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf.

    PubMed

    Wabnitz, Colette C C; Lam, Vicky W Y; Reygondeau, Gabriel; Teh, Lydia C L; Al-Abdulrazzak, Dalal; Khalfallah, Myriam; Pauly, Daniel; Palomares, Maria L Deng; Zeller, Dirk; Cheung, William W L

    2018-01-01

    Climate change-reflected in significant environmental changes such as warming, sea level rise, shifts in salinity, oxygen and other ocean conditions-is expected to impact marine organisms and associated fisheries. This study provides an assessment of the potential impacts on, and the vulnerability of, marine biodiversity and fisheries catches in the Arabian Gulf under climate change. To this end, using three separate niche modelling approaches under a 'business-as-usual' climate change scenario, we projected the future habitat suitability of the Arabian Gulf (also known as the Persian Gulf) for 55 expert-identified priority species, including charismatic and non-fish species. Second, we conducted a vulnerability assessment of national economies to climate change impacts on fisheries. The modelling outputs suggested a high rate of local extinction (up to 35% of initial species richness) by 2090 relative to 2010. Spatially, projected local extinctions are highest in the southwestern part of the Gulf, off the coast of Saudi Arabia, Qatar and the United Arab Emirates (UAE). While the projected patterns provided useful indicators of potential climate change impacts on the region's diversity, the magnitude of changes in habitat suitability are more uncertain. Fisheries-specific results suggested reduced future catch potential for several countries on the western side of the Gulf, with projections differing only slightly among models. Qatar and the UAE were particularly affected, with more than a 26% drop in future fish catch potential. Integrating changes in catch potential with socio-economic indicators suggested the fisheries of Bahrain and Iran may be most vulnerable to climate change. We discuss limitations of the indicators and the methods used, as well as the implications of our overall findings for conservation and fisheries management policies in the region.

  13. Decadal Time Scale change in terrestrial plant communities in North American arctic and alpine tundra: A contribution to the International Polar Year Back to the Future Project (Invited)

    NASA Astrophysics Data System (ADS)

    Tweedie, C. E.; Ebert-May, D.; Hollister, R. D.; Johnson, D. R.; Lara, M. J.; Villarreal, S.; Spasojevic, M.; Webber, P.

    2010-12-01

    The International Polar Year-Back to the Future (IPY-BTF) is an endorsed International Polar Year project (IPY project #214). The overarching goal of this program is to determine how key structural and functional characteristics of high latitude/altitude terrestrial ecosystems have changed over the past 25 or more years and assess if such trajectories of change are likely to continue in the future. By rescuing data, revisiting, re-sampling historic research sites and assessing environmental change over time, we aim to provide greater understanding of how tundra is changing and what the possible drivers of these changes are. Resampling of sites established by Patrick J. Webber between 1964 and 1975 in northern Baffin Island, Northern Alaska and in the Rocky Mountains form a key contribution to the BTF project. Here we report on resampling efforts at each of these locations and initial results of a synthesis effort that finds similarities and differences in change between sites. Results suggest that although shifts in plant community composition are detectable at each location, the magnitude and direction of change differ among locations. Vegetation shifts along soil moisture gradients is apparent at most of the sites resampled. Interestingly, however, wet communities seem to have changed more than dry communities in the Arctic locations, while plant communities at the alpine site appear to be becoming more distinct regardless of soil moisture status. Ecosystem function studies performed in conjunction with plant community change suggest that there has been an increase in plant productivity at most sites resampled, especially in wet and mesic land cover types.

  14. Climatic and agricultural drivers of soil erosion in Africa

    NASA Astrophysics Data System (ADS)

    Irvine, Brian; Kirkby, Mike; Fleskens, Luuk

    2015-04-01

    Soil erosion was the most frequently identified driver of land degradation across a selection of global research sites within the DESIRE-EU project. The PESERA model was adopted in the project to upscale field results and consider the potential biophysical impact both with and without stakeholder selected sustainable land management (SLM) technologies in place. The PESERA model was combined with the DESMICE economic model and focussed on forecasting the regional effects of combating desertification both in environmental and socio-economical terms. The PESERA-DESMICE approach is further developed in the WAHARA project to consider the potential of a range of water harvesting technologies to improve biophysical conditions. Modelling in the WAHARA project considers detail of water harvesting technologies at the study site scale through to a coarser application at the continental scale with the latter being informed by the detail provided by study site observations an approach adopted in DESIRE-EU. The PESERA-DESMICE approach considers the difference between a baseline scenario and a (water harvesting) technology scenario at both scales in terms of productivity, financial viability and scope for reducing erosion risk. This paper considers the continental scale and focuses on estimating the impact of in-situ water harvesting technologies across Africa under current and future agricultural and climate pressure. PESERA is adopted in this continental application as it implicitly considers the impact of land-use and climate and can be readily amended to simulate in-situ WHT. Input data for PESERA; land use, management (crop type and planting dates), soil data and topography are derived from global data resources. Climate data for present and future scenarios are available through the QUEST-GSI initiative, where future scenarios are based on the outputs of seven GCM's.

  15. Urban waste landfill planning and karstic groundwater resources in developing countries: the example of Lusaka (Zambia)

    NASA Astrophysics Data System (ADS)

    De Waele, J.; Nyambe, I. A.; Di Gregorio, A.; Di Gregorio, F.; Simasiku, S.; Follesa, R.; Nkemba, S.

    2004-06-01

    Lusaka, the capital city of Zambia with more than two million inhabitants, derives approximately 70% of its water requirements from groundwater sourced in the underlying karstic Lusaka aquifer. This water resource is, therefore, extremely important for the future of the population. The characteristics of the aquifer and the shallow water table make the resource vulnerable and in need of protection and monitoring. A joint project between the Geology Departments of the University of Cagliari and the School of Mines of the University of Zambia, to investigate the "Anthropogenic and natural processes in the Lusaka area leading to environmental degradation and their possible mitigation" was carried out in July 2001. The main objective of the study was to evaluate the extent of the present environmental degradation, assessing the vulnerability of the carbonatic aquifer and the degree of pollution of the groundwater and to make proposals to mitigate adverse environmental effects. Analyses of water samples collected during project indicate some areas of concern, particularly with respect to the levels of ammonia, nitrates and some heavy metals. As groundwater quality and quantity are prerogatives for a healthy and sustainable society, the study offers guidelines for consideration by the local and national authorities. Uptake of these guidelines should result in a number of initiatives being taken, including: (a) closure or reclamation of existing waste dumps; (b) upgrading of existing waste dumps to controlled landfills; (c) establishing new urban waste landfills and plants in geo-environmentally suitable sites; (d) local waste management projects in all compounds (residential areas) to prevent and reduce haphazard waste dumping; (e) enlarging sewerage drainage systems to all compounds; (f) enforcing control on groundwater abstraction and pollution, and demarcation of zones of control at existing drill holes; (g) providing the city with new water supplies from outside the Lusaka well-field; and (h) in increasing environmental education in schools and to all citizens.

  16. Role of local government in responding to environmental health challenges: a case study of Chungnam

    PubMed Central

    Lee, Hoo-Young

    2017-01-01

    The purpose of this study is to introduce the establishment process, policy target, and projects for “Chungnam’s master plan on environmental health policy (2017-2020)” as the local government’s role in addressing local environmental health challenges. We first analyzed existing studies and social issues on the media related to “Chungnam’s master plan” to understand Chungnam’s environmental health status and discussed domestic and international policy trends and related plans. An environmental health perception questionnaire survey and a Delphi expert questionnaire survey were conducted among provincial residents to collect various actors’ opinions on Chungnam’s environmental health issues and policy. An expert advisory panel was launched, and a residents’ voice workshop and cities-and-guns-policy-suggestion workshop were held. The vision of Chungnam’s environmental health policy is minimizing environmental hazards. We finally selected “Pleasant environment, healthy people, happy Chungnam” to represent the will to shape a pleasant environment and prevent and manage health damages for a happy Chungnam. We selected five strategies based on status analysis and a review of domestic and international policy trends and related plans and identified 2 targets (policy objectives) to accomplish the strategies. The strategies to achieve the first target, “Leader in environmental health policy: Chungnam,” include ‘Empowering active provincial capabilities,’ ‘Setting up province-specific systems for environmental health surveys and research,’ and ‘Preventing and managing newly emerging pollutants.’ The strategies for the second target, “Everyone is healthy: Chungnam,” include ‘Relieving health inequalities among vulnerable regions and residents’ and ‘Enlarging the resident-friendly environmental health policy.’ We developed 29 projects in total, according to these strategies. The establishment of “Chungnam’s master plan” is highly valuable; we developed it through discussion involving diverse actors to address environmental health challenges together. It is necessary to continue to strengthen participation, communication, and cooperation among actors to develop an environmental health policy model for the future. PMID:29198098

  17. [Reliability and validity of a Mexican version of the Pro Children Project questionnaire].

    PubMed

    Ochoa-Meza, Gerardo; Sierra, Juan Carlos; Pérez-Rodrigo, Carmen; Aranceta Bartrina, Javier; Esparza-Del Villar, Óscar A

    2014-08-01

    To determine the test-retest reliability, the internal consistency, and the predictive validity of the constructs of the Mexican version of the Pro Children Project questionnaire (PCHP) for assessing personal and environmental factors related to fruit and vegetable intake in 10-12 year-old schoolchildren. Test-retest design with a 14 days interval. A sample of 957 children completed the questionnaire with 82 items. The study was conducted at eight primary schools in 2012 in Ciudad Juarez, Chihuahua, Mexico. For all fruit constructs and vegetable constructs, the test-retest reliability was moderate (intraclass correlation coefficient (ICC) > 0.60). Cronbach s alpha values were from moderate to high (range of 0.54 to 0.92) similar to those in the original study. Values for predictive validity ranged from moderate to good with Spearman correlations between 0.23 and 0.60 for personal factors and between 0.14 and 0.40 for environmental factors. The results of the Mexican version of the PCHP questionnaire provide a sufficient reliability and validity for assessing personal and environmental factors of fruit and vegetable intake in 10-12 year old schoolchildren. Finally, implications to administer this instrument in scholar settings and guidelines for futures studies are discussed. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. 77 FR 54904 - Intent to Prepare a Draft Environmental Impact Statement/Environmental Impact Report for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Environmental Impact Statement/ Environmental Impact Report for the Proposed Ballona Wetlands Restoration...) for the proposed Ballona Wetlands Restoration Project. The proposed project is intended to return the... biological functions and services in the project area. Restoring the wetland functions and services would...

  19. Contrasted demographic responses facing future climate change in Southern Ocean seabirds.

    PubMed

    Barbraud, Christophe; Rivalan, Philippe; Inchausti, Pablo; Nevoux, Marie; Rolland, Virginie; Weimerskirch, Henri

    2011-01-01

    1. Recent climate change has affected a wide range of species, but predicting population responses to projected climate change using population dynamics theory and models remains challenging, and very few attempts have been made. The Southern Ocean sea surface temperature and sea ice extent are projected to warm and shrink as concentrations of atmospheric greenhouse gases increase, and several top predator species are affected by fluctuations in these oceanographic variables. 2. We compared and projected the population responses of three seabird species living in sub-tropical, sub-Antarctic and Antarctic biomes to predicted climate change over the next 50 years. Using stochastic population models we combined long-term demographic datasets and projections of sea surface temperature and sea ice extent for three different IPCC emission scenarios (from most to least severe: A1B, A2, B1) from general circulation models of Earth's climate. 3. We found that climate mostly affected the probability to breed successfully, and in one case adult survival. Interestingly, frequent nonlinear relationships in demographic responses to climate were detected. Models forced by future predicted climatic change provided contrasted population responses depending on the species considered. The northernmost distributed species was predicted to be little affected by a future warming of the Southern Ocean, whereas steep declines were projected for the more southerly distributed species due to sea surface temperature warming and decrease in sea ice extent. For the most southerly distributed species, the A1B and B1 emission scenarios were respectively the most and less damaging. For the two other species, population responses were similar for all emission scenarios. 4. This is among the first attempts to study the demographic responses for several populations with contrasted environmental conditions, which illustrates that investigating the effects of climate change on core population dynamics is feasible for different populations using a common methodological framework. Our approach was limited to single populations and have neglected population settlement in new favourable habitats or changes in inter-specific relations as a potential response to future climate change. Predictions may be enhanced by merging demographic population models and climatic envelope models. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.

  20. Public Scholarship Student Projects for Introductory Environmental Courses

    ERIC Educational Resources Information Center

    Baum, Seth D.; Aman, Destiny D.; Israel, Andrei L.

    2012-01-01

    This paper presents a model project for introductory undergraduate courses that develops students as citizens contributing scholarship to public discussions of environmental issues. In this field-based project, students actively and independently engage with an environmental issue and present their project experience to a relevant public forum. In…

Top